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July 2005
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Supervisor
Department of Mathematics
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ABSTRACT

In this thesis, the nonstandard finite difference method is applied to construct

the new finite difference equations for the first order nonlinear dynamic equation, second

order singularly perturbed convection diffusion equation and nonlinear reaction diffusion

partial differential equation. The new discrete representation for the first order nonlinear

dynamic equation allows us to obtain stable solutions for all step-sizes. For singularly

perturbed convection diffusion equation, the error analysis reveals that the nonstandard

finite difference representation gives the better results for any values of the perturba-

tion parameters. Finally, the new discretization for the last equation is obtained. The

lemma related to the positivity and boundedness conditions required for the nonstandard

finite difference scheme is stated. Numerical simulations for all differential equations are

illustrated based on the parameters we considered.
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ÖZET

Bu tezde, birinci mertebeden lineer olmayan dinamik, ikinci mertebeden tekil

pertürbe konveksiyon difüzyon ve lineer olmayan kismi diferansiyel reaksiyon-difüzyon

denklemlerine standart olmayan sonlu fark metodu uygulanarak yeni sonlu fark denklem-

leri oluşturuldu. Birinci mertebeden lineer olmayan dinamik denklem için yazilan yeni

gösterim, her adimda kararli çözüm elde edilmesini sağladi. Tekil pertürbe konveksiyon-

difüzyon denkleminin standart olmayan sonlu fark metodu ile çözümü, pertürbasyon

parametresinin aldiği her değere karşilik sonlu fark metoduna göre daha iyi sonuç verdiği

hata analizi ile gösterildi. Son olarak, reaksiyon-difüzyon denklemi için yeni bir gösterim

elde edildi. Standart olmayan sonlu fark metodu için gereken pozitiflik ve sinirlilik

kos.ullari lemma ile belirlendi. Tüm diferansiyel denklemlerin nümerik simülasyonlari

parametrelere bağli olarak örneklendirildi.
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CHAPTER 1

INTRODUCTION

In this thesis, we study the nonstandard finite difference method for constructing

discrete models of ordinary differential equation, second order differential equation for

singularly perturbed problem and nonlinear partial differential equation.

In general, a given linear or nonlinear differential equation does not have a com-

plete solution that can be expressed in terms of a finite number of elementary functions

(Ross 1964, Humi and Miller 1988, Zwillinger 1989, Zwillinger 1992). A first attack on

this situation is to seek approximate analytic solutions by means of various perturbation

methods (Bender and Orszag 1978, Mickens 1981, Kevorkian and Cole 1981). However,

such procedures only hold for limited ranges of the system parameters and/or the indepen-

dent variables. For arbitrary values of the system parameters, only numerical integration

techniques can provide accurate numerical solutions to the original differential equations.

A major difficulty with numerical techniques is that a separate calculation must be formu-

lated for each particular set of initial and/or boundary values. Consequently, obtaining a

global picture of the general solution to the differential equations often requires a great

deal of computation and time. However, for many problems being investigated in science

and technology, there exist no alternatives to numerical methods. The process of numeri-

cal method is the replacement of a set of differential equations, both of whose independent

and dependent variables are continuous, by a model for which these variables may be dis-

crete. In general, in the model the independent variables have a one-to-one corresponds

with the integers while the dependent variables can take real values.

One of the traditional technique to find an approximate solution for the given

problem is the finite difference method. The short history of the finite difference method

starts with the 1930s. Even though some ideas may be traced back further, we begin

the fundamental theoretical paper by Courant, Friedrichs and Lewy (1928) on the solu-

tions of the problems of mathematical physics by of finite differences. A finite difference

approximation was first defined for the wave equation, and the CFL stability condition

was shown to be necessary for convergence. Error bounds for difference approximations

of elliptic problems were first derived by Gershgorin (1930) whose work was based on a
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discrete analogue of the maximum principle for Laplace’s equation. This approach was

pursued through the 1960s by, e.g., Collatz, Matzkin, Wasow, Bramble, and Hubbard,

and various approximations of elliptic equations and associated boundary conditions were

analyzed (Thomee 1999). The finite difference theory for general initial value problems

and parabolic problems then had an intense period of development during 1950s and

1960s, when the concept of stability was explored in the Lax equivalence theorem and

the Kreiss matrix lemmas. For hyperbolic equations and nonlinear conservation laws, the

finite difference method has continued to play a dominating role up to the present time.

Now let us introduce the construction of discrete standard finite difference models

that we will employ. We set tk = hk for k=0,...,n+1. tk+1 = tk + h and tk−1 = tk − h,

h = tn+1−t0
n

.

dy

dt
=
y(t+ h) − y(t)

h
≈ yk+1 − yk

h
. (1.1)

dy

dt
=
y(t) − y(t− h)

h
≈ yk − yk−1

h
. (1.2)

dy

dt
=
y(t+ h) − y(t− h)

2h
≈ yk+1 − yk−1

2h
. (1.3)

These representations of the first derivative are known, respectively, as the forward Euler,

backward Euler, and central difference schemes. Composing the forward and backward

Euler difference schemes, we get the following central approximations for the second

derivative:

d2y

dt2
=
y(t+ h) − 2y(t) + y(t− h)

h2
≈ yk+1 − 2yk + yk−1

h2
. (1.4)

Standard finite difference rules does not lead to a unique discrete model. One of

the questions is which of the standard finite difference schemes should be used to obtain

numerical solutions for a differential equation? Another problem is the relationship

between the solutions to a given discrete model and that of corresponding differential

equation. This connection may be tenuous. This and related matters lead to the study

of numerical instabilities (Mickens 1994).

Once a discrete model is selected, the calculation of a numerical solution requires

the choice of a time and/or space step-size. How should this be done? For problems in
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the sciences and engineering, the value of the step-sizes must be determined such that

the physical phenomena of interest can be resolved on the scale of the computational grid

or lattice. However, suppose one is interested in the long-time or asymptotic-in-space

behavior of the solution; can the step-sizes be taken as large as one wishes? Numerical

instabilities may exist.

In this work, we study to eliminate the elementary numerical instabilities that

can arise in the finite-difference models of differential equations. Our purpose will be the

construction of discrete models whose solutions have the same qualitative properties as

that of the corresponding differential equation for all step-sizes. We have not completely

succeeded in this effort, but, progress has definitely been made.

The method that we employ to the differential equations is nonstandard finite

difference model began with the 1989 publication of Mickens (Mickens 1989). Extensions

and a summary of the known results up to 1994 are given in Mickens (Mickens 1994).

This class of schemes and their formulation center on two issues: first, how should

discrete representations for derivatives be determined, and second, what are the proper

forms to be used for nonlinear terms.

Nonstandard finite difference scheme has been constructed by Ronald E. Mickens

for some class of differential equations. One of them is the first order ordinary differential

equations given as follows:

dy

dt
= f(y) (1.5)

which is called as decay equation when f(y)=−λy , λ > 0 (Mickens 1994). Exponential

decay occurs in a wide variety of situations. Most of these fall into the domain of the

natural sciences. Any application of mathematics to the social sciences or humanities is

risky and uncertain, because of the extraordinary complexity of human behavior. How-

ever, a few broadly exponential phenomena have been identified there as well. When

f(y) = y(1 − y) then equation (1.5) becomes the logistic differential equation with two-

fixed points (Mickens 1994):

dy

dt
= y(1 − y). (1.6)
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When f(y) = y(1−y2) then equation (1.5) is called as the cubic differential equation with

three-fixed points (Mickens 1999a):

dy

dt
= y(1 − y2). (1.7)

When f(y) = sin(πy) then equation (1.5) is considered as a sine equation (Mickens 1999a):

dy

dt
= sin(πy). (1.8)

Next; the following second order ordinary differential equations have been also solved by

Mickens:

d2y

dt2
+ y + f(y2)

dy

dt
+ g(y2)y = 0. (1.9)

A large class of one-dimensional, nonlinear oscillators can be modeled by this differential

equation(Mickens 1994). When f(y2) = 0 and g(y2) = 0, then equation (1.9) is the

harmonic oscillator equation given as follows (Mickens 1994):

d2y

dt2
+ y = 0. (1.10)

The form for g(y2)y=0 is consistent with the analysis of the van der Pol equation. The

van der Pol equation (1.9) corresponds to a non-linear oscillatory system that has both

input and output sources of energy. This equation is given by the expression (Mickens

1997b):

d2y

dt2
+ y = ε(1 − y2)

dy

dt
, ε > 0. (1.11)

When f(y2) = 0, then equation (1.9) is the equation of motion for a conservative oscillator.

The periodic solutions of conservative oscillators have the property that the amplitude

of the oscillations are constants. This property is used as the characteristic defining

a conservative oscillator. Without loss of generality, they only considered the Duffing

equation (Mickens et al. 1989, Mickens 1988):

d2y

dt2
+ y + εy3 = 0, ε > 0. (1.12)

Finally, some partial differential equations are also studied by Mickens. For example;

nonlinear diffusion describes important phenomena in many systems in the physical, bio-

logical, and engineering sciences. In addition to giving solutions that behave like the usual

4



diffusion processes, i.e., waves with an effective infinite speed of propagation, nonlinear

diffusion can lead to solutions which exhibit shock-like, decreasing maximum amplitude,

waves. An example of such an equation is the Boltzmann equation (Mickens 2000):

ut = (uux)x, where u = u(x, t). (1.13)

Burgers-Fisher partial differential equation (Mickens 1999b) is

ut + auux = Duxx + λu(1 − u) (1.14)

where(a,D,λ) are non-negative parameters. This equation, with λ=0, has been used to

investigate sound waves in a viscous medium. However, it was originally introduced by

Burgers (Burgers 1948) to model one-dimensional turbulence and can also be applied to

waves in fluid-filled viscous elastic tubes and magnetohydrodynamic waves in a medium

with finite electrical (Debnath 1997) conductivity. With all three parameters positive,

equation (1.14) corresponds to Burgers equation having non-linear reaction. An alterna-

tive view of equation (1.14) is to consider it as a modified Fisher equation (Murray 1989)

with a=0:

ut = Duxx + λu(1 − u). (1.15)

D=0 is the diffusionless Burgers equation (Mickens 1997c) with nonlinear reaction:

ut + auux = λu(1 − u). (1.16)

a=0 and λ=0 are the linear diffusion equation (Mickens 1997c):

ut = Duxx. (1.17)

D=0 and λ=0 are the diffusionless Burgers equation (Mickens 1997c):

ut + auux = 0. (1.18)

Many interesting systems in acoustics and fluid dynamics may be mathematically modeled

by partial differential equations where linear advection and/or non-linear reaction are the

dominant effects. For two space dimensions, the PDE’s take the form (Mickens 1997a):

ut + aux + buy = 0 (1.19)

ut + aux + buy = u(1 − u) (1.20)

5



where a and b are positive constants.

The outline of this thesis is given as below:

In Chapter 2, we explain when the numerical instabilities occur in the computa-

tion. We introduce logistic differential equation and construct several discrete models.

Then we compare the properties of the solutions to the difference equations to the

corresponding properties of the original differential equation.

In Chapter 3, we define the exact finite difference scheme. Then, we give

information to understand the general rules for the construction of nonstandard finite

difference scheme for differential equations.

In Chapter 4, we construct a new finite difference scheme for nonlinear dynamic

ordinary differential equation. Then, standard and nonstandard finite difference schemes

are introduced and analyzed for the first order ordinary differential equation.

In Chapter 5, we introduce convection-diffusion problem. Standard and nonstan-

dard finite difference schemes are described and analyzed for the given problem.

In Chapter 6, we consider nonlinear reaction-diffusion partial differential equation.

A new nonstandard finite difference scheme is constructed and analyzed for the given

problem.

6



CHAPTER 2

NUMERICAL INSTABILITIES

In this chapter, we construct several discrete models and compare the pro-perties

of the solutions to the difference equations to the corresponding properties of the orig-

inal differential equation in order to explain when the numerical instabilities occur in

the computation. For this purpose, we consider the logistic differential equation. Any

discrepancies found are indications of numerical instabilities.

2.1 Numerical Instabilities

A discrete model of a differential equation is said to have numerical instabilities

if there exist solutions to the finite difference equation that do not correspond to any of

the possible solutions of the differential equation. It is uncertain if an exact definition

can ever be stated for the general concept of numerical instabilities. This is because it

is always possible, in principle, for new forms of numerical instabilities to arise when

new nonlinear differential equations are discretely modeled. Numerical instabilities are

an indication that the discrete equations are not able to model the correct mathematical

properties of the solutions to the differential equations of interest.

The most important reason for the existence of numerical instabilities is that the

discrete models of differential equations have a larger parameter space than the corre-

sponding differential equations. This can be easily demonstrated by the following ar-

gument. Assume that a given dynamic system is described in terms of the differential

equation
dy

dt
= f(y, λ) (2.1)

where λ denotes n-dimensional parameter vector that defines the system. A discrete

model for equation (2.1) takes the form

yk+1 = F (yk, λ, h) (2.2)

where h = ∆t is the time step-size. Note that the function F contains (n+1) parameters;

this is because h can now be regarded as an additional parameter. The solutions to

7



equation (2.1) and equation (2.2) can be written, respectively as y(t, λ) and yk(λ, h).

Even if y(t, λ) and yk(λ, h) are close to each other for a particular value of h, say h = h1.

If h is changed to a new value, say h = h2, the possibility exists that yk(λ, h2) differs

greatly from yk(λ, h1) both qualitatively and quantitatively.

2.2 Logistic Differential Equation

We will consider the following logistic differential equation

dy

dt
= y(1 − y) (2.3)

which we can solve exactly

y(t) =
y0

y0 + (1 − y0)e−t
(2.4)

where the initial condition is

y0 = y(0). (2.5)

Figure 2.1 and Figure 2.2 illustrate the general nature of the various solution

behaviors for y0 > 0 and y0 < 0, respectively. If y0 > 0, then all solutions monotonically

approach the stable fixed-point at y(t)=1. If y0 < 0, then the solution at first decreases

to −∞ at the singular point

t = t∗ = ln[
1+ | y0 |
| y0 |

] (2.6)

after which, for t > t∗, it decreases monotonically to the fixed-point at y(t)=1. Note that

y(t)=0 is an unstable fixed-point.

Our first discrete model is constructed by using a central difference scheme for

the derivative:

yk+1 − yk−1

2h
= yk(1 − yk). (2.7)

Since equation (2.7) is a second-order difference equation, while equation (2.3) is a first

order differential equation, the value of y1 = y(h) must be determined by some procedure.

We do this by use of the Euler result

y1 = y0 + hy0(1 − y0). (2.8)

8
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Figure 2.1. Exact solution of the problem (2.3) for y0 > 0.
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Figure 2.3. The central difference scheme given in equation (2.7) with y0 = 0.5,

h = 0.1.

A typical plot of the numerical solution to equation (2.7) is shown in Figure 2.3.

This type of plot is obtained for any value of the step-sizes.

This result can be revealed by the linear stability analysis of the two fixed-points

of the equation (2.7). First of all, note that equation (2.7) has two constant solutions or

fixed-points. They are

yk = ȳ(0) = 0, and yk = ȳ(1) = 1. (2.9)

To investigate the stability of yk = ȳ(0), we set

yk = ȳ(0) + εk, | ε |≤ 1, (2.10)

substitute this result into equation (2.7) and neglect all but the linear terms. Doing this

gives

εk+1 − εk−1

2h
= εk. (2.11)

The solution to this second-order difference equation is

εk = A(r+)k +B(r−)k (2.12)

where A and B are arbitrary, but, small constants; and

r±(h) = h±
√

1 + h2. (2.13)
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From equation (2.13), it can be concluded that the first term on the right-side of equation

(2.12) is exponentially increasing, while the second term oscillates with an exponentially

decreasing amplitude. A small perturbation to the fixed-point at ȳ(1) = 1 can be repre-

sented as

yk = ȳ(1) + ηk, | ηk |≤ 1. (2.14)

The linear perturbation equation for ηk is

ηk+1 − ηk−1

2h
= −ηk, (2.15)

whose solution is

ηk = C(S+)k +D(S−)k, (2.16)

where C and D are small arbitrary constants, and

S±(h) = −h±
√

1 + h2. (2.17)

Thus, the first term on the right-side of equation (2.16) exponentially decreases, while the

second term oscillates with an exponentially increasing amplitude. Putting these results

together, it follows that the central difference scheme has exactly the same two fixed-points

as the logistic differential equation. However, while y(t)=0 is (linearly) unstable for the

differential equation, both fixed points are linearly unstable for the central difference

scheme. The results of the linear stability analysis, as given in equation (2.12) and

equation (2.16), are shown in Figure 2.3. For initial value y0, such that 0 < y0 < 1, the

values of yk increase and exponentially approach the fixed-point ȳ(1) = 1; yk then begins

to oscillate with an exponentially increasing amplitude about ȳ(1) = 1 until it reaches the

neighborhood of the fixed point ȳ(0) = 0. After an initial exponential decrease to ȳ(0) = 0,

the yk value then begin their increase back to the fixed-point at ȳ(1) = 1.

The major conclusion is that the use of central difference scheme

yk+1 − yk−1

2h
= f(yk) (2.18)

for the scalar first-order differential equation

dy

dt
= f(y) (2.19)
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forces all the fixed-points to become unstable. Consequently, the central difference discrete

derivative should never be used for this class of ordinary differential equation.

However,before leaving the use of central difference scheme, let us consider the

following discrete model for the logistic equation:

yk+1 − yk−1

2h
= yk−1(1 − yk+1). (2.20)

Our major reason for studying this model is that an exact analytic solution exists for

equation (2.20). Observe that the function

f(y) = y(1 − y) (2.21)

is modeled locally on the lattice in equation (2.7), while it is modeled nonlocally in

equation (2.20), i.e., at lattice points k-1 and k+1.

The substitution

yk =
1

xk

, (2.22)

transforms equation (2.20) to the expression

xk+1 − (
1

1 + 2h
)xk−1 =

2h

1 + 2h
. (2.23)

Note that equation (2.20) is a nonlinear, second-order difference equation, while equation

(2.23) is a linear, inhomogeneous equation with constant coefficients. Solving equation

(2.23) gives the general solution

xk = 1 + [A+B(−1)k](1 + 2h)−k/2, (2.24)

where A and B are arbitrary constants. Therefore, yk is

yk =
1

1 + [A+B(−1)k](1 + 2h)−k/2
. (2.25)

For y0 such that 0 < y0 < 1, and y1 selected such that y1 = y0 +hy0(1− y0), the solutions

to equation (2.25) have the structure indicated in Figure 2.4. Observe that the numerical

solution has the general properties of the solution to the logistic differential equation, see

Figure 2.1 and Figure 2.2, except that small oscillations occur about the smooth solution.

The direct forward Euler discrete model for the Logistic differential equation is

yk+1 − yk

h
= yk(1 − yk). (2.26)
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Figure 2.4. The central difference scheme with nonlocal representation given

in equation (2.20) with y0 = 0.5, h = 0.5

This first-order difference equation has two constant solutions or fixed-points at ȳ(0) = 0

and ȳ(1) = 1. Perturbations about these fixed-points, i.e.,

yk = ȳ(0) + εk = εk, | εk |≤ 1, (2.27)

yk = ȳ(1) + ηk = 1 + ηk, | ηk |≤ 1, (2.28)

give the following solutions for εk and ηk:

εk = ε0(1 + h)k, (2.29)

ηk = η0(1 − h)k. (2.30)

The expression for εk shows that ȳ(0) is unstable for all h > 0. However, the linear stability

properties of the fixed-point ȳ(1) depend on the value of the step-size. For example:

0 < h < 1 : ȳ(1) is linearly stable; perturbations decrease exponentially.

1 < h < 2 : ȳ(1) is linearly stable; however, the perturbations decrease exponen-

tially with an oscillating amplitude.

h > 2 : ȳ(1) is linearly unstable; the perturbations oscillate with an exponentially

increasing amplitude.

Our conclusion is that the forward Euler scheme gives the correct linear stability

properties only if 0 < h < 1. For this interval of step-size values, the qualitative properties

13



of the solutions to the differential and difference equations are the same. Consequently,

for 0 < h < 1, there are no numerical instabilities.

Figure 2.5, Figure 2.6 and Figure 2.7 present numerical solutions of the equation

(2.26) by the forward Euler scheme for the initial condition y0 = 0.5. For all cases, the

step sizes are taken as h=0.1, 1.5 and 2.5 respectively.
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Logistic Differential Equation: y
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 = y(1−y)

y(k) 

k 

Figure 2.5. The forward Euler scheme given in equation (2.26) with y0 = 0.5,

h = 0.1.

Our next model of the logistic differential equation is constructed by using a forward

Euler for the first-derivative and a nonlocal expression for the function f(y) = y(1 − y).

This model is

yk+1 − yk

h
= yk(1 − yk+1). (2.31)

This first-order, nonlinear difference equation can be solved exactly by using the variable

change

yk =
1

xk

, (2.32)

to obtain

xk+1 −
1

1 + h
xk =

h

1 + h
, (2.33)

whose general solution is

xk = 1 + A(1 + h)−k, (2.34)
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Figure 2.6. The forward Euler scheme given in equation (2.26) with y0 = 0.5,

h = 1.5.

0 2 4 6 8 10 12 14 16 18 20
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Logistic Differential Equation: y
t
 = y(1−y)

k 

y(k) 

Figure 2.7. The forward Euler scheme given in equation (2.26) with y0 = 0.5,

h = 2.5.
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where A is an arbitrary constant. Imposing the initial condition

x0 =
1

y0

(2.35)

gives

A =
1 − y0

y0

, (2.36)

and

yk =
y0

y0 + (1 − y0)(1 + h)−k
. (2.37)

Examination of equation (2.37) shows that, for h > 0, its qualitative properties are the

same as the corresponding exact solution to the Logistic differential equation, namely,

equation (2.4). Hence, the forward Euler, nonlocal discrete model has no numerical

instabilities for any step-size. Figure 2.8, 2.9 and Figure 2.10 are illustrated that the

numerical solution of the equation (2.3) by using the nonlocal representation given in

equation (2.31) for h=0.1, 1.5 and 2.5 respectively. For all cases, the initial condition is

y0 = 0.5.
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Figure 2.8. The forward Euler scheme with nonlocal representation given in

equation (2.31) with y0 = 0.5, h = 0.1.

To illustrate the construction of discrete finite difference models of differential

equations, we begin with the scalar ordinary equation

dy

dt
= f(y) (2.38)
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Figure 2.9. The forward Euler scheme with nonlocal representation given in

equation (2.31) with y0 = 0.5, h = 1.5.

0 2 4 6 8 10 12 14 16 18 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Logistic Differential Equation: y
t
 = y(1−y)

k 

y(k) 

Figure 2.10. The forward Euler scheme with nonlocal representation given in

equation (2.31) with y0 = 0.5, h = 2.5.
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where f(y) is, in general, a nonlinear function of y. For a uniform lattice, with step-size,

∆t = h, we replace the independent variable t by

t→ tk = hk, (2.39)

where k is an integer, i.e.,

t ∈ {...,−2,−1, 0, 1, 2, 3, ...}. (2.40)

The dependent variable y(t) is replaced by

y(t) → yk, (2.41)

where yk is approximation of y(tk). Likewise, the function f(y) is replaced by

f(y) → fk, (2.42)

where fk is the approximation to f [y(tk)]. The simplest possibility for fk is

fk = f(yk). (2.43)

2.3 Discussion

Comparing the four finite-difference schemes that were used to model the Logistic

differential equation, the nonlocal forward Euler method clearly gave the best results.

For all values of the step-size it has solutions that are in qualitative agreement with the

corresponding solutions of the differential equation. The other discrete models had, for

certain values of step-size, numerical instabilities.
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CHAPTER 3

NONSTANDARD FINITE DIFFERENCE

SCHEMES

In this chapter, we first review the finite difference schemes by considering first

order scalar ordinary differential equations. Next, we define the exact-finite difference

scheme. Finally, we present the rules of nonstandard finite difference scheme.

3.1 General Finite Difference Schemes

We would like to make several comments related to the discrete modeling of the

scalar ordinary differential equation

dy

dt
= f(y, λ) (3.1)

where λ is an n-parameter vector. The most general finite-difference model for equation

(3.1) that is of first-order in the discrete derivative takes the following form

yk+1 − yk

φ(h, λ)
= F (yk, yk+1, λ, h). (3.2)

The discrete derivative, on the left-side, is a generalization of that which is normally used,

namely,

dy

dt
−→ yk+1 − yk

h
. (3.3)

From equation (3.2), we have

dy

dt
−→ yk+1 − yk

φ(h, λ)
, (3.4)

where the denominator function φ(h, λ) has the property

φ(h, λ) = h+O(h2)

λ = fixed, h → 0. (3.5)
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This form for the discrete derivative is based on the traditional definition of the derivative

which can be generalized as follows:

dy

dt
= lim

h→0

y[t+ ψ1(h)] − y(t)

ψ2(h)
, (3.6)

where

ψi(h) = h+O(h2), h→ 0; i = 1, 2. (3.7)

Examples of functions ψ(h) that satisfy this condition are

ψ(h) = h, sinh, eh − 1,
1 − e−λh

λ
, etc.

Note that in taking the lim h → 0 to obtain the derivative, the use of any of these ψh will

lead to the usual result for the first derivative

dy

dt
= lim

h→0

y[t+ ψ1(h)] − y(t)

ψ2(h)
= lim

h→0

y(t+ h) − y(t)

h
. (3.8)

However, for h finite, these discrete derivatives will differ greatly from those conventionally

given in the literature, such as equation (3.3). This fact not only allows for the construc-

tion of a larger class of finite-difference models, but also provides for more ambiguity in

the modeling process.

3.2 Exact Finite-Difference Schemes

We consider only first-order, scalar ordinary differential equations. However, the

results can be generalized to coupled systems of first-order ordinary differential equations.

It should be acknowledged that the early work of Potts (Potts 1982) played a

fundamental role in interesting the concept of exact finite difference schemes.

Consider the general first-order differential equation

dy

dt
= f(y, t, λ), y(t0) = y0, (3.9)

where f(y, t, λ) is such that equation (3.9) has a unique solution over the interval, 0 ≤
t < T and for λ in the interval, λ1 ≤ λ ≤ λ2. This solution can be written as

y(t) = φ(λ, y0, t0, t), (3.10)
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with

φ(λ, y0, t0, t0) = y0. (3.11)

Now consider a discrete model of equation (3.9)

yk+1 = g(λ, h, yk, tk), tk = hk. (3.12)

Its solution can be expressed in the form

yk = φ(λ, h, y0, t0, tk), (3.13)

with

φ(λ, h, y0, t0, t0) = y0. (3.14)

Definition 3.2.1. Equation (3.9) and equation (3.12) are said to have same general

solution if and only if

yk = y(tk)

for arbitrary values of h.

Definition 3.2.2. An exact difference scheme is one for which the solution to the differ-

ence equation has the same general solution as the associated differential equation.

By using these two definitions, the following theorem can be stated.

Theorem 3.2.1. The differential equation

dy

dt
= f(y, t, λ), y(t0) = y0, (3.15)

has an exact finite-difference scheme given by the expression

yk+1 = φ[λ, yk, tk, tk+1], (3.16)

where φ is that of equation (3.10).

Proof The group property of the solutions to equation (3.15) gives

y(t+ h) = φ[λ, y(t), t, t+ h] (3.17)

If now make the identifications

t→ tk, y(t) → yk, (3.18)
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then equation (3.17) becomes

yk+1 = φ(λ, yk, tk, tk+1). (3.19)

This is the requirement for ordinary difference equation that has the same general solution

as equation (3.9).

Comments.

(i) If all solutions of equation (3.15) exist for all time, i.e., t = ∞, then equation

(3.17) holds for all t and h. Otherwise, the relation is assumed to hold whenever the

right-side is well defined.

(ii) The theorem is only an existence theorem. It basically says that if an differen-

tial equation has a solution, then an exact finite-difference scheme exists. In general, no

guidance is given as to how to actually construct such a scheme.

(iii) A major implication of the theorem is that the solution of the difference

equation is exactly equal to the solution of the ordinary differential equation on the com-

putational grid for fixed, but, arbitrary step-size h.

(iv) The theorem can be easily generalized to systems of coupled, first-order dif-

ferential equations.

The question now arises as to whether exact finite difference schemes exist for

partial differential equation. The answer is (probably) no. This negative result is a con-

sequence of the fact that given an arbitrary partial differential equation there exists no

clear, unambiguous accepted definition of a general solution to the equation. However, we

should expect that certain classes of partial differential equations will have exact differ-

ence models. Note that in this case some type of functional relation should exist between

the various (space and time) step-sizes.

The discovery of exact discrete models for particular ordinary and partial differen-

tial equations is of great importance, primarily because it allows us to gain insights into

the better construction of finite-difference schemes. They also provide the computational

investigator with useful benchmarks for comparison with the standard procedures.

3.3 Example of Exact Finite Difference Schemes

In this section, we will use the theorem of the last section “in reverse” to construct

exact finite difference schemes for several ordinary and partial differential differential
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equations for which exact general solutions are explicitly known. These schemes have the

property that their solutions do not have numerical instabilities.

For nonlinear differential equations, the steps should be applied to construct exact

finite-difference schemes.

(i) Consider a system of N coupled, first order, ordinary differential equations

dY

dt
= F (Y, t, λ), Y (t0) = Y0, (3.20)

where Y,F are N-dimensional column vectors whose i-th components are

(Y )i = yi(t), (3.21)

(F )i = f i[y(1), y(2), ..., y(N); t, λ]. (3.22)

(ii) Denote the general solution to equation (3.20) by

Y (t) = φ(λ, Y0, t0, t) (3.23)

where

yi(t) = φi[λ, y1
0, y

2
0, ..., y

N
0 , t0, t]. (3.24)

(iii)The exact difference equation corresponding to the differential equation is ob-

tained by making the following substitutions in equation (3.23):

Y (t) → Yk+1, Y0 = Y (t0) → Yk, t0 → tk, t→ tk+1. (3.25)

Next, we will give the following example for the exact finite difference schemes.

Consider the general logistic differential equation

dy

dt
= λ1y − λ2y

2, y(t0) = y0, (3.26)

where λ1 and λ2 are constants. The solution to the initial value problem of equation

(3.26) is given by the following expression

y(t) =
λ1y0

(λ1 − y0λ2)e−λ1(t−t0) + λ2y0

. (3.27)

Making the substitution of equation (3.25) gives

y(k + 1) =
λ1yk

(λ1 − λ2yk)e−λ1h + λ2yk

. (3.28)

Additional algebraic manipulation we can obtain the exact difference scheme for the Lo-

gistic differential equation

yk+1 − yk

eλ1h−1

λ1

= λ1yk − λ2yk+1yk. (3.29)
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3.4 Nonstandard Modeling Rules

In particular, we concentrate on the exact finite difference scheme for the general

logistic differential equation. The following observations are important:

(i) Exact finite-difference schemes generally require that nonlinear terms be mod-

eled nonlocally. Thus, for the logistic equation the y2 term is evaluated at two different

grid points.

y2 → yk+1yk.

However, for finite, fixed, nonzero values of step-sizes, the two representations of the

squared terms are not equal,i.e.,

yk+1yk 6= (yk)
2.

Therefore, a seemingly trivial modification in the modeling nonlinear terms can lead to

major changes in the solution behaviors of the difference equations.

(ii)The discrete derivatives for both differential equations have denominator func-

tions that are more complicated than those used in the standard modeling procedure. For

example, the time-derivative in the Logistic equation is replaced by the following discrete

representation

dy

dt
=
yk+1 − yk

( eλ1h−1

λ1
)
.

Thus, the denominator function depends on both the parameter λ1 and the step-size

h = ∆t.

(iii)The order of discrete derivatives in the exact finite difference schemes is always

equal to the corresponding order of derivatives of the differential equation.Consider the

following finite difference scheme for the logistic equation:

yk+1 − yk

h
= yk(1 − yk).

This discrete representation is expected to have numerical instabilities for two reasons:

(a)The denominator function is incorrect.

(b)The nonlinear term is modeled locally on the grid.

Now, we present the rules for the construction of discrete models.
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Rule 1: The orders of the discrete derivatives must be exactly equal to the orders

of the corresponding derivatives of the differential equations.

Rule 2: Denominator functions for the discrete derivatives must, in general, be

expressed in terms of more complicated functions of the step-sizes than those convention-

ally used.

Rule 3: Nonlinear terms must, in general, be modeled nonlocally on the compu-

tational grid or lattice.

Rule 4: Special solutions of the differential equations should be special(discrete)

solutions of the finite-difference models.

Rule 5: The finite-difference equations should not have solutions that do not

correspond exactly to solutions of the differential equations.

3.5 Discussion

A major advantage of having an exact difference equation model for a differential

equation is that questions related to the usual considerations of consistency, stability

and convergence need not arise. However, it is essentially impossible to construct an

exact discrete model for an arbitrary differential equation. This is because to do so

would be tantamount to knowing the general solution of the original differential equation.

However, the situation is not hopeless. The above five modeling rules can be applied to

the construction of finite-difference schemes. While these discrete models, in general, will

not be exact schemes, they will possess certain very desirable properties. In particular,

we may hope to eliminate a number of the problems related to numerical instabilities.
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CHAPTER 4

FIRST ORDER ORDINARY DIFFERENTIAL

EQUATIONS

This chapter provides a technique for constructing finite-difference models of a

single-scalar differential equation. We study the following first order differential equation,

dy

dt
= f(y). (4.1)

Our analysis is done under the assumption that

f(y) = 0 (4.2)

has only simple zeros. Our purpose is to construct discrete models of equation (4.1) that do

not exhibit elementary numerical instabilities. For equation (4.1) numerical instabilities

occur whenever the linear stability properties of any of the fixed-points for the difference

scheme differs from that of the differential equation.

Our goal is to prove, for equation (4.1), that it is possible to construct a new finite-

difference scheme that have the correct linear stability properties for finite all step-sizes.

4.1 A New Finite Difference Scheme

Denote the fixed-points of equation (4.1) by

{ȳ(i); i = 1, 2, ..., I}, (4.3)

where I may be unbounded. The fixed-points are the solutions to the equation

f(ȳ) = 0. (4.4)

Define Ri as

Ri =
df [ȳ(i)]

dy
, (4.5)

and R∗ as

R∗ = Max| Ri |; ı = 1, 2, ..., I. (4.6)
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Linear stability analysis applied to the i-th fixed-point gives the following results:

(i) If Ri > 0, the fixed-point y(t) = ȳ(i) is linearly unstable.

(ii) If Ri < 0, the fixed-point y(t) = ȳ(i) is linearly stable.

Consider the following finite-difference scheme for equation (4.1)

yk+1 − yk

[φ(hR∗)
R∗

]
= f(yk) (4.7)

where φ(z) has the two properties

φ(z) = z +O(z2), z → 0 (4.8a)

0 < φ(z) < 1, z > 0. (4.8b)

Theorem 4.1.1. The finite difference scheme of equation (4.7) has fixed-points with

exactly the same linear stability properties as the differential equation

dy

dt
= f(y) for all h > 0. (4.9)

This theorem demonstrates that it is possible to construct discrete models for a

single scalar ordinary differential equation such that elementary numerical instabilities

do not occur in their solutions. This result is related to the fact that most elementary

numerical instabilities exist from a given fixed-point having the opposite linear stability

properties in the difference scheme to the differential equation. The above construction

shows that to achieve the correct linear stability behavior, a generalized definition must

be used. Standard finite-difference modeling procedures do not have the correct linear

stability behavior for all step-sizes.

The above finite-difference scheme uses the following denominator function for the

discrete first-derivative

D(h,R∗) =
φ(hR∗)

R∗
(4.10)

where φ and R∗ are given by equations (4.6) and (4.8). This form replaces the simple h

function found in the standard finite-difference schemes

dy

dt
→ yk+1 − yk

h
. (4.11)

Note that in the limits, the generalized discrete derivative reduces to the first derivative,

yk+1 − yk

[φ(hR∗)
R∗

]
=
dy

dt
. (4.12)
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4.2 A New Finite Difference Scheme for Nonlinear Dynamic

Equation

We construct a new finite difference discretization for the scalar first order non-

linear differential equation. We illustrate the power of the new finite difference scheme

to eliminate the numerical instability. We consider the following general nonlinear first

order dynamic equation with the initial condition:

dy

dt
= y(1 − yn), y(0) = 0.5 (4.13)

where n is a positive integer. We first develop the denominator function D(h,R∗), then

nonlocally new representation for y(1 − yn). The equation (4.13) can be solved easily,

y(x) =
1 + (2n − 1)en(1−x)

n
. (4.14)

This equation can be reduced to a well known equation for a variable n, such as when

n=1 the equation (4.13) becomes a logistic differential equation which we discussed in

chapter 2

dy

dt
= y(1 − y) (4.15)

for this case, the nonlinear part is

f(y) = y(1 − y) (4.16)

which has two fixed points given in equation (4.17) at

ȳ(1) = 0, ȳ(2) = 1 (4.17)

and

R1 = 1, R2 = −1, R∗ = 1. (4.18)

Using φ(z) = 1 − e−z, we obtain, after substituting the equation (4.18) into the equation

(4.7), the following discrete model of equation (4.15)

yk+1 − yk

1 − e−h
= yk(1 − yk). (4.19)

The equation (4.13) has a cubic nonlinearity when n=2

dy

dt
= y(1 − y2) (4.20)
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the cubic nonlinear part is

f(y) = y(1 − y2). (4.21)

The dynamic equation for this choice of n produces three fixed points

ȳ(1) = 0, ȳ(2) = 1, ȳ(3) = −1 (4.22)

and

R1 = 1, R2 = R3 = −2, R∗ = 2. (4.23)

The substitution of equations (4.21), (4.23) and φ(z) = 1 − e−z into equation (4.7) gives

the following new finite difference equation for the equation (4.20)

yk+1 − yk

(1−e−2h

2
)

= yk(1 − y2
k). (4.24)

In the same manner, for n=3 equation (4.13) reduces to the following equation

with four fixed points

dy

dt
= y(1 − y3). (4.25)

One can easily show that, the fourth order polynomial,

f(y) = y(1 − y3) (4.26)

has a four fixed points given in equation (4.27)

ȳ(1) = 0, ȳ(2) = 1, ȳ(3) =
−1 +

√
3i

2
, ȳ(4) =

−1 −
√

3i

2
(4.27)

and

R1 = 1, R2 = R3 = R4 = −3, R∗ = 3. (4.28)

The substitution of equations (4.26), (4.28) and φ(z) = 1 − e−z into equation (4.7) gives

the following new finite difference equation for the equation (4.25)

yk+1 − yk

(1−e−3h

3
)

= yk(1 − y3
k). (4.29)

In general, for any n > 0, we use the following nonstandard discretization equation

for the equation (4.13)

yk+1 − yk

(1−e−nh

n
)

= yk(1 − yn
k ) (4.30)
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where

R1 = 1, R2 = R3 = ... = Rn = (−1)nn, R∗ = n. (4.31)

Next, we rewrite the nonlinear terms of the equation (4.13) by applying the non-

standard finite difference rules introduced in chapter 2. The nonstandard modeling rules

require that nonlinear terms can be rewritten nonlocally on the computational grid as

follows:

For n=1, the discrete scheme, with a nonlocal nonlinear term, is

yk+1 − yk

1 − e−h
= yk(1 − yk+1). (4.32)

This difference equation can be solved exactly by using the transformation

yk =
1

wk

. (4.33)

This gives

wk+1 − (
1

2 − e−h
)wk =

1 − e−h

2 − e−h
, (4.34)

whose exact solution is

wk = 1 + A(2 − e−h)−k, (4.35)

where A is an arbitrary constant. Imposing the initial condition, y(0) = y0, we get the

following equation

yk =
y0

y0 + (1 − y0)(2 − e−h)−k
. (4.36)

Note that

1 < 2 − e−h < 2, h > 0 (4.37)

consequently,

gk = (2 − e−h)−k (4.38)

is an exponentially decreasing function of k. Examination of equation (4.36) shows that

all the solutions of equation (4.32) have the same qualitative properties as the solutions

to the logistic differential equation for all step-sizes, h > 0.
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For n=2, a discrete model for the equation (4.21) with a nonlocal nonlinear term,

is

yk+1 − yk

1−e−2h

2

= yk(1 − yk+1yk) (4.39)

In the same manner, the nonstandard finite difference scheme for any n > 0 can

be written as follows,

yk+1 − yk

1−e−nh

n

= yk(1 − yk+1y
n−1
k ). (4.40)

We use this discreatization equation for our computation.

To illustrate the construction of discrete finite difference models of differential

equations, we begin with the scalar ordinary equation

dy

dt
= f(y) (4.41)

where f(y) is, in general, a nonlinear function of y. For a uniform lattice, with step-size,

∆t = h, we replace the independent variable t by

t→ tk = hk, (4.42)

where k is an integer, i.e.,

t ∈ {...,−2,−1, 0, 1, 2, 3, ...}. (4.43)

The dependent variable y(t) is replaced by

y(t) → yk, (4.44)

where yk is approximation of y(tk). Likewise, the function f(y) is replaced by

f(y) → fk, (4.45)

where fk is the approximation to f [y(tk]. The simplest possibility for fk is

fk = f(yk). (4.46)
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4.3 Numerical Verifications

In this section, we present some numerical simulations by using standard, non-

standard discretization equation for the nonlinear dynamic equation given in equation

(4.13) for various n and h. Then, we compare standard and nonstandard solutions of the

equation (4.13).

In Figure 4.1, we compare the standard, nonstandard finite difference solutions and

exact solution for n=1 and h=0.1. As it can be seen in Figure 4.1, both methods work

and converge to the exact solution. However, from the Figure 4.2 shows that nonstandard

finite difference method converges better than the standard finite difference method to

the exact solution of the equation (4.13).
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Figure 4.1. Comparison of standard, nonstandard finite difference methods

and exact solution for n=1, h=0.1

Next, we fix h=0.1 as before, but the degree of the nonlinearity is increased to

n=20. Although, for such big n, the numerical instability occurs when standard finite

difference method is applied to the same equation, the nonstandard discretization for this

equation still gives the numerical stability solution.

In Figure 4.4, we compare the standard and nonstandard finite difference solutions

of the equation (4.13) for n=2 and h=0.1. These two discretization forms give the nu-

merical stability solutions.
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Figure 4.2. The error plot for the standard and nonstandard finite difference

methods for n=1, h=0.1
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Figure 4.3. Comparison of standard and nonstandard finite difference methods

for n=20, h=0.1
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Figure 4.4. Comparison of standard, nonstandard finite difference methods

and exact solution for n=2, h=0.1

In Figure 4.5, we increase the step-size as h=1.5 for n=2. The nonstandard fi-

nite difference method works, however standard finite difference method does not, as we

expected.
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Figure 4.5. Comparison of standard, nonstandard finite difference methods

and exact solution for n=2, h=1.5
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4.4 Discussion

In this chapter, we study the equation (4.13) for a variable n. For our numerical

simulations, we use the nonstandard discrete form given in equation (4.40). Although

for h < 1, both methods are in a good agreement for n < 15, for h > 1, standard finite

difference method exhibits the numerical instability for all n. In addition, when n is

increased, nonstandard discrete models do not exhibit numerical instabilities for all h.

35



CHAPTER 5

SECOND ORDER ORDINARY DIFFERENTIAL

EQUATION

In this chapter, we construct the standard and nonstandard finite difference

schemes for the singularly perturbed convection-diffusion problem. We analyze both

methods for this problem. Then we simulate some numerical results to compare both

methods for various perturbation parameter ε.

5.1 The Problem Statement

In this section, we consider the convection-diffusion problem. Convection-diffusion

problems have many applications in flows, water quality problems, convective heat transfer

problems. Also this equation arise, from the linearization of the Navier-Stokes equation

and the drift-diffusion equation of semiconductor device modelling. Consequently it is

especially important to devise effective numerical methods for their approximate solution.

We now consider the following convection-diffusion problem

εy
′′

+ y
′

= −1 on [0, 1] (5.1)

y(0) = 0

y(1) = 0

which we can solve exactly:

y(x) =
1 − exp(−x

ε
)

1 − exp(−1
ε
)
− x. (5.2)

If ε is big enough, the solution will be smooth and standard finite difference meth-

ods will give good results. However, as ε tends to zero, there is a boundary layer around

the x=0, then we will show that nonstandard finite difference methods will give better

results.
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5.2 Implementation of Nonstandard Finite Difference Method

for Convection-Diffusion Problem

We construct the nonstandard finite difference scheme for the equation (5.1). Ap-

proximating diffusion term by second special order central difference approximation and

convective term by backward difference approximation, we obtain the following discrete

equation for the equation (5.1).

ε
yk+1 − 2yk + yk−1

φ(h)
+ (

yk − yk−1

h
) = −1 (5.3)

where

φ(h) = [
exp(−h

ε
) − 1

−1
ε

]h.

After some algebraic manipulation, we can obtain the following implicit discrete equation

for the equation (5.1).

yk+1 − [1 + exp(−h
ε
)]yk + exp(−h

ε
)yk−1 = h[exp(−h

ε
) − 1]. (5.4)

We will use the equation (5.4) to simulate the solution of the convection-diffusion

problem by nonstandard finite difference approximation.

5.3 Implementation of Standard Finite Difference Method for

Convection-Diffusion Problem

We present and analyze standard finite difference approximation for equation

(5.1). Our discrete model is constructed by using a central difference scheme for the

second derivative and a forward difference scheme for the first derivative.

ε(
yk+1 − 2yk + yk−1

h2
) + (

yk+1 − yk

h
) = −1. (5.5)

Then we have

(1 +
h

ε
)yk+1 − (2 +

h

ε
)yk + yk−1 = −h

2

ε
. (5.6)

We will use the equation (5.6) to simulate the solution of the convection-diffusion

problem by standard finite difference approximation.

37



5.4 Analysis of Nonstandard Finite Difference Approximation

We consider the equation (5.4) and establish the solution of the difference equation.

We consider homogeneous case of equation. The characteristic equation for equation (5.4)

is

r2 − (1 + exp(−h
ε
))r + exp(−h

ε
) = 0 (5.7)

⇒ r1,2 =
1 + exp(−h

ε
) ∓

√

(1 + exp(−h
ε
))2 − 4exp(−h

ε
)

2
(5.8)

⇒ r1,2 =
1 + exp(−h

ε
) ∓

√

(1 − exp(−h
ε
))2

2
(5.9)

Then we get

r1 = 1 and r2 =
1

exp(h
ε
)
. (5.10)

Since both characteristic roots less and equal to 1, the stability of the solution

exists for all h > 0 and ε > 0.

5.5 Analysis of Standard Finite Difference Approximation

We can go back to the equation (5.6) and establish the solution of the difference

equation. First, we consider homogeneous case. The characteristic equation for equation

(5.6) is

(1 +
h

ε
)r2 − (2 +

h

ε
)r + 1 = 0 (5.11)

⇒ r1,2 =
2 + h

ε
∓

√

(2 + h
ε
)2 − 4(1 + h

ε
)

2(1 + h
ε
)

(5.12)

Then we obtain

r1 =
2(1 + h

ε
)

2(1 + h
ε
)

= 1 and r2 =
1

1 + h
ε

. (5.13)

Since both characteristic roots less and equal to 1, the stability of the solution

exists for all h > 0 and ε > 0.
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5.6 Numerical Verifications

In this section, we solve our convection-diffusion problem by using discretization

form of nonstandard finite difference approximation given in equation (5.4) and by

standard finite difference approximation given in equation (5.6). We compare standard

and nonstandard finite difference methods to the exact solution of the problem.

In Figure 5.1, we exhibit nonstandard finite difference, standard finite difference

and exact solutions of the equation for ε=1. The step-size is taken as h=0.02. Although

three curves are in a good agreement, the error shown in Figure 5.2 reveals that there is

a slight deviation for standard finite difference method from the exact solution. Thus,

nonstandard finite difference method still works better than the standard finite difference

method for this choice of ε. In next figure, we decrease the perturbation
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Figure 5.1. Comparison of the nonstandard, standard finite difference methods

and exact solution for n=50, ε=1

.

parameter ε as ε = 0.1. In this case, nonstandard finite difference method works

better than the standard finite difference method. There is a slight deviation from

the exact solution for the standard finite difference method. However, from the error

shown in Figure 5.4 nonstandard finite difference method fits the exact solution very well.

In Figure 5.5, we compare the nonstandard finite difference, standard finite
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Figure 5.4. The error for the nonstandard and standard finite difference meth-

ods with ε=0.1.

difference and exact solutions of the equation (5.1) for ε = 0.01. We have seen that

nonstandard finite difference method works better than standard finite difference method.

We also see that as ε gets smaller, both techniques are in a good agreement away from

the boundary layer. The error shown in Figure 5.6 supports this result.

Finally, we solve the problem for ε = 0.001. In this case, nonstandard finite differ-

ence method works better than the standard finite difference method. The error shown

in Figure 5.8 exhibits that two methods work very well away from the boundary layer.

5.7 Discussion

In this chapter, we considered the singularly perturbed convection-diffusion prob-

lem. First, we find the new discretization for the convection-diffusion equation we con-

sidered. In this discretization, the characteristic root for the nonstandard finite difference

method is r2 = 1
exp( h

ε
)
. On the other hand, the characteristic root for the standard finite

difference method is r2 = 1
1+ h

ε

. Therefore, the characteristic root for the nonstandard finite

difference method decays faster than the root for the standard finite difference method.

By using this discretization equation, we show that nonstandard finite difference method
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Figure 5.5. Comparison of the nonstandard, standard finite difference methods

and exact solution for n=50, ε=0.01
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Figure 5.7. The nonstandard and standard finite difference methods with

n=50, ε=0.001
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works better than the standard finite difference method for all choice of h and ε and as

perturbation parameter ε gets smaller, nonstandard finite difference method works better

than the standard finite difference method near the boundary layer. In addition, both

methods are in a good agreement away from the boundary layer.
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CHAPTER 6

PARTIAL DIFFERENTIAL EQUATIONS

In this chapter, we construct the nonstandard finite difference scheme for nonlinear

reaction-diffusion equation. We state the lemma related the positivity and boundedness

condition for discretization equation. We simulate some numerical results to check the

correctness of the lemma.

6.1 The Problem Statement

Partial differential equations provide valuable mathematical models for dynami-

cal systems that involve both space and time variables. We study the partial differential

equation first order in the time derivative and second order in the space derivative. This

equation includes various one space dimension modifications of wave, diffusion and Burg-

ers’ partial differential equations. The nonlinearity considered is third order polynomial

with three distinct roots. One can find the exact solution by using the Hirota method.

These special solution can then be used in the construction of nonstandard discrete mod-

els. However, it should be noted that exact-finite difference schemes are not expected to

exist for partial differential equations. For the partial differential equation considered, a

comparison will be made to the standard finite-difference schemes and how the solutions

of the various nonstandard and standard discrete models differ from each other.

6.2 Nonstandard Finite Difference Scheme for a Nonlinear PDE

We consider the following reaction-diffusion equation which has a nonlinear cubic

source term

ut = uxx − (u− a1)(u− a2)(u− a3) (6.1)

where a1 = −1, a2 = 0, a3 = 1. For this choice of parameters, the equation (6.1) can be

written as follows:

ut = uxx − u3 + u. (6.2)
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Before proceeding with the construction of the non-standard numerical scheme for

equation (6.2), a brief summary of its significant mathematical properties will be given.

The reason why this is being done is to make sure that the non-standard finite difference

scheme to be derived has these properties, otherwise, numerical instabilities will occur.

First note that equation (6.2) has three fixed-points or constant solutions,

ū(1) = −1 ū(2) = 0 ū(3) = 1. (6.3)

The first and third fixed-points are linearly stable, while the second is linearly

unstable. We use these stable fixed-points to check the boundedness condition for the

discretization solution of the discrete equation, i.e.,

−1 ≤ un
m ≤ 1 ⇒ −1 ≤ un

m+1 ≤ 1, t > 0, fixed n all m.

6.3 Implementation of Standard Finite Difference Method for

Reaction-Diffusion Equation

We present standard finite difference scheme for equation (6.2). Our discrete

model is constructed by using a forward difference scheme for the first derivative and a

central difference scheme for the second derivative.

un+1
m − un

m

∆t
=
un

m+1 − 2un
m + un

m−1

(∆x)2
− (un

m)3 + (un
m). (6.4)

Then we have

un+1
m = un

m +
∆t

(∆x)2
(un

m+1 − 2un
m + un

m−1) − ∆t(un
m)3 + ∆t(un

m). (6.5)

We will use the equation (6.5) to simulate the solution of the reaction-diffusion

equation by standard finite difference approximation.

6.4 Implementation of Nonstandard Finite Difference Method

for Reaction-Diffusion Equation

Based on the previous works on non-standard finite difference schemes and the

enforcement of a positivity condition, the following discrete model is selected for equation

(6.2)

un+1
m − un

m

∆t
=
un

m+1 − 2un
m + un

m−1

(∆x)2
− (

3un+1
m − un

m−1

2
)(un

m−1)
2 + un

m−1. (6.6)
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We can write the denominator functions in a more complicated form then we have

un+1
m − un

m
1−e−2∆t

2

=
un

m+1 − 2un
m + un

m−1

4 sin2(∆x
2

)
− (

3un+1
m − un

m−1

2
)(un

m−1)
2 + un

m−1. (6.7)

Note that this scheme has the following features:

(i) The first order time derivative is replaced by a forward-Euler form.

(ii) A central difference scheme replaces the second order space derivative.

(iii) The non-linear u3 term is modelled non-locally, i.e.,

u3 → (
3un+1

m − un
m−1

2
)(un

m−1)
2. (6.8)

(iv) The linear u term is modelled non-locally, i.e.,

u→ un
m−1. (6.9)

Inspection of equation (6.6) shows that it is linear in un+1
m and solving for it gives

the expression;

[1 +
3∆t

2
(un

m−1)
2]un+1

m = (1 − 2β)un
m + βun

m+1 + [β + ∆t+
∆t

2
(un

m−1)
2](un

m−1)

where β is defined as

β =
∆t

(∆x)2
. (6.10)

After some algebraic manipulation, we can obtain the explicit discrete equation

un+1
m =

(1 − 2β)un
m + βun

m+1 + [β + ∆t+ ∆t
2

(un
m−1)

2](un
m−1)

[1 + 3∆t
2

(un
m−1)

2]
. (6.11)

In the next section, we analyze this discrete equation.

6.5 Analysis of Nonstandard Finite Difference Approximation

According to the nonstandard finite difference rules, the equation (6.11) has to

satisfy two criteria; positivity and boundedness conditions:

The discrete version of the positivity condition is

0 ≤ un
m ⇒ 0 ≤ un+1

m fixed n all m, and (6.12)

that of the boundedness condition is

−1 ≤ un
m ≤ 1 ⇒ −1 ≤ un+1

m ≤ 1. (6.13)
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The positivity condition given in equation (6.12) is satisfied if

1 − 2β ≥ 0 ⇒ ∆t

(∆x)2
≤ 1

2
. (6.14)

This can be easily seen from the discretization equation given in equation (6.11) due to

each coefficient of the discrete solution is positive except the first one in the numerator.

Next, we show that boundedness condition for the discretization equation (6.11)

is satisfied under some restrictions. For β ≤ 1
2
, equation (6.11) can be written as follows:

un+1
m ≤

1
2
un

m+1 + [1
2

+ ∆t+ ∆t
2

(un
m−1)

2](un
m−1)

[1 + 3∆t
2

(un
m−1)

2]
. (6.15)

Since, it is first assumed that −1 ≤ un
m ≤ 0 for n-fixed and all m, it follows that

1

2
un

m+1 ≤
1

2
(6.16)

1

2
un

m−1 ≤
1

2
(6.17)

∆t(un
m−1) ≤ ∆t(un

m−1)
2 (6.18)

∆t

2
(un

m−1)
3 ≤ ∆t

2
(un

m−1)
2. (6.19)

We add the equations (6.16)-(6.19), to obtain the following equation.

1

2
un+1

m +
1

2
un

m−1 + ∆t(un
m−1 +

∆t

2
(un

m−1)
3) ≤ 1 +

3∆t

2
(un

m−1)
2. (6.20)

Dividing equation (6.20) by the expression on its right side gives the following equation:

1
2
un+1

m + 1
2
un

m−1 + ∆t(un
m−1 + ∆t

2
(un

m−1)
3)

1 + 3∆t
2

(un
m−1)

2
≤ 1. (6.21)

However, the left-side of equation (6.20) is just un+1
m . Therefore, the result in equation

(6.13) is shown to be true if β ≤ 1
2
.

Next, we will show that 0 ≤ un
m ≤ 1, defining Φ as follows:

un
m = un

m−1 = un
m+1 = φ.

We use the equation (6.11) to obtain the following inequality:

un+1
m ≤ Φ − 2βΦ + βΦ + βΦ + ∆tΦ + ∆t

2
Φ3

1 + 3∆t
2

Φ2
. (6.22)
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The requirement for boundedness condition, i.e., un+1
m ≤ 1, implies the following inequal-

ity:

Φ + ∆tΦ + ∆t
2

Φ3

1 + 3∆t
2

Φ2
≤ 1. (6.23)

From this inequality, we find the restriction for the time step-size as follows:

∆t ≤ 1 − Φ

Φ + Φ3

2
− 3

2
Φ2
. (6.24)

Thus the above analysis can be given as the following lemma:

Lemma 6.4.1. If under the following conditions are satisfied:

a)−1 ≤ un
m ≤ 1

b) ∆t
(∆x)2

≤ 1
2
.

c)∆t ≤ α, where α= { Φ: sup( 1−Φ

Φ+Φ3

2
−

3

2
Φ2

), where Φ = un
m, for all m, fixed n}

Then −1 ≤ un+1
m ≤ 1.

In the next section, we exhibit some numerical verifications for the equation (6.2)

by using both standard and nonstandard finite difference methods.

6.6 Numerical Verifications

In this section, we present some numerical simulation by using nonstandard finite

difference discretization for the equation (6.2). We compare these numerical solutions

with the standard finite difference discretization for the same equation for the various β.

Finally, we exhibit nonstandard, standard and exact solution for this equation, for fixed

β.

In Figure 6.1, Figure 6.2 and Figure 6.3 we exhibit the solution of our problem

for β=0.1, β=0.5, β=0.6 respectively and different values for t by using nonstandard

difference discretization form given in equation (6.11). It can be seen in these figures that
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discretization form works for these choice of β ≤ 1
2
. For β ≥ 1

2
, as we claimed in Lemma

6.4.1, the nonstandard finite difference method does not work.
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Figure 6.1. The nonstandard finite difference scheme with β=0.1 and different

values of t.

Next, we compare the standard and nonstandard finite difference method for β = 1
2

in Figure 6.4 for fixed t. Although, our new discretization form of the equation (6.2) work,

standard finite difference discretization for the same equation doesn’t work. Finally, for

fixed β and for fixed time nonstandard, standard and exact solution of this equation are

compared in Figure 6.5. We claim that nonstandard finite difference discretization of

this problem converges better than the standard finite difference discretization for the

equation (6.2).

6.7 Discussion

A new nonstandard finite difference scheme was constructed for the nonlinear

reaction-diffusion equation. This new scheme has the correct fixed-points, satisfies both

the positivity and boundedness conditions of equation (6.2), and easy to implement for

obtaining numerical solutions since the scheme is effectively explicit. The validity of the

scheme depends on the inequalities stated in equation (6.14), i.e., once ∆x is selected, then

∆t must satisfy equation (6.14). Numerical studies indicate that the derived nonstandard

scheme provides excellent numerical solutions.
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Figure 6.2. The nonstandard finite difference scheme with β=0.5 and different

values of t.
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Figure 6.3. The nonstandard finite difference scheme with β=0.6 and different

values of t.
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Figure 6.4. The standard and nonstandard finite difference scheme with β=0.5

and t=4.

−50 −40 −30 −20 −10 0 10 20 30 40 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Ut=Uxx+U*(1−U2) 

x axis 

y 
ax

is
 

standard
nonstandard
exact

Figure 6.5. The standard, nonstandard and exact solution with β=0.1 and

t=2.
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CHAPTER 7

CONCLUSION

In Chapter 1, we reviewed the standard finite difference scheme and connected

this to the nonstandard finite difference scheme. After, we shortly mentioned about

non-standard finite difference rules and explained the necessary of the nonstandard finite

difference models.

In Chapter 2, we explained why the numerical instabilities occur in the solution of

the differential equations.

Chapter 3 introduced the notion of an exact finite difference scheme. It was shown,

by means of a theorem, that, in general, ordinary differential equations have exact finite-

difference equation representations. This theorem was then used to construct exact dis-

crete models for several differential equations. A study of these exact schemes then led

to the formulation of a set of nonstandard modelling rules.

Chapter 4 dealt with the construction of discrete representations for a single scalar

ordinary differential equation, such that the linear stability properties of the fixed-points

of the finite difference scheme were exactly the same as the corresponding fixed-points

of the differential equation for all values of the step-size. This result eliminated all the

elementary numerical instabilities was based on the idea of using a renormalized denom-

inator function.

In Chapter 5, we constructed nonstandard finite difference scheme for the

convection-diffusion problem. We both analyzed standard and nonstandard finite dif-

ference approximations. We have observed that nonstandard finite difference method

works better than the standard finite difference method for all choice of h and ε. Al-

though, both methods have been in a good agreement away from the boundary layer,

nonstandard finite difference method has done better job near the boundary layer.

In Chapter 6, we constructed the nonstandard finite difference scheme for non-

linear reaction-diffusion partial differential equation. This new scheme had the correct

fixed-points, satisfies both the positivity and boundedness conditions and easy to imple-

ment for obtaining numerical solutions since the scheme is effectively explicit. Numerical
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studies indicated that the derived nonstandard scheme converges to the exact solution

better than the standard finite difference discretization of the equation.
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APPENDIX A

COMPUTER SOFTWARE

Here, the Matlab codes we wrote to solve the dynamic equation is shown.

clear all n=input(’enter n= ’); h=input(’enter h= ’);

% INITIAL VALUES

y(1)=0.5;

z(1)=0.5;

% DENOMINATOR FUNCTION

a(n)=(1-exp(-n*h))/n;

% THE CASE OF STEP SIZES

if h==0.01

w2=10;

else if h==0.1

w2=10;

else if h==0.2

w2=19;

else if h==0.5 | h==0.7

w2=26;

else if h==0.65 | h==0.8
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w2=26;

else if h==1 | h==1.2

w2=26;

else if h==1.5 | h==2

w2=46;

else if h==2.5

w2=51;

else break

end

end

end

end

end

end

end

end

w1=1;

m=((w2-w1)/h);

x=w1:h:w2;

% EXACT EQUATION

z1=(1+(2.^n-1)*exp(n*(1-x))).^(-1/n);

for k=1:m
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% STANDARD EQUATION

y(k+1)=y(k)*(1+h*(1-y(k).^n));

% NON-STANDARD EQUATION

z(k+1)=((1+a(n))*z(k))/(1+a(n)*(z(k).^n));

end

er1=abs(z1-y);

er2=abs(z1-z);

% PLOTS

figure(1)

plot(y,’g’)

hold on

plot(z,’bo’)

hold on

plot(z1,’r’)

legend(’standard’,’non-standard’)

title(’{y}_t = y(1-y^n)’)

x label(’k-grid’);

y label(’y(k) ’);

figure(2)

plot(x,er1,’r’,x,er2)

legend(’error-standard’,’error-non-standard’)

title(’{y}_t =y(1-y^n)’)

Here, the Matlab codes we wrote to solve the convection-diffusion equation is

shown.

% eps.y’’+y’=-1

% y(0)=0;

% y(1)=0;
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clear all format long n=50; L=1; h=L/n; e=1; h=L/n; w=-(1/e);

b=-2-(h/e); c=1; a=1+(h/e); w1=-(1/e); b1=-1-exp(w*h);

c1=exp(w*h);

% -a*y(k+1)+b*y(k)+c*y(k-1);

%solution of linear equation as AU=F,SET MATRIX A1

for i=1:n-1;

for j=1:n-1;

if i==j;

A(i,j)=b;

else if i==j+1;

A(i,j)=c;

else if i==j-1;

A(i,j)=a;

else parity=0;

end

end

end

end

end

% set matrix F

for i=1:n-1;

for j=1:1;

F(i,j)=(-h*h)/e;

end

end

for i=1:n-1;

for j=1:n-1;

if i==j;

B(i,j)=b1;

else if i==j+1;

B(i,j)=c1;
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else if i==j-1;

B(i,j)=1;

else parity=0;

end

end

end

end

end

% set matrix F

for i=1:n-1;

for j=1:1;

F1(i,j)=(exp(w*h)-1)*h;

end

end

u11=A/F;

u21=B/F;

U11(1)=0;

U11(n+1)=0;

U21(1)=0;

U21(n+1)=0;

for i=2:n;

U11(i)=u11(i-1);

U21(i)=u21(i-1);

end

x=[0:h:1];

%exact

z1=(-x)+(1-exp(-x/e))/(1-exp(-1/e));

x1=[0:h:1];
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%error analysis

er11=abs(z1-U11);

er21=abs(z1-U21);figure(1)

plot(x1,U11,’r’,x1,U21,’bo’,x,z1,’g’);

title(’One Dimensional Convection Diffusion Equation’)

legend(’\bf{standard}’,’\bf{non-standard}’,’\bf{exact}’);

x label(’\bf{x axis}’);

y label(’\bf{y axis}’);

axis([0 1 0 1 ])

figure(2)

plot(x1,er11,’r’,x1,er21,’bo’);

title(’One Dimensional Convection Diffusion Equation’)

legend(’Error between Exact and Standard’,’Error between

Exact and Nonstandard’);

x label(’\bf{x axis}’);

y label(’\bf{y axis}’);

Here, the Fortran codes we wrote to solve the reaction-diffusion equation is shown.

* u(t)=u(xx)-(u-A1)(u-A2)(u-A3)

* STANDARD

* A1=-1 A2=0 A3=1

* DX=0.1

* DT=0.001

* H=0.1

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

DOUBLE PRECISION X(1500),T(6500),S(1500,6500)

DOUBLE PRECISION E(1500,6500),U(1500,6500),F(1500,6500)

DOUBLE PRECISION G(1500,6500)
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OPEN(11,FILE=’data1.txt’,STATUS=’UNKNOWN’)

OPEN(12,FILE=’data2.txt’,STATUS=’UNKNOWN’)

OPEN(13,FILE=’data3.txt’,STATUS=’UNKNOWN’)

OPEN(14,FILE=’data4.txt’,STATUS=’UNKNOWN’)

OPEN(15,FILE=’data5.txt’,STATUS=’UNKNOWN’)

OPEN(16,FILE=’data6.txt’,STATUS=’UNKNOWN’)

A1=-1.0D0

A2=0.0D0

A3=1.0D0

L=5.0D0

M=100.0D0

DX=(2.0D0*L) / DFLOAT(M)

DT=0.0010D0

T(1)=0.0D0

R=((6-T(1))/DT)+1

*************** T(N)LERI BULMA ******************

DO 30 N=2,R

T(N)=T(1)+(N-1)*DT

30 CONTINUE

************* X(I) LARI BULMA ***************

X(1)=-L

DO 5 I=2,M+1

X(I)=X(1)+(I-1)*DX

5 CONTINUE

* BOUNDARY CONDITION

DO 10 N=1,R
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S(1,N)=-1.0D0

S(M+1,N)=1.0D0

U(1,N)=-1.0D0

U(M+1,N)=1.0D0

E(M+1,N)=1.0D0

E(1,N)=-1.0D0

10 CONTINUE

C=(L/DX)+1

X(C)= 0.0D0

* INITIAL CONDITION

DO 20 I=1,M+1

IF (X(I).LT.0.0D0) THEN

S(I,1)=-1.0D0

U(I,1)=-1.0D0

E(I,1)=-1.0D0

ELSE

S(I,1)=1.0D0

U(I,1)=1.0D0

E(I,1)=1.0D0

END IF

20 CONTINUE

DO 36 N=1,R-1

DO 42 I=2,M

* STANDART EQUATION(1)

S(I,N+1)=S(I,N)+((DT)/(DX*DX))*(S(I+1,N)

--2.0D0*S(I,N)+S(I-1,N))

--(DT)*(S(I,N)-A1)*(S(I,N)-A2)*(S(I,N)-A3)

*****************************************************

* NON-STANDARD EQUATION(1)

U(I,N+1)=(U(I,N)+((1.0D0-EXP(-2.0D0*DT))

//(8.0D0*SIN(DX*0.50D0)*SIN(DX*0.50D0)))*(U(I+1,N)
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--2.0D0*U(I,N)+U(I-1,N))

++(0.250D0*(1.0D0-EXP(-2.0D0*DT))*U(I-1,N)*U(I-1,N)*U(I-1,N))

--(0.250D0*(1.0D0-EXP(-2.0D0*DT))*U(I-1,N)*U(I-1,N)*(A1+A2+A3))

--(0.50D0*(1.0D0-EXP(-2.0D0*DT))*U(I-1,N)*((A1*A2)+(A1*A3)+(A2*A3)))

++(1.0D0-EXP(-2.0D0*DT))*(A1*A2*A3)))

//(1.0D0+(0.750D0*(1.0D0-EXP(-2.0D0*DT))*U(I-1,N)*U(I-1,N))

-- (0.750D0*(1.0D0-EXP(-2.0D0*DT))*U(I-1,N)*(A1+A2+A3)))

****************************************************************************

42 CONTINUE

36

CONTINUE

DO 60 I=1,M+1

WRITE(11,*) X(I),S(I,1),U(I,1)

WRITE(12,*) X(I),S(I,1201),U(I,1201)

WRITE(13,*) X(I),S(I,2401),U(I,2401)

WRITE(14,*) X(I),S(I,3601),U(I,3601)

WRITE(15,*) X(I),S(I,4801),U(I,4801)

WRITE(16,*) X(I),S(I,6001),U(I,6001)

60 CONTINUE

WRITE(*,*) ’BITTI’

STOP

END

66


