

IMPROVING MISUSE DETECTION
WITH

NEURAL NETWORKS

A Thesis Submitted to

The Graduate School of Engineering and Sciences of
�zmir Institute of Technology

In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by
Sadettin DEM�RAY

October 2005
�ZM�R

 ii

We approve the thesis of Sadettin DEM�RAY

Date of Signature

…………………………………………. 17 October 2005
Asst. Prof. Dr. Tu�kan TU�LULAR
Supervisor
Department of Computer Engineering
�zmir Institute of Technology

…………………………………………. 17 October 2005
Assoc. Prof. Dr. Ahmet KOLTUKSUZ
Department of Computer Engineering
�zmir Institute of Technology

…………………………………………. 17 October 2005
Prof. Dr. �aban EREN
Department of Computer Engineering
Ege University

…………………………………………. 17 October 2005
Prof. Dr. Kayhan ERC�YE�
Head of Department
Department of Computer Engineering
�zmir Institute of Technology

………………………………………….
Assoc. Prof. Dr. Semahat ÖZDEM�R

Head of the Graduate School

 iii

ACKNOWLEDGEMENTS

I would like to express sincere gratitude to my thesis supervisor Asst. Prof. Dr.

Tu�kan TU�LULAR for his encouragement, guidance and support throught the

development of this thesis.

I would also like to thank my colleagues and friends, Mustafa Özgür TUTUM

and Burak Galip ASLAN for their inspiring ideas that enlightened my studies.

Finally, I also owe my special thanks to my family for their encouragements and

patience.

 iv

ABSTRACT

Misuse Intrusion Detection Systems are rule-based systems that search attack

patterns in the data source. Detection ability of misuse detectors is limited to known

attack patterns; hence unknown attacks may be missed. In addition, writing new

signatures for novel attacks can be troublesome and time consuming. Similarly behavior

based IDSs suffered from high rates of false alarms. Artificial neural networks have

generalization ability, thus they can be used with intrusion detection system in order to

identify normal and attack packets without the need of writing rules. We proposed to

use neural networks with network-based IDS. To achieve this, system was trained and

tested with both normal and malicious network packets. Backpropagation and

Levenberg-Marquardt algorithms were used to train neural networks. For each of these

training algorithms a 3-layer and a 4-layer MLP network sets were generated. In

addition, self-organizing maps were used to classify attack instances. DARPA 1999

Intrusion Detection Evaluation dataset was used for training and testing, but lack of

enough attack patterns in evaluation dataset made us to create a testbed to obtain

sufficient malicious traffic. After training was completed, trained neural networks were

tested against training dataset and test dataset, which is not part of the training dataset.

Results of the experiments showed that, none of the trained backpropagation networks

could identify attacks in training and/or testing data sets. But results of the Levenberg-

Marquardt networks were more promising as nine of the trained Levenberg-Marquardt

networks could identify attack and normal network packets in training and test datasets.

 v

ÖZET

Kötüye kullanım tespit sistemleri, kural tabanlı sistemler olup veri kayna�ı

içerisindeki saldırı desenlerini arar. Kötüye kullanım tespit sistemlerinin tespit

kabiliyetleri sahip oldukları saldırı desenleri ile sınırlıdır. Ek olarak her yeni saldırı için

bir saldırı imzası tanımlamak zahmetli ve zaman alıcı bir süreçtir. Benzer olarak

davranı� tabanlı nüfuz tespit sistemleri de yüksek oranlarda yanlı� alarmlarla sorun

ya�amaktadır. Yapay sinir a�larının nüfuz tespit sistemlerinde kullanılmasıyla bir saldırı

kuralı tanımlamaya gerek kalmadan normal ve saldırı paketlerinin tanınması

sa�lanabilir.

Bu çalı�ma yapay sinir a�larının nüfuz tespit sistemlerinde kullanılmasını

kapsamaktadır. Bu amaca ula�abilmek için yapay sinir a�ları hem saldırı hem de normal

a� paketleriyle e�itilmi�tir. Geri yayılım algoritması ve Levenberg-Marquardt e�itim

algoritmaları yapay sinir a�larının e�itilmesinde kullanılmı�tır. Her bir e�itim

algoritması için biri 3-katmanlı biri de 4-katmanlı olmak üzere iki grup çok düzeyli

algılayıcı a�ları yaratılmı�tır. Çok düzeyli algılayıcı a�lara ek olarak kendi kendini

organize eden yapay sinir a�ları da saldırıları gruplandırmak için kullanılmı�tır. E�itim

ve test için 1999 DARPA Nüfuz Tespit Sistemleri De�erlendirme veri seti

kullanılmı�tır. Ancak bu veri setindeki saldırı paketlerinin sayısının yapay sinir a�larını

e�itimi için yetersiz kalmasından dolayı, saldırı paketleri bir simülasyon ortamında

yaratılmı�tır. E�itilen yapay sinir a�ları, e�itim veri seti ve e�itim veri setinin içinde

olmayan verilerin bulundu�u bir test veri setiyle test edilmi�tir. Deney sonuçlarında geri

yayılım algoritması ile e�itilen yapay sinir a�larının e�itim ve/veya test veri setindeki

normal ve saldırı paketlerini ayrıt etmede ba�arısız kaldı�ı gözlemlenmi�tir. Levenberg-

Marquardt algoritması ile e�iten dokuz yapay sinir a�ı, e�itim ve test veri setindeki

saldırı ve normal paketleri ayırt edebilmeyi ba�armı�tır.

 vi

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES... xi

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. BACKGROUND

 2.1. Intrusion Detection Systems ... 6

 2.1.1. Information Sources.. 7

 2.1.1.1. Host-based IDSs ... 7

 2.1.1.1.1. Advantages of Host-based IDSs .. 8

 2.1.1.1.2. Disadvantages of Host-based IDSs...................................... 8

 2.1.1.2. Network-based IDSs .. 8

 2.1.1.2.1. Advantages of Network-based IDSs.................................... 9

 2.1.1.2.2. Disadvantages of Network-based IDSs 9

 2.1.2. IDS Analysis .. 9

 2.1.2.1. Anomaly Detection .. 10

 2.1.2.1.1. Advantages of Anomaly IDSs ... 10

 2.1.2.1.2. Disadvantages of Anomaly IDSs....................................... 11

 2.1.2.2. Misuse Detection ... 11

 2.1.2.2.1. Advantages of Misuse IDSs... 12

 2.1.2.2.2. Disadvantages of Misuse IDSs .. 12

 2.1.3. Response Component ... 12

 2.2. Neural Networks ... 12

 2.2.1. Models of Neurons.. 13

 2.2.2. Neural Network Architectures .. 15

 2.2.2.1. Multi-Layer Perceptron... 15

 2.2.2.2. Self Organizing Maps ... 17

 2.2.3. Learning in Neural Networks ... 18

 2.2.3.1. Backpropagation Algorithm ... 19

 vii

 2.2.3.2. Levenberg-Marquardt Algorithm ... 21

 2.3. DARPA 1999 Intrusion Detection Evaluation....................................... 22

CHAPTER 3. INTRUSION DETECTION WITH NEURAL NETWORK................... 25

 3.1. Motivation... 25

 3.2. Earlier Work ... 26

 3.3. Advantages of NN Based IDS .. 34

 3.4. Disadvantages of NN Based IDS.. 34

CHAPTER 4. METHODOLOGY .. 36

 4.1. Compose Training/Testing Data... 37

 4.2. Preprocess Training/Testing Data... 39

 4.3 Neural Network Structure.. 42

 4.3.1. MLP Networks.. 42

 4.3.2. Self-Organizing Maps... 43

 4.4. Training the Neural Networks .. 44

 4.5. Testing the Neural Networks .. 45

CHAPTER 5. RESULTS AND DISCUSSION.. 46

 5.1. Verification Step ... 46

 5.1.1. 3-Layer Backpropagation Neural Networks 46

 5.1.2. 3-Layer Levenberg-Marquardt Neural Networks 49

 5.1.3. 4-Layer Backpropagation Neural Networks 51

 5.1.4. 4-Layer Levenberg-Marquardt Neural Networks 53

 5.1.5. SOMs .. 55

 5.2. Generalization Step... 56

 5.2.1. 3-Layer Backpropagation Neural Networks 56

 5.2.2. 3-Layer Levenberg-Marquardt Neural Networks 58

 5.2.3. 4-Layer Backpropagation Neural Networks 60

 5.2.4. 4-Layer Levenberg-Marquardt Neural Networks 61

 5.2.5. SOMs .. 63

 5.3. Analysis .. 64

 5.4. Discussion... 65

 viii

CHAPTER 6. CONCLUSION ... 66

REFERENCES ... 68

APPENDICES

APPENDIX A. LIST OF THE SELECTED VULNERABILITIES 70

APPENDIX B. LIST OF THE EXPERIMENTAL RESULTS...................................... 81

 ix

LIST OF FIGURES

Figure Page

Figure 1.1. CERT reported incidents by year. .. 1

Figure 1.2. Timeline of the evolution of intrusion detection systems. 3

Figure 2.1. Block diagram of a typical anomaly detection system................................. 10

Figure 2.2. Block diagram of a typical misuse detection system. 11

Figure 2.3. Major components of an artificial neuron. ... 13

Figure 2.4. Most popular activation functions. ... 14

Figure 2.5. A MLP network with two hidden layers. ... 16

Figure 2.6. An example of self-organizing map network. .. 17

Figure 2.7. Global and local minimum in error surface.. 20

Figure 2.8. DARPA 1999 Intrusion Detection Evaluation Testbed. 23

Figure 3.1. Block diagram of enhanced intrusion detection system............................... 28

Figure 3.2. A diagram of an IDA.. 30

Figure 3.3. General schematic for the Network Monitor Stack...................................... 31

Figure 4.1. Steps to be taken in order to build neural network based IDS. 36

Figure 4.2. Simulation environment used to generate malicious traffic. 38

Figure 4.3. Summary of training and testing datasets... 39

Figure 4.4. ER diagram of the database created by Snort... 40

Figure 4.5. A sample training session where performance goal was met in 38 epochs. 45

Figure 5.1. Number of false positives for 3-layer backpropagation networks. 47

Figure 5.2. Number of false negatives for 3-layer backpropagation networks............... 48

Figure 5.3. Number of false positives for 3-layer Levenberg-Marquardt networks....... 49

Figure 5.4. Number of false negatives for 3-layer Levenberg-Marquardt networks. 50

Figure 5.5. Number of false positives for 4-layer backpropagation networks. 51

Figure 5.6. Number of false negatives for 4-layer backpropagation networks............... 52

Figure 5.7. Number of false positives for 4-Layer Levenberg-Marquardt networks. 53

Figure 5.8. Number of false negatives for 4-layer Levenberg-Marquardt networks. 54

Figure 5.9. Number of false positives for 3-layer backpropagation networks. 56

Figure 5.10. Number of false negatives for 3-layer backpropagation networks............. 57

Figure 5.11. Number of false positives for 3-layer Levenberg-Marquardt networks..... 58

 x

Figure 5.12. Number of false negatives for 3-layer Levenberg-Marquardt networks. ... 59

Figure 5.13. Number of false positives for 4-layer backpropagation networks. 60

Figure 5.14. Number of false negatives for 4-layer backpropagation networks............. 61

Figure 5.15. Number of false positives for 4-layer Levenberg-Marquardt networks..... 62

Figure 5.16. Number of false negatives for 4-layer Levenberg-Marquardt networks. ... 63

 xi

LIST OF TABLES

Table Page

Table 1.1. Economic impact of malicious code.. 2

Table 3.1. Summary of Earlier Studies... 32

Table 4.1. Sample preprocessed input vector. .. 41

Table B.1. Number of false positives for 3-layer backpropagation networks. 81

Table B.2. Number of false negatives for 3-layer backpropagation networks. 82

Table B.3. Number of false positives for 3-layer Levenberg-Marquardt networks. 83

Table B.4. Number of false negatives for 3-layer Levenberg-Marquardt networks....... 83

Table B.5. Number of false positives for 4-layer backpropagation networks. 84

Table B.6. Number of false negatives for 4-layer backpropagation networks. 85

Table B.7. Number of false positives for 4-Layer Levenberg-Marquardt networks. 85

Table B.8. Number of false negatives for 4-layer Levenberg-Marquardt networks....... 86

Table B.9. Number of false positives for 3-layer backpropagation networks. 87

Table B.10. Number of false negatives for 3-layer backpropagation networks. 87

Table B.11. Number of false positives for 3-layer Levenberg-Marquardt networks. 88

Table B.12. Number of false negatives for 3-layer Levenberg-Marquardt networks..... 89

Table B.13. Number of false positives for 4-layer backpropagation networks. 89

Table B.14. Number of false negatives for 4-layer backpropagation networks. 90

Table B.15. Number of false positives for 4-layer Levenberg-Marquardt networks. 91

Table B.16. Number of false negatives for 4-layer Levenberg-Marquardt networks..... 91

 1

CHAPTER 1

INTRODUCTION

 Automated attacking tools and high availability of these tools on Internet have

raised the need of computer security systems. Firewalls and security policies are the

first defense lines in order to protect computer systems and prevent attackers to harm

computer systems. However, building a complete secure computer system is still a

dream. This is due to the fact that, application programs will always contain unknown

bugs and vulnerabilities. In addition, attackers continuously find new techniques to

exploit vulnerabilities in the computer systems. Hence, despite the security precautions,

computer attacks are continuously increasing (attack incidents reported to CERT

(WEB_1 2005) by year is given in Figure 1.1).

2.573

82.094

137.529

52.658

21.756
9.8593.7342.1342.412

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

1995 1996 1997 1998 1999 2000 2001 2002 2003

Figure 1.1. CERT reported incidents by year.

 Electronic commerce became widespread; hence attacks to the computer

systems could result in loss of billions of dollars. Worldwide economic cost of the

malicious codes is $0.5 billion in 1995, $1.8 billion in 1996, $3.3 billion in 1997, $6.1

billion in 1998, $12.1 billion in 1999, $17.1 billion in 2000 and $13.2 billion in 2001.

Major incidents related to the viruses, worms and other malicious software are given in

Table 1.1 (WEB_2 2005).

 2

Table 1.1. Economic impact of malicious code.

Name Date Impact

Morris Worm 1988 • Stopped 10% of computers
connected to Internet

Melissa Virus May 1999 • 100,000 computers in one week
• Loss of $1.5 billion

Explorer Virus June 1999 • Loss of $1.1 billion
Love Bug Virus May 2000 • Loss of $8.75 billion

Sircam Virus July 2001 • 2.3 million computers infected
• Loss of $1.25 billion

Code Red Worm July 2001
• 359,000 computers infected in less

than 14 hours
• Loss of $2.75 billion

Nimda Worm Sept. 2001
• 160,000 computers infected at

peak
• Loss of $1.5 billion

Klez 2002 • Loss of $750 million
BugBear 2002 • Loss of $500 million

Badtrands 2002 • Loss of $400 million

Sapphire/Slammer
Worm Jan. 2003

• Infected 90% of vulnerable hosts
in just 10 minutes

• 75,000 hosts infected at peak
• Loss of $1.5 billion

Blaster 2003 • Loss of $750 million
Nachi 2003 • Loss of $500 million

SoBig.F 2003 • Loss of $2.5 billion

MyDoom Worm Jan. 2004

• Fastest spreading mass-mailer
worm to date

• 100,000 instances of the worm
intercepted per hour

• Loss of more than $4.0 billion

Witty Worm March 2004 • First widely propagated worm to
carry a destructive payload

 A computer system should provide confidentially, integrity and availability

against attempts try to exploit vulnerabilities in the operating system and in application

programs. Confidentially is the protection of private information from disclosure of

unauthorized users. Integrity is the protection of the sensitive data from modification of

unauthorized users and availability states that data can be accessible any time by the

legitimate users.

 If certain countermeasures are taken, most of the intrusions can be prevented, as

most of them are results of known vulnerabilities. However, it is still impossible to

 3

secure the complete computer system, as there will be always unknown security

breaches. Consequently, it is important to detect intrusions or intrusion attempts in order

to take precautions as to prevent similar intrusions. This research field is called

intrusion detection.

 The notion of intrusion detection was born with Anderson’s paper, “Computer

Security Threat Monitoring and Surveillance”, in the beginning of 1980. In his seminal

paper, written for a government organization, Anderson suggested using audit trails to

track computer misuses and to understand user behavior. With release of the paper,

concepts of detecting misuse and user activities emerged. Since then, many researches

have been conducted and intrusion detection systems have been significantly improved.

Timeline of the evolution of intrusion detection systems is given in Figure 1.2.

Figure 1.2. Timeline of the evolution of intrusion detection systems.

 In 1983, Denning in SRI International conducted a study to create user profiles

by analyzing audit trails of the government mainframe computers. One year later the

first prototype for intrusion detection, the Intrusion Detection Expert System (IDES)

was formed with the help of Denning. IDES analyzes audit trails from government

systems and tracks user activity. IDES provided a foundation to the intrusion detection

development. In 1987, Denning published a paper, “An Intrusion Detection Model”, for

the 1986 IEEE Symposium on Security and Privacy and explained how anomalous

activity could be used as an indicator of potential security incidents.

 The Haystack prototype was developed for the detection of intrusions in a multi-

user Air Force computer system at University of California Davis' Lawrence Livermore

 4

Laboratories in 1988. The prototype Intrusion Detection System (IDS) analyzes audit

data by comparing it with defined patterns.

 In 1989, the developers of Haystack established the commercial company,

Haystack Labs, and developed “last” technology intrusion detection system, Stalker.

Stalker is a host-based, pattern matching system which can manually and automatically

query the audit data.

 In 1990, Todd Heberlein, a student at the University of California, introduced

the idea of network intrusion detection and built an IDS system called Network Security

Monitor (NSM) which was the first network intrusion detection system. NSM listens

passively network traffic that passes through a broadcast LAN, and extracts intrusive

behavior from this input. NSM can monitor a network of heterogeneous hosts without

having to convert different audit trail formats into a standard format.

 The Air Force's Cryptologic Support Center developed the Automated Security

Measurement System (ASIM) to monitor network traffic on the US Air Force's network.

ASIM considerably improved scalability and portability issues that previous network

intrusion detection products suffered.

 The development group on the ASIM project formed a commercial company in

1994, the Wheel Group. Their product, NetRanger, scans traffic for signature of misuse,

provides real-time alarm and gives details of the attacks. However, during these years

development of commercial intrusion detection systems slowed down and only speeded

up again around 1997.

 ISS developed a network intrusion detection system called RealSecure in 1997.

A year later, Cisco recognized the importance of network intrusion detection and

purchased the Wheel Group. Similarly, the first host-based intrusion detection company,

Centrax Corporation, was formed.

 In the last few years, the intrusion detection field has grown considerably and

therefore a large number of IDSs have been developed. The initial IDSs were anomaly

detection tools but today, most of the commercial IDSs are misuse detection tools. IDSs

have become a necessity, as number of computer systems connected to networks

increased greatly.

 The goal of this research is to propose and analyze the applicability of neural

networks in the field of intrusion detection. Proposed neural network based intrusion

detection system is network-based in the sense that, it uses network data to determine

whether an intrusion has taken place.

 5

 Remainder of the thesis is organized as follows. Basic concepts of intrusion

detection, neural networks and information about DARPA 1999 Intrusion Detection

Evaluation are given in chapter two. Employing neural networks in the field of intrusion

detection and related works are given in chapter three. Methodology used in this

research is described in chapter four. The results that are obtained in the experiments in

this research are examined in chapter five.

 6

CHAPTER 2

BACKGROUND

 This chapter presents basic technical background of intrusion detection systems,

neural networks, 1999 DARPA Intrusion Detection Evaluation and its dataset, which is

used to train and test the proposed system.

2.1. Intrusion Detection Systems

 Pioneering work in the field of intrusion detection was performed by Anderson

in the early 1980s. Anderson defines an intrusion as any unauthorized attempt to access,

manipulate, modify, or destroy information, or to render a system unreliable or unusable

(Anderson 1980). Intrusions are caused by attackers accessing the systems from

Internet, authorized users of the systems who attempt to gain additional privileges for

which they are not authorized, and authorized users who misuse the privileges given to

them. IDSs are software or hardware products that monitor the system in question and

try to detect any attack against the system.

 A truly secure system is still a dream, as there are always bugs in application

programs, and also communication protocols always have vulnerabilities that can be

exploited by attackers. In addition, passwords can be cracked, users can loose their

passwords, and entire crypto system can be broken. As a result, security mechanisms

(e.g. firewalls), which are deployed to protect the information system, may not be able

to prevent all security breaches. IDSs are usually deployed along with the other security

mechanisms, such as access control, authentication and firewalls, as a last defense line

to improve security of the information system.

 The main goal of an IDS is to provide high rates of attack detection with very

small rates of false alarms. There are two types of errors that are important to know in

intrusion detection:

• False positives: False positives are the errors occurring when IDS flags a normal

activity as an attack. Simply, false positives are false alarms.

 7

• False negatives: False negatives are the errors occurring when IDS fails to

detect an ongoing attack.

 An intrusion detection system consists of three functional components (Bace and

Mell 2001), namely:

1. Information source that provides a stream of event records;

2. Analysis engine that finds signs of intrusions; and

3. Response component that generates reactions based on the outcome of the analysis

engine.

 In the following subsections these three functional components are inspected in

detail.

2.1.1. Information Sources

 The first component of an IDS is the data source, where input information,

which will be analyzed, is collected. Input information can be audit trails, system logs

or network packets. According to the data sources used, IDSs can be classified into two

categories, host-based IDSs and network-based IDSs.

2.1.1.1. Host-based IDSs

Host-based IDSs monitor activities within an individual computer system and

operate on information obtained from these activities. As target environment was

mainframe environment, and all users were local to the system, first researches in the

field of IDSs were performed on the host-based IDSs.

Host-based IDSs generally use two information sources, operating system audit

trails, and system logs. Operating system trails are usually generated at the kernel level;

hence they are more detailed and better protected than system logs. However, system

logs are simpler and smaller than operating system trails; consequently they can be

more easily interpreted.

 8

2.1.1.1.1. Advantages of Host-based IDSs

1. As host-based IDSs monitor local activities, thus they can detect attack that can

not be detected by network-based IDSs.

2. Information sources of the host-based IDSs are generally generated on a

plaintext data, therefore they can successfully operate in an environment where

network traffic is encrypted.
3. Performance of the host-based IDSs is not affected by the topology of the

network they operate in. They successfully operate on switched networks.

2.1.1.1.2. Disadvantages of Host-based IDSs

1. As host-based IDSs should be placed on every monitored host, it is harder to

manage and configure host-based IDSs.

2. Host-based IDSs run on the host targeted by attacks, and it may be disabled by a

successful attack. Such as by certain denial-of-service attacks.

3. As host-based IDSs can only see network packets received by its host, detection

performance of host-based IDSs is poor in the case attacks are targeted to the

entire network.

4. Amount of information used by host-based IDSs can be huge; hence host–based

IDSs may require additional storage on the system running.

5. Host-base IDSs share the computing resources (e.g. CPU, main memory) with

the monitored host. Consequently, they cost additional operational overheads

and may affect the performance of the hosting computer.

2.1.1.2. Network-based IDSs

As computing environments shifted from mainframe to the networks of

workstations, studies on intrusion detection started to focus on attacks targeted to the

network. Network attacks can not be detected by examining operating system trails or

system logs, or at least detection of network attacks by examining data sources on the

host computer is not an easy task. As a result, network-based IDSs were developed,

which sniff network packets and search attacks in these network packets. Network-

 9

based IDSs monitor activities on a network segment or switch, so that they can protect

hosts connected to the monitored segment. Network-based IDSs generally consist of

sensors which are placed at various points (such as at LAN and WAN backbones) in the

network. As sensors are limited to run IDS, they can run in “stealth” mode, therefore

they can be more secured against attacks.

2.1.1.2.1. Advantages of Network-based IDSs

1. A large network can be monitored easily by employing a few numbers of

sensors, if sensors are placed at the critical parts of the network (for example at

hubs, routers or probes).

2. Network-based IDSs are generally passive devices and run in stealth mode,

hence do not affect the normal operation of the network.

3. Network-based IDSs can be very secure against attacks, and even they can be

made invisible to the attackers.

2.1.1.2.2. Disadvantages of Network-based IDSs

1. If monitored network is large or network traffic is high, it may be difficult to

process all network packets.

2. Problems arise when network-based IDSs placed on a switched network. Most

switches do not provide universal monitoring ports and this fact limits the

monitoring ability of network-based IDS.

3. Network-based IDSs can not analyze encrypted traffic. This is due to the fact

that, the sensors analyze packet headers to determine source and destination

addresses and type of data being transmitted, and analyze the packet payload to

discover information in the data being transmitted.

4. Malformed network packets may cause a network-based IDS to crash.

2.1.2. IDS Analysis

Second component of the intrusion detection system is the analysis engine,

where decision of whether the monitored activity is an attack or not is taken. Intrusion

 10

detection analysis engines are generally classified into two categories: misuse detection

and anomaly detection.

2.1.2.1. Anomaly Detection

Anomaly detectors assume that misuse or intrusions are highly correlated to

abnormal behavior of either a user or a system (Ghosh and Schwartzbard 1999).

Anomaly detection approaches must first baseline the normal behavior of the object

being monitored, and then detect possible intrusions by using deviations from this

baseline. These profiles are constructed from historical data collected over a period of

time of normal operation. Anomaly detection typically creates knowledge bases

containing the profiles of the monitored users, programs or systems. Threshold

detection, statistical measures, neural networks and rule-based measures are the

techniques used in anomaly detection. A block diagram of a typical anomaly detection

system is given in Figure 2.1.

Figure 2.1. Block diagram of a typical anomaly detection system.

2.1.2.1.1. Advantages of Anomaly IDSs

1. As any significant deviation from normal profile will be flagged as anomalous,

anomaly detectors can detect unknown attacks.

2. Anomaly detectors do not require constant updating of rules or signatures of

novel intrusion.

3. Anomaly detectors can produce information that can in turn be used to define

signatures for misuse detectors.

Attack
State

Update Profile

Generate New Profile

Deviation
Audit Data System Profile

 11

2.1.2.1.2. Disadvantages of Anomaly IDSs

1. The high false positive rate is the main drawback of the anomaly IDSs. This is

due to the fact that, the normal profile of a system can not be fully learned

and/or behavior of users or programs may change over time.

2. In order to build normal profile of a system, system in question should be

monitored and information should be collected, which in turn will be used to

draw normal behavior of the system. But if the collected information contains

attacks, intrusive behavior will be a part of the normal profile, and in future

these attacks will go undetected.

3. Anomaly detection approaches need extensive data sets to build profile of the

system.

2.1.2.2. Misuse Detection

Misuse detectors attempt to model attacks on a system as specific patterns, then

look for events or sets of events that match a predefined pattern of events that describe a

known attack (Ghosh and Schwartzbard 1999). As the patterns corresponding to known

attacks are called signatures, misuse detection is sometimes called “signature-based

detection”. Expert systems, signature verification and state transition diagrams are the

techniques used in misuse detection. While anomaly detection typically utilizes

threshold monitoring, misuse detection techniques frequently utilize a rule-based

approach. Today most of the commercial and research intrusion detection tools are

misuse detection which are based on attack signatures. A block diagram of typical

misuse detection system is given in Figure 1.2.

Figure 2.2. Block diagram of a typical misuse detection system.

Audit
Data

System
Profile

Attack
State

Timing
Information

Modify
Rules

Add New
Rules

Rule
Match

 12

2.1.2.2.1. Advantages of Misuse IDSs

1. Misuse IDSs can detect intrusion with a certain degree of certainty. Misuse

detectors are very effective in detecting attacks without giving high false alarm

rates.

2. Misuse IDSs can detect all intrusions whose signatures are known.

3. Misuse IDSs are easy to implement (state machine, signature analysis) and

deploy (no need to form a profile of the system).

2.1.2.2.2. Disadvantages of Misuse IDSs

1. Detection ability of misuse detectors is limited to signatures that they posses. A

new intrusion or even a variation of a known intrusion may be undetected. So

misuse IDs require regular updates of signatures in order to remain current.

2. The process of developing a new attack signature is time consuming.

2.1.3. Response Component

 Response component is the third component of an IDS , where reaction to a

detected attack is given. According to the response types IDS can be either active or

passive. An IDS is said to be active, if it actively reacts to the attack by taking

corrective (closing holes) or proactive (logging out possible attackers, closing down

services). If an IDS just generates alarms, it is said to be passive. Passive IDS responses

provide information to system administrator who takes necessary actions based on that

information.

2.2. Neural Networks

 Modern digital computers can perform thousands of operations in a second and

numerical computation power of human brain is far below the digital computers.

However, even the most powerful computers can not compete with humans when

performing some perceptual tasks (recognition of a face in crowd for example). Power

of human brain, enabling human to outperform the digital computers in completing

 13

some tasks, comes from the fact that human brain is composed of large number of

massively interconnected computing units, so called neurons.

 Inspired from biological neural networks, artificial neural networks are

massively parallel computing systems consisting of an extremely large number of

simple processors (called neurons) with many interconnections and coefficients

associated with interconnections (weights) (Jain et al. 1996). An artificial neural

network (or simply neural network) is a computational model that can be defined by

four parameters (Kasabov 1996):

 1. Models of neurons.

 2. Architecture.

 3. Learning algorithm.

 4. Recall algorithm.

 Neural networks have many characteristics that neither traditional Von Neuman

nor modern parallel computers have. These characteristics include massively parallel

computation, learning ability, generalization ability, adaptivity, and fault tolerance.

2.2.1. Models of Neurons

Major components of neuronal model are given in Figure 2.3. Three basic

elements constitute the neuron model, which are connection links, an adder and an

activation function.

Figure 2.3. Major components of an artificial neuron.

sk
y

 N

y =f(�wkj xj + �k)
 j=1

.

.

.

.

Wk1

Wkn

θk

Wk2

Wk3
f

xn

x1

x2

x3
Σ

Inputs Weights

 Bias

Output

 14

 Two neurons are connected with each other with a connection link (or synapse)

and each connection link is associated with a weight which determines the computing

effect of the neuron on whole neural network. Each of the neurons, xj, is multiplied with

the weight, wkj, associated with the link that connects neuron xj to another neuron k.

These products are summed and presented to an activation or transfer function, which is

used to limit the amplitude of the output. The most popular activation functions are

given in Figure 2.4.

Figure 2.4. Most popular activation functions.

 In order to increase or decrease the net input of the activation function, a bias

(θk) is externally applied to neuron k. In mathematical terms, a neuron k can be

described by the following pair of equations:

j

m

1j
kjk xws ⋅=�

=

 (2.1)

and

)� f(s y kkk += (2.2)

where x1,x2,....,xm are the input signals, wk1, wk2, ..., wkm are the synaptic weights of

neuron k; sk is the linear combiner output due to the input signals; θk is the bias; f(.) is

the activation function; and yk is the output produced by the neuron.

 In order to make formula 2.2 uniform, generally bias is assumed to be an input

unit, x0, which has a weight value, wk0, of 1. Then the formula 2.1 will be

 15

j

m

0j
kjk xw s ⋅=�

=

 (2.3)

and

)f(s y kk = (2.4)

2.2.2. Neural Network Architectures

 Topology of a neural network describes the organization of connections between

neurons. Neurons in a neural network can be fully connected, where every neuron is

connected to every other neuron, or can be partially connected.

 Architectures of neural networks can be grouped into two categories: (i)

Feedforward networks, where data is strictly propagated from input units to output units

in feed-forward manner, hence there exists neither feedback connections nor loops in

the network. Feedforward neural networks are memoryless systems in the sense that

state of the network is not affected by the previous produced outputs; (ii) Feedback (or

recurrent) networks contain feed-back connections, hence loops exist within these

networks.

 In our experiments two different architectures are used. These architectures are

multi-layer perceptron network which is a feedforward network and self-organizing

maps, which is a recurrent network. In the following sections these architectures are

explained in detail.

2.2.2.1. Multi-Layer Perceptron

 Multi-layer perceptron (MLP) has an input layer of source nodes and output

layer of neurons. These two layers connect the neural network to the outside world;

training set is presented to the MLP through input layer and output produced by the

neural network exists in the output layer. In addition to these two layers, MLP has one

or more hidden layers which can not be directly accessible through the outside world. A

sample MLP network with two hidden layers is given in Figure 2.5.

 16

 A layer of processing elements makes independent computations on data that it

receives and passes the results to another layer. The next layer may in turn make its

independent computations and pass on the results to another layer. Finally, a group of

one or more processing elements determines the output from the network. Each

processing element makes its computation based upon a weighted sum of its inputs.

Figure 2.5. A MLP network with two hidden layers.

A L-layer MLP network consists of an input stage, (L-1) hidden layers and an

output layer connected in a feedforward manner without any feedback connections

between neurons (Jain et al. 1996).

 MLP networks can be successfully trained, even if training examples are linearly

inseparable (input patterns cannot be separated into the output categories by a single

line). One of the most popular training algorithms used in MLPs is backpropagation

algorithm, which is described in section 2.2.3.1.

 Training process of MLP networks continues until a certain number of iterations

or a desired error rate is reached. The most common error approximation method used

in MLP networks is mean square error (MSE) and it is defined by the following

formula:

/2y) - (d Err 2= (2.5)

 17

where d is the desired output for the given input and y is the output produced by the

neural network.. A total MSE sums the error over all individual examples and all the

output neurons in the network.

.m p /))y - (d MSE
1

1 k

m

1 j

2(k)
j

(k)
j �

�
�

�
�
�
�

�
= ��

= =
 (2.6)

where yj
(k) is the output value of the jth output of the network when kth training example

is presented; dj
(k) is the desired output for the jth output for the kth training example; p is

the number of training examples in the training data; and m is the number of output

neurons in the neural network. Root-mean square error (RMSE) is the root of the MSE.

2.2.2.2. Self Organizing Maps

 The term self-organizing refers to that; these networks can adapt their weights

without giving any correct answers. Self-organizing maps (SOMs) modify connection

weights based on the characteristics of the training set. A SOM consists of two layers,

an input layer and an output layer (also called feature map), which represents the output

vectors. The weights of the connections of an output neuron j to all the other n input

neurons form a vector wj in an n dimensional space. SOMs are trained to cluster input

vectors sharing the same features. Similar input vectors are represented by near neurons

in the feature map. (Kasabov 1996). The idea behind the learning in SOMs is that, the

neuron whose weight vector was closest to the input vector is updated to be even closer.

An example of SOM network is given in Figure 2.6.

Figure 2.6. An example of self-organizing map network.

 18

 In the first step of the learning, all weight vectors are initialized such that values

of all weight vectors are assigned differently. From the set of input vectors, a sample

input vector, x, is selected and each neuron computes Euclidean distance (which is the

straight line distance between two points) between its weight vector and sample input

vector (Formula 2.7).

, ...,l, j 21 , w x(n)min arg i(x) jj
=−=

(2.7)

 The weight vector which has the minimum Euclidean distance, hence most

similar to sample input vector, is called best-matching or winning neuron.

 Only the winning neuron and its neighbors gain the right to update their weights.

Weight vectors are updated by the following formula:

(n)) w (n)(x(n)�(n)h (n) w 1)(nw ji(x) j,jj −+=+ (2.8)

where �(n) is the learning-rate parameter, and hj, i(x)(n) is the neighborhood function

around the winning neuron i(x). Both �(n) and hj, i(x)(n) changes dynamically during the

learning process. While initial neighborhood size is often set to 1/2 to 2/3 of the

network size, it shrinks exponentially with time.

2.2.3. Learning in Neural Networks

 In the context of neural networks, learning is the process of updating connection

weights so that the neural network can perform a desired task efficiently. A neural

network is trained so that it produces set of desired output vectors Y, from a given set of

input vectors X. The set X, which is used to train the neural network, is called training

set, and elements of X are called training examples. Performance is improved over time

by iteratively updating the weights in the network.

 There are three main learning algorithms (Jain et al. 1996):

1. Supervised. In supervised learning, beside from the training set, desired

outputs of the given training set is presented to the neural network. Aim of

the supervised learning is minimizing the difference between the output

 19

produced by the network and the desired output by altering the values of the

connection weights.

2. Unsupervised. Correct answers associated with each training example is not

required in unsupervised learning and only training set is presented to the

neural network. In unsupervised learning, correlations within the training set

are explored, and data are clustered based on these correlations. Self-

organizing maps utilize unsupervised learning.

3. Hybrid. Hybrid learning combines supervised and unsupervised learning.

Some parts of the weights are updated in supervised manner and the others

are updated through unsupervised learning.

2.2.3.1. Backpropagation Algorithm

 One of the most popular supervised learning algorithms is the back propagation

algorithm. The algorithm consists of two phases: Forward phase and backward phase.

In the forward phase, first, the weights of the network are randomly initialized. Then,

the input signals are propagated through the network. Afterwards, the output of the

network is calculated and compared to the desired value. In the end of the forward

phase, the error of the network is calculated. Error of the output neuron i (ei) is

calculated by the formula:

iii y d e −= (2.9)

where di is the desired response and yi is the output produces by the neural network in

response to the input xi.

 Aim of the backpropagation algorithm is to reach global minimum value (Figure

2.7) on the error surface.

 20

Figure 2.7. Global and local minimum in error surface.

 In backward phase, calculated error signal is propagated backward and in order

to minimize the error, weights are updated. Change in weights can be calculated by

gradient descent learning rule (Haykin 1999).According to the gradient descent learning

rule, correction applied to the weight wji at the iteration n is denoted by �wji(n), and

calculated by

(n)y(n)�	 (n)�w ijji = (2.10)

where � is a numerical constant (learning-rate parameter of the backpropagation

algorithm) and δj(n) is local gradient.

 Local gradient of output neurons is equal to the product of the derivative of

activation function, f
(�), and error signal, ej(n), and defined by

(n))(sf(n)e (n)	 j
'

jj = (2.11)

 Local gradient of the hidden neurons is associated with derivative of the

activation function and local gradient of the next hidden layer or output layer. Local

gradient for neurons in hidden layers is defined by

(n)w(n)	(n))(sf (n)	 kj
k

kj
'

j �=
(2.12)

 21

Learning rate parameter, �, is used to abridge the training time. But if the

learning rate parameter is chosen too high (e.g. 0.9), algorithm oscillate between local

minimums, and may not achieved to reach the global minimum, whereas selecting

learning rate too small results in long training periods. One way to speed up the learning

when learning rate is chosen small or avoid oscillation between local minimums when

learning rate is chosen to big is to utilize a parameter, momentum. By introducing the

momentum parameter, change in weight, �wji(n), is made dependent to the previous

weight change, �wji(n-1). Modified backpropagation algorithm which uses momentum,

�, is given in formula 2.13.

1)-(n ��w (n)(n)y�)(n �w ijijij += (2.13)

 After the training was completed, connection weights are frozen. Afterwards, in

order to validate whether the neural network was trained sufficiently or not, a test set,

which is not part of the training set, was presented to the trained network and its

performance is evaluated.

 Backpropagation algorithm is simple to implement. However when dealing with

difficult learning tasks, training time of the backpropagation networks can be lengthy

and even algorithm may not converge to the desired error rate.

2.2.3.2. Levenberg-Marquardt Algorithm

 Levenberg-Marquardt is an advanced non-linear optimization algorithm (Hagan

and Menhaj 1994). It can be used to update the weights in the network just as

backpropagation algorithm. It is reputably the fastest algorithm available for such

training.

 The Levenberg-Marquardt algorithm is designed specifically to minimize the

sum-of-squares error function, using a formula that (partly) assumes that the underlying

function modeled by the network is linear. A move is only accepted if it improves the

error, and if necessary the gradient-descent model is used with a sufficiently small step

to guarantee downhill movement. The weight update vector �x is calculated as

[])x(J
I))J(x(J x� T1T ε−+= x (2.14)

 22

where � is the vector of errors,
 is the learning rate parameter, and J(x) is the Jacobian

matrix that is the matrix of partial derivatives of the errors with respect to the weights.

Jacobian matrix can be calculated with the following formula:

�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�

�

∂
∂⋅⋅⋅

∂
∂

∂
∂

⋅⋅⋅
∂

∂⋅⋅⋅
∂

∂
∂

∂
∂

∂⋅⋅⋅
∂

∂
∂

∂

=

n

 m

 2

 m

 1

 m

n

 2

 2

 2

 1

 2

n

 1

2

 1

 1

 1

x
)x(e

x

)x(e

x
)x(e

x
)x(e

x

)x(e

x
)x(e

x
)x(e

x

)x(e

x
)x(e

)xJ((2.15)

 Levenberg-Marquardt outperforms the basic backpropagation and its variations

with variable learning rate in terms of training time and accuracy. However the

computation and memory requirements of the algorithm are high.

2.3. DARPA 1999 Intrusion Detection Evaluation

In 1998 and in 1999, the U.S. Defense Advanced Research Projects Agency

(DARPA) made an evaluation among commercial and research intrusion detection

research projects. To date, it is the most comprehensive scientific study known for

evaluating different intrusion detection systems. DARPA study highlights the strengths

and weaknesses of current research approaches to intrusion detection. The DARPA

scientific study is the first of its kind to provide independent third party evaluation of

intrusion detection tools against such a large corpus of data.

The 1999 DARPA Off-Line Intrusion Detection Evaluation had four main

objectives which were as follows (Haines et al. 2001):

• Support developers of intrusion detection systems, by providing rich data sets

for testing and experimentation. This data greatly facilitate algorithm

development by providing examples of normal and attack traffic and eliminating

the additional effort of traffic generation.

• Evaluate intrusion detection approaches by analyzing the strengths and

weakness of each.

 23

• Analyze differences between alternate approaches and determine the reasons of

false positives and false negatives.

• Report summarized results of the evaluation and conclusions from the detailed

analysis of each intrusion detection system in evaluation to DARPA to guide

future efforts.

MIT's Lincoln Laboratory set up a simulation environment for generating and

distributing sniffed network data and audit data recorded on host machines. Software

automata simulated hundreds of programmers, secretaries, managers, and other types of

users running common UNIX application programs and some Windows NT programs.

In addition, a small number of actual hosts appeared as if they were thousands of hosts

with different IP addresses. Thus, hundreds of users on thousands of hosts were

represented in the simulation. DARPA 1999 Intrusion Detection Evaluation testbed is

given in Figure2.8.

Figure 2.8. DARPA 1999 Intrusion Detection Evaluation Testbed.
(Source: Haines et al. 2001)

Because all the data were generated, the laboratory has a priori knowledge of

which datum represents normal and which represents attack. Network traffic was

generated to represent the following types of services: HTTP, SMTP, POP3, FTP, IRC,

Telnet, X, SQL/telnet, DNS, finger, SNMP, and time. More than 200 instances of 58

attack types were launched against victim UNIX and Windows NT hosts in three weeks

 24

of training data and two weeks of test data. This corpus of data is the most

comprehensive set known to be generated for the purpose of evaluating intrusion

detection systems.

 25

CHAPTER 3

INTRUSION DETECTION WITH NEURAL NETWORK

This chapter provides the reason for building neural network based intrusion

detection system. In addition, similar researches related to study, advantages and

disadvantages of neural network based intrusion detection system are presented in this

chapter.

3.1. Motivation

Although misuse and anomaly IDSs improve the security of an information

system to a certain extent, both of them have limitations.

Most current approaches to the process of misuse detection utilize some form of

rule-based analysis. Rule-Based analysis relies on sets of predefined rules that are

provided by an administrator, automatically created by the system, or both. These rules

are used by the system to make conclusions about the security-related data from the

intrusion detection system. Unfortunately, the detection ability of misuse systems is

limited to the rule base that they posses. Hence misuse detectors require frequent

updates to remain current. The required updates may be ignored or performed

infrequently by the administrator and this may lead the system vulnerable to the attacks.

In addition, writing a rule or signature of a new attack is not an easy task and can be

time consuming.

Another limitation of misuse detectors is that the misuse intrusion detection

systems do not have generalization property and hence fail to detect unknown and even

variations of known attacks, thus misuse IDSs generally have high false negative rates.

Anomaly detectors also have limitations. For instance, although anomaly

detectors can detect an attack accurately, they can not identify the specific type of attack

occurring. However, the most significant problem of anomaly detection approach is the

high false positive rates. Any deviation from the baseline will be flagged as intrusion;

legitimate behavior outside the baseline will be labeled as intrusive. Another problem

 26

arises if an attack occurs during the establishment of the baseline, then this intrusive

behavior will be the part of the normal baseline.

Instead of defining rules for each of the attack, which is a troublesome and time

consuming process, neural networks can distinguish malicious and normal activity by

learning correlations between training patterns. By applying neural networks to

intrusion detection, the need for managing rules and signatures can come to end. In

addition to that, neural networks posses the ability of generalization so that they can

generalize from the previously observed behavior to similar future behavior. A neural

network-based intrusion detection system could potentially address novelty detection

problem in misuse detection systems and could lower the false positive rates of anomaly

detectors to an acceptable level.

Another reason to employ neural networks in intrusion detection is that, neural

networks can cluster patterns which share similar features, thus the classification

problem in anomaly detectors can be solved by neural networks.

3.2. Earlier Work

• One of the first attempts to employ neural networks to intrusion detection was

performed by Ryan et al. in 1998 (Ryan et al.1998). An offline intrusion detection

system, Neural Network Intrusion Detector (NNID), was trained and tested on a system

with 10 users.

The NNID anomaly intrusion detection system is based on identifying anomaly

and legitimate usage based on the distribution of commands that user executed. For

each user in the system, user profile was formed based on the commands executed by

the user. System was implemented on UNIX environment and operating system logs

were used to extract command usage. A set of 100 most common used commands in the

logs and their frequencies were used to form input vectors of the neural network.

The standard two-layer backpropagation architecture was chosen for the neural

network. The input layer consisted of 100 units, representing the user vector; the hidden

layer had 30 units and the output layer 10 units, one for each user. The network

implemented in the PlaNet Neural Network simulator. The system was able to detect

96% of attacks. The achieved false positive rate was 7%.

 27

• As most computer violations are made possible by misusing of computer

programs, host-based intrusion detection approaches are shifting from inspecting user

behavior to inspecting program behavior. Rather than building user profiles, Ghosh et

al. (Ghosh and Schwartzbard 1999) presented a host based intrusion detection system

that focused on building program profiles and used these program profiles to recognize

normal software behavior and malicious software behavior. In order to monitor process

behavior, operating system was monitored to capture the system calls. The system was

trained and tested on SUN platform and use Basic Security module (BSM) as source of

data. Input data were extracted from BSM and a distance metric, which constituted

input vectors of the neural network, was calculated for each data item and exemplar

strings.

The IDS presented was a single hidden layer MLP. The number of input nodes

was equal to the number of exemplar strings. There was a single continuous node in the

output layer. For each program, networks were trained with 10, 15, 20, 25, 30, 35, 40,

50, and 60 hidden nodes; the network, which gave the minimum false negative and false

positive rates, was kept and others were discarded. Lucky Bucket algorithm is used to

capture the temporal locality of anomalous events.

Performance analysis was done with DARPA database. With a leak rate of 0.7

the anomaly detection system achieved 77.3% detection rate and false positive rate of

2.2%, whereas with the same leak rate misuse detection system achieved 90.9%

detection rate and false positive rate of 18.7%.

• Lee and Heinbuch (Lee and Heinbuch 2001) utilized an experimental intrusion

detection system with a hierarchy of neural networks. Each of the neural networks in the

hierarchy focused on different portions of nominal TCP behavior. Portions of these

observed TCP behaviors are connection establishment, connection termination and port

usage. System was trained to detect three kinds of attack, which are SYN flood, fast

SYN port scan, and stealth SYN port scan.

Backpropagation learning algorithm was used to train system. Input vectors to

each of the neural networks were generated randomly. Number of input vectors

generated was 4000-6000, which is claimed to be sufficient to train the system.

• Lippmann and Cunnigham of MIT Lincoln Laboratory (Lippmann and

Cunningham 2000) conducted a misuse detection model with neural networks, by

searching attack specific keywords in the network traffic (Figure 3.1.). They used a

MLP network to detect Unix-host attacks, and attacks to obtain root-privilege on a

 28

server. The data that they presented to the neural network consisted of attack-specific

keyword counts in network traffic. Two neural networks were used in the system, one

for providing an attack probability and one for classifying attacks.

Figure 3.1. Block diagram of enhanced intrusion detection system.

A two-layer perceptron was designed with k input nodes, 2k hidden nodes and 2

outputs (normal and attack) and the training algorithm used in the system was

backpropagation.

Sniffed network packets were first processed to construct transcripts containing

all bytes transmitted to and from victim hosts during telnet sessions. These transcripts

were then processed to get counts of each keyword. This count, which is the first output

of the system, would be used as reference to provide a probability of an attack in the

telnet session. In addition to providing an attack probability, this count is also used to

classify known attacks, thus provide an attack name.

Using neural network to weight keyword counts of a smaller set of 30 keywords

lowers the false alarm rate to an acceptable and practical rate of roughly one false alarm

per day with detection rate of %80.

• In 2002 Jirapummin, Wattanapongsakorn and Kanthamanon (Jirapumin et al.

2002) presented an alternative methodology for both visualizing intrusions by using

self-organizing map and classifying intrusions by using Resilient Propagation Neural

Keyword
List

Sniffed
Data

Create Transcripts
for Telnet Sessions

Count Keyword
Occurrences

Total Keyword
Count

Detection Neural Net

Classification Neural
Net

Attack
Probability

Attack Name

 29

Network (RPROP). Their research was focused on detection of TCP SYN flooding and

port scanning attacks.

Normal data set, Neptune attack (SYN flooding), Portsweep and Satan attacks

(port scanning) were selected from KDD Cup 1999 data set. Total of 121.820 training

patterns were divided equally into 8 sets. Each set is then clustered by a 1.234-unit

SOM network. For RPROP, 3 layer network is utilized where there were 70 nodes in

first hidden layer, 12 neurons in second hidden layer and 4 neurons in the output layer.

The transfer functions for the first hidden layer, second hidden layer and the output

layer of RPROP were tan-sigmoidal, log-sigmoidal and log-sigmoidal respectively.

Two different datasets were used for testing purposes. First test set contained

98.648 data, which was captured from the same network as the training data. Second

test set contained 126.372 unseen normal and attack data from a different network.

From the IDS simulation results, 90% detection rate with less than 5% false

alarm rate was achieved in three selected attack programs.

• Bivens et al. (Bivens et al. 2002) proposed a neural network model for a

network-based intrusion detection system. Proposed IDS was an anomaly detection

system and MLP network was used for detection. System read tcpdump data and sent to

a preprocessing unit to keep the statistics of the network traffic. System used time-

window method, such that traffic intensities were analyzed at fixed time intervals. It

was necessary to group similar traffic trends, and therefore preprocessed network traffic

was sent to a clustering module, in which self-organizing maps were used for clustering

purposes. Clustered traffic then sent to a normalization module for formatting, and

output of the normalization module was driven to neural network.

DARPA 1999 training dataset was used for testing the system. System was

tested against denial of service attacks, distributed denial of service attacks, and port

scans. Union of all attacks, system performed detection with 76% false positive and

with no false negatives.

• In another study accomplished by Ghosh et al. (Ghost et al. 1999), program

behaviors were created from system calls and intrusion detection was performed from

these profiles. An Elman network, which is similar to MLP with additional context

nodes, was employed to perform classification of short sequences of BSM events. A

leaky bucket algorithm, which provides some memory of recent events, was used to

reduce false positive rate. Randomly generated data were used to train the neural

network to identify normal an anomalous data. Performance of the system was tested

 30

To Higher Tier

To User
Interface

Probe Event Preprocessor

Statistical Processor

Neural Network
Classifier

Post Processor

Network
Traffic

Reports from IDAs of
Lower tiers

with data provided by the DARPA Intrusion Detection Evaluation. With a leak rate of

0.7, the Elman Network was able to detect 77.3% of all attacks without any false

alarms.

• In another study (Zhang et al. 2001), statistical analysis was used in conjunction

with MLP networks. System is a distributed hierarchical application in the sense that

system consists of hierarchy of Intrusion Detection Agents (IDAs) at multiple tiers

where each tier corresponds to different network scope. IDAs are IDS components that

monitor the activities of a host or a network.

A diagram of an IDA is illustrated in Fig. 3.2., which consists of the following

components: the probe, the event preprocessor, the statistical processor, the neural

network classifier and the post processor.

Figure 3.2. A diagram of an IDA.

Probe collects network traffic and abstracts it into statistical variables. Event

preprocessor collects data from probes and other agents and formats it for the statistical

analyzer. Statistical model compares the data to the previously compiled reference

model which describes the normal state of the system. A “stimulus vector” is formed

 31

and forwarded to the NN. Neural network analyzes the vector and decides whether it is

anomalous or normal. Post processor generates reports for the agents at higher tiers or it

may display the results through a user interface.

Backpropagation , perceptron, perceptron-backpropagation hybrid, fuzzy ART

MAP, radial-basis function networks with 2-8 hidden nodes were tested. The

experimental testbed consisting of 11 workstations and 1 server was built by using

OPNET network simulation software. UDP flooding attack was simulated within the

testbed. 10.000 records of network traffic were collected, 6000 of which were used for

training and the other 4000 records were used for testing. The system was trained for

100 epochs. The results showed that backpropagation and perceptron-backpropagation

hybrid networks outperformed perceptron, fuzzy ARTMAP and radial-basis function

networks.

• In another study (Rhodes et al. 2000), it is proposed to use of self-organizing

neural networks to recognize anomalies in network data stream. Unlike from other

approaches which use self organizing maps to process entire state of a network or

computer system to detect anomalies, proposed system breaks down the system by

using collection of more specialized maps. A monitor stack (Figure 3.3.) was

constructed and each neural network become kind of specialist to recognize normal

behavior of a protocol and raise an alarm when a deviation from normal profile occurs.

While each protocol attentive to different parts of network packets, different

vectorization techniques were employed for each map.

Figure 3.3. General schematic for the Network Monitor Stack.

HTTP

DNS

SMPT

Telnet

UDP Analyzer TCP Analyzer

IP Analyzer

 32

In the experiment DNS protocol was inspected because of its relatively

simplicity. Both of the test intrusions were buffer overflow attempt. Of the forty

packets, first thirty were used to train map and the rest of them was used in testing. Of

the seven packets transmitted to accomplish the bind4-9-5 exploit, four of the packets

successfully detected. In addition, system successfully identified rotshb exploit.

• Cannady (Cannady 1998) developed a network based neural network intrusion

detection system where detection was achieved on the packet level. Nine of the packet

characteristics of network data were selected and presented to the MLP network which

has four fully connected layers. After 3 levels of preprocessing data was normalized,

data fields were grouped and converted to a neural network readable format. In addition

every packet was labeled whether the packet is an attack or not.

Utilized neural network has nine input nodes and two output nodes and number

of nodes in hidden layer was determined empirically. 10,000 packets, of which

approximately 1000 were simulated attacks, were collected by RealSecure network

monitor. Backpropagation algorithm was used to train neural network. 1000 randomly

selected packets were used to test neural network and the remaining were used to train

neural network. At the conclusion, root mean square error of 0.0582 was achieved for

training data, while root mean square error of 0.069 was achieved for test data.

A brief summary of earlier studies is given in 3.1.

Table 3.1. Summary of Earlier Studies

 Year Data Source NN Structure Test Results

Ryan et al. 1998 Operating
System Logs 2-Layer MLP 7% False Positive

4% False Negative

Cannady 1998

Network Packets
Collected by
Real Secure

Network
Monitor
Software

2-Layer MLP

RMSE of 0.0582 for
Training Data

RMSE of 0.069 for

Test Data.

(cont. on next page)

 33

Table 3.1 (cont.)

Ghosh and
Schwarztbard 1999 Sun’s BSM 2-Layer MLP

Anomaly Detection:
2.2% False Positive

22.7% False
Negative

Misuse Detection:

18.7% False Positive
9.1% False Negative

Ghosh et al. 1999 Sun’s BSM Elman Networks

No False Positives
22.7% False

Negative

Rhodes et al. 2000 Network Packets SOM

Prototype could
identify packets
transmitted to

accomplish bind4-9-
5 and rotshb exploit

Lippmann
and

Cunnigham
2000 Network Packets 2-Layer MLP

One False Alarm per
Day

20% false Negative

Zhang et al. 2001

Network Packets
Generated by

OPNET
Network

Simulation
Software

Backpropagation

Perceptron

Perceptron-
Backpropagaiton

Hybrid

Fuzzy ART
MAP

Radial Basis

Function

Radial Basis
Function and
Backpropagation
networks with 8
nodes in hidden
layer outperformed
other neural
networks.

Backpropagation
network having 8
nodes in hidden
layer had RMSE
value less than 0.05
and misclassification
rate less than 00.2.

Radial Basis
Function network
having 8 nodes in
hidden layer had
RMSE value less
than 0.05 and
misclassification
rate less than 0.1.

Lee and
Heinbuch 2001 TCP packets

Hierarchy of
Neural

Networks
-

(cont. on next page)

 34

Table 3.1 (cont.)
Jirapummin

et al. 2002 KDD Cup 1999
Dataset 3-Layer RPROP 5% False Positive

10% False Negative

Bivens et al. 2002 DARPA 1999
Dataset

SOM for
Clustering

MLP for
Detection

76% False Positive
No False Negatives

3.3. Advantages of NN Based IDS

The most important advantage of neural network based intrusion detection

system is that, system will have generalization ability. From the training examples

presented during training, neural networks can learn malicious activity flowing through

the network and can generalize the observed novel activity from past activities used in

training.

Instead of following a set of rules specified by human experts, neural networks

can learn input-output relationships from a given set of training patterns. This is the one

major advantage of neural networks over rule-based systems. Thus, unlike misuse IDSs,

neural network based IDSs do not need regular signature updates.

Without any prior knowledge, neural networks can cluster data which share

same features. By examining relationships between data patterns, neural networks can

classify patterns successfully.

Another advantage in the utilization of a neural network in the detection of

misuse would be the flexibility that the neural network would provide. A neural

network is capable of analyzing the data from the network, even if the data is

incomplete or distorted.

3.4. Disadvantages of NN Based IDS

One of the most major problems with neural network is determining the number

of hidden neurons and more generally determining the structure of the neural network as

there is no mathematical method for selection of the neural network structure. Thus,

various neural networks with different structures should be trained and the structure and

number of the hidden nodes should be determined empirically by selecting the neural

networks giving the best performance.

 35

As the training set is the one of the major elements affecting the performance of

the neural network, selecting the training set is a crucial issue. Neural network would

not be trained, if the training examples are not appropriately selected or the number of

training examples is insufficient. In addition, a complex structured neural network or

huge number of training examples can result in long training periods.

Although neural networks can be trained sufficiently, it is not always guaranteed

that produced outputs will be perfect or even correct. Output produced by a neural

network is just an approximation of the desired solution and there will be always certain

error.

 36

CHAPTER 4

METHODOLOGY

This chapter presents in detail the research methodology used to build proposed

network-based neural network intrusion detection system. In order to build a network-

based neural network intrusion detection system, certain steps should be taken (Figure

4.1). First step to be taken is collecting data used to train and test neural networks. We

used 1999 DARPA Intrusion Detection Evaluation dataset to train and test neural

networks. But number of attack instances is insufficient for training, so attack packets

were generated in simulation environment. Second step is preprocessing the collected

data, which is in binary tcpdump format, to a neural network readable format. Third step

is determining the neural network structure, which is actually determining the number

of hidden layers, number of hidden nodes in each layer, activation functions used in

neural networks and training algorithm. Fourth step is training neural networks until a

certain number of iterations or a certain RMSE value reached. Fifth and the final step is

testing the neural network. Trained neural networks tested against training dataset in

order to examine how well trained networks learned the data in the dataset. In addition

to the training dataset, trained neural networks were tested against dataset which is not

part of the training process. Aim of this test is to evaluate the generalization ability of

the neural networks.

Figure 4.1. Steps to be taken in order to build neural network based IDS.

Compose
training/testing

dataset

Pre-process
training/testing

dataset

Determine the
neural network

structure

Train neural
network

Test neural
networks

 37

 Neural network simulation was written with MATLAB 6.5. The reason for

selecting MATLAB programming language is the ease of generating, training and

testing the neural networks with its Neural Network Toolbox.

4.1. Compose Training/Testing Data

As effectiveness of the neural network mainly depends on the training data,

collecting data for training and testing is a crucial issue. Data can be obtained by one of

the following three ways: by using real traffic, by using sanitized traffic and by using

simulated traffic (Mell et al. 2003).

 The first option to obtain training/testing data is collecting actually real data and

attacking an organization. Although packets would be real, it was unacceptable to attack

an organization. In addition to that, privacy of the users in the organization would be

violated as private e-mails, passwords and user identities would be released.

In order to overcome security and privacy problems of using real traffic,

sanitized traffic was proposed to be used by removing any sensitive data from the data

stream. Then attack data can be inserted into the sanitized traffic. The advantage of this

approach is that the data can be freely distributed. Nevertheless, the below explained

problems arise when using this approach. First of all, most of the content of the

background activity may be removed by the sanitization attempt. Next, it is still possible

to release sensitive data since it is infeasible to verify large corpus of data.

The third and the most common way to obtain data is to create a testbed network

and generate background traffic on this network. In the testbed environment,

background traffic is generated either by using complex traffic generators modeling

actual network statistics or by using simpler commercial traffic generators creating

small number of packets at a high rate. Advantage of this approach is that data can be

freely distributed as it does not contain any sensitive information. Another advantage of

this approach is that is guaranteed that generated traffic does not contain any unknown

attacks as the background traffic is created by simulators. However difficulties exist

when using this approach too. Firstly, it’s very costly and difficult to create a

simulation. Next, in order to model various networks, different types of traffic is

needed.

 38

In order to avoid dealing with difficulties of all three approaches, DARPA 1999

Intrusion Detection Evaluation dataset was used for training/testing data. From the

attack free first week data, days of Monday, Tuesday and Wednesday were used for

training and testing purposes. Dataset of Monday contains 1.272.249 TCP and 127.249

UDP packets. Dataset of Tuesday contains 849.119 TCP and 50.338 UDP packets and

dataset of Wednesday contains 649.852 TCP and 45.859 UDP packets. However attack

instances in DARPA 1999 Intrusion Detection Evaluation dataset are not sufficient to

train the neural network, thus a simulation environment was formed and additional

malicious traffic was aimed to obtain as explained below.

Malicious traffic was created in the laboratory. Attacks, which form malicious

traffic, were selected based on SANS top 10 vulnerabilities list. Simulation environment

in laboratory contains one Linux Server, one Windows Server, two Windows

workstations and two Linux workstations. By using network security scanners (e.g.

Nessus, Shadow Security Scanner) and attack tools, one Linux and one Windows

workstation were used to generate malicious network traffic in addition to the normal

traffic. Simulation environment used to generate malicious traffic is given in Figure 4.2.

Figure 4.2. Simulation environment used to generate malicious traffic.

Two distinct datasets were needed, one for training the neural network, and one

for testing the neural network. For the training dataset, 9450 network packets were

 39

selected from days of Monday and Wednesday from the attack free first week data of

DARPA 1999 Intrusion Detection Evaluation dataset. In addition to the attack free

traffic, 971 attack packets were generated within the simulation environment and

included to the training dataset. For the test dataset, 4233 network packets were selected

from day of Tuesday from the first week data of DARPA dataset. 73 malicious network

packets were generated and added to the test dataset. Summary of training and testing

datasets is given in Figure 4.3.

0

2000

4000

6000

8000

10000

Normal packets 9450 4233

Attack packets 971 73

Training Data Test Data

Figure 4.3. Summary of training and testing datasets.

4.2. Preprocess Training/Testing Data

All the data collected from simulation environment and DARPA dataset was in

the binary tcpdump format. In order to preprocess and then present them to the neural

network, obtained binary tcpdump files should be converted to a neural network

readable format. To achieve this goal, an open source intrusion detection tool, Snort,

was used.

Snort (WEB_3 2004) is a lightweight network intrusion detection system,

capable of performing real-time traffic analysis and packet logging on IP networks. Its

author, Marty Roesch, originally designed Snort to be a personal tool which can be used

in network traffic analysis and it was originally designed to decode binary tcpdump data

into a human-readable form. Snort can be used as a sniffer, packet logger, or network

intrusion detection system. In sniffer mode, Snort captures network packets flowing in a

shared network and prints the captured network packets to the screen. In packet logger

 40

mode, Snort captures packets in a similar sniffing fashion, but logs the captured data

instead of printing it to the screen. In intrusion detection mode, Snort captures network

packets like sniffer and logger mod, but applies pre-defined rules on all captured

packets. If a packet matches a rule, then it is logged or an alert is generated. One of the

most useful aspects of the Snort is that, it supports various relational databases like

MySQL, Oracle or SQL Server. Captured packets can be stored in the supported

databases. ER diagram of the database created by Snort is given in Figure 4.4.

Figure 4.4. ER diagram of the database created by Snort.

(Source: http://www.snort.org/docs/snortdb.png)

Snort version 2.2 with SQL Server support was utilized and configuration file of

the Snort was configured so that not only all the packets in binary tcpdump files are

logged to the database but also packets containing attacks were labeled. After all

network packets in tcpdump files were transferred to the database, stored data must be

preprocessed before they are presented to the neural network. Three levels of

preprocessing will be conducted:

 41

In the first level of the preprocessing, for each collected packet stored in the

database, seven characteristics of a packet will be retrieved. The seven elements were

selected because they are typically present in network data packets and they provide a

complete description of the information transmitted by the packet (Cannady

1998).These characteristics are:

Protocol ID: The protocol associated with event. (TCP=0, UDP=1)

Source Port: The port number of the source.

Destination Port: The port number of the destination.

Source Address: The IP address of the source.

Destination Address: The IP address of the destination.

Raw Data Length: The length of the data in the packet.

Raw Data: The data portion of the packet.

 Second level of the preprocessing involves converting one of the alphanumeric

seven packet characteristics (Raw Data) into a numerical representation. This can be

easily achieved by executing DISTINCT SELECT queries for the characteristic, loading

results sets to a table and assigning unique integers to records in the result set.

Third level of preprocessing is selecting six of the original packet characteristics

(Protocol ID, Source Port, Destination Port, Source Address, Destination Address, Raw

Data Length) and the unique identifier of the remaining characteristic (Raw Data). In

addition, an eight element (Attack), which was used to indicate whether the packet was

an attack or not, was assigned to each record. A sample preprocessed input vector is

shown in Table 4.1.

Table 4.1. Sample preprocessed input vector.

Protocol
ID

Source
Port

Destination
Port

Source
Address

Destination
Address

Data ID Raw Data
Length

Attack

0 33694 161 2886758549 2886758500 1 2 1
0 33695 162 2886758549 2886758500 2 4 0
1 49345 69 3232235562 4294967295 1 2 0
1 49345 69 3232235562 4294967295 2 4 1

 Preprocessed training and test data stored in a newly created table and a small

program written in MATLAB was executed to extract data from database as array of

vectors, which in turn would be used to train and test the neural networks used in the

experiments.

 42

4.3 Neural Network Structure

As there is no certain mathematical approach for obtaining the optimum number

of hidden layers, two types of MLP networks, 3-layer MLP networks and 4-layer MLP

networks, were employed in experiments. Generally neural networks with two hidden

layers are capable of prediction and adding extra layers commonly yields similar results

with two hidden layer networks, but their training periods are longer due to the more

complex structures. Despite this fact, in addition to the 3-layer MLP networks 4-layer

MLP networks were also utilized in experiments, in order to compare performances of

3-layer and 4-layer MLPs. For each of these types, two separate neural network sets

were generated, one of which was trained with backpropagation algorithm with

momentum while the other set was trained with the Levenberg-Marquardt algorithm.

Eventually, we generated two sets of 3-layer and two sets of 4-layer MLP networks.

In addition to the MLP networks, four self-organizing maps were utilized in

order to examine how well these networks can group the networks packets and whether

the SOMs can be able to cluster similar attacks.

Details of MLP and SOM network structures used in experiments are given in

section 4.3.1 and 4.3.2 respectively.

4.3.1. MLP Networks

MLP networks used to make basic input-output mapping. MLP networks would

be trained in such way that, they would produce value of 1 if the presented input vector

is attack and 0 if the presented input vector is normal network packet.

For all of the MLP networks, independent from the number of hidden layers, the

number of input and output nodes is equal to the number of network inputs and desired

outputs respectively. Therefore, input layer of all MLP networks contains seven nodes

corresponding each network input while output layer contains only one node

determining whether the presented input vector is an attack (with the value of 1) or not

(with the value of 0). Hyperbolic tangent sigmoid activation function was used in all

MLPs.

 43

As there is no generic rule to find out the optimum number of hidden nodes

needed, number of nodes in hidden layers is determined empirically for both 3-layer and

4-layer MLP networks.

For the set of 3-layer MLP networks, 25 different MLPs, which were formed by

the combination of hidden layers with 5, 10, 15 20, 25 nodes, were generated. When a

neural network is formed, weights between neurons are initialized randomly. As initial

weight can significantly affect the performance of the neural network, each MLP was

re-initialized ten times in order to avoid poor performance due to bad initial weights.

Eventually, two set of 3-layer MLPs, each containing 250 MLP networks, were

generated. One set was trained with backpropagation algorithm and the other set was

trained with Levenberg-Marquardt algorithm.

For the set of 4-layer MLP networks, 125 different MLPs, which were formed

by the combination of hidden layers with 5, 10, 15 20, 25 nodes, were generated.

Because of the long training periods, re-initialization process was not conducted. Like

3-layer MLPs, two sets were generated, one of which was trained with backpropagation

algorithm and the other set was trained with Levenberg-Marquardt algorithm.

After the training process, all MLPs were tested against a test dataset, which is

not part of the training data set and MLP networks which gave the minimum false

positive and false negative rates was kept.

4.3.2. Self-Organizing Maps

 SOMs are used to classify data, which share similar characteristics. As

mentioned in chapter two, only input vectors are used in training phase of the SOMs

and SOMs are able to cluster similar data without giving them correct answers. In our

research, we proposed to use SOMs in order to cluster normal and attack packets.

 In our experiments we utilized four SOMs having grid architecture with 8x8

10x10, 15x15, 20x20 nodes in the feature layer.

 44

4.4. Training the Neural Networks

 In the training phase we have both input patterns and desired outputs related to

each input vector. Aim of the training in MLP networks is minimizing output produced

by the neural network and the desired output. In order to achieve this goal, weights are

updated by carrying out certain steps (which is called as the training algorithm).

When using a supervised learning algorithm (e.g. backpropagation , Levenberg-

Marquardt), training process is usually terminated when the RMSE is reduced to an

acceptable level. There is no standard for the RMSE, but usually the lower it is, the

better the classification rate is. But a too low RMSE may result in over training of the

neural network. This means that neural network loose generalization ability, hence it

will just detect attacks that are exactly identical to the training data.

Another criterion for training termination is the number of iterations. When a

certain number of iterations were reached, the training was stopped, even if the desired

RMSE was not reached.

250 3-layer and 125 4-layer MLP networks were trained with gradient descent

backpropagation algorithm with a momentum rate of 0.5. Maximum number of epochs

is 1000 and desired RMS was 0.0001.

250 3-layer and 125 4-layer MLP networks were trained with Levenberg-

Marquardt algorithm. Maximum number of epochs is 50 and desired RMSE was

0.0001.

Training of the SOMS is different from MLP networks, as in the training phase

of the SOMs desired outputs corresponding to the input vectors are not needed. But

after the training process every node in the feature map should be labeled.

Training data set contains 10.421 input patterns, of which 971 are attacks.

 45

Figure 4.5. A sample training session where performance goal was met in 38 epochs.

4.5. Testing the Neural Networks

After the training is completed, the weights of the neural networks are frozen

and performance of the neural networks evaluated. Testing the neural networks involves

two steps, which are verification step and recall (or generalization) step.

In verification step, neural networks are tested against the data which are used in

training. Aim of the verification step is to test how well trained neural networks learned

the training patterns in the training dataset. If a neural network was trained successfully,

outputs produced by the neural network would be similar to the actual outputs.

In recall or generalization step, testing is conducted with data which not used in

training. Aim of the generalization step is to measure generalization ability of the

trained network Recall data set contains 4306 input pattern, of which 73 are attacks.

 46

CHAPTER 5

RESULTS AND DISCUSSION

 This chapter presents the experimental results obtained by using the neural

network based intrusion detection system, of which the methodology was already

explained in the previous chapter. After the training process was completed, testing was

conducted basically in two steps. In the first step, five sets of trained neural networks

(3-layer backpropagation networks, 3-layer Levenberg-Marquardt networks, 4-layer

backpropagation networks, 4-layer Levenberg-Marquardt networks and self-organizing

maps) were tested against the training dataset, in order to examine how well neural

networks ‘learned’ the training dataset after the training process. In the second step of

the testing, trained neural networks were tested against a dataset, which is not a part of

the training set, in order to examine generalization performance of the trained networks.

In both testing steps performance of the neural networks was evaluated by examining

the number of false positives and false negatives that they generated.

5.1. Verification Step

 First step of the testing is the verification, where trained neural networks were

tested against the training dataset. The aim of this step is to check if the neural networks

were trained correctly. If the neural networks were trained correctly, neither false

negatives nor false positives should be observed, at least false negative and false

positive rates should be at an acceptable level. Training dataset contains 9450 normal

and 971 attack instances.

5.1.1. 3-Layer Backpropagation Neural Networks

 Number of false positives generated by each of the 3-layer backpropagation

network after the verification step is given in Figure. 5.1. 10 neural networks were

generated for each of the neural network architecture. Reason for generating 10 neural

 47

networks for each of the neural network architecture is to avoid poor performances due

to the bad initialization of the neural network weights.

Figure 5.1. Number of false positives for 3-layer backpropagation networks.

 From the Figure 5.1, it can be said that 3-layer backpropagation networks

learned the normal network packets within the training dataset quite fairly, as 78 of 250

3-layer backpropagation networks generated no false positives, whereas the number of

3-layer backpropagation networks generating less than 10 false positives is 91. There

are approximately 9800 normal network packets in the training dataset, and most of the

3-layer backpropagation networks recognized the normal network packets in the

training dataset.

 48

 It can be also seen from Figure 5.1 that, initial values of the weights can

significantly affect performance of the neural network, as neural networks that have the

same architecture but different initial weight values show different performances.

 Another point which should be mentioned is that, increasing number of hidden

nodes would not improve the performance. For instance, most of the neural networks

having 7-5-5-1 architecture show better performances than the most of the neural

networks having 7-15 -25-1 architecture.

 Another criterion used to determine the performance of the neural networks is

the number of false negatives, which is the number of the missed attacks. Number of the

false negatives encountered by the 3-layer backpropagation networks is given in Figure

5.2.

Figure 5.2. Number of false negatives for 3-layer backpropagation networks.

 49

 Number of the false negatives encountered by the 3-layer backpropagation

networks is surprising. Although neural networks learned the normal packets in the

training dataset quite fairly, they failed to distinguish attack packets in the training

dataset. There are 971 attack instances in the training dataset, and the neural network

that showed best performance by mean of false negatives is the one having 7-15-25-1

architecture and an identity of 6 with 176 false negatives.

5.1.2. 3-Layer Levenberg-Marquardt Neural Networks

 Number of false positives generated by each of the 3-layer Levenberg-

Marquardt network after the verification step is given in Figure 5.3.

Figure 5.3. Number of false positives for 3-layer Levenberg-Marquardt networks.

 50

 After examining Figure 5.3, it can be said that with some exceptions 3-layer

Levenberg-Marquardt networks learned the normal packets in the training dataset.

Number of 3-layer Levenberg-Marquardt networks, which generated no false positives,

is 92. In addition, 111 of 250 3-layer Levenberg-Marquardt networks generated less

than 10 false positives. Except for the neural networks having 5 hidden nodes in the first

hidden layer, all of the other neural networks successfully learned the normal packets in

the training dataset. In addition, it was observed that, some networks (for instance

neural network having 7-20-10-1 architecture and an identity of 5) showed poor

performances, probably due to the bad initialization of the weights. Neural networks

having 25 hidden nodes in the first hidden layer showed the best performances among

the other neural networks having different architecture.

 Number of the false negatives encountered by the 3-layer Levenberg-Marquardt

networks is given in Figure 5.4.

Figure 5.4. Number of false negatives for 3-layer Levenberg-Marquardt networks.

 51

 False negative results obtained by the 3-layer Levenberg-Marquardt networks

are promising. Unlike from the 3-layer backpropagation networks, most of the 3-layer

Levenberg-Marquardt networks successfully distinguished attacks instances in the

training dataset. 98 of 250 3-layer Levenberg-Marquardt networks generated no false

negatives. Beyond some instances of the other network architectures, nearly all neural

networks having 20 or 25 hidden nodes in the first hidden layer produced no false

negatives. 92 of 250 3-layer Levenberg-Marquardt networks generated less than 10

false negatives.

5.1.3. 4-Layer Backpropagation Neural Networks

 Number of false positives generated by each of the 4-layer backpropagation

network after the verification step is given in Figure 5.5. As managing whole neural

networks would be a troublesome task and training periods would take long, 4-layer

backpropagation networks were not re-initialized.

Figure 5.5. Number of false positives for 4-layer backpropagation networks.

 52

 From Figure 5.5, it can be said that 4-layer backpropagation networks can fairly

distinguish normal network packets in the training dataset. 32 of 125 4-layer

backpropagation networks successfully identified normal packets in the training dataset

without generating any false positives. Additionally, 74 of 125 4-layer Levenberg-

Marquardt networks generated less than 10 false positives.

 Number of false positives encountered after testing 4-layer backpropagation

networks against the training dataset is given in Figure 5.6.

Figure 5.6. Number of false negatives for 4-layer backpropagation networks.

 It is observed that, like 3-layer backpropagation networks, 4-layer

backpropagation networks failed to learn the attack instances in the training dataset.

 53

Number of false negatives is relatively high with respect to the 971 attack instances in

the training dataset. Neural network with architecture of 7-25-05-25-1 showed the best

performance with 86 false negatives.

5.1.4. 4-Layer Levenberg-Marquardt Neural Networks

 Numbers of false positives generated by 4-layer Levenberg-Marquardt networks

after presenting training dataset is given in Figure 5.7.

Figure 5.7. Number of false positives for 4-Layer Levenberg-Marquardt networks.

 54

 It can be seen from the Figure 5.7, most of the 4-layer Levenberg-Marquardt

networks could successfully recognize normal attack packets in the training dataset. 79

of 125 4-layer Levenberg-Marquardt networks successfully identified normal packets in

the training dataset without generating any false positive. 31 of 125 4-layer Levenberg-

Marquardt networks generated less than 10 false negatives. However, 7-5-5-5-1 and 7-

25-20-15-1 networks failed to recognize normal packets in the training dataset and

flagged all normal packets as attack.

 Number of false negatives generated by 4-layer Levenberg-Marquardt networks

is given in Figure 5.8.

Figure 5.8. Number of false negatives for 4-layer Levenberg-Marquardt networks.

 55

 All of the 4-layer Levenberg-Marquardt networks but neural networks of 7-5-

10-10-1, 7-5-20-25-1, 7-10-5-20-1, 7-15-5-5-1, 7-15-5-25-1, 7-25-5-5-1 could learn the

attack packets in the training dataset. 60 of 125 4-layer Levenberg-Marquardt networks

generated no false negatives when they were tested against the training dataset. 46 of

125 4-layer Levenberg-Marquardt networks generated less than 10 false negatives.

5.1.5. SOMs

 In our study, four types of SOMs with 8x8, 10x10, 15x15 and 20x20 nodes in

the feature layer were trained. The aim of using SOMs in this research is to train SOMs

such that every node in the feature layer would represent an attack type. In verification

step, every training example is presented to the SOMs and which training example

activates which output node in the feature map was inspected. By doing so every output

node in the feature map was labeled.

 Although our aim for using SOMs in the field of intrusion detection is to classify

attacks, at the end of the verification step, it is observed that all of the four SOMs failed

to classify attack instances in the training dataset, but instead it was seen that similar

attacks were grouped together. As a result, SOMs were used to distinguish normal and

attack packets instead of classifying attacks.

 For the 8x8 SOM, attacks in the training dataset were distributed among the

output nodes of 35, 42 56 57 58 64. 8x8 SOM gave no false negatives in verification

step, but 9450 of normal packets, 3979 of them were labeled incorrectly as attack.

 For the 10x10 SOM, attacks in the training dataset were distributed among the

output nodes of 9, 10, 55, 65, 66, 67, 74 and 97. 10x10 SOM gave also no false

negatives, but 9450 of normal packets, 1127 of them were labeled incorrectly as attack.

 For the 15x15 SOM, attacks in the training dataset were distributed among the

output nodes of 35, 78, 95, 96, 110, 11, 179, 180, 194, 209 and 225. 15x15 SOM gave

no false negatives, but 1768 of the normal packets were labeled incorrectly as attack.

 For the 20x20 SOM, attacks in the training dataset were distributed among the

output nodes of 2, 91, 92, 108, 109, 110, 11, 130, 131, 149, 151, 361, 362, 363 and 381.

20x20 SOM gave also no false negatives, but 750 of the normal packets were labeled

incorrectly as attack.

 56

5.2. Generalization Step

 In the generalization step trained networks were tested against a dataset, which

is not part of the training dataset. Aim of this step is to see how well trained networks

would distinguish unknown normal and attack packets in the test dataset. In this step

generalization ability of the trained networks would be evaluated, as trained network

would decide whether an unknown packet is an attack or not by generalizing known

packets learned in training process. There are 4233 normal and 73 attack packets in the

test dataset.

5.2.1. 3-Layer Backpropagation Neural Networks

 Number of false positives generated by each of the 3-layer backpropagation

network after the verification step is given in Figure 5.9.

Figure 5.9. Number of false positives for 3-layer backpropagation networks.

 57

 It is observed from the Figure 5.9 that, of the 250 trained 3-layer

backpropagation networks, 181 of them could successfully generalize test dataset from

the training dataset. Rest of the 69 3-layer backpropagation networks were not trained

correctly and they flagged all normal network packets as attack.

 Number of the false negatives encountered by the 3-layer backpropagation

networks is given in Figure 5.10.

Figure 5.10. Number of false negatives for 3-layer backpropagation networks.

 It can be seen from the Figure 5.10, most of the 3-layer backpropagation failed

to catch attacks in the test dataset. Only a few numbers of 3-layer backpropagation

 58

networks, namely, 1st and 7th networks of 7-5-10-1 architecture, 5th network of the 7-15-

15-1 architecture, 10th network of the 7-15-20-1 architecture, 10th network of the 7-15-

25-1 architecture,7th network of the 7-20-5-1 architecture, 10th network of the 7-20-25-1

architecture and 10th network of the 7-25-20-1 architecture, could successfully identify

attacks in the test dataset with no false negatives.

5.2.2. 3-Layer Levenberg-Marquardt Neural Networks

 Number of false positives generated by each of the 3-layer Levenberg-

Marquardt network after the verification step is given in Figure 5.11.

Figure 5.11. Number of false positives for 3-layer Levenberg-Marquardt networks.

 59

 119 of the 250 3-alyer Levenberg-Marquardt networks could successfully

identify normal packets in the test dataset without giving any false positives. The rest of

the 131 3-layer Levenberg-Marquardt networks failed to recognize normal packets in

the test dataset, as they labeled all normal packets as attack.

 Number of the false negatives encountered by the 3-layer Levenberg-Marquardt

networks is given in Figure 5.12.

Figure 5.12. Number of false negatives for 3-layer Levenberg-Marquardt networks.

 It can be seen from Figure 5.12, 41 of 250 3-layer Levenberg-Marquardt

networks, which have different architectures, successfully recognized the attack patterns

in the test dataset without generating any false negatives.

 60

5.2.3. 4-Layer Backpropagation Neural Networks

 Number of false positives generated when test dataset was presented to the 4-

layer backpropagation networks is given in Figure 5.13.

Figure 5.13. Number of false positives for 4-layer backpropagation networks.

 Results show us that, 98 of 250 4-layer backpropagation networks could

successfully identify normal packets in the dataset without giving any false positives.

But performances of the rest of 152 4-layer backpropagation networks are poor, as all of

them flagged normal packets in the test dataset as attack.

 61

 Number of false negatives generated when test dataset presented to the 4-layer

backpropagation networks is given in Figure 5.14.

Figure 5.14. Number of false negatives for 4-layer backpropagation networks.

 Unlike from the performance in false positive rates, most of the 4-layer

backpropagation networks showed poor performances in the context of number of false

negatives. Only five 4-layer backpropagation networks, namely neural networks having

the architectures of 7-10-20-05-1, 7-15-05-15-1, 7-15-25-05-1, 7-20-15-15-1, 7-25-05-

25-1, could successfully detect all attacks in the test dataset.

5.2.4. 4-Layer Levenberg-Marquardt Neural Networks

 Number of false positives generated when test dataset is presented to the 4-layer

Levenberg-Marquardt algorithm is given in Figure 5.15.

 62

Figure 5.15. Number of false positives for 4-layer Levenberg-Marquardt networks.

 Examination of the Figure 5.15 showed us that, 60 of 250 networks could

successfully identify normal packets in the test dataset without generating any false

positives. Rest of the 165 networks labeled all normal packets in the test dataset as

attack.

 Number of false negatives encountered by 4-layer Levenberg-Marquardt

networks when test dataset is presented is given in Figure 5.16.

 63

Figure 5.16. Number of false negatives for 4-layer Levenberg-Marquardt networks.

 Results of the experiments showed us that, 16 of 125 4-layer Levenberg-

Marquardt networks could successfully distinguish attack packets in the test dataset

without giving any false negatives.

5.2.5. SOMs

 In the generalization step, in the context of false negatives all of the four SOMs

performed well, as none of them generated false negatives. Number of false positives

generated among 4233 normal packets, SOMs having 8x8, 10x10, 15x15, 20x20 nodes

in feature layer generated 1845, 819, 830 and 332 false positives respectively.

 64

5.3. Analysis

 Although many trained neural networks could successfully distinguish attack

and normal packets in the either training dataset or test dataset, number of trained

networks, which could successfully distinguish normal and attack packets in both

training and test dataset, is few.

 None of the trained 3-layer and 4-layer backpropagation networks could

successfully identify normal and attack instances in both of the training dataset and test

dataset. Although some of them successfully identify attacks and normal packets in

training dataset and some of them successfully identify attack and normal packets in the

test dataset set, none of them achieved to identify all attack and normal packets in both

of the training and test dataset.

 Similar results were obtained for 3-layer and 4-layer Levenberg-Marquardt

networks. Like backpropagation networks, many of the Levenberg-Marquardt networks

could successfully distinguish attack and normal packets either in training dataset or in

test dataset. However, number of Levenberg-Marquardt networks, which could

successfully distinguish attack and normal packets in both training and test dataset, is

too low. Among 250 3-layer Levenberg-Marquardt networks, number of neural

networks, which could successfully identify all attacks in both datasets, is four. These

networks are: 6th network of the 7-10-25-1 architecture, 5th network of the 7-15-25-1

architecture, 9th network of the 7-20-25-1 architecture, 5th network of the 7-20-20-1

architecture. There are five 4-layer Levenberg-Marquardt networks, which could

successfully distinguish attack and normal packets both in training dataset and test

dataset. These networks are neural networks having the architectures of 7-15-15-5-1, 7-

15-10-20-1, 7-25-20-20-1, 7-25-20-25-1 and 7-20-25-15-1.

 Results of the SOMs’ experiments showed us that, although all SOMs failed to

classify attack types in the training dataset, they successfully identified attacks from

normal packets in training and test datasets. It was observed that, attacks in the datasets

were distributed among few output nodes. All of the SOMs could successfully identify

attacks without generating any false negatives in both of the two test steps. The SOM

having 20x20 nodes in feature map outperformed other SOMs having different

architectures with generating 750 and 332 false positives when tested against training

and test dataset respectively.

 65

5.4. Discussion

 After the examination of the experimental results, it is observed that many

networks failed to distinguish attack and normal packets in training dataset, which is in

turn resulted in high false positive and false negative rates. This is due to the fact that,

these networks could not achieve to reach desired error rate of 0.0001 in given iterations

(1000 for backpropagation algorithm and 50 for Levenberg-Marquardt algorithm),

hence they failed to learn normal and/or attack packets in the training datasets. As these

networks could not be trained correctly, they also failed to distinguish normal and attack

packets in the test dataset.

 It is also observed that, although some neural networks were trained correctly

and they could successfully recognize normal and attack packets in the training dataset,

they failed to distinguish attack and/or normal packets in the test dataset. This is due to

the fact that, these networks were over-trained; hence they could not generalize packets

in test dataset from learned packets in training dataset.

 It is seen that, assignment of initial weight values can significantly affect the

performance of the neural networks, as neural networks having same architectures

showed different performances due to the different initial weight values.

 It is worth to mention that, we found out increasing the number of hidden layers

may not cause an increase in performance, as four 3-layer Levenberg-Marquardt

networks achieved to distinguish attack and normal packets in both training and test

dataset. But we experienced that, training periods of the 4-layer networks are longer

than the 3-layer networks due to their more complex structures.

 None of the backpropagation networks could successfully identify attacks and/or

normal packets in both tests, while nine Levenberg-Marquardt networks could

successfully distinguishes normal and attack packets in both tests. This is due to the fact

that, Levenberg-Marquardt training algorithm is faster than backpropagation algorithm

and Levenberg-Marquardt networks were trained more accurately.

 All trained SOMs could successfully identify attack instances in training and test

dataset. It was observed that, increasing number of nodes in feature map improves false

positive rates.

 66

 CHAPTER 6

CONCLUSION

In this study a network-based neural network intrusion detection system was

presented. The main problem with current IDSs is that they produce many false alarms.

In addition to that, writing rules or signatures is not an easy task and can be time

consuming. The purpose of this study was to develop a neural network based intrusion

detection system in order to decrease false positive and false negative rates as neural

networks can generalize unknown network packets from known ones. Additionally,

with using neural networks writing rules for every attack and regular updating of the

attack signatures can be avoided.

Two training algorithms; backpropagation and Levenberg-Marquardt algorithm,

were used in the training of neural networks. For each of these training algorithms a 3-

layer and a 4-layer MLP network sets were generated. As there is no rule for

determining the optimum number of nodes in hidden layer, variety of MLP networks,

each of which has different number of nodes in hidden layer(s), were generated and the

MLP networks, which performed best in testing step, was kept and the others were

discarded.

Tests were conducted in two steps. In the first step trained networks were tested

against the training dataset to see how well trained MLP networks learned the training

set. In the second step of the testing, trained MLP networks tested against a dataset,

which is not part of the training dataset, to see generalization ability of the trained

networks.

Analysis of the experimental results show us that, both 3-layer and 4-layer

backpropagation networks failed to distinguish normal and attack packets either in

training dataset or in test dataset. This is due to the fact that, some of the

backpropagation networks could not be trained correctly and showed poor performances

in the test against training dataset whereas some of them were over-trained, hence could

not generalize unknown packets from known ones and showed poor performances in the

test against test dataset. We also observed that, a few number of MLP networks of 3-

 67

layer and 4-layer Levenberg-Marquardt networks achieved to identify normal and attack

packets in training and test dataset.

SOMs failed to classify attacks in the experiments, but they performed well

when identified attack instances in training and test datasets.

 Nine of the trained Levenberg-Marquardt networks gave no false positives and

false negatives and outperformed similar studies which were summarized in Table 3.1.

In study, it is observed that, appropriately trained neural networks can learn

intrusive and non-intrusive network packets and can distinguish normal and attack

packets in an unseen dataset.

As future work, different characteristics of the network packet may be selected

in addition to the seven characteristics. Additionally, new attacks may be added to the

training dataset.

 68

REFERENCES

Anderson, J. 1980. "Computer Security Threat Monitoring and Surveillance", James P.

Anderson Co., Fort Washington, PA.

Bace, R. and Mell, P. 2001. “Intrusion Detection Systems”, NIST Special Publication,

Nov 2001.

Bivens, A., Palagiri, C., Smith, R., Szymanski, B. and Emrechts, M. 2002. “Network-

Based Intrusion Detection Using Neural Networks”, Intelligent Engineering
Systems through Artificial Neural Networks, Vol. 12, Proc. ANNIE.

Cannady, J. 1998. “Artificial Neural Networks for Misuse Detection”, Proceedings,

National Information Systems Security Conference (NISSC’98), October,
Arlington, VA, pp. 443-456.

Ghosh, A. and Schwartzbard, A.1999. “A Study in Using Neural Networks for Anomaly

and Misuse Detection”, USENIX Security Symp, Washington, D.C, USA, (23-
26 August 1999).

Ghosh, A. K., Schwartzbard, A. and Schatz M. 1999. “Learning Program Behavior

Profiles for Intrusion Detection”, Proceedings of the Workshop on Intrusion
Detection and Network Monitoring, pp. 51-62.

Hagan, M.T. and Menhaj, M.B. 1994. "Training Feedforward Networks with the

Marquardt Algorithm", IEEE Transactions on Neural Networks, Vol. 5, No 6,
pp. 989-993.

Haines, J. W., Lippmann, R. P., Fried, D. J., Zissman, M. A., Tran E. and Boswell, S. B.

2001. “1999 DARPA Intrusion Detection Evaluation: Design and Procedures”,
MIT Lincoln Laboratory Technical Report, TR-1062, Lexington, MA.

Haykin, S. 1999. “Neural Networks: A Comprehensive Foundation”, (Prentice Hall,

New Jersey), pp. 161-167.

Jain, A. K., Mao, J. and Mohiuddin, K. 1996. “Artificial Neural Network: A Tutorial”,

IEEE Computer, Vol. 29, No. 2, pp. 31-44.

Jirapummin, C., Wattanapongsakorn, N. and Kanthamanon P. 2002. “Hybrid Neural

Networks for Intrusion Detection System”, The 2002 International Technical
Conference on Circuits/Systems, Computers and Communications (ITC-CSCC
2002), pages 928-931, Phuket, Thailand, (16-19 July 2002).

Kasabov, N. K., 1996. “Foundations of Neural Networks, Fuzzy Systems, and

Knowledge Engineering”, (The MIT Press, Cambridge), p. 300.

 69

Lee, S.C. and Heinbuch, D.V. 2001. “Training a Neural-Network Based Intrusion
Detector to Recognize Novel Attacks”, IEEE Trans. on Systems, Man, and
Cybernetics, Part A, 31, pp. 294-299.

Lippmann, R. P. and Cunningham R. K. 2000. “Improving Intrusion Detection

Performance Using Keyword Selection and Neural Networks”, Computer
Networks, Vol. 34, pp. 597-603.

Mell, P., Hu, V. and Lippmann, R., 2003. “An Overview of Issues in Testing Intrusion

Detection Systems”, No. NIST IR 7007, National Institute of Standards and
Technology, August 2003.

Rhodes, B. C., Mahaffey, J. A. and Cannady, J. D. 2000. “Multiple Self-Organizing

Maps for Intrusion Detection”, NIST National Information Systems Security
Conference.

Ryan, J., Lin ,M. J. and Miikulainen, R. 1998. “Intrusion Detection with Neural

Networks”, Advances in Neural Information Processing Systems, Vol 10, pp.
943-949.

WEB_1, 2005. CERT’s web site, 17/10/2005. http://www.cert.org.

WEB_2, 2005. InformIT’s web site, 15/10/2005. http://www.informit.com.

WEB_3, 2004. Snort’s web site, 12/02/2004. http://www.snort.org.

WEB_4 2005. CVE’s web site 1/07/2005. http://www.cve.mitre.org.

Zhang, Z., Li J., Manikopoulos, C. N., Jorgenson, J. and Ucles J. 2001. “HIDE: A

Hierarchical Network Intrusion Detection System Using Statistical
Preprocessing and Neural Network Classification”, Proceedings of IEEE
Workshop on Information Assurance and Security, West Point, pp. 85-90.

 70

APPENDIX A

LIST OF THE SELECTED VULNERABILITIES

 Vulnerabilities selected among top 10 vulnerabilities declared by SANS Institute

are given below. Additionally description of the vulnerability, which is taken from

Internet site (WEB_4 2005) of common Vulnerabilities and Exposures (CVE) , tool

used to exploit the vulnerability and the Snort signature identity of the generated attack

are also given below. Since more than one attack may be generated to exploit

vulnerability, there may be two or more Snort signature identities associated with each

attack generated.

CVE Name CVE-1999-0002

Description
Buffer overflow in NFS mountd gives root access to remote
attackers, mostly in Linux systems�

Snort Signature ID 579
Tool used Nessus

CVE Name CVE-1999-0003

Description Execute commands as root via buffer overflow in Tooltalk
database server (rpc.ttdbserverd).

Snort Signature ID 558
Tool used Nessus

CVE Name CVE-1999-0021

Description Arbitrary command execution via buffer overflow in
Count.cgi (wwwcount) cgi-bin program.

Snort Signature ID 1149
Tool used Nessus

CVE Name CVE-1999-0066

Description
The CGI 'AnyForm2' is installed. Old versions of this CGI
have a well known security flaw that lets anyone execute
arbitrary commands with the privileges of the http daemon.

Snort Signature ID 892
Tool used Nessus

CVE Name CVE-1999-0067

Description CGI phf program allows remote command execution through
shell metacharacters.

Snort Signature ID 1762
Tool used Nessus

 71

CVE Name CVE-1999-0070
Description test-cgi program allows an attacker to list files on the server.

Snort Signature ID 835
Tool used Nessus

CVE Name CVE-1999-0146

Description The campas CGI program provided with some NCSA web
servers allows an attacker to read arbitrary files.

Snort Signature ID 847
Tool used Nessus

CVE Name CVE-1999-0172

Description FormMail CGI program allows remote execution of
commands.

Snort Signature ID 884
Tool used Nessus

CVE Name CVE-1999-0174

Description The view-source CGI program allows remote attackers to
read arbitrary files via a .. (dot dot) attack.

Snort Signature ID 849, 1482
Tool used Nessus

CVE Name CVE-1999-0191

Description

The CGI /scripts/tools/newdsn.exe is present. This CGI
allows any attacker to create files anywhere on your system if
your NTFS permissions are not tight enough, and can be used
to overwrite DSNs of existing databases.

Snort Signature ID 1024
Tool used Nessus

CVE Name CVE-1999-0208

Description rpc.ypupdated (NIS) allows remote users to execute arbitrary
commands.

Snort Signature ID 661
Tool used Nessus

CVE Name CVE-1999-0237

Description
guestbook.pl and guestbook.cgi have a well known security
flaw that lets anyone execute arbitrary commands with the
privileges of the http daemon.

Snort Signature ID 1597, 1140
Tool used Nessus

CVE Name CVE-1999-0260

Description The jj CGI program allows command execution via shell
metacharacters.

 72

Snort Signature ID 1174
Tool used Nessus

CVE Name CVE-1999-0262

Description faxsurvey CGI script on Linux allows remote command
execution via shell metacharacters.

Snort Signature ID 857
Tool used Nessus

CVE Name CVE-1999-0264

Description
The 'htmlscript' cgi is installed. This CGI has well known
security flaw that lets anyone read arbitrary files with the
privileges of the http daemon.

Snort Signature ID 826
Tool used Nessus

CVE Name CVE-1999-0266

Description The info2www CGI script allows remote file access or remote
command execution.

Snort Signature ID 827
Tool used Nessus

CVE Name CVE-1999-0278

Description
It is possible to get the source code of the remote ASP scripts
by appending ::$DATA at the end of the request (like GET
/default.asp::$DATA).

Snort Signature ID 975
Tool used Nessus

CVE Name CAN-1999-0509

Description
Perl, sh, csh, or other shell interpreters are installed in the cgi-
bin directory on a WWW site, which allows remote attackers
to execute arbitrary commands.

Snort Signature ID 832, 862, 865, 868, 872, 877, 885, 1309, 1648, 2649
Tool used Nessus, Nikto

CVE Name CAN-1999-0517

Description An SNMP community name is the default (e.g. public), null,
or missing.

Snort Signature ID 1411, 1893
Tool used Nessus

CVE Name CAN-1999-0736

Description The showcode.asp sample file in IIS and Site Server allows
remote attackers to read arbitrary files.

Snort Signature ID 1037
Tool used Nessus

CVE Name CVE-1999-1011

 73

Description

The Remote Data Service (RDS) DataFactory component of
Microsoft Data Access Components (MDAC) in IIS 3.x and
4.x exposes unsafe methods, which allows remote attackers to
execute arbitrary commands.

Snort Signature ID 1023
Tool used Nessus

CVE Name CAN-1999-1376

Description
There might be a buffer overflow in the remote
fpcount.exe cgi. An attacker may use it to execute arbitrary
code on this host.

Snort Signature ID 1012, 1013
Tool used Nessus

CVE Name CVE-2000-0208

Description
The htdig (ht://Dig) CGI program htsearch allows remote
attackers to read arbitrary files by enclosing the file name
with backticks ()̀ in parameters to htsearch.

Snort Signature ID 1600, 1601, 1602
Tool used Nessus

CVE Name CVE-2000-0287

Description
The BizDB CGI script bizdb-search.cgi allows remote
attackers to execute arbitrary commands via shell
metacharacters in the dbname parameter.

Snort Signature ID 1535
Tool used Nessus

CVE Name CVE-2000-0778

Description

This host is running the Microsoft IIS web server. This web
server contains a configuration flaw that allows the retrieval
of the global.asa file. This file may contain sensitive
information such as database passwords, internal addresses,
and web application configuration options. This vulnerability
may be caused by a missing ISAPI map of the .asa extension
to asp.dll.

Snort Signature ID 1016
Tool used Nessus

CVE Name CAN-2000-0832

Description Htgrep CGI program allows remote attackers to read arbitrary
files by specifying the full pathname in the hdr parameter.

Snort Signature ID 1207, 1615
Tool used Nessus

CVE Name CAN-2000-1081

Description
The xp_displayparamstmt function in SQL Server and
Microsoft SQL Server Desktop Engine (MSDE) does not
properly restrict the length of a buffer before calling the

 74

srv_paraminfo function in the SQL Server API for Extended
Stored Procedures (XP), which allows an attacker to cause a
denial of service or execute arbitrary commands, aka the
"Extended Stored Procedure Parameter Parsing"
vulnerability.

Snort Signature ID 974
Tool used xp_displayparamstmt.exe

CVE Name CAN-2000-1082

Description

The xp_enumresultset function in SQL Server and Microsoft
SQL Server Desktop Engine (MSDE) does not properly
restrict the length of a buffer before calling the srv_paraminfo
function in the SQL Server API for Extended Stored
Procedures (XP), which allows an attacker to cause a denial
of service or execute arbitrary commands, aka the "Extended
Stored Procedure Parameter Parsing" vulnerability.

Snort Signature ID 780
Tool used xp_enumresultset .exe

CVE Name CAN-2000-1083

Description

The xp_showcolv function in SQL Server and Microsoft SQL
Server Desktop Engine (MSDE) does not properly restrict the
length of a buffer before calling the srv_paraminfo function in
the SQL Server API for Extended Stored Procedures (XP),
which allows an attacker to cause a denial of service or
execute arbitrary commands, aka the "Extended Stored
Procedure Parameter Parsing" vulnerability.

Snort Signature ID 705
Tool used xp_showcolv.exe

CVE Name CAN-2000-1084

Description

The xp_updatecolvbm function in SQL Server and Microsoft
SQL Server Desktop Engine (MSDE) does not properly
restrict the length of a buffer before calling the srv_paraminfo
function in the SQL Server API for Extended Stored
Procedures (XP), which allows an attacker to cause a denial
of service or execute arbitrary commands, aka the "Extended
Stored Procedure Parameter Parsing" vulnerability.

Snort Signature ID 701
Tool used xp_updatecolvbm.exe

CVE Name CAN-2000-1085

Description

The xp_peekqueue function in Microsoft SQL Server 2000
and SQL Server Desktop Engine (MSDE) does not properly
restrict the length of a buffer before calling the srv_paraminfo
function in the SQL Server API for Extended Stored
Procedures (XP), which allows an attacker to cause a denial
of service or execute arbitrary commands, aka the "Extended

 75

Stored Procedure Parameter Parsing" vulnerability.
Snort Signature ID 760

Tool used xp_peekqueue.sql / xp_peekqueue .exe

CVE Name CAN-2000-1086

Description

The xp_printstatements function in Microsoft SQL Server
2000 and SQL Server Desktop Engine (MSDE) does not
properly restrict the length of a buffer before calling the
srv_paraminfo function in the SQL Server API for Extended
Stored Procedures (XP), which allows an attacker to cause a
denial of service or execute arbitrary commands, aka the
"Extended Stored Procedure Parameter Parsing"
vulnerability.

Snort Signature ID 699
Tool used xp_printstatements .exe

CVE Name CAN-2000-1087

Description

The xp_proxiedmetadata function in Microsoft SQL Server
2000 and SQL Server Desktop Engine (MSDE) does not
properly restrict the length of a buffer before calling the
srv_paraminfo function in the SQL Server API for Extended
Stored Procedures (XP), which allows an attacker to cause a
denial of service or execute arbitrary commands, aka the
"Extended Stored Procedure Parameter Parsing"
vulnerability.

Snort Signature ID 707
Tool used xp_proxiedmetadata.exe

CVE Name CAN-2000-1209

Description

The "sa" account is installed with a default null password on
(1) Microsoft SQL Server 2000, (2) SQL Server 7.0, and (3)
Data Engine (MSDE) 1.0, including third party packages that
use these products such as (4) Tumbleweed Secure Mail
(MMS) (5) Compaq Insight Manager, and (6) Visio 2000,
which allows remote attackers to gain privileges, as exploited
by worms such as Voyager Alpha Force and Spida.

Snort Signature ID 688
Tool used Nessus

CVE Name CVE-2001-0236

Description
Buffer overflow in Solaris snmpXdmid SNMP to DMI
mapper daemon allows remote attackers to execute arbitrary
commands via a long "indication" event.

Snort Signature ID 1279
Tool used Nessus

CVE Name CVE-2001-0241

Description Buffer overflow in Internet Printing ISAPI extension in
Windows 2000 allows remote attackers to gain root privileges

 76

via a long print request that is passed to the extension through
IIS 5.0.

Snort Signature ID 971
Tool used CVE-2001-0241.pl

CVE Name CVE-2001-0333

Description

When IIS receives a user request to run a script, it renders the
request in a decoded canonical form, then performs security
checks on the decoded request. A vulnerability results
because a second, superfluous decoding pass is performed
after the initial security checks are completed. Thus, a
specially crafted request could allow an attacker to execute
arbitrary commands on the IIS Server.

Snort Signature ID 970
Tool used Nessus

CVE Name CVE-2001-0717

Description

Format string vulnerability in ToolTalk database server
rpc.ttdbserverd allows remote attackers to execute arbitrary
commands via format string specifiers that are passed to the
syslog function.

Snort Signature ID 588
Tool used Nessus

CVE Name CVE-2001-0779

Description
Buffer overflow in rpc.yppasswdd (yppasswd server) in
Solaris 2.6, 7 and 8 allows remote attackers to gain root
access via a long username.

Snort Signature ID 2025
Tool used Nessus

CVE Name CAN-2002-0012

Description

Vulnerabilities in a large number of SNMP implementations
allow remote attackers to cause a denial of service or gain
privileges via SNMPv1 trap handling, as demonstrated by the
PROTOS c06-SNMPv1 test suite. NOTE: It is highly likely
that this candidate will be SPLIT into multiple candidates,
one or more for each vendor. This and other SNMP-related
candidates will be updated when more accurate information is
available.

Snort Signature ID 1412, 1413, 1417, 1418, 1419, 1420, 1421
Tool used Nessus

CVE Name CVE-2002-0033

Description
Heap-based buffer overflow in cfsd_calloc function of Solaris
cachefsd allows remote attackers to execute arbitrary code via
a request with a long directory and cache name.

Snort Signature ID 1746
Tool used Nessus

 77

CVE Name CAN-2002-0071

Description

Buffer overflow in the ism.dll ISAPI extension that
implements HTR scripting in Internet Information Server
(IIS) 4.0 and 5.0 allows attackers to cause a denial of service
or execute arbitrary code via HTR requests with long variable
names.

Snort Signature ID 1618, 1807
Tool used Nessus

CVE Name CAN-2002-0073

Description

The FTP service in Internet Information Server (IIS) 4.0, 5.0
and 5.1 allows attackers who have established an FTP session
to cause a denial of service via a specially crafted status
request containing glob characters.

Snort Signature ID 1777
Tool used Nessus

CVE Name CAN-2002-0079

Description

Buffer overflow in the chunked encoding transfer mechanism
in Internet Information Server (IIS) 4.0 and 5.0 Active Server
Pages allows attackers to cause a denial of service or execute
arbitrary code.

Snort Signature ID 1618, 1807
Tool used Nessus

CVE Name CAN-2002-0364

Description

Buffer overflow in the chunked encoding transfer mechanism
in IIS 4.0 and 5.0 allows attackers to execute arbitrary code
via the processing of HTR request sessions, aka "Heap
Overrun in HTR Chunked Encoding Could Enable Web
Server Compromise".

Snort Signature ID 1806
Tool used Nessus

CVE Name CVE-2002-0392

Description

Apache 1.3 through 1.3.24, and Apache 2.0 through 2.0.36,
allows remote attackers to cause a denial of service and
possibly execute arbitrary code via a chunk-encoded HTTP
request that causes Apache to use an incorrect size.

Snort Signature ID 1807
Tool used Nessus

CVE Name CAN-2002-0421

Description

IIS 4.0 allows local users to bypass the "User cannot change
password" policy for Windows NT by directly calling .htr
password changing programs in the /iisadmpwd directory,
including (1) aexp2.htr, (2) aexp2b.htr, (3) aexp3.htr , or (4)

 78

aexp4.htr.
Snort Signature ID 1487

Tool used Nessus

CVE Name CAN-2002-0649

Description

Multiple buffer overflows in SQL Server 2000 Resolution
Service allow remote attackers to cause a denial of service or
execute arbitrary code via UDP packets to port 1434 in which
(1) a 0x04 byte causes the SQL Monitor thread to generate a
long registry key name, or (2) a 0x08 byte with a long string
causes heap corruption.

Snort Signature ID 2050
Tool used Nessus

CVE Name CAN-2002-0682

Description

Cross-site scripting vulnerability in Apache Tomcat 4.0.3
allows remote attackers to execute script as other web users
via script in a URL with the /servlet/ mapping, which does
not filter the script when an exception is thrown by the
servlet.

Snort Signature ID 1827
Tool used Nessus

CVE Name CAN-2002-1142

Description

Heap-based buffer overflow in the Remote Data Services
(RDS) component of Microsoft Data Access Components
(MDAC) 2.1 through 2.6, and Internet Explorer 5.01 through
6.0, allows remote attackers to execute code via a malformed
HTTP request to the Data Stub.

Snort Signature ID 1970
Tool used Nessus

CVE Name CAN-2002-1232

Description

Memory leak in ypdb_open in yp_db.c for ypserv before 2.5
in the NIS package 3.9 and earlier allows remote attackers to
cause a denial of service (memory consumption) via a large
number of requests for a map that does not exist.

Snort Signature ID 590
Tool used Nessus

CVE Name CAN-2003-0028

Description

Integer overflow in the xdrmem_getbytes() function, and
possibly other functions, of XDR (external data
representation) libraries derived from SunRPC, including
libnsl, libc, glibc, and dietlibc, allows remote attackers to
execute arbitrary code via certain integer values in length
fields, a different vulnerability than CAN-2002-0391.

Snort Signature ID 2092
Tool used Nessus

 79

CVE Name CAN-2003-0109

Description
Buffer overflow in ntdll.dll, as used by WebDAV on
Windows 2000, allows remote attackers to execute arbitrary
code.via a long request to IIS 5.0.

Snort Signature ID 2091
Tool used Nessus

CVE Name CAN-2003-0118

Description

SQL injection vulnerability in the Document Tracking and
Administration (DTA) website of Microsoft BizTalk Server
2000 and 2002 allows remote attackers to execute operating
system commands via a request to (1) rawdocdata.asp or (2)
RawCustomSearchField.asp containing an embedded SQL
statement.

Snort Signature ID 2133
Tool used Nessus

CVE Name CAN-2003-0227 / CAN-2003-0349

Description

Some versions of IIS shipped with a default file, nsiislog.dll,
within the /scripts directory. Nessus has determined that the
remote host has the file installed. The NSIISLOG.dll CGI
may allow an attacker to execute arbitrary commands on this
host, through a buffer overflow.

Snort Signature ID 2129
Tool used Nessus

CVE Name CAN-2003-0377

Description

SQL injection vulnerability in the web-based administration
interface for iisPROTECT 2.2-r4, and possibly earlier
versions, allows remote attackers to insert arbitrary SQL and
execute code via certain variables, as demonstrated using the
GroupName variable in SiteAdmin.ASP.

Snort Signature ID 2130
Tool used Nikto, Shadow Security Scanner

CVE Name CAN-2003-0605

Description

The RPC DCOM interface in Windows 2000 SP3 and SP4
allows remote attackers to cause a denial of service (crash),
and local attackers to use the DoS to hijack the epmapper pipe
to gain privileges, via certain messages to the
__RemoteGetClassObject interface that cause a NULL
pointer to be passed to the PerformScmStage function.

Snort Signature ID 2251
Tool used Nessus

CVE Name CAN-2003-0818

Description Multiple integer overflows in Microsoft ASN.1 library
(MSASN1.DLL), as used in LSASS.EXE, CRYPT32.DLL,

 80

and other Microsoft executables and libraries on Windows
NT 4.0, 2000, and XP, allow remote attackers to execute
arbitrary code via ASN.1 BER encodings with very large
length fields that cause arbitrary heap data to be overwritten.

Snort Signature ID 2383, 2386
Tool used Nessus

 81

APPENDIX B

LIST OF THE EXPERIMENTAL RESULTS

Tables of raw data obtained after the test step is given this section. For the

results of the 3-layer MLP networks, first column of the table shows the architecture of

the neural network, while first row of the table represents the identity of the neural

network, as 10 neural networks were generated for each of the neural network

architecture. Reason for generating 10 neural networks for each of the neural network

architecture is to avoid poor performances due to the bad initialization of the neural

network weights.

 For the results of the 4-layer MLP networks, first column of the table represents

the number of nodes in input, first and second hidden layers of the neural network

architecture, while first row of the table represents number of nodes in the third hidden

layer and in the output layer. Intersection of a row header and a column header

represents the number of false positives of a neural network whose architecture can be

obtained by joining row header and column header. For instance, intersection of the row

header of 7-5-5 and column header of 5-1 represents the false positives of the neural

network whose architecture is 7-5-5-5-1. As managing whole neural networks would be

a troublesome task and training periods would take long, 4-layer backpropagation

networks were not re-initialized.

Table B.1. Number of false positives for 3-layer backpropagation networks.

 1 2 3 4 5 6 7 8 9 10
7-5-5-1 1 124 140 0 0 1 0 2 0 0
7-5-10-1 9 20 60 4 0 110 17 0 46 144
7-5-15-1 1 0 18 0 1 53 9 0 15 1
7-5-20-1 0 0 0 0 67 6 2 6 187 0
7-5-25-1 0 4 139 0 31 0 1 62 0 1
7-10-5-1 0 64 0 133 0 12 35 13 72 0
7-10-10-1 14 82 12 0 0 19 1 24 13 1
7-10-15-1 64 1 1 0 0 0 15 60 0 1
7-10-20-1 1 9 99 0 19 14 0 4 1 0
7-10-25-1 0 1 0 1 16 6 23 14 1 1

(cont. on next page)

 82

Table B.1 (cont.)
7-15-5-1 27 0 16 65 1 0 0 0 0 39
7-15-10-1 0 0 10 62 7 24 0 61 0 0
7-15-15-1 0 1 0 1 2 1 94 1 1 0
7-15-20-1 0 0 61 6 13 76 11 0 1 16
7-15-25-1 159 2 0 1 0 93 1 200 0 1
7-20-5-1 0 1 1 0 104 76 40 2 0 0
7-20-10-1 0 15 1 18 7 0 9 1 1 1
7-20-15-1 7 57 21 23 1 0 1 0 27 9
7-20-20-1 23 15 14 1 0 2 16 1 0 0
7-20-25-1 0 1 1 1 0 3 18 2 3 1
7-25-5-1 8 0 45 1 0 1 1 1 1 61
7-25-10-1 0 0 62 1 0 0 73 2 1 0
7-25-15-1 8 0 1 61 1 56 74 1 3 0
7-25-20-1 51 0 16 1 11 3 10 1 0 82
7-25-25-1 1 2 1 1 14 10 0 1 36 18

Table B.2. Number of false negatives for 3-layer backpropagation networks.

 1 2 3 4 5 6 7 8 9 10
7-5-5-1 967 951 970 971 971 329 971 967 971 560
7-5-10-1 329 329 551 557 350 656 504 971 656 644
7-5-15-1 330 971 971 552 329 646 868 971 642 330
7-5-20-1 645 971 550 971 531 971 332 971 650 971
7-5-25-1 348 223 261 656 971 330 329 245 652 656
7-10-5-1 656 330 338 551 656 329 971 551 339 656
7-10-10-1 638 326 647 645 329 970 327 971 331 329
7-10-15-1 437 329 329 553 329 330 971 338 536 325
7-10-20-1 327 227 329 350 329 239 329 261 329 971
7-10-25-1 226 330 656 329 656 329 325 329 329 329
7-15-5-1 971 656 326 326 356 326 329 335 329 596
7-15-10-1 644 325 329 323 329 329 329 140 329 330
7-15-15-1 560 329 329 330 242 329 333 329 329 329
7-15-20-1 655 329 330 329 329 224 226 331 326 328
7-15-25-1 248 329 326 254 329 176 314 215 326 246
7-20-5-1 224 329 325 656 534 222 328 551 971 325
7-20-10-1 329 226 329 329 325 329 329 329 329 329
7-20-15-1 326 316 226 325 329 329 227 253 329 245
7-20-20-1 325 226 258 329 326 327 329 326 329 329
7-20-25-1 323 233 325 329 326 329 234 326 326 325
7-25-5-1 178 239 329 329 330 325 325 301 350 551
7-25-10-1 227 226 224 325 553 325 329 329 329 247
7-25-15-1 226 329 326 237 330 213 226 226 326 326
7-25-20-1 323 329 325 226 194 326 277 329 326 279
7-25-25-1 327 329 325 329 236 329 329 329 226 186

 83

Table B.3. Number of false positives for 3-layer Levenberg-Marquardt networks.

 1 2 3 4 5 6 7 8 9 10
7-5-5-1 5 13 18 9 11 10 10 8 0 107
7-5-10-1 1 2 9450 17 0 17 69 28 70 65
7-5-15-1 19 9450 9 23 17 7 52 29 10 9450
7-5-20-1 36 9450 26 8 3 18 3 13 5 14
7-5-25-1 4 8 4 20 37 0 30 9 17 14
7-10-5-1 6 1 1 0 9 0 3 14 2 8
7-10-10-1 1 16 15 1 0 9 8 17 4 9450
7-10-15-1 1 3 4 9 4 0 17 0 2 0
7-10-20-1 5 2 3 14 12 2 17 13 3 5
7-10-25-1 6 1 7 0 18 0 20 13 11 6
7-15-5-1 0 6 13 7 3 0 1 4 0 0
7-15-10-1 6 2498 0 2 0 6 3 0 7 0
7-15-15-1 0 0 2 9 0 3 0 4 5 0
7-15-20-1 4 0 1 0 0 3 0 0 2 1
7-15-25-1 3 3 0 4 0 3 2 0 1 2
7-20-5-1 3 1 0 0 1 11 9 0 0 1
7-20-10-1 3 0 6 0 9450 0 0 0 0 2
7-20-15-1 1 0 0 0 10 1 0 0 9 0
7-20-20-1 0 1 1 0 0 0 0 0 1 1
7-20-25-1 3 0 0 0 1 161 2 1 0 1
7-25-5-1 0 0 0 0 1 1 0 0 0 0
7-25-10-1 0 0 0 0 0 2 0 0 0 3
7-25-15-1 1 0 2 1 0 0 8 0 1 0
7-25-20-1 0 1 2 0 0 0 0 0 0 0
7-25-25-1 3 0 1 0 1 0 3 1 0 0

Table B.4. Number of false negatives for 3-layer Levenberg-Marquardt networks.

 1 2 3 4 5 6 7 8 9 10
7-5-5-1 23 16 1 17 13 186 22 13 7 247
7-5-10-1 11 1 0 88 866 7 175 49 22 228
7-5-15-1 74 0 16 4 13 6 114 24 15 0
7-5-20-1 99 0 16 18 11 92 154 75 2 99
7-5-25-1 13 10 7 13 87 13 22 10 7 14
7-10-5-1 23 20 7 0 8 17 20 323 21 13
7-10-10-1 14 656 1 1 0 0 7 7 13 0
7-10-15-1 2 1 2 15 1 7 1 1 1 0
7-10-20-1 1 1 7 8 6 6 13 4 1 15
7-10-25-1 8 1 0 0 14 0 6 7 1 8
7-15-5-1 800 1 16 2 188 13 2 19 0 13
7-15-10-1 1 101 0 0 0 134 1 0 8 6
7-15-15-1 0 0 6 3 0 0 0 2 1 0
7-15-20-1 7 0 1 0 0 1 1 0 7 0

(cont. on next page)

 84

Table B.4 (cont.)
7-15-25-1 1 0 0 0 0 1 1 6 0 0
7-20-5-1 6 0 0 6 9 7 7 13 0 0
7-20-10-1 0 0 7 0 0 0 1 0 0 0
7-20-15-1 0 1 0 0 1 0 0 0 326 1
7-20-20-1 0 1 1 0 0 0 0 0 7 0
7-20-25-1 7 0 1 0 0 66 1 0 0 0
7-25-5-1 6 7 1 0 0 6 7 0 7 7
7-25-10-1 1 1 0 0 0 12 0 0 0 7
7-25-15-1 0 0 0 7 0 0 7 0 0 0
7-25-20-1 0 0 0 0 0 0 0 0 0 0
7-25-25-1 0 0 1 1 1 0 3 0 0 0

Table B.5. Number of false positives for 4-layer backpropagation networks.

 -5-1 -10-1 -15-1 -20-1 -25-1
7-5-5 0 0 61 0 133
7-5-10 67 1 0 0 0
7-5-15 7 12 4 46 0
7-5-20 0 135 14 77 0
7-5-25 0 1 106 1 25
7-10-5 1 1 116 1 4
7-10-10 0 32 18 5 78
7-10-15 5 27 7 62 0
7-10-20 69 1 0 1 1
7-10-25 64 41 0 1 1
7-15-5 1 1 1 0 65
7-15-10 1 103 64 3 0
7-15-15 1 18 17 62 1
7-15-20 95 1 62 0 0
7-15-25 1 15 0 0 18
7-20-5 7 13 11 32 2
7-20-10 2 92 0 10 49
7-20-15 0 14 1 0 12
7-20-20 11 12 1 0 1
7-20-25 28 16 19 0 1
7-25-5 116 0 16 1 47
7-25-10 1 0 0 0 1
7-25-15 0 15 17 55 30
7-25-20 0 1 10 1 63
7-25-25 17 2 0 1 11

 85

Table B.6. Number of false negatives for 4-layer backpropagation networks.

 -5-1 -10-1 -15-1 -20-1 -25-1
7-5-5 971 971 551 329 655
7-5-10 329 656 326 564 971
7-5-15 971 655 328 963 935
7-5-20 656 218 322 326 644
7-5-25 971 226 330 224 307
7-10-5 329 644 219 213 320
7-10-10 329 329 213 652 224
7-10-15 330 312 329 224 325
7-10-20 557 553 329 242 329
7-10-25 224 649 652 328 325
7-15-5 656 329 311 226 224
7-15-10 336 329 312 329 323
7-15-15 329 343 277 323 224
7-15-20 226 224 245 226 245
7-15-25 329 325 327 226 325
7-20-5 331 199 329 215 550
7-20-10 656 329 318 329 304
7-20-15 329 322 276 330 242
7-20-20 326 160 329 224 242
7-20-25 226 325 329 329 656
7-25-5 329 330 326 226 86
7-25-10 329 329 329 326 224
7-25-15 635 224 193 325 327
7-25-20 326 309 326 276 137
7-25-25 198 321 329 245 95

Table B.7. Number of false positives for 4-Layer Levenberg-Marquardt networks.

 -5-1 -10-1 -15-1 -20-1 -25-1
7-5-5 9450 24 11 3 2
7-5-10 18 32 20 19 1
7-5-15 0 82 4 9 1
7-5-20 0 11 1 3 14
7-5-25 0 7 1 0 9
7-10-5 0 0 0 4 1
7-10-10 3 0 1 0 0
7-10-15 0 0 3 0 0
7-10-20 0 0 0 0 1
7-10-25 0 9450 0 0 10
7-15-5 1 0 222 0 19
7-15-10 0 0 11 0 0
7-15-15 0 3 0 0 1
7-15-20 0 0 0 0 3

(cont. on next page)

 86

Table B.7 (cont.)
7-15-25 0 0 0 1 0
7-20-5 0 0 0 9 0
7-20-10 0 0 0 0 0
7-20-15 0 0 0 0 0
7-20-20 0 0 3 0 3
7-20-25 0 0 0 0 0
7-25-5 14 0 1 0 0
7-25-10 0 0 3 0 0
7-25-15 3 0 0 0 0
7-25-20 0 0 9450 0 0
7-25-25 1 0 0 0 0

Table B.8. Number of false negatives for 4-layer Levenberg-Marquardt networks.

 -5-1 -10-1 -15-1 -20-1 -25-1
7-5-5 0 94 16 18 22
7-5-10 3 191 7 27 6
7-5-15 8 45 9 1 6
7-5-20 1 14 7 0 162
7-5-25 0 1 0 1 6
7-10-5 1 6 7 157 7
7-10-10 2 6 0 0 0
7-10-15 6 1 0 0 0
7-10-20 6 0 0 1 0
7-10-25 13 0 6 1 1
7-15-5 329 0 81 6 270
7-15-10 1 0 0 0 0
7-15-15 0 1 0 0 0
7-15-20 6 0 1 0 11
7-15-25 0 0 0 13 1
7-20-5 1 0 0 1 1
7-20-10 0 0 0 1 0
7-20-15 1 0 0 1 1
7-20-20 0 0 71 0 6
7-20-25 0 6 0 0 1
7-25-5 870 1 0 1 0
7-25-10 0 0 6 0 0
7-25-15 1 0 0 0 0
7-25-20 0 1 0 0 0
7-25-25 13 0 0 0 0

 87

Table B.9. Number of false positives for 3-layer backpropagation networks.

 1 2 3 4 5 6 7 8 9 10
7-5-5-1 4233 4233 0 0 0 4233 4233 0 4233 0
7-5-10-1 0 0 4233 0 4233 4233 0 0 4233 0
7-5-15-1 4233 0 0 0 0 0 0 4233 0 4233
7-5-20-1 0 0 0 0 4233 0 0 4233 0 0
7-5-25-1 4233 4233 0 4233 0 4233 4233 0 4233 4233
7-10-5-1 0 0 0 0 0 0 0 4233 0 4233
7-10-10-1 0 0 0 0 0 4233 0 0 0 0
7-10-15-1 4233 0 4233 4233 0 0 0 4233 0 0
7-10-20-1 0 0 0 4233 0 4233 0 4233 0 0
7-10-25-1 0 0 0 0 0 0 0 4233 0 4233
7-15-5-1 0 0 0 0 0 0 0 0 4233 0
7-15-10-1 0 4233 0 0 4233 0 0 0 4233 0
7-15-15-1 0 0 0 0 4233 0 4233 4233 0 0
7-15-20-1 0 0 0 0 4233 0 0 0 4233 0
7-15-25-1 0 0 0 0 0 0 4233 4233 0 0
7-20-5-1 0 0 4233 0 4233 0 0 4233 0 4233
7-20-10-1 0 0 0 0 0 0 0 0 0 0
7-20-15-1 0 0 0 0 0 4233 0 0 0 0
7-20-20-1 4233 0 0 0 0 4233 0 0 0 0
7-20-25-1 0 4233 0 0 0 0 4233 4233 0 0
7-25-5-1 0 4233 0 0 4233 0 0 4233 4233 0
7-25-10-1 0 0 4233 0 4233 0 4233 0 0 4233
7-25-15-1 0 0 0 0 0 0 4233 0 0 0
7-25-20-1 4233 0 0 0 0 4233 0 0 4233 0
7-25-25-1 0 4233 0 0 4233 0 4233 0 0 0

Table B.10. Number of false negatives for 3-layer backpropagation networks.

 1 2 3 4 5 6 7 8 9 10
7-5-5-1 73 46 16 73 73 63 63 73 73 57
7-5-10-1 0 36 73 30 73 33 0 73 16 6
7-5-15-1 63 73 73 63 63 63 73 73 36 63
7-5-20-1 63 73 73 73 63 73 43 73 73 73
7-5-25-1 73 36 63 73 73 73 63 63 73 46
7-10-5-1 73 73 63 33 73 63 73 73 63 73
7-10-10-1 63 63 73 63 63 73 63 73 73 30
7-10-15-1 73 63 63 73 63 63 73 63 73 36
7-10-20-1 30 63 63 73 63 57 63 67 73 73
7-10-25-1 57 36 73 63 73 36 57 63 63 63
7-15-5-1 73 73 63 36 63 63 73 73 63 63
7-15-10-1 57 63 63 36 63 63 63 57 73 67
7-15-15-1 63 30 27 36 0 65 73 63 63 63
7-15-20-1 73 27 36 36 73 63 63 43 63 0

(cont. on next page)

 88

Table B.10 (cont.)
7-15-25-1 27 30 63 57 63 63 63 57 36 0
7-20-5-1 63 63 36 73 73 30 0 73 73 63
7-20-10-1 36 36 36 63 36 63 46 57 65 63
7-20-15-1 63 59 57 57 36 73 63 6 71 30
7-20-20-1 8 63 36 63 63 63 63 57 63 63
7-20-25-1 57 36 63 63 63 63 63 63 63 0
7-25-5-1 73 33 67 63 73 36 63 7 63 73
7-25-10-1 57 63 36 36 73 36 36 63 63 73
7-25-15-1 36 63 63 73 63 36 36 30 30 63
7-25-20-1 63 63 63 73 36 31 0 63 57 63
7-25-25-1 30 63 36 63 30 65 36 63 73 57

Table B.11. Number of false positives for 3-layer Levenberg-Marquardt networks.

 1 2 3 4 5 6 7 8 9 10
7-5-5-1 4233 0 4233 0 0 0 0 0 4233 4233
7-5-10-1 4233 0 4233 0 4233 4233 4233 0 0 4233
7-5-15-1 4233 4233 4233 4233 0 4233 0 0 0 0
7-5-20-1 4233 4233 0 0 0 0 4233 4233 0 0
7-5-25-1 0 4233 4233 0 4233 0 0 4233 0 0
7-10-5-1 4233 4233 0 4233 4233 0 4233 4233 0 4233
7-10-10-1 4233 4233 0 4233 0 4233 4233 0 0 4233
7-10-15-1 0 4233 4233 4233 0 4233 0 0 0 4233
7-10-20-1 4233 4233 4233 4233 0 4233 0 0 4233 4233
7-10-25-1 4233 0 4233 0 0 0 0 4233 4233 0
7-15-5-1 4233 4233 0 0 0 0 0 4233 0 0
7-15-10-1 4233 4233 4233 4233 4233 0 0 4233 4233 0
7-15-15-1 0 4233 4233 4233 0 4233 0 0 0 4233
7-15-20-1 4233 0 0 0 0 0 4233 0 0 0
7-15-25-1 4233 4233 4233 0 0 4233 4233 0 4233 0
7-20-5-1 4233 0 4233 0 4233 4233 4233 4233 4233 0
7-20-10-1 0 4233 0 0 4233 4233 0 4233 0 0
7-20-15-1 0 4233 4233 0 0 4233 0 4233 0 4233
7-20-20-1 0 4233 4233 0 0 0 4233 0 4233 0
7-20-25-1 0 4233 4233 4233 0 4233 0 0 0 4233
7-25-5-1 0 4233 4233 4233 0 0 0 0 4233 4233
7-25-10-1 0 0 4233 4233 4233 0 4233 0 4233 0
7-25-15-1 4233 4233 4233 4233 4233 0 0 4233 4233 4233
7-25-20-1 4233 0 0 0 4233 4233 4233 4233 4233 4233
7-25-25-1 4233 4233 4233 0 0 0 0 4233 4233 4233

 89

Table B.12. Number of false negatives for 3-layer Levenberg-Marquardt networks.

 1 2 3 4 5 6 7 8 9 10
7-5-5-1 10 57 30 36 63 30 63 65 30 67
7-5-10-1 57 30 0 65 73 63 73 73 63 36
7-5-15-1 0 0 67 57 30 30 36 73 0 0
7-5-20-1 36 0 36 30 24 36 73 4 57 73
7-5-25-1 30 1 59 46 27 30 36 63 57 30
7-10-5-1 73 57 67 37 57 36 57 30 30 36
7-10-10-1 8 73 57 73 57 0 30 36 50 0
7-10-15-1 36 30 0 30 30 30 27 63 57 10
7-10-20-1 0 0 30 0 0 6 0 63 0 0
7-10-25-1 27 36 0 30 30 0 30 63 30 36
7-15-5-1 73 30 30 0 63 67 30 30 73 30
7-15-10-1 30 73 10 27 57 30 36 46 30 57
7-15-15-1 57 18 0 27 30 63 27 30 38 57
7-15-20-1 57 57 27 73 27 18 65 63 30 30
7-15-25-1 0 30 6 30 0 57 0 0 30 0
7-20-5-1 57 57 57 67 30 63 30 63 36 30
7-20-10-1 30 63 30 30 0 30 63 57 30 57
7-20-15-1 0 30 0 30 36 0 30 57 63 30
7-20-20-1 57 30 27 36 8 30 0 30 29 30
7-20-25-1 6 30 0 27 27 57 27 57 6 30
7-25-5-1 30 36 6 30 57 30 36 33 36 46
7-25-10-1 0 0 30 30 30 57 27 63 63 0
7-25-15-1 63 30 0 27 0 57 30 59 6 0
7-25-20-1 30 36 27 63 0 57 0 57 30 30
7-25-25-1 63 0 30 30 67 73 57 18 57 0

Table B.13. Number of false positives for 4-layer backpropagation networks.

 -5-1 -10-1 -15-1 -20-1 -25-1
7-5-5 0 0 0 0 4233
7-5-10 0 0 0 0 0
7-5-15 0 4233 0 0 0
7-5-20 0 0 0 0 0
7-5-25 0 0 0 0 0
7-10-5 0 0 4233 4233 0
7-10-10 0 0 4233 0 0
7-10-15 0 0 0 4233 0
7-10-20 0 0 0 0 0
7-10-25 0 4233 0 0 0
7-15-5 0 0 0 0 4233
7-15-10 0 0 0 4233 0
7-15-15 0 0 0 4233 4233
7-15-20 0 0 0 4233 0
7-15-25 0 4233 0 0 0

(cont. on next page)

 90

Table B.13 (cont.)
7-20-5 0 0 0 0 0
7-20-10 4233 0 0 0 0
7-20-15 0 0 0 0 0
7-20-20 4233 4233 0 0 0
7-20-25 0 4233 0 0 4233
7-25-5 0 0 0 4233 4233
7-25-10 4233 0 0 0 4233
7-25-15 0 4233 4233 0 4233
7-25-20 0 4233 0 0 0
7-25-25 4233 0 0 0 0

Table B.14. Number of false negatives for 4-layer backpropagation networks.

 -5-1 -10-1 -15-1 -20-1 -25-1
7-5-5 73 73 73 63 6
7-5-10 57 73 63 63 73
7-5-15 37 46 63 57 73
7-5-20 73 30 36 36 63
7-5-25 73 36 27 36 57
7-10-5 63 63 57 73 30
7-10-10 30 30 6 73 63
7-10-15 63 30 36 33 63
7-10-20 0 73 6 57 57
7-10-25 63 73 65 36 30
7-15-5 46 36 0 73 63
7-15-10 63 63 63 63 36
7-15-15 63 63 63 36 36
7-15-20 33 63 63 73 57
7-15-25 0 30 63 63 67
7-20-5 63 63 73 63 73
7-20-10 73 57 73 71 36
7-20-15 36 63 0 63 30
7-20-20 54 63 63 73 30
7-20-25 36 63 57 63 73
7-25-5 36 46 57 36 0
7-25-10 6 36 63 63 30
7-25-15 57 63 57 63 36
7-25-20 36 30 36 6 36
7-25-25 6 30 63 63 63

 91

Table B.15. Number of false positives for 4-layer Levenberg-Marquardt networks.

 -5-1 -10-1 -15-1 -20-1 -25-1
7-5-5 4233 4233 0 0 4233
7-5-10 0 4233 0 4233 4233
7-5-15 0 0 0 4233 4233
7-5-20 0 4233 0 4233 0
7-5-25 0 4233 0 0 0
7-10-5 0 4233 4233 0 4233
7-10-10 0 4233 4233 4233 0
7-10-15 4233 0 4233 4233 0
7-10-20 0 0 4233 4233 0
7-10-25 4233 4233 4233 0 4233
7-15-5 0 4233 4233 4233 0
7-15-10 4233 4233 0 0 0
7-15-15 0 4233 4233 0 4233
7-15-20 0 4233 0 4233 0
7-15-25 0 4233 4233 4233 0
7-20-5 4233 4233 0 0 4233
7-20-10 0 4233 4233 0 4233
7-20-15 0 0 0 0 0
7-20-20 4233 0 4233 0 4233
7-20-25 4233 4233 4233 0 0
7-25-5 0 0 0 0 4233
7-25-10 4233 4233 0 0 4233
7-25-15 0 0 0 4233 4233
7-25-20 4233 0 4233 4233 4233
7-25-25 4233 4233 4233 0 4233

Table B.16. Number of false negatives for 4-layer Levenberg-Marquardt networks.

 -5-1 -10-1 -15-1 -20-1 -25-1
7-5-5 0 36 52 0 36
7-5-10 30 73 30 40 57
7-5-15 63 30 0 57 57
7-5-20 73 30 53 30 36
7-5-25 67 63 40 30 36
7-10-5 1 57 31 36 36
7-10-10 57 57 57 40 0
7-10-15 36 57 0 63 30
7-10-20 30 30 0 57 57
7-10-25 57 0 57 0 57
7-15-5 63 0 30 57 33
7-15-10 57 33 57 63 30
7-15-15 57 57 57 31 30
7-15-20 57 30 57 30 6

(cont. on next page)

 92

Table B.16 (cont.)
7-15-25 27 57 63 63 57
7-20-5 63 46 30 36 36
7-20-10 57 37 30 57 30
7-20-15 30 0 30 27 27
7-20-20 0 33 40 57 30
7-20-25 0 33 59 0 57
7-25-5 73 30 52 0 57
7-25-10 57 57 30 30 30
7-25-15 57 51 27 57 27
7-25-20 57 38 0 63 67
7-25-25 30 30 33 0 27

