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ABSTRACT 
 

Misuse Intrusion Detection Systems are rule-based systems that search attack 

patterns in the data source. Detection ability of misuse detectors is limited to known 

attack patterns; hence unknown attacks may be missed. In addition, writing new 

signatures for novel attacks can be troublesome and time consuming. Similarly behavior 

based IDSs suffered from high rates of false alarms. Artificial neural networks have 

generalization ability, thus they can be used with intrusion detection system in order to 

identify normal and attack packets without the need of writing rules. We proposed to 

use neural networks with network-based IDS. To achieve this, system was trained and 

tested with both normal and malicious network packets. Backpropagation and 

Levenberg-Marquardt algorithms were used to train neural networks. For each of these 

training algorithms a 3-layer and a 4-layer MLP network sets were generated. In 

addition, self-organizing maps were used to classify attack instances. DARPA 1999 

Intrusion Detection Evaluation dataset was used for training and testing, but lack of 

enough attack patterns in evaluation dataset made us to create a testbed to obtain 

sufficient malicious traffic. After training was completed, trained neural networks were 

tested against training dataset and test dataset, which is not part of the training dataset. 

Results of the experiments showed that, none of the trained backpropagation networks 

could identify attacks in training and/or testing data sets. But results of the Levenberg-

Marquardt networks were more promising as nine of the trained Levenberg-Marquardt 

networks could identify attack and normal network packets in training and test datasets. 
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ÖZET 
 

Kötüye kullanım tespit sistemleri, kural tabanlı sistemler olup veri kayna�ı 

içerisindeki saldırı desenlerini arar. Kötüye kullanım tespit sistemlerinin tespit 

kabiliyetleri sahip oldukları saldırı desenleri ile sınırlıdır. Ek olarak her yeni saldırı için 

bir saldırı imzası tanımlamak zahmetli ve zaman alıcı bir süreçtir. Benzer olarak 

davranı� tabanlı nüfuz tespit sistemleri de yüksek oranlarda yanlı� alarmlarla sorun 

ya�amaktadır. Yapay sinir a�larının nüfuz tespit sistemlerinde kullanılmasıyla bir saldırı 

kuralı tanımlamaya gerek kalmadan normal ve saldırı paketlerinin tanınması 

sa�lanabilir.  

Bu çalı�ma yapay sinir a�larının nüfuz tespit sistemlerinde kullanılmasını 

kapsamaktadır. Bu amaca ula�abilmek için yapay sinir a�ları hem saldırı hem de normal 

a� paketleriyle e�itilmi�tir. Geri yayılım algoritması ve Levenberg-Marquardt e�itim 

algoritmaları yapay sinir a�larının e�itilmesinde kullanılmı�tır. Her bir e�itim 

algoritması için biri 3-katmanlı biri de 4-katmanlı olmak üzere iki grup çok düzeyli 

algılayıcı a�ları yaratılmı�tır. Çok düzeyli algılayıcı a�lara ek olarak kendi kendini 

organize eden yapay sinir a�ları da saldırıları gruplandırmak için kullanılmı�tır. E�itim 

ve test için 1999 DARPA Nüfuz Tespit Sistemleri De�erlendirme veri seti 

kullanılmı�tır. Ancak bu veri setindeki saldırı paketlerinin sayısının yapay sinir a�larını 

e�itimi için yetersiz kalmasından dolayı, saldırı paketleri bir simülasyon ortamında 

yaratılmı�tır. E�itilen yapay sinir a�ları, e�itim veri seti ve e�itim veri setinin içinde 

olmayan verilerin bulundu�u bir test veri setiyle test edilmi�tir. Deney sonuçlarında geri 

yayılım algoritması ile e�itilen yapay sinir a�larının e�itim ve/veya test veri setindeki 

normal ve saldırı paketlerini ayrıt etmede ba�arısız kaldı�ı gözlemlenmi�tir. Levenberg-

Marquardt algoritması ile e�iten dokuz yapay sinir a�ı, e�itim ve test veri setindeki 

saldırı ve normal paketleri ayırt edebilmeyi ba�armı�tır. 
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CHAPTER 1 

 

INTRODUCTION 

 
 Automated attacking tools and high availability of these tools on Internet have 

raised the need of computer security systems. Firewalls and security policies are the 

first defense lines in order to protect computer systems and prevent attackers to harm 

computer systems. However, building a complete secure computer system is still a 

dream. This is due to the fact that, application programs will always contain unknown 

bugs and vulnerabilities. In addition, attackers continuously find new techniques to 

exploit vulnerabilities in the computer systems. Hence, despite the security precautions, 

computer attacks are continuously increasing (attack incidents reported to CERT 

(WEB_1 2005) by year is given in Figure 1.1). 
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Figure 1.1. CERT reported incidents by year. 

 

 Electronic commerce became widespread; hence attacks to the computer 

systems could result in loss of billions of dollars. Worldwide economic cost of the 

malicious codes is $0.5 billion in 1995, $1.8 billion in 1996, $3.3 billion in 1997, $6.1 

billion in 1998, $12.1 billion in 1999, $17.1 billion in 2000 and $13.2 billion in 2001. 

Major incidents related to the viruses, worms and other malicious software are given in 

Table 1.1 (WEB_2 2005). 
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Table 1.1. Economic impact of malicious code. 
 

Name Date Impact 

Morris Worm 1988 • Stopped 10% of computers 
connected to Internet 

Melissa Virus May 1999 • 100,000 computers in one week 
• Loss of $1.5 billion  

Explorer Virus June 1999 • Loss of $1.1 billion 
Love Bug Virus May 2000 • Loss of $8.75 billion 

Sircam Virus July 2001 • 2.3 million computers infected 
• Loss of $1.25 billion 

Code Red Worm July 2001 
• 359,000 computers infected in less 

than 14 hours 
• Loss of $2.75 billion 

Nimda Worm Sept. 2001 
• 160,000 computers infected at 

peak 
• Loss of $1.5 billion  

Klez 2002 • Loss of $750 million 
BugBear 2002 • Loss of $500 million 

Badtrands 2002 • Loss of $400 million 

Sapphire/Slammer 
Worm Jan. 2003 

• Infected 90% of vulnerable hosts 
in just 10 minutes 

• 75,000 hosts infected at peak 
• Loss of $1.5 billion 

Blaster 2003 • Loss of $750 million 
Nachi 2003 • Loss of $500 million 

SoBig.F 2003 • Loss of $2.5 billion 

MyDoom Worm Jan. 2004 

• Fastest spreading mass-mailer 
worm to date 

• 100,000 instances of the worm 
intercepted per hour 

• Loss of more than $4.0 billion 

Witty Worm March 2004 • First widely propagated worm to 
carry a destructive payload 

 

 A computer system should provide confidentially, integrity and availability 

against attempts try to exploit vulnerabilities in the operating system and in application 

programs. Confidentially is the protection of private information from disclosure of 

unauthorized users. Integrity is the protection of the sensitive data from modification of 

unauthorized users and availability states that data can be accessible any time by the 

legitimate users. 

 If certain countermeasures are taken, most of the intrusions can be prevented, as 

most of them are results of known vulnerabilities. However, it is still impossible to 
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secure the complete computer system, as there will be always unknown security 

breaches. Consequently, it is important to detect intrusions or intrusion attempts in order 

to take precautions as to prevent similar intrusions. This research field is called 

intrusion detection. 

 The notion of intrusion detection was born with Anderson’s paper, “Computer 

Security Threat Monitoring and Surveillance”, in the beginning of 1980. In his seminal 

paper, written for a government organization, Anderson suggested using audit trails to 

track computer misuses and to understand user behavior. With release of the paper, 

concepts of detecting misuse and user activities emerged. Since then, many researches 

have been conducted and intrusion detection systems have been significantly improved. 

Timeline of the evolution of intrusion detection systems is given in Figure 1.2. 

 

 

Figure 1.2. Timeline of the evolution of intrusion detection systems. 
 

 In 1983, Denning in SRI International conducted a study to create user profiles 

by analyzing audit trails of the government mainframe computers. One year later the 

first prototype for intrusion detection, the Intrusion Detection Expert System (IDES) 

was formed with the help of Denning. IDES analyzes audit trails from government 

systems and tracks user activity. IDES provided a foundation to the intrusion detection 

development. In 1987, Denning published a paper, “An Intrusion Detection Model”, for 

the 1986 IEEE Symposium on Security and Privacy and explained how anomalous 

activity could be used as an indicator of potential security incidents. 

 The Haystack prototype was developed for the detection of intrusions in a multi-

user Air Force computer system at University of California Davis' Lawrence Livermore 
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Laboratories in 1988. The prototype Intrusion Detection System (IDS) analyzes audit 

data by comparing it with defined patterns. 

 In 1989, the developers of Haystack established the commercial company, 

Haystack Labs, and developed “last” technology intrusion detection system, Stalker. 

Stalker is a host-based, pattern matching system which can manually and automatically 

query the audit data. 

 In 1990, Todd Heberlein, a student at the University of California, introduced 

the idea of network intrusion detection and built an IDS system called Network Security 

Monitor (NSM) which was the first network intrusion detection system. NSM listens 

passively network traffic that passes through a broadcast LAN, and extracts intrusive 

behavior from this input. NSM can monitor a network of heterogeneous hosts without 

having to convert different audit trail formats into a standard format. 

 The Air Force's Cryptologic Support Center developed the Automated Security 

Measurement System (ASIM) to monitor network traffic on the US Air Force's network. 

ASIM considerably improved scalability and portability issues that previous network 

intrusion detection products suffered. 

 The development group on the ASIM project formed a commercial company in 

1994, the Wheel Group. Their product, NetRanger, scans traffic for signature of misuse, 

provides real-time alarm and gives details of the attacks. However, during these years 

development of commercial intrusion detection systems slowed down and only speeded 

up again around 1997. 

 ISS developed a network intrusion detection system called RealSecure in 1997. 

A year later, Cisco recognized the importance of network intrusion detection and 

purchased the Wheel Group. Similarly, the first host-based intrusion detection company, 

Centrax Corporation, was formed. 

 In the last few years, the intrusion detection field has grown considerably and 

therefore a large number of IDSs have been developed. The initial IDSs were anomaly 

detection tools but today, most of the commercial IDSs are misuse detection tools. IDSs 

have become a necessity, as number of computer systems connected to networks 

increased greatly. 

 The goal of this research is to propose and analyze the applicability of neural 

networks in the field of intrusion detection. Proposed neural network based intrusion 

detection system is network-based in the sense that, it uses network data to determine 

whether an intrusion has taken place. 
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 Remainder of the thesis is organized as follows. Basic concepts of intrusion 

detection, neural networks and information about DARPA 1999 Intrusion Detection 

Evaluation are given in chapter two. Employing neural networks in the field of intrusion 

detection and related works are given in chapter three. Methodology used in this 

research is described in chapter four. The results that are obtained in the experiments in 

this research are examined in chapter five. 
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CHAPTER 2 

 

BACKGROUND 

 
 This chapter presents basic technical background of intrusion detection systems, 

neural networks, 1999 DARPA Intrusion Detection Evaluation and its dataset, which is 

used to train and test the proposed system. 

 

2.1. Intrusion Detection Systems 
 

 Pioneering work in the field of intrusion detection was performed by Anderson 

in the early 1980s. Anderson defines an intrusion as any unauthorized attempt to access, 

manipulate, modify, or destroy information, or to render a system unreliable or unusable 

(Anderson 1980). Intrusions are caused by attackers accessing the systems from 

Internet, authorized users of the systems who attempt to gain additional privileges for 

which they are not authorized, and authorized users who misuse the privileges given to 

them. IDSs are software or hardware products that monitor the system in question and 

try to detect any attack against the system. 

 A truly secure system is still a dream, as there are always bugs in application 

programs, and also communication protocols always have vulnerabilities that can be 

exploited by attackers. In addition, passwords can be cracked, users can loose their 

passwords, and entire crypto system can be broken. As a result, security mechanisms 

(e.g. firewalls), which are deployed to protect the information system, may not be able 

to prevent all security breaches. IDSs are usually deployed along with the other security 

mechanisms, such as access control, authentication and firewalls, as a last defense line 

to improve security of the information system. 

 The main goal of an IDS is to provide high rates of attack detection with very 

small rates of false alarms. There are two types of errors that are important to know in 

intrusion detection: 

• False positives: False positives are the errors occurring when IDS flags a normal 

activity as an attack. Simply, false positives are false alarms. 
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•  False negatives: False negatives are the errors occurring when IDS fails to 

detect an ongoing attack. 

 An intrusion detection system consists of three functional components (Bace and 

Mell 2001), namely: 

1. Information source that provides a stream of event records; 

2. Analysis engine that finds signs of intrusions; and 

3. Response component that generates reactions based on the outcome of the analysis 

engine. 

 In the following subsections these three functional components are inspected in 

detail. 

 

2.1.1. Information Sources  
 

 The first component of an IDS is the data source, where input information, 

which will be analyzed, is collected. Input information can be audit trails, system logs 

or network packets. According to the data sources used, IDSs can be classified into two 

categories, host-based IDSs and network-based IDSs. 

 

2.1.1.1. Host-based IDSs 
 

Host-based IDSs monitor activities within an individual computer system and 

operate on information obtained from these activities. As target environment was 

mainframe environment, and all users were local to the system, first researches in the 

field of IDSs were performed on the host-based IDSs. 

Host-based IDSs generally use two information sources, operating system audit 

trails, and system logs. Operating system trails are usually generated at the kernel level; 

hence they are more detailed and better protected than system logs. However, system 

logs are simpler and smaller than operating system trails; consequently they can be 

more easily interpreted. 

 

 

 

 



 8 

2.1.1.1.1. Advantages of Host-based IDSs 
 

1. As host-based IDSs monitor local activities, thus they can detect attack that can 

not be detected by network-based IDSs. 

2. Information sources of the host-based IDSs are generally generated on a 

plaintext data, therefore they can successfully operate in an environment where 

network traffic is encrypted. 
3. Performance of the host-based IDSs is not affected by the topology of the 

network they operate in. They successfully operate on switched networks. 
 

2.1.1.1.2. Disadvantages of Host-based IDSs 

 

1. As host-based IDSs should be placed on every monitored host, it is harder to 

manage and configure host-based IDSs. 

2. Host-based IDSs run on the host targeted by attacks, and it may be disabled by a 

successful attack. Such as by certain denial-of-service attacks. 

3. As host-based IDSs can only see network packets received by its host, detection 

performance of host-based IDSs is poor in the case attacks are targeted to the 

entire network. 

4. Amount of information used by host-based IDSs can be huge; hence host–based 

IDSs may require additional storage on the system running. 

5. Host-base IDSs share the computing resources (e.g. CPU, main memory) with 

the monitored host. Consequently, they cost additional operational overheads 

and may affect the performance of the hosting computer. 

 

2.1.1.2. Network-based IDSs 

 

As computing environments shifted from mainframe to the networks of 

workstations, studies on intrusion detection started to focus on attacks targeted to the 

network. Network attacks can not be detected by examining operating system trails or 

system logs, or at least detection of network attacks by examining data sources on the 

host computer is not an easy task. As a result, network-based IDSs were developed, 

which sniff network packets and search attacks in these network packets. Network-
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based IDSs monitor activities on a network segment or switch, so that they can protect 

hosts connected to the monitored segment. Network-based IDSs generally consist of 

sensors which are placed at various points (such as at LAN and WAN backbones) in the 

network. As sensors are limited to run IDS, they can run in “stealth” mode, therefore 

they can be more secured against attacks. 

 

2.1.1.2.1. Advantages of Network-based IDSs 

 

1. A large network can be monitored easily by employing a few numbers of 

sensors, if sensors are placed at the critical parts of the network (for example at 

hubs, routers or probes). 

2. Network-based IDSs are generally passive devices and run in stealth mode, 

hence do not affect the normal operation of the network. 

3. Network-based IDSs can be very secure against attacks, and even they can be 

made invisible to the attackers. 

 

2.1.1.2.2. Disadvantages of Network-based IDSs 

 

1. If monitored network is large or network traffic is high, it may be difficult to 

process all network packets. 

2. Problems arise when network-based IDSs placed on a switched network. Most 

switches do not provide universal monitoring ports and this fact limits the 

monitoring ability of network-based IDS. 

3. Network-based IDSs can not analyze encrypted traffic. This is due to the fact 

that, the sensors analyze packet headers to determine source and destination 

addresses and type of data being transmitted, and analyze the packet payload to 

discover information in the data being transmitted. 

4. Malformed network packets may cause a network-based IDS to crash. 

 

2.1.2. IDS Analysis 

 

Second component of the intrusion detection system is the analysis engine, 

where decision of whether the monitored activity is an attack or not is taken. Intrusion 
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detection analysis engines are generally classified into two categories: misuse detection 

and anomaly detection. 

 

2.1.2.1. Anomaly Detection 

 

Anomaly detectors assume that misuse or intrusions are highly correlated to 

abnormal behavior of either a user or a system (Ghosh and Schwartzbard 1999). 

Anomaly detection approaches must first baseline the normal behavior of the object 

being monitored, and then detect possible intrusions by using deviations from this 

baseline. These profiles are constructed from historical data collected over a period of 

time of normal operation. Anomaly detection typically creates knowledge bases 

containing the profiles of the monitored users, programs or systems. Threshold 

detection, statistical measures, neural networks and rule-based measures are the 

techniques used in anomaly detection. A block diagram of a typical anomaly detection 

system is given in Figure 2.1. 

 

Figure 2.1. Block diagram of a typical anomaly detection system. 
 

2.1.2.1.1. Advantages of Anomaly IDSs 

 

1. As any significant deviation from normal profile will be flagged as anomalous, 

anomaly detectors can detect unknown attacks. 

2. Anomaly detectors do not require constant updating of rules or signatures of 

novel intrusion. 

3. Anomaly detectors can produce information that can in turn be used to define 

signatures for misuse detectors. 
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2.1.2.1.2. Disadvantages of Anomaly IDSs 

 

1. The high false positive rate is the main drawback of the anomaly IDSs. This is 

due to the fact that, the normal profile of a system can not be fully learned 

and/or behavior of users or programs may change over time. 

2. In order to build normal profile of a system, system in question should be 

monitored and information should be collected, which in turn will be used to 

draw normal behavior of the system. But if the collected information contains 

attacks, intrusive behavior will be a part of the normal profile, and in future 

these attacks will go undetected. 

3. Anomaly detection approaches need extensive data sets to build profile of the 

system. 

 

2.1.2.2. Misuse Detection  

 

Misuse detectors attempt to model attacks on a system as specific patterns, then 

look for events or sets of events that match a predefined pattern of events that describe a 

known attack (Ghosh and Schwartzbard 1999). As the patterns corresponding to known 

attacks are called signatures, misuse detection is sometimes called “signature-based 

detection”. Expert systems, signature verification and state transition diagrams are the 

techniques used in misuse detection. While anomaly detection typically utilizes 

threshold monitoring, misuse detection techniques frequently utilize a rule-based 

approach. Today most of the commercial and research intrusion detection tools are 

misuse detection which are based on attack signatures. A block diagram of typical 

misuse detection system is given in Figure 1.2. 

 

Figure 2.2. Block diagram of a typical misuse detection system. 
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2.1.2.2.1. Advantages of Misuse IDSs 

 

1. Misuse IDSs can detect intrusion with a certain degree of certainty. Misuse 

detectors are very effective in detecting attacks without giving high false alarm 

rates. 

2. Misuse IDSs can detect all intrusions whose signatures are known.  

3. Misuse IDSs are easy to implement (state machine, signature analysis) and 

deploy (no need to form a profile of the system). 

 

2.1.2.2.2. Disadvantages of Misuse IDSs 

 

1. Detection ability of misuse detectors is limited to signatures that they posses. A 

new intrusion or even a variation of a known intrusion may be undetected. So 

misuse IDs require regular updates of signatures in order to remain current. 

2. The process of developing a new attack signature is time consuming. 

 

2.1.3. Response Component 
 

 Response component is the third component of an IDS , where reaction to a 

detected attack is given. According to the response types IDS can be either active or 

passive. An IDS is said to be active, if it actively reacts to the attack by taking 

corrective (closing holes) or proactive (logging out possible attackers, closing down 

services). If an IDS just generates alarms, it is said to be passive. Passive IDS responses 

provide information to system administrator who takes necessary actions based on that 

information. 

 

2.2. Neural Networks 
 

 Modern digital computers can perform thousands of operations in a second and 

numerical computation power of human brain is far below the digital computers. 

However, even the most powerful computers can not compete with humans when 

performing some perceptual tasks (recognition of a face in crowd for example). Power 

of human brain, enabling human to outperform the digital computers in completing 
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some tasks, comes from the fact that human brain is composed of large number of 

massively interconnected computing units, so called neurons. 

 Inspired from biological neural networks, artificial neural networks are 

massively parallel computing systems consisting of an extremely large number of 

simple processors (called neurons) with many interconnections and coefficients 

associated with interconnections (weights) (Jain et al. 1996). An artificial neural 

network (or simply neural network) is a computational model that can be defined by 

four parameters (Kasabov 1996): 

 1. Models of neurons. 

 2. Architecture. 

 3. Learning algorithm. 

 4. Recall algorithm. 

 Neural networks have many characteristics that neither traditional Von Neuman 

nor modern parallel computers have. These characteristics include massively parallel 

computation, learning ability, generalization ability, adaptivity, and fault tolerance. 

 

2.2.1. Models of Neurons 

 

Major components of neuronal model are given in Figure 2.3. Three basic 

elements constitute the neuron model, which are connection links, an adder and an 

activation function. 

 

 
Figure 2.3. Major components of an artificial neuron. 
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 Two neurons are connected with each other with a connection link (or synapse) 

and each connection link is associated with a weight which determines the computing 

effect of the neuron on whole neural network. Each of the neurons, xj, is multiplied with 

the weight, wkj, associated with the link that connects neuron xj to another neuron k. 

These products are summed and presented to an activation or transfer function, which is 

used to limit the amplitude of the output. The most popular activation functions are 

given in Figure 2.4. 

 

 
 

Figure 2.4. Most popular activation functions. 
 

 In order to increase or decrease the net input of the activation function, a bias 

(θk) is externally applied to neuron k. In mathematical terms, a neuron k can be 

described by the following pair of equations: 

 

j

m

1j
kjk xws ⋅=�

=

 (2.1) 

 

and 

 

)�  f(s  y kkk +=  (2.2) 

 

where x1,x2,....,xm are the input signals, wk1, wk2, ..., wkm are the synaptic weights of 

neuron k; sk is the linear combiner output due to the input signals; θk is the bias; f(.) is 

the activation function; and yk is the output produced by the neuron. 

 In order to make formula 2.2 uniform, generally bias is assumed to be an input 

unit, x0, which has a weight value, wk0, of 1. Then the formula 2.1 will be 
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 (2.3) 

 

and 

)f(s  y kk =  (2.4) 

 

2.2.2. Neural Network Architectures 

 

 Topology of a neural network describes the organization of connections between 

neurons. Neurons in a neural network can be fully connected, where every neuron is 

connected to every other neuron, or can be partially connected. 

 Architectures of neural networks can be grouped into two categories: (i) 

Feedforward networks, where data is strictly propagated from input units to output units 

in feed-forward manner, hence there exists neither feedback connections nor loops in 

the network. Feedforward neural networks are memoryless systems in the sense that 

state of the network is not affected by the previous produced outputs; (ii) Feedback (or 

recurrent) networks contain feed-back connections, hence loops exist within these 

networks. 

 In our experiments two different architectures are used. These architectures are 

multi-layer perceptron network which is a feedforward network and self-organizing 

maps, which is a recurrent network. In the following sections these architectures are 

explained in detail. 

 

2.2.2.1. Multi-Layer Perceptron 

 

 Multi-layer perceptron (MLP) has an input layer of source nodes and output 

layer of neurons. These two layers connect the neural network to the outside world; 

training set is presented to the MLP through input layer and output produced by the 

neural network exists in the output layer. In addition to these two layers, MLP has one 

or more hidden layers which can not be directly accessible through the outside world. A 

sample MLP network with two hidden layers is given in Figure 2.5. 



 16 

 A layer of processing elements makes independent computations on data that it 

receives and passes the results to another layer. The next layer may in turn make its 

independent computations and pass on the results to another layer. Finally, a group of 

one or more processing elements determines the output from the network. Each 

processing element makes its computation based upon a weighted sum of its inputs. 

 

 
 

Figure 2.5. A MLP network with two hidden layers. 
 

A L-layer MLP network consists of an input stage, (L-1) hidden layers and an 

output layer connected in a feedforward manner without any feedback connections 

between neurons (Jain et al. 1996). 

 MLP networks can be successfully trained, even if training examples are linearly 

inseparable (input patterns cannot be separated into the output categories by a single 

line). One of the most popular training algorithms used in MLPs is backpropagation 

algorithm, which is described in section 2.2.3.1. 

 Training process of MLP networks continues until a certain number of iterations 

or a desired error rate is reached. The most common error approximation method used 

in MLP networks is mean square error (MSE) and it is defined by the following 

formula: 

 

/2y) - (d Err 2=  (2.5) 
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where d is the desired output for the given input and y is the output produced by the 

neural network.. A total MSE sums the error over all individual examples and all the 

output neurons in the network. 

.m p / ))y - (d  MSE
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2(k)
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(k)
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�
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�
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= =
 (2.6) 

where yj
(k) is the output value of the jth output of the network when kth training example 

is presented; dj
(k) is the desired output for the jth output for the kth training example; p is 

the number of training examples in the training data; and m is the number of output 

neurons in the neural network. Root-mean square error (RMSE) is the root of the MSE. 

 

2.2.2.2. Self Organizing Maps 

 

 The term self-organizing refers to that; these networks can adapt their weights 

without giving any correct answers. Self-organizing maps (SOMs) modify connection 

weights based on the characteristics of the training set. A SOM consists of two layers, 

an input layer and an output layer (also called feature map), which represents the output 

vectors. The weights of the connections of an output neuron j to all the other n input 

neurons form a vector wj in an n dimensional space. SOMs are trained to cluster input 

vectors sharing the same features. Similar input vectors are represented by near neurons 

in the feature map. (Kasabov 1996). The idea behind the learning in SOMs is that, the 

neuron whose weight vector was closest to the input vector is updated to be even closer. 

An example of SOM network is given in Figure 2.6. 

 

 
Figure 2.6. An example of self-organizing map network. 
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 In the first step of the learning, all weight vectors are initialized such that values 

of all weight vectors are assigned differently. From the set of input vectors, a sample 

input vector, x, is selected and each neuron computes Euclidean distance (which is the 

straight line distance between two points) between its weight vector and sample input 

vector (Formula 2.7).  

 

, ...,l, j  21   , w x(n)min arg  i(x) jj
=−=

 
(2.7) 

 

 The weight vector which has the minimum Euclidean distance, hence most 

similar to sample input vector, is called best-matching or winning neuron.  

 Only the winning neuron and its neighbors gain the right to update their weights. 

Weight vectors are updated by the following formula: 

 

(n)) w (n)(x(n)�(n)h  (n) w 1)(nw ji(x) j,jj −+=+  (2.8) 

 

where �(n) is the learning-rate parameter, and hj, i(x)(n) is the neighborhood function 

around the winning neuron i(x). Both �(n) and hj, i(x)(n) changes dynamically during the 

learning process. While initial neighborhood size is often set to 1/2 to 2/3 of the 

network size, it shrinks exponentially with time. 

 

2.2.3. Learning in Neural Networks 

 

 In the context of neural networks, learning is the process of updating connection 

weights so that the neural network can perform a desired task efficiently. A neural 

network is trained so that it produces set of desired output vectors Y, from a given set of 

input vectors X. The set X, which is used to train the neural network, is called training 

set, and elements of X are called training examples. Performance is improved over time 

by iteratively updating the weights in the network. 

 There are three main learning algorithms (Jain et al. 1996): 

1. Supervised. In supervised learning, beside from the training set, desired 

outputs of the given training set is presented to the neural network. Aim of 

the supervised learning is minimizing the difference between the output 
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produced by the network and the desired output by altering the values of the 

connection weights. 

2. Unsupervised. Correct answers associated with each training example is not 

required in unsupervised learning and only training set is presented to the 

neural network. In unsupervised learning, correlations within the training set 

are explored, and data are clustered based on these correlations. Self-

organizing maps utilize unsupervised learning. 

3. Hybrid. Hybrid learning combines supervised and unsupervised learning. 

Some parts of the weights are updated in supervised manner and the others 

are updated through unsupervised learning. 

 

2.2.3.1. Backpropagation Algorithm 

 

 One of the most popular supervised learning algorithms is the back propagation 

algorithm. The algorithm consists of two phases: Forward phase and backward phase. 

In the forward phase, first, the weights of the network are randomly initialized. Then, 

the input signals are propagated through the network. Afterwards, the output of the 

network is calculated and compared to the desired value. In the end of the forward 

phase, the error of the network is calculated. Error of the output neuron i (ei) is 

calculated by the formula: 

 

iii y d e −=  (2.9) 

 

where di is the desired response and yi is the output produces by the neural network in 

response to the input xi. 

 Aim of the backpropagation algorithm is to reach global minimum value (Figure 

2.7) on the error surface.  
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Figure 2.7. Global and local minimum in error surface. 
 

 In backward phase, calculated error signal is propagated backward and in order 

to minimize the error, weights are updated. Change in weights can be calculated by 

gradient descent learning rule (Haykin 1999).According to the gradient descent learning 

rule, correction applied to the weight wji at the iteration n is denoted by �wji(n), and 

calculated by 

 

(n)y(n)�	  (n)�w ijji =  (2.10) 

 

where � is a numerical constant (learning-rate parameter of the backpropagation 

algorithm) and δj(n) is local gradient.  

 Local gradient of output neurons is equal to the product of the derivative of 

activation function, f
(�), and error signal, ej(n), and defined by  

 

(n))(sf(n)e (n)	 j
'

jj =  (2.11) 

 

 Local gradient of the hidden neurons is associated with derivative of the 

activation function and local gradient of the next hidden layer or output layer. Local 

gradient for neurons in hidden layers is defined by 

 

(n)w(n)	(n))(sf (n)	 kj
k

kj
'

j �=  
(2.12) 



 21 

Learning rate parameter, �, is used to abridge the training time. But if the 

learning rate parameter is chosen too high (e.g. 0.9), algorithm oscillate between local 

minimums, and may not achieved to reach the global minimum, whereas selecting 

learning rate too small results in long training periods. One way to speed up the learning 

when learning rate is chosen small or avoid oscillation between local minimums when 

learning rate is chosen to big is to utilize a parameter, momentum. By introducing the 

momentum parameter, change in weight, �wji(n), is made dependent to the previous 

weight change, �wji(n-1). Modified backpropagation algorithm which uses momentum, 

�, is given in formula 2.13. 

 

1)-(n ��w  (n)(n)y�	   )(n �w ijijij +=  (2.13) 

 

 After the training was completed, connection weights are frozen. Afterwards, in 

order to validate whether the neural network was trained sufficiently or not, a test set, 

which is not part of the training set, was presented to the trained network and its 

performance is evaluated. 

 Backpropagation algorithm is simple to implement. However when dealing with 

difficult learning tasks, training time of the backpropagation networks can be lengthy 

and even algorithm may not converge to the desired error rate. 

 

2.2.3.2. Levenberg-Marquardt Algorithm 

 

 Levenberg-Marquardt is an advanced non-linear optimization algorithm (Hagan 

and Menhaj 1994). It can be used to update the weights in the network just as 

backpropagation algorithm. It is reputably the fastest algorithm available for such 

training. 

 The Levenberg-Marquardt algorithm is designed specifically to minimize the 

sum-of-squares error function, using a formula that (partly) assumes that the underlying 

function modeled by the network is linear. A move is only accepted if it improves the 

error, and if necessary the gradient-descent model is used with a sufficiently small step 

to guarantee downhill movement. The weight update vector �x is calculated as 

 

[ ]   )x(J 
I  ))J(x(J x� T1T ε−+= x  (2.14) 
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where � is the vector of errors, 
 is the learning rate parameter, and J(x) is the Jacobian 

matrix that is the matrix of partial derivatives of the errors with respect to the weights. 

Jacobian matrix can be calculated with the following formula: 
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 Levenberg-Marquardt outperforms the basic backpropagation and its variations 

with variable learning rate in terms of training time and accuracy. However the 

computation and memory requirements of the algorithm are high. 

 

2.3. DARPA 1999 Intrusion Detection Evaluation 
 

In 1998 and in 1999, the U.S. Defense Advanced Research Projects Agency 

(DARPA) made an evaluation among commercial and research intrusion detection 

research projects. To date, it is the most comprehensive scientific study known for 

evaluating different intrusion detection systems. DARPA study highlights the strengths 

and weaknesses of current research approaches to intrusion detection. The DARPA 

scientific study is the first of its kind to provide independent third party evaluation of 

intrusion detection tools against such a large corpus of data. 

The 1999 DARPA Off-Line Intrusion Detection Evaluation had four main 

objectives which were as follows (Haines et al. 2001):  

• Support developers of intrusion detection systems, by providing rich data sets 

for testing and experimentation. This data greatly facilitate algorithm 

development by providing examples of normal and attack traffic and eliminating 

the additional effort of traffic generation. 

• Evaluate intrusion detection approaches by analyzing the strengths and 

weakness of each. 
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• Analyze differences between alternate approaches and determine the reasons of 

false positives and false negatives. 

• Report summarized results of the evaluation and conclusions from the detailed 

analysis of each intrusion detection system in evaluation to DARPA to guide 

future efforts. 

MIT's Lincoln Laboratory set up a simulation environment for generating and 

distributing sniffed network data and audit data recorded on host machines. Software 

automata simulated hundreds of programmers, secretaries, managers, and other types of 

users running common UNIX application programs and some Windows NT programs. 

In addition, a small number of actual hosts appeared as if they were thousands of hosts 

with different IP addresses. Thus, hundreds of users on thousands of hosts were 

represented in the simulation. DARPA 1999 Intrusion Detection Evaluation testbed is 

given in Figure2.8. 

 

 
 

Figure 2.8. DARPA 1999 Intrusion Detection Evaluation Testbed. 
(Source: Haines et al. 2001) 

 

Because all the data were generated, the laboratory has a priori knowledge of 

which datum represents normal and which represents attack. Network traffic was 

generated to represent the following types of services: HTTP, SMTP, POP3, FTP, IRC, 

Telnet, X, SQL/telnet, DNS, finger, SNMP, and time. More than 200 instances of 58 

attack types were launched against victim UNIX and Windows NT hosts in three weeks 
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of training data and two weeks of test data. This corpus of data is the most 

comprehensive set known to be generated for the purpose of evaluating intrusion 

detection systems. 
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CHAPTER 3 

 

INTRUSION DETECTION WITH NEURAL NETWORK 

 
This chapter provides the reason for building neural network based intrusion 

detection system. In addition, similar researches related to study, advantages and 

disadvantages of neural network based intrusion detection system are presented in this 

chapter. 

 

3.1. Motivation 
 

Although misuse and anomaly IDSs improve the security of an information 

system to a certain extent, both of them have limitations. 

Most current approaches to the process of misuse detection utilize some form of 

rule-based analysis. Rule-Based analysis relies on sets of predefined rules that are 

provided by an administrator, automatically created by the system, or both. These rules 

are used by the system to make conclusions about the security-related data from the 

intrusion detection system. Unfortunately, the detection ability of misuse systems is 

limited to the rule base that they posses. Hence misuse detectors require frequent 

updates to remain current. The required updates may be ignored or performed 

infrequently by the administrator and this may lead the system vulnerable to the attacks. 

In addition, writing a rule or signature of a new attack is not an easy task and can be 

time consuming. 

Another limitation of misuse detectors is that the misuse intrusion detection 

systems do not have generalization property and hence fail to detect unknown and even 

variations of known attacks, thus misuse IDSs generally have high false negative rates.  

Anomaly detectors also have limitations. For instance, although anomaly 

detectors can detect an attack accurately, they can not identify the specific type of attack 

occurring. However, the most significant problem of anomaly detection approach is the 

high false positive rates. Any deviation from the baseline will be flagged as intrusion; 

legitimate behavior outside the baseline will be labeled as intrusive. Another problem 
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arises if an attack occurs during the establishment of the baseline, then this intrusive 

behavior will be the part of the normal baseline. 

Instead of defining rules for each of the attack, which is a troublesome and time 

consuming process, neural networks can distinguish malicious and normal activity by 

learning correlations between training patterns. By applying neural networks to 

intrusion detection, the need for managing rules and signatures can come to end. In 

addition to that, neural networks posses the ability of generalization so that they can 

generalize from the previously observed behavior to similar future behavior. A neural 

network-based intrusion detection system could potentially address novelty detection 

problem in misuse detection systems and could lower the false positive rates of anomaly 

detectors to an acceptable level. 

Another reason to employ neural networks in intrusion detection is that, neural 

networks can cluster patterns which share similar features, thus the classification 

problem in anomaly detectors can be solved by neural networks. 

 

3.2. Earlier Work 
 

• One of the first attempts to employ neural networks to intrusion detection was 

performed by Ryan et al. in 1998 (Ryan et al.1998). An offline intrusion detection 

system, Neural Network Intrusion Detector (NNID), was trained and tested on a system 

with 10 users.  

The NNID anomaly intrusion detection system is based on identifying anomaly 

and legitimate usage based on the distribution of commands that user executed. For 

each user in the system, user profile was formed based on the commands executed by 

the user. System was implemented on UNIX environment and operating system logs 

were used to extract command usage. A set of 100 most common used commands in the 

logs and their frequencies were used to form input vectors of the neural network.  

The standard two-layer backpropagation architecture was chosen for the neural 

network. The input layer consisted of 100 units, representing the user vector; the hidden 

layer had 30 units and the output layer 10 units, one for each user. The network 

implemented in the PlaNet Neural Network simulator. The system was able to detect 

96% of attacks. The achieved false positive rate was 7%. 
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• As most computer violations are made possible by misusing of computer 

programs, host-based intrusion detection approaches are shifting from inspecting user 

behavior to inspecting program behavior. Rather than building user profiles, Ghosh et 

al. (Ghosh and Schwartzbard 1999) presented a host based intrusion detection system 

that focused on building program profiles and used these program profiles to recognize 

normal software behavior and malicious software behavior. In order to monitor process 

behavior, operating system was monitored to capture the system calls. The system was 

trained and tested on SUN platform and use Basic Security module (BSM) as source of 

data. Input data were extracted from BSM and a distance metric, which constituted 

input vectors of the neural network, was calculated for each data item and exemplar 

strings.  

The IDS presented was a single hidden layer MLP. The number of input nodes 

was equal to the number of exemplar strings. There was a single continuous node in the 

output layer. For each program, networks were trained with 10, 15, 20, 25, 30, 35, 40, 

50, and 60 hidden nodes; the network, which gave the minimum false negative and false 

positive rates, was kept and others were discarded. Lucky Bucket algorithm is used to 

capture the temporal locality of anomalous events.  

Performance analysis was done with DARPA database. With a leak rate of 0.7 

the anomaly detection system achieved 77.3% detection rate and false positive rate of 

2.2%, whereas with the same leak rate misuse detection system achieved 90.9% 

detection rate and false positive rate of 18.7%. 

• Lee and Heinbuch (Lee and Heinbuch 2001) utilized an experimental intrusion 

detection system with a hierarchy of neural networks. Each of the neural networks in the 

hierarchy focused on different portions of nominal TCP behavior. Portions of these 

observed TCP behaviors are connection establishment, connection termination and port 

usage. System was trained to detect three kinds of attack, which are SYN flood, fast 

SYN port scan, and stealth SYN port scan. 

Backpropagation learning algorithm was used to train system. Input vectors to 

each of the neural networks were generated randomly. Number of input vectors 

generated was 4000-6000, which is claimed to be sufficient to train the system. 

• Lippmann and Cunnigham of MIT Lincoln Laboratory (Lippmann and 

Cunningham 2000) conducted a misuse detection model with neural networks, by 

searching attack specific keywords in the network traffic (Figure 3.1.). They used a 

MLP network to detect Unix-host attacks, and attacks to obtain root-privilege on a 
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server. The data that they presented to the neural network consisted of attack-specific 

keyword counts in network traffic. Two neural networks were used in the system, one 

for providing an attack probability and one for classifying attacks. 

 

Figure 3.1. Block diagram of enhanced intrusion detection system. 
 

A two-layer perceptron was designed with k input nodes, 2k hidden nodes and 2 

outputs (normal and attack) and the training algorithm used in the system was 

backpropagation. 

Sniffed network packets were first processed to construct transcripts containing 

all bytes transmitted to and from victim hosts during telnet sessions. These transcripts 

were then processed to get counts of each keyword. This count, which is the first output 

of the system, would be used as reference to provide a probability of an attack in the 

telnet session. In addition to providing an attack probability, this count is also used to 

classify known attacks, thus provide an attack name. 

Using neural network to weight keyword counts of a smaller set of 30 keywords 

lowers the false alarm rate to an acceptable and practical rate of roughly one false alarm 

per day with detection rate of %80. 

• In 2002 Jirapummin, Wattanapongsakorn and Kanthamanon (Jirapumin et al. 

2002) presented an alternative methodology for both visualizing intrusions by using 

self-organizing map and classifying intrusions by using Resilient Propagation Neural 
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Network (RPROP). Their research was focused on detection of TCP SYN flooding and 

port scanning attacks. 

Normal data set, Neptune attack (SYN flooding), Portsweep and Satan attacks 

(port scanning) were selected from KDD Cup 1999 data set. Total of 121.820 training 

patterns were divided equally into 8 sets. Each set is then clustered by a 1.234-unit 

SOM network. For RPROP, 3 layer network is utilized where there were 70 nodes in 

first hidden layer, 12 neurons in second hidden layer and 4 neurons in the output layer. 

The transfer functions for the first hidden layer, second hidden layer and the output 

layer of RPROP were tan-sigmoidal, log-sigmoidal and log-sigmoidal respectively. 

Two different datasets were used for testing purposes. First test set contained 

98.648 data, which was captured from the same network as the training data. Second 

test set contained 126.372 unseen normal and attack data from a different network. 

From the IDS simulation results, 90% detection rate with less than 5% false 

alarm rate was achieved in three selected attack programs. 

• Bivens et al. (Bivens et al. 2002) proposed a neural network model for a 

network-based intrusion detection system. Proposed IDS was an anomaly detection 

system and MLP network was used for detection. System read tcpdump data and sent to 

a preprocessing unit to keep the statistics of the network traffic. System used time-

window method, such that traffic intensities were analyzed at fixed time intervals. It 

was necessary to group similar traffic trends, and therefore preprocessed network traffic 

was sent to a clustering module, in which self-organizing maps were used for clustering 

purposes. Clustered traffic then sent to a normalization module for formatting, and 

output of the normalization module was driven to neural network. 

DARPA 1999 training dataset was used for testing the system. System was 

tested against denial of service attacks, distributed denial of service attacks, and port 

scans. Union of all attacks, system performed detection with 76% false positive and 

with no false negatives. 

• In another study accomplished by Ghosh et al. (Ghost et al. 1999), program 

behaviors were created from system calls and intrusion detection was performed from 

these profiles. An Elman network, which is similar to MLP with additional context 

nodes, was employed to perform classification of short sequences of BSM events. A 

leaky bucket algorithm, which provides some memory of recent events, was used to 

reduce false positive rate. Randomly generated data were used to train the neural 

network to identify normal an anomalous data. Performance of the system was tested 
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with data provided by the DARPA Intrusion Detection Evaluation. With a leak rate of 

0.7, the Elman Network was able to detect 77.3% of all attacks without any false 

alarms. 

• In another study (Zhang et al. 2001), statistical analysis was used in conjunction 

with MLP networks. System is a distributed hierarchical application in the sense that 

system consists of hierarchy of Intrusion Detection Agents (IDAs) at multiple tiers 

where each tier corresponds to different network scope. IDAs are IDS components that 

monitor the activities of a host or a network. 

A diagram of an IDA is illustrated in Fig. 3.2., which consists of the following 

components: the probe, the event preprocessor, the statistical processor, the neural 

network classifier and the post processor. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.2. A diagram of an IDA. 
 

Probe collects network traffic and abstracts it into statistical variables. Event 

preprocessor collects data from probes and other agents and formats it for the statistical 

analyzer. Statistical model compares the data to the previously compiled reference 

model which describes the normal state of the system. A “stimulus vector” is formed 
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and forwarded to the NN. Neural network analyzes the vector and decides whether it is 

anomalous or normal. Post processor generates reports for the agents at higher tiers or it 

may display the results through a user interface. 

Backpropagation , perceptron, perceptron-backpropagation hybrid, fuzzy ART 

MAP, radial-basis function networks with 2-8 hidden nodes were tested. The 

experimental testbed consisting of 11 workstations and 1 server was built by using 

OPNET network simulation software. UDP flooding attack was simulated within the 

testbed. 10.000 records of network traffic were collected, 6000 of which were used for 

training and the other 4000 records were used for testing. The system was trained for 

100 epochs. The results showed that backpropagation and perceptron-backpropagation 

hybrid networks outperformed perceptron, fuzzy ARTMAP and radial-basis function 

networks. 

• In another study (Rhodes et al. 2000), it is proposed to use of self-organizing 

neural networks to recognize anomalies in network data stream.  Unlike from other 

approaches which use self organizing maps to process entire state of a network or 

computer system to detect anomalies, proposed system breaks down the system by 

using collection of more specialized maps. A monitor stack (Figure 3.3.) was 

constructed and each neural network become kind of specialist to recognize normal 

behavior of a protocol and raise an alarm when a deviation from normal profile occurs. 

While each protocol attentive to different parts of network packets, different 

vectorization techniques were employed for each map.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.3. General schematic for the Network Monitor Stack. 
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In the experiment DNS protocol was inspected because of its relatively 

simplicity. Both of the test intrusions were buffer overflow attempt. Of the forty 

packets, first thirty were used to train map and the rest of them was used in testing. Of 

the seven packets transmitted to accomplish the bind4-9-5 exploit, four of the packets 

successfully detected. In addition, system successfully identified rotshb exploit. 

• Cannady (Cannady 1998) developed a network based neural network intrusion 

detection system where detection was achieved on the packet level. Nine of the packet 

characteristics of network data were selected and presented to the MLP network which 

has four fully connected layers. After 3 levels of preprocessing data was normalized, 

data fields were grouped and converted to a neural network readable format. In addition 

every packet was labeled whether the packet is an attack or not. 

Utilized neural network has nine input nodes and two output nodes and number 

of nodes in hidden layer was determined empirically. 10,000 packets, of which 

approximately 1000 were simulated attacks, were collected by RealSecure network 

monitor. Backpropagation algorithm was used to train neural network. 1000 randomly 

selected packets were used to test neural network and the remaining were used to train 

neural network. At the conclusion, root mean square error of 0.0582 was achieved for 

training data, while root mean square error of 0.069 was achieved for test data. 

A brief summary of earlier studies is given in 3.1. 

 

Table 3.1. Summary of Earlier Studies 
 

 Year Data Source NN Structure Test Results 

Ryan et al. 1998 Operating 
System Logs 2-Layer MLP 7% False Positive 

4% False Negative 

Cannady 1998 

Network Packets 
Collected by 
Real Secure 

Network 
Monitor 
Software 

2-Layer MLP 

RMSE of 0.0582 for 
Training Data 

 
RMSE of 0.069 for 

Test Data. 

(cont. on next page) 
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Table 3.1 (cont.) 

Ghosh and 
Schwarztbard 1999 Sun’s BSM 2-Layer MLP 

Anomaly Detection: 
2.2% False Positive 

22.7% False 
Negative 

 
Misuse Detection: 

18.7% False Positive 
9.1% False Negative 

Ghosh et al. 1999 Sun’s BSM Elman Networks 

No False Positives 
22.7% False 

Negative 
 

Rhodes et al. 2000 Network Packets SOM 

Prototype could 
identify packets 
transmitted to 

accomplish bind4-9-
5 and rotshb exploit 

Lippmann 
and 

Cunnigham 
2000 Network Packets 2-Layer MLP 

One False Alarm per 
Day 

20% false Negative 

Zhang et al. 2001 

Network Packets 
Generated by 

OPNET 
Network 

Simulation 
Software 

Backpropagation 
 

Perceptron 
 

Perceptron-
Backpropagaiton 

Hybrid 
 

Fuzzy ART 
MAP 

 
Radial Basis 

Function 

Radial Basis 
Function and 
Backpropagation 
networks with 8 
nodes in hidden 
layer outperformed 
other neural 
networks. 
 
Backpropagation 
network having 8 
nodes in hidden 
layer had RMSE 
value less than 0.05 
and misclassification 
rate less than 00.2. 
 
Radial Basis 
Function network 
having 8 nodes in 
hidden layer had 
RMSE value less 
than 0.05 and 
misclassification 
rate less than 0.1. 

Lee and 
Heinbuch 2001 TCP packets 

Hierarchy of 
Neural 

Networks 
- 

(cont. on next page) 
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Table 3.1 (cont.) 
Jirapummin 

et al. 2002 KDD Cup 1999 
Dataset 3-Layer RPROP 5% False Positive 

10% False Negative 

Bivens et al. 2002 DARPA 1999 
Dataset 

SOM for 
Clustering 

 
MLP for 
Detection 

76% False Positive 
No False Negatives 

 

3.3. Advantages of NN Based IDS 
 

The most important advantage of neural network based intrusion detection 

system is that, system will have generalization ability. From the training examples 

presented during training, neural networks can learn malicious activity flowing through 

the network and can generalize the observed novel activity from past activities used in 

training. 

Instead of following a set of rules specified by human experts, neural networks 

can learn input-output relationships from a given set of training patterns. This is the one 

major advantage of neural networks over rule-based systems. Thus, unlike misuse IDSs, 

neural network based IDSs do not need regular signature updates.  

Without any prior knowledge, neural networks can cluster data which share 

same features. By examining relationships between data patterns, neural networks can 

classify patterns successfully. 

Another advantage in the utilization of a neural network in the detection of 

misuse would be the flexibility that the neural network would provide. A neural 

network is capable of analyzing the data from the network, even if the data is 

incomplete or distorted.  

 

3.4. Disadvantages of NN Based IDS 
 

One of the most major problems with neural network is determining the number 

of hidden neurons and more generally determining the structure of the neural network as 

there is no mathematical method for selection of the neural network structure. Thus, 

various neural networks with different structures should be trained and the structure and 

number of the hidden nodes should be determined empirically by selecting the neural 

networks giving the best performance.  
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As the training set is the one of the major elements affecting the performance of 

the neural network, selecting the training set is a crucial issue. Neural network would 

not be trained, if the training examples are not appropriately selected or the number of 

training examples is insufficient. In addition, a complex structured neural network or 

huge number of training examples can result in long training periods. 

Although neural networks can be trained sufficiently, it is not always guaranteed 

that produced outputs will be perfect or even correct. Output produced by a neural 

network is just an approximation of the desired solution and there will be always certain 

error.  
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CHAPTER 4 

 

METHODOLOGY 

 
This chapter presents in detail the research methodology used to build proposed 

network-based neural network intrusion detection system. In order to build a network-

based neural network intrusion detection system, certain steps should be taken (Figure 

4.1). First step to be taken is collecting data used to train and test neural networks. We 

used 1999 DARPA Intrusion Detection Evaluation dataset to train and test neural 

networks. But number of attack instances is insufficient for training, so attack packets 

were generated in simulation environment. Second step is preprocessing the collected 

data, which is in binary tcpdump format, to a neural network readable format. Third step 

is determining the neural network structure, which is actually determining the number 

of hidden layers, number of hidden nodes in each layer, activation functions used in 

neural networks and training algorithm. Fourth step is training neural networks until a 

certain number of iterations or a certain RMSE value reached. Fifth and the final step is 

testing the neural network. Trained neural networks tested against training dataset in 

order to examine how well trained networks learned the data in the dataset. In addition 

to the training dataset, trained neural networks were tested against dataset which is not 

part of the training process. Aim of this test is to evaluate the generalization ability of 

the neural networks. 

 

Figure 4.1. Steps to be taken in order to build neural network based IDS. 
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 Neural network simulation was written with MATLAB 6.5. The reason for 

selecting MATLAB programming language is the ease of generating, training and 

testing the neural networks with its Neural Network Toolbox. 

 

4.1. Compose Training/Testing Data 
 

As effectiveness of the neural network mainly depends on the training data, 

collecting data for training and testing is a crucial issue. Data can be obtained by one of 

the following three ways: by using real traffic, by using sanitized traffic and by using 

simulated traffic (Mell et al. 2003). 

 The first option to obtain training/testing data is collecting actually real data and 

attacking an organization. Although packets would be real, it was unacceptable to attack 

an organization. In addition to that, privacy of the users in the organization would be 

violated as private e-mails, passwords and user identities would be released. 

In order to overcome security and privacy problems of using real traffic, 

sanitized traffic was proposed to be used by removing any sensitive data from the data 

stream. Then attack data can be inserted into the sanitized traffic. The advantage of this 

approach is that the data can be freely distributed. Nevertheless, the below explained 

problems arise when using this approach. First of all, most of the content of the 

background activity may be removed by the sanitization attempt. Next, it is still possible 

to release sensitive data since it is infeasible to verify large corpus of data. 

The third and the most common way to obtain data is to create a testbed network 

and generate background traffic on this network. In the testbed environment, 

background traffic is generated either by using complex traffic generators modeling 

actual network statistics or by using simpler commercial traffic generators creating 

small number of packets at a high rate. Advantage of this approach is that data can be 

freely distributed as it does not contain any sensitive information. Another advantage of 

this approach is that is guaranteed that generated traffic does not contain any unknown 

attacks as the background traffic is created by simulators. However difficulties exist 

when using this approach too. Firstly, it’s very costly and difficult to create a 

simulation. Next, in order to model various networks, different types of traffic is 

needed. 
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In order to avoid dealing with difficulties of all three approaches, DARPA 1999 

Intrusion Detection Evaluation dataset was used for training/testing data. From the 

attack free first week data, days of Monday, Tuesday and Wednesday were used for 

training and testing purposes. Dataset of Monday contains 1.272.249 TCP and 127.249 

UDP packets. Dataset of Tuesday contains 849.119 TCP and 50.338 UDP packets and 

dataset of Wednesday contains 649.852 TCP and 45.859 UDP packets. However attack 

instances in DARPA 1999 Intrusion Detection Evaluation dataset are not sufficient to 

train the neural network, thus a simulation environment was formed and additional 

malicious traffic was aimed to obtain as explained below. 

Malicious traffic was created in the laboratory. Attacks, which form malicious 

traffic, were selected based on SANS top 10 vulnerabilities list. Simulation environment 

in laboratory contains one Linux Server, one Windows Server, two Windows 

workstations and two Linux workstations. By using network security scanners (e.g. 

Nessus, Shadow Security Scanner) and attack tools, one Linux and one Windows 

workstation were used to generate malicious network traffic in addition to the normal 

traffic. Simulation environment used to generate malicious traffic is given in Figure 4.2. 

 

 
 

Figure 4.2. Simulation environment used to generate malicious traffic. 
 

Two distinct datasets were needed, one for training the neural network, and one 

for testing the neural network. For the training dataset, 9450 network packets were 



 39 

selected from days of Monday and Wednesday from the attack free first week data of 

DARPA 1999 Intrusion Detection Evaluation dataset. In addition to the attack free 

traffic, 971 attack packets were generated within the simulation environment and 

included to the training dataset. For the test dataset, 4233 network packets were selected 

from day of Tuesday from the first week data of DARPA dataset. 73 malicious network 

packets were generated and added to the test dataset. Summary of training and testing 

datasets is given in Figure 4.3. 
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Figure 4.3. Summary of training and testing datasets. 
 

4.2. Preprocess Training/Testing Data 
 

All the data collected from simulation environment and DARPA dataset was in 

the binary tcpdump format. In order to preprocess and then present them to the neural 

network, obtained binary tcpdump files should be converted to a neural network 

readable format. To achieve this goal, an open source intrusion detection tool, Snort, 

was used.  

Snort (WEB_3 2004) is a lightweight network intrusion detection system, 

capable of performing real-time traffic analysis and packet logging on IP networks. Its 

author, Marty Roesch, originally designed Snort to be a personal tool which can be used 

in network traffic analysis and it was originally designed to decode binary tcpdump data 

into a human-readable form. Snort can be used as a sniffer, packet logger, or network 

intrusion detection system. In sniffer mode, Snort captures network packets flowing in a 

shared network and prints the captured network packets to the screen. In packet logger 
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mode, Snort captures packets in a similar sniffing fashion, but logs the captured data 

instead of printing it to the screen. In intrusion detection mode, Snort captures network 

packets like sniffer and logger mod, but applies pre-defined rules on all captured 

packets. If a packet matches a rule, then it is logged or an alert is generated. One of the 

most useful aspects of the Snort is that, it supports various relational databases like 

MySQL, Oracle or SQL Server. Captured packets can be stored in the supported 

databases. ER diagram of the database created by Snort is given in Figure 4.4. 

 

 
Figure 4.4. ER diagram of the database created by Snort. 

(Source: http://www.snort.org/docs/snortdb.png) 
 

Snort version 2.2 with SQL Server support was utilized and configuration file of 

the Snort was configured so that not only all the packets in binary tcpdump files are 

logged to the database but also packets containing attacks were labeled. After all 

network packets in tcpdump files were transferred to the database, stored data must be 

preprocessed before they are presented to the neural network. Three levels of 

preprocessing will be conducted: 
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In the first level of the preprocessing, for each collected packet stored in the 

database, seven characteristics of a packet will be retrieved. The seven elements were 

selected because they are typically present in network data packets and they provide a 

complete description of the information transmitted by the packet (Cannady 

1998).These characteristics are: 

Protocol ID: The protocol associated with event. (TCP=0, UDP=1) 

Source Port: The port number of the source. 

Destination Port: The port number of the destination. 

Source Address: The IP address of the source. 

Destination Address: The IP address of the destination. 

Raw Data Length: The length of the data in the packet. 

Raw Data: The data portion of the packet. 

 Second level of the preprocessing involves converting one of the alphanumeric 

seven packet characteristics (Raw Data) into a numerical representation. This can be 

easily achieved by executing DISTINCT SELECT queries for the characteristic, loading 

results sets to a table and assigning unique integers to records in the result set. 

Third level of preprocessing is selecting six of the original packet characteristics 

(Protocol ID, Source Port, Destination Port, Source Address, Destination Address, Raw 

Data Length) and the unique identifier of the remaining characteristic (Raw Data). In 

addition, an eight element (Attack), which was used to indicate whether the packet was 

an attack or not, was assigned to each record. A sample preprocessed input vector is 

shown in Table 4.1. 

 

Table 4.1. Sample preprocessed input vector. 
 

Protocol 
ID 

Source 
Port 

Destination 
Port 

Source 
Address 

Destination 
Address 

Data ID Raw Data  
Length 

Attack 

0 33694 161 2886758549 2886758500 1 2 1 
0 33695 162 2886758549 2886758500 2 4 0 
1 49345 69 3232235562 4294967295 1 2 0 
1 49345 69 3232235562 4294967295 2 4 1 

 

 Preprocessed training and test data stored in a newly created table and a small 

program written in MATLAB was executed to extract data from database as array of 

vectors, which in turn would be used to train and test the neural networks used in the 

experiments. 
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4.3 Neural Network Structure 
 

As there is no certain mathematical approach for obtaining the optimum number 

of hidden layers, two types of MLP networks, 3-layer MLP networks and 4-layer MLP 

networks, were employed in experiments. Generally neural networks with two hidden 

layers are capable of prediction and adding extra layers commonly yields similar results 

with two hidden layer networks, but their training periods are longer due to the more 

complex structures. Despite this fact, in addition to the 3-layer MLP networks 4-layer 

MLP networks were also utilized in experiments, in order to compare performances of 

3-layer and 4-layer MLPs. For each of these types, two separate neural network sets 

were generated, one of which was trained with backpropagation algorithm with 

momentum while the other set was trained with the Levenberg-Marquardt algorithm. 

Eventually, we generated two sets of 3-layer and two sets of 4-layer MLP networks.  

In addition to the MLP networks, four self-organizing maps were utilized in 

order to examine how well these networks can group the networks packets and whether 

the SOMs can be able to cluster similar attacks. 

Details of MLP and SOM network structures used in experiments are given in 

section 4.3.1 and 4.3.2 respectively. 

 

4.3.1. MLP Networks 

 

MLP networks used to make basic input-output mapping. MLP networks would 

be trained in such way that, they would produce value of 1 if the presented input vector 

is attack and 0 if the presented input vector is normal network packet. 

For all of the MLP networks, independent from the number of hidden layers, the 

number of input and output nodes is equal to the number of network inputs and desired 

outputs respectively. Therefore, input layer of all MLP networks contains seven nodes 

corresponding each network input while output layer contains only one node 

determining whether the presented input vector is an attack (with the value of 1) or not 

(with the value of 0). Hyperbolic tangent sigmoid activation function was used in all 

MLPs.  
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As there is no generic rule to find out the optimum number of hidden nodes 

needed, number of nodes in hidden layers is determined empirically for both 3-layer and 

4-layer MLP networks. 

For the set of 3-layer MLP networks, 25 different MLPs, which were formed by 

the combination of hidden layers with 5, 10, 15 20, 25 nodes, were generated. When a 

neural network is formed, weights between neurons are initialized randomly. As initial 

weight can significantly affect the performance of the neural network, each MLP was 

re-initialized ten times in order to avoid poor performance due to bad initial weights. 

Eventually, two set of 3-layer MLPs, each containing 250 MLP networks, were 

generated. One set was trained with backpropagation algorithm and the other set was 

trained with Levenberg-Marquardt algorithm. 

For the set of 4-layer MLP networks, 125 different MLPs, which were formed 

by the combination of hidden layers with 5, 10, 15 20, 25 nodes, were generated. 

Because of the long training periods, re-initialization process was not conducted. Like 

3-layer MLPs, two sets were generated, one of which was trained with backpropagation 

algorithm and the other set was trained with Levenberg-Marquardt algorithm. 

After the training process, all MLPs were tested against a test dataset, which is 

not part of the training data set and MLP networks which gave the minimum false 

positive and false negative rates was kept. 

 

4.3.2. Self-Organizing Maps 

 

 SOMs are used to classify data, which share similar characteristics. As 

mentioned in chapter two, only input vectors are used in training phase of the SOMs 

and SOMs are able to cluster similar data without giving them correct answers. In our 

research, we proposed to use SOMs in order to cluster normal and attack packets. 

 In our experiments we utilized four SOMs having grid architecture with 8x8 

10x10, 15x15, 20x20 nodes in the feature layer. 
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4.4. Training the Neural Networks 
 

 In the training phase we have both input patterns and desired outputs related to 

each input vector. Aim of the training in MLP networks is minimizing output produced 

by the neural network and the desired output. In order to achieve this goal, weights are 

updated by carrying out certain steps (which is called as the training algorithm). 

When using a supervised learning algorithm (e.g. backpropagation , Levenberg-

Marquardt), training process is usually terminated when the RMSE is reduced to an 

acceptable level. There is no standard for the RMSE, but usually the lower it is, the 

better the classification rate is. But a too low RMSE may result in over training of the 

neural network. This means that neural network loose generalization ability, hence it 

will just detect attacks that are exactly identical to the training data. 

Another criterion for training termination is the number of iterations. When a 

certain number of iterations were reached, the training was stopped, even if the desired 

RMSE was not reached. 

250 3-layer and 125 4-layer MLP networks were trained with gradient descent 

backpropagation algorithm with a momentum rate of 0.5. Maximum number of epochs 

is 1000 and desired RMS was 0.0001.  

250 3-layer and 125 4-layer MLP networks were trained with Levenberg-

Marquardt algorithm. Maximum number of epochs is 50 and desired RMSE was 

0.0001.  

Training of the SOMS is different from MLP networks, as in the training phase 

of the SOMs desired outputs corresponding to the input vectors are not needed. But 

after the training process every node in the feature map should be labeled. 

Training data set contains 10.421 input patterns, of which 971 are attacks. 
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Figure 4.5. A sample training session where performance goal was met in 38 epochs. 
 

4.5. Testing the Neural Networks 
 

After the training is completed, the weights of the neural networks are frozen 

and performance of the neural networks evaluated. Testing the neural networks involves 

two steps, which are verification step and recall (or generalization) step. 

In verification step, neural networks are tested against the data which are used in 

training. Aim of the verification step is to test how well trained neural networks learned 

the training patterns in the training dataset. If a neural network was trained successfully, 

outputs produced by the neural network would be similar to the actual outputs. 

In recall or generalization step, testing is conducted with data which not used in 

training. Aim of the generalization step is to measure generalization ability of the 

trained network Recall data set contains 4306 input pattern, of which 73 are attacks. 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 
 This chapter presents the experimental results obtained by using the neural 

network based intrusion detection system, of which the methodology was already 

explained in the previous chapter. After the training process was completed, testing was 

conducted basically in two steps. In the first step, five sets of trained neural networks 

(3-layer backpropagation networks, 3-layer Levenberg-Marquardt networks, 4-layer 

backpropagation networks, 4-layer Levenberg-Marquardt networks and self-organizing 

maps) were tested against the training dataset, in order to examine how well neural 

networks ‘learned’ the training dataset after the training process. In the second step of 

the testing, trained neural networks were tested against a dataset, which is not a part of 

the training set, in order to examine generalization performance of the trained networks. 

In both testing steps performance of the neural networks was evaluated by examining 

the number of false positives and false negatives that they generated. 

 

5.1. Verification Step 
 

 First step of the testing is the verification, where trained neural networks were 

tested against the training dataset. The aim of this step is to check if the neural networks 

were trained correctly. If the neural networks were trained correctly, neither false 

negatives nor false positives should be observed, at least false negative and false 

positive rates should be at an acceptable level. Training dataset contains 9450 normal 

and 971 attack instances. 

 

5.1.1. 3-Layer Backpropagation Neural Networks 

 

 Number of false positives generated by each of the 3-layer backpropagation 

network after the verification step is given in Figure. 5.1. 10 neural networks were 

generated for each of the neural network architecture. Reason for generating 10 neural 
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networks for each of the neural network architecture is to avoid poor performances due 

to the bad initialization of the neural network weights. 

 

 
 

Figure 5.1. Number of false positives for 3-layer backpropagation networks. 
 

 From the Figure 5.1, it can be said that 3-layer backpropagation networks 

learned the normal network packets within the training dataset quite fairly, as 78 of 250 

3-layer backpropagation networks generated no false positives, whereas the number of 

3-layer backpropagation networks generating less than 10 false positives is 91. There 

are approximately 9800 normal network packets in the training dataset, and most of the 

3-layer backpropagation networks recognized the normal network packets in the 

training dataset. 
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 It can be also seen from Figure 5.1 that, initial values of the weights can 

significantly affect performance of the neural network, as neural networks that have the 

same architecture but different initial weight values show different performances. 

 Another point which should be mentioned is that, increasing number of hidden 

nodes would not improve the performance. For instance, most of the neural networks 

having 7-5-5-1 architecture show better performances than the most of the neural 

networks having 7-15 -25-1 architecture. 

 Another criterion used to determine the performance of the neural networks is 

the number of false negatives, which is the number of the missed attacks. Number of the 

false negatives encountered by the 3-layer backpropagation networks is given in Figure 

5.2. 

 

 
Figure 5.2. Number of false negatives for 3-layer backpropagation networks. 
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 Number of the false negatives encountered by the 3-layer backpropagation 

networks is surprising. Although neural networks learned the normal packets in the 

training dataset quite fairly, they failed to distinguish attack packets in the training 

dataset. There are 971 attack instances in the training dataset, and the neural network 

that showed best performance by mean of false negatives is the one having 7-15-25-1 

architecture and an identity of 6 with 176 false negatives.  

 

5.1.2. 3-Layer Levenberg-Marquardt Neural Networks 

 

 Number of false positives generated by each of the 3-layer Levenberg-

Marquardt network after the verification step is given in Figure 5.3. 

 

 
Figure 5.3. Number of false positives for 3-layer Levenberg-Marquardt networks. 
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 After examining Figure 5.3, it can be said that with some exceptions 3-layer 

Levenberg-Marquardt networks learned the normal packets in the training dataset. 

Number of 3-layer Levenberg-Marquardt networks, which generated no false positives, 

is 92. In addition, 111 of 250 3-layer Levenberg-Marquardt networks generated less 

than 10 false positives. Except for the neural networks having 5 hidden nodes in the first 

hidden layer, all of the other neural networks successfully learned the normal packets in 

the training dataset. In addition, it was observed that, some networks (for instance 

neural network having 7-20-10-1 architecture and an identity of 5) showed poor 

performances, probably due to the bad initialization of the weights. Neural networks 

having 25 hidden nodes in the first hidden layer showed the best performances among 

the other neural networks having different architecture. 

 Number of the false negatives encountered by the 3-layer Levenberg-Marquardt 

networks is given in Figure 5.4. 

 

 
 

Figure 5.4. Number of false negatives for 3-layer Levenberg-Marquardt networks. 
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 False negative results obtained by the 3-layer Levenberg-Marquardt networks 

are promising. Unlike from the 3-layer backpropagation networks, most of the 3-layer 

Levenberg-Marquardt networks successfully distinguished attacks instances in the 

training dataset. 98 of 250 3-layer Levenberg-Marquardt networks generated no false 

negatives. Beyond some instances of the other network architectures, nearly all neural 

networks having 20 or 25 hidden nodes in the first hidden layer produced no false 

negatives. 92 of 250 3-layer Levenberg-Marquardt networks generated less than 10 

false negatives.  

 

5.1.3. 4-Layer Backpropagation Neural Networks 

 

 Number of false positives generated by each of the 4-layer backpropagation 

network after the verification step is given in Figure 5.5. As managing whole neural 

networks would be a troublesome task and training periods would take long, 4-layer 

backpropagation networks were not re-initialized. 

 

 
 

Figure 5.5. Number of false positives for 4-layer backpropagation networks. 
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 From Figure 5.5, it can be said that 4-layer backpropagation networks can fairly 

distinguish normal network packets in the training dataset. 32 of 125 4-layer 

backpropagation networks successfully identified normal packets in the training dataset 

without generating any false positives. Additionally, 74 of 125 4-layer Levenberg-

Marquardt networks generated less than 10 false positives. 

 Number of false positives encountered after testing 4-layer backpropagation 

networks against the training dataset is given in Figure 5.6. 

 

 
 

Figure 5.6. Number of false negatives for 4-layer backpropagation networks. 
 

 It is observed that, like 3-layer backpropagation networks, 4-layer 

backpropagation networks failed to learn the attack instances in the training dataset. 
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Number of false negatives is relatively high with respect to the 971 attack instances in 

the training dataset. Neural network with architecture of 7-25-05-25-1 showed the best 

performance with 86 false negatives. 

 

5.1.4. 4-Layer Levenberg-Marquardt Neural Networks 

 

 Numbers of false positives generated by 4-layer Levenberg-Marquardt networks 

after presenting training dataset is given in Figure 5.7. 

 

 
 

Figure 5.7. Number of false positives for 4-Layer Levenberg-Marquardt networks. 
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 It can be seen from the Figure 5.7, most of the 4-layer Levenberg-Marquardt 

networks could successfully recognize normal attack packets in the training dataset. 79 

of 125 4-layer Levenberg-Marquardt networks successfully identified normal packets in 

the training dataset without generating any false positive. 31 of 125 4-layer Levenberg-

Marquardt networks generated less than 10 false negatives. However, 7-5-5-5-1 and 7-

25-20-15-1 networks failed to recognize normal packets in the training dataset and 

flagged all normal packets as attack. 

 Number of false negatives generated by 4-layer Levenberg-Marquardt networks 

is given in Figure 5.8. 

 

 
 

Figure 5.8. Number of false negatives for 4-layer Levenberg-Marquardt networks. 
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 All of the 4-layer Levenberg-Marquardt networks but neural networks of 7-5-

10-10-1, 7-5-20-25-1, 7-10-5-20-1, 7-15-5-5-1, 7-15-5-25-1, 7-25-5-5-1 could learn the 

attack packets in the training dataset. 60 of 125 4-layer Levenberg-Marquardt networks 

generated no false negatives when they were tested against the training dataset. 46 of 

125 4-layer Levenberg-Marquardt networks generated less than 10 false negatives. 

 

5.1.5. SOMs 

 

 In our study, four types of SOMs with 8x8, 10x10, 15x15 and 20x20 nodes in 

the feature layer were trained. The aim of using SOMs in this research is to train SOMs 

such that every node in the feature layer would represent an attack type. In verification 

step, every training example is presented to the SOMs and which training example 

activates which output node in the feature map was inspected. By doing so every output 

node in the feature map was labeled.  

 Although our aim for using SOMs in the field of intrusion detection is to classify 

attacks, at the end of the verification step, it is observed that all of the four SOMs failed 

to classify attack instances in the training dataset, but instead it was seen that similar 

attacks were grouped together. As a result, SOMs were used to distinguish normal and 

attack packets instead of classifying attacks. 

 For the 8x8 SOM, attacks in the training dataset were distributed among the 

output nodes of 35, 42 56 57 58 64. 8x8 SOM gave no false negatives in verification 

step, but 9450 of normal packets, 3979 of them were labeled incorrectly as attack. 

 For the 10x10 SOM, attacks in the training dataset were distributed among the 

output nodes of 9, 10, 55, 65, 66, 67, 74 and 97. 10x10 SOM gave also no false 

negatives, but 9450 of normal packets, 1127 of them were labeled incorrectly as attack. 

 For the 15x15 SOM, attacks in the training dataset were distributed among the 

output nodes of 35, 78, 95, 96, 110, 11, 179, 180, 194, 209 and 225. 15x15 SOM gave 

no false negatives, but 1768 of the normal packets were labeled incorrectly as attack. 

 For the 20x20 SOM, attacks in the training dataset were distributed among the 

output nodes of 2, 91, 92, 108, 109, 110, 11, 130, 131, 149, 151, 361, 362, 363 and 381. 

20x20 SOM gave also no false negatives, but 750 of the normal packets were labeled 

incorrectly as attack. 
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5.2. Generalization Step 
 

 In the generalization step trained networks were tested against a dataset, which 

is not part of the training dataset. Aim of this step is to see how well trained networks 

would distinguish unknown normal and attack packets in the test dataset. In this step 

generalization ability of the trained networks would be evaluated, as trained network 

would decide whether an unknown packet is an attack or not by generalizing known 

packets learned in training process. There are 4233 normal and 73 attack packets in the 

test dataset. 

 

5.2.1. 3-Layer Backpropagation Neural Networks 

 

 Number of false positives generated by each of the 3-layer backpropagation 

network after the verification step is given in Figure 5.9. 

 

 
 

Figure 5.9. Number of false positives for 3-layer backpropagation networks. 
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 It is observed from the Figure 5.9 that, of the 250 trained 3-layer 

backpropagation networks, 181 of them could successfully generalize test dataset from 

the training dataset. Rest of the 69 3-layer backpropagation networks were not trained 

correctly and they flagged all normal network packets as attack. 

 Number of the false negatives encountered by the 3-layer backpropagation 

networks is given in Figure 5.10. 

 

 
 

Figure 5.10. Number of false negatives for 3-layer backpropagation networks. 
 

 It can be seen from the Figure 5.10, most of the 3-layer backpropagation failed 

to catch attacks in the test dataset. Only a few numbers of 3-layer backpropagation 
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networks, namely, 1st and 7th networks of 7-5-10-1 architecture, 5th network of the 7-15-

15-1 architecture, 10th network of the 7-15-20-1 architecture, 10th network of the 7-15-

25-1 architecture,7th network of the 7-20-5-1 architecture, 10th network of the 7-20-25-1 

architecture and 10th network of the 7-25-20-1 architecture, could successfully identify 

attacks in the test dataset with no false negatives. 

 

5.2.2. 3-Layer Levenberg-Marquardt Neural Networks 

 

 Number of false positives generated by each of the 3-layer Levenberg-

Marquardt network after the verification step is given in Figure 5.11. 

 

 
 

Figure 5.11. Number of false positives for 3-layer Levenberg-Marquardt networks. 
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 119 of the 250 3-alyer Levenberg-Marquardt networks could successfully 

identify normal packets in the test dataset without giving any false positives. The rest of 

the 131 3-layer Levenberg-Marquardt networks failed to recognize normal packets in 

the test dataset, as they labeled all normal packets as attack. 

 Number of the false negatives encountered by the 3-layer Levenberg-Marquardt 

networks is given in Figure 5.12. 

 

 
 

Figure 5.12. Number of false negatives for 3-layer Levenberg-Marquardt networks. 
 

 It can be seen from Figure 5.12, 41 of 250 3-layer Levenberg-Marquardt 

networks, which have different architectures, successfully recognized the attack patterns 

in the test dataset without generating any false negatives.  
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5.2.3. 4-Layer Backpropagation Neural Networks 

 

 Number of false positives generated when test dataset was presented to the 4-

layer backpropagation networks is given in Figure 5.13. 

 

 
 

Figure 5.13. Number of false positives for 4-layer backpropagation networks. 
 

 Results show us that, 98 of 250 4-layer backpropagation networks could 

successfully identify normal packets in the dataset without giving any false positives. 

But performances of the rest of 152 4-layer backpropagation networks are poor, as all of 

them flagged normal packets in the test dataset as attack. 
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 Number of false negatives generated when test dataset presented to the 4-layer 

backpropagation networks is given in Figure 5.14. 

 

 
 

Figure 5.14. Number of false negatives for 4-layer backpropagation networks. 
 

 Unlike from the performance in false positive rates, most of the 4-layer 

backpropagation networks showed poor performances in the context of number of false 

negatives. Only five 4-layer backpropagation networks, namely neural networks having 

the architectures of 7-10-20-05-1, 7-15-05-15-1, 7-15-25-05-1, 7-20-15-15-1, 7-25-05-

25-1, could successfully detect all attacks in the test dataset. 

 

5.2.4. 4-Layer Levenberg-Marquardt Neural Networks 

 

 Number of false positives generated when test dataset is presented to the 4-layer 

Levenberg-Marquardt algorithm is given in Figure 5.15.  
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Figure 5.15. Number of false positives for 4-layer Levenberg-Marquardt networks. 
 

 Examination of the Figure 5.15 showed us that, 60 of 250 networks could 

successfully identify normal packets in the test dataset without generating any false 

positives. Rest of the 165 networks labeled all normal packets in the test dataset as 

attack. 

 Number of false negatives encountered by 4-layer Levenberg-Marquardt 

networks when test dataset is presented is given in Figure 5.16. 
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Figure 5.16. Number of false negatives for 4-layer Levenberg-Marquardt networks. 
 

 Results of the experiments showed us that, 16 of 125 4-layer Levenberg-

Marquardt networks could successfully distinguish attack packets in the test dataset 

without giving any false negatives. 

 

5.2.5. SOMs 

 

 In the generalization step, in the context of false negatives all of the four SOMs 

performed well, as none of them generated false negatives. Number of false positives 

generated among 4233 normal packets, SOMs having 8x8, 10x10, 15x15, 20x20 nodes 

in feature layer generated 1845, 819, 830 and 332 false positives respectively.  
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5.3. Analysis 
 

 Although many trained neural networks could successfully distinguish attack 

and normal packets in the either training dataset or test dataset, number of trained 

networks, which could successfully distinguish normal and attack packets in both 

training and test dataset, is few. 

 None of the trained 3-layer and 4-layer backpropagation networks could 

successfully identify normal and attack instances in both of the training dataset and test 

dataset. Although some of them successfully identify attacks and normal packets in 

training dataset and some of them successfully identify attack and normal packets in the 

test dataset set, none of them achieved to identify all attack and normal packets in both 

of the training and test dataset. 

 Similar results were obtained for 3-layer and 4-layer Levenberg-Marquardt 

networks. Like backpropagation networks, many of the Levenberg-Marquardt networks 

could successfully distinguish attack and normal packets either in training dataset or in 

test dataset. However, number of Levenberg-Marquardt networks, which could 

successfully distinguish attack and normal packets in both training and test dataset, is 

too low. Among 250 3-layer Levenberg-Marquardt networks, number of neural 

networks, which could successfully identify all attacks in both datasets, is four. These 

networks are: 6th network of the 7-10-25-1 architecture, 5th network of the 7-15-25-1 

architecture, 9th network of the 7-20-25-1 architecture, 5th network of the 7-20-20-1 

architecture. There are five 4-layer Levenberg-Marquardt networks, which could 

successfully distinguish attack and normal packets both in training dataset and test 

dataset. These networks are neural networks having the architectures of 7-15-15-5-1, 7-

15-10-20-1, 7-25-20-20-1, 7-25-20-25-1 and 7-20-25-15-1. 

 Results of the SOMs’ experiments showed us that, although all SOMs failed to 

classify attack types in the training dataset, they successfully identified attacks from 

normal packets in training and test datasets. It was observed that, attacks in the datasets 

were distributed among few output nodes. All of the SOMs could successfully identify 

attacks without generating any false negatives in both of the two test steps. The SOM 

having 20x20 nodes in feature map outperformed other SOMs having different 

architectures with generating 750 and 332 false positives when tested against training 

and test dataset respectively. 
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5.4. Discussion 
 

 After the examination of the experimental results, it is observed that many 

networks failed to distinguish attack and normal packets in training dataset, which is in 

turn resulted in high false positive and false negative rates. This is due to the fact that, 

these networks could not achieve to reach desired error rate of 0.0001 in given iterations 

(1000 for backpropagation algorithm and 50 for Levenberg-Marquardt algorithm), 

hence they failed to learn normal and/or attack packets in the training datasets. As these 

networks could not be trained correctly, they also failed to distinguish normal and attack 

packets in the test dataset. 

 It is also observed that, although some neural networks were trained correctly 

and they could successfully recognize normal and attack packets in the training dataset, 

they failed to distinguish attack and/or normal packets in the test dataset. This is due to 

the fact that, these networks were over-trained; hence they could not generalize packets 

in test dataset from learned packets in training dataset. 

 It is seen that, assignment of initial weight values can significantly affect the 

performance of the neural networks, as neural networks having same architectures 

showed different performances due to the different initial weight values. 

 It is worth to mention that, we found out increasing the number of hidden layers 

may not cause an increase in performance, as four 3-layer Levenberg-Marquardt 

networks achieved to distinguish attack and normal packets in both training and test 

dataset. But we experienced that, training periods of the 4-layer networks are longer 

than the 3-layer networks due to their more complex structures. 

 None of the backpropagation networks could successfully identify attacks and/or 

normal packets in both tests, while nine Levenberg-Marquardt networks could 

successfully distinguishes normal and attack packets in both tests. This is due to the fact 

that, Levenberg-Marquardt training algorithm is faster than backpropagation algorithm 

and Levenberg-Marquardt networks were trained more accurately. 

 All trained SOMs could successfully identify attack instances in training and test 

dataset. It was observed that, increasing number of nodes in feature map improves false 

positive rates. 
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 CHAPTER 6 

 

CONCLUSION 

 
In this study a network-based neural network intrusion detection system was 

presented. The main problem with current IDSs is that they produce many false alarms. 

In addition to that, writing rules or signatures is not an easy task and can be time 

consuming. The purpose of this study was to develop a neural network based intrusion 

detection system in order to decrease false positive and false negative rates as neural 

networks can generalize unknown network packets from known ones. Additionally, 

with using neural networks writing rules for every attack and regular updating of the 

attack signatures can be avoided. 

Two training algorithms; backpropagation and Levenberg-Marquardt algorithm, 

were used in the training of neural networks. For each of these training algorithms a 3-

layer and a 4-layer MLP network sets were generated. As there is no rule for 

determining the optimum number of nodes in hidden layer, variety of MLP networks, 

each of which has different number of nodes in hidden layer(s), were generated and the 

MLP networks, which performed best in testing step, was kept and the others were 

discarded. 

Tests were conducted in two steps. In the first step trained networks were tested 

against the training dataset to see how well trained MLP networks learned the training 

set. In the second step of the testing, trained MLP networks tested against a dataset, 

which is not part of the training dataset, to see generalization ability of the trained 

networks. 

Analysis of the experimental results show us that, both 3-layer and 4-layer 

backpropagation networks failed to distinguish normal and attack packets either in 

training dataset or in test dataset. This is due to the fact that, some of the 

backpropagation networks could not be trained correctly and showed poor performances 

in the test against training dataset whereas some of them were over-trained, hence could 

not generalize unknown packets from known ones and showed poor performances in the 

test against test dataset. We also observed that, a few number of MLP networks of 3-
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layer and 4-layer Levenberg-Marquardt networks achieved to identify normal and attack 

packets in training and test dataset. 

SOMs failed to classify attacks in the experiments, but they performed well 

when identified attack instances in training and test datasets. 

 Nine of the trained Levenberg-Marquardt networks gave no false positives and 

false negatives and outperformed similar studies which were summarized in Table 3.1. 

In study, it is observed that, appropriately trained neural networks can learn 

intrusive and non-intrusive network packets and can distinguish normal and attack 

packets in an unseen dataset. 

As future work, different characteristics of the network packet may be selected 

in addition to the seven characteristics. Additionally, new attacks may be added to the 

training dataset. 
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APPENDIX A 

 

LIST OF THE SELECTED VULNERABILITIES 

 
 Vulnerabilities selected among top 10 vulnerabilities declared by SANS Institute 

are given below. Additionally description of the vulnerability, which is taken from 

Internet site (WEB_4 2005) of common Vulnerabilities and Exposures (CVE) , tool 

used to exploit the vulnerability and the Snort signature identity of the generated attack 

are also given below. Since more than one attack may be generated to exploit 

vulnerability, there may be two or more Snort signature identities associated with each 

attack generated. 

 
CVE Name CVE-1999-0002 

Description 
Buffer overflow in NFS mountd gives root access to remote 
attackers, mostly in Linux systems� 

Snort Signature ID 579 
Tool used Nessus 

 
CVE Name CVE-1999-0003 

Description Execute commands as root via buffer overflow in Tooltalk 
database server (rpc.ttdbserverd). 

Snort Signature ID 558 
Tool used Nessus 

 
CVE Name CVE-1999-0021 

Description Arbitrary command execution via buffer overflow in 
Count.cgi (wwwcount) cgi-bin program. 

Snort Signature ID 1149 
Tool used Nessus 

 
CVE Name CVE-1999-0066 

Description 
The CGI 'AnyForm2' is installed. Old versions of this CGI 
have a well known security flaw that lets anyone execute 
arbitrary commands with the privileges of the http daemon. 

Snort Signature ID 892 
Tool used Nessus 

 
CVE Name CVE-1999-0067 

Description CGI phf program allows remote command execution through 
shell metacharacters. 

Snort Signature ID 1762 
Tool used Nessus 
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CVE Name CVE-1999-0070 
Description test-cgi program allows an attacker to list files on the server. 

Snort Signature ID 835 
Tool used Nessus 

 
CVE Name CVE-1999-0146 

Description The campas CGI program provided with some NCSA web 
servers allows an attacker to read arbitrary files. 

Snort Signature ID 847 
Tool used Nessus 

 
CVE Name CVE-1999-0172 

Description FormMail CGI program allows remote execution of 
commands. 

Snort Signature ID 884 
Tool used Nessus 

 
CVE Name CVE-1999-0174 

Description The view-source CGI program allows remote attackers to 
read arbitrary files via a .. (dot dot) attack. 

Snort Signature ID 849, 1482 
Tool used Nessus 

 
CVE Name CVE-1999-0191 

Description 

The CGI /scripts/tools/newdsn.exe is present. This CGI 
allows any attacker to create files anywhere on your system if 
your NTFS permissions are not tight enough, and can be used 
to overwrite DSNs of existing databases. 

Snort Signature ID 1024 
Tool used Nessus 

 
CVE Name CVE-1999-0208 

Description rpc.ypupdated (NIS) allows remote users to execute arbitrary 
commands. 

Snort Signature ID 661 
Tool used Nessus 

 
CVE Name CVE-1999-0237 

Description 
guestbook.pl and guestbook.cgi have a well known security 
flaw that lets anyone execute arbitrary commands with the 
privileges of the http daemon. 

Snort Signature ID 1597, 1140 
Tool used Nessus 

 
CVE Name CVE-1999-0260 

Description The jj CGI program allows command execution via shell 
metacharacters. 
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Snort Signature ID 1174 
Tool used Nessus 

 
CVE Name CVE-1999-0262 

Description faxsurvey CGI script on Linux allows remote command 
execution via shell metacharacters. 

Snort Signature ID 857 
Tool used Nessus 

 
CVE Name CVE-1999-0264  

Description 
The 'htmlscript' cgi is installed. This CGI has well known 
security flaw that lets anyone read arbitrary files with the 
privileges of the http daemon. 

Snort Signature ID 826 
Tool used Nessus 

 
CVE Name CVE-1999-0266 

Description The info2www CGI script allows remote file access or remote 
command execution. 

Snort Signature ID 827 
Tool used Nessus 

 
CVE Name CVE-1999-0278  

Description 
It is possible to get the source code of the remote ASP scripts 
by appending ::$DATA at the end of the request (like GET 
/default.asp::$DATA). 

Snort Signature ID 975 
Tool used  Nessus 

 
CVE Name CAN-1999-0509 

Description 
Perl, sh, csh, or other shell interpreters are installed in the cgi-
bin directory on a WWW site, which allows remote attackers 
to execute arbitrary commands. 

Snort Signature ID 832, 862, 865, 868, 872, 877, 885, 1309, 1648, 2649 
Tool used Nessus, Nikto 

 
CVE Name CAN-1999-0517 

Description An SNMP community name is the default (e.g. public), null, 
or missing. 

Snort Signature ID 1411, 1893 
Tool used Nessus 

 
CVE Name CAN-1999-0736 

Description The showcode.asp sample file in IIS and Site Server allows 
remote attackers to read arbitrary files. 

Snort Signature ID 1037 
Tool used Nessus 

 
CVE Name CVE-1999-1011 
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Description 

The Remote Data Service (RDS) DataFactory component of 
Microsoft Data Access Components (MDAC) in IIS 3.x and 
4.x exposes unsafe methods, which allows remote attackers to 
execute arbitrary commands. 

Snort Signature ID 1023 
Tool used Nessus 

 
CVE Name CAN-1999-1376 

Description 
There might be a buffer overflow in the remote 
fpcount.exe cgi. An attacker may use it to execute arbitrary 
code on this host. 

Snort Signature ID 1012, 1013 
Tool used Nessus 

 
CVE Name CVE-2000-0208 

Description 
The htdig (ht://Dig) CGI program htsearch allows remote 
attackers to read arbitrary files by enclosing the file name 
with backticks ( )̀ in parameters to htsearch. 

Snort Signature ID 1600, 1601, 1602 
Tool used Nessus 

 
CVE Name CVE-2000-0287 

Description 
The BizDB CGI script bizdb-search.cgi allows remote 
attackers to execute arbitrary commands via shell 
metacharacters in the dbname parameter. 

Snort Signature ID 1535 
Tool used Nessus 

 
CVE Name CVE-2000-0778 

Description 

This host is running the Microsoft IIS web server. This web 
server contains a configuration flaw that allows the retrieval 
of the global.asa file. This file may contain sensitive 
information such as database passwords, internal addresses, 
and web application configuration options. This vulnerability 
may be caused by a missing ISAPI map of the .asa extension 
to asp.dll. 

Snort Signature ID 1016 
Tool used Nessus 

 
CVE Name CAN-2000-0832 

Description Htgrep CGI program allows remote attackers to read arbitrary 
files by specifying the full pathname in the hdr parameter. 

Snort Signature ID 1207, 1615 
Tool used Nessus 

 
CVE Name CAN-2000-1081 

Description 
The xp_displayparamstmt function in SQL Server and 
Microsoft SQL Server Desktop Engine (MSDE) does not 
properly restrict the length of a buffer before calling the 
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srv_paraminfo function in the SQL Server API for Extended 
Stored Procedures (XP), which allows an attacker to cause a 
denial of service or execute arbitrary commands, aka the 
"Extended Stored Procedure Parameter Parsing" 
vulnerability. 

Snort Signature ID 974 
Tool used xp_displayparamstmt.exe 

 
 

CVE Name CAN-2000-1082 

Description 

The xp_enumresultset function in SQL Server and Microsoft 
SQL Server Desktop Engine (MSDE) does not properly 
restrict the length of a buffer before calling the srv_paraminfo 
function in the SQL Server API for Extended Stored 
Procedures (XP), which allows an attacker to cause a denial 
of service or execute arbitrary commands, aka the "Extended 
Stored Procedure Parameter Parsing" vulnerability. 

Snort Signature ID 780 
Tool used xp_enumresultset .exe 

 
CVE Name CAN-2000-1083 

Description 

The xp_showcolv function in SQL Server and Microsoft SQL 
Server Desktop Engine (MSDE) does not properly restrict the 
length of a buffer before calling the srv_paraminfo function in 
the SQL Server API for Extended Stored Procedures (XP), 
which allows an attacker to cause a denial of service or 
execute arbitrary commands, aka the "Extended Stored 
Procedure Parameter Parsing" vulnerability. 

Snort Signature ID 705 
Tool used xp_showcolv.exe 

 
CVE Name CAN-2000-1084 

Description 

The xp_updatecolvbm function in SQL Server and Microsoft 
SQL Server Desktop Engine (MSDE) does not properly 
restrict the length of a buffer before calling the srv_paraminfo 
function in the SQL Server API for Extended Stored 
Procedures (XP), which allows an attacker to cause a denial 
of service or execute arbitrary commands, aka the "Extended 
Stored Procedure Parameter Parsing" vulnerability. 

Snort Signature ID 701 
Tool used xp_updatecolvbm.exe 

 
CVE Name CAN-2000-1085 

Description 

The xp_peekqueue function in Microsoft SQL Server 2000 
and SQL Server Desktop Engine (MSDE) does not properly 
restrict the length of a buffer before calling the srv_paraminfo 
function in the SQL Server API for Extended Stored 
Procedures (XP), which allows an attacker to cause a denial 
of service or execute arbitrary commands, aka the "Extended 
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Stored Procedure Parameter Parsing" vulnerability. 
Snort Signature ID 760 

Tool used xp_peekqueue.sql / xp_peekqueue .exe 
 

CVE Name CAN-2000-1086 

Description 

The xp_printstatements function in Microsoft SQL Server 
2000 and SQL Server Desktop Engine (MSDE) does not 
properly restrict the length of a buffer before calling the 
srv_paraminfo function in the SQL Server API for Extended 
Stored Procedures (XP), which allows an attacker to cause a 
denial of service or execute arbitrary commands, aka the 
"Extended Stored Procedure Parameter Parsing" 
vulnerability. 

Snort Signature ID 699 
Tool used xp_printstatements .exe 

 
CVE Name CAN-2000-1087 

Description 

The xp_proxiedmetadata function in Microsoft SQL Server 
2000 and SQL Server Desktop Engine (MSDE) does not 
properly restrict the length of a buffer before calling the 
srv_paraminfo function in the SQL Server API for Extended 
Stored Procedures (XP), which allows an attacker to cause a 
denial of service or execute arbitrary commands, aka the 
"Extended Stored Procedure Parameter Parsing" 
vulnerability. 

Snort Signature ID 707 
Tool used xp_proxiedmetadata.exe 

 
CVE Name CAN-2000-1209 

Description 

The "sa" account is installed with a default null password on 
(1) Microsoft SQL Server 2000, (2) SQL Server 7.0, and (3) 
Data Engine (MSDE) 1.0, including third party packages that 
use these products such as (4) Tumbleweed Secure Mail 
(MMS) (5) Compaq Insight Manager, and (6) Visio 2000, 
which allows remote attackers to gain privileges, as exploited 
by worms such as Voyager Alpha Force and Spida. 

Snort Signature ID 688 
Tool used Nessus 

 
CVE Name CVE-2001-0236 

Description 
Buffer overflow in Solaris snmpXdmid SNMP to DMI 
mapper daemon allows remote attackers to execute arbitrary 
commands via a long "indication" event. 

Snort Signature ID 1279 
Tool used Nessus 

 
CVE Name CVE-2001-0241 

Description Buffer overflow in Internet Printing ISAPI extension in 
Windows 2000 allows remote attackers to gain root privileges 
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via a long print request that is passed to the extension through 
IIS 5.0. 

Snort Signature ID 971 
Tool used CVE-2001-0241.pl 

 
CVE Name CVE-2001-0333 

Description 

When IIS receives a user request to run a script, it renders the 
request in a decoded canonical form, then performs security 
checks on the decoded request. A vulnerability results 
because a second, superfluous decoding pass is performed 
after the initial security checks are completed. Thus, a 
specially crafted request could allow an attacker to execute 
arbitrary commands on the IIS Server. 

Snort Signature ID 970 
Tool used Nessus 

 
CVE Name CVE-2001-0717 

Description 

Format string vulnerability in ToolTalk database server 
rpc.ttdbserverd allows remote attackers to execute arbitrary 
commands via format string specifiers that are passed to the 
syslog function. 

Snort Signature ID 588 
Tool used Nessus 

 
CVE Name CVE-2001-0779 

Description 
Buffer overflow in rpc.yppasswdd (yppasswd server) in 
Solaris 2.6, 7 and 8 allows remote attackers to gain root 
access via a long username. 

Snort Signature ID 2025 
Tool used Nessus 

 
CVE Name CAN-2002-0012 

Description 

Vulnerabilities in a large number of SNMP implementations 
allow remote attackers to cause a denial of service or gain 
privileges via SNMPv1 trap handling, as demonstrated by the 
PROTOS c06-SNMPv1 test suite. NOTE: It is highly likely 
that this candidate will be SPLIT into multiple candidates, 
one or more for each vendor. This and other SNMP-related 
candidates will be updated when more accurate information is 
available. 

Snort Signature ID 1412, 1413, 1417, 1418, 1419, 1420, 1421 
Tool used Nessus 

 
CVE Name CVE-2002-0033 

Description 
Heap-based buffer overflow in cfsd_calloc function of Solaris 
cachefsd allows remote attackers to execute arbitrary code via 
a request with a long directory and cache name. 

Snort Signature ID 1746 
Tool used Nessus 
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CVE Name CAN-2002-0071 

Description 

Buffer overflow in the ism.dll ISAPI extension that 
implements HTR scripting in Internet Information Server 
(IIS) 4.0 and 5.0 allows attackers to cause a denial of service 
or execute arbitrary code via HTR requests with long variable 
names. 

Snort Signature ID 1618, 1807 
Tool used Nessus 

 
CVE Name CAN-2002-0073 

Description 

The FTP service in Internet Information Server (IIS) 4.0, 5.0 
and 5.1 allows attackers who have established an FTP session 
to cause a denial of service via a specially crafted status 
request containing glob characters. 

Snort Signature ID 1777 
Tool used Nessus 

 
CVE Name CAN-2002-0079 

Description 

Buffer overflow in the chunked encoding transfer mechanism 
in Internet Information Server (IIS) 4.0 and 5.0 Active Server 
Pages allows attackers to cause a denial of service or execute 
arbitrary code. 

Snort Signature ID 1618, 1807 
Tool used Nessus 

 
CVE Name CAN-2002-0364 

Description 

Buffer overflow in the chunked encoding transfer mechanism 
in IIS 4.0 and 5.0 allows attackers to execute arbitrary code 
via the processing of HTR request sessions, aka "Heap 
Overrun in HTR Chunked Encoding Could Enable Web 
Server Compromise". 

Snort Signature ID 1806 
Tool used Nessus 

 
CVE Name CVE-2002-0392 

Description 

Apache 1.3 through 1.3.24, and Apache 2.0 through 2.0.36, 
allows remote attackers to cause a denial of service and 
possibly execute arbitrary code via a chunk-encoded HTTP 
request that causes Apache to use an incorrect size. 

Snort Signature ID 1807 
Tool used Nessus 

 
CVE Name CAN-2002-0421 

Description 

IIS 4.0 allows local users to bypass the "User cannot change 
password" policy for Windows NT by directly calling .htr 
password changing programs in the /iisadmpwd directory, 
including (1) aexp2.htr, (2) aexp2b.htr, (3) aexp3.htr , or (4) 
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aexp4.htr. 
Snort Signature ID 1487 

Tool used Nessus 
 

CVE Name CAN-2002-0649 

Description 

Multiple buffer overflows in SQL Server 2000 Resolution 
Service allow remote attackers to cause a denial of service or 
execute arbitrary code via UDP packets to port 1434 in which 
(1) a 0x04 byte causes the SQL Monitor thread to generate a 
long registry key name, or (2) a 0x08 byte with a long string 
causes heap corruption. 

Snort Signature ID 2050 
Tool used Nessus 

 
CVE Name CAN-2002-0682 

Description 

Cross-site scripting vulnerability in Apache Tomcat 4.0.3 
allows remote attackers to execute script as other web users 
via script in a URL with the /servlet/ mapping, which does 
not filter the script when an exception is thrown by the 
servlet. 

Snort Signature ID 1827 
Tool used Nessus 

 
CVE Name CAN-2002-1142 

Description 

Heap-based buffer overflow in the Remote Data Services 
(RDS) component of Microsoft Data Access Components 
(MDAC) 2.1 through 2.6, and Internet Explorer 5.01 through 
6.0, allows remote attackers to execute code via a malformed 
HTTP request to the Data Stub. 

Snort Signature ID 1970 
Tool used Nessus 

 
CVE Name CAN-2002-1232 

Description 

Memory leak in ypdb_open in yp_db.c for ypserv before 2.5 
in the NIS package 3.9 and earlier allows remote attackers to 
cause a denial of service (memory consumption) via a large 
number of requests for a map that does not exist. 

Snort Signature ID 590 
Tool used Nessus 

 
CVE Name CAN-2003-0028 

Description 

Integer overflow in the xdrmem_getbytes() function, and 
possibly other functions, of XDR (external data 
representation) libraries derived from SunRPC, including 
libnsl, libc, glibc, and dietlibc, allows remote attackers to 
execute arbitrary code via certain integer values in length 
fields, a different vulnerability than CAN-2002-0391. 

Snort Signature ID 2092 
Tool used Nessus 
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CVE Name CAN-2003-0109 

Description 
Buffer overflow in ntdll.dll, as used by WebDAV on 
Windows 2000, allows remote attackers to execute arbitrary 
code.via a long request to IIS 5.0. 

Snort Signature ID 2091 
Tool used Nessus  

 
CVE Name CAN-2003-0118 

Description 

SQL injection vulnerability in the Document Tracking and 
Administration (DTA) website of Microsoft BizTalk Server 
2000 and 2002 allows remote attackers to execute operating 
system commands via a request to (1) rawdocdata.asp or (2) 
RawCustomSearchField.asp containing an embedded SQL 
statement. 

Snort Signature ID 2133 
Tool used Nessus 

 
CVE Name CAN-2003-0227 / CAN-2003-0349 

Description 

Some versions of IIS shipped with a default file, nsiislog.dll, 
within the /scripts directory. Nessus has determined that the 
remote host has the file installed.  The NSIISLOG.dll CGI 
may allow an attacker to execute arbitrary commands on this 
host, through a buffer overflow. 

Snort Signature ID 2129 
Tool used Nessus 

 
CVE Name CAN-2003-0377 

Description 

SQL injection vulnerability in the web-based administration 
interface for iisPROTECT 2.2-r4, and possibly earlier 
versions, allows remote attackers to insert arbitrary SQL and 
execute code via certain variables, as demonstrated using the 
GroupName variable in SiteAdmin.ASP. 

Snort Signature ID 2130 
Tool used Nikto, Shadow Security Scanner 

 
CVE Name CAN-2003-0605 

Description 

The RPC DCOM interface in Windows 2000 SP3 and SP4 
allows remote attackers to cause a denial of service (crash), 
and local attackers to use the DoS to hijack the epmapper pipe 
to gain privileges, via certain messages to the 
__RemoteGetClassObject interface that cause a NULL 
pointer to be passed to the PerformScmStage function. 

Snort Signature ID 2251 
Tool used Nessus 

 
CVE Name CAN-2003-0818 

Description Multiple integer overflows in Microsoft ASN.1 library 
(MSASN1.DLL), as used in LSASS.EXE, CRYPT32.DLL, 
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and other Microsoft executables and libraries on Windows 
NT 4.0, 2000, and XP, allow remote attackers to execute 
arbitrary code via ASN.1 BER encodings with very large 
length fields that cause arbitrary heap data to be overwritten. 

Snort Signature ID 2383, 2386 
Tool used Nessus  
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APPENDIX B 

 

LIST OF THE EXPERIMENTAL RESULTS 

 
Tables of raw data obtained after the test step is given this section. For the 

results of the 3-layer MLP networks, first column of the table shows the architecture of 

the neural network, while first row of the table represents the identity of the neural 

network, as 10 neural networks were generated for each of the neural network 

architecture. Reason for generating 10 neural networks for each of the neural network 

architecture is to avoid poor performances due to the bad initialization of the neural 

network weights. 

 For the results of the 4-layer MLP networks, first column of the table represents 

the number of nodes in input, first and second hidden layers of the neural network 

architecture, while first row of the table represents number of nodes in the third hidden 

layer and in the output layer. Intersection of a row header and a column header 

represents the number of false positives of a neural network whose architecture can be 

obtained by joining row header and column header. For instance, intersection of the row 

header of 7-5-5 and column header of 5-1 represents the false positives of the neural 

network whose architecture is 7-5-5-5-1. As managing whole neural networks would be 

a troublesome task and training periods would take long, 4-layer backpropagation 

networks were not re-initialized. 

 

Table B.1. Number of false positives for 3-layer backpropagation networks. 
 

 1 2 3 4 5 6 7 8 9 10 
7-5-5-1 1 124 140 0 0 1 0 2 0 0 
7-5-10-1 9 20 60 4 0 110 17 0 46 144 
7-5-15-1 1 0 18 0 1 53 9 0 15 1 
7-5-20-1 0 0 0 0 67 6 2 6 187 0 
7-5-25-1 0 4 139 0 31 0 1 62 0 1 
7-10-5-1 0 64 0 133 0 12 35 13 72 0 
7-10-10-1 14 82 12 0 0 19 1 24 13 1 
7-10-15-1 64 1 1 0 0 0 15 60 0 1 
7-10-20-1 1 9 99 0 19 14 0 4 1 0 
7-10-25-1 0 1 0 1 16 6 23 14 1 1 

(cont. on next page) 
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Table B.1 (cont.) 
7-15-5-1 27 0 16 65 1 0 0 0 0 39 
7-15-10-1 0 0 10 62 7 24 0 61 0 0 
7-15-15-1 0 1 0 1 2 1 94 1 1 0 
7-15-20-1 0 0 61 6 13 76 11 0 1 16 
7-15-25-1 159 2 0 1 0 93 1 200 0 1 
7-20-5-1 0 1 1 0 104 76 40 2 0 0 
7-20-10-1 0 15 1 18 7 0 9 1 1 1 
7-20-15-1 7 57 21 23 1 0 1 0 27 9 
7-20-20-1 23 15 14 1 0 2 16 1 0 0 
7-20-25-1 0 1 1 1 0 3 18 2 3 1 
7-25-5-1 8 0 45 1 0 1 1 1 1 61 
7-25-10-1 0 0 62 1 0 0 73 2 1 0 
7-25-15-1 8 0 1 61 1 56 74 1 3 0 
7-25-20-1 51 0 16 1 11 3 10 1 0 82 
7-25-25-1 1 2 1 1 14 10 0 1 36 18 

 

Table B.2. Number of false negatives for 3-layer backpropagation networks. 
 

 1 2 3 4 5 6 7 8 9 10 
7-5-5-1 967 951 970 971 971 329 971 967 971 560 
7-5-10-1 329 329 551 557 350 656 504 971 656 644 
7-5-15-1 330 971 971 552 329 646 868 971 642 330 
7-5-20-1 645 971 550 971 531 971 332 971 650 971 
7-5-25-1 348 223 261 656 971 330 329 245 652 656 
7-10-5-1 656 330 338 551 656 329 971 551 339 656 
7-10-10-1 638 326 647 645 329 970 327 971 331 329 
7-10-15-1 437 329 329 553 329 330 971 338 536 325 
7-10-20-1 327 227 329 350 329 239 329 261 329 971 
7-10-25-1 226 330 656 329 656 329 325 329 329 329 
7-15-5-1 971 656 326 326 356 326 329 335 329 596 
7-15-10-1 644 325 329 323 329 329 329 140 329 330 
7-15-15-1 560 329 329 330 242 329 333 329 329 329 
7-15-20-1 655 329 330 329 329 224 226 331 326 328 
7-15-25-1 248 329 326 254 329 176 314 215 326 246 
7-20-5-1 224 329 325 656 534 222 328 551 971 325 
7-20-10-1 329 226 329 329 325 329 329 329 329 329 
7-20-15-1 326 316 226 325 329 329 227 253 329 245 
7-20-20-1 325 226 258 329 326 327 329 326 329 329 
7-20-25-1 323 233 325 329 326 329 234 326 326 325 
7-25-5-1 178 239 329 329 330 325 325 301 350 551 
7-25-10-1 227 226 224 325 553 325 329 329 329 247 
7-25-15-1 226 329 326 237 330 213 226 226 326 326 
7-25-20-1 323 329 325 226 194 326 277 329 326 279 
7-25-25-1 327 329 325 329 236 329 329 329 226 186 
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Table B.3. Number of false positives for 3-layer Levenberg-Marquardt networks. 
 

 1 2 3 4 5 6 7 8 9 10 
7-5-5-1 5 13 18 9 11 10 10 8 0 107 
7-5-10-1 1 2 9450 17 0 17 69 28 70 65 
7-5-15-1 19 9450 9 23 17 7 52 29 10 9450 
7-5-20-1 36 9450 26 8 3 18 3 13 5 14 
7-5-25-1 4 8 4 20 37 0 30 9 17 14 
7-10-5-1 6 1 1 0 9 0 3 14 2 8 
7-10-10-1 1 16 15 1 0 9 8 17 4 9450 
7-10-15-1 1 3 4 9 4 0 17 0 2 0 
7-10-20-1 5 2 3 14 12 2 17 13 3 5 
7-10-25-1 6 1 7 0 18 0 20 13 11 6 
7-15-5-1 0 6 13 7 3 0 1 4 0 0 
7-15-10-1 6 2498 0 2 0 6 3 0 7 0 
7-15-15-1 0 0 2 9 0 3 0 4 5 0 
7-15-20-1 4 0 1 0 0 3 0 0 2 1 
7-15-25-1 3 3 0 4 0 3 2 0 1 2 
7-20-5-1 3 1 0 0 1 11 9 0 0 1 
7-20-10-1 3 0 6 0 9450 0 0 0 0 2 
7-20-15-1 1 0 0 0 10 1 0 0 9 0 
7-20-20-1 0 1 1 0 0 0 0 0 1 1 
7-20-25-1 3 0 0 0 1 161 2 1 0 1 
7-25-5-1 0 0 0 0 1 1 0 0 0 0 
7-25-10-1 0 0 0 0 0 2 0 0 0 3 
7-25-15-1 1 0 2 1 0 0 8 0 1 0 
7-25-20-1 0 1 2 0 0 0 0 0 0 0 
7-25-25-1 3 0 1 0 1 0 3 1 0 0 

 

Table B.4. Number of false negatives for 3-layer Levenberg-Marquardt networks. 
 

 1 2 3 4 5 6 7 8 9 10 
7-5-5-1 23 16 1 17 13 186 22 13 7 247 
7-5-10-1 11 1 0 88 866 7 175 49 22 228 
7-5-15-1 74 0 16 4 13 6 114 24 15 0 
7-5-20-1 99 0 16 18 11 92 154 75 2 99 
7-5-25-1 13 10 7 13 87 13 22 10 7 14 
7-10-5-1 23 20 7 0 8 17 20 323 21 13 
7-10-10-1 14 656 1 1 0 0 7 7 13 0 
7-10-15-1 2 1 2 15 1 7 1 1 1 0 
7-10-20-1 1 1 7 8 6 6 13 4 1 15 
7-10-25-1 8 1 0 0 14 0 6 7 1 8 
7-15-5-1 800 1 16 2 188 13 2 19 0 13 
7-15-10-1 1 101 0 0 0 134 1 0 8 6 
7-15-15-1 0 0 6 3 0 0 0 2 1 0 
7-15-20-1 7 0 1 0 0 1 1 0 7 0 

(cont. on next page) 
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Table B.4 (cont.) 
7-15-25-1 1 0 0 0 0 1 1 6 0 0 
7-20-5-1 6 0 0 6 9 7 7 13 0 0 
7-20-10-1 0 0 7 0 0 0 1 0 0 0 
7-20-15-1 0 1 0 0 1 0 0 0 326 1 
7-20-20-1 0 1 1 0 0 0 0 0 7 0 
7-20-25-1 7 0 1 0 0 66 1 0 0 0 
7-25-5-1 6 7 1 0 0 6 7 0 7 7 
7-25-10-1 1 1 0 0 0 12 0 0 0 7 
7-25-15-1 0 0 0 7 0 0 7 0 0 0 
7-25-20-1 0 0 0 0 0 0 0 0 0 0 
7-25-25-1 0 0 1 1 1 0 3 0 0 0 

 

Table B.5. Number of false positives for 4-layer backpropagation networks. 
 

 -5-1 -10-1 -15-1 -20-1 -25-1 
7-5-5 0 0 61 0 133 
7-5-10 67 1 0 0 0 
7-5-15 7 12 4 46 0 
7-5-20 0 135 14 77 0 
7-5-25 0 1 106 1 25 
7-10-5 1 1 116 1 4 
7-10-10 0 32 18 5 78 
7-10-15 5 27 7 62 0 
7-10-20 69 1 0 1 1 
7-10-25 64 41 0 1 1 
7-15-5 1 1 1 0 65 
7-15-10 1 103 64 3 0 
7-15-15 1 18 17 62 1 
7-15-20 95 1 62 0 0 
7-15-25 1 15 0 0 18 
7-20-5 7 13 11 32 2 
7-20-10 2 92 0 10 49 
7-20-15 0 14 1 0 12 
7-20-20 11 12 1 0 1 
7-20-25 28 16 19 0 1 
7-25-5 116 0 16 1 47 
7-25-10 1 0 0 0 1 
7-25-15 0 15 17 55 30 
7-25-20 0 1 10 1 63 
7-25-25 17 2 0 1 11 
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Table B.6. Number of false negatives for 4-layer backpropagation networks. 
 

 -5-1 -10-1 -15-1 -20-1 -25-1 
7-5-5 971 971 551 329 655 
7-5-10 329 656 326 564 971 
7-5-15 971 655 328 963 935 
7-5-20 656 218 322 326 644 
7-5-25 971 226 330 224 307 
7-10-5 329 644 219 213 320 
7-10-10 329 329 213 652 224 
7-10-15 330 312 329 224 325 
7-10-20 557 553 329 242 329 
7-10-25 224 649 652 328 325 
7-15-5 656 329 311 226 224 
7-15-10 336 329 312 329 323 
7-15-15 329 343 277 323 224 
7-15-20 226 224 245 226 245 
7-15-25 329 325 327 226 325 
7-20-5 331 199 329 215 550 
7-20-10 656 329 318 329 304 
7-20-15 329 322 276 330 242 
7-20-20 326 160 329 224 242 
7-20-25 226 325 329 329 656 
7-25-5 329 330 326 226 86 
7-25-10 329 329 329 326 224 
7-25-15 635 224 193 325 327 
7-25-20 326 309 326 276 137 
7-25-25 198 321 329 245 95 

 

Table B.7. Number of false positives for 4-Layer Levenberg-Marquardt networks. 
 

 -5-1 -10-1 -15-1 -20-1 -25-1 
7-5-5 9450 24 11 3 2 
7-5-10 18 32 20 19 1 
7-5-15 0 82 4 9 1 
7-5-20 0 11 1 3 14 
7-5-25 0 7 1 0 9 
7-10-5 0 0 0 4 1 
7-10-10 3 0 1 0 0 
7-10-15 0 0 3 0 0 
7-10-20 0 0 0 0 1 
7-10-25 0 9450 0 0 10 
7-15-5 1 0 222 0 19 
7-15-10 0 0 11 0 0 
7-15-15 0 3 0 0 1 
7-15-20 0 0 0 0 3 

(cont. on next page) 
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Table B.7 (cont.) 
7-15-25 0 0 0 1 0 
7-20-5 0 0 0 9 0 
7-20-10 0 0 0 0 0 
7-20-15 0 0 0 0 0 
7-20-20 0 0 3 0 3 
7-20-25 0 0 0 0 0 
7-25-5 14 0 1 0 0 
7-25-10 0 0 3 0 0 
7-25-15 3 0 0 0 0 
7-25-20 0 0 9450 0 0 
7-25-25 1 0 0 0 0 

 

Table B.8. Number of false negatives for 4-layer Levenberg-Marquardt networks. 
 

 -5-1 -10-1 -15-1 -20-1 -25-1 
7-5-5 0 94 16 18 22 
7-5-10 3 191 7 27 6 
7-5-15 8 45 9 1 6 
7-5-20 1 14 7 0 162 
7-5-25 0 1 0 1 6 
7-10-5 1 6 7 157 7 
7-10-10 2 6 0 0 0 
7-10-15 6 1 0 0 0 
7-10-20 6 0 0 1 0 
7-10-25 13 0 6 1 1 
7-15-5 329 0 81 6 270 
7-15-10 1 0 0 0 0 
7-15-15 0 1 0 0 0 
7-15-20 6 0 1 0 11 
7-15-25 0 0 0 13 1 
7-20-5 1 0 0 1 1 
7-20-10 0 0 0 1 0 
7-20-15 1 0 0 1 1 
7-20-20 0 0 71 0 6 
7-20-25 0 6 0 0 1 
7-25-5 870 1 0 1 0 
7-25-10 0 0 6 0 0 
7-25-15 1 0 0 0 0 
7-25-20 0 1 0 0 0 
7-25-25 13 0 0 0 0 
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Table B.9. Number of false positives for 3-layer backpropagation networks. 
 

 1 2 3 4 5 6 7 8 9 10 
7-5-5-1 4233 4233 0 0 0 4233 4233 0 4233 0 
7-5-10-1 0 0 4233 0 4233 4233 0 0 4233 0 
7-5-15-1 4233 0 0 0 0 0 0 4233 0 4233 
7-5-20-1 0 0 0 0 4233 0 0 4233 0 0 
7-5-25-1 4233 4233 0 4233 0 4233 4233 0 4233 4233 
7-10-5-1 0 0 0 0 0 0 0 4233 0 4233 
7-10-10-1 0 0 0 0 0 4233 0 0 0 0 
7-10-15-1 4233 0 4233 4233 0 0 0 4233 0 0 
7-10-20-1 0 0 0 4233 0 4233 0 4233 0 0 
7-10-25-1 0 0 0 0 0 0 0 4233 0 4233 
7-15-5-1 0 0 0 0 0 0 0 0 4233 0 
7-15-10-1 0 4233 0 0 4233 0 0 0 4233 0 
7-15-15-1 0 0 0 0 4233 0 4233 4233 0 0 
7-15-20-1 0 0 0 0 4233 0 0 0 4233 0 
7-15-25-1 0 0 0 0 0 0 4233 4233 0 0 
7-20-5-1 0 0 4233 0 4233 0 0 4233 0 4233 
7-20-10-1 0 0 0 0 0 0 0 0 0 0 
7-20-15-1 0 0 0 0 0 4233 0 0 0 0 
7-20-20-1 4233 0 0 0 0 4233 0 0 0 0 
7-20-25-1 0 4233 0 0 0 0 4233 4233 0 0 
7-25-5-1 0 4233 0 0 4233 0 0 4233 4233 0 
7-25-10-1 0 0 4233 0 4233 0 4233 0 0 4233 
7-25-15-1 0 0 0 0 0 0 4233 0 0 0 
7-25-20-1 4233 0 0 0 0 4233 0 0 4233 0 
7-25-25-1 0 4233 0 0 4233 0 4233 0 0 0 

 

Table B.10. Number of false negatives for 3-layer backpropagation networks. 
 

 1 2 3 4 5 6 7 8 9 10 
7-5-5-1 73 46 16 73 73 63 63 73 73 57 
7-5-10-1 0 36 73 30 73 33 0 73 16 6 
7-5-15-1 63 73 73 63 63 63 73 73 36 63 
7-5-20-1 63 73 73 73 63 73 43 73 73 73 
7-5-25-1 73 36 63 73 73 73 63 63 73 46 
7-10-5-1 73 73 63 33 73 63 73 73 63 73 
7-10-10-1 63 63 73 63 63 73 63 73 73 30 
7-10-15-1 73 63 63 73 63 63 73 63 73 36 
7-10-20-1 30 63 63 73 63 57 63 67 73 73 
7-10-25-1 57 36 73 63 73 36 57 63 63 63 
7-15-5-1 73 73 63 36 63 63 73 73 63 63 
7-15-10-1 57 63 63 36 63 63 63 57 73 67 
7-15-15-1 63 30 27 36 0 65 73 63 63 63 
7-15-20-1 73 27 36 36 73 63 63 43 63 0 

(cont. on next page) 
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Table B.10 (cont.) 
7-15-25-1 27 30 63 57 63 63 63 57 36 0 
7-20-5-1 63 63 36 73 73 30 0 73 73 63 
7-20-10-1 36 36 36 63 36 63 46 57 65 63 
7-20-15-1 63 59 57 57 36 73 63 6 71 30 
7-20-20-1 8 63 36 63 63 63 63 57 63 63 
7-20-25-1 57 36 63 63 63 63 63 63 63 0 
7-25-5-1 73 33 67 63 73 36 63 7 63 73 
7-25-10-1 57 63 36 36 73 36 36 63 63 73 
7-25-15-1 36 63 63 73 63 36 36 30 30 63 
7-25-20-1 63 63 63 73 36 31 0 63 57 63 
7-25-25-1 30 63 36 63 30 65 36 63 73 57 

 

Table B.11. Number of false positives for 3-layer Levenberg-Marquardt networks. 
 

 1 2 3 4 5 6 7 8 9 10 
7-5-5-1 4233 0 4233 0 0 0 0 0 4233 4233 
7-5-10-1 4233 0 4233 0 4233 4233 4233 0 0 4233 
7-5-15-1 4233 4233 4233 4233 0 4233 0 0 0 0 
7-5-20-1 4233 4233 0 0 0 0 4233 4233 0 0 
7-5-25-1 0 4233 4233 0 4233 0 0 4233 0 0 
7-10-5-1 4233 4233 0 4233 4233 0 4233 4233 0 4233 
7-10-10-1 4233 4233 0 4233 0 4233 4233 0 0 4233 
7-10-15-1 0 4233 4233 4233 0 4233 0 0 0 4233 
7-10-20-1 4233 4233 4233 4233 0 4233 0 0 4233 4233 
7-10-25-1 4233 0 4233 0 0 0 0 4233 4233 0 
7-15-5-1 4233 4233 0 0 0 0 0 4233 0 0 
7-15-10-1 4233 4233 4233 4233 4233 0 0 4233 4233 0 
7-15-15-1 0 4233 4233 4233 0 4233 0 0 0 4233 
7-15-20-1 4233 0 0 0 0 0 4233 0 0 0 
7-15-25-1 4233 4233 4233 0 0 4233 4233 0 4233 0 
7-20-5-1 4233 0 4233 0 4233 4233 4233 4233 4233 0 
7-20-10-1 0 4233 0 0 4233 4233 0 4233 0 0 
7-20-15-1 0 4233 4233 0 0 4233 0 4233 0 4233 
7-20-20-1 0 4233 4233 0 0 0 4233 0 4233 0 
7-20-25-1 0 4233 4233 4233 0 4233 0 0 0 4233 
7-25-5-1 0 4233 4233 4233 0 0 0 0 4233 4233 
7-25-10-1 0 0 4233 4233 4233 0 4233 0 4233 0 
7-25-15-1 4233 4233 4233 4233 4233 0 0 4233 4233 4233 
7-25-20-1 4233 0 0 0 4233 4233 4233 4233 4233 4233 
7-25-25-1 4233 4233 4233 0 0 0 0 4233 4233 4233 
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Table B.12. Number of false negatives for 3-layer Levenberg-Marquardt networks. 
 

 1 2 3 4 5 6 7 8 9 10 
7-5-5-1 10 57 30 36 63 30 63 65 30 67 
7-5-10-1 57 30 0 65 73 63 73 73 63 36 
7-5-15-1 0 0 67 57 30 30 36 73 0 0 
7-5-20-1 36 0 36 30 24 36 73 4 57 73 
7-5-25-1 30 1 59 46 27 30 36 63 57 30 
7-10-5-1 73 57 67 37 57 36 57 30 30 36 
7-10-10-1 8 73 57 73 57 0 30 36 50 0 
7-10-15-1 36 30 0 30 30 30 27 63 57 10 
7-10-20-1 0 0 30 0 0 6 0 63 0 0 
7-10-25-1 27 36 0 30 30 0 30 63 30 36 
7-15-5-1 73 30 30 0 63 67 30 30 73 30 
7-15-10-1 30 73 10 27 57 30 36 46 30 57 
7-15-15-1 57 18 0 27 30 63 27 30 38 57 
7-15-20-1 57 57 27 73 27 18 65 63 30 30 
7-15-25-1 0 30 6 30 0 57 0 0 30 0 
7-20-5-1 57 57 57 67 30 63 30 63 36 30 
7-20-10-1 30 63 30 30 0 30 63 57 30 57 
7-20-15-1 0 30 0 30 36 0 30 57 63 30 
7-20-20-1 57 30 27 36 8 30 0 30 29 30 
7-20-25-1 6 30 0 27 27 57 27 57 6 30 
7-25-5-1 30 36 6 30 57 30 36 33 36 46 
7-25-10-1 0 0 30 30 30 57 27 63 63 0 
7-25-15-1 63 30 0 27 0 57 30 59 6 0 
7-25-20-1 30 36 27 63 0 57 0 57 30 30 
7-25-25-1 63 0 30 30 67 73 57 18 57 0 

 
Table B.13. Number of false positives for 4-layer backpropagation networks. 

 

 -5-1 -10-1 -15-1 -20-1 -25-1 
7-5-5 0 0 0 0 4233 
7-5-10 0 0 0 0 0 
7-5-15 0 4233 0 0 0 
7-5-20 0 0 0 0 0 
7-5-25 0 0 0 0 0 
7-10-5 0 0 4233 4233 0 
7-10-10 0 0 4233 0 0 
7-10-15 0 0 0 4233 0 
7-10-20 0 0 0 0 0 
7-10-25 0 4233 0 0 0 
7-15-5 0 0 0 0 4233 
7-15-10 0 0 0 4233 0 
7-15-15 0 0 0 4233 4233 
7-15-20 0 0 0 4233 0 
7-15-25 0 4233 0 0 0 

(cont. on next page) 
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Table B.13 (cont.) 
7-20-5 0 0 0 0 0 
7-20-10 4233 0 0 0 0 
7-20-15 0 0 0 0 0 
7-20-20 4233 4233 0 0 0 
7-20-25 0 4233 0 0 4233 
7-25-5 0 0 0 4233 4233 
7-25-10 4233 0 0 0 4233 
7-25-15 0 4233 4233 0 4233 
7-25-20 0 4233 0 0 0 
7-25-25 4233 0 0 0 0 

 

Table B.14. Number of false negatives for 4-layer backpropagation networks. 
 

 -5-1 -10-1 -15-1 -20-1 -25-1 
7-5-5 73 73 73 63 6 
7-5-10 57 73 63 63 73 
7-5-15 37 46 63 57 73 
7-5-20 73 30 36 36 63 
7-5-25 73 36 27 36 57 
7-10-5 63 63 57 73 30 
7-10-10 30 30 6 73 63 
7-10-15 63 30 36 33 63 
7-10-20 0 73 6 57 57 
7-10-25 63 73 65 36 30 
7-15-5 46 36 0 73 63 
7-15-10 63 63 63 63 36 
7-15-15 63 63 63 36 36 
7-15-20 33 63 63 73 57 
7-15-25 0 30 63 63 67 
7-20-5 63 63 73 63 73 
7-20-10 73 57 73 71 36 
7-20-15 36 63 0 63 30 
7-20-20 54 63 63 73 30 
7-20-25 36 63 57 63 73 
7-25-5 36 46 57 36 0 
7-25-10 6 36 63 63 30 
7-25-15 57 63 57 63 36 
7-25-20 36 30 36 6 36 
7-25-25 6 30 63 63 63 
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Table B.15. Number of false positives for 4-layer Levenberg-Marquardt networks. 
 

 -5-1 -10-1 -15-1 -20-1 -25-1 
7-5-5 4233 4233 0 0 4233 
7-5-10 0 4233 0 4233 4233 
7-5-15 0 0 0 4233 4233 
7-5-20 0 4233 0 4233 0 
7-5-25 0 4233 0 0 0 
7-10-5 0 4233 4233 0 4233 
7-10-10 0 4233 4233 4233 0 
7-10-15 4233 0 4233 4233 0 
7-10-20 0 0 4233 4233 0 
7-10-25 4233 4233 4233 0 4233 
7-15-5 0 4233 4233 4233 0 
7-15-10 4233 4233 0 0 0 
7-15-15 0 4233 4233 0 4233 
7-15-20 0 4233 0 4233 0 
7-15-25 0 4233 4233 4233 0 
7-20-5 4233 4233 0 0 4233 
7-20-10 0 4233 4233 0 4233 
7-20-15 0 0 0 0 0 
7-20-20 4233 0 4233 0 4233 
7-20-25 4233 4233 4233 0 0 
7-25-5 0 0 0 0 4233 
7-25-10 4233 4233 0 0 4233 
7-25-15 0 0 0 4233 4233 
7-25-20 4233 0 4233 4233 4233 
7-25-25 4233 4233 4233 0 4233 

 

Table B.16. Number of false negatives for 4-layer Levenberg-Marquardt networks. 
 

 -5-1 -10-1 -15-1 -20-1 -25-1 
7-5-5 0 36 52 0 36 
7-5-10 30 73 30 40 57 
7-5-15 63 30 0 57 57 
7-5-20 73 30 53 30 36 
7-5-25 67 63 40 30 36 
7-10-5 1 57 31 36 36 
7-10-10 57 57 57 40 0 
7-10-15 36 57 0 63 30 
7-10-20 30 30 0 57 57 
7-10-25 57 0 57 0 57 
7-15-5 63 0 30 57 33 
7-15-10 57 33 57 63 30 
7-15-15 57 57 57 31 30 
7-15-20 57 30 57 30 6 

(cont. on next page) 



 92 

Table B.16 (cont.) 
7-15-25 27 57 63 63 57 
7-20-5 63 46 30 36 36 
7-20-10 57 37 30 57 30 
7-20-15 30 0 30 27 27 
7-20-20 0 33 40 57 30 
7-20-25 0 33 59 0 57 
7-25-5 73 30 52 0 57 
7-25-10 57 57 30 30 30 
7-25-15 57 51 27 57 27 
7-25-20 57 38 0 63 67 
7-25-25 30 30 33 0 27 

 


