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ABSTRACT

This study is concerned with the fracture of an axisymmetric thick-walled
cylinder. The cylinder is under the action of axisymmetric tensile loads at infinity. A
ring-shaped crack with surface free tractions is located at the symmetry plane. Material
of the cylinder is assumed to be linearly elastic and isotropic. Solution for this problem
can be obtained by superposing the solutions for (i) an infinite cylinder subjected to
uniformly distributed tensile load at infinity, and (i1) an infinite cylinder having a crack
(the perturbation problem). The Hankel and Fourier transform techniques are used for
the solution of the field equations. Applying the boundary conditions, the singular
integral equation in terms of crack surface displacement derivative is derived. By using
an appropriate quadrature formula the integral equation is reduced to a linear algebraic
equation system. Numerical solution is used to develop results for the stress intensity

factors at the tips of the crack. Results are presented in graphical and tabular forms.
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OZET

Bu c¢alismada eksenel simetrik ve sonsuzda eksenel ¢ekmeye maruz  bir
silindirik tiipiin kirilmas1 problemi ele alinmistir. Halka seklindeki ¢atlak z=0 simetri
diizleminde bulunmaktadir. Silindir malzemesinin lineer elastik ve izotropik oldugu
varsayilmistir. Problemin ¢6ziimii (i) sonsuzda diizgiin yayili ¢ekmeye maruz tlip ve
(i1) catlak igeren tiip (pertiirbasyon problemi), ¢Oziimlerinin siiperpozisyonu ile elde
edilebilir. Ik problemin ¢dziimii ikinciye nazaran daha temel ve ¢alismanin asil amaci
olan gerilme siddeti katsayilariin hesaplanmasiyla ilgili olmadigindan yapilmamus,
ikinci problem (pertiirbasyon problemi) ise detayli olarak incelenip ¢oziimii yapilmistir.
Elastisite denklemlerinin ¢oziimiinde Fourier ve Hankel integral doniistimleri
kullanilmis, sinir sartlar1 uygulanarak catlak yiizeyi yer degistirmesinin tiirevi cinsinden
bir tekil integral denklem elde edilmistir. Bu tekil integral denklem de uygun bir
integrasyon formiili kullanilarak bir cebirsel denklem sistemine doniistlirilmistiir.
Catlak uglarindaki gerilme siddeti katsayilar1 farkli ¢atlak durumlari i¢in niimerik olarak

hesaplanmis, sonuglar grafik ve tablolar halinde sunularak degerlendirilmistir.
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CHAPTER 1

INTRODUCTION

1.1. Theoretical Background

Fracture mechanics was introduced in the 1950s under the leadership of G.R.
Irwin. The concept of fracture mechanics were further developed and refined throughout
the 1960s by a collaboration of researchers in some universities and research centers
(Sanford 2002).

Consider a structure in which a crack develops. This crack will grow with
time because of the application of repeated loads or a combination of loads and
environmental attack. The longer the crack, the higher the stress concentration induced
by it. Many structures are designed to carry service loads that are high enough to initiate
cracks, particularly when pre-existing flaws or stress concentrations are present. The
designer must anticipate this possibility of cracking and consequently he has to accept a
certain risk that the structure will fail. In order to ensure this safety it must be predicted
how fast cracks will grow and how fast residual strength will decrease. Making these
predictions and developing prediction methods are the objects of fracture mechanics.
Because of that, the process region do not treat as a continuum, crack and fracture
problems can not be solved simply by calculating stresses and strains in the body. On
the other hand knowledge of stresses and strains in the continuum outside the process
region is essential for understanding the process of fracture. In fracture mechanics
problems both analytical and numerical methods are widely used scientific tools.
Analytical methods usually are based on partial differential or integral equations while
the finite element methods dominate in numerical solution of the problems

Fracture mechanics should be able to answer the following five questions
1)What is the residual strength as a function of crack size ?
2)What size of crack can be tolerated at the expected service load ?
3)How long does it take for a crack to grow from a certain initial size to the critical
size?
4)What size of pre—existing flaw can be permitted at the moment the structure starts its

service life?



5)How often should be structure be inspected for cracks?

Fracture mechanics provide satisfactory answers to some of above questions and useful
answers to the others. In order to make a successful use of fracture mechanics in
engineering application it is essential to have some knowledge about the broad field of

fracture mechanics. This is schematically explained in (Figure 1.1.).

Fracture Fracture Plasticity Testing Applications
processes and
criteria
P Material Science R P Engineering
Applied Mechanics

v

Fracture Mechanics

i

Figure 1.1. The broad field of fracture mechanics.

pred B

mode I mode II mode III

Figure 1.2. The three modes of loading

A crack in a solid can be stressed in three different modes as illustrated in (Figure 1.2.).
These modes were introduced by Irwin (1960). Based on the Figure 1.3, the problem

subjected to one of the three modes of loadings can be explained as




crack

Figurel.3. Crack and coordinate system.(the z- axis toward the reader).

1. Opening Mode (Mode I): A body, under this type of loading, is exhibited two
different displacements and stresses behaviors. (i)Horizontal displacements u(x,y,z) are

symmetric, (ii) vertical displacements v(x,),z) are anti-symmetric. Also if the material is

isotropic then , (i) normal stresses o, (x, y,z),0 (%, y,2),0.(x, y,z) are symetric, (ii)
shear stresses 7(x,,z2),7,.(x,,2), T, (x,y,z)are anti-symetric. These important

symmety relations can be described by the following mathematical notation:

u(x,—y,z) =u(x, y, z) w=0
V()C,—y, Z) = _V(xa YV, Z) 82w ~0
0z*

If the material of the body is isotropic, then the stresses given below are valid

o.(x,~y,z)=0.(x,,2)
o,(x=y,z)=0,(x,y,2)
o.(x,=y,z)=0.(x,,2)
7, (x,=y,z2) =—-7,(x,5,2)

7. =7_=0

Xz vz

2. The in plane shearing (or sliding) mode(Mode II): Horizontal displacements are anti -
symmetric, vertical displacements are symmetric.



u(x,—y,z) =-u(x,y,z)
v(x,—y,z) =v(x,,2)

For in-plane problems there is no dependence on the antiplane coordinate z except for w

in mode II. Thus,

u=u(x,y)
o,=0,(x,)
etc.

Then, normal stresses are anti-symmetric, shear stresses are symmetric

o.(x,—y) =-0,(x,y)
o,(x,=y)=-0,(x)
o.(x,-y)=-0.(x,y)
7, (x,=y)=7,(x,5)

. =7_=0

Xz vz

3. The anti-plane shearing mode(Mode III): The only non-vanishing displacement w is

anti-symetric. The only non-vanishing stresses are 7 _ anti-symetric and 7

symmetric.

u=v=0

w(x,—y,z) =-w(x, y,z)
M _y

Oz

oc,=o0,=0,=1,=0
7. (x=y,2) = ~7.(%, », 2)
7. (x=y,2)=7,.(x,y,2)
or or

Xz _ yZ:O

Oz Oz



The fracture mechanics approach has three important variables: applied stress,
flaw size and fracture toughness. There are two alternative approaches to fracture
analysis: the energy criterion and the stress intensity approach. In the present study
stress intensity approach is used to analyze the problem. Stress intensity factor is a
quantity determined analytically and varies as a function of the crack configuration and
the manner in which the external loads are applied. Hence, the analytical expression of
k changes from one system to another. It is known that the maximum stress becomes
unbounded when the notch root radius tends to zero in the elasticity solutions of
problems involving stress concentrations. In this case, it is said that the stress state at

the notch root is singular and the asymptotic examination would show that the

magnitude of the stresses are of the formo, > k /7%, 0 < a <1 where r is the distance

from notch root and k is a constant. Here « and k describe the nature of the stress
singularity at the notch root .When the notch becomes a crack, the strength of the stress
singularity & is known as the Stress Intensity Factor (SIF). This concept provides a
universal description of the fracture process. In other words, no matter what the history
or the external conditions in a given system, if the stress intensity factor in any two
systems has the same value, the crack tip that they describe will behave in the same
way. The universal form of the stress intensity factor allows a complete description of
the behavior of the tip of a crack where one need only carry out the analysis of a given

problem within the universal elastic region.

1.2. Mathematical Background

1.2.1. Boundary Conditions in Crack Problems:
Conditions on boundaries of the continua may be divided into the following
three categories:

1. Conditions on the outer boundaries of the body, including the crack faces: These

conditions usually consist of specification of traction or displacements.



2. Continuity conditions on the interfaces between different regions in the continuum
such as the elastic region, plastic region and its some regions occupied by different

materials.

3. Conditions on the boundary to the process region: These conditions depend on the

response of the process region model to loads or displacement.

1.2.2. Methods of Solution

Experiences show that analytical methods often lead to better understanding
general properties of the phenomena and also numerical methods can be properly
exploited only with a thorough knowledge of analytical methods and results. Analytical
techniques are frequently used for controlling the accuracy of numerical methods,
therefore this part focus on analytical methods only .

Complex potential, integral transform and singular integral equations are three
important methods for the solution of crack problems leading to the calculation of the
stress intensity factors. Now, some significant points of these techniques and

comparison of them will be given.

1.2.2.1. Complex Potential Method

This method is applicable to only two dimensional problems and provides the
simplest analyzing the singular behavior of the solution. Complex potential method can
be investigated under the following three important solution techniques (Erdogan
1983):

1. The Method of Conformal Mapping
2. Laurent Series Expansion

3. Boundary Collocation Method

1.2.2.2. Integral Transforms

If the problem is a mixed boundary value problem, then integral transform is

the most widely used method(Erdogan 1983). Especially, the crack problems for an



elastic plane or an infinite strip containing a line crack, elastic cylinder with an infinite
or finite radius containing an axisymetric crack can easily be reduced to dual integral
equations by using Fourier, Mellin and Hankel transforms depending on the geometry

of the problem.

1.2.2.3. Singular Integral Equations

Dual integral equations arising from the formulation of the crack problems may
be reduced to a singular integral equation. The crack problems can also be formulated in
terms of a system of singular integral equations by using the related Green’s functions
(e.g., dislocation and concentrated load solutions). This method has clear advantages in

problems involving unusual stress singularities (Erdogan 1983).

1.3. Literature Overview

Hollow cylinders have extensively practical application in engineering. The
fracture problem in pressure vessels, pipes and other cylindrical containers has
developed rapidly because of various technical applications.

Here, some important examples of previous analytical studies related with the
solution of the crack problems leading to the calculation of the stress intensity factors
(SIFs) will be given .

(Gupta 1973) analyzed a semi-infinite strip held rigidly on its short end. Stress
singularity at the strip corner is obtained from the singular integral equation. Stress
along the rigid end is determined and the effect of the material properties on the stress
intensity factor is presented. (Sneddon and Welch 1963) considered a long circular
cylinder of elastic material containing a penny-shaped crack at the center of the cylinder
and analyzed the distribution of stress in the problem. (Erdogan and Erdol 1978) studied
an elastostatic axisymmetric problem for a long thick walled cylinder containing a ring
shaped internal or edge crack .The problem is formulated in terms of a singular integral
equation which has a simple Cauchy kernel for the internal crack and a generalized
Cauchy kernel for the edge crack as the dominant part. In the paper by (Gupta 1974) the
axisymmetric semi-infinite cylinder with fixed short end 1is considered. In the study

applied loads are far away from the fixed end of the cylinder . In order to formulate the



problem, integral transform method is used and a singular integral equation is obtained.
(Delale and Erdogan 1982) analyzed a hollow cylinder problem . The cylinder contains
an arbitrarily oriented radial crack and it is subjected to arbitrary normal tractions on
the crack surfaces. The problem is formulated in terms of a singular integral equation by
using the basic dislocation solutions as the Green’s functions. A different solution
technique has been given by (Benthem and Minderhood 1972) .The problem of a finite
strip compressed between two rigid stamps is solved by using eigenfunction technique.
There exist also recent papers related with hollow cylinder and stress intensity factor
calculation with different boundary conditions. (Uyaner 2004) is considered a problem
of ring shaped crack contained in an infinitely thick walled cylinder. The material of the
cylinder is assumed to be transversely isotropic (transtropic) and the cylinder is under
the action of uniform loading. The stress function is expressed in terms of governing
equations. Hankel and Fourier Transform is used and the problem is reduced to a
singular integral equation. The singular integral equation is solved by using the
Gaussian Quadrature and the stress intensity factors are calculated.(Birinci 2002)
analyzed the elastostatic axisymmetric problem for a long thick-walled cylinder
containing an axisymmetric circumferential internal or edge crack with cladding at the
inner surface of the cylinder. Integral transform techniques are used and the problem is
formulated in terms of a singular integral equation. The integral equation is solved
numerically by using the quadrature formulas. The stress intensity factors are calculated
and influence of the geometrical configuration and the cladding on the SIFs is
discussed. (Artem and Gecit 2002) considered the fracture of an axisymmetric hollow
cylindrical bar containing rigid inclusions. The cylinder contains a ring shaped crack
located at the z = 0 plane whose surfaces are free of tractions . The material of the
hollow cylinder is to be linearly elastic and isotropic and the cylinder is under the action
of uniform loading. Fourier and Hankel transform techniques are used and because of
the mixed boundary condition of the problem, a system of three singular integral
equation is analyzed and solved numerically. Finally, the normalized stress intensity
factors are calculated for crack and two rigid inclusions

The main purpose of the present study is to investigate the stress intensity
factors at the tips of the crack. The infinite hollow cylinder containing a ring-shaped
crack at z = 0 plane (symmetry plane) is considered. The axisymmetric cylinder is under
the action of tensile load at infinity and material of the cylinder is assumed to be

linearly elastic and isotropic. Solution for the problem is obtained by means of the



superposition of two subproblems: (i) an infinite hollow cylinder subjected to
uniformly distributed tensile load at infinity, and (ii) an infinite hollow cylinder having
a ring shaped crack (perturbation problem). The only load in problem (ii) is the negative
of the stresses obtained in the problem (i) at location of the crack. Solution of the
problem (i) is relatively simple and straightforward and also not related with the
calculation of stress intensity factors. Therefore, in the present study only the
perturbation problem will be solved. By using the Fourier and Hankel transform
techniques, the general expressions for the displacement and stress components for the
perturbation problem are obtained. Applying the boundary conditions on the rigid outer
surface and stress free inner surface of the cylinder, a singular integral equation in
terms of crack surface displacement derivative is derived. The singular integral equation
is reduced to a system of linear algebraic equation by using Gauss-Lobatto quadrature
formula. After that the linear algebraic equation system including improper integral is
solved numerically by using Gauss-Laguerre integration formula. Finally, variations of
normalized mode I stress intensity factors at the tips of the crack are calculated.
Validation of the problem, comparison of the results are presented in tabular and

graphical forms.



CHAPTER 2

PROBLEM DEFINITION AND FORMULATION

2.1. The Infinite Hollow Cylinder Problem

An Infinite hollow cylinder containing a ring-shaped crack of width (b-a) at the
symmetry plane z = 0, is considered. The crack surfaces are free of tractions. The
hollow cylinder is subjected to an axial tensile loads of uniform intensity py at infinity.
The outer wall of the cylinder is rigid while the inner wall is free of traction. Material of

the cylinder is assumed to be linearly elastic and isotropic (See Figure 2.1).

z

Po

AR

LR

Po

Figure 2.1. Geometry of the problem
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Solution for the infinite cylinder having a crack of traction free surfaces and
loaded at infinity can be obtained by superposition of the following two sub-problems
as illustrated in Figure 2.2: (1) an infinite cylinder subjected to uniformly distributed
tensile load of intensity py at infinity with no crack and (2) an infinite cylinder having a
ring-shaped crack. The only load in problem (2) is the negative of the stresses in
problem (1) at locations of the crack (the perturbation problem). From the viewpoint of
fracture mechanics, the relevant problem is the latter. Therefore, the perturbation

problem in which the crack surface is subjected to prescribed tractions only is solved.

Figure 2.2. Superposition of uniform and crack solutions

For linearly elastic, isotropic and axisymmetric problems, the equilibrium equations can
be written in the following form:

2 -0, 2.1
or 0z r @1
or. ,90. 1. _o, (2.2)
or oz r

11



in which o and 7 denote the normal and the shearing stresses, respectively. The
relation between stress and strain (Generalized Hooke’s Law) in the body in tensor

notation is

o, =2ue; +the, d; (2.3)
Equation (2.3) can be written for the normal and shearing stress components as
O-r = o-rr = 2 lu err +/1 (Err + 6949 + ezz )5rr s (243)
z-rz = O-rz = 2 lu erz +2’ (err + 690 + Ezz )51*2 s (24b)
O-z = O-zz = 2 H ezz +/1 (err + 690 + ezz )5229 (24C)
Op=0p =2 Egg TA(E,, + Egg + E..)0p. (2.4d)
l fori=j 2 .
where 0, = s / , Eu=€, +€4+te., A=u 4 and ¢ 1s the shear
70 fori# 1-2v

modulus, v being the Poisson’s ratio.

Rearranging the equation (2.4), the following stress — strain relations can be

obtained

o,=0, =2ue, +A(€, +€, +<_), (2.52)
. =0, =2ue,_, (2.5b)
0.=0,=2uc, +A(€, +€4 +€.), (2.5¢)
Op =0gg =2 Egg +A(E,, + €y +€.,). (2.5d)

For the axisymmetric (€ independent) problem, the strain—displacement relations are as

follows :

ou u 1ov
=—, =4 —— 2.6a,b
== o S 00 (2.62.0)
e =¥ _0u, 0w (2.6¢.d)
0z oz Or

12



where u and w are displacements in r» and z directions in cylindrical coordinate
system, respectively.
Substituting expressions given in equations (2.6) into equations (2.5) stress-

displacement relations for the axisymmetric cylindrical problem is obtained as

- e LAY Co AL (2.7a)
K—1 or r 0Oz
GH—L (K+1)£+(3—K @Jr@_w , (2.7b)
K—1| r or 0z )
o =1t (K‘+1)8—W+(3—K‘ Ou , (2.7¢)
k—1| Oz or r)
ou Ow
—u | =2, 2.7d
T, =H (az arJ (2.7d)

where, k = 3—4v for plain strain.
Substituting equations (2.7) into equations (2.1), the following second order

partial differential equation system, named the Navier Equations can be obtained

oO’u 10u u o’u o’w
1 - -1 2 =0, 2.8
(K ) (81/2 ror r2)+( )822 i 0roz (2.82)
o’u 10u o’w 10w o0*w
2 —— -1 —— 1 =0. 2.8b
[81*82 r@zj-’_(’( )( rtor r]+(’(+ )[822] ( )
These equations must be solved subjected to the following boundary conditions
o.(rxo)=p,, (4(r(B), (2.9a,b)
w(r,0)=0, (A4(r(a, b{(r(B),  (2.9)
c.(r0)=0, (a(r(b), (2.9d)
c,(4,2)=0, (o0 (z (o), (2.9¢)
r.(4,2)=0, (o0 ( z (), (2.9
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0, (oo (z (), (2.9g)
w(B,z)=0, (o0 ( z (). (2.9h)

2.1.1. The Perturbation Problem

Solution for the infinite cylinder containing a ring-shaped crack may be obtained
conveniently by the superposition of the solutions for the following two sub problems:
(1) problem of an infinite elastic medium containing a ring shaped crack of width (b-a)
at the symmetry plane and (ii) problem of an infinite medium without crack subjected to

arbitrary symmetric loads. This superposition scheme is illustrated in Figure 2.3.

2.1.1.1. An Infinite Elastic Medium Having a Crack

Consider an infinite medium having a crack at z = 0 plane, z being the axis of the
medium, whose surfaces are subjected to the opposite of the stresses at the locations of
the crack obtained from the first problem. Clearly, it is sufficient to consider one half

(z 2 0) of the medium only.

Using the Hankel transform definition

H,{q(ax); ¢t =[x q(ax) J,(sOdx, (@ >0) (2.10)

where n = 0 for even and n = 1 for odd functions, and now considering the properties of

odd and even functions, noticing that u(r, z) is an odd and w(r, z) is an even functions

in r, Hankel transform of the displacement components can be written in the following

form

Hu(r,z);a} = j: u(r,z)rJ,(ra)dr = U(a, z) (2.11a)

H,{w(r,2);a} = j: w(r, z) r J,(ra)dr = W(a, z) (2.11b)

14



(i)

(i)

Figure 2.3. The informal superposition scheme (Perturbation problem)
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where Jy and J; are the Bessel functions of the first kind of order zero and one,

respectively. Applying Hankel transform to equations (2.8) in r-direction

(K+1)H1{_az’;‘ l_a”__} +(x - l)H{ O'u (2.12a)
or r or
2H0{62u l—au} + (K —l)HO{—aZZV l—&W}~+( +1)H{ 0w } 0, (2.12b)
Ooroz or r

and now by using the partial derivative properties of Hankel transform, one obtains

2
20{C;—U—0!2(K—1)W+(K‘+1)d W:O, (2.13a)
Z
(x + )(—a *U) + (x d U ddW =0. (2.13b)
yA

After some routine manipulations, the equation system (2.13) can be reduced to the

following fourth order ordinary differential equation

d'U o ,d*U

dz* dz*

+a'U =0. (2.14)

The general solution of equation (2.14) is obtained as

U(a,z)=(c, +c,z)e ” +(c; +c,z)e” (2.15)

where ¢y, ¢2, ¢3 and ¢4 are arbitrary unknown constants and > 0.

To have the finite displacements at infinity, constants ¢3 and ¢4 must be equal to

zero for the upper half - space , moreover constants ¢; and ¢, must be equal to zero for

16



the lower half space. Therefore, considering the subscript 1 and 2, indicate the upper
and the lower half-spaces, respectively, equation (2.15) can be written as in the

following forms

U,(a,z) = (c, +¢,2)e ™, (z20),  (2.16a)

U,(a,z) =(c; +c,z)e”, (z£0). (2.16b)

Using the similar procedure for W(a,z), the solutions are obtained as follows

W, (at,z) = {(c1 +e,z)+ Ecz}e‘” , (z>0), (2.17a)
z

W,(a,z) = [— (c; +c,2)+ 504}6“2, (z <0). (2.17b)
4

Taking the inverse transforms of (2.16) and (2.17), displacement components are found

to be

u,(r,z)= ]‘2(61 +c,z)e ™ al,(ar)da, (z>0), (2.18a)

0

Uy (r,z) = ]2(03 +c,z)e“a J,(ar)da, (z<0), (2.18b)

0

w,(r,z) = {(cl +czz)+l Kcz}eﬂ a Jy(aryda, (z20), (2.18c)
a

w,(r,z) =

Iy

{—((,3 teoz)+E c4}”a Jy(ar)de, (z<0). (2.18d)
o

Substituting equations (2.18) into the expressions given in equations (2.7), one obtains

the following expressions for the stress components

17



0,(r,2) = uf=2c, +¢,2)e % J,(ar)da (z<0),
0

+ ,uT [205(c1 + czz)— B-x)c, ]e‘“zodo (ar)da,

o,,(rz)= ,uJ‘— ey +c,z)e” % J,(or)da (z<0),
0

b [ Pale, +¢,)+ (- x)eJe"a J,(ar ke,
0., (r,z) = yT [-2a(c, + c,2) - (k +1)c,le “a J,(ar)da, (z>0),
o.,(r,z)= ,UT [-2a(c, +c,2)+(k +1)c, Je*a J,(ar)da, (z<0),
., (r,z)= ﬂT[— 2a(c, +c,z) - (k= 1)e, e ™“a J,(ar)da, (z>0),

T,.,(r,z)= ,uT[2a(c3 +c,z)-(k=1)c,|e"a J,(ar)da. (z<0),

(2.19a)

(2.19b)

(2.19¢)

(2.19d)

(2.19¢)

(2.19f)

These expressions can be matched on the z=0 plane by the following continuity and

symmetry conditions

o, (r0) =0, (r,0), (0<r <),
7., (r,0) = 7., (r,0), (0<r<w),
u, (r,0) = u, (r,0), (0 < r <),
w, (r,0) = w, (r,0), O0<Lr<a, b<r<ow).

Conditions (2.20c) and (2.20d) may be replaced by

[u1,(,0) - u,(r,0)] = 0, (0<r (o),

[ (7,0) = w, (,0)] = 2 £ (), (0 <7 (o),

S ESTENYENY

(2.20a)
(2.20b)

(2.20¢c)
(2.20d)

(2.21a)

(2.21b)

18



in order to have the conditions of the same type (stress type). Here () is the unknown
crack surface displacement derivative such that f(r)=0 when (0 <r <a, b<r <x).
Now using the conditions (2.20a, 2.20b) and (2.21), the unknown constants c;-c4

expressed in terms of F(ax) become

¢ =, =K@ (2.22a)
(x+1)
C, =—Cy =~ 2F@) (2.22b)
(x+1)

where F(a) = [ f(r)r J (@ r)dr.

Because of that, the hollow cylinder having a ring shaped crack only, is symmetric
about z axis, it is sufficient to consider the solution of the axisymmetric problem in the
upper or lower half of the space. Therefore, in this study , the general expressions for
the displacements and stress components in the upper half space as in terms of F(a) are

considered in the form

U (72 2) = - I[— 2a z+ (k- 1)]F( Je = J,(ar)da, (2.23a)
Wi 75 2) H— 20 z—(k+1 ]F e = J,(ar)de, (2.23b)
k41

& ot 72 2) j e =k~ 1)]F(a)e = L7, (a r)da (2.23¢)
K+l r
+ %_([2(1 -« z)F(a)e“"za Jy(ar)der

O et 72 2) = 4—”[((1 z+ ) Fla)e “aJ,(ar)da, (2.23d)
K+1+

4p | o

[ (rz)=—"|azF(a)e “aJ (ar)da (2.23¢)

K+1+
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2.1.1.2. An Infinite Elastic Medium with no Crack

It is considered an infinite medium without crack which is loaded
symmetrically. The infinite medium is symmetric about both z-axis and z = 0 plane.
Using the Fourier sine and cosine transform definitions Fourier transforms of the

displacement components can be written in the following form

Flu(r,z); A} = %J‘: u(r,z)cos(Arydr=U_(r, 1), (2.24a)

FAw(r,z); A} = 2 j“’ w(r, z)sin(A r)dr =W, (r, 1), (2.24b)
90

where U. and W, are Fourier cosine and sine transform functions of # and w , the
subscript s and ¢ implies the sine and cosine transform respectively, A is the Fourier
transform variable. Then applying Fourier sine and cosine transforms in z direction to

equation (2.8), noticing that u(r,z) is even and w(r,z) is an odd function in z, the

following system of second order ordinary differential equation is obtained as :

2
()| 9Ye 1AV _Ue| (o )220, 420 _ g, (2.25a)
dr’> rdr ? dr
2
YLLE _2U -1 d VZ L1 a7 —(k+D)AW,=0. (2.25b)
dr r dr rdr ‘

In order to obtain relatively easier problem, after some algebraic manipulations,

equation (2.25) can be reduced to a single equation as

4 3 2
4d—ljc+2r3 d U;C —-A! +3r2)d Uzc -2A%° —3r)dUC
dr dr dr dr
+( At +22 %7 =3)U, =0

(2.26)

r
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Let A r = x, then the equation (2.26) becomes

4 3
x4dU”+2x3dU

2
o d3"—(2x4+3x2 d
X X

3x) +(x +2x* =3)U, =0

(2.27)

Solution of the equation (2.27) is explained below:
equation (2.27) firstly is considered as the product of two general second order ordinary

differential operators in the following form
d’ d :
[x R (X) wa pz(x)] (p3 (X)——+p, (X) ot ps(X)] =0 (2.28)

When equation (2.28) is written in fourth-order form and compared to the equation

(2.27), the equation system given below can be obtained

X% py(x) = x*, (2.29a)
d,
2x° % +x°p,+p.ps = 2x°, (2.29b)
,d? )
et N s +x’p, %r&p1 + p,p, + PPy = —2x" —3x7,(2.29¢)
dx’ dx dx
d’ d d
2 64 +2x* Ds + Dy D, + Psp, + PPy = —2x° +3x , (2.29d)
dx dx  dx
,d’ )
@b +&p1 +p,ps =xt +2x7 =3, (2.29¢)
dx’ dx

then solving the equation system (2.29), the functions p,(x)— ps(x)can be found in

simple polynomial forms. Therefore, equation (2.28) with these polynomials becomes
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, d d d’

d
(x W—3X£—X2+3)(X2W+XE—XZ—I)UC=0 (2.30)

and hence the general solution of equation (2.30) is found to be (Mclachlan 1955)

Uco(r,A) = —%clll(ﬂ r) +%czK1(/1 r+cAr Iy(Ar)+c,ArK,(Ar) (2.31)

where /,,K,,/,and K, are the modified Bessel functions of the first and the second

kinds of order zero and one, respectively and ¢;, ¢,, ¢3and ¢, are arbitrary constants. In

this case, it is possible to get W (r, 4 ), substituting equation (2.31) into the equation

(2.25), in the following form

W(r, )= %cllo (A7) +%c21<0 (Ar)—c|(x + DI, (A N+ AL (A7) (232)
—e, |+ DK, (A P - ArK, (A 1)]

Taking the inverse Fourier sine and cosine transforms of equations (2.31) and (2.32),

expressions for the displacement components are found to be

SN

u(r, z)Fomer = I[— %cll1 (/1 r) + %CZK1 (/1 r) +c,Arl, (/1 r) +c,ArK, (l r)} cos A zdA,
0
(2.33a)

W(I’, Z)Fourier =

SHES
S —y 8

{%clzo ()4 S esko(ar)-efls + (2 r)+ 2rt,(2r)] - @330)

+c, [(K + I)KO(M) — erl(kr)] } sinAzdA .

Therefore , in order to obtain the stress components one can use stress-displacement

relations given by equation (2.7). These are as follows:
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o (1, 2) e = —”T{ [ AL () + — 1 (/lr)} + cz{— K, () -1 K, (zr)} (2.34a)
T 0 r

3[(1( ) (/”tr)+ 22%r1 (/”tr)]
+ e, (e = 14K, (1) - 227K, (4r)] Ycos AzdA,

o.(r,2)p = 27”? le, AL, (Ar) + e, 2K, () = ¢4 |(xc + 5)AL, (Ar) + 22241, (4r)]  (2.34b)
-c, [(K +5)AK, (Ar) = 20°1K, (kr)] }cos?»zdk,
7. (s 2) rourer = %T fe, 0, (ar) = ¢, 2K, (2r) = ¢ [2/127”10 (Ar) + (< + 1)21, (ﬁr)] (2.34¢)

—c, e rK ()~ (i +1)AK, (4r)] Vsin AzdA.

2.1.2. General Solution

The expressions for displacement and stress components obtained in Hankel and
Fourier solutions of the problem (Sections 2.1.1.1. and 2.1.1.2.), will be added together

for the solution of the perturbation problem. Therefore the general solutions become

u(rs2) = Ui + U s » (2.35a)
W2 2) = Wit + Wrair (2.35b)
o, (” 52 ) = O ptunkel T O zFourier » (2.35¢)
o, (r s Z ) = O ttanket T O rFourier » (2.35d)
7 (1 2) = T ooptanter + oot (2.35¢)

Now the arbitrary unknown constants c;-c, appearing in Fourier solution of the problem

can be written in terms of unknown function F(«) using the conditions given below at

inner and outer lateral surfaces of the cylinder,

u(B,z)=0, (2.36a)
w(B,z) =0, (2.36b)
0,(4,2)=0, (2.36¢)
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r (4,2)=0. (2.36d)

Therefore, substituting equations (2.23), (2.33) and (2.34) into the boundary conditions
of the problem at inner and outer lateral surfaces, one can obtain the following system

of equation

- % (A B)+ %czK1 (AB)+c¢, ABI,(AB)+c, A BK,(AB) (2.37a)

- il"‘: {[:[_ 20z + (k —1) |F(a)e™*J,(a B)da }cos A zdz,
K

1 1
- Ecllo(/i B) + EczKO(/1 B) + ¢ [, + DI (A B) + 2 BI (4 B)] (2.37b)

—c,[(x + DK (A B) - A BK,(A B)]
1

=— j {j [- 20z -(x-1) JF(a)e™ J,(a B)da }sin A zdz
K+1%

e AL (A )=, A K (A A)=c;|(c + DAL, (2 4)+ 244 °1,(4 4)]
—e |- (e + )AK, (A 4)+ 242 2K, (4 A)]

0

(2.37¢)

4 o0
JF )o’J (Aa)do [ze ™ sinAzdz,
K+10 7

C{—MO(M +%11(/1A)}+c2[—/11<0(m)—%1<1(u)} (2.37d)

+e|(e =D)AL (A A)+ 242412 A)]+ ¢, |(oc ~1) A K (4 A) =242 4K, (4 )

(
[ [T {[20@ —(k - 1)]%J (Aa) +2a(1- OLZ)JO(AOO}GMF(OL)dOL} cosAzdz

0LO0

2
K+1

After some manupulations, double integral form in system of equation (2.37) can be

reduced to a single integration by using the integral formulas given in Appendix A, as

—%clll (A B) + %CZKI (AB)+c, ABI,(AB)+c, A BK,(AB) (2.382)
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_ 1 <r{—2a(a2 A+ (k-Da(d+a?d)

Ck+1 (A °+a?)’

}F(a)]l(aB)da>,

; ¢, I,(AB)+— ! czK (AB)+ ¢, [(x +1)I,(A B)+ A BI,(A B)] (2.38b)
—c,[(x+ DK, (/IB) ABK,(AB)]
_ 1<jw[—4a2/1—(x+1),1(/12+a2)

okt (A 2+a?)

}F((){)J0 (a B) da> ,

e AL (A A) -, A K, (A A)=c;|(c +1)AT, (2 A)+ 24421, (2 4))

2.38
—e, (e +D)AK (A 4)+242 7K, (4 4)] (2359
_ 2 (l<r[2a(a2 ) 2)—2(1( —21)205(/1 2o 2)}F((Z)JI(O[A)M>
K+11A4\0 A+a’)
ola’(A+ad)—a(a’-17)
+ 2]0 { e }F(a ), (Aa )der ),
¢ {—/11 (4 A)+%11(1 A)} +c2[—/1KO(iA)—%K1(/1A)} (2.38d)
+ey( - )u (/1 A)+ 227 AL (A A)|+ ¢,/ ~ 1) AK, (A 4) =247 4K, (A 4)|
g =
— ! V. (Ada)da .
Equation (2.38) can now be rewritten in the form
= %q[1 (1 B) + %CZKI (AB)+c; ABI,(AB)+c, ABK,(AB)=S,, (2.39a)
1 1
—Ecllo (1B) +502K0 (AB)+c,[(k+ DI, (AB)+ ABI,(AB)] (2.39)
—c,[(x +DK,(AB)-ABK,(AB)]=S5,
e A1 (A A) =, AK, (A A)-c;|(c +1)A 1, (2 4)+ 24221, (2 4)]
(2.39¢)
—e, (e )AK, (21 4)+242 7K, (2 4)|=S,,
¢ {—ﬂ]o (A A) +%11 (A A)} +c, {—AKO (A A) —%Kl (A A)} (2.39d)

te|(e DAL (A A)+ 22 AL (A A) |+ ¢, |(c ~DAK, (A A) - 242 4K, (A 4)]= S,
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where S)-S4 are given in Appendix B, ¢, —c, are unknown constants. These linear

algebraic system of equation are solvable and c;-c4 can be obtained in terms of S;-S, in

the following forms

¢, =le, Sy +e, S, +e, S, +e, S |/D, (2.40a)
¢, =ley Sy +epn Sy, S, +ey, S, ]/D, (2.40b)
¢ =len S, +ey S, +e, S, +ey S|/ D, (2.40c)
¢y =len Sy +en S, e, S, +e, S,/ D, (2.40d)

where c;;-c44 and D are given in Appendix C.
The boundary conditions on the lateral surfaces of the cylinder have already
been used in finding expressions for c;-c,. Now, the unknown function F(a) can be

determined by using the remaining boundary condition, o_(7,0) = —p, , on the crack.
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CHAPTER 3

INTEGRAL EQUATIONS

3.1. Derivation of Integral Equation

Substituting equations (2.34b) and (2.23d) into the equation (2.35¢) one obtains

o.(r,z)= % [ :(a z+ ) Fla)e “aJ,(ar)da + 27/‘ j: [e, 2 1,(Ar) + c,AK (A7)
— (K +5)A L (A7) + 22 F (A7) — c,(k + SHHA K (A7) = 221K, (A 7)) ]
x cos A zdA (3.1)

By using the remaining boundary condition o_(r,0) = —p, to the equation (3.1), the

following integral form for the normal stress o, atz = 0 can be obtained

Ay = 241 (=
o.(r,0)= K—fl [ Fla)as,@r)da+ 7“ [ leat, )+, 2K (A7)

— e, (K + )AL (Ar)+ 2221, (Ar)) — ¢, (kK + 5)AK (A7) (3.2)
— 227K, (A7) |dA=—p,

Now substituting equation (2.40) in equation (3.2), the equation can be written in the

form

c.(r0)= %J. :F(a)aJo(a ryda +27ﬂj:(%[(cn Sy +cp Sy te; S, +eysS)
XALy(Ar)+(cy S5 +¢,y S, +¢38, +¢,,S))AK (AF)
—(cyy S, + S, + 0338, +¢3,S)x (K +5)AL (Ar) + 22771 (A1)
—(cy Sy + ¢S, +c,3S, +cyS)x (K +5AK (Ar) =21 rK (A1) ])d/lz -Do
(3.3)
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Changing the order of integration in Fourier part of the equation (3.3) and rearranging

the terms, equation (3.3) becomes:

0. 0)= [ Flakedyarido ron( (B2, (2r)

+ By AK (Ar) = By 2271 (A1) + B, 24 *rK (A1) + d, (=8 B, A 1, (AF)
—8B L AK (AT)+8B, 24 r I, (A1) =8B, 24 *rK, (A7) + b, (=B AL, (A7)
~BAK A1)+ B2 1L (A1) — By 24 PrK (A7) + g, (=B AL, (AF)
— Lo Ky(Ar)+ By 22 2L (A1) = B, 22 *rK, (A F))]dA Ydt }
3.4)

where f,, — B,, are given in Appendix C.

After some lengthy but straightforward algebraic manipulations, equation (3.4) gives

the following singular integral equation with kernel having Cauchy-type singularity
(Muskhelishvili 1953).

2u f 2
”(K+l);|:f(l‘)L_r+2M1(r,t)+tN”(r,t)}dt:—po, (a<r<b), 3.5

where

M,(r,t)= M (r.t)-1 (3.6)
t—r
2l _’”)K(L} 2 E(Lj (rt)
% r r t+r r
M, (r,t)= N (3.7)
E[KJ (r(t)
t+r t

in which K and E are the complete elliptic integrals of the first and the second kinds,
respectively. Equation (3.5) must be solved under single-valuedness condition for the

displacement around the crack given below :
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b

j f(t)dr=0 (3.8)

a

The integral equation (equation (3.5)) has three types of singularities :
1) A simple Cauchy-type singularity at ¢ =r,
2) Logarithmic singularity in the kernel M,
3) Nj;has singular terms when =4, B and r = £ A4, + B due to the behavior of the
integrand of the integral N;;as 4 — .

In this case, N;(7,f) can be written in the following form

00

Ny, (rt)= [ L, (.1, A)d2 (3.9)

0

Then the singular part of the kernel may be separated as

0

Ny () = [ Ly, (o, A)dA (3.10)

0

where

L (rt,A)=1lim, L, (rtA) (3.11)

Integrand of integral given by Equation (3.5) contains modified Bessel functions
1,,K,,I,and K, . By using asymptotic expansions for modified Bessel functions, given
in Appendix D, and after some manipulations, L;;,(r,t,4) can be obtained in the

following form

L (rt,2)= % {6_1(23_"_t{l (—4(B=r)B—1)2 =2(B-r)A+6(B—1)A+ (x> + 3))}
K

rt

+ 4 A= YA )2 + 24— )2+ 6(4- 1)1 + 4]} (3.12)
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The singular part of the kernel can be obtained by integrating L., (r,2,4) with the

formulae given in Appendix E as

Ny, (1) = L{l (-4(B-r) ; (B- ;»)di +(3- )}m (3.13)

{— 4A4-r) d22 +12(4 - r)i— 2}@;}

dr dr +r— 2A)
therefore, the bounded part of the kernel will be

L,(rt,2)- L, (r,t,2)]d2 (3.14)

11b”t

O'—n8

Then, the kernel N;;(r,7) may be written in the following form

Ny (l",t):N11s(}",t)+N11b (F,t). (315)

Now, Equation (3.5) can be written as

If(){—+tNm(r t)}dt B,(r), (a(r(b), (3.16)
72( +l)

where B,(r) contains all the bounded terms in Equation (3.5).

Singular behavior of the unknown function f{#) may be determined by writing

S()= Gt —a)b- )] (0(Re(y)(1)  (3.17)

where G(¢) is Holder-continuous function in the interval [a, b] and y is an unknown
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constant. G(¢) has an integrable singularity at the edges of the crack. Evaluating the

integral containing singular term using the technique given in (Muskhelishvili

t—r
1953)
lbf(t) - Gla)eotzy  G(b)cot zy G |
ﬂ'!t—l’d [(b—a)(r—a)y [(b—a) (b_r)]i/ G () (3.18)

where G*(r) is bounded everywhere except at the end points a,band substituting

equation (3.18) in equation (3.16) following complex function technique outlined in
(Muskhelishvili 1953) and using the procedure described in (Cook and Erdogan 1972),

one may obtain the following characteristic equation for y

cotzy =0 (3.19)

Therefore y =1/2 is obtained as the power of stress singularity at the tips of the crack

(r - a,b) and also satisfy the equation (3.18).

3.2. Solution of Integral Equation

Having determined the singular behavior of the unknown function, the integral
appearing in equation (3.5) may be non-dimensionalized by introducing the following

dimensionless variables 7,& for the crack

=T (alt(h, —1z(1), (3.20a)
pob ; @g b ; @ (alr(b, —1EQ), (3.20b)
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and the singular integral equation (Equation (3.5)) becomes

lj f(b‘“ﬂb*“j{ 2§+(b—a)M1(§,r)+(b_aj(b_ar+b+aan(§,r)}dr

2 2 2 2 2

= _ Pk 4D (3.21)

2u

After some manipulations the singular integral equation given by (3.21), may be

obtained in the form:

ij?(r){ 2 +Ml(§,r)+Jifu(g,r)}zr:—M (3.22)
7 r-& 2u
where
— b—a b+a
f(r)—f( STt j (3.23)
M, (&,7)=(b-a)M,(&,7) (3.24)
Ny (&0) =(” ;"j[b ol ;“]Nn(f,r) (3.25)

Substituting singular behavior of the dimensionless unknown function

1(@)=G()-2)"
(3.26)

where

— b—-a b+a\b-a)'
G(r)—G( 5 T+ 5 j( 5 j (3.27)
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in equation (3.22), one can obtain the following integral equation

L G(f){ 2§ml(g,f)mn(g,f)}df:—m (3.28)

By using the Gauss-Lobatto integration formula given in Appendix F, equation (3.28)

can be reduced to an algebraic system given below:

gcﬁ(q)L ii M8, 7))+ Ny (e 7)) e = —%ﬂ*l) (3.29)

where
7, =cos|(i 1)z /(n-1)], (i=12,........,n), (3.30a)
& =cos[(2j-)r/2(n-1)], (=12 n—1). (3.30b)

are the roots and the weighting constants of related Lobatto polynomials are

1 - (i=23,....,n-1). (3.3lac)

Now, as it can be seen easily, the algebraic system given in equation (3.29) has n
unknowns, E(Ti) and (n-I) equation. Since the number of unknowns is larger than the

number of equations, the single valuedness condition, equation (3.8), must be taken into

consideration to have n-equations for n-unknowns. Hence, equation (3.8) become
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C.G(z,) =0, (-1¢z(1). (3.32)

Infinite integral appearing in equation (3.29) can be calculated numerically by using

Laguerre (see Appendix F) integration method for each 7,,&; value. After determining

unknowns G(r,) at discrete collocation points the field quantities can be computed

numerically. Behavior of the unknown function at the tips of the crack, t=+=1, is
characterized by the so-called “stress intensity factor” which is particularly important

from the viewpoint of fracture mechanics.

3.3. Stress Intensity Factors

In crack problems stresses become infinite at the tips of the crack. Therefore,
the stress state at close vicinity of these points wil be presented by means of the stress

intensity factor.

3.3.1. Stress Intensity Factors at the Tips of the Crack

Because of the nature of the problem, it is only focused on Mode I stress
intensity factor calculations and investigation in this study. Mode I stress intensity
factor at the tips of the crack has been defined in the following form (Erdol and Erdogan
1978)

k,(a) = lim,_, \[2(a - r)o.(r,0), (3.33a)
ki (b) = lim, ,, \2(r = D)o (,0), (3.33b)

in which o, (r,O) can be expressed by means of equation (3.5) in the form
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o (r0)= —2# ?f Dt s, (r0). (3.34)

~
|
~

where o, is the bounded part of the cleavage stress

2 b
0. (r0)=— (K"Lj- 1) j F(e2M, (r,t)+ N, (). (3.35)
Now, considering
SNt near f—a
f(t)=f—(t)= Nima (3.36)
(t—a)b—1) 2 )/t —a

near t=2>,

N

the integral of the sectionally holomorphic function in equation (3.34) can be evaluated

by the method given in (Muskhelishvili 1953)

LA PO A () R U U o () .
ﬂ-!t—rdt_sinﬁ/Z«/b_am Sinﬂ/zmm+G (r) (3.37)

where G*( ) is bounded function for a{r{b. When r approaches a, second part of

equation (3.37) will be bounded and therefore equation (3.37) becomes

lbf(t) _ f*(a) o
ﬂ!t_rdt_mm+c () (3.38)
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where G**( r) contains all the bounded terms. Now, the stress intensity factor given by

(3.33) can be expressed in terms of the unknown function f*( ) with equations (3.34)
and (3.38) in the following form.

4 f(a)

k (a) = A2 , (3.39

0= im0
2
k. (b) = ——H /b) (3.39b)
! (K‘ + 1) b—a
2
Comparing (3.26) and (3.36) it can be related f*(¢) and 5(7) by

£ (z)= (b ; "j&(r), (- Kz1) (3.40)

Now substituting (3.40) into (3.39), the normalized stress intensity factors k

ki(a) and
%1(b) becomes
- k@ 2 =
ki(a) = = S(K+1)G( 1), (3.41a)
Py 2
- k) 2 =
ki(b) = — " S(K+1)G(l), (3.41b)
Dy 2

where s = &.
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CHAPTER 4

NUMERICAL RESULTS AND DISCUSSION

The axisymmetric crack problem is defined by the dimensionless parameters
a/B, b/B, (b-a)/B and Poisson’s ratio v. Distances are normalized with B, the outer
radius of the cylinder.

The system of algebraic equation is solved numerically for unknowns G(z,),

(1= 1,2,.....,n) at discrete collocation points. n = 30 points is used in calculations. In
computing the kernels, because of exponentially decaying behavior of the integrand,
the improper integral is evaluated by using Laguerre quadrature formula. Some lengthy
algebraic manipulations, hard integrations which can not be found in integration tables,
asymptotic analyses of the some expressions including Bessel functions in analytic
solution parts, numerical difficulty in the problem, computation of weight and discrete
function values, are achieved by using Mathematica 4.2 software program and
programming language.

Normalized stress intensity factors at the tips of the crack are calculated for
various geometric configurations. Numerical results are given in tabular and graphical
forms in Tables 4.1-4.10 and Figures 4.1- 4.10, respectively.

The first result which is important for validation of the problem is that, as the
crack size becomes very small in comparison with the other dimensions of the cylinder,

it is observed that the normalized stress intensity factors at the tips of the crack,
1;1 (@) and 1;1 (b), approach unity. This is an expected result since the problem turns out

to be a finite crack in an infinite medium. First case is verified by substituting (b-a)/B =
10°. The second validation of the problem is realized with the following case: If the
outer radius of the cylinder “B” goes to infinity, inner radius of the crack “a” and the
inner radius of the cylinder “4” are very small, the problem turns into a penny-shaped
crack in a uniformly loaded infinite medium. In this case the results obtained from the
present study and literature (Sneddon and Welch 1963) are in good agreement as they

are shown in Table 4.1.
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Table 4.1. Comparison of the results obtained in the present study with (Sneddon
and Welch 1963)

Present Study Sneddon and Welch
_ 2
k,(b) = k, (b)po\/g ki(b) = ;po\/z
0.638882p0\/3 O.6366197p0\/3

Table 4.2 shows the mode I normalized stress intensity factors at the tips of the central
crack (case 3) which means the thickness of the net ligaments (a-A and B-b) are equal.

As the thickness of the net ligaments are decreased, in other words, as the crack size is

increased, the normalized stress intensity factor at the inner tip of the crack l?l(a)

increases while k,(b) decreases.

Table 4.2. Variation of normalized SIFs, l?l (a) and 1;1 (b), for the central crack
in the thick walled cylinder (l;1 (a) =k(a)! pyJ(b—a)/2,
k,(b) = k,(b)/ pyJ(b—a)/2,A4/B=0.25,v=0.3)

b-a k,(a) k, (b)
B

-0 —>1.0 —>1.0

0.05 1.00999 0.990367
0.10 1.02038 0.980565
0.15 1.03145 0.970255
0.20 1.04367 0.959180
0.25 1.05775 0.947087
0.30 1.07464 0.933708
0.35 1.09547 0.918781
0.40 1.12141 0.902146
0.45 1.15331 0.883965
0.50 1.19078 0.865168




When the inner tip of the crack approaches the free lateral surface (case 4), in other
words, when the inner radius of the crack gets smaller, it is observed that l?l(a)

increases as it is expected. This is shown in Table 4.3. Similarly, this increase is
observed in Table 4.4 as well. Comparing Table 4.3 and Table 4.4, when the other
parameters are kept fixed, A/B is changed from 0.25 to 0.2, which means that the inner
radius of the crack is taken away from the free lateral surface of the cylinder, it is seen

that lgl(a) in Table 4.3 is always greater than the l?l(a) in Table 4.4. And this is

achieved as it can be seen from the Figure 4.2.

Table 4.3. Variation of normalized SIFs, El (a)and l;l (b), for an internal crack
in the thick walled cylinder (/;l (a) =k (a)/ porJ(b—a)/2,
k,(b) = k,(b)/ pyJ(b—a)/2,A/B=0.25,b/B=0.8v =0.3)

a k,(a) k,(b)

B
0.75 1.00717 0.991426
0.7 1.01376 0.980922
0.65 1.02091 0.968933
0.6 1.02991 0.956022
0.55 1.04272 0.942872
0.5 1.06278 0.930148
0.45 1.09547 0.918781
04 1.14621 0.909830
0.35 1.20728 0.903917
0.3 1.20466 0.898660

In Table 4.3 with decreasing a/B, l;l (a) increases. Only when a/B decreased from 0.35

to 0.30, one can see that there is a slight decrease in l?l (@) . In this case, it can be seen

that, the inner radius of the crack is very close to the inner wall of the cylinder. This
results in another problem with the edge crack. In this special case, the kernel used in
this study is no longer bounded in the corresponding closed interval and, of course, the
single- valuedness condition is no longer valid (Erdol and Erdogan 1978). Therefore,
the solution of the problem with edge crack is the subject of another study. However,
from Table 4.4, the same result is not observed because the crack does not show edge-

crack behavior, that is, it is not close enough to the inner surface of the cylinder.
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Table 4.4. Variation of normalized SIFs, l?l (a)and l?l (b), for an internal crack
in the thick walled cylinder (l?l (a) =k (a)/ poAJ(b—a)/2,
k,(b) = k,(b)/ pyAJ(b—a)/2,A/B=0.20,b/B=0.8v = 0.3)

a ky(a) k, (b)

B
0.75 1.00706 0.991245
0.7 1.01355 0.980538
0.65 1.02007 0.968332
0.6 1.02689 0.954928
0.55 1.03468 0.940581
0.5 1.04513 0.925610
0.45 1.06219 0.910506
0.4 1.09415 0.896074
0.35 1.15603 0.883593
0.3 1.26285 0.874804

The results for normalized stress intensity factors for a different geometric configuration

are tabulated in Tables 4.5 and Table 4.6. The related data is obtained when the outer

Table 4.5. Variation of normalized SIFs, k, () and k, (b), for an internal crack
in the thick walled cylinder (l;1 (a) =k, (a)/ porJ(b—a)/2,
k,(b) = k,(b)/ pyAJ(b—a)/2 ,A/B=0.25,a/B=0.4,v = 0.3)

é k,(a) k(D)

a
1.000 —1.0 —1.0
1.125 1.01544 0.986885
1.250 1.03306 0.978172
1.375 1.05320 0.971415
1.500 1.07471 0.964286
1.625 1.09613 0.955522
1.750 1.11606 0.944342
1.875 1.13322 0.929678
2.000 1.14621 0.909830
2.125 1.15331 0.883965

radius of the crack is increased towards the rigid lateral surface while the inner radius is

kept in the same location (case 5).



Table 4.6. Variation of normalized SIFs, l?l (a) and 1;1 (b), for an internal crack

in the thick walled cylinder (l;1 (a) =k(a)! pyJ(b—a)/2,
k,(b) = k,(b)/ pyJ(b—a)/2,4/B=0.20,a/B=0.32,v =0.3)

b ky(a) k,(b)

a
1.000 — 1.0 — 1.0
1.125 1.01544 0.986953
1.250 1.03352 0.978876
1.375 1.05493 0.973350
1.500 1.07854 0.967873
1.625 1.10284 0.961168
1.750 1.12644 0.952896
1.875 1.14827 0.943210
2.000 1.16763 0.932427
2.125 1.18412 0.920813

Here, what is expected in both situations is that 1;1 (b) decreases as b/a increases. It can

be observed from the tables that this expectation is realized. It is mentioned in literature
(Erdol and Erdogan 1978) that the stress intensity factors always increase at the tips of
the crack on the traction free surfaces of the cylinder. However, in this thesis study, the
stress intensity factor on the outer surface of the cylinder decreases since the outer
surface is rigid.

Another case is studied and the results are shown in Tables 4.7 and 4.8. The

crack size is kept fixed and a/B is increased, that is, the crack approached the rigid
surface (case 6). Here, as it is expected, both l?l(a) and l?l(b) decreases. Since the inner

wall free of tractions, the crack can not withstand opening while approaching to the free

end.



Table 4.7. Variation of normalized SIFs, l?l (a)and l?l (b), for an internal crack
in the thick walled cylinder (l?l (a) =k (a)/ poAJ(b—a)/2,
k,(b) = k,(b)/ pyJ(b—a) /2, A/B=0.25,(b-a)/B=0.3,v = 0.3)

a ky(a) k,(b)

B
0.350 1.12730 0.950203
0.375 1.12667 0.947743
0.400 1.11606 0.944332
0.425 1.10206 0.940768
0.450 1.08783 0.937234
0.475 1.07464 0.933708
0.500 1.06278 0.930148
0.525 1.05208 0.926749
0.550 1.04226 0.924292

Table 4.8. Variation of normalized SIFs, /?1 (a) and /?1 (b), for an internal crack
in the thick walled cylinder (/;1 (a) =k (a)! pyJ(b—a)/2,
k,(b) = k,(b)/ pyJ(b—a) /2, A/B=0.25,(b-a)/B=0.2,v = 0.3)

a ky(a) k,(b)

B
0.350 1.06774 0.961947
0.375 1.07598 0.964289
0.400 1.07471 0.964286
0.425 1.06926 0.963357
0.450 1.06243 0.962202
0.475 1.05558 0.961030
0.500 1.04928 0.960115
0.525 1.04367 0.959180
0.550 1.03868 0.958205

The variation of normalized stress intensity factors, Izl(a) and la(b), are

calculated for different values of Poisson’s ratio for case 6. Poisson’s ratio is taken as
0.25 and 0.35 in addition to 0.3. These results are given in Tables 4.9, 4.10 and in
Figures 4.9, 4.10.
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Table 4.9. Variation of normalized SIFs, l?l (a)and 1;1 (b), for an internal crack
in the thick walled cylinder (l?l (a) =k (a)/ poAJ(b—a)/2,
k,(b) = k,(b)/ pyAJ(b—a)/2,4/B=0.25, (b-a)/B=0.2, v = 0.35)

a ky(a) k,(b)

B
0.350 1.18417 0.938140
0.375 1.13562 0.926330
0.400 1.09927 0.917394
0.425 1.07199 0.909989
0.450 1.05113 0.902946
0.475 1.03453 0.895165
0.500 1.02044 0.885513
0.525 1.00740 0.872753
0.550 0.99411 0.855534

Table 4.10. Variation of normalized SIFs, l?l (a)and 1;1 (b), for an internal crack
in the thick walled cylinder (l?1 (a) =k (a)/ pyJ(b—a)/2,
k,(b) = k,(b)/ pyAJ(b—a)/ 2, A/B=0.25,(b-a)/B=0.2, v = 0.25)

a k,(a) k,(b)

B
0.350 1.213340 0.930970
0.375 1.132510 0.916000
0.400 1.083380 0.906173
0.425 1.052380 0.898591
0.450 1.031680 0.891445
0.475 1.016560 0.883364
0.500 1.004070 0.873016
0.525 0.992241 0.858807
0.550 0.979615 0.838616

Some of the results given in Tables 4.2-4.10 are also shown graphically in Figures 4.1-
4.10 in order to observe and/or understand the behavior of the normalized stress

intensity factors at the tips of the crack.
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CHAPTER 5

CONCLUSION

In this thesis, the stress intensity factors for an infinite hollow cylinder
containing a ring-shaped crack is investigated. By using the procedures in literature the
problem is defined and modeled in terms of a linear second order partial differential
equation system with mixed boundary conditions. The integral transform techniques are
used to solve this governing equations which are reduced to a singular integral
equation. Solving the singular integral equation numerically, the normalized stress

intensity factors at the tips of the crack, l?l(a) and l?l(b), are calculated for various
geometric configurations and for different Poisson’s ratio which is used as the material
parameter. Numerical results are presented in tabular and graphical forms.

As the crack approaches the stress-free surface, k,(a) increases. This is because
the free lateral surface lets the crack open (Erdol and Erdogan 1978).

In the same way, as the crack approaches the rigid surface, k, (b) decreases.
This is because this rigid wall prevents the crack from opening. In other words, the
strength of stress singularity decreases.

The results obtained in this study for the two special problems , a finite crack in
an infinite medium and a penny-shaped crack in a uniformly loaded infinite medium,
were in good agreement with those in the literature (discussed in Chapter 4).

As it can be seen from tables and figures given in Chapter 4, the values of
1;1 (a) are always greater than the values of 1;1 b).

As a further study, the edge crack solution can be adapted to the present study

by using different kernel and condition mentioned in Chapter 4.
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APPENDIX A

INTEGRATION FORMULAS

By using the integration formulas given below, equation (2.37) can be reduced

to equation (2.38)

]: (o +7& M, (ta)do = 1,(AL)K, (t1), (A<t)
I (af‘: 7 (AcH (1odor = 21, (AR)K  (12) (A<t)
I(az - 7 (Ac (12)da =1, (AR)K, (1), (A<t)
Iﬁyouayl(mm=u0<Aﬂ>K1<m>, (Agt)
I (o 22 )] (to)do = —[ AL (ALK, (1) + T, (ALK, ()] (A < t)
I (o ] o)l , (tor)da = o [xAIO(Ax)KO(m) — ML (ALK, ()] (A < t)

T - 2 __J (40 (ta)da =§{— Al (ALK, (z/1)+%11 (AA)K, (t1)

+ 1, (A)K,(t))], (A<t)

I (A fiakia = [ 241 (42)K,02) + 1, (42)K, 0]

T (o P Bl = K, (821, (9) (B>1)
5 (o
j(—)‘i Bl ik = 2K, (821, ), (B2 1)
o \&
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o

T(az N Xz)Jl(BO‘)Jl(tG)da =K, (B, (t4), (B>t)
T(%)JO (Ba)J,(ta)da = —AK,(BA),(12), (B>1)
. o 1

{ s Xz)2Jo(m)Jo(m)da = o [BK (BL (0) - K (BUL ()], (B2 1)

291

I 1 (Ba) 1) = [BAK, (B (1) - 0K (BA)L, (0], (B2 1)

., 1 2
! J (B, (taMa = [BKO (BA,(2) + < K\(BA), (M)} -

1
-5 K (BA)I,(Az),

I “ T (B (taa = [ BAK (BA () + 12, (B2 (2)] (B2 1)
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where

APPENDIX B

INTEGRAL FORMS

S1- §4 appearing in equation (2.39) are given as:

1 ¢ 1 ¢
S1=(K+1):|;f(t)tg1dt SZ:(K_I_I):[f(t)tbldt
1§ 1§

§3 = (K+l):|;f(t)ta1dt S4 = (K+1)_If(t)td1dt

al = —4(tlo(AN) Ko(tA) — ATI(AX) K1 (£ ) A% + AELAD Kot h) = ATp(A L) Kyt ) A

A
L 26+ D HAN K

A
bl =-21A1ytA) Ko(BA) —(k + 1) [1(¢A) Ko(BA) + 2 BAL(tA) K1 (BA)

dl = ; A2 (AIp(AAN) K1(td)—t11(AA) Ko(t Q)

gl=(k+1)11(tA) Ki(BA) = 2A (¢lp(¢A) Ki(BA) — B11(¢A) Ko(B A))
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APPENDIX C

COEFFICIENTS

B, — B, appearing in equation (3.4) are given as follows:

Bir=c11 = ai1(k+3), P2 =c12 - c(k+3), 13 =13 —C33(k+5) |
B4 = c14 — c34(k +5), f21 = c21 — ca1(k +5), B22 =22 —cak +5),
B23 = 23— ca3(k +5), P24 = c24— caa(k+5), P31 = c31, B32 =32,

B33 =33, B34 =34, Bar =ca1, Par = can, Pa3 =43, Pas = cas
where the expressions for the coefficients c;;-c44 are

/13

BK(4A)
cll = (AB(K()(B)L) Hoo +K1(BA) Hot) — 7}

+ (A (k+1) K1(BA) Hoo — % Bk +1) (Ko(BA) Hio + K1(BA) H11)) 22

1
-+ D2 K1 (BA) Hio A

BKy(AN) 3

c12 = (7—AB(K()(B?L)H1() +K1(B)L)H11))/1
BKj(AN) 1 2
[P B ) KoB ) Hio + KiB) Hon = A G-+ 1 K1 (B2 Hio A

+%( 2 1) K1(BA) Hoo A

2AK,(BA) \/14 B(x+ 1) Ky(BA) 2
- A

¢; = {2AB(H00 Ky(Ad) — HjpK;(A) +

((1—/(2)1(1(3/1) BHM(/(”)KI(A/DT
+ - Vi
L 244 A )

2AK,(B)
Cry = (2AB(H01 Ko(AD - H; 1 K (Ad) - f\/ﬁ

Bx+ DK, (BJ)
—_—

)
"\ 242 } A )T A

+[2A(A/+ 1) (HooKb(A/l) —H10 K](A/l)) +
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BI, (A)

1
Gy = (—ABH(]() Ig (B/l) - +ABH()]]1 (B/l)]/lj +(E BH]() (A’+])10 (B/l)

1 1
+ AHpy (« + D 1; (BA) -5 BH,; (« + D1 (B/l)}/lz -5 BH,p(« + 11, (B) 1

( Bly4x
Cp = k—

+ ABHyolo(BA) — ABHi Il(B/\)) 2

BI (AN

1 1
+(— 5 BHyo (k= 1) Io(BA) + + 3 BHyi (k-1 11 (BX)
1
~ AHio(+ DIBV|A + - Hoo @ = 1) 1B

( 2A4L(BMY 4
03 = k—ZABH()()[()(A?() -2ABHo [1(AAN) + —— [ A

B(K+ l)lo(BA)A2 { BH]()II(AA) BHI()KII(AA) (1 —K2)11(BA) \/12
* 4 Y4 T4 T o
\ )
2 Aly(BA)

coq = (—2 ABHy; Ip (AD) + —2ABH; I; (A/l)) 1
+( =2 AHpo Ip (A — 2 AHpg 1o (AA) —2 AH 0 17 (AA)

—2AHj0 ] (AA) +

BI; (BY)  BaT; (BA) )/13

Al
+( (42 +4 1 +3) 1y (BA) _ BHy I (A/z)hz
( 244 A )
Hyp(x +17°1; (A4) A
- A
31 = (M 1L BH19KoBA) - z BHUK](B/I)) 2
2BA 2 2

1
+; (« +1)(Hi1 Ko(BA) —HjgK(BA) A

(Z B Hop Ko(B A) AK A1 p 1<(1M))/12
C = — - 4+ —
32 5 00 150 2B 7 01 &1

+( odd) ! Hoj Ko(B A) +B 10koBAH 1 Hor « Ko(B A)
- = — = K
4BA 2 VR0 24 g R0

JBHnKBY 1k (B/l)}/l
Ly _
24 g A

Hyp(« +1)Ko(B A)
24

BKyB ) _Hy (x +DK[(AD A

24

ess = Ao KA. - —AHI KA D) 2

DK B A
24



BK(BA)Y 5 («+D)KyBYA
24

e34 = (A HooKo(Ad) — A HigK1(AD) +

Hijgpx +DKi(AD) A
24

( Al Ay T g Ip(B 2) L gy 1(31))/12
C = -—— 4+ — - —
41 2B P 1010 P 111]

1
+; (=« =1)(Hj11p(BA) +Hjol1(BA) A

1 A4 1 2
c = (—5 BHpolp(BA) - ——— +EBH01 II(B/I)}/I

BHiplp(B A 1
BHiglp(B) # 2 Hor #10(B0)

Ip(Ad) 1
+< + 3 Hop; Ip(B A1) —

4BA
BH; I;(BA 1 H +1)Ig(B A
L BHI (B +—H00/(11(B/l))/l L Hi e+ D1y B A
24 4 24

Bly(BA) 3
c43 = (—AH()] Tp(A ) +7/Z -AHI1(A4 /l))/l

Hyy«+DI(ADA LB A
2 A 2 A

BI,(BA +1)Iy(BA) A
C44=<—AH0010(A/2)—AH]()I](A/Z)+ i1(/z )) s )2104( )

Hijg(x +DI11(AD) A
24

D = ABIy BN Ko(AN> 1% — ABLi(BN? Ko(AN* 1* + A BIy(AN? Ko(BA)? A*

—ABL(AN? Ko(BN? A% — ABIy(BN)? Ky (AN X* + A BIL(BV)? KA 24

— ABIy(AN? Ky (BN A* + ABI /(AN K1 (BN X* = 2 ABIy(AN) Io(BX) Ko(AN) Ko(BY) A4
—2 ABIy(B) [;(AN) Ko(BN) Ky(A) A* = 2 A BIo(AN) [ (BN Ko(AN) Ky (B X
—2 ABLI(AN) [i(BX) K1 (AN) Ki(BX) A* = AIp(BA) [(B) Ko(A)> 2
— Ak Io(BN) [i(BA) Ko(AN? X3 + AkIy(BA) [(BA) Ky (AN 23
+AIp(AN (B Ko(AN) Ko(BV) A3 + AxIp(AN) I;(BA) Ko(AN) Ko(BV) A

—AL (AN LI(BX) Ko(AX) Ko(BV) A3 — Alo(BA) (B Ko(AN) Ki(A) 2>

F AT (AN T (BA) Ko(BV) K1 (AN X + ATy(AN) Io( B Ko(AN) Ky (BY) A

—AkTy(AN) Io(BA) Ko(AN) Ky (BV) A3 — ATy(AN? Ko(BN) Ky(BV) AP
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+ARTo(AN? Ko(BV) Ky(BV) A = Alp(AN) Io( BA) Ko(AD) Ky(BV) A3
+AKT (AN Ko(BV) Ky(BV) A + AIo(AN) I (AN) Ko(BA) K1 (BV) A3
+ AT (AN To(BA) Ky (AN Ki(BA) X = AkIp(B) (AN Ky (AN Ki(BY) A

BLI(AMV?2 Ky(BN)222  BrIj(AN2Ky(BA)2A2  BIy(BA)2K;(AN2A2
24 24 24

BrIy(BV? K1(AD2 A2 BL(BMV2K((AN2A2 Bl (BL)2K;(AN?A2
- + +
24 24 24

BI(AM2 Ky(BN2 A2 BrIj(AN2K;(BMV2X2  BX2  BIBN) I (AN Ky(BA) K (AA) A2
+ + + — -
24 24 A A

_BklyBNLAN KBV K(A)A* BI(AD) [[(BA) Ky (A)) K (BA) A
A A

Bk (AN) [;(BA) K{(A ) K{(BA) A2 N AN . K2 Io(BA) [;(BA) K1 (A L)% A
A B 24

L KIB) 1BV Ky(4 022 , BN LBY K4 022 . K1(AN L (BA) Ko(BA) K (AD) A
A 24 24

KNANLEBOKBOKIANL LA LB KoBY) Ki(4) A
A 24

RLAN KYBHK(BOA  k[(AN2 Ky(BV) K (B)A  Li(AN2 Ky(BA) K (BA) A
- 24 - A - 24

K Io(B) (AN K (AN K (BHA kI BN (ANK{(ANK{(BOA (B I} (AN Ki(AD) K (BA) A

24 A 24
K K 3
+—t—+ ——
44B AB 4A4B

where

H,(14,2B) = K, (24)!,

J

(AB)+ (=1)"""'1,(A4)K ,(4AB). (i,/=0,1)
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APPENDIX D

ASYMPTOTIC EXPANSIONS

Asymptotic expansions for modified Bessel functions, /,,K,,/,and K, for
A — oo (Abramowitz and Stegun 1965):

-AB
3 15
KB ~ & \G(1+ - )
V2B 8AB  128A¢B
—-At
3 15
K@) ~ < \G(1+ - )
NOIY: At 128A-¢
-AA
3 15
KAy ~ £ Vv (1+ -
V221A 8AA  128A- 4
—Ar
3 15
Ki(rd) ~ £ \G(1+ -
V2 r 8Ar  128A4r
—Ar
1 9
Ko(rd) ~ < \G(l— b
V2 r 8Ar  128A-r
-AA
1
KoAA) ~ & Vv (1- + 92 5)
V221A 8AA 128144
-AB
1
KoBA) ~ £ Vv (1- 0 )
V2B 8AB 12812 B2
—At
1
Kot ) ~ & ‘/;(1— ; 922)
o SAt  1282¢
e'B 3 15
L(BA) ~ (1— - - 2)
v 2 7B 8AB  128A“ B
eM 3 15
L) ~ (1— - . 2)
v 2 At At 128A-¢
e 3 15
R e R o
2 TAA 8AA 1287+ A4
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Li(rd) ~

Io(rd) ~

Io(4 1) ~

Io(BA) ~

Io(z ) ~

Ar

(1 3 15 )
2 mAr 8Ar 128122
AT 1 9
(1 + + )
2 mAr 8Ar 128122
AA 1 9
(1 + +
V2rA 8AA 12812 42
AB 1 9
(1 + +
V27AB SAB 12812 B2
At
1 9
(1 + + )
V2t gAt 1287242

)
)
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APPENDIX E

ALGEBRAIC EQUALITIES

Some formulae used to obtain N;;s given in equation (3.13):

(B-r)B-t)  (B-r)  (B-r)

(2B—r—1) (2B—r—1f (B—r—1)

(B-t) 1 (B-r)

2B-r—t} (@B-r-t) (2B-r-1)’

(A-rfd-1) _ (4d-rfd4-1) _ (4-r) = (4-r)

(=24+r+t)  @QA4-r—t)  (Q4-r—tf (Q4-r—t)’

(4-0) 1 (4-7)

(—2d+r+1) 24-r—t (24-r—t)’

1 _ 1 _ 1 dz[ 1 }
(2B-r-t) (t+r-2B) 2dr* | (t+r-2B)|

1 1 1 d 1

@B-r—1)  (t+r-2B)  2dr(t+r-2B)
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APPENDIX F

GAUSS QUADRATURE

Gauss-Lobatto integration formula:

% j { ffi wiode =€, £t wit,)

i=1

where

Gauss-Laguerre integration formula:
[r@yde={ele r@lar =Y wieye' 1)
0 0 i=l1

where ¢, are abscissas and w(¢;) are weights of Laguerre integration.



