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ALANDA PROGRAMLANABİLİR KAPI DİZİLERİ ÜZERİNDE
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for his invaluable guidance, support and encouragement throughout my thesis. I
would like to thank to all my colleagues in TUBITAK UEKAE for their support
and strong friendship. My deepest gratitude goes to my family for their love and
support throughout my life; this thesis is simply impossible without them. Last but
not least I would like to thank to Harun Karabalkan for his love, helpful comments and
encouragement.

January 2014 Melike ATAY
Electronics Engineer

ix



x



TABLE OF CONTENTS

Page

FOREWORD........................................................................................................... ix
TABLE OF CONTENTS........................................................................................ xi
ABBREVIATIONS ................................................................................................. xiii
LIST OF TABLES .................................................................................................. xv
LIST OF FIGURES ................................................................................................xvii
SUMMARY ............................................................................................................. xix
ÖZET ....................................................................................................................... xxi
1. INTRODUCTION .............................................................................................. 1

1.1 Motivation....................................................................................................... 1
1.2 Contribution.................................................................................................... 4
1.3 Organisation of Thesis.................................................................................... 4

2. SKELETONS IN DIGITAL IMAGE PROCESSING ..................................... 5
2.1 Definitions and Properties of Medial Skeleton............................................... 5

2.1.1 Maximally-inscribed balls ...................................................................... 6
2.1.2 Grassfire analogy .................................................................................... 6

2.2 Skeleton Extraction Methods ......................................................................... 7
2.2.1 Distance transformation.......................................................................... 8
2.2.2 Voronoi diagram ..................................................................................... 11
2.2.3 Thinning techniques ............................................................................... 11
2.2.4 Mathematical morphology...................................................................... 12
2.2.5 Comparison of skeleton extraction methods .......................................... 14

2.3 Classification Of Skeleton Points ................................................................... 15
2.4 Skeleton Pruning ............................................................................................ 15

3. REAL TIME SKELETONIZATION ALGORITHM AND SIMULATIONS 17
3.1 Skeleton Extraction Algorithm....................................................................... 18

3.1.1 Ridge point detection algorithm ............................................................. 19
3.1.2 Extended ridge point detection algorithm .............................................. 23

3.2 Simulation of Skeleton Extraction Algorithm................................................ 26
3.3 Detection and Classification of Skeleton Points for Hand Tracking .............. 33

4. IMPLEMENTATION OF REAL TIME SKELETONIZATION SYSTEM . 37
4.1 Pipelined Skeleton Extraction Architecture on FPGA ................................... 38

4.1.1 Camera and DDR2 control ..................................................................... 38
4.1.2 Preprocessing.......................................................................................... 40
4.1.3 Object detection and morphological cleaning module ........................... 40
4.1.4 Distance transform calculation ............................................................... 41

xi



4.1.5 Ridge point detection module................................................................. 43
4.1.6 Linking and feature extraction module................................................... 44
4.1.7 Hand tracking module ............................................................................ 46
4.1.8 DVI driver module.................................................................................. 46

4.2 Experimental Results...................................................................................... 48
5. CONCLUSIONS AND RECOMMENDATIONS............................................ 51

5.1 Future Work.................................................................................................... 52
REFERENCES........................................................................................................ 53
CURRICULUM VITAE......................................................................................... 57

xii



ABBREVIATIONS

FPGA : Field Programmable Gate Array
GPU : General Processing Unit
MAT : Medial Axis Transform
SE : Structuring Element
DT : Distance Transform

xiii



xiv



LIST OF TABLES

Page

Table 2.1 : Comparison of Skeleton Extraction Methods. .................................... 15
Table 3.1 : Performance Measurement of Images................................................. 31
Table 3.2 : Performance Measurement of Rotated Images. .................................. 31
Table 3.3 : Performance Measurement of the Algorithm in [1]. ........................... 31
Table 4.1 : FPGA Resource Usage........................................................................ 48
Table 4.2 : Total Latency of the System................................................................ 48

xv



xvi



LIST OF FIGURES

Page

Figure 2.1 : Binary Image of Letter T and its Skeleton. ......................................... 5
Figure 2.2 : Skeleton of a Rectangle via Maximally-Inscribed Balls [2]. .............. 6
Figure 2.3 : Wavefronts generated by a two point Grassfire Excitation [3]............ 7
Figure 2.4 : Masks of Different Metrics (a) Input (b) Cityblock Distance (c)

Chessboard Distance (d) Euclidean Distance (e) Chamfer 5-7-11
(f) Chamfer 3-4. .................................................................................. 9

Figure 2.5 : Severel Types of Distance (a) Euclidean (b) CityBlock (c)
Chessboard (d) Hexagonal (e) Chamfer 3-4 (f) Chamfer 5-7-11. ...... 10

Figure 2.6 : Ridge Points of the Distance Transform. ............................................ 10
Figure 2.7 : Voronoi Skeleton of a Rectangle (a) Generating (sample) Points

(b) Approximating Skeleton [2].......................................................... 11
Figure 2.8 : Thinning Process. ................................................................................ 12
Figure 2.9 : Samples of Structuring Elements. ....................................................... 13
Figure 2.10: Opening Process.................................................................................. 14
Figure 2.11: Branch, Normal and End Points of Letter T........................................ 16
Figure 2.12: Skeleton with Unwanted Branches. .................................................... 16
Figure 3.1 : Scanning the Rectangle for Four Orientations (0, 45, 90, 135

Degrees). ............................................................................................. 20
Figure 3.2 : Ridge Points on Distance Transform Image (a) Distance Transform

Image (b) Result of y axis Scan (c) Result of x axis Scan (d) Output
Image of the Ridge Point Detection Algorithm .................................. 22

Figure 3.3 : Test Results : (a), (c), (e) Input Binary Images (b), (d), (f) Skeleton
Outputs with Ridge Point Detection Algorithm. ................................ 24

Figure 3.4 : Test Results of Extended Algorithm: (a) Set of Ridge Points of a
Hand (b) Skeleton Output of a Hand after Linking Process (c) Set
of Ridge Points of a Horse (d) Skeleton Output of a Horse after
Linking Process................................................................................... 27

Figure 3.5 : Test Results of Extended Algorithm(cont.): (e) Set of Ridge Points
of a Man (f) Skeleton Output of a Man after Linking Process (g)
Set of Ridge Points of a Finger (h) Skeleton Output of a Finger
after Linking Process. ......................................................................... 28

Figure 3.6 : Possible Triangles on the Image.......................................................... 28
Figure 3.7 : Connectivity Numbers......................................................................... 29
Figure 3.8 : Psuedo Code to Calculate Connectivity Number ................................ 29

xvii



Figure 3.9 : Test Results of Rotated Images : (a) Skeleton Output of a hand
with a rotation of 20 Degrees (b) Skeleton Output of a horse with a
rotation of 40 Degrees (f) Skeleton Output of a Man with a rotation
of 90 Degrees (h) Skeleton Output of a Finger with a rotation 5
Degrees. .............................................................................................. 32

Figure 3.10: Filter Mask .......................................................................................... 33
Figure 3.11: Possible End Points [4] ....................................................................... 34
Figure 3.12: Possible Branch Points [4] ................................................................. 34
Figure 3.13: Branchpoints and Endpoints : a)Branch Points and End Points of

a Hand b)Branch Points and End Points of a Horse ........................... 35
Figure 4.1 : Architecture of FPGA-based Skeletonization System. ....................... 39
Figure 4.2 : Morphological Cleaning Block Diagram. ........................................... 41
Figure 4.3 : Distance Transform Forward and Backward Mask: (a) Forward

Mask (b) Backward Mask. .................................................................. 42
Figure 4.4 : Distance Transform Backward and Forward Propagation Circuit. ..... 42
Figure 4.5 : Circuit Implementation of Ridge Point Detection Algorithm............. 44
Figure 4.6 : Linking Patterns. ................................................................................. 45
Figure 4.7 : Circuit of 2D Convolution................................................................... 46
Figure 4.8 : Circuit Implementation of Hand Tracking Module............................. 47
Figure 4.9 : Timing Diagram of Pipelined Architecture......................................... 47
Figure 4.10: Full System with FPGA Board and Camera Module.......................... 49
Figure 4.11: Some Illustrations of the Real Time System. ...................................... 49

xviii



REAL TIME SKELETONIZATION ON FPGA
WITH A HAND TRACKING APPLICATION

SUMMARY

People benefit from various systems based on image processing technology throughout
their daily routine. Main functions of such systems include object detection, matching,
tracking, etc. Skeletonization forms the backbone of many tracking and matching
applications.

Skeleton of a shape was first described by Blum in 1967. According to Blum,
the skeleton of a 2D shape is the loci of points equidistant from the contour.
Skeletonization converts most of the original foreground pixels to background pixels
while preserving the skeletal residue on the binary image by eliminating the redundant
part. Thus, the shape is represented with small amount of data and analysis of the
shape requires less time and resource.

In literature, variety of methods have been developed to calculate the skeletal residue
of a shape. Skeletal residue calculation must produce a perfect skeleton to improve
the performance of systems which rely on skeletonization. Perfect skeleton should
preserve geometrical properties of the shape and it should be one pixel thick. Today,
acquiring a perfect skeleton is still a challenging task.

Most of the matching and tracking applications require real time processing
capabilities. Nowadays, field programmable gate arrays (FPGA) and graphics
processing units (GPU) are usually preferred to meet the real time processing
requirements. To date, many implementation methodologies have been developed
for image skeletonization on FPGAs. All the implementation methods aim to reduce
the resource utilization and power consumption of the systems while increasing the
number of processed frames per second.

Due to the necessity of perfect skeleton extraction and real time requirements of these
systems, this thesis pursues a real time implementation of skeletonization to be used
in many tracking and matching applications. Skeletonization algorithms are usually
computationally complex to produce the perfect skeleton. Therefore, most of them are
not suitable for real time VLSI implementation. In this work, an extension is suggested
to a widely used simple but an efficient skeletonization algorithm. This extension
reduces the effect of the boundary noise on the skeleton and produces a skeleton close
to a perfect skeleton.

A fully pipelined architecture is proposed to implement the extended skeleton
extraction algorithm on FPGA. A complete system is developed on Digilent Atlys
board with Spartan-6 FPGA to test the proposed skeletonization architecture. The
frames are captured from CMOS image sensor with an integrated advanced camera
system MT9D112. The performance is observed on a hand tracking application.

xix



Performance of the novel algorithm is evaluated according to the widely acknowledged
performance measures for skeletonization research. Resource utilization and timing
performance of the FPGA implementation are investigated for comparison with similar
systems in literature.
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ALANDA PROGRAMLANABİLİR KAPI DİZİLERİ ÜZERİNDE
GERÇEK ZAMANLI İSKELET BULMA VE

EL TAKİP UYGULAMASI

ÖZET

Günlük yaşamda trafik görüntüleme sistemlerinden medikal uygulamalara kadar
çok geniş bir alanda görüntü işleme algoritmalarından yararlanılmaktadır. Bu
sistemlerin temel fonksiyonları, hareketli nesnenin tespit edilmesi, tanınması ve
takip edilmesi olarak listelenebilir. Literatürde, nesnenin iskeletini çıkararak ona ait
özelliklerin belirlenmesi tanımlama ve takip uygulamalarının gerçekleştirilmesinde
sıklıkla kullanılmaktadır.

Görüntü işlemede iskelet, ilk olarak Blum tarafından 1967 yılında tanımlanmıştır.
Blum’a göre, nesnenin sınırlarının tam ortasında bulunan noktalar kümesi şeklin
iskeleti olarak tanımlanır ve bu noktalar kümesi nesneyi belirleyen tüm özellikleri
içerir. Kısaca iskeletleştirme, nesneye ait verinin gereksiz kısımlarını atarak,
nesneye ait özellikleri çok daha az bir veriyle ve doğru bir şekilde tanımlar. Bu
nedenle iskeletleştirme kullanan sistemler, daha az kaynak tüketerek daha hızlı
çalışabilmektedirler.

İskelet temelli sistemlerin sağlıklı çalışabilmesi için nesnenin iskeletini ifade eden
noktalar kümesi iyi tanımlanmalıdır. Doğru bir iskelet tanımı nesnenin geometrik
özelliklerini koruyacak şekilde bir piksel inceliğinde olmalıdır. Bugüne kadar Blum’un
iskelet tanımına göre bir nesnenin iskeletini oluşturmak için pek çok hesaplama
yöntemi geliştirilmiştir. Bu yöntemler; uzaklık döşümü temelli , inceleştirme temelli,
morfolojik işlem temelli ve Voronoi diyagramı temelli olarak dört parça altında
incelenmektdir.

Bu hesaplama yöntemlerinin bir çoğu mükemmel bir iskelet oluşturamamaktadır.
Mükemmel iskeleti oluşturmanın önündeki en büyük engel ise nesnenin sınırlarında
oluşan gürültülerdir. Bu gürültüler de iskeleti tanımlayan noktalar kümesine dahil
olarak şekli simgeleyen özelliklere zarar verir. Bu durum iskelet bilgisini kullanan
sistemlerin kararsız çalışmasına neden olur. Nesneye ait mükemmel iskeletin elde
edilmesi ve elde edilen bilginin çeşitli sistemlerde uygulanabilirliği üzerine hala pek
çok çalışmalar ve var olan sistemlere eklemeler yapılmaktadır .

Literatürde iskelet bilgisi ile gerçekleştirilen pek çok uygulama bulunmaktadır.
Görüntü işlemede en çok karşılaşılan problemlerden biri olan girişim problemini
çözmek için birçok sistem tarafından iskeletleştirme kullanılmaktadır. İskelet temelli
çeşitli nesne eşleştirme ve takip sistemi de geliştirilmiştir. Nesne eşleştirme
sistemlerinde graf eşleştirme olarak bilinen teknikte iskeletten elde edilen nesneye ait
özellikler ile bir graf oluşturularak, bu graf bir veri tabanında var olan diğer graflar ile
karşılaştırılmaktadır. Nesne takip sistemlerinde ise iskeletin bitiş ve dallanma noktaları
takip edilerek tüm nesnenin hareket yönü belirlenebilmektedir. İskeletler parmak izi
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ve karakter tanıma sistemlerinde de sıklıkla tercih edilmektedir. Diğer uygulama
alanları ise medikal sistemler ve animasyon üretme olarak belirtilebilir. Animasyon
sistemlerinde daha çok 3D iskelet bulma yöntemleri kullanılmaktadır.

Yukarıda anlatılan sistemlerin büyük bir kısmı doğru sonuçlar üretmenin yanısıra
gerçek zamanlı olarak çalışmalıdır. Bu nedenle bir sistemin performansı,
kullanılan algoritmaların hangi ortamda ve nasıl gerçeklendiğine de oldukça bağlıdır.
Günümüzde alanda programlanabilir kapı dizileri (FPGA), grafik birim işlemciler
(GPU) ve Microsoft tarafından geliştirilen Kinect kamerası ve yazılımı gerçek
zamanlı sistemler için sıklıkla tercih edilmektedir. Literatürde FPGA ve GPU
üzerinde gerçekleştirilen birçok gerçek zamanlı iskeletleştirme çalışmaları yapılmıştır.
Gerçekleştirilen sistemlerin tümü, saniyede işlenen görüntü sayısını artttırmayı ve
kullanılan kaynakları azaltmayı amaçlamaktadır.

Mükemmel iskelet tanımı ve gerçek zamanlı çalışma gerekliliğinden yola çıkılarak, bu
çalışmada FPGA üzerinde gerçek zamanlı bir iskelet çıkarma işlemi gerçekleştirilerek
elde edilen iskelet üzerinden televizyon kontrol sistemlerinde kullanılabilecek bir el
takip sistemi geliştirilmesi amaçlanmıştır.

Bu amaca ulaşabilmek için sistemde kullanılacak algoritmanın donanım üzerinde
gerçekleştirilmeye uygun ve gerçek zamanlı çalışma hızını yakalayabilmesi gerek-
mektedir. Literatürde tanımlanan iskelet oluşturma yöntemlerinin bir çoğu mükemmel
iskelet tanımını sağlayabilmek için FPGA’de gerçeklenmesi zor kompleks hesaplama
teknikleri kullanmaktadır. Bu nedenle çalışmada FPGA üzerinde gerçeklenebilir bir
algoritma seçilerek bu algoritmaya sınır gürültülerinin etkisini azaltacak eklemeler
yapılmıştır. Bu eklemeler söz konusu algoritmaya ek bir hesaplama yükü
getirmemiştir. Sonuçta sınır gürültüsünden bağımsız ve nesnenin geometrik
özelliklerini büyük ölçüde koruyan bir iskelet elde edilmiştir. Ayrıca kullanılan yöntem
ile bir resim içerisindeki nesnelerin iskeletleri eş zamanlı olarak tespit edilebilmektedir.
Bu durum algoritmanın hızı açısından oldukça büyük bir avantaj sağlamaktadır. Elde
edilen iskelet, literatürde iskeletin performansını ölçmek için tanımlanan parametreler
ile test edilmiştir. Bu şekilde algoritmanın diğer tekniklerle karşılaştırılabilmesine
olanak sağlanmıştır.

Elde edilen iskelet sonucu, televizyonlar için uzaktan kontrolü, el hareketleri ile
sağlayacak bir el takip sisteminde kullanılmıştır. Bu sistem elin hareketini algılayarak,
bu harekete göre televizyon ünitesine çeşitli komutlar göndermektedir. El takip
sisteminin gerçekleştirilebilmesi için tanımlanan iskelet üzerinde bulunan bitiş ve
dallanma noktaları resim üzerinde 2D konvolüsyon tekniği ile belirlenmiştir. Elde
edilen bitiş ve dallanma noktaları takip edilerek tüm elin hareketi belirlenmiş ve komut
oluşturulmuştur.

İskelet çıkarma algoritması belirlendikten sonra, bu algoritmanın donanımda hızlı
gerçekleştirilmesi için yeni bir mimari önerilmiştir. Sistem üzerinde hareketli nesnenin
tespitinden konumunun belirlenmesine kadar olan tüm adımlar gerçekleştirilmiştir.
Hareketli nesnenin tespiti için arkaplan çıkarma algoritması tercih edilmiş ve
morfolojik operasyonlar ile arkaplan çıkarma algoritmasından elde edilen sonuçlar
iyileştirilmiştir. Harekeli nesnenin belirlenmesinden sonra ise sırasıyla iskeletleştirme
ve takip algoritmaları gerçeklenmiştir. İskeletleştirme kısmının algoritma adımları
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boru hattı mimarisi kullanılarak gerçekleştirilerek sistemin daha hızlı çalışması
sağlanmıştır.

Bütün sistem, Digilent Atlys board üzerinde Spartan-6 gibi kaynakları sınırlı olan
bir FPGA’de gerçekleştirilmiştir. Giriş resimleri MT9D112 görüntü sensöründen
alınmıştır. İskelet çıkarma algoritmasının performansı televizyon kontrolünü uzaktan
sağlamayı amaçlayan bir el takip uygulamasında izlenmiştir. Sistemin saniyede
işlediği resim sayısı ve kaynak tüketimi belirlenmiştir.

Sonuç olarak takip ve tespit sistemleri için kabul edilebilir sonuçlar üreten bir
algoritma gerçek zamanlı çalışacak şekilde donanım üzerine geçirilerek olumlu
sonuçlar elde edilmiştir. Hem algoritma hem de donanım tasarımı literatürde bu tarz
sistemlerin karşılaştırılmasında en çok kullanılan parametrelere gore değerlendirilerek
algoritmik performansı ve gerçekleme performansı açısından karşılaştırılabilir bir
çalışma hazırlanmıştır.
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1. INTRODUCTION

1.1 Motivation

People benefit from various systems based on image processing technology throughout

their daily routine. Some noteworthy systems would include biomedical applications,

traffic monitoring systems, animation generation, human-computer interaction

systems. The general functions of these systems are tracking, recognizing, matching,

etc. Inspired from this fact, this thesis pursues a real time implementation of

skeletonization which forms the backbone of many tracking and matching applications.

Skeleton or medial axis transform was first introduced by Blum in 1967 [3]. The

skeleton of a shape is defined as a set of points that lie midway between object

boundaries. The skeletonization process eliminates the redundant part of the object

and it gives the opportunity to analyse the shape with significantly smaller amount of

data. Consequently, it saves computation time and reduces resource utilization which

are regarded as the main objectives for the design of such systems.

Different skeletonization techniques have been developed to produce a skeleton

according to Blum’s definition. These techniques can be classified into thinning,

distance transform, voronoi and morphological methods. Each skeleton computation

method generate a skeleton with different features. Selection of the computation

method is crucial since only the proper calculation technique improves the

performance of the application.

There are a variety of applications reported in literature that stems from

skeletonization. Many algorithms have been developed for shape recognition systems

based on graph or tree representation of features extracted from the skeleton [5], [6],

[7], [8], [9], [10], [11]. Skeletonization can also be used to handle occlusions. Chen

introduced a method to detect and segment occluded vehicles for traffic monitoring
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systems using skeleton features [12]. People-vehicle classification system in [13] is

another example of skeleton based recognition systems.

Object tracking applications take advantage of skeletonization as well. Jimenez in [14]

represents a hand tracking mechanism using skeletal features where the motion of a

hand is tracked, successfully handling the occlussion problem. Animation generation

can also be considered among the applications that benefit from skeletonization

[2]. Furthermore, variety of systems are proposed to verify fingerprints with

skeletonization [15], [16], [17], [18]. Likewise, skeletonization is exploited

excessively in medical applications such as in [19] and [20].

The above mentioned applications often require real time processing capabilities.

Therefore, the preference of an algorithm for a system highly depends on the real

time performance of the algorithm. Recently, implementation of image and video

processing algorithms on Field-Programmable Gate Arrays (FPGA) have received

considerable attention due to their capability to meet high performance and low power

requirements. Accordingly, FPGAs are frequently selected as the instrument for

the implementation of skeletonization algorithms. In addition to FPGAs, Graphics

Processing Units and Microsoft Kinect Camera and Software are also preferred for

such systems.

The computational complexity of the skeletonization algorithms highly increases to

reach a performance close to perfect skeleton. Perfect skeleton should preserve

geometrical properties of the shape and it should be one pixel thick. This complexity

makes it impossible for the systems to cope with real time requirements. It is obvious

that there is a trade of between generating a perfect skeleton and satisfying real time

capabilities for the systems. So, skeletonization with good performance without

increasing the complexity for the real time systems is a challenging task. Due to

this fact, this thesis investigates a method to improve both real time and algorithmic

performance of the existing skeletonization architectures on FPGA for matching and

tracking systems. Our method aims to produce skeletons, which are one pixel thick,

invariant to the orientation, insensitive to noise and independent of the shape, while

reducing the resource utuilization and increasing the number of processed frames per

second.

2



Iterative thinning and distance transform based methods are the most widely used

skeletonization techniques. To date, many thinning and distance transform based

implementation methodologies have been developed for image skeletonization on

FPGAs. Bourbakis et al. [21] proposed an application specific array processor for

high speed thinning. Lopich and Dudek presented a thinning architecture that uses

asynchronous cellular processor array [22]. Thinning based image skeletonization on

FPGA is also submitted in [23], [24], [25]. Thinning techniques are highly suitable for

VLSI implementation; however they are dependent on the shape which makes them

unreliable for shape matching systems [26].

Distance transform based algorithms are distinguished among themselves according to

distance transform metric. Ranganathan represented a method using cityblock distance

transform [27]. Skeletons extracting from a distance map with cityblock metric is not

invariant to the orientation. Thus, the method fails under rotations and translations

of the image. Euclidean distance transform is the ideal candidate of all distance

transforms for skeletonization based shape matching systems since it is independent of

shape and invariant to orientation. On the contrary, skeletonization based on Euclidean

distance transform is not a convenient solution for VLSI implementation because it

requires large look up tables for computation of Central Maximal Disks (CMDs) [28].

However, Sudha suggested a skeletonization technique for FPGAs based on Euclidean

distance transform [29]. This work calculates the euclidean skeleton and the distance

values simultaneously and the proposed system can process approximately 30 frames

per second. In this thesis, an integer approximation to Euclidean distance named

Chamfer(3,4) is preferred to reduce the resource utilization and increase frame rate

of the system since it is more feasible for FPGA realization. It also preserves shape

independency and orientation invariance [30].

Extraction of skeletal points is the stage which follows distance transform operation.

This stage requires complex mathematical computations making it hard for FPGA

implementation. Besides, this stage urges a subsequent stage which is the removal of

unwanted branches of the skeleton, called pruning. Pruning brings in extra complexity

to the hardware implementation and it consumes extra process time. Chang et al.
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[31] suggests a design to overcome this mathematical complexity but the unwanted

branches are still observed in the output skeleton.

1.2 Contribution

The main contribution of this work, providing the functionality of pruning with

an extension to Chang’s work without introducing additional computation time on

Chamfer(3,4) distance map. In this way, the proposed system is insensitive to the

boundary noise, independent of shape and invariant to the orientation with higher

performance and lower resource utilization than real time requirements.

Also, a fully pipelined architecture is proposed to implement the extended skeleton

extraction algorithm on hardware. Complete system is developed on Digilent Atlys

board with Spartan-6 FPGA to test the proposed skeletonization architecture. The

frames are captured from CMOS image sensor with an integrated advanced camera

system MT9D112. The performance is observed on a hand tracking application.

Hand gesture are widely used in human-computer interaction systems [32] and can

be comprehended easily using the skeletal features [14]. In this thesis, motion of the

hand is tracked for remote control for television sets exploiting branch points and end

points of the skeleton.

1.3 Organisation of Thesis

This thesis is organized in five chapters including the Introduction chapter. Chapter 2,

introduces the concept of skeletonization, covers all the existing skeleton extraction

methods in literature and compares the methods with each other. The theory

of the proposed skeletonization system is described in Chapter 3. This chapter

also presents the performance evaluation criteria for the system and demonstrates

MATLAB simulation results. Chapter 4 is dedicated to the FPGA implementation

of the system and experimantal results. Finally, Chapter 5 concludes this thesis.
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2. SKELETONS IN DIGITAL IMAGE PROCESSING

Skeleton is a crucial shape representation technique in image processing. It is the

output of the skeletonization process. Skeletonization process can be defined as a

pixel transformation. This transformation converts most of the original foreground

pixels to background pixels while preserving the skeletal residue on the binary image

and the shape is represented as a 1D linear data by eliminating redundant part. The

skeleton of letter T can be seen in Figure 2.1 as an example. Preserved skeletal residue

is determined based on skeleton definitions which are described in the following

subsection. Also, this chapter explains the representation and extraction methods of

the skeleton in detail.

Input Frame

Figure 2.1: Binary Image of Letter T and its Skeleton.

Notation :

In this thesis, a shape or object on the binary image is denoted with O. This work

focuses on two dimensional images so O ⊂ ℜ2. The boundary of the object is shown

with B ≡ ∂O. MAT, short for medial axis transform, represents the skeleton of the

shape.

2.1 Definitions and Properties of Medial Skeleton

The medial skeleton or medial axis was first described by Blum in 1967 [3]. According

to Blum’s basic medial axis definition, the skeleton of a 2D shape is the loci of points
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equidistant from the contour. In this section, two basic analogies to find Blum’s medial

axis, stated in [28], are examined in detail.

2.1.1 Maximally-inscribed balls

This methodology places a pixel-sized ball on each boundary pixel. The process starts

with expanding the ball towards inside of the boundary, the starting boundary pixel

being tangent to the ball. The ball continually expands until another boundary pixel

becomes tangent to the ball. The locus of the center of the ball with at least two

boundary pixels tangent to the ball is classified as a medial axis point.

Definition : The medial axis transform of the object is the set of centers of

maximally-inscribed balls and radii of the all maximally-inscribed balls in the object

[33].

Mathematically, [M,R] = MAT(O) where O is the object, M is the center points of

maximally inscribed balls and R is the radius of the corresponding spheres.

The skeleton of a rectangular object which is defined via maximal discs can be

observed in Figure 2.2. As shown in the figure, A and B are skeleton points, but

point C is a foreground pixel.

Figure 2.2: Skeleton of a Rectangle via Maximally-Inscribed Balls [2].

2.1.2 Grassfire analogy

In this approach, the boundary of the object is accepted as the starting point of a fire.

The fire spreads along the normals n with uniform speed. When the fire expands

enough, it meets with the other fire which is started at another part of the boundary

and these wavefronts quench each other. These quench points are equidistant from

two different parts of the boundary as defined in Blum’s definition. Therefore, the loci
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of quenchpoints constitute the medial axis. The generated wavefronts are shown in

Figure 2.3.

In grassfire analogy, the quenchpoints are always equidistant from the boundary. As a

result, medial points have at least two closest points on the object boundary (B).

Definition : Medial axis is the set of locations M internal to the object with more than

one corresponding closest point and their distance R from the boundary B [34].

Figure 2.3: Wavefronts generated by a two point Grassfire Excitation [3].

These definitions are the most well-known definitions for searching Blum’s medial

axis. Some definitions other than Blum’s are also stated in literature. Brady’s Smooth

Locus of Symmetries (SLS) and Leyton’s Process Induced Symmetric Axis (PISA) are

worth mentioning for a medial skeleton definition [28].

2.2 Skeleton Extraction Methods

The observed skeleton, which is generated via a skeletonization process, should

provide some desirable properties. These properties were pointed out in [26] and [35]:

1- The skeleton should preserve the topological information of the original object.

2- The skeleton must be centered within the object boundary.

3- The skeleton should be stable under small deformations.

4- The skeleton should contain the centers of maximal discs, which can be used for

reconstruction of the original object.

5- The skeleton should be invariant under Euclidean transformations, such as rotations

and translations.

6- The skeleton should represent significant visual parts of objects.
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7- The skeleton should be as thin as possible.

8- The output skeleton must have the same connectivity as the original shape.

In discrete space, all of the above properties are mutually exclusive. So it is not

possible to accommodate all the properties together. Every skeletonization algorithm

can provide a different subset of the desirable properties and the proper skeletonization

method should be selected depending on the application. The skeletonization methods

can be classified into four types:

• Distance Transformation,

• Voronoi Diagram,

• Thinning Techniques,

• Mathematical Morphology.

2.2.1 Distance transformation

A distance transform converts a binary image consisting of feature and non-feature

pixels into an image where each pixel value denotes the distance to the nearest feature

pixel [36]. In other words, the distance transformation calculates the distance to the

nearest background pixel for each pixel of the shape on the binary image.

There are five distance transformation metrics which are cityblock, chessboard,

Chamfer 3-4, Chamfer 5-7-11 and Euclidean [36].

Cityblock technique measures the path between pixels based on a 4-connected

neighborhood. In 2D, the cityblock distance between pixels located at (x1,y1) and

(x2,y2) is calculated as:

distancecityblock = |x1 − x2|+ |y1 − y2|. (2.1)

Chessboard transformation measures the path between pixels based on a 8-connected

neighborhood. In 2D, the chessboard distance between pixels located at (x1,y1) and

(x2,y2) is evaluated as:
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distancechessboard = max(|x1 − x2|, |y1 − y2|). (2.2)

The Euclidean distance is the shortest distance between two pixels. In 2D, the

Euclidean distance between pixels located at (x1,y1) and (x2,y2) is defined as:

distanceeuclidean =
√

(x1 − x2)2 +(y1 − y2)2. (2.3)

Figure 2.4: Masks of Different Metrics (a) Input (b) Cityblock Distance (c)
Chessboard Distance (d) Euclidean Distance (e) Chamfer 5-7-11 (f)
Chamfer 3-4.

Integer number values are frequently preferred to real number values in distance

transforms [37]. Chamfer 3-4 and Chamfer 5-7-11 metrics, known as the classical

Chamfer metrics, approximate the Euclidean distance to integer distance values.

Chamfer 3-4 and Chamfer 5-7-11 metrics look at 3x3 and 5x5 neighborhood

respectively. The masks for different metrics can be observed in Figure 2.4. The values

of the chamfer masks are detremined to approximate the
√

2/1 ratio in Euclidean

mask [30]. For example
√

2/1 = 1.41 is approximated by 4/3 = 1.33 for Chamfer

3-4 and it is approximated by 7/5 = 1.4 for Chamfer 5-7-11. There are other masks to

approximate Euclidean mask; but according to Hajdu et al. [30] classical Chamfer

distances are considered as the best approximates. Figure 2.5 shows the distance

transform of an input image of 7x7 square for all types of transformation metrics.

The skeleton of the shape can be determined using one of these distance transformation

techniques. Skeletonization using distance map is based on the following idea: When

a progression is started from each boundary point of the shape, the distance map has

increasing values until it reaches a ridge. These ridge points constitute the medial axis

of the shape. Figure 2.6 shows a cityblock distance transformation result. Points with

distance values written in italic are the ridge points of the transform.
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Figure 2.5: Severel Types of Distance (a) Euclidean (b) CityBlock (c) Chessboard (d)
Hexagonal (e) Chamfer 3-4 (f) Chamfer 5-7-11.

Figure 2.6: Ridge Points of the Distance Transform.

The algorithms based on the ridges of the distance map, can ensure the accurate

localization of skeletal points but neither connectivity nor completeness [38]. These

methods add a linking process as final step to handle the connectivity problem. Di Baja

proposed a method in 1994 [1]. In his work, first the distance transform is calculated.

Local maxima and saddle points of the distance map are defined as ridge points as

the second step. Third step is to grow connected paths in the direction of maximal

gradient. Finally the holes are filled. Another example of this approach is expressed

in [39].
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2.2.2 Voronoi diagram

In mathematics, a Voronoi diagram is a way of dividing space into a number of regions

[40]. The regions are called cells. Sample points (generating points) are generated

from the boundary B of the object/shape O to split the space into cells. Each cell

contains exactly one sampling point and the locus of all points which are nearer to the

corresponding sampling point. The partition of the space is the Voronoi diagram. The

Voronoi diagram converges to the skeleton when the density of the sample points goes

to infinity [2].

Figure 2.7 demonstrates computation of the skeleton of a rectangle using Voronoi

diagram. First, some boundary points are specified as generating points, then the

skeleton is approximated by a subgraph of the Voronoi diagram. The skeleton can

be identified with the red line in Figure 2.7.

Figure 2.7: Voronoi Skeleton of a Rectangle (a) Generating (sample) Points (b)
Approximating Skeleton [2].

Several Voronoi diagram based skeletonization techniques were developed. All these

algorithms preserve topology of the shape very well and supply most of the desirable

properties of the skeleton. On the contrary, it is a computationally expensive process,

especially for large objects [2].

2.2.3 Thinning techniques

Thinning is an algorithm that removes pixels from boundary of the object iteratively

until the skeleton of the object remains. Thinning methodologies usually preserve

topology of the object. Also, they provide exactly one pixel thick skeleton in the

middle of the image. A demonstration of a thinning process can be seen in Figure 2.8.

11



Input Frame Intermediate Step After 50 Ýterarions

Figure 2.8: Thinning Process.

In thinning techniques, iterative deletion of contour pixels can be done either

sequentially or in parallel way [41]. Sequential thinning algorithms delete single pixel

at a time and they preserve the topology of the shape. Parallel thinning algorithms

examine all pixels to delete in a single iteration based on the previous iteration result.

Therefore, parallel thinning methods remove many points at a time. This type of

deletion can damage the topology of the object. For all thinning methods, it’s important

to determine a good stop criteria for the iteration process [35].

Thinning methods are sensitive to boundary noise and they usually fail to localize the

accurate skeletal position. Another problem of thinning methodologies is that the rules

for deleting a pixel from the boundary highly depends on the type of the object. Also,

it is a time consuming process [26].

2.2.4 Mathematical morphology

Mathematical morphology is a non-linear theory for image processing based on set

theory. It yields a non-linear method for geometry based processing [42]. A structuring

element is defined for a morphological process. The value of each pixel in the output

image is based on a comparison of the corresponding pixel in the input image with its
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neighbors in the structuring element (SE). Structuring element is defined according to

origin of SE and position of elements belonging to SE. The shape and size of SE must

be adapted to the geometric properties of the objects [43]. Figure 2.9 gives different

examples for structuring element.

Figure 2.9: Samples of Structuring Elements.

There are four basic morrphological operators.

⊖Erosion

⊕Dilation

◦Opening

•Closing

Dilation add pixels to the boundaries of objects in an image, while erosion removes

pixels on object boundaries.

Opening is an erosion process followed by dilation using the same structuring element.

It eliminates protrusions and breaks connections. It is defined as:

A◦B = (A⊖B)⊕B. (2.4)

where A is the input image and B is the SE.

Closing is a dilation process followed by erosion. It eliminates small holes and fills

gaps. It is defined as:

A•B = (A⊕B)⊖B. (2.5)

where A is the input image and B is the SE.

Both opening and closing processes smooth boundary of the shape. Figure 2.10

displays an opening operation on a binary image using 3x3 structuring element.
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Input Frame Erosion Result

Dilation Result

Figure 2.10: Opening Process.

According to [42], the skeleton of a shape can be calculated by means of binary

morphological operators. In this theory, the skeleton of an object is expressed as:

S(O) = O(⊖)rB− [(0⊖ rB)⊕drB]. (2.6)

where rB is the topologically open disc and drB is the topologically close disc.

The set O⊖ rB represents the portion of grassfield not yet burned by the fire at time

t = r in the grassfire model. The set 0⊖ rB⊕dr represents the points at which the fire

does not quench at time t = r. Therefore, the difference between the above sets gives

the skeleton points [42].

Usually morphological operation based skeleton search can localize the accurate

skeleton, but may not guarantee the connectivity of the skeleton [35].

2.2.5 Comparison of skeleton extraction methods

As mentioned above, the skeleton calculation methods supply a set of desirable

properties. Table 2.1 compares the skeleton extraction methods in terms of

connectivity, centeredness, thinness and transformation invariance criteria. Distance

tranform based methods can produce the skeleton in the middle of the object and they
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Table 2.1: Comparison of Skeleton Extraction Methods.

Method Connectivity Centeredness Thinness Trans. Inv.
Distance Transform No Yes No Yes

Voronoi Yes Yes ? ?
Thinning Yes No Yes No

are invariant under transformations; but these methods have connectivity and thinness

problems. On the contrary, thinning methodologies preserve topology perfectly and

produce one pixel thick skeleton; however the skeleton may not be in accurate location

and these methods do not accommodate the invariance criteria under transformations.

The skeletons obtained from the Voronoi diagram, preserve topology perfectly as the

thinning techniques and are located in the middle of the shape as the distance transform

based methods.

2.3 Classification Of Skeleton Points

The points of a skeleton are classified as either normal points or branch points or end

points.

If a skeleton point has two active neighbors, it is called a normal point. If a skeleton

point has three or more active neighbors, it is called a branch point. If a skeleton point

has a single active neighbor, it is called a end point.

The branch points (red points), end points (blue points) and normal points (white

points) of a skeleton are shown in Figure 2.11.

2.4 Skeleton Pruning

All the skeleton extraction methods which are mentioned above produce skeletons with

unwanted branches. These unwanted branches are generated due to the boundary noise

of the shape as can be observed in Figure 2.12.

To overcome the unfavorable effect of boundary noise, some skeletonization methods

are followed by a pruning operation as a post-process and they produce acceptable

results [35]. Alternatively, the boundary of the shape can be smoothed prior to

skeletonization [44]. Altough, this solution is weak in generating skeletons in the
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Figure 2.11: Branch, Normal and End Points of Letter T.

Figure 2.12: Skeleton with Unwanted Branches.

accurate location [44]. As the third approach, pruning functionality can be assured by

a modifying the standard skeleton computation methods [39]. This thesis focuses on

the third approach.
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3. REAL TIME SKELETONIZATION ALGORITHM AND SIMULATIONS

Skeleton computation methods, which are discussed in the previous chapter, can not

satisfy all the desirable properties that a skeleton should have. Therefore, it is a

crucial step to choose the most appropriate computation technique to profit from the

advantages of skeletonization and improve the performance of the application. In this

thesis, the main goal is to design a real time skeletonization system on FPGA for

matching and tracking applications. Two points must be considered in choosing the

computation method:

• The calculation procedure must be suitable for hardware implementation.

• The method must produce satisfying results for matching and tracking applications,

i.e., the produced skeleton must be connected, it must preserve the end points of the

shape, it must be invariant under translations and rotations.

Skeleton extraction methods are re-examined under these conditions to choose the most

appropriate method for our system. Thinning techniques guarantee the connectivity

and they are suitable for VLSI implementation; but they fail under translations and

rotations of the shape which makes them unreliable for matching systems. On the

other hand, skeletonization using Voronoi diagrams meet all the desirable properties

for matching and tracking systems. Unfortunately, it is a computationally expensive

process, which is not convenient for real time implementation.

Distance transform based algorithms are distinguished among themselves according to

their distance transform metric. Distance transform based methods that use Euclidean

or Chamfer metrics can generate invariant skeletons under rotation and translation;

tough Chamfer metric based ones are favorable for hardware implementation.

However, connectivity and completeness of the skeleton can be a problem for

distance transform based algorithms. As a result, a Chamfer 3-4 distance transform

based technique is developed paying attention to the connectivity and completeness
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criteria for a real time image skeletonization system. Skeletonization using distance

transformation can be computationally complex and the algorithm can include high

order derivatives which are hard to implement on FPGA. Chang et al. [31] proposed

a novel method to find ridge points on distance transform. This method is simple;

but an efficient solution for defining skeletal residue in accurate location. It only

checks the neighbors for each pixel and decides if it is a skeletal point or not.

Nevertheless, unwanted branches are generated in addition to main skeleton due to

boundary noise. This means that, a seperate pruning step is needed after exracting the

skeleton which brings in extra complexity to the algorithm as well as extra process time

consumption. In this work, the functionality of pruning is provided with an extension

to Chang’s work without introducing additional computation time. Eliminating the

necessity of a seperate pruning step also makes the algorithm more suitable for FPGA

implementation. The proposed framework is named "extended ridge point detection

algorithm" hereafter. The performance of the produced skeleton using the extended

ridge point detection algorithm is observed on a hand tracking application. In this

thesis, motion of the hand is tracked for remote control for television sets exploiting

branch points and end points of the skeleton. The end points and branch points are

designated using a 2D convolution.

The following section describes Chang’s method to extract skeletons from distance

maps and explains the proposed extension to Chang’s work. Performance evaluation

parameters and the performance results of the extended ridge point detection algorithm

regarding these parameters are presented in Section 3.2. Matlab simulation results of

the algorithm for several input images are also included in this section. Section 3.3

introduces the 2D convolution based end point and branch point designation for the

hand tracking application and contains Matlab results of this technique.

3.1 Skeleton Extraction Algorithm

The following subsection covers the steps of the Chang’s ridge point detection

algorithm and its drawbacks. Subsection 3.1.2 defines the suggested modification,

which is named as "extended ridge point detection algorithm", to Chang’s work.
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3.1.1 Ridge point detection algorithm

Ridge point detection algorithm that is used in this work is a gradient-based method.

For a point to be a ridge point on a distance map, it must be local maxima in some

direction. If the point is local maxima in a direction, the two opposite neighbors of

the point in that direction has smaller distance values than the corresponding pixel.

So, the ridge point generates a sign barrier between the two opposite neighbors on the

direction line. All the ridge points on distance map are determined by examining the

map in four orientations of 0, 45, 90, 135 degrees as shown in Figure 3.1. In the figure,

each ridge point intersects at least one scanline and generates a sign barrier. However,

examining the distance map in four orientations is hard to realize. Chang et al. [31]

reported that, it is sufficient to examine two orthogonal scanlines on distance map to

find all the ridge points. In other words, scanning the distance map from left to right

and top to bottom specifies all the ridge points.

When a search is started on a scanline, several sign change patterns, which are the

indications of a ridge existence, are encountered. For the left to right and top to bottom

scan, there are only six possible patterns: +-, -+, +0, 0+, 0- and -0, where + represents

a vector positive direction on a scanline, - represents a vector negative direction on a

scanline and 0 means a zero vector.

Pattern +- is the most prominent indication of a ridge point existence. If the ridge

intersects the scanline at an integer coordinate point, the +0- pattern is generated

instead of +- pattern. Patterns +0 and +0- are called strong ridge existence indicators.

Pattern -+ is an indication of a valley. It occurs in two ways. First way, if two ridges

exist in such a way so that they enclose two neighboring points. This case is ignored,

since it is not a ridge point indicator. Second way which -+ pattern occurs is when two

tapering shapes meet at their closing ends. In this case the ridge appears as a +- pattern

on the other orthogonal scanline. Thus, it can also be ignored.

Pattern +0 occurs in two ways as well:

• at the aliased edge of a shape,

• at the beginning of a plateau on distance map.
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Figure 3.1: Scanning the Rectangle for Four Orientations (0, 45, 90, 135 Degrees).

If this pattern occurs in first way, it is not accepted as an indicator since it exhibits

spurious skeleton branches on the aliased edge. If the pattern occurs in second way as

a plateau, it indicates a ridge existence. When it occurs on a plateau, it must always

occur in pairs with one of the +-, 0-, +0, +0- patterns on the other scanline. If it is

not coupled with other patterns, this pattern is called a weak indicator. Otherwise, it

is called a good indicator of ridge point existence. Pattern 0- is treated similar to +0

pattern.

Pattern 0+ indicates the leftmost or topmost edge of the object, if it is the first sign

barrier detected on the relevant scanline. So, the 0+ pattern should not be the first sign

barrier on the scanline to be an indicator of ridge point existence. This pattern can

be extended either as -[0...]+ or +[0...]+. The extended pattern -[0...]+ indicates the
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existence of a valley or a basin and it is not accepted as a ridge point for the same

reasons that are described for pattern -+. For the other extended pattern +[0...]+, the

’+’ at the end indicates the start of a new object, the ’+’ at the beginning shows that

the point is already inside another shape. Therefore, pattern 0+ is merely an indication

of the start of a new subshape. The extended patterns are not accepted as ridge points,

because they can be detected by other patterns.

The pattern -0 can be explained in a similar manner as pattern 0+ . It indicates the

rightmost or bottommost edge of the object, if it is the last sign barrier detected on the

relevant scanline. So, the -0 pattern should not be the last sign barrier on the scanline to

be an indicator of ridge point existence. This pattern can be extended either as -[0...]+

or -[0...]-. The extended pattern -[0...]+ indicates the existence of valley or basin and it

is not accepted as a ridge point for the same reasons that are described for pattern -+.

For the other extended pattern -[0...]-, the ’-’ at the beginning indicates the end of a new

object, the ’-’ at the end shows that the point is already inside another shape. Therefore,

pattern -0 is merely an indication of the end of a subshape. The extended patterns are

not accepted as ridge points, because they can be detected by other patterns.

After examining all the possible patterns and their extensions, the four patterns are

accepted as indicators of ridge point existence : +-, +0-, +0, 0-. These patterns are

called prominent sign barriers. The patterns +0 and 0- must be paired with one of

these patterns on the other scanline. With all required patterns specified, ridge point

detection algorithm can be described in three steps:

1. Distance Transform is calculated.

2. Relative location of a point is computed for each scanline using Equation (3.1) and

Equation (3.2).

3. The prominent sign barriers are searched on the image by scanning from left to

right using Ny and scanning from top to bottom using Nx. When the patterns are

detected on the scanline, they are labeled as either weak or good or strong or none.

Nx ≡ sign(D(x+1,y)−D(x,y)) (3.1)
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Ny ≡ sign(D(x,y+1)−D(x,y)) (3.2)

Figure 3.2 shows the output of the ridge point detection algorithm for a 6 pixel x 10

pixel sized rectangular shape for each scan. Weak points are labeled with ’w’, good

points are labeled with ’g’, strong points are labeled with ’s’, none points are labeled

with ’n’.

Figure 3.2: Ridge Points on Distance Transform Image (a) Distance Transform Image
(b) Result of y axis Scan (c) Result of x axis Scan (d) Output Image of the
Ridge Point Detection Algorithm

First of all, only strong and good points are accepted as skeleton points. However

gaps may occur on the skeleton due to discrete nature of the map. For a connected

skeleton, all the skeleton pixels must have at least two neighbors. Therefore, a linking

process is required to fill the gaps. In this algorithm, the points constituting the gaps

are usually labeled as weak points. These points help us to make the correct link

between unconnected skeletal parts. So, all the skeleton points, which have less than

two neighbors, are linked to the nearest weak point among 8 neighbors. If the relevant

point does not have a weak ridge neighbor, then it is connected to the point with the

maximum gradient. The linking process continue until all end points are connected to

a branch point or a border point of the shape.
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The performance of the algorithm described above highly depends on the distance

metric, which is used in distance transformation step. The algorithm must satisfy the

invariance criteria under rotation and translation for our system. However, all distance

metrics can not produce the same results under translations and rotations. This feature

can only be guaranteed with a distance map that is formed using the Euclidean or

Chamfer metrics. Distance transformation with Euclidean metric is hard to implement

on hardware. Chamfer metrics are good solutions for VLSI implementations and they

can produce results very close to Euclidean metric as described in Chapter 2. Chamfer

3-4 metric is used for the skeletonization system which is introduced in [1] and it

produced satisfying results. Therefore, the ridge point detection algorithm is run on a

distance map that is extracted using Chamfer 3-4 metric.

The ridge point detection algorithm is implemented in Matlab environment and tested

on various images. Figure 3.3 displays the output images. When the output results

are examined, it is observed that strong labeled ridge points can produce unwanted

skeleton branches in addition to the main skeleton. So, a separate pruning algorithm is

required following the ridge point detection algorithm.

Instead of applying an independent pruning algorithm as another step, the ridge point

detection algorithm is extended by adding new rules for defining a strong labeled ridge

point as a skeleton point. The extended method is expressed in the next subsection in

detail.

3.1.2 Extended ridge point detection algorithm

This subsection introduces the extended ridge point detection to produce pruned,

connected and one-pixel thick skeleton.

As stated in the previous subsection, strong labeled ridge points can produce unwanted

skeleton branches in addition to the main skeleton. Therefore, detecting +- or +0-

pattern is not enough to accept a point as a strong ridge. When +- or +0- pattern

is encountered on a scanline, it is accepted as strong ridge existence indicator if and

only if the ridge point is local maxima within 3x3 neighborhood and within object

boundaries on that scanline. Also, the distance value of the point must be higher than

a predetermined threshold T. This threshold value prevents the points, which are too
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Figure 3.3: Test Results : (a), (c), (e) Input Binary Images (b), (d), (f) Skeleton
Outputs with Ridge Point Detection Algorithm.

close to the border of the shape and satisfy the above conditions, to be accepted as a

ridge point.

The conditions for local maxima on weighted distance transforms are represented as:

Dx,y +a ≥ Dx+k,y+l, (3.3)

Dx,y ≥ Dx+q,y+t , (3.4)
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Dx,y ≥ T, (3.5)

where k,l ∈ {−1,1}, q,t ∈ {pixels within boundaries}, D indicates the distance

transform value and a=3 and T=7 for Chamfer 3-4 metric.

In weighted distance transforms, a pixel can be a local maxima even if it has neighbors

with higher values [1]. So, local maxima for weighted distance transforms is specified

correctly by adding a to the distance transform value when comparing it with the values

of its neighbors.

To sum up, the rules for classifying the points as strong, good, weak or none are

changed as:

If a point creates +- or +0- pattern and if the conditions in Equations (3.3), (3.4), (3.5)

are satisfied, the point is marked as a strong ridge. If the conditions are not satisfied,

then the point is labeled as a weak ridge.

If +0 or 0- pattern is detected, paired with one of the patterns on the other scanline,

and the point satisfies the condition in Equation (3.5), the point is marked as a good

ridge. If +0 or 0- pattern is not paired with any patterns on the other scanline, the point

is marked as a weak ridge.

If a point does not create one of +-, +0-, +0 and 0- patterns; but it is a local maxima,

then it is labeled as a weak ridge, too.

Accordingly, the steps of the algorithm can be redefined:

1. Distance Transform is calculated using Chamfer 3-4.

2. Relative location of a point is computed for each scanline using Equation (3.1) and

(3.2).

3. Local maxima is computed for each scanline using Equation (3.3) and (3.4).

4. The prominent sign barriers are searched on the image by scanning from left to

right using Ny and scanning from top to bottom using Nx and the points are labeled

as strong, good, weak, none.

5. After specifying the ridge points, linking process is performed to fill the gaps.
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3.2 Simulation of Skeleton Extraction Algorithm

Performance measure used to analyse the performance of the extended ridge point

detection algorithm and Matlab simulation results are presented in this section. The

output skeletons of different shapes are demonstrated in Figure 3.4 and 3.5.

Performance of the complete skeletonization process is measured using performance

evaluation parameters which are defined in [45] and [26]. There are four

main performance parameters: thinness measurement, connectivity measurement,

sensitivity measurement and penetration measurement. This section explains these

parameters briefly and gives the performance results of the algorithm based on the

defined parameters.

Thinness Measurement (TM):

As described in Chapter 2, the skeleton should be as thin as possible. TM parameter

measures the degree of thinness of the skeleton of an object in an image [45]. It

counts triangles which can be constructed for each skeleton pixel T(S(i,j)) in 3x3

neighborhood as shown in Figure 3.6.

After calculating the triangle count for each skeleton point, total number of triangles

(TM1) is specified using

T M1 =
m

∑
i=1

n

∑
j=1

T (S(i, j)). (3.6)

Finally, thinness measurement (TM) is expressed as:

T M = 1− (T M1/T M2), (3.7)

where TM2 shows the maximum number of triangles an image with size mxn could

have and is computed by

T M2 = 8∗ (max(m,n)). (3.8)
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Figure 3.4: Test Results of Extended Algorithm: (a) Set of Ridge Points of a Hand (b)
Skeleton Output of a Hand after Linking Process (c) Set of Ridge Points
of a Horse (d) Skeleton Output of a Horse after Linking Process.
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Figure 3.5: Test Results of Extended Algorithm(cont.): (e) Set of Ridge Points of a
Man (f) Skeleton Output of a Man after Linking Process (g) Set of Ridge
Points of a Finger (h) Skeleton Output of a Finger after Linking Process.

Figure 3.6: Possible Triangles on the Image
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Connectivity Measurement (CM):

Another important parameter for performance evaluation is connectivity measurement.

An object in an image is said to be disconnected if it has unconnected pieces [45].

Therefore, an active skeleton point which has less than two active neighbors in an

8-connectivity setting is said to be disconnected from the skeleton. The total number

of points in this situation gives the connectivity information of the skeleton.

First, connectivity number for each skeleton point at position (i,j), CN(i,j), is

calculated. Figure 3.7 displays the connectivity number for some example cases.

Figure 3.7: Connectivity Numbers

Psuedo code to calculate the connectivity number is printed in Figure 3.8.

Figure 3.8: Psuedo Code to Calculate Connectivity Number

Consequently, connectivity measurement is stated as

CM =
m

∑
i=1

n

∑
j=1

CM(i, j) (3.9)

where

29



CM(i, j) =
{

1, if CN(i, j)< 2
0, if CN(i, j)> 2 (3.10)

Sensitivity Measurement (SM):

Skeletonization techniques produce unwanted branches due to boundary noise. A good

skeleton should not be have extra branches. SM measures the effects of the boundary

noise to the skeleton.

An active skeleton point which has more than two active neighbors in an 8-connectivity

setting is accepted as a branch point of the skeleton. The total number of these points

give the sensitivity information of the skeleton.

The sensitivity measurement is defined as,

SM =
m

∑
i=1

n

∑
j=1

SM(i, j), (3.11)

where

SM(i, j) =
{

1, if CN(i, j)> 2
0, if CN(i, j)< 2 (3.12)

Penetration Measurement (PM):

PM counts the number of times that skeleton intersects the object boundary to measure

the quality of skeleton S by means of topology preservation [45].

PM for the skeleton point at position (i,j) is stated as

PM(i, j) =
{

1, if S(i, j)
∩

B
0, else (3.13)

where B defines the boundary of the object.

PM for the skeleton is calculated using the equation

PM =
m

∑
i=1

n

∑
j=1

PM(i, j). (3.14)

The performance of the algorithm is evaluated on the images in Figure 3.8 using the

specified parameters. The performance parameters are normalized by the image size
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to remove the ambiguity of image zoom or compression [45]. Table 3.1 denotes the

measurement results. Higher thinness factor and lower connectivity and sensitivity

factors are better skeletonization performance.

Table 3.1: Performance Measurement of Images.

Performance Parameter TM CM SM PM
Hand 0.9910 0.0088 0.0127 0.000103
Horse 0.9277 0.0082 0.0135 0.000745
Man 0.9626 0.0055 0.0059 0.000032

Finger 0.9486 0.0081 0.0093 0.000112

The performance parameters are also calculated under rotation for same images to

measure the quality of the skeleton under rotations. The output skeletons of rotated

images with different angles are shown in Figure 3.9 and the performance parameters

can be found in Table 3.2. If Table 3.1 and 3.2 are compared for each image, it can

be claimed that the performance of the skeletonization algorithm under rotation is very

close to the original shape.

The presence of multiple objects in an image is automatically detected and the

skeletons of these objects computed simultaneously. It is another advantage of the

ridge detection algorithm.

Table 3.2: Performance Measurement of Rotated Images.
Performance Parameter TM CM SM PM

Hand 0.9763 0.0048 0.0076 0.000602
Horse 0.9649 0.0043 0.0058 0.000408
Man 0.9567 0.0058 0.0065 0.000531

Finger 0.9787 0.0065 0.0068 0.000166

Table 3.3: Performance Measurement of the Algorithm in [1].

Performance Parameter TM CM SM PM
Hand 0.5726 0.0050 0.0072 0.000602
Horse 0.5905 0.0041 0.0069 0.000408
Man 0.4603 0.0052 0.0054 0.000531

Finger 0.7500 0.0045 0.0075 0.000166

In our algorithm, we benefit from both local maxima and possible ridges on the

distance map. If we compare our algorithm with the techniques that use only local

maxima for ridge point detection, it can be said that our algorithm acquires a higher

thinning factor. Baja et al. [1] presents a technique that searches local maxima on
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Figure 3.9: Test Results of Rotated Images : (a) Skeleton Output of a hand with a
rotation of 20 Degrees (b) Skeleton Output of a horse with a rotation of
40 Degrees (f) Skeleton Output of a Man with a rotation of 90 Degrees (h)
Skeleton Output of a Finger with a rotation 5 Degrees.
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Chamfer 3-4 distance map. Baja’s technique is also implemented in Matlab and the

performance parameters are evaluated. The results can be examined in Table 3.3. It is

obvious from the table that, this technique needs an additional thinning stage.

3.3 Detection and Classification of Skeleton Points for Hand Tracking

This section introduces the methodology of extracting branch points and end points

from the skeleton, which is to be used in a hand tracking application.

Skeleton points are classified into three categories as mentioned in Chapter 2,

If a skeleton point has two active neighbors, it is assigned as a normal point. If a

skeleton point has three or more active neighbors, it is assigned as a branch point. If a

skeleton point has one active neighbor, it is assigned as an end point.

Figure 3.10: Filter Mask

A 2D convolution based approach is presented in [4] for classifying the skeleton points.

The possible patterns, which are likely to generate an end point or a branch point,

are determined a priori and these patterns are searched in the image by convolving

the skeleton image with a single bidimensional filter. The filter mask that is used for

feature extraction is shown in Figure 3.10 and possible patterns to search for end points

and branch points are indicated with the output value of the convolution operation in

Figure 3.11 and Figure 3.12 respectively .

The convolution is expressed as:

S′(x,y) = G(x,y)∗S(x,y) (3.15)
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Figure 3.11: Possible End Points [4]

Figure 3.12: Possible Branch Points [4]

where S’(x,y) is the output of the convolution operation, G(x,y) is the bidimensional

filter and S(x,y) is the skeleton. The output S’(x,y) is compared with possible end point

and branch point patterns. If the output belongs to an end point pattern, it is labeled as

an end point; if the output belongs to a branch point pattern, it is labeled as a branch

point. Otherwise, it is labeled as a normal point.

This process is also implemented in Matlab. The detected branch points and end points

of different images can be observed in Figure 3.13.
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Figure 3.13: Branchpoints and Endpoints : a)Branch Points and End Points of a Hand
b)Branch Points and End Points of a Horse

35



36



4. IMPLEMENTATION OF REAL TIME SKELETONIZATION SYSTEM

This chapter covers real time implementation of the skeletonization algorithm, which

is described in Chapter 3. A fully pipelined skeleton exraction architecture is proposed

for FPGAs. The design is tested with a hand tracking application using end points

of the skeleton. All required steps for creating a complete skeletonization system for

a hand tracking application are explained in detail. The whole system is developed

on Digilent Atlys board with Spartan-6 FPGA. The frames are captured from CMOS

image sensor with an integrated advanced camera system MT9D112. Figure 4.1

demonstrates the entire block diagram of the system on FPGA. The modules of the

system can be listed as follows:

• Camera and DDR2 Control Module,

• Preprocessing Module,

• Background Subtraction and Morphological Cleaning Module,

• Distance Transform Calculation Module,

• Ridge Point Detection Module,

• Linking Module,

• DVI Transmitter Module,

• End points and Branch points Extaction Module,

• Hand Tracking Module.

The tracking applications that use skeletonization are preceded with object detection.

Thus, background subtraction technique is performed to detect the objects as the first

stage of the system. Morphological cleaning is an optional algorithm for such systems

and it is performed to eliminate noise from the output binary images of the detection
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algorithm. Morphological cleaning is applied in this design since the noise can be

misleading for the following modules. Once the object(s) is/are detected, the stages of

the skeletonization system, which are listed in Chapter 3, are implemented. The first

step of the algorithm is calculation of the distance map. Distance map is computed

using Chamfer 3-4 metric after morphological cleaning. Ridge Point Detection Module

realizes the second, third and fourth steps of the skeletonization algorithm. Recall

that these steps are relative location calculation, local maxima determination and

pattern search, respectively. Linking module implements the last stage of the skeleton

extraction algorithm. It converts the set of ridge points to ridgelines to produce a

connected skeleton. The output skeleton is produced by the linking module and is

displayed on screen through DVI. End points and branch points are extracted as the

next stage using the 2D convolution based method. Finally, Hand Tracking Module

tracks the positions of end points throughout the frames captured by the integrated

camera. The motion of the hand is displayed on leds of Atlys Board.

The following section give the implementation details of pipelined skeleton extraction

architecture. The final section represents the experimental results of the full system.

4.1 Pipelined Skeleton Extraction Architecture on FPGA

This section introduces all the modules of the parallelized architecture. Finally,

parallelism of the modules are explained on a timing diagram.

4.1.1 Camera and DDR2 control

This module contains two sub-modules: camera control and frame buffer control.

Camera control sub-module configures an MT9D112 (which is a CMOS image sensor

with an integrated advanced camera system) and provides a simple interface for reading

the video data. Frame buffer controller operates as an interface for accessing a DDR2

external memory. It organizes read and write memory addressing. Moreover, this

sub-module gives the opportunity to adjust frame capture rate and resize the video

frame. This implementation captures video frames from MT9D112 camera using the

camera controller and buffers them in DDR2 memory using frame buffer controller.
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Also, the reference frame is stored in external memory to reduce the FPGA resource

utilization.

4.1.2 Preprocessing

Camera controller module produces video frames in RGB format. Preprocessing

module converts RGB images to gray scale images for further processing.

Additionally, noise filtering is applied to gray scale images for the accuracy of the

subsequent stages.

4.1.3 Object detection and morphological cleaning module

This module performs object detection and morphological cleaning algorithms. In

present work, background subtraction method [46] is used for moving object detection.

Background subtraction technique builds a representation of the scene and then finds

deviations from the model for each incoming frame [46]. Representation of the scene is

called background model. A common approach for specifying background model is to

use information in a single frame. However, the background scene can also be built by

averaging several successive frames to handle time varying background scenes. This

task is called background training [47].

In our implementation, background training step takes a single frame and this frame is

stored in external DDR2 RAM as a reference frame. Once the background model is

obtained, classification of each pixel in the current frame is performed. The absolute

difference between the current frame and the background model is used to specify

objects [47]. If the difference value exceeds the threshold, the corresponding pixel

is marked as foreground. Otherwise it is marked as background. The procedure for

classification of the pixels is formulated as,

Icl =

{
1, if |It − Ibg|> threshold
0, if |It − Ibg|< threshold (4.1)

where It is the current frame, Ibg is the background frame and Icl is the output frame.

After classification of the pixels in the current frame, morphological cleaning is

applied using erosion and dilation filters with 3× 3 structure element size. For the
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Figure 4.2: Morphological Cleaning Block Diagram.

implementation of the morphological cleaning on FPGA, a pipelined array architecture

sketched in Figure 4.2 is built. This architecture allows us to access all relevant

pixels in parallel during morphological cleaning process. We use 3 × 3 structure

element for morphological cleaning, thence three stage array architecture is utilized.

Demultiplexer selects the proper array for the incoming new pixel. All the pixels in

binary image are written to the relevant array in order. If eight neighbors of the relevant

pixel are written to the array architecture, morphological operation is done for that

pixel. The pipelined array architecture consumes only LUT resources of the FPGA.

The size of the array architecture depends on the size of the image and the structure

element.

4.1.4 Distance transform calculation

Distance transform calculation can be done either in parallel or sequentially [36].

Several sequential type [48] [49] and parallel type [50], [51] distance transform

methods have been proposed in the literature. It is stated in [48] that the parallel

approach consumes 16 times more resource than the sequential approach in [36]. So,

sequential approach is preferred for FPGA implementation because of the low resource

requirement.

The output of the morphological cleaning stage is the input for distance transform

stage. Chamfer 3-4 metric is used for the hardware implementation of distance

transform. The image is translated by propagating local distances first in backward

direction and then in forward direction using backward and forward masks which are

shown in Figure 4.3. The distance transform values are represented with 9 bits.
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Figure 4.3: Distance Transform Forward and Backward Mask: (a) Forward Mask (b)
Backward Mask.

The procedure of the forward and backward propagation is similar to each other.

Infinite value is assigned to all foreground pixels at initial state and then backward

mask is propagated on the whole image. The backward mask values are added to

the relevant neighbors and the input pixel’s distance value is compared with these

neighbors. Then the pixel’s distance value is updated to the minimum distance value of

its neighbors. When the last pixel’s distance value is assigned for the backward mask,

forward propagation is carried out similarly using the forward mask. The hardware

architecture of the backward and forward propagation is plotted in Figure 4.4. Shift

Register Array (SRA) is used to store updated distance transform values. The size of

the SRA is Wx9 bits where W is the width of the input image.

Figure 4.4: Distance Transform Backward and Forward Propagation Circuit.

The input pixel data of the distance transform comes from the morphological cleaning

step in every clock pulse. In standard methodology of the sequential type distance

transform, forward propagation step waits for all pixels to complete the backward

propagation step. The backward propagation outputs are written to an internal block

RAM and then forward mask is propagated on it. The distance transform calculation
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takes W ×H ×2 clock cycles for a single frame with this standard type, where W and

H are the width and height of the image respectively.

4.1.5 Ridge point detection module

Ridge Point Detection module takes the input pixels from the distance transformation

module. When the forward propagation is completed for the first row of the image,

skeleton extraction module starts the process instead of waiting for the completion of

the backward propagation for all rows. The skeletonization algorithm is performed

from right to left and bottom to top of the input image. The full skeletonization

circuit is introduced in Figure 4.5. First of all, the relative locations of points (Nx

and Ny) are calculated. The pixel D(i,j) and relevant neighbors D(i-1,j) and D(i,j-1)

are read from the block RAM storing the propagation results of distance transform

calculation. The final distance value of the pixel D(i,j) is produced after one clock cycle

by the backward propagation circuit. Therefore, distance values of the neighbors are

registered using D type flip flops. The comparator compares D(i,j) with the neighbors

D(i-1,j) and D(i,j-1). The vectors Nx and Ny are designated according to the result

of the comparator. Nx and Ny are represented with two bits for each point. “01”

indicates that D(i,j) is greater than the relevant neighbor pixel, “10” indicates that

D(i,j) is less than the relevant neighbor pixel and “00” indicates that D(i,j) is equal

to the relevant neighbor pixel. Next step searches patterns on the image. For right to

left scan on the image using Ny, the Ny values of previous column and next column on

the same row are needed. So, the Ny values are registered using two stage flip flop as

sketched in Figure 4.5. For the bottom to top scan on the image using Nx, the process

is more complex. The Nx values of previous row and next row on the same column

are needed. So, the consecutive three rows of the image are stored in three stage array

architecture. Demultiplexer selects the proper array for the incoming new point. When

the Nx values of relevant neighbors are written to the array as seen in Figure 4.5,

the Nx values are sent to the pattern search block. Pattern search block looks for the

-+, 0+,-0 and -0+ patterns. Also, it determines if the point is local maxima among

eight neighbors and it specifies the maximum gradient path of each pixel for linking

module. pat_det_x and pat_det_y signals indicate that if one of the patterns is
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Figure 4.5: Circuit Implementation of Ridge Point Detection Algorithm.

detected on the scanline x and y respectively. pat_type_x and pat_type_y show

the pattern type if detected. If a strong pattern is detected, it is pulled high. If a weak

pattern is detected it is pulled low. loc_max denotes if the relevant point is local

maxima and max_gr_path indicates the point with the maximum gradient to the

relevant pixel. Decision block decides if the point is a skeleton point using loc_max

, pat_det_x, pat_det_y, pat_type_x and pat_type_y according to rules

that are described in Chapter 3.

4.1.6 Linking and feature extraction module

As mentioned in Chapter 3, gaps may occur due to discrete nature of distance

transform, so a linking module is needed to convert set of ridge points to ridgelines.

2D convolution based pattern search approach, which is used for skeleton feature

extraction, is also preferred for linking process to make it implementable on FPGA.

The image is scanned left to right and the points that have one of the patterns within

3x3 neighborhood which are demonstrated in Figure 4.6 are re-examined. The gray
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Figure 4.6: Linking Patterns.

pixels indicate the ridge points detected by ridge point detection algorithm. If the

central point is a weak ridge or it is the maximum gradient one of the neighbors in the

pattern, it is assigned as linking pixel. The same procedure is performed until all end

points are connected to a branch point or a border point of the shape.

The implementation of 2D convolution on FPGA is illusrated in Figure 4.7. Skeleton

image is convolved with the same bidimensional filter used in feature extraction

process. Nine coefficients of the filter, which are expressed as a 3x3 matrix, are

multiplied and added with consecutive three pixels in consecutive three rows as shown

in Figure 4.7. Therefore, three consecutive rows must be stored in three stage array

architecture. When two consecutive rows and three consecutive pixels of the last row

are written to the array, the multiply and add process is started and the filtered pixel is

generated. In this case, the skeleton image is defined with one bit, ’1’ or ’0’. Thus,

multiply operation is realized using AND gates to reduce complexity. The convolution

output is compared with the look up table that contains the pattern values in Figure 4.6.

Feature extraction module performs the same convolution operation to the output of

the linking module to classify the branch points and end points. The filtered pixel is

compared with the look up tables which hold the branch point and end point patterns

that are declared in Chapter 3. If the filtered pixel is an end point, it is stored in the end

point array; if it is a branch point, it is stored in the branch point array.
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Figure 4.7: Circuit of 2D Convolution.

4.1.7 Hand tracking module

Hand tracking module takes the output of the feature extraction module as an input.

The average of the endpoints (fingertips) of the hand is specified for each frame and

the final decission is given comparing the average value with the average values of

the following frames. Figure 4.8 demonstrates the circuit implementation of the hand

tracking module.

4.1.8 DVI driver module

DVI driver module sends output images to HDMI port. It consists of two sub-modules:

video timing controller and DVI transmitter. Video timing controller generates the

proper synchronization signals according to the selected DVI resolution. In this work,
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Figure 4.8: Circuit Implementation of Hand Tracking Module.

Figure 4.9: Timing Diagram of Pipelined Architecture.
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Table 4.1: FPGA Resource Usage.

Resource Type Used
Slice Registers 2526

LUTs 2278
Block Memory 104

Table 4.2: Total Latency of the System.

Module Latency(us)
Morphological Operations 17.8
Distance Transformations 1413.2

Skeleton Extraction 5652.8
Tracking 9.2

Total 7093

640x480 VGA resolution is used. DVI transmitter takes video data with proper sync

signals and transmits them through a DVI/HDMI port. This application sends skeleton

extraction outputs of the images to the HDMI port.

As observed from timing diagram in Figure 4.9, when a frame is scanned using forward

mask for distance transformation, the backward mask is propagated for previous frame

simultaneously. Thus, backward and forward propagation circuits work in parallel

for consecutive frames. Ridge point detection and linking module process the data

coming from the backward propagation circuit. It is not necessary to wait all the pixels

to finish the bakward propagation. Only three consecutive rows must be finished.

Therefore, these moduls are performed on the same scan as backward propagation.

Feature extraction module also works in parallel with the ridge detection and linking

module. As a result, a frame is processed in WxH/clkFreq. W is the width of the

image, H is the height of the image. clkFreq is the operating clock frequency of the

hardware.

4.2 Experimental Results

The proposed circuit implementation completes processing a single frame in WxHx6

clock cycles. W and H the width and height of the image respectively. In this work,

the resolution of the video frames is 320x480. The Digilent Atlys board is used for the

hardware implementation. The whole system is operated at 108 MHz clock frequency.

48



The resource usage for the FPGA and total latency of the system are shown in Table

4.1 and Table 4.2 respectively.

Also, figure 4.10 demonstrates the full system with FPGA board and camera module.

Some illustrations of the real time system are shown in 4.10.

Figure 4.10: Full System with FPGA Board and Camera Module.

Figure 4.11: Some Illustrations of the Real Time System.
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5. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, a real time skeletonization system is presented for implementation on

FPGA. The performance of the system is observed on a hand tracking application for

remote control of television sets.

Skeletonization is exploited in many image processing systems which require real time

processing capabilities. However, skeleton extraction methods can be computationally

complex which makes it impossible for the system to cope with the real-time

requirements. For our real time implementation, a simple but an efficient distance

transform based skeleton extraction algorithm is elected [31]. This algorithm is very

suitable for VLSI implementation; but boundary noise effects are observed in the

output skeleton. In this respect, an extended ridge detection algorithm is proposed

based on [1] to reduce the corruptive effects of noise. The extended ridge detection

algorithm is compared with the algorithm in [1] and it is observed that the proposed

method produces thinner skeleton.

A fully parallelized skeleton extraction architecture is proposed for the real time

implementation of the extended algorithm on FPGA. The complete system is

developed on Digilent Atlys board with Spartan-6 FPGA to test the suggested

skeletonization architecture. The frames are captured from CMOS image sensor

with an integrated advanced camera system MT9D112. Whole image is processed in

6xWXH clock cycles. W represents width and H represents the height of the frame.

In this work, the size of the frames is 320x480 and the operating frequency of the

complete circuit is 108 MHz. In other words, this system can process 110 frames per

second.

Performance of the novel algorithm is evaluated according to the widely acknowledged

performance measures for skeletonization research such as thinness, sensitivity,

connectivity and penetration. Resource utilization and timing performance of the
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FPGA implementation are investigated for comparison with similar systems in

literature.

5.1 Future Work

The detection and segmentation of the moving object is a critical step for tracking

systems. A poor segmentation makes the whole system fail. On the other hand,

some works implement complex algorithms which are not convenient for real time

applications. In this work, a simple version of background subtraction technique is

used for object detection since object detection is out of scope of the thesis. Replacing

the detection stage with an algorithm, which is more efficient as well as suitable

for hardware implementation, assists the proposed skeletonization system for a better

performance.
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