
A DISTRIBUTED MULTIPRECISION

CRYPTOGRAPHIC LIBRARY DESIGN

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by
Hüseyin HIŞIL

July 2005
İZMİR

We approve the thesis of Hüseyin HIŞIL

Date of Signature

. 22 July 2005
Assoc. Prof. Dr. Ahmet KOLTUKSUZ
Supervisor
Department of Computer Engineering

İzmir Institute of Technology

. 22 July 2005
Prof. Dr. Şaban EREN
Department of Computer Engineering
Ege University

. 22 July 2005
Assist. Prof. Dr. Tuğkan TUĞLULAR
Department of Computer Engineering

İzmir Institute of Technology

. 22 July 2005
Prof. Dr. Muhsin Çiftçioğlu
Head of Department

İzmir Institute of Technology

. .

Assoc. Prof. Dr. Semahat ÖZDEMİR
Head of the Graduate School

ACKNOWLEDGEMENTS

Foremost, I would like to express my gratitude to my advisor, Assoc. Prof. Dr.

Ahmet Koltuksuz, for his guidance, patience, and encouragement. He was the one who

uplifted me when I was in trouble with critical decisions. His valuable support, and

confidence have been the driving force of this thesis work.

Furthermore, I had the pleasure of working with Serap Atay who helped me in

understanding the mathematical background of many algorithms. I should also thank to

my room mates Selma Tekir and Şükran Asarcıklı for their patience and support.

I would also like to thank Asst. Prof. Murat Atmaca, Sultan Eylem Toksoy and

Gökşen Bacak for their help in writing this thesis with LATEX2e.

Finally, I should thank to my parents who always supported me throughout my

education as well as in my graduate study.

ABSTRACT

Cryptographic schemes require specialized software libraries to work with large

numbers on fixed-precision processors. The concept is known as multiple-precision com-

putation. In this thesis, we aim to review the multiple-precision algorithms with the

contemporary modifications. With this motivation, we develop a new multiprecision li-

brary named CRYMPIX and we carefully benchmark CRYMPIX in comparison with the

fastest alternatives. We also develop a distributed wrapper for computationally expensive

functions. Hence, we provide an abstraction method for the higher level cryptographic

implementations by allowing them run in a distributed environment without containing

any specialized code for distribution.

iv

ÖZET

Kriptolojik uygulamaların sabit uzunluklu değişkenleri işleme yetisine sahip

işlemciler üzerinde çalıştırılabilmesi için özelleşmiş yazılımlara ihtiyaç duymaktadır. Bu

kavram çok-basamaklı (multiple-precision) sayı işlemleri olarak bilinmektedir. Bu tezde

temel olarak çok-basamaklı sayılar için geliştirilen algoritmalar ve güncel modifikasyonları

incelenmiştir. Bu motivasyonla, CRYMPIX olarak isimlendirilen yeni bir çok-basamaklı

kütüphane tasarımna gidilmiştir. Çalışmada CRYMPIX’in alternatifleri ile karşılaştrmalı

performans değerlendirmesi sunulmuştur. Ayrıca hesaplanması güç olan fonksiyonların

dağıtık olarak çalışmasına imkan verecek bir katman geliştirilmiştir. Dolayısıyla, kriptolo-

jik uygulamaların dağıtık mimariden soyutlanarak özelleşmiş koda ihtiyaç duyulmaksızın

dağıtık hale getirilmesi sağlanmıştır.

v

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . viii

CHAPTER 1 . INTRODUCTION . 1

CHAPTER 2 . COMPUTATIONAL ASPECTS OF CRYPTOGRAPHY 3

2.1 Basic Definitions . 3

2.2 Multiprecision . 4

2.2.1 Representation of Numbers and Notation 4

2.2.2 Integer Arithmetic . 4

2.2.3 Addition and Subtraction 5

2.2.4 Multiplication . 5

2.2.5 Division . 6

2.2.6 Sign Management . 7

CHAPTER 3 . ALGORITHMS IN USE . 8

3.1 Multiplication Algorithms . 8

3.1.1 Basecase Multiplication . 8

3.1.2 Comba Multiplication . 11

3.1.3 Lower Half Product . 13

3.1.4 Squaring . 14

3.1.5 Karatsuba Multiplication 14

3.1.6 Toom-Cook 3-Way Multiplication 16

3.1.7 Other Multiplication Algorithms 17

3.2 Greatest Common Divisor Algorithms 17

3.2.1 Euclid GCD Algorithm . 18

3.2.2 Lehmer GCD Algorithm . 18

3.2.3 Binary GCD Algorithm . 19

3.2.4 Generalized GCD Algorithm 19

3.2.5 Other GCD Algorithms . 21

vi

3.3 Exponentiation Techniques . 22

3.3.1 Successive Squaring . 22

3.3.2 Variable Length Windows Sliding 22

3.3.3 Montgomery Modular Multiplication 23

3.4 Modular Reduction . 27

CHAPTER 4 . CRYMPIX: ANALYSIS, DESIGN AND IMPLEMENTATION . 28

4.1 Requirements of a Cryptographic Library 28

4.2 Design Criteria of CRYMPIX 30

4.2.1 Programming Language and Portability 30

4.2.2 Representation of Numbers 30

4.2.3 Memory Management . 31

4.2.4 Code Readability . 32

4.3 Implementation of CRYMPIX 33

4.3.1 Programming Language and Portability 33

4.3.2 Representation of Numbers 35

4.3.3 Memory Management . 36

4.3.4 Code Readability and Layered Approach 37

4.3.5 Implementation Details . 42

4.3.5.1 Addition and Subtraction 42

4.3.5.2 Multiplication . 45

4.3.5.3 Greatest Common Divisor 47

4.3.5.4 Modular Exponentiation 49

4.4 Distributed Architecture . 50

4.5 Benchmark of CRYMPIX . 54

4.5.1 Multiplication . 55

4.5.2 Greatest Common Divisor (GCD) 56

4.5.3 Modular Exponentiation . 57

CHAPTER 5 . CONCLUSION . 59

vii

LIST OF FIGURES

Figure Page

Figure 3.1 Basecase Multiplication Scheme . 10

Figure 3.2 Basecase Multiplication Example 10

Figure 3.3 Comba Multiplication Example . 11

Figure 3.4 Comba Multiplication Scheme . 12

Figure 3.5 Lower Half Product Scheme. 14

Figure 3.6 Karatsuba Multiplication Scheme 15

Figure 3.7 Karatsuba Multiplication Example 16

Figure 3.8 Speedup values of MIRACL-KCM modexp() with recursive REDC

function over MIRACL modexp() with basecase REDC function. . 25

Figure 4.1 Representation of multiprecision numbers within the memory. . . . 31

Figure 4.2 CRYMPIX Code Example for Integer Addition. 33

Figure 4.3 Speedup values obtained by the results in Table 4.1. 34

Figure 4.4 Structure for CRYMPIX integer. 35

Figure 4.5 Manipulation of numbers in CRYMPIX. 36

Figure 4.6 Initialization of multiprecision integer. 37

Figure 4.7 Representation of multiprecision numbers within the memory. . . . 38

Figure 4.8 Hardware Abstraction Layer Code example. 39

Figure 4.9 Vector Layer Code example. 40

Figure 4.10 Low-level Function Layer Code example. 40

Figure 4.11 High-level Function Layer Code example. 41

Figure 4.12 Vector Layer Accumulation operation in CRYMPIX. 42

Figure 4.13 Vector Layer Addition operation in CRYMPIX. 43

Figure 4.14 High-level Function Layer Addition operation in CRYMPIX. 44

Figure 4.15 Speedup values of CRYMPIX’s basecase multiplication over the naive

approach. 45

Figure 4.16 Karatsuba multiplication in CRYMPIX. 46

Figure 4.17 Speedup values of Modified Lehmer GCD algorithm over Standard

version. 48

viii

Figure 4.18 Quotient approximation in Lehmer GCD implementation. 48

Figure 4.19 Implementation of sliding windows technique. 49

Figure 4.20 Distributed Wrapper for CRYMPIX. 51

Figure 4.21 A case study in CRYMPIX distributed layer. 52

Figure 4.22 Distributed wrappers for several libraries. 53

Figure 4.23 Speedup values when assembly support is used. 56

Figure 4.24 Speedup values for CRYMPIX Lehmer GCD over GMP Generalized

GCD, derived from Table 4.6. 57

Figure 4.25 Speedup values for CRYMPIX and MIRACL over GMP in modular

exponentiation, derived from Table 4.7. 58

ix

LIST OF TABLES

Table Page

Table 2.1 Algorithms in use for multiprecision multiplication. 6

Table 3.1 Modular exponentiation times for two different compilations of MIR-

ACL library. (milliseconds). 25

Table 4.1 Integer Multiplication benchmark results in microseconds. 34

Table 4.2 Comparison of CRYMPIX’s implementation of Basecase multiplica-

tion with naive approach in small length operands. (microseconds).

. 45

Table 4.3 The time needed to compute GCD of two operands with Standard

Lehmer GCD algorithm and the with the modified version. (microsec-

onds). 47

Table 4.4 Distributed layer test case results. (milliseconds). 52

Table 4.5 Integer Multiplication benchmark results in microseconds. 55

Table 4.6 CRYMPIX Lehmer GCD vs. GMP Generalized GCD. (microsec-

onds). 57

Table 4.7 Modular exponentiation for GMP, CRYMPIX, and MIRACL. (mil-

liseconds). 58

x

LIST OF ALGORITHMS

Algorithm Page

Algorithm 3.1 Basecase Multiplication Algorithm. 9

Algorithm 3.2 Lower Half Product Algorithm. 13

Algorithm 3.3 Extended Euclid GCD Algorithm. 18

Algorithm 3.4 Extended Lehmer GCD Algorithm. 20

Algorithm 3.5 Generalized GCD Algorithm. 21

Algorithm 3.6 Montgomery Multiplication. 24

Algorithm 3.7 Montgomery Reduction (REDC). 24

Algorithm 3.8 ModExp, Window-Sliding, Montgomery Multiplication. 26

xi

CHAPTER 1

INTRODUCTION

This thesis is a combined study of building a multiple-precision number library

and providing a distributed wrapper for its cryptographic functions. Designed either

for cryptographic use or not, most of the multiple-precision number libraries implement

arithmetic, logic and number theoretic routines. Our first aim in this thesis study, is to

do research on the computational aspects of such primitives by implementing the most

important functions within a new multiple-precision integer library named CRYMPIX.

There are world-widely accepted code distribution solutions such as Message Passing In-

terface(MPI) Standard. Our second aim is to search for finding elegant ways of distribut-

ing the cryptographic computational mass over an MPI network of general use personal

computers.

The efficiency of a cryptographic implementation mostly depends on the internally-

used low-level cryptographic library. A cryptographic library is said to be competitive

among its alternatives if it is engineered not only with the advanced level of coding but

also with the careful selection of algorithms concerning their theoretical complexities and

their inclination to the underlying hardware. However, finding the best tuning is always

a tedious job because one has to switch between various algorithms with respect to their

threshold values. On the other hand, once the library is developed, it is relatively easier

to perform further scientific studies and go deeper inside the computational aspects of

the cryptographic world. With this motivation, we strongly advise to code at least some

functions if not all for every researcher who is in the field of cryptology.

It is known that the asymmetrical cryptosystems require multiple-precision arith-

metic when they are run on fixed-precision processors. Let’s consider the following exam-

ple to understand what the term multiple-precision stands for; if an RSA implementation

runs at 4096-bit key size, then at least 128 computer words are needed to store and pro-

cess the key on a 32-bit architecture. Therefore, specialized algorithms are to be used for

handling operations such as addition, multiplication and modular reduction. To address

the necessity, many libraries are developed up to now of which the most popular ones

are GNU GMP, Shamus Software MIRACL, LibTomMath, PARI/GP, LiDiA, BigNum,

1

Java BigInteger, Bouncy Castle, Magma, Maple, Mathematica, and MuPAD. All of these

libraries are implemented for related but different purposes. Therefore, it is quite likely

that one needs several of them to satisfy the one’s specific scientific research needs. Sur-

prisingly, our approach is to develop a newer one to learn more about them and distinguish

between the elegant and the awful implementations as well as competing for a faster and

a simpler code if possible.

Code distribution of a cryptosystem is a part of the folklore. However, the paral-

lelization effort is repeated for each implementation where our struggle is on the develop-

ment of a cryptographic distributed layer (CDL) that is transparent to the protocol level

implementation and to the underlying low level cryptographic library. With this motiva-

tion, we exploit a property of key generation, encryption and decryption phases of most

cryptosystems that is the independent nature of tasks. For instance, RSA encryption

and decryption are done via several consequent and independent modular exponentia-

tions. So that, our approach gains importance for a higher speed RSA implementation

where the CDL could still be used for some other purpose even for cryptanalytic and/or

non-cryptographic fields. We limit our discussion on the encryption phase of RSA cryp-

tosystem of which we prepare a test case, implement it and provide the test results.

We begin our study in Chapter 2 by introducing the basic concepts that we shall

encounter throughout this thesis and by making a preliminary introduction to multiple-

precision computation. The subject is extended on contemporary algorithms throughout

Chapter 3. We discuss the requirements of multiprecision library and our design and

implementation in Chapter 4.

2

CHAPTER 2

COMPUTATIONAL ASPECTS OF

CRYPTOGRAPHY

We provide some basic definitions in Section 2.1 that we will recall in the context of

this thesis. The definitions are taken from (Menezes et al. 1996, pp.67-105.) and (Wagstaff

2002, pp.27-38.). Section 2.2 is a brief introduction to multiprecision arithmetic to give

the reader a foresight for further discussions.

2.1 Basic Definitions

Definition 2.1.1. An algorithm is a well-defined computational procedure that takes a

variable input and halts with an output.

Definition 2.1.2. If a and b are integers, then a is said to be congruent to b modulo

n, written a ≡ b (mod n), if n divides (a.b). The integer n is called the modulus of the

congruence.

Definition 2.1.3. The integers modulo n, denoted Zn, is the set of (equivalence classes of)

integers {0, 1, 2, ..., n− 1}. Addition, subtraction, and multiplication in Zn are performed

modulo n.

Definition 2.1.4. Let a ∈ Zn. The multiplicative inverse of a (mod n) is an integer

x ∈ Zn such that a · x ≡ 1 (mod n). If such an x exists, then it is unique, and a is said to

be invertible, or a unit ; the inverse of a is denoted by a−1.

Definition 2.1.5. The greatest common divisor of two non-negative integers a and b is

denoted as gcd(a, b) and is equal to the largest integer that evenly divides both a and b.

Definition 2.1.6. For a, b ∈ Z+, if gcd(a, b) = 1 then a and b are relatively prime to

each other.

3

2.2 Multiprecision

A numerical operation is said to be single-precision if the variables are presented

by fixed-sized single computer words. For instance, on a 32-bit computer, numbers can

only grow up to 232 = 4294967296. General use processors are designed to perform

single-precision instructions. However, single-precision operations, by themselves, are not

sufficient to carry out the basic arithmetic needs of cryptographic applications. These

numbers grow up to thousands of bits and the underlying hardware variables cannot hold

them. Therefore, each operation on large numbers must be carried out by a well de-

fined strategy. A suitable approach is to split each large number into computer words

and let them lay along some pieces of memory spaces and perform mathematical oper-

ations on such arrays by the special use of single-precision operations. This concept is

known as multiple-precision and the large numbers are named multiple-precision numbers.

Arbitrary-precision, multiprecision and bignum are synonyms. In the subsequent parts of

this text, the term multiprecision is preferred to address multiple-precision.

2.2.1 Representation of Numbers and Notation

Representation of numbers in multiprecision arithmetic is just alike the common

representation in base 10. The only difference is that the base is typically much larger in

multiprecision systems. For instance, on a 32-bit processor, the base is selected equal or

smaller than 232 = 4294967296. This type of representation is called radix representation

or base representation and is given in Equation 2.1.

x = (xn−1, xn−2, xn−3, ..., x0)β =
n−1∑
i=0

xi · βi. (2.1)

β ≥ 2, and 0 ≤ i < n, with 0 ≤ xi < β, and xn−1 6= 0, and x is the multiprecision number.

β is called the base and any positive integer xi is called a digit of x in base β. Number of

digits, n, is formulated as follows: n = |x|β = blogβ xc+ 1.

2.2.2 Integer Arithmetic

In this section, we mainly focus on four basic operations of multiprecision integer

arithmetic that are addition, subtraction, multiplication and division. The aim is to em-

phasize the importance of these primitives and clarify how they are used in cryptographic

4

implementations. The subject is going to be extended in mathematical and technical

detail on Chapters 3 and 4.

2.2.3 Addition and Subtraction

Both addition and subtraction are carried out in O(n) time. The addition or

subtraction of two multiprecision numbers is needed in cryptographic algorithms and

both are crucial in overall performance when used in the core loops of other operations. A

perfect multiprecision library should utilize the underlying hardware for these operations.

2.2.4 Multiplication

Multiprecision multiplication is the heart of the prime field based cryptographic

schemes such as RSA, ElGamal, and Diffie Hellman Key Exchange. The inner loop of the

classic algorithm is a multiplication of a multiprecision vector by a constant single preci-

sion integer and an multiprecision addition. Therefore, the processes is done in O(n2) time

with the classic algorithm. This technique is also known as School multiplication, Stan-

dard multiplication, Baseline multiplication and Basecase multiplication. The synonym

Basecase multiplication is used within the context of this study.

The efficiency of most cryptographic libraries depend on the cost of multiprecision

multiplication operation. Table 2.1 summarizes the popular multiplication methods, their

complexities, and of their usage intervals.1

Basecase multiplication gets relatively slower as the input operand sizes grow.

Fortunately, there are asymptotically faster multiplication schemes of which two of them

are in cryptographic concern. These two techniques are known as Karatsuba Ofman

multiplication and Toom-Cook 3-Way multiplication. Karatsuba Ofman multiplication

is discovered in 1962 by a Russian mathematician. The idea is to get rid of the long

multiplication by replacing it with 3 multiplications with half operand size and some

shifting and addition operations. The recursive behavior of this technique decreases the

theoretical complexity down to O(n1,585) (Rosen 1998) which is far less than that of

Basecase multiplication. The subject is going to be revisited in the following chapters.

Toom-Cook multiplication is generalized version of Karatsuba multiplication. It is based

1GNU-GMP documentation at http://www.swox.com/gmp/.

5

Table 2.1. Algorithms in use for multiprecision multiplication.

Algorithm Complexity Interval

Basecase O(n2) 0− 1Kb

Karatsuba O(n1.585) 1− 6Kb

Toom-Cook 3−Way O(n1.465) 6− 24Kb

FFT Based O(n∼1.4) 24Kb−larger

on splitting the number to n + 1 compartments. Toom-Cook 3-Way multiplication is

the special form of Toom-Cook multiplication for cryptographic use. The complexity is

O(n1.465) (Rosen 1998) which is less than the complexity of Karatsuba multiplication. Fast

Fourier Transform (FFT) based multiplication is even faster than these methods however

it is out of the cryptographic concern since it is significant for very large numbers. For

instance, GNU GMP library uses FFT based multiplication for numbers larger than 24K

in size.

A typical question that arises quickly is which one of these techniques to use

within the implementation. The preferred approach is to use all of them within special

order bounded to some threshold values. Therefore, at some recursion depth, Toom-Cook

multiplication is switched with Karatsuba multiplication and then the lower threshold

value determines where Basecase multiplication starts.

2.2.5 Division

Cryptographic algorithms require modular reductions which can be done using

multiprecision division. However, basecase multiprecision division is the most costly op-

eration among basic arithmetic operations with O(n2) complexity. Therefore, most efforts

in computational researches are on the elimination of multiprecision division operations.

A recursive division algorithm is proposed in (Burnikel and Ziegler 1998). The method de-

6

creases the complexity to 2K(n)+O(n log n) where K(n) is the Karatsuba multiplication

time.

2.2.6 Sign Management

A suitable approach to keep the sign of a multiprecision integer is using a distinct

variable. This is called signed magnitude representation. Specialized hardware solutions

uses the two’s complement representation. Signed magnitude representation is more prac-

tical to be used in multiprecision arithmetic since additional effort for checking of the sign

digit is negligible.

7

CHAPTER 3

ALGORITHMS IN USE

In this chapter, we provide the algorithms that are of importance in cryptographic

implementations. In some cases, we have provided the ones that are left to the un-

derstanding of the researchers in related articles and books. We also provide graphical

illustrations and numerical examples that will make it a lot easier to understand multi-

precision operations.

3.1 Multiplication Algorithms

There are several algorithms developed for finding the product of two multipreci-

sion operands. The multiplication algorithms are differed by their special usages and/or

complexities and they represent the small pieces of the puzzle of high-performance. In

other words, each of the algorithms is necessary for cryptographic computation.

3.1.1 Basecase Multiplication

Basecase multiplication algorithm is discussed in (Knuth 1997, p.268.) and

(Menezes et al. 1996, p.595.) and is formulated in Equation 3.1. Let x and y be two

not necessarily distinct multiprecision operands with |x|β = m and |y|β = n. The product

is stored in the number z having |z|β = m + n memory places that are allocated and

cleared initially. Generally, operands are equal in size in cryptographic implementations.

z = xy =
m−1∑
i=0

xiβ
i ·

n−1∑
j=0

yjβ
j =

m−1∑
i=0

n−1∑
j=0

xiyjβ
i+j (3.1)

The inner loop in Equation 3.1 is constructed to calculate inner-products and to

add them to the current value of z. The implementation tricks are covered in Chapter 4.

The Basecase multiplication algorithm is given in Algorithm 3.1. The term tH,L represents

a double precision variable where tH is the the upper and tL is the lower half of the variable.

The naive illustration in Figure 3.1 may give the reader how the computer

words are used throughout the operation. Suppose that we want to multiply two

8

input : x, y with |x|β = m and |y|β = n.

output: Returns the product z = x · y with |z|β = m + n.

for i = 0 to m− 1 do
tH = 0.

for j = 0 to n− 1 do
tH,L = zi+j + xi · yj + tH .

zi+j = tL.

end

zi+j = tH .

end

return z.

Algorithm 3.1. Basecase Multiplication Algorithm.

integers 3981788410 and 16318719 in base 10. Then, 3981788410 × 16318719 =

64977686180246790. To perform the operation at word level, radix conversion is ap-

plied to (3981788410)10 = (11101101010101010100010011111010)2 and (16318719)10 =

(111110010000000011111111)2. Efficient radix conversion algorithms are explained by

(Knuth 1997, pp.319-327). The remaining operations are included in Figure 3.2.

No overflow occurs in any of the carry words since (β−1)+(β−1).(β−1)+(β−1) =

(β2 − 1) where the summed terms represents; previously calculated sum, inner product

and carry words respectively. The largest possible outcome, (β2− 1), does not exceed the

length of two digits in base β hence Basecase multiplication algorithm does not have any

upper bound on the length of the operands. However, Basecase multiplication requires

n.m single precision multiplications that makes it less attractive for numbers having 32 or

more digits in base β. Note that 32 digit is an empirical value due to our implementation

measurements. This value tends to change on various hardware.

9

xm−1 · · · x2 x1 x0

× yn−1 · · · y1 y0

x0 · y0

x1 · y0

x2 · y0

· · ·
xm−1 · y0

x0 · y1

x1 · y1

x2 · y1

· · ·
xm−1 · y1

· · ·
· · ·

· · ·
· · ·

· · ·
x0 · yn−1

x1 · yn−1

x2 · yn−1

· · ·
+ xm−1 · yn−1

zm+n−2 · · · · · · z5 z4 z3 z2 z1 z0

Figure 3.1. Basecase Multiplication Scheme

11101101 01010101 01000100 11111010

× 11111001 00000000 11111111

11101100 01100111 11101111 10110101 00000110

00000000 00000000 00000000 00000000 00000000

+ 11100110 11010111 11110000 00010111 00101010

11100110 11011000 11011100 01111111 00011001 10110101 00000110

Figure 3.2. Basecase Multiplication Example

10

3.1.2 Comba Multiplication

Another basecase multiplication is described by (Comba 1990). The method re-

quires O(n2) time and enables efficient parallelization by eliminating upward carry propa-

gation of inner-product operation in Basecase multiplication. The algorithm produces the

product from least significant word to most significant word, one at each outer iteration

by summing the equal order single-precision product and fixing the carry bits externally.

Comba multiplication is not used in most of the libraries because it is much more suitable

for hardware implementations. Nevertheless, Comba multiplication finds its use in Half

multiplication scheme explained in Section 3.1.3. A simple numerical example to perform

3981788410 × 16318719 = 64977686180246790 is given in Figure 3.3. The algorithm is

visualized in Figure 3.4.

11101101 01010101 01000100 11111010

× 11111001 00000000 11111111

11111001 00000110

00000000 00000000

01000011 10111100

11110011 00101010

00000000 00000000

01010100 10101011

01000010 00100100

00000000 00000000

11101100 00010011

01010010 10101101

00000000 00000000

+ 11100110 10000101

11100110 11011000 11011100 01111111 00011001 10110101 00000110

Figure 3.3. Comba Multiplication Example

11

xm−1 · · · x2 x1 x0

× yn−1 · · · y2 y1 y0

x0 · y0

x0 · y1

x1 · y0

x0 · y2

x1 · y1

x2 · y0

· · ·
· · ·
· · ·
· · ·

xα · yn−1−α

xα+1 · yn−2−α

· · ·
xm−2 · y1

xm−1 · y0

xα+1 · yn−1−α

xα+2 · yn−2−α

· · ·
xm−1 · y1

xα+2 · yn−1−α

· · ·
xm−1 · y2

· · ·
· · ·

+ xα+n−1 · yn−1−α

zm+n−2 · · · · · · · · · z5 z4 z3 z2 z1 z0

Figure 3.4. Comba Multiplication Scheme

12

3.1.3 Lower Half Product

The lower half of the product is needed in some cases. For instance, fully-recursive

Montgomery Reduction (see Section 3.3.3), uses half multiplication to operate at a lower

complexity. Half multiplication can be achieved by ignoring the upper half of the full

product. However, this approach leads to inefficient implementation since we loose time

for the extra computation of the upper half. This is the part where Comba multiplication

is taken into consideration because the algorithm is developed to give one least-significant-

word of the final product at each outer iteration. Thus, Half multiplication is achieved

by terminating the operation when sufficiently many words are computed. In addition,

the lower half sized partitions can take the advantage of the fastest multiplication

method available by leaving the upper half to Comba type multiplication. Furthermore,

the scheme can be applied recursively. Pseudocode is provided in Algorithm 3.2 and

the approach is illustrated in Figure 3.5. Note that this is a naive approach for half

product operation. More efficient partitioning techniques are discussed in (Mulders 2000).

input : x, y with |x|β = |y|β = n, n is even.

output: Returns the half product z = x · y (mod βn) with |z|β = n.

if n < CombaThreshold then

z = x · y (mod β
n
2). //Use Comba method for lower half product.

else

z = x (mod β
n
2) · y (mod β

n
2). //Use the fastest method.

z = z +
(
x (mod β

n
2) · y

β
n
2

)
· β n

2 . //Use Algorithm 3.2.

z = z +
(x

β
n
2

· y (mod β
n
2)

)
· β n

2 . //Use Algorithm 3.2.

end

return z.

Algorithm 3.2. Lower Half Product Algorithm.

Division and modular reduction operations of Algorithm 3.2 has no computational

13

load since they represent the lower half of the number when modular reduction is used

and the upper half of the number when division is used.

x1 x0

× y1 y0

→ Half sized partitions of x.

→ Half sized partitions of y.

x0 · y0

x0 · y1 (mod βn/2)

+ x1 · y0 (mod βn/2)

→ Full Length Multiplication.

→ Half Length Multiplication.

→ Half Length Multiplication.

x · y (mod βn) → Half product of x and y.

Figure 3.5. Lower Half Product Scheme.

3.1.4 Squaring

Squaring can be performed faster than long hand multiplications that are dis-

cussed in Section 3.1.1 and Section 3.1.2. Fast squaring is explained in detail by (Menezes

et al. 1996, p.597.) and (Koc 1994, p.41.). Therefore, we will skip the section in short.

Nevertheless, the idea is to reduce total number of operations by eliminating the double

execution of the same single-precision products. This approach is summarized in Equa-

tion 3.2.

z =
n−1∑
i=0

n−1∑
j=0

xixjβ
i+j = 2 ·

n−2∑
i=0

n−1∑
j=i+1

xixjβ
i+j +

n−1∑
j=0

x2
i · β2i. (3.2)

It is irrelevant to give the algorithm here since the corresponding pseudocode can

be derived from Algorithm 3.1 easily.

3.1.5 Karatsuba Multiplication

An asymptotically faster method with O(nlog2 3) running time is proposed in

(Karatsuba and Ofman 1962). To multiply x and y where x ≥ y, let n = |x|β be the digit

14

count of x and L = dn
2
e. We partition both operands using L such that x = x1 · βL + x0

and y = y1 · βL + y0. Then,

xy = (x1β
L + x0)(y1β

L + y0)

= x1y1β
2L + x1y0β

L + x0y1β
L + x0y0 (3.3)

= x1y1β
2L + [(x1 + x0)(y1 + y0)− (x1y1 + x0y0)]β

L + x0y0. (3.4)

Equation 3.3 has a recursive nature however it is not superior to Basecase mul-

tiplication in terms of time. On the other hand, Equation 3.4 that is illustrated as in

Figure 3.6, eliminates one of the L ·L multiplication. The method replaces a 2L · 2L mul-

tiplication with 3 L ·L computationally easier multiplication. Furthermore, the recursive

nature of the method finds its best use when it is applied to a specific recursion depth.

As a consequence of addition and subtractions, the developer has to cope with the carry

bits. The implementation details are discussed in Chapter 4. An elegant implementation

of Karatsuba multiplication is mandatory for every cryptographic libraries.

a1 a0

× b1 b0

a1 · b1 a0 · b0
− a1 · b1
− a0 · b0

+ + (a1 + a0) · (b1 + b0)

a · b

Figure 3.6. Karatsuba Multiplication Scheme

For instance, let’s apply one level Karatsuba multiplication for the numbers

(11101101010101010100010011111010)2 and (111110011010010111111111)2. The evalu-

ation of the method is given in Figure 3.7.

15

11101101 01010101 01000100 11111010

× 00000000 11111001 10100101 11111111

00000000 11100110 11010111 10101101 00101100 10111001 11010111 00000110

− 00000000 11100110 11010111 10101101

− 00101100 10111001 11010111 00000110

+ + 00101100 11111100 11101110 00110000

00000000 11100111 01110001 11010100 01110100 10001110 11010111 00000110

Figure 3.7. Karatsuba Multiplication Example

3.1.6 Toom-Cook 3-Way Multiplication

Toom-Cook multiplication algorithm is based on polynomial multiplication. Actu-

ally, it is a method of adapting polynomial multiplication for multiplying integers. From

a different point of view, it is the generalization of Karatsuba multiplication where the

numbers are divided into n + 1 partitions instead of 2. The mathematical background

of Toom-Cook multiplication and polynomial multiplication goes deeper in (Knuth 1997,

pp.295-313). In this thesis, we merely explain the special case of Toom-Cook algorithm

that is significant in cryptographic implementations. The method is called Toom-Cook

3-way multiplication since the operands are split into 3 partitions.

Let u = (u2, u1, u0)k and v = (v2, v1, v0)k be the operands to be multiplied where

n = |x|β = |y|β and n = 3k for some k ∈ Z+, note that we took equal-sized operands

for simplicity of operations. To explain the way of multiplying two operands we start

with defining polynomials U(x) and V (x). The multiplication of the polynomials U(x) =

U2x
2 + U1x

1 + U0x
0 and V (x) = V2x

2 + V1x
1 + V0x

0 yields the coefficients of polynomial

W (x) such that

W (x) = U(x) · V (x) = W4x
4 + W3x

3 + W2x
2 + W1x

1 + W0x
0. (3.5)

It is straight forward to show W (k) = U(k) ·V (k) = u ·v. If we can find a fast way

of evaluating coefficients Wi for i ∈ Z+ and 0 ≤ i ≤ 4 of W (x) then we are done with the

16

desired product u · v. To find the five unknown coefficients, we obtain 5 linear equations

at arbitrary points of the polynomial W (x). Three of these points are very common to

be selected:

W (0) = U(0) · V (0) = W0 = U0 · V0. (3.6)

W (1) = U(1) · V (1) = W4 + W3 + W2 + W1 + W0 = (U2 + U1 + U0) · (V2 + V1 + V0). (3.7)

W (∞) = U(∞) · V (∞) = W4 = U2 · V2. (3.8)

The remaining two points are selected at W (2) and W (3) in Knuth. GNU-GMP

uses W (2) and W (1
2
) which seems to be more advantageous to in implementation.

3.1.7 Other Multiplication Algorithms

There are other multiplication algorithms which are explained in computational

algebra resources. We will limit our discussion with currently mentioned algorithms since

the most suitable methods to be used in cryptographic applications. For very large num-

bers reader should follow the publications of Schönhage A., Strasse V., and Zuras D..

3.2 Greatest Common Divisor Algorithms

Many situations in cryptography require the computation of the greatest com-

mon divisor (gcd) of two positive integers (Menezes et al. 1996). Greatest Common

Divisor from Definition 2.1.6 computation is crucial in most cryptographic implemen-

tations. For instance, Greatest Common Divisor is used in RSA key generation, in

n-Residue systems and even in Modular Exponentiation. In the rest of this document

Greatest Common Divisor is abbreviated as GCD. Summarized by the recursive formula

gcd(x, y) = gcd(x (mod y), x) for x ≥ y, the first GCD algorithm, also the first nontrivial

one, is defined by Euclid in 300 B.C. (Knuth 1997, pp.333-336.). In 1938, the algorithm

is modified by Lehmer for efficient multiprecision computation. Lehmer’s GCD algorithm

is explained in Section 3.2.2. A completely different approach, Binary GCD, is given in

Section 3.2.3 and its multiprecision variant is discussed in Section 3.2.4. Both type of the

17

algorithms has the extended versions. Extended GCD is used for finding multiplicative

inverse.

3.2.1 Euclid GCD Algorithm

The correctness of this algorithm is proved in number theoretic books. However,

Euclid GCD algorithm suffers from computational efficiency because of the multiprecision

division at each step. Therefore, the algorithm works at bit level and is not implemented

in most libraries. It is a symbolic example to give the computational basis of GCD. The

extended version of GCD algorithm is given in Algorithm 3.3 which based on the algorithm

in (Menezes et al. 1996, p.67.). The Extended GCD algorithm computes d = gcd(x, y) as

well as xd and yd satisfying x · xd + y · yd = d.

input : x, y where x ≥ 0 and y ≥ 0 with x ≥ y.

output: Returns d = gcd(x, y) with x · xd + y · yd = gcd(x, y).

xd = 1, yd = 0.

if y 6= 0 then
xt = 0, yt = 1.

while y 6= 0 do

q =
⌊

x
y

⌋
, r = x− q · y, x = xd− q · xt, y = yd− q · yt.

x = y, y = r, xd = xt, xt = x, yd = yt, yt = y.

end

end

d = x.

return {d, xd, yd}.

Algorithm 3.3. Extended Euclid GCD Algorithm.

18

3.2.2 Lehmer GCD Algorithm

Lehmer’s modification to Classic GCD benefits an exact quotient guess to eliminate

many expensive divisons. Lehmer GCD algorithm is improved with three strategies by

(Jebelean 1993a). The extended version with Jebelean’s double digit and approximative

approaches is summarized in Algorithm 3.4. The algorithm is based on (Menezes et al.

1996, p.607.) and assumes that the input x and y values are equal in size in terms

of computer word count. If the number sizes differ, then one has to use a preliminary

modular reduction.

3.2.3 Binary GCD Algorithm

Euclidean algorithms deals with the most significant bits and/or words of the

operands. In 1967, Josef Stein published an algorithm in which the operands are processed

from the least significant bits and/or words. The newer approach uses the following well

known properties of gcd() function:

a. If x and y are both even, then gcd(x, y) = 2 · gcd(x/2, y/2).

b. If x is even and y is odd, then gcd(x, y) = gcd(x/2, y).

c. gcd(x, y) = gcd(x− y, y).

d. If x and y are both odd, then x− y is even, and |x− y| < max(x, y).

The algorithm is suitable for numbers that are few word long. The extended

version of the algorithm is given in (Menezes et al. 1996, p.608.).

3.2.4 Generalized GCD Algorithm

A k-ary version of Binary GCD algorithm by the independent studies of (Jebelean

1993b) and (Weber 1995) enables a practically faster method when compared to Lehmer

GCD and Sorenson’s k-ary GCD algorithms. The method eliminates one word of both

operands by a modular conjugation step and an exact divison step respectively.

19

input : x, y integers, x > 0 and y > 0 and |x|β = |y|β with x ≥ y.

output: Returns d = gcd(x, y) with x · xd + y · yd = d.

xd = 1, yd = 0.

while b 6= 0 do

m = |x|β, n = |y|β.

x =
(xm−1, xm−2, xm−3)

xm−1 + 1 . // x is double-precision.

y =
(yn−1, yn−2, yn−3)

xm−1 + 1 . // y is double-precision.

A = 1, B = 0, C = 0, D = 1, q = 0, q′ = 0.

while (y + C 6= 0) and (y + D 6= 0) and (q = q′) do

q =

⌊
x + A
y + C

⌋
, q′ =

⌊
x + B
y + D

⌋
.

if q = q′ then
t = A− q · C, A = C, C = t.

t = B − q ·D, B = D, D = t.

t = x− q · y, x = y, y = t.

end

end

if B = 0 then

T = x (mod y), x = y, y = T .

T = xd +

⌊
x
y

⌋
· yd, yd = xd, xd = T .

else

T = (x · A + y ·B), U = (x · C + y ·D), x = T, y = U .

T = (xd · |A|+ yd · |B|), U = (xd · |C|+ yd · |D|), xd = T, yd = U .

end

Correct the sign of xd and yd.

end

return {d, xd, yd}.

Algorithm 3.4. Extended Lehmer GCD Algorithm.

20

input : x, y where x ≥ 0 and y ≥ 0 with x ≥ y.

output: gcd(x, y).

while x 6= 0 and y 6= 0 do

if x < y then

swap(x, y).

end

if |x|β = |y|β then

Find c with modular conjugation for x0 · c + y0 ≡ 0 (mod β2).

Derive single words (u, v) from c such that u · c− v ≡ 0 (mod β2).

Compute x = |x · u + y · v|.
else

x = x (mod y). //bmod operation.

end

end

return x.

Algorithm 3.5. Generalized GCD Algorithm.

3.2.5 Other GCD Algorithms

There are other Euclidean or Binary GCD based algorithms defined by various

researchers. For further investigation, reader should refer to the related studies of Damien

Stehlé, Tudor Jebelean, Arnold Schönhage, Sidi Mohammed Sedjelmaci, John Sorenson,

Kenneth Weber, and Paul Zimmermann.

21

3.3 Exponentiation Techniques

Modular exponentiation is the most time consuming operation among the others

which are covered within the previous sections. Nevertheless, the operation is to be pro-

cessed quickly to enable efficient use of cryptographic schemes such as RSA and ElGamal

encryption and decryption and Diffie-Helmann key exchange. Therefore, any single in-

formation about the characteristic of the operation is important to lower the number of

multiplications and save valuable time. There are plenty of techniques for doing faster

exponentiation and modular reduction. The best strategy is to combine the suitable tech-

niques together. In this study, we include the most suitable techniques for general use

personal computers. The modular exponentiation is achieved by a modular reduction

step after each multiplication. Thus, any exponentiation technique such as Successive

Squaring in Section 3.3.1 and Variable Length Windows Sliding in Section 3.3.2 in Z+

can be modified to work for Zm,m ∈ Z+. Unfortunately, modular exponentiation is a bit

level operation that depends on the exponent length and that makes it relatively slower

even with the best methods known.

3.3.1 Successive Squaring

In cryptographic bounds, it would be computationally infeasible to do y group

multiplications to evaluate xy that would require O(n) operations. Successive Squaring is

the main approach that lowers the time to O(log n). Although, the complexity function

still depends on the size of exponent, it is now in computational margins for the numbers

up to few thousand bits long. The technique is also called Binary Method or Square and

Multiply Method. Successive Squaring method scans the exponent bits from left-to-right

or right-to-left to evaluate the answer quickly.

3.3.2 Variable Length Windows Sliding

Exponent scanning can be utilized by Window Sliding technique. In the execution

of the method, a precomputation phase determines some small powers and then they are

used in the multiplication step of Successive Squaring by eliminating many of the multi-

precision multiplications in Chapter 3.3.1. The method becomes faster when the database

size for precomputed values is selected to minimize the total number of multiplications

22

including the precomputation phase and when the sliding windows are formed in variable

length to maximize the number of digits set to (1)2. The subject is further examined in

(Koc 1994).

3.3.3 Montgomery Modular Multiplication

A different way of computing modular multiplication is introduced in (Montgomery

1985). The method shows how to eliminate the expensive reduction step with long hand

division by replacing it with preferably two fast multiplications or a full length basecase

multiplication and some addition and shift operations. Montgomery’s method is based

on the shifting of calculations modulo n into a complete residue system defined by the

Equation 3.9.

R(r, n) = {i · r (mod n) | 0 ≤ i < n}. (3.9)

Montgomery Reduction computes the value of Equation 3.11. However, a straight

forward implementation will require a multiprecision multiplication and division. It is far

cheaper to compute t · r−1 (mod n) via Equation 3.10 which gives the same result with

Equation 3.11. The idea behind this scene is to work with modulo r without violating

residue n.

t + m · n
r

(mod n) ≡ t + [t · n′ (mod r)] · n
r

(mod n) (3.10)

≡
t +

[
t · n′ −

⌊
t · n′

r

⌋
· r

]
· n

r
(mod n)

≡
t + t · n · n′ − n · r ·

⌊
t · n′

r

⌋

r
(mod n)

≡ t + t · (r · r−1 − 1)

r
− n ·

⌊t · n′
r

⌋
(mod n)

≡ t · r · r−1

r
(mod n)

≡ t · r−1 (mod n). (3.11)

The algorithm holds for arbitrary value of r where r > n and gcd(r, n) = 1 and

if r is selected r = β|n|β , then the reduction step is carried out easily with β-sized-word

hardware. The methods needed for Montgomery’s Modular Multiplication are shown in

Algorithms 3.6 and 3.7.

23

input : x, y, n.

output: Returns x · y (mod n).

x̄ = x · r (mod n), ȳ = y · r (mod n). //Precomputation.

t = x̄ · ȳ. //Use fastest multiplication available.

z̄ = t (mod n). //Use Algorithm 3.7.

z = z̄ · r−1 (mod n). //Postcomputation.

return z.

Algorithm 3.6. Montgomery Multiplication.

Algorithm 3.6 is rather a transformation phase for the operands. Firstly, they

are converted to n-residue forms. After the Montgomery Multiplication step, a back

conversion is applied to the n-residue product.

input : t, n.

output: Returns u = t · r−1 (mod n).

m = t · n′ (mod r).

u = (t + m · n) / r.

if u ≥ n then
u = u− n.

end

return u.

Algorithm 3.7. Montgomery Reduction (REDC).

At the first glance, Algorithm 3.7 seems to be much slower than classic reduction.

However, the cost of division and modulus operations via r is negligible since r is of the

form β|n|β . The remaining expensive operations (t · n′) and (m · r) are also carried out

easily by a basecase approach that is introduced in (Dussé and Kaliski Jr. 1991). On

the other hand, one can still need to work asymptotically faster by computing (t · n′)

24

and (m · r) with non-basecase multiplication schemes. We included a time comparison

on MIRACL’s two different modexp() functions that shows the performance of either of

the approaches. Table 3.1 and Figure 3.8 together provides the possible speedup. The

experiment is done with DEBIAN/LINUX with GNU/GCC Compiler at optimization

level −O2 with ANSI-C. Target hardware is Intel Centrino 1.4Ghz processor and 768MB

of main memory. The margins of the trade off may still vary in other libraries and in

Assembly enabled builds.

Table 3.1. Modular exponentiation times for two different compilations of MIRACL li-

brary. (milliseconds).

Length 1K 2K 4K 8K

MIRACL ModExp with Basecase REDC 28 208 1611 12613

MIRACL-KCM ModExp with Recursive REDC 31 204 1298 8132

Figure 3.8. Speedup values of MIRACL-KCM modexp() with recursive REDC function

over MIRACL modexp() with basecase REDC function.

25

Although Montgomery’s method is a different way of doing modular multiplication,

it is relatively slower because of its precomputation and postcomputation phases. Yet, it

is highly preferable when used in modular multiplication. Algorithm 3.8 shows how to

exploit Montgomery’s approach in the computation of modular exponentiation.

input : x, y where y ≥ 1 and y = (yi−1, ..., y2, y1, y0)2.

output: Returns x · y (mod n).

Set k to optimal window size.

x0 = x.

for i = 0 to k − 1 do

dbase[i + 1] = dbase[i] · x2.

end

r = β|n|β .

x̄ = x · r (mod n).

z̄ = 1 · r (mod n).

while i > 0 do

if yi−1 = 0 then

x̄ = x̄2 · r−1 (mod n).

i = i− 1.

else
Determine next window with a value of W with bit length L.

x̄ = x̄2L · dbase[W] · r−1 (mod n).

end

end

z = 1 · z̄ · r−1 (mod n).

return z.

Algorithm 3.8. ModExp, Window-Sliding, Montgomery Multiplication.

26

3.4 Modular Reduction

Modular reduction is nothing but a shuffling mechanism of numbers within a group

that must be carried out as quick as possible. The reduction of a single integer a in modu-

lus n is carried out by the multiprecision division operation. A multiprecision division with

remainder suffices the modular reduction operation. If several reductions are to be made

for a single modulus, then Barrett reductions is used. Previously mentioned Montgomery

REDC function is used for reducing odd moduli numbers in modular exponentiation. All

three approached are discussed in (Bosselaers et al. 1994b) in detail. Thus, we will skip

any further discussion of the part.

27

CHAPTER 4

CRYMPIX: ANALYSIS, DESIGN AND

IMPLEMENTATION

The project CRYMPIX is an educational, open-ended, and multi-layered crypto-

graphic library. CRYMPIX aims to provide any service that is related with cryptology as

an open-ended library. Thus, it is highly experimental and code refactoring never ends in

time. Major and minor design changes are considerable and encouraged. CRYMPIX is

a multi-layered library. The library is developed with layers each having a different level

of abstraction that means each of them provides distinct a solution to the cryptographic

needs, starting from low-level operations such as hardware abstraction to high-level op-

erations such as specialized number theoretic techniques for faster implementations of

cryptosystems. The subject is extended in Section 4.3.4. As an educational library,

CRYMPIX aims to provide the known solutions for various problems by giving researcher

the chance of trying new ideas and compare them with the classic and contemporary

approaches.

In sections from 4.1 to 4.5, we discuss the current development issues of CRYMPIX

in comparison with the others. Besides, implementation notes are covered in detail to

reveal the differences between the theory and the practice.

4.1 Requirements of a Cryptographic Library

The overall performance is the major requirement of multiprecision libraries. Thus,

all decisions should be made to provide the maximum efficiency by utilizing the underlying

hardware at its peak. In addition, the faster algorithms should be triggered when operands

are too large to be processed by the basecase approaches. Therefore, the best performance

is a result of the union of theoretic knowledge-base with good programming skills.

Another requirement is the code portability which is not a big issue when a portable

programming language such as ANSI C is used. However, the portable code may behave

relatively slower on various hardware. For instance, if the target hardware doesn’t have

28

any built-in division instruction, then the design parameters may vary to preserve com-

putation speed although even when a machine independent language and compiler are

referred. Thus, developer should first determine the target architecture that the library is

expected to run on. As a consequence, machine dependent coding is also required for the

inner-most loops/layers of the library. For instance, assembly coding of some primitive

operations may enhance the overall performance for some specific hardware. The speed-

up is empirically around 5 when processor support is supplied. Most of the competing

multiprecision libraries provide special processor support to gain the maximum efficiency.

Each multiprecision number occupies a considerable space on the memory. This

value varies between 512 bytes and 8K in cryptographic applications. Hence, custom

memory management may become crucial when many numbers are created and killed

rapidly within an application. We do not supply any measurements here since it is behind

our scope.

Error handling is a general subject in software engineering. Likewise, a multipreci-

sion library should include necessary error controls without causing serious degradation

in overall performance. Thus, most libraries enables error handling as a compile time

option and it is used during the development phase. Note that the term error is used

both for exceptional cases such a out of memory exception and mathematical errors such

as divide-by-zero error.

Code readability and simplicity are the minor requirements. A well designed mul-

tiprecision library is expected to have a simple abstract programming interface (API) for

the integration of higher level implementations. For a better code readability, the context

of the code should reflect the construction of the algorithm at some level that makes the

new developers understand the previous work done.

29

4.2 Design Criteria of CRYMPIX

Common design criteria of most multiprecision libraries are representation of num-

bers, programming language selection, memory management, portability, error handling

and functionality (Bosselaers et al. 1994a). We will skip error handling and functionality

since there are less important in our case. A well designed library is expected to satisfy

optimum decisions and utilize the underlying hardware at its peak. In the following sec-

tions, we describe the design parameters of CRYMPIX and compare and contrast it with

that of the corresponding parameters of other libraries.

4.2.1 Programming Language and Portability

The languages that are preferred in multiprecision library development are Assem-

bly, C, C++, FORTRAN, and Java. Excluding Assembly, the performance of any given

cryptographic library depends on the coding talents of developer as well as the chosen

design criteria. It is clear that performance of Assembly will always be one step ahead

hence the exclusion.

ANSI C is selected as the development language of CRYMPIX. Pointer arithmetic

and structural features and portability of ANSI C code play the most important role in our

decision. Easy integration with Message Passing Interface (MPI) is also a distinguishing

factor. In most of the other cryptographic libraries some inner-most loops are delivered

to user with Assembly on the compile time as an answer to the demand of high speed

computation. We are going to limit our discussion only with C and the C based versions

of other libraries in this thesis since CRYMPIX aims to be an educational library in which

the most suitable algorithms are being implemented for cryptographic use.

4.2.2 Representation of Numbers

To represent the numbers, almost all multiprecision libraries use positive integer

vectors that are analogous to the radix representation (Equation 2.1). CRYMPIX also

uses this representation. We provide a simple diagram that shows how a number is placed

into the memory of a 8-bit architecture in Figure 4.1.

30

Figure 4.1. Representation of multiprecision numbers within the memory.

The number is partitioned into compartments and is laid along a memory space

with the first variable being set to the least significant digit of the number. Note that,

Figure 4.1 is a symbolic illustration that does not point out all implementation details.

4.2.3 Memory Management

Since all asymmetrical cryptosystems uses modular arithmetic, we are able to know

how much the numbers grow. In this case, it is possible to prevent memory fragmentation

if we fix the size of each number. Furthermore, memory allocation cost can be further

decreased if a specialized kernel layer is utilized for the implementation. The kernel is

responsible for fast memory allocation and subsequent release service. The whole memory

needed by the application is allocated when the system initialized. This type of approach is

crucial in embedded and/or real-time systems. To prevent the system run out of memory,

exceeding allocations can be made by malloc() function. In other words, system starts

dynamic memory allocations if and when necessary.

MIRACL’s design is partially similar to above discussion. The space need for each

number is fixed and is declared to the system as a runtime parameter. The memory

allocation is done via malloc() function. Each number that is passed to a function is

assumed to be initialized. To overcome the slowness of memory allocation from heap by

malloc() function, MIRACL uses an inner workspace. This approach prevents exhaustive

memory allocation and release problem.

Memory allocation in GMP is done with malloc() function. The system auto-

matically increase memory space for each number when needed. This approach is open to

31

memory fragmentation which slows down GMP. However, GMP remedies this omission

by using the stack memory. If the overall performance does not satisfy the requirements,

the user is allowed to do custom memory allocation.

Java BigInteger API is designed to meet object oriented programming criteria.

There is no limitation or space preallocation for the numbers. JVM and its garbage

collector determine the overall performance. When compared to C libraries, BigInteger

API is slower; on the other hand, code development is far easier.

4.2.4 Code Readability

We have observed that there are three major code portability styles in the libraries

mentioned above. In the first style; which is a naive approach, the architecture-depended

code is blended together with the original one. They are separated with compile time

pragmas. This approach is open to spaghetti-like coding. The second approach is to place

architecture-depended code in separate files. This approach is used in GMP library. Since

GMP is developed by collection of volunteer people, no code support problem arises. A

third approach is to decouple architecture-depended codes via C macros. This approach

is used partially in GMP. CRYMPIX’s design is solely based on this above mentioned

third approach.

32

4.3 Implementation of CRYMPIX

We have included some implementation notes in this section to clarify the scene

that CRYMPIX is developed on. The code in Figure 4.2 introduces CRYMPIX with an

integer addition example.

MI a, b, c;
crympix_init(100, 20); // Max words, max instances.
...
a = mai_init();
b = mai_init();
c = mai_init();
...
mai_add(c, a, b); // c = a + b.
...
mai_kill(a);
mai_kill(b);
mai_kill(c);
...
crympix_finalize();

Figure 4.2. CRYMPIX Code Example for Integer Addition.

4.3.1 Programming Language and Portability

We have already mentioned that ANSI C is selected as the programming language

and explained the reasoning. Nevertheless, we have included a performance table that

may give the reader an idea of how non-portable coding affects the performance. On

Table 4.1, portable and non-portable versions of MIRACL 4.8 and GNU-GMP 4.1.4 are

benchmarked via their integer multiplication function. We prepared test suits of 1K,

2K, 4K, and 8K each having 1000 pseudo-randomly selected inputs. We decoupled the

I/O time to get more accurate results. All tests are done with GNU GCC compiler at

optimization levels O2. The test is performed on a Intel Pentium IV 1400 Mhz processor

Redhat 9.0 box.

We merely start the section with an specialized-code-support discussion to empha-

33

size that specialized processor support supplies only a constant speedup over portable

versions that is the reasoning we build our library on the portable basis. In addition, one

still has the chance of implementing the inner-most operations with machine dependent

code to gain the necessary speedup. Figure 4.3 shows the performance ratio between

the assembled version and the portable version for GNU-GMP and MIRACL libraries

on Pentium like processors. Note that, this figure does not indicates any performance

comparison between the libraries.

Table 4.1. Integer Multiplication benchmark results in microseconds.

MIRACL GMP
Size

C C+Asm C C+Asm

1Kb 17 6 23 4

2Kb 68 26 74 15

4Kb 277 104 235 47

8Kb 1097 411 731 154

Figure 4.3. Speedup values obtained by the results in Table 4.1.

34

4.3.2 Representation of Numbers

Since a multiprecision number is composed of many computer words, the start and

the end addresses should be known. Also the sign of the integer should also be stored.

The integers are handled by the following structure shown in Figure 4.4.

typedef struct {
POS l; /* Number of digits */
POS *n; /* Starting address of digits */

} MV_T, *MV;

typedef struct {
POS t; /* Type of the object */
SIGN s; /* Sign of the integer */
MV v; /* Vector part of the integer */

} MI_T, *MI;

Figure 4.4. Structure for CRYMPIX integer.

The data type POS is actually the underlying hardware word that corresponds to

unsigned int in GNU GCC compiler. POS *num is the starting address of the number

and POS len is used to store the number of used words to store the whole number. SIGN

sign represents the sign of the integer. The numbers is positive when sign is set to

macro POSITIVE and negative for NEGATIVE. Variable memid tells the specialized kernel

where the logical location of the number is and type is an unused future variable to

indicate that type of the number. In our case, it is set to the paragma INTEGER. Note

that a multiprecision CRYMPIX integer has the structural type CZ with C symbolizing

CRYMPIX and Z indicating the numbers is in Z. Please see Figure 4.5 in Section 4.3.3

for a better illustration of number representation.

35

4.3.3 Memory Management

CRYMPIX is designed to manage its own memory. Stack memory is not used for

manipulating multiprecision numbers. The whole memory needed by the application is

reserved by an initialization function. A tiny kernel supplies a fast memory allocation and

release service on the preallocated space. The kernel uses a circular array data structure

to speed up the allocation and release operations. Size of each number is fixed to prevent

memory fragmentation. There is no built-in garbage collector mechanism in C so that

programmer is responsible for the life cycle of each number. The scheme is illustrated in

Figure 4.5.

Figure 4.5. Manipulation of numbers in CRYMPIX.

36

Kernel controls a circular array of pointers that are linked to a predefined amount

of continuous memory space. This space is used to store the multiprecision numbers. A

multiprecision number is composed of two parts: header and data. Header holds necessary

information about the structure of the multiprecision integer in terms of magnitude, and

memory location. Note that header and data are located within the same continuous

memory slot to fit the design to easy integration with Message Passing Interface (MPI)

for Distributed API Layer. This approach is implemented as given in Figure 4.6.

MI mai_init(){
MI new;
new = (MI)k_init();
new->t = TYPE_MI;
new->s = POSITIVE;
new->v = (MV)((CHAR *)new + sizeof(MI_T));
new->v->l = 0;
new->v->n = (POS *)((CHAR *)new->v + sizeof(MV_T));
return new;

}

Figure 4.6. Initialization of multiprecision integer.

Here, cz init() is a kernel level function that allocates the continuous memory

slot. Header and data link is constructed with new->num = (POS *)((CHAR *)new +

sizeof(CZ T)).

4.3.4 Code Readability and Layered Approach

Code readability has been one of the major concerns in CRYMPIX library right

from the start. Logical layers are decoupled by C macros at lower levels and by functions

at the higher. Function bodies are written as plain as possible and the code organization,

37

standardized 1 naming, inline comments, and indentation are applied throughout the

development. We will skip the details because we hope the code examples will clarify

the relevant standards. Currently, CRYMPIX has 48 API functions and this number is

expected to reach about 120 with its first release. CRYMPIX has 16.7 lines of code on

average per function.

CRYMPIX is built on a layered approach with each layer having a distinct usage.

The layers evolved after many design modifications and refactoring phases. The model

is visualized in Figure 4.7. The layered approach simplifies the function bodies, prevents

code repetitions; hence less tedious development phase.

Figure 4.7. Representation of multiprecision numbers within the memory.

At the hardware abstraction layer (HAL), we handle single-precision arithmetic

1NASA C Style Guide, Software Engineering Laboratory Series, SEL-94-003, Goddard Space Flight

Center, Greenbelt, Maryland 20771

38

operations with C macros on an imaginary double-precision processor which is capable

of processing full-length single-precision multiplications. A possibly better approach is

to supply this layer for a n-precision imaginary processor for a small value of n with the

help of Comba-type multiplication. (See Section 3.1.2). We are currently adapting the

mentioned technique to CRYMPIX. The below code in Figure 4.8 is an example macro

which performs an inner product operation, z = a · b + z + carry that was explained in

Section 3.1.1. The below code in Figure 4.8 is specialized for compilers that supports the

double-digit data type namely long long. We skip the single-precision version because

it occupies a large space for an example.

#define km_mul_2_add_2(_zz, _a, _b, _d_, _carry){ \
_zz.dpu = ((DPU)_a * _b + _d_ + _carry); \

}

Figure 4.8. Hardware Abstraction Layer Code example.

A vector layer; which is on top of HAL, manipulates the operations between a pos-

itive integer array and a single-precision operand. The below code in Figure 4.9 provides

an idea about the vector layer. This time the operation is to compute zn = an · b where

zn and an are multiprecision numbers and b is a single-precision multiplier. Note that

the code uses previously shown inner-product macro. Note that, the DPUP data type is

supplied by the previously discussed imaginary processor.

39

#define maim_inc_n_mul_1(_carry, _zn, _an, _al, _b, _pad)if(1){ \
DPUP _t; \
POS _i; \
\
_t.spu[HIGH] = _pad; \
for(_i = 0; _i < _al; _i++){ \

km_mul_2_add_2(_t, _an[_i], _b, _zn[_i], _t.spu[HIGH]); \
_zn[_i] = _t.spu[LOW]; \

} \
_carry = _t.spu[HIGH]; \

}

Figure 4.9. Vector Layer Code example.

At the low-level function layer which accesses both to the hardware abstraction

layer and to the vector layer, implements the basic arithmetic, logic and bitwise functions.

The term low-level is used to emphasize that the functions of this layer are provided with

the simplified pointer access to multiprecision operands and each input is assumed to be

correct by means of starting address and length. Thus, error handling is omitted. In

the relevant code example in Figure 4.10, processes the low-level basecase multiplication

operation, z = a · b, for the multiprecision positive integers z, a, and b.

void main_mul_basecase(POS *z, POS *a, POS al, POS *b, POS bl){
POS i;

maim_mul_1(z[bl], z, b, bl, a[0], 0);
for(i = 1; i < al; i++){

maim_inc_n_mul_1(z[i + bl], (z + i), b, bl, a[i], 0);
}

}

Figure 4.10. Low-level Function Layer Code example.

40

High-level function layer is responsible of preparing the operands to the low-level

function layer. Error handling, sign and length management and proper selection of

algorithms is done within this layer. The functions of this layer has slightly more lines

of code. So that we provide a trimmed code sample of multiprecision multiplication in

Figure 4.11. Interface Layer is a symbolic layer which separates the inner functions and

the user level functions.

...
if(a == b){

if(a->len < THRESHOLD_KARATSUBA_SQR){
if(a->len < THRESHOLD_SQR){

main_mul_basecase(r->num, a->num, al, a->num, al);
}
else{

main_sqr_basecase(r->num, a->num, al);
}

}
else if(a->len < THRESHOLD_TOOMCOOK3_SQR){

while((al % 2) != 0){
a->num[al] = 0;
al++;

}
t = cz_init();
main_sqr_karatsuba(r->num, a->num, al, t->num);
main_kill(t);

}
else{

while((al % 3) != 0){
a->num[al] = 0;
al++;

}
t = main_init();
main_sqr_toomcook3(r->num, a->num, al, t->num);
main_kill(t);

}
}
...

Figure 4.11. High-level Function Layer Code example.

41

4.3.5 Implementation Details

This section provides implementation details of some primitives that are imple-

mented in CRYMPIX. Instead of supplying a full documentation we merely give the sig-

nificant part of the implementation which are mostly focused on multiplication and GCD

computation. Thus, we simply skip the discussion of basic operations such as cloning,

shifting, comparing, sign inversion, hamming weight, bit count and word count.

4.3.5.1 Addition and Subtraction

When adding two operands a and b, we can save some time if the result is stored

in any of the input operands such as a = a + b. In such cases, CRYMPIX performs an

accumulation operation given in Figure 4.12. The macro computes zn = zn + an where

zn is composed of zl words and an is represented by al computer words.

#define maim_inc_n(_carry, _zn, _zl, _an, _al, _pad)if(1){ \
POS _i; \
_carry = _pad; \
for(_i = 0; _i < _al; _i++){ \

km_inc_1(_carry, _zn[_i], _an[_i], _carry); \
} \
if(_zl > _al){ \

maim_inc_1(_carry, (_zn + _al), (_zl - _al), _carry); \
} \

}

Figure 4.12. Vector Layer Accumulation operation in CRYMPIX.

Addition is performed whenever the result is stored on a distinct instance such

as c = a + b. The code sample is provided in Figure 4.13. Here, chm add 2(...) is a

HAL layer macro and ccm add 1(...) is vector layer macro. Note that all operands are

threatened as positive although they may not be. The sign management is controlled by

the high-level function layer as provided in below Figure 4.14.

42

...
#define maim_add_1(_carry, _zn, _an, _al, _b)if(1){ \

POS _i; \
_zn[0] = _an[0] + _b; \
_carry = (_zn[0] < _an[0]); \
for(_i = 1; ((_i < _al) && (_carry != 0)); _i++){ \

_carry = (_an[_i] == (0-1)); \
_zn[_i] = 0; \

} \
mavm_clo((_zn + _i), (_an + _i), (_al - _i)); \

}

#define maim_add_n(_carry, _zn, _an, _al, _bn, _bl, _pad)if(1){ \
POS _i; \
_carry = _pad; \
for(_i = 0; _i < _bl; _i++){ \

km_add_1(_carry, _zn[_i], _an[_i], _bn[_i], _carry); \
} \
if(_al > _bl){ \

maim_add_1(_carry, (_zn + _bl), (_an + _bl), (_al - _bl), _carry); \
} \

}
...

Figure 4.13. Vector Layer Addition operation in CRYMPIX.

43

void mai_add(MI z, MI a, MI b){
VALIDATE(z != NULL);
VALIDATE(a != NULL);
VALIDATE(b != NULL);
if(a == b){

if(z == a){
maim_inc_n(z->v->n[a->v->l],a->v->n,a->v->l,a->v->n,a->v->l,0);

}
else{

maim_add_n(z->v->n[a->v->l],z->v->n,a->v->n,a->v->l,a->v->n,a->v->l,0);
}

}
else{

if(mai_compare_abs(a, b) == LESS){
MI_SWAP(a, b);

}
if(z == a){

if(a->s == b->s){
maim_inc_n(z->v->n[a->v->l],a->v->n,a->v->l,b->v->n,b->v->l,0);

}
else{

maim_dec_n(z->v->n[a->v->l],a->v->n,a->v->l,b->v->n,b->v->l,0);
}

}
else{

if(a->s == b->s){
maim_add_n(z->v->n[a->v->l],z->v->n,a->v->n,a->v->l,b->v->n,b->v->l,0);

}
else{

maim_sub_n(z->v->n[a->v->l],z->v->n,a->v->n,a->v->l,b->v->n,b->v->l,0);
}

}
}
if(z->v->n[a->v->l] == 0){

z->v->l = a->v->l;
}
else{

z->v->l = a->v->l + 1;
}
z->s = a->s;

}

Figure 4.14. High-level Function Layer Addition operation in CRYMPIX.

44

4.3.5.2 Multiplication

In the cryptographic applications Basecase and Karatsuba multiplication algo-

rithms are frequently used. CRYMPIX implements both algorithms. We have already

gave basecase multiplication in Figure 4.10. Note that the implementation does not start

with an initially cleared product space. Instead, the product z is assigned to the result

of first vector multiplication by saving one iteration. This approach is not important for

larger numbers but can be useful when small operands are in use. Figure 4.15 provides

the performance comparison with the naive approach. The speedup values are obtained

from Table 4.2.

Table 4.2. Comparison of CRYMPIX’s implementation of Basecase multiplication with

naive approach in small length operands. (microseconds).

Length (bits) 64 128 256 512

Basecase Mul. 181 392 1153 4175

Improved Basecase Mul. 213 447 1277 4425

Figure 4.15. Speedup values of CRYMPIX’s basecase multiplication over the naive ap-

proach.

45

We provide the full source of Karatsuba multiplication in Figure 4.16. The most

important implementation trick is the use of variables z and t. These memory spaces

are used in partitioned form as a consequence of the recursion. Note that the algorithm

switches to basecase multiplication at a predefined compile time threshold value. This

is the tuning point where basecase multiplication is carried out faster than Karatsuba

multiplication. The implementation of ToomCook multiplication is left as a future work

in CRYMPIX since it is only significant for 8K operands.

void main_mul_karatsuba(POS *z, POS *a, POS al, POS *b, POS bl, POS *t){
POS ca, cb, ct, c, abl;

if((al < THRESHOLD_KARATSUBA_MUL) || (bl < THRESHOLD_KARATSUBA_MUL)){
main_mul_basecase(z, a, al, b, bl);

}
else{

al >>= 1;
bl >>= 1;
abl = (al + bl);
maim_add_n(ca, z, a, al, (a + al), al, 0); /* (ca,zL) = aL + aH */
maim_add_n(cb, (z + al), b, bl, (b + bl), bl, 0); /* (cb,zH) = bL + bH */
main_mul_karatsuba(t, z, al, (z + al), bl, (t + abl)); /* t = zL * zH */
c = (ca & cb);
if(ca == 1){

maim_inc_n(ct, (t + bl), al, (z + al), bl, 0);
c += ct;

}
if(cb == 1){

maim_inc_n(ct, (t + al), bl, z, al, 0);
c += ct;

}
main_mul_karatsuba(z, a, al, b, bl, (t + abl)); /* zL = aL * bL */
main_mul_karatsuba((z + abl), (a + al), al, (b + bl), bl, (t + abl));
maim_dec_n(ct, t, abl, z, abl, 0); /* t = t - zL */
c -= ct;
maim_dec_n(ct, t, abl, (z + abl), abl, 0); /* t = t - zH */
c -= ct;
maim_inc_n(ct, (z + (abl >> 1)), (abl + (abl >> 1)), t, abl, 0);
c += ct;
maim_inc_n(ct, (z + abl + (abl >> 1)), (abl >> 1), (&c), 1, 0);

}
}

Figure 4.16. Karatsuba multiplication in CRYMPIX.

46

4.3.5.3 Greatest Common Divisor

The basic algorithm for GCD computation is Euclid’s algorithm with O(n2) com-

plexity. The algorithm is modified by Lehmer to fit the fixed-precision processors. Another

method of GCD computation is the Binary GCD algorithm. This algorithm is faster when

the numbers are few words long. For larger numbers Binary GCD algorithm is modified

by many researchers. Jebelean and Weber proposed Accelerated/Generalized GCD algo-

rithm which is faster than Lehmer GCD algorithm (Jebelean 1993b, Weber 1995) by a

factor of 1,45. CRYMPIX includes a slightly modified version of Lehmer GCD algorithm.

It is used both for GCD and Extended GCD computations. We have provided a com-

parison between Lehmer GCD algorithm and its modified variant proposed in (Jebelean

1993a). We have used approximative condition of GCD and double-precision techniques.

The speedup values of Table 4.3 are given in Figure 4.17.

Table 4.3. The time needed to compute GCD of two operands with Standard Lehmer

GCD algorithm and the with the modified version. (microseconds).

Length (bits) 1K 2K 4K 8K

Standard Lehmer 201 557 1746 6228

Modified Lehmer 158 351 921 3131

The algorithm has been already discussed in Algorithm 3.4. Therefore, we will only

provide the approximation phase in Figure 4.18 that is replaced with bit nailing. Here, the

most significant 3 words of the operands are divided by the most significant word of the

operand x which gives a better chance to form larger coefficient before each multiplication

step. Note that the approximative condition is done with a double-precision approach

which further increases the coefficient sizes. Table 4.3 and Figure 4.17 supplies necessary

information that delineates the performance improvement of double-digit approximative

condition over the naive approach.

47

Figure 4.17. Speedup values of Modified Lehmer GCD algorithm over Standard version.

...
if(xl > THRESHOLD_GCD_LEHMER_LONG_USW){

dp = xn[xl - 1] + 1;
dp += (dp == 0); /* dp is set to 1 if there is no need to approximation. */
/* u = x[3,2,1] / x[3] */
km_q_and_r(ua.spu[HIGH], s.spu[HIGH], xn[xl - 1], xn[xl - 2], dp);
s.spu[LOW] = xn[xl - 3];
km_div(ua.spu[LOW], s.dpu, dp);
/* v = y[3,2,1] / x[3] */
km_q_and_r(va.spu[HIGH], s.spu[HIGH], yn[xl - 1], yn[xl - 2], dp);
s.spu[LOW] = yn[xl - 3];
km_div(va.spu[LOW], s.dpu, dp);

}
...

Figure 4.18. Quotient approximation in Lehmer GCD implementation.

48

4.3.5.4 Modular Exponentiation

Several different techniques for modular exponentiation has been discussed in

Section 3.3. CRYMPIX uses successive squaring algorithm with left-to-right exponent

scanning and variable-length-window-sliding technique with variable window size and

Montgomery’s multiplication via Basecase REDC function with Karatsuba multiplica-

tion. Recursive REDC implementation is left as a future study. Figure 4.19 provides the

CRYMPIX’s implementation of window sliding technique.

...
while(i > 0){

mavm_ith_bit(ei, e->v->n, (i - 1));
if(ei == 0){

mfp_nres_mul(xd, xd, xd, nd, n);
i--;

}
else{

li = mfpn_find_window(e->v->n, (i - 1), ws);
k = 0;
lj = li;
while(lj != 0){

mfp_nres_mul(xd, xd, xd, nd, n);
lj >>= 1;
k++;

}
t = (MI)cds_array_get(lookup, li >> 1);
mfp_nres_mul(xd, t, xd, nd, n);
i -= k;

}
}
...

Figure 4.19. Implementation of sliding windows technique.

49

4.4 Distributed Architecture

A distinctive feature of CRYMPIX is its inclination to distributed computing.

In most distributed cryptographic implementations, developers blend the cryptographic

codes with the ones needed for distribution. As a consequence, the application becomes

hard to handle in terms of code readability and support. In addition, the development

effort is repeated for every single implementation. CRYMPIX is designed from the scratch

to solve this problem by providing an easy scalable distribution mechanism and decouple

cryptographic functions from distribution functions.

The parallelization of a task can be achieved in several ways. For instance, special

hardware for systolic parallelization is used in Binary GCD variants to speedup the op-

eration which is directly proportional the number of supplied arithmetic units. Hence, a

single GCD computation halts n times faster for a given n unit parallel environment. This

concept is also known as perfect parallelism 2. In distributed environments cryptographic

functions benefit perfect parallelism.

All distribution functions are included in distributed layer of CRYMPIX. This

layer directly/only accesses to the high level layer functions and distributed the compu-

tational mass over an MPI network. In this study we merely work on the several modular

exponentiations that is used in many asymmetric cryptosystems. Any further implemen-

tations are left as future work. We observe that network overhead is negligible at all

common key sizes. The experiment environment is constructed by 8 identical PCs each

having a Pentium IV 2.4 Ghz processor and 512 MB of RAM. All computers are connected

via a 100 Mbps Ethernet LAN using a switch. Operating system is Debian Linux with

2.4.02 kernel. Distributed platform is constructed with MPI (Message Passing Interface)

v.1.2.6. The test bed consists of 64 * 1K, 32 * 2K, 16 * 4K and 8 * 8K numbers. I/O

time for reading those numbers from the disk is completely discounted (not added to the

results). Scattering, gathering and execution time is measured distinctly where the exe-

cution time stands for simultaneous modular exponentiations. The model is summarized

in Figure 4.20.

2Such tasks are also known as embarrassingly parallel that means actually there is no special effort

needed to partition the problem into smaller tasks.

50

Figure 4.20. Distributed Wrapper for CRYMPIX.

We have provided a distributed formation of modular exponentiation within the

distributed layer. Note that, CRYMPIX uses successive squaring algorithm with left-to-

right exponent scanning and variable-length-window-sliding technique with variable win-

dow size and Montgomerys multiplication with Karatsuba algorithm to compute modular

exponentiations. This is a naive case study just to give the basic idea. We warn the

reader that the real life implementations will be composed of more complex scenarios.

For instance, matrix solving is used in Discrete Logarithm Attacks and a gauss elimina-

tion of a extremely sparse matrix of integers in a modular base will contain many group

communications within the distributed layer. Therefore there perfect parallelism may not

possible for all scenarios. The pseudocode of several ordinary modular exponentiations is

given in Figure 4.21.

The software model in Figure 4.20 can be extended for other multiprecision libraries

because the inner representation is nearly the same and functions of distributed layer calls

other libraries’ functions via some adapter sublayers. The idea is visualized in Figure 4.22.

51

procedure mod_exp_n(z[], M[], e[], n[], len){
Scatter each array depending on len.
Convert z[i], m[i], and n[i] to nresidue form.
Call nresidue_mod_exp_n(z[i], M[i], e[i], n[i]).
Convert z[i], m[i], and n[i] to normal form.
Gather results.
return.

}

Figure 4.21. A case study in CRYMPIX distributed layer.

Figure 4.22. Distributed wrappers for several libraries.

We repeat the experiment for 1, 2, 4, and 8 computers with the same setup. The

outcome of the experiments approves the perfect parallelism. The speedup is obvious

hence we only give the performance results that are provided in Table 4.4. Note that

scatter and gather times are nearly zero that the values only represent the execution

times.

52

Table 4.4. Distributed layer test case results. (milliseconds).

of PCs 64 * 1K 32 * 4K 16 * 2K 8 * 8K

1 PCs 1788 6407 24931 92020

2 PCs 912 3284 12661 45965

4 PCs 472 1654 6233 22820

8 PCs 223 793 3118 11645

53

4.5 Benchmark of CRYMPIX

We have already discussed that the main requirement of multiprecision libraries

is the performance and stated that all decisions are made to maintain the maximum

performance. Note that CRYMPIX is a C only library so that it does not really utilize

the underlying hardware. However, we have also explained the reasoning behind this

decision. In this chapter, we provide the performance benchmark of CRYMPIX that

makes everything meaningful. We also include fair comparisons of the measurements

with C-builds of GNU-GMP and MIRACL. The section is composed of benchmark of

multiplication, GCD, and modular exponentiation functions. We skip all other functions

since they are already used within given functions in question and most of them such

as addition, runs in O(n) time. Therefore, there is no need to do any performance test

within our scope.

We should also state that a completely fair comparison between libraries is not

possible all the time because libraries implements different algorithms even with different

modifications. Thus, we only include the functions of the latest versions.

In the following experiments, MIRACL 4.8, GMP 4.1.4, and CRYMPIX are bench-

marked via their most important functions. For multiplication function we also included

Java BigInteger library. We decoupled the I/O time to get more accurate results. Ex-

cluding Java BigInteger API, all tests are done with GNU GCC compiler at optimization

levels O0, O1, and O2. The whole test is repeated on Intel Centrino M 1400 Mhz, Intel P4

1700 Mhz, and IBM RISC RS/6000 133 Mhz processors with no options on memory. As

an operating system we used YellowDog 2.3 Linux on IBM RISC RS/6000 machine and

Redhat Linux 9.0 and Microsoft Windows XP/SP2 on Intel machines. To port GNU GCC

compiler to Windows we used CYGWIN platform. Java BigInteger benchmark is done

on Java Virtual Machine (JVM) of Sun Microsystems, Inc., Java2 Standard Development

Kit (J2SDK) v1.4.2 and applied on Intel boxes and on both Redhat Linux and Microsoft

Windows XP. The whole measurements have provided us with so much data and since

the speedup values are nearly constant we give results of only Intel Centrino M 1400 MHz

processor with Redhat Linux operating system. The above defined test environment is

used throughout this study.

54

4.5.1 Multiplication

We prepared test beds of various sized operands, 1K, 2K, 4K, and 8K, each hav-

ing 1000 randomly selected inputs. ISO C’99 standard has introduced a new data type,

namely long long, which enabled full length single-precision multiplication with C lan-

guage. CRYMPIX v2 and MIRACL takes the advantage of the new double-precision data

type. CRYMPIX v1 and GMP don’t use this facility. What separates CRYMPIX v1 and

CRYMPIX v2 is a simple compile time macro. We merely include this feature to do fair

comparisons with the other libraries. The benchmark results of multiplication functions

are provided in Figure 4.5 and the speedup diagram is given in Figure 4.23.

Table 4.5. Integer Multiplication benchmark results in microseconds.

CRYMPIX MIRACL GMP Java
Size

C, v1 C, v2 C C BigInteger

1Kb 21 11 17 23 32

2Kb 69 41 68 74 132

4Kb 219 133 277 235 512

8Kb 673 410 1097 731 2630

Figure 4.23 indicates that CRYMPIX is competitive on all test beds. MIRACL

has an embedded Karatsuba/Comb routine but it is used for more costly operations such

as modular exponentiation, thus it is relatively slower in this experiment. The overall

performance of Java BigInteger API varies with respect to the JVM but this library

is slower in all circumstances and it is developed with the basecase algorithms in most

cases. On the other hand, it is far easier to develop applications on such an object oriented

environment. We used this library only to generate the test beds data. In Figure 4.23 we

55

Figure 4.23. Speedup values when assembly support is used.

have provided the performance comparison of libraries for C only built at optimization

level 2 (excluding Java BigInteger).

4.5.2 Greatest Common Divisor (GCD)

We provide the performance comparison of CRYMPIX Lehmer GCD and GMP

Generalized GCD in Table 4.6. The expected value is a constant speedup around 0, 75

which is actually a slow down factor for CRYMPIX. This is because GMP performs 3 one-

digit multiprecision multiplication at each step as a consequence of modular conjugation

that is coupled with a bmod operation. CRYMPIX’s Lehmer GCD function has to do 4

such multiplications to lower the operands by one computer word. This is depicted in

Figure 4.24. CRYMPIX is also slower on smaller operands because it hasn’t contained bit

level Binary GCD yet. CRYMPIX v2 takes the advantage of full length single-precision

multiplication. MIRACL’s GCD function is a single-digit approximative Lehmer variant.

It is relatively slower on all test beds that we do not include values for MIRACL here.

Generalized GCD implementation and its distributed version is left as a future task in

CRYMPIX.

56

Table 4.6. CRYMPIX Lehmer GCD vs. GMP Generalized GCD. (microseconds).

Length 1K 2K 4K 8K 16K

CRYMPIX v1 GCD 186 474 1372 4449 15767

CRYMPIX v2 GCD 157 368 957 2802 9161

GNU-GMP GCD 88 266 874 3101 11592

Figure 4.24. Speedup values for CRYMPIX Lehmer GCD over GMP Generalized GCD,

derived from Table 4.6.

4.5.3 Modular Exponentiation

Modular exponentiation is the most expensive operation among the other multi-

precision operations. A competitive implementation takes the advantage of almost all

techniques to speedup the operation. CRYMPIX uses successive squaring algorithm with

left-to-right exponent scanning and variable-length-window-sliding technique with vari-

able window size and Montgomery’s multiplication with Karatsuba algorithm. MIRACL-

KCM is the generated code for embedded systems. The speed underlying MIRACL-KCM

references from the recursive implementation of Montgomery REDC function with half

57

multiplication technique. In the 8K test bed, GMP triggers Toom-Cook-3-way multi-

plication hence all speedup values tend to decrease in 8K test bed. CRYMPIX will be

updated to benefit such techniques in the future. We constructed Table 6 with time mea-

surements of modular powering for 1K, 2K, 4K and 8K numbers with GMP, CRYMPIX,

and MIRACL. Figure 4.25 provides corresponding speedup values.

Table 4.7. Modular exponentiation for GMP, CRYMPIX, and MIRACL. (milliseconds).

Length 1K 2K 4K 8K

GMP Mod. Exp. 54 389 2841 16734

MIRACL-KCM Mod. Exp. 31 204 1298 8132

CRYMPIX v1 Mod. Exp. 49 363 2650 19526

CRYMPIX v2 Mod. Exp. 27 195 1423 10411

Figure 4.25. Speedup values for CRYMPIX and MIRACL over GMP in modular expo-

nentiation, derived from Table 4.7.

58

CHAPTER 5

CONCLUSION

In this study, we aim to review multiprecision concept in detail. To gain the know-

how, we have introduced a new cryptographic multiprecision library, CRYMPIX. We also

provided a fair performance comparison between some libraries by providing technical

comments. CRYMPIX which is developed in ANSI C, is able to take the advantage of long

long data type of ISO C’99 whenever possible. CRYMPIX includes low level routines for

multiprecision arithmetic in prime fields. The overall performance of CRYMPIX is equal

to its predecessors and in some instances even superior.

A typical challenge is that struggles a researcher is what library to use. All com-

peting multiprecision libraries have distinct powerful sides which makes it hard to select

and even tedious. For instance, our benchmark results showed that GNU-GMP is very

fast on GCD computation, on the other, MIRACL is the fastest in modular powering.

Furthermore, each of these libraries are being developed that this scheme may vary in

time. Therefore, a researcher should at least be aware of the algorithms behind the scene

of multiprecision libraries to be able to decide which library best fits to the specific re-

search topic. We still face another problem that is whether a selected fastest function can

be further utilized. Therefore, one should know low level operations such as core inline

assembly tricks and/or compiler supported double-precision operations.

The mathematical background that is supplied in this thesis is far ahead the current

implementation of CRYMPIX. Thus, we leave some functions such some jacobian symbol,

square root, and radix conversion functions as future study. For instance, CRYMPIX is

supposed to provide Binary GCD, Binary Extended GCD, Generalized GCD, and fully-

recursive REDC functions. Furthermore, the real life implementations of cryptosystems

benefits some other optimizations such as fixed based and fixed exponent exponentiation

techniques. CRYMPIX is going to include all such methods within its first release.

CRYMPIX is built on an imaginary processor. We should supply a optimal n-

precision imaginary processor taking the advantage of Comba multipliers to further utilize

the underlying hardware. As a consequence, no ANSI-C arithmetic operators such be used

59

in multiprecision operations on low-level and high-level function layers. This approach

may even lead to a specialized crypto-compiler based on ANSI-C standard.

The model of the distributed layer of CRYMPIX is made clear. However, we

only provide a test scenario of several ordinary exponentiations to show its applicability.

The distributed layer should contain all key functions related to cryptography even to

cryptanalysis.

In conclusion, the first release of CRYMPIX is expected to include all functions

significant for cryptography. Support for specific processors is not in the short term

schedule. After the first stable release, the project is going to be extended over binary

field arithmetic.

60

REFERENCES

Bosselaers A., Govaerts R., and Vandewalle J. 1994a. “A fast and flexible software

library for large integer arithmetic”, In proceedings 15th Symposium on Information

Theory in the Benelux, Louvain-la-Neuve (B), London, UK, pp. 82–89.

Bosselaers A., Govaerts R., and Vandewalle J. 1994b. “Comparison of three modular

reduction functions”, In CRYPTO ’93: Proceedings of the 13th Annual International

Cryptology Conference on Advances in Cryptology, London, UK, Springer-Verlag,

ISBN 3-540-57766-1, pp. 175–186.

Burnikel C. and Ziegler J. 1998. “Fast recursive division”, Technical Report, Max-Planck-

Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany, October 1998,

MPI-I-98-1-022.

Comba P.G. 1990. “Exponentiation cryptosystems on the IBM PC”, IBM Systems

Journal, Vol. 29, No. 4, pp. 526–538.

Dussé S.R. and Kaliski Jr.B.S. 1991. “A Cryptographic Library for the Motorola

DSP560001”, In I. Damg̊ard, editor, Proc. Advances in Cryptology - EUROCRYPT

’90, New York, Springer Verlag, Vol. 473 of Lecture Notes in Computer Sciences, pp.

230–244.

Jebelean T. 1993a. “Improving the multiprecision euclidian algorithm”, In DISCO ’93:

Proceedings of the International Symposium on Design and Implementation of Symbolic

Computation Systems, , London, UK, Springer-Verlag, ISBN 3-540-57235-X, pp. 45–58.

Jebelean T. 1993. “A generalization of the binary gcd algorithm”, In ISSAC ’93:

Proceedings of the International Symposium on Symbolic and Algebraic Computation,

61

New York, NY, USA, ACM Press, ISBN 0-89791-604-2, pp. 111–116.

Karatsuba A. and Ofman Y. 1962. “Multiplication of many-digital numbers by automatic

computers”, Doklady Akad, Vol.145, No. 14-15, pp. 293–294.

Knuth D.E. 1997. “The Art of Computer Programming, Volume 2 (3rd ed.): Seminu-

merical Algorithms”, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, ISBN 0201896842.

Koc C. 1994. “High-Speed RSA Implementation”, 100 Marine Parkway, Suite 500

Redwood City, CA 94065-1031, Technical Report TR 201.

Menezes A.J., Vanstone S.A., Oorschot P.C. 1996. “Handbook of Applied Cryptography”,

CRC Press, Inc., Boca Raton, FL, USA, ISBN 0849385237.

Montgomery P. 1985. “Modular Multiplication without Trial Division”, Mathematics of

Computation, Vol. 44, No. 170, pp. 519–521.

Mulders T. 2000. “On Short Multiplications and Divisions”. AAECC, Vol. 11 No. 1 pp.

69–88.

Rosen K.H. 1998. “Discrete Mathematics And Its Applications”, McGraw-Hill Sci-

ence/Engineering/Math, Boston, MA, USA, 4th edition edition, ISBN 0072899050.

Wagstaff S. 2002. “Cryptanalysis of Number Theoretic Ciphers”, CRC Press, Inc., Boca

Raton, FL, USA, ISBN 1584881534.

62

Weber K. 1995. “The Accelerated Integer GCD Algorithm”. ACM Trans. Math. Softw.,

ISSN 0098-3500, Vol. 21 No. 1 pp. 111–122.

63

