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ABSTRACT 

 
This study aimed the investigation of the pH-induced complexation of silk 

fibroin (SF) and hyaluronic acid (HA), and the potential use of the films casted from the 

aqueous mixtures of the SF-HA complexes in iontophoretic drug delivery applications. 

In the present study, SF-HA complex coacervation was investigated by 

turbidimetric, conductometric, gravimetric and viscosimetric analysis with respect to 

changes in total biopolymer concentration and biopolymer weight ratio. SF-HA 

complexes were formed within the pH-window of 2.5-3.5 regardless of the total 

biopolymer concentration, biopolymer ratio or mixing order.  

SF-HA aqueous complex mixtures, prepared under previously determined 

conditions, were casted and dried under controlled conditions. The resultant insoluble 

and transparent films were subjected to instrumental analysis such as DSC, XRD, FT-

IR, SEM and AFM. Swelling kinetics of the films was studied for pH window of 2.5- 

7.4 and cyclic swelling test was performed to determine the pH-responsiveness of the 

films. It was shown that films swelled more in alkaline conditions and responded to the 

changes in pH of the medium. The permeability of the films were tested with modified-

diffusion-vessels method at pH 2.5 and 7.4 and it was demonstrated that the complex 

films had higher permeability in alkaline condition. Eventually, iontophoretically 

assisted drug permeation and release studies were performed with a custom-made 

diffusion cell under both passive condition and electric field applied in pulsatile fashion. 

In conclusion, SF-HA complex films were found promising for the iontophoretic 

delivery of high molecular weight and charged drugs for a membrane-permeation 

controlled formulation. In this study, timolol maleate (TM) was used as the model drug. 
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ÖZET 

 
Bu çalışmada, ipek fibroin (SF) and hyaluronic asitin (HA) pH’a bağlı olarak 

kompleks oluşturması ve sıvı karışımda oluşan kompleks çözeltilerin dökümü ve uygun 

şartlar altında kurutulması sonucunda elde edilen filmlerin iyontoforetik ilaç salım 

sistemlerinde kullanılma potensiyeli araştırılmıştır.  

SF-HA kompleks koazervasyonu, turbidimetrik, kondaktometrik, gravimetrik ve 

vizkozitemetrik yöntemlerle incelenmiş ve toplam biyopolymer konsantrasyonu ve 

karışımda bulunan biyopolymerlerin ağırlık oranları açısından incelenmiştir. Bu 

analizler sonuncunda, SF-HA kompleks oluşumu, toplam biyopolymer konsantrasyonu, 

polymerin karışım oranı ve karışım sırasından bağımsız olarak pH 2.5-3.5 aralığında 

gerçekleşmiştir. En fazla koazervasyon maksimum turbidite ve minimum vizkozite 

değerlerinde elde edilmiştir. 

Belirlenen şartlar altında hazırlanan kompleks karışımından filmler dökülmüş ve 

kontrollü olarak kurutulmuştur, ve sonuç olarak suda çözünmeyen, şeffaf, ipek filmlere 

göre mekanik olarak daha dayanıklı filmler elde edilmiştir. Elde edilen filmler DSC, 

XRD, FT-IR, SEM ve AFM cihazları aracılığıyla karakterize edilmiştir. Filmlerin şişme 

kinetiği pH 2.5 - 7.4 aralığında çalışılmış ve filmlerin pH duyarlılığını ölçmek için 

siklik şişme testi uygulanmıştır. Kompleks filmlerin alkalin ortamda daha fazla şişme 

gösterdiği ve pH değişimlerine duyarlı olduğu tespit edilmiştir. Buna bağlı olarak da 

farklı pH değerlerinde (2.5 ve 7.4) gerçekleştirilen geçirgenlik deneylerinde alkalin 

ortamda daha fazla ilaç geçirgenliği gösterdiği belirlenmiştir. Son olarak, hem pasif 

durumda hem de kesikli elektrik alan uygulaması altında iyontoforetik ilaç geçirgenliği 

ve ilaç yüklenmiş filmden ilaç salımı özel yapım difüzyon hücresi kullanılarak 

incelenmiştir. SF-HA kompleks filmlerin kontrollü ilaç iletimi için kullanılabileceği 

gösterilmiştir. İlacın kesikli tarzda kontrollü salımı başarılmıştır. Çalışmada model ilaç 

olarak timolol maleate kullanılmıştır.   
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CHAPTER 1 

 

INTRODUCTION 

 
Controlled delivery of drugs to achieve predictable and reproducible drug 

concentration in the blood stream is the aim of the search on the alternative routes for 

drug administration. Production of new peptide-based drugs due to extensive research in 

genetics has accelerated the studies in this area, as these drugs require specific 

conditions for effective delivery regimes. 

Transdermal drug delivery is an alternative route for drug delivery. It offers 

many important advantages over oral drug delivery, e.g., avoids gastrointestinal tract 

and hepatic first pass biotransformation and metabolism, controls absorption rate, 

increases patient compliance, and provides ease of termination if needed. There is a 

number of successful transdermal drug delivery systems commercially available at 

present. However, the need remains to extend their operating parameters so that more 

sustainable and variable delivery regimes can be achieved. Iontophoresis is a process, 

by which the transport of ions into and through the skin is increased by the application 

of an external field. This process has been used to enhance controlled transdermal 

delivery of the drugs which have low permeability through the skin such as hydrophilic, 

very lipophilic, of high molecular weight or charged ones, e.g. peptide-based drugs. 

The heart of the transdermal therapeutic systems is the transdermal patch. 

Transdermal patches are polymeric materials that can be in the form of a membrane 

controlled permeation system including a reservoir or matrix-diffusion controlled 

system in which the drugs were dissolved or evenly distributed. Several synthetic 

natural polymeric systems have been attempted to meet the needs of an effectively 

functioning transdermal patch. Polyelectrolyte membranes comprising natural and/or 

synthetic polymers have been found promising for the iontophoretic transdermal drug 

delivery systems since they have high responsiveness to the environmental changes 

such as to alterations in ionic strength, pH or electric field of the system. 

The phenomena of interpolymer interactions have been the focus of intensive 

fundamental and applied research on polyelectrolyte complexes (PECs). The PECs 
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prepared from natural polymers such as proteins and polysachharides have the 

additional advantage of being non-toxic and bioabsorbable. 

Protein-polyelectrolyte interactions have been concerned widely with 

biotechnological and biomedical applications such as protein purification, enzyme 

immobilization, immunosensing and bioactive sensors. Several globular proteins and 

polyelectrolytes (natural or synthetic) have been matched for various techniques and 

objectives of investigation. Protein-polyelectrolyte interactions often leading to 

coacervation and resulting in biopolymer complexes arises mainly from electrostatic 

interactions. This complexation is dependent on the ionization degree of these 

macromolecules and thus the pH. The aqueous complexation mixtures obtained under 

specific conditions can be processed into several forms such as films, gels, sponges, etc. 

The recent trend is to replace the natural biopolymers used with the new ones to allow 

precise control over resultant material properties along with the opportunity.  

Several researches have been concentrated on the PECs that occur in protein-

polyelectrolyte mixtures. However, silk fibroin and hyaluronic acid complexation has 

not been studied in terms of complex coacervation. Fibroin, a fibrous silk protein, is 

produced by silkworm Bombyx mori, is an excellent film former. This protein has been 

found to be a good starting material for preparation of fibroin-based materials such as 

gel, powder or film, and it has potential uses in contact lenses, artificial corneas, burn 

wound dressings, artificial lungs and drug delivery devices. On the other hand, HA is a 

natural anionic polysaccharide that has been used in the formation of PECs. It is 

considered as an attractive building block for the production of novel biomaterials with 

potential applications in drug delivery and tissue engineering.  

 The specific objectives of this work were to investigate the complex formation 

between SF and HA, to characterize the films produced by this complexation and to 

determine the capability of the complex films, whether they can be utilized in 

iontophoretically assisted transdermal drug delivery systems.  
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CHAPTER 2 

 

REVIEW OF LITERATURE 

 
2.1. Controlled Drug Delivery 

 
The development of newer and more powerful drugs and the need for prolonged 

and better control of drug administration are the leading factors for the search of the 

alternative ways of drug administration. In the light of advancing technologies such as 

genome mapping, there has been a dramatic increase in peptide and protein drugs that 

are mostly injectable. These facts reveal that there is a great commercial potential for 

the controlled delivery systems that uses the alternative routes (Fletcher 1998).  

Studies on drug delivery systems were initiated to achieve the controlled 

delivery of drugs for predictable and reproducible rate of drug input to the blood stream 

to enhance the treatment of the diseases. The initial aim in the field of controlled drug 

delivery has been attaining sustained zero-order release of a therapeutic agent over a 

prolonged period of time (Sershen and West 2002). Zero-order kinetics have been 

attempted by using several techniques including, osmotically driven pumps, matrices 

with controllable swelling, diffusion or erosion rates, non-uniform drug loading profiles, 

and multilayered matrices. 

Recently, the biologically active peptides have been artificially synthesized by 

genetic engineering techniques. These peptides are easily degraded under physiological 

conditions and they may also encounter absorption problems due to their high molecular 

weight. Hence, they cannot be utilized in conventional dosage forms. Moreover, in 

order to maximize efficiency and minimize side effects, the new generation of drug 

delivery systems has been attempted. The challenge appeared to be the controlled 

delivery of a therapeutic molecule, gene or protein in a pulsatile or staggered fashion 

when the drug is required or by targeting the drug to a specific site in addition to 

utilizing the conventional rate-controlling systems. By these means, the recent 

improvements on controlled drug delivery can be examined by a division into two 

classes: temporal control and distribution control (site-specific delivery) as shown in 

Figure 2.1 below (Kumar M. and Kumar N. 2001, Okano and Yoshida 1993).  
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Figure 2.1. Rate control mechanisms in new generation drug delivery systems 

(Source: Okano and Yoshida 1993). 

 

In case of temporal control, the drug release is achieved over an extended period 

or at a specific time during treatment. This can be achieved by constructing a pre-

programmable system that can deliver the agent at a pre-set rate or in pulses of a 

predetermined sequence. Alternatively, a responsive system can be formulated that can 

respond to alterations in the local environment such as pH, electric field, temperature, 

absence or presence of a specific molecule (Kost and Langer 2001). In case of 

traditional administration routes, fluctuations occur in the blood plasma levels. By the 

temporal control, the rate of drug release matches the rate of drug elimination, and 

hence the concentration of drug stays within the therapeutic window (effective drug 

plasma range between the excessive toxic level and subtherapeutic level) during a 

specified interval (Figure 2.2). This avoids waste of drug and toxic effects due to 

overdosing while maximizing the benefits of the drug. 

On the other hand, the distribution control aims the “target release” of the drug 

to the precise site of activity. This improvement is especially beneficial for the cases 

when the traditional routes are not capable of distributing the drug molecules to the site 

action or when the natural distribution caused side effects as the drug molecules 

encounter tissues as in the case of chemotherapy (Kumar M. and Kumar N. 2001). 
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Figure 2.2. Controlled drug delivery versus immediate release 

(Source: Kumar M. and Kumar N. 2001). 

 

2.2. Transdermal Drug Delivery 

 
The improvements in controlled drug delivery regimes provides a competitive 

situation between the administration routes, which can be listed as peroral (osmotic 

minipumps), transdermal (membrane/matrix), oral (targeted formulations), parenteral 

(nanoparticles and nanocapsules), subcutenaous (implants), intracavitary, nasal, buccal, 

etc. (Vasil’ev et al. 2001). Among these controlled drug delivery systems, transdermal 

therapeutic systems has gained considerable success while generating lots of interest 

with the ongoing enhancements on this technique and has found wide applications. 

Transdermal drug delivery systems offer the controlled plasma levels of potent 

drugs with short biological half-lives. These systems allow the administration of drugs 

with narrow therapeutic window. By this parenteral route of administration, the 

potential irritant side effects of the drugs on the gastrointestinal tract can be decreased. 

In addition to this, transdermal administration brings out the bypass of the hepatic first-

pass metabolism, which may result in lost of activity or generation of toxic metabolites. 

By this way, the drug wasted by the metabolism is also avoided, and hence the dose to 

be administered decreases. On the other hand, when compared to other mucosal routes, 

proteolytic activity is relatively low in skin, and this reduces the degradation at the site 

of administration (Banga et al. 1999). This noninvasive technique minimizes trauma, 

risk of infection, damage to the wound. Additionally, the continuous mode of 
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administration increases patient compliance to the therapy and it brings out the ease of 

discontinue the delivery in case of toxic effects. 

The skin, as the largest organ of the human body with a surface area of about     

2 m2, was thought to function just as an impermeable barrier that precludes the entry of 

foreign agents into the body (Stamatialis et al. 2002). By the development of 

transdermal drug administration systems, skin gained another function as a route of 

administration for the topical or continuous systemic delivery of drugs. Transdermal 

administration comprises stage-wise delivery of the drug. The first stage is the delivery 

of the drug molecule from the transdermal device (acting as a reservoir) to the skin 

surface. The second stage is the permeation of the molecule through the skin and the 

final stage includes the distribution of the molecule to the site of action via systemic 

circulation. Thus, permeation rate limiting factor is characterized by the drug 

permeation properties of either the skin or the membrane, or both. Obviously, the 

release of the drug from the device can be controlled more exactly than the permeability 

of drug in the skin. In passive delivery the transport of the molecule across the stratum 

corneum, the outermost layer of the skin, is the rate-limiting step since this layer 

constitutes the most impermeable membrane in humans with its rigidly arranged, 

lipophilic structure. The controlled transdermal delivery systems are designed so that 

the delivery from the device, by the diffusion of the molecule in a polymeric membrane 

of the product, is the rate-limiting step. The main drawback of these systems is seen for 

the drugs that require high blood levels and for the drugs that are charged, of high 

molecular weight, hydrophilic or very lipophilic (Wang et al. 2005).  

Biological factors of transdermal drug delivery, which are generally less easily 

controlled, can be summarized as the intra- and intersubject variability, the regional 

blood flow and the skin pH. This underlines the need of the individual dosage even for 

the same patient for the variable states that determine the sweat counterflow, skin 

temperature, etc (Vasil’ev et al. 2001). Better control of biological variability in 

transdermal drug absorption has been attempted with enhanced systems. Selection of 

external conditions (e.g. ionic strength, pH) and/or drug properties (e.g. charge, 

lipophilicity, molecular weight, etc.) and the enhancements on the characteristic 

properties of the transdermal device can be applied to control the release kinetics of a 

drug from transdermal systems. By such manipulations, controlled drug delivery can be 

promisingly achieved by the transdermal therapeutic systems to obtain presumably 

reproducible drug delivery.  
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2.2.1. Enhancement of Transdermal Permeation 

 

2.2.1.1. General Aspects 

 
The first transdermal drug delivery system (TDDS) was developed for 

scopolamine for motion sickness in 1981 (Panchagnula 1997). Since then many TDDS 

have appeared in market with great success, but the need remains to extend their 

operational parameters to obtain more sustainable and variable delivery regimes. 

Inherent limitations of TDDS stems from the variability of physico-chemical properties 

of the penetrant, low drug levels in plasma and skin irritation caused by some drugs or 

formulations. Passive permeability of drugs across the highly lipophilic stratum 

corneum is especially difficult to compounds which are hydrophilic, very lipophilic, of 

high molecular weight (MW > 400 g/mol) or charged (Wang et al. 2005, Vasil’ev et al. 

2001). Several approaches to overcome these problems and to enhance the transdermal 

drug delivery are summarized in Table 2.1.  
 Approaches to increase the drug permeation across the skin to achieve and 

maintain therapeutic concentration of drug in blood can be expressed as: chemical, 

biological and physical approaches. Chemical enhancers such as sorption promoters or 

biological enhancement studies such as synthesis of bio-convertible pro-drugs have 

been found to increase transdermal drug transport via several mechanisms, including 

increased drug partitioning into the stratum corneum, fluidization of the lipid bilayers, 

and disruption of the intracellular proteins. Even though chemical enhancers have the 

potential to alter the properties of skin, many of them are irritants, and safe and effective 

methods to be used in this field properly are still under development (Sebastiani et al. 

2005). In case of prodrugs, enhancement can be accomplished due to enzymatic activity 

in the epidermis; however, high prodrug concentration in the skin can lead to enzyme 

saturation, which hinders the conversion of the prodrug into an active drug molecule.     

Physical approach mainly includes sonophoresis (phonophoresis), iontophoresis 

and electroporation techniques. Sonophoresis is the application of ultrasound 

(Mitragotri et al. 1995) whereas iontophoresis and electroporation refer to “low-

voltage” and “high voltage” treatments, respectively (Pachagnula 1997). Iontophoresis 

acts primarily on the drug by variable applications while electroporation acts on the 
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lipid bilayer of the skin and creates transient aqueous pathways by short high-voltage 

pulses (Banga et al. 1999).  

 
Table 2.1. Methods to enhance transdermal permeability of macromolecular drugs. 

 

Method Mode of Action 

Chemical enhancers Compromisation of the tightly structured stratum 
corneum lipid bilayers 

Lipid vesicles Cumulation of drugs in the stratum corneum 

Iontophoresis Low current/voltage electrostatic repulsion, 
electroosmosis 

Low-frequency ultrasound Local thermal effect, weakened bilayers of the stratum 
corneum by cavitation 

Electroporation High voltage short term electrical pulses 

(Micro)needles Transient holes in the skin 

Pressurised He-gas Invasive "gene-guns" 

 
There are also several attempts such as creating a synergistic effect on 

transdermal drug delivery by a combined approach. The use of iontophoresis with a 

chemical enhancer is proposed to achieve higher drug penetration, whereas it may also 

reduce the side-effects such as irritation caused by high concentration of enhancers or 

stronger electric forces. Combination of iontophoresis and electroporation is suggested 

for further enhancement of drug transport since it may allow rapid delivery of a bolus 

dose with a precise control of drug delivery modulation and programmability. Synergy 

between low-frequency ultrasound and iontophoresis has been found to increase the 

transdermal drug transport to a greater degree. On the other hand, as reported, the 

combination of microneedles and iontophoresis may offer the possibility of 

macromolecule transdermal delivery with precise electronic control (Wang et al. 2005, 

Pachagnula et al. 2000, Sebastiani et al. 2005). Iontophoresis applications in 

conjunction with ion-exchange materials has also provided promising improvements on 

transdermal drug transport (Jaskari et al. 2000).  
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The novel approaches in transdermal drug delivery are obviously built around 

iontophoresis showing that iontophoresis could be the answer for the effective 

transdermal drug delivery, especially for the novel biotechnologically developed drugs 

such as peptides and proteins that are hydrophillic, charged macromolecules and 

susceptible to proteolysis, chemical change and denaturation (Banga et al. 1999, Tabata 

and Ikada 1998). 

 

2.2.1.2. Iontophoresis 

 
Iontophoresis is a transport phenomenon, and it stems from the movements of 

ions in solution due to an applied electric field across two electrodes. Iontophoretic drug 

delivery implies the use of small amounts of physiologically acceptable electric current 

across a membrane to drive charged molecules into the body. By using an electrode of 

the same polarity as the charge of the drug, the drug is driven into the skin by 

electrostatic repulsion (Stamatialis et al. 2002) as illustrated in Figure 2.3 below. The 

electric field applied results in an electric current, which is transformed into an ionic 

current at the electrode/liquid or electrode/skin interface. This ionic current carries the 

drug ions into the skin while the counter-ions that are more mobile complete the circuit 

(Coston and Li 2001).  

 

 

Figure 2.3. Diagram of iontophoretic technique: as current is applied, drug cations are 

repelled into the skin and absorbed in the systemic circulation 

(Source: Wang et al. 2005). 
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In addition, bulk fluid flow or volume flow occurs in the same direction as the 

flow of counter-ions. This phenomenon, which accompanies the electrostatic repulsion, 

is called electro-osmosis. By the contribution of electroosmosis and increased passive 

permeation (increased permeability of the skin) by the applied potential difference 

across the skin, the transport rate of uncharged and zwitterionic molecules is also 

increased (Sebastiani et al. 2005). 

Numerous attempts have been made to define the rate of iontophoretic flow. The 

rate equation would include flux due to electrochemical potential gradient across the 

skin, change in the skin permeability due to applied electric field and the electro-

osmotic flow. The general rate equation including these flux terms is given as: 
 

convectivepassiveelectricionto JJJJ ++=        (2.1) 
 

 electricJ  is the flux due to electric current application; passiveJ  is the flux due to 

passive delivery through skin and convectiveJ  is the flux due to convective transport due to 

electroosmosis (Singh et al. 1994). 

There are several factors affecting the results of iontophoresis. These include the 

physico-chemical properties of the drug (molecular size, charge, hydrophobicity, 

concentration), drug formulation (type of the system, buffer, pH, viscosity, presence of 

other ions), equipment used (available current range, constant vs. pulsed current, type of 

electrode), biological variations (skin site, regional blood flow, age, sex), skin 

temperature and duration of iontophoresis (WEB_1 2003).  

The skin surface’s isoelectric point (IEP) ranges from 3 to 4, which is about the 

isoelectric point of keratin in the stratum corneum layer. Therefore, for a drug donor 

solution with a pH value higher than the IEP of the skin surface, skin is a negatively 

charged membrane, and hence the electroosmotic flow may enhance the delivery of 

positively charged drug permeation across the skin. In this point of view, the anodic 

delivery is facilitated, whereas the cathodic delivery is retarded by the electroosmotic 

flow, in addition to being a major mode of transport for neutral molecules 

(Panchangnula et al. 2000). However, it was reported that electro-repulsion constitutes 

the dominant mechanism for the transdermal iontophoresis of the ionic smaller solutes, 

whereas electroosmosis becomes more important in the transport of larger ions such as 

proteins as shown by the study of Guy et al. (2000). These findings suggest that the 

charge of the skin rather than the charge of the permeant may be the predominant 
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transport mechanism depending on the physicochemical properties of the drug. This 

dictates that the iontophoretic delivery regimes can be manipulated by changing the pH 

of the formulation (Panchangnula et al. 2000).  

Over the years a wide range of protein and peptides such as tyrotropin-releasing 

hormone (Huang et al. 1996), vasopressin (Banga et al. 1995), calcitonin (Chang et al. 

2003), LHRH (Luteinizing Hormone Releasing Hormone) (Raiman et al. 2004) and 

human parathyroid hormone (Medi et al. 2003). These studies approved that 

iontophoresis not only achieves enhanced transdermal drug transport but the lag time 

required for the delivery is also reduced.  

Consequently, iontophoresis provides a means of local, non-invasive, painless 

drug administration when compared with the traditional administration. Importantly, 

iontophoresis can be used to deliver peptides and protein drugs not suitable for oral 

administration (Green et al. 1992). The technique has been observed to enhance the 

transdermal permeation of varying types of drugs several fold and this shows that 

iontophoresis is promising to make a lasting impact in drug delivery. Most importantly, 

this method also offers the possibility of an individualized dose titration by modulation 

of the current density. The adjustable and pre-programmable drug delivery is the unique 

opportunity of the iontophoresis and parallel developments in the fields of 

bioengineering and microelectronics support the improvements on the iontophoretic 

technique. This is specifically important for some therapies such as Parkinson’s disease 

since an individual dose arrangement is required to obtain an optimum therapy with the 

minimum side effects (Nugroho et al. 2005).  

 

2.2.2. Polymeric Systems in Transdermal Drug Delivery 

 
The earliest drug delivery systems, first introduced in 1970s, were based on 

polymers. Today, polymeric materials still provide the most important material of 

choice for research, primarily because of the ease of processing and control over their 

chemical and physical properties. The polymeric controlled delivery systems are being 

applied for a wide range of drugs in various environments. These systems can be 

formulated as hydrogels, films, membranes, matrices or tablets. Such polymeric systems 

usually contain a base polymer, a plasticizer to provide a suitable degree of flexibility 

and an excipient. The excipients are water-soluble materials that, as they leave the 
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matrix, create channels in the polymeric material and hence facilitate the diffusion of 

the drug. The choice of the prepared polymeric materials suitable for delivery systems 

characterized by several factors as biocompatibility, environmental stability during the 

time of complete drug delivery, appropriate mechanical and thermal properties, 

appreciable swelling characteristics, ease of fabrication and cost (Kumar M. and Kumar 

N. 2001).  

Controlled release of active agents from a polymeric delivery system can be 

tailored by three primary mechanisms: diffusion, degradation and swelling followed by 

diffusion. These mechanisms can stand alone or all may exist in a given release system. 

Polymer structure is the key parameter for the diffusion through polymers, whereas the 

macromolecular structure is effective on diffusion as it influences the rate of 

partitioning into the medium. On macroscopic scale the diffusion can occur through the 

pores in the polymer membrane/matrix, and on molecular level, by passage of the drug 

molecules between polymer chains. In case of transdermal drug delivery, there exists 

additional series of diffusional and active transport steps after the penetration of the 

drug through the skin (Brannon-Peppas 1997).  

In transdermal drug delivery systems, skin is utilized for the delivery of a drug 

via polymeric patches and the drug release from these patches can be controlled by two 

mechanisms: membrane permeation controlled and matrix diffusion controlled systems 

(Jain et al. 2003). Vasil’ev et al. (2001) claimed that these two systems do not differ in 

principal on the drug delivery, both capable of achieving the effective plasma 

concentration for a prolonged period of time.  

Matrix and membrane systems may be developed as various combinations of 

hydrophilic and lipophilic polymers, whether natural or synthetic. 

The membrane system mainly consists of a reservoir where the drug is loaded, a 

membrane that does not contain any drug but serves to control the rate of release of the 

drug from the reservoir. Other components of the system are a drug-impermeable cover 

film (mechanically fastening the whole system and preventing the drug from diffusing 

in undesired directions and from loss on storage) and a pressure sensitive biocompatible 

adhesive for mounting the patch on the skin (Figure 2.4).  
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Figure 2.4. Schematic illustration of a iontophoretic transdermal delivery patch 

composed of a membrane/reservoir system  

(Source: Stamatialis et al. 2002). 

 
In the membrane type systems, reservoir is employed to supply the drugs, 

dissolved or dispersed in liquid phase (solvent) or entrapped in a gel and the drugs 

diffuses from this phase through the control membrane. Most drugs exist in stable 

protonated form, nitreous bases, which exhibit poor permeation profiles through 

nonpolar epidermis. Therefore, drugs are prepared in nonprotonated liquid form or 

unstable solid state. Silicon oils and minerals, that are capable of dissolving drugs, have 

been used to fill the reservoir or gels containing the drugs have been used as reservoirs 

(Vasil’ev et al. 2001). In addition to this, to maintain a constant driving force for the 

mass transfer, drug is loaded to the reservoir over its saturation concentration.  

Hydrogels that are highly swollen, hydrophilic polymer networks have found 

various applications in biomedical applications. Several systems such as resin gels have 

been used as reservoirs and recently, cross-linked poly(ethylene glycol) (PEG) networks 

are evolved as reservoirs for delivery of proteins via transdermal route. Thacharodi and 

Rao (1995) reported permeation controlled transdermal drug delivery systems using 

chitosan. Studies on propanolol chloride delivery systems using various chitosan 

membranes with different cross-link densities as drug release-controlling membranes 

and chitosan gel as the drug reservoir was performed. In vitro released profiles showed 

that devices constructed with chitosan membranes released propanolol chloride in a 

reliable and reproducible manner, and the minimum release was observed at the 

maximum crosslinking density (Thacharodi and Rao 1995). In another study of 

Thacharodi and Rao, indicated the use of collagen-chitosan composite membranes as 
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membrane-permeation-controlled transdermal devices for the release of propranolol and 

nifedipine. Jain et al. (2003) has also used the system of glutaraldehyde crosslinked 

chitosan membranes for the release-rate control and chitosan gels for drug reservoir for 

transdermal delivery of diltiazem hydrochloride, which resulted in zero-order kinetics 

for the drug release. On the other hand, several commercial membranes with various 

properties have been attempted. 

Membrane is the crucial component of the drug delivery patch as it in direct 

contact with the skin and acts as the interface between the drug reservoir and the skin to 

give optimal control for the transdermal drug delivery (Stamatialis et al. 2002). In 

addition to the factors in the choice of polymers for the drug delivery systems and 

specific to transdermal applications, the membrane should be biocompatible to prevent 

skin irritation, it should have the control over the drug release (with lower drug 

permeability than skin) and it should have low drug adsorption. In case of iontophoresis 

applications membranes with low electrical resistance is also required for better 

utilization of the power source.  

For a transdermal patch, the total permeability of a drug through the membrane 

+ skin is expressed as (Flynn et al. 1974): 
 

skinmembtotal PPP
111

+=          (2.2) 

 

where membP and skinP  represents the permeability of the drug through the membrane and 

skin, respectively. The drug delivery is considered as membrane-rate controlled when 

skinmemb PP /  ratio is less than 0.2, and as skin-rate controlled when this ratio is larger than 

5. Between these values, the delivery rate is controlled by both skin and membrane 

(Baker and Kochinke 1989).  

Drug flow through the membrane following zero-order kinetics is given by 

(Barker 1987); 
 

     
L

CDJ s⋅=
γ

ε          (2.3) 

 

where J [mg/(cm2.s)] is the drug flow through the membrane, ε is the membrane 

constant (i.e., the ratio of the pore volume to the membrane volume), D [cm2/s] is the 

coefficient of drug diffusion through the pores, γ is the pore form factor (i.e.,  the ratio 
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of the molecular path length in the pores to the membrane thickness, Cs [mg/cm3] is the 

saturated drug solution concentration in the reservoir and L [cm] is the membrane 

thickness. Drug release from the membrane is assumed to be constant since Cs is 

constant until the overload is exhausted (zero-order kinetics) while it is provided the 

membrane properties remain unchanged during the transdermal system functioning.  

For a continuous membrane, the drug release from the transdermal system is 

described by Fick’s Law 
 

sPC
L

CKDJ =
∆

=          (2.4) 

 

where J is the transdermal drug supply rate, K is the coefficient of drug distribution 

between the system and the membrane, D is the coefficient of drug diffusion in the 

matrix, ∆C is the gradient of the drug concentration between the system and blood, L is 

the epidermis thickness, Cs is the saturated drug solution concentration in the reservoir 

and P is the permeability of the membrane.  

 The matrix systems offer a simplified case for the design of transdermal 

therapeutic systems. In matrix systems, the drugs are dissolved and dispersed in material 

of the system so that an appropriate matrix diffusion profile determining the delivery 

rate of the drug molecules from the system is handled (Conaghey et al. 1998). The 

maximum drug diffusion (release) time depends on the matrix/membrane thickness, 

drug concentration, and the skin permeability for the given drug. These facts reveal that 

transdermal systems can be controlled by changing the matrix/membrane thickness and 

composition (drug concentration and limiting solubility), whereas manipulation can be 

handled by implying structural changes during the preparation of these materials.  

For the matrix type systems with assumed overload, the flow rate J [µg/(cm2.s)] 

at a current time instant T is given by the Higushi equation: 
 

T
DCM

J s

2
0=          (2.5)  

 

where M0 is the initial drug content in the transdermal system. As can be evaluated from 

the system, these systems do not obey stationary kinetics. 

Transdermal patches comprising matrices of PEG/Vaseline oil and 

PEG/Poly(vinyl alcohol) (PVA), commercialized with the name ‘Percutens’, carrying 
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various drugs has been exploited (Vasil’ev et al. 2001). Nicotin loaded cross-linked ion-

exchange resins for both passive and iontophoretically assisted transdermal delivery 

systems (Conaghey et al. 1998), polyacrylamide and p-HEMA hydrogels for the 

transdermal release of protein/peptide drugs (Banga and Chien 1993) were attempted. 

There are several studies representing the ongoing research on this area such as matrices 

of Eudragit L(or E)-100/PVP and Eudragit L(or E)-100/PEG for diltiazem 

hydrochloride (Jain et al. 2003). In this study, diltiazem release was higher at the higher 

contribution of the hydrophilic polymers. Fractional dissolution of hydrophilic polymers 

in the matrix led to formation of gelaneous pores, which decreased the mean diffusional 

path length of the drug molecules to release into the diffusion medium. It has been 

reported that the simplest type of matrix patches contains a drug dissolved in an 

adhesive that is applied to an impermeable backing membrane. The reported studies 

include salicylic acid and chlorpheniramine maleate dissolved in a polymethacrylate 

amino ester copolymer matrix, lidocane and ketoprofen in acrylic/rubber 

(polyisobutylene) copolymers (Vasil’ev et al. 2001).  

Studies performed up to date show that hydrophilic matrices and membranes are 

more effective than hydrophobic ones in transdermal drug delivery systems. 

Hydrophilic matrices are also preferred for iontophoresis applications since hydration of 

the system is crucial for this application to allow the passage of the ions. The use of 

water-soluble polyelectrolytes as constituents of the hydrogel matrix in the formation of 

iontophoretic patches have been signified in the light of these findings (Kupperblatt et 

al. 1999). Electro-responsive or electrically stimulated pH sensitive polyelectrolyte 

membranes and hydrogels such as chondroitin 4-sulphate hydrogels (Jensen 2002), 

PMMA polyelectrolyte membrane (Grimshaw 1990) have been suggested to be 

promising for the iontophoretic delivery of large charged macromolecules such as 

proteins and peptides (Kost and Langer 2001). Such polyelectrolyte membranes may 

enhance the iontophoretic drug delivery by several mechanism such as enhanced 

membrane permeability due to electrically and chemically induced swelling, 

electrostatic partioning of the charged solutes into the membrane, electroosmotic 

augmentation of solute flux within the membrane or electrophoretic augmentation of 

solute flux within the membrane (Grimshaw et al. 1989).  
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2.3. Polyelectrolyte Complexes (PEC) 
 

2.3.1. General Aspects 
 

Macromolecular complexation of different polymers are formed by various 

intermolecular interactions, such as hydrogen bonding, Coulomb forces, Van der Waals 

forces, transfer forces, and hydrophobic forces. According to the nature of the 

dominating interactions, the complexes are named as polyelectrolyte complexes 

(sometimes called coacervate complexes), hydrogen-bonding complexes or charge-

transfer complexes (Peniche et al. 2003, Dumitriu and Chornet 1998). In case of 

polyelectrolyte complexes, electrostatic interactions play the major role in determining 

the mixed polymer behaviour. Secondary binding forces such as hydrogen bonding or 

covalent bonding may also participate in the formation.  

Polyelectrolytes are macromolecules carrying a relatively large number of 

functional groups that either are charged, or under suitable conditions can become 

charged. The molecules can exist as polyanions or cations, since the net charge of the 

macromolecules depends on the functional groups, which may be either positively or 

negatively charged, or both (Şimşek-Ege et al. 2002). One of the most interesting 

features of polyelectrolytes is their ability to form stable complexes as a result of ionic 

interactions. Therefore, Coulumbic interactions between polyelectrolytes may be either 

repulsive or attractive depending on whether the electrical charges are of the same or 

opposite sign. On the other hand, the interactions may be either short-ranged (weak) or 

long-ranged (strong) depending on the degree of ionization and the polyelectrolyte 

concentration. Therefore, the overall electrostatic interactions, which depends on the 

physicochemical character (e.g. charge density and molar mass), concentration and ratio 

of the polymers, is very sensitive to variations in pH and ionic strength of the 

complexation medium. Furthermore, temperature, shear and pressure can affect the 

formation and stability of the complexes (Dickinson 1998, Weinbreck et al. 2003a).  

Complexation between two oppositely charged polyelectrolyte can lead to: 

• Precipitation (insoluble solid phase) 

� Driven by charge neutralization on hydrophobic polymers 

� Driven by macro-aggregate formation 

• Coacervate formation (dense liquid phase) 

• Soluble Complexes 
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The formation of complexes occurs by a step-wise process. Initially, a primary 

complex is formed with respect to Coulumbic interactions. Second step implies the 

formation of new bonds and/or correction or the distortion of the polymer chains 

resulting in a new conformation of the complex. Finally, secondary complexes 

aggregate mainly due to hydrophobic interactions at the third stage (Figure 2.5).  

 

 

Figure 2.5. Schematic presentation of the aggregation of the PECs 

(Source: Kokufuta et al. 1979). 

 
Most pronounced secondary complex conformations are ladder or scrambled egg 

models. The resulting structures of polyelectrolyte complexes are explained by two 

models, ladder and scrambled egg, in the literature. “Ladder-like structure” refers to 

complex formation on a molecular level via conformational adaptation, whereas the 

“scrambled egg model” denotes the incorporation of high number of chains into a 

particle. PEC formation between polyions with weak ionic groups may lead to soluble 

complexes with a ladder-like structure. However, in most applications of PEC formation 

results in highly aggregated systems obeying the scrambled egg model (Dautzenberg 

2000). On the other hand, in highly diluted solutions quasi-soluble particles on the 

colloid level are formed.  
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Polyelectrolyte complex formation is widely used for the preparation of 

membranes, gels, films, etc., with special properties, microencapsulation of biological 

components, isolation and fractionation of proteins, enzyme immobilization, and 

controlled delivery, but also as carriers for proteins and nucleic acids, supports for 

catalysts, implants for medical use and food ingredients (Dautzenberg 2000, Schmitt et 

al. 1999). The use of natural and/or synthetic polyelectrolytes as building blocks, 

preparation techniques and the resulting properties of the complexes characterize the 

potential end uses of these systems.  

Complex formation between synthetic polyelectrolytes such as poly(sodium 

styrene sulfonate) and polyvinylbenzyl trimethylammonium chloride have been studied 

extensively. The membranes produced by the specified PEC system have been found 

promising for desalination of seawater, dialysis, ultra-filtration and purification of 

aqueous solutions containing colloids, micro- and macroparticles. There are numerous 

synthetic polyions and polycations employed to polyelectrolyte complexation. 

Recently, the use of natural polymers in polyelectrolyte complexes for 

encapsulation of drugs, proteins and viable cells, and stimuli responsive systems has 

received much attention because of their biocompatibility. There are any kinds of 

natural polyelectrolytes such as proteins and polysaccharides to be used for 

complexation. Polysaccharides are natural polyelectrolytes whether anionic or cationic 

and proteins are polyampholytes (polymers containing both positively and negatively 

charged segments).  

Chitosan, a biocompatible and biodegradable polysaccharide, has been utilized 

in several studies as polycationic partner in PEC formation. Chitosan based PEC with 

natural polymers such as sodium alginate, κ-carrageenan, heparin, pectin, xanthan or 

synthetic polymers such as poly(acrylic acid), polystyrene sulfonate have been reported. 

Chitosan-sodium alginate membranes were proposed for wound-dressing material with 

respect to its noncytotoxicity, capability of supporting cell proliferation and pH-

dependent water uptake, whereas chitosan-xanthan complexes as reported to be an 

appropriate drug delivery vehicle with enhanced swelling characteristics. 

Protein-protein interactions were also investigated in terms of polyelectrolyte 

complexation. Macromolecular interactions between oppositely charged proteins led to 

enhanced functional properties of including foaming, aggregation phenomena and 

gelation. The parameters effective through enhancement were reported to be 

concentration of each protein in the mixture, pH and ionic strength of the solution. The 
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complexation systems of proteins with synthetic polyelectrolytes such as heparin/PVA 

were also studied.  

Protein-polysaccharide complexation, which is also called complex 

coacervation, has suggested as a special case of polyelectrolyte complex formation and 

it is evidenced by coacervate formation. Besides their biotechnological and biomedical 

utilization, the detailed information and the structure of the complex coacervates can 

also be helpful to understand the mechanisms of complex biological processes as the 

formation of polymeric complexes of proteins and polysaccharides simulate the 

intermolecular interactions during the formation of biological systems. For this reason, 

proteins and polysachharides complexes can be used in products that are directly contact 

with the living organism with the less allergic risks compared with synthetic polymers 

since they are of biological origin (Schmitt et al. 1998). Additionally, certain properties 

of protein/polysaccharide coacervates were found to be better than those of the pure 

protein and pure polysaccharide (Schmitt et al. 2000), and their complexation has been 

found very promising as constituents of biomaterials with respect to enhanced 

physicochemical properties, film-forming capability and environmental stability. 

However, further work on these complexes is required to make up the global 

characterization of the formation, stability, structure and techno-functional properties of 

these complexes.  

 

2.3.2 Protein-Polysaccharide Complexation 

 
Protein-polysaccharide interactions have been investigated widely with respect 

to its promising applications in biotechnological and biomedical areas as well as its 

biological aspects. In living organisms, proteins and polysaccharides can be naturally 

associated to maintain cell integrity in the formation of membranes, and participate in 

cell division through histone/DNA complexes or enzyme catalysis, whereas they can be 

incompatible as they involve in cell partition. 
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Figure 2.6. Main trends in the behavior of protein/polysaccharide mixtures 

(Source: WEB_2 2005). 

 
The mixtures of protein and polysaccharides generally lead to phase separation 

due to phase separation through thermodynamic incompatibility or complex 

coacervation (Turgeon et al. 2003) as illustrated in Figure 2.6. As the protein and 

polysaccharide are incompatible, they repel each other and a thermodynamic phase 

separation, which is also called segregation or depletion interaction, occurs. Phase 

separation results in a mixture with two phases, one is rich in protein and one is rich in 

polysaccharide. A diluted and non-reactive biopolymer mixture of proteins and 

polysaccharides may also exhibit co-solubility. On the other hand, if they attract each 

other through electrostatic interactions, the biopolymers associate excluding the solvent 

from their vicinity. This gives rise to the formation of protein/polysaccharide 

complexes. Associative phase separation of the mixture results in two phases: the lower 

phase containing the protein/polysaccharide complex and the upper phase containing 

mainly the solvent.  

Coacervation describes the phase separation of a liquid polymer rich-phase from 

a macromolecular solution, representing the separation of two liquid phases in a 

colloidal system. The phase more concentrated in colloid component is the coacervate 

and the other phase is the equilibrium solution (de Kruif et al. 2004). In the mixture, 

electrostatically attracted and bound complexes can also be either soluble or insoluble. 
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The coacervate layer occurs as the insoluble complexes concentrate in liquid coacervate 

droplets followed by the further coalescence and phase separation (Figure 2.7).  

 

 
 

Figure 2.7. Schematic representation of phase separation by complex coacervation 

(Source: WEB_2 2005). 

 
The complex coacervation was discovered by Tiebackx in 1911, and the term 

‘coacervate’ was first introduced by Bungenberg de Jong (1949). Coacervate was 

derived from the Latin word “acervus” which means aggregation, and “co” means 

together. Thus, “coacervation” denotes the union of the colloidal particles. By colloidal 

particles, de Jong signified the liquid droplets, primarily induced by demixing (Figure 

2.8). The word ‘coacervate’ was specifically preferred instead of precipitate to explain 

this phenomenon since the complex remains liquid, rather than forming a precipitation 

(de Kruif and Tuinier 2001). The detailed study of Bungenberg de Jong (1949) revealed 

under which conditions complex coacervation occurred, such as pH, ionic strength, 

polymer concentration, polymer ratio, and temperature. Simple coacervation was 

described in this study as the coacervation process involving only one biopolymer. It 

occurs by the excluding the solvent from a hydrophilic colloid by introducing a 

competing hydrophilic substance, such as salt or alcohol, to the solution medium. This 

is also called as ‘salting out’ and results in simple coacervation (Peniche et al. 2003). 
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Figure 2.8. The coacervate droplets that have partially spread over the surface of the 

microslide and coaleasced with each other. This picture was reproduced 

from the study of de Jong and Kruyt (1929) 

(Source: WEB_2 2005). 

 
The ternary system (two biopolymers and a solvent) of coacervation is 

characterized by a one- or two-phase equilibrium state. Complexation depends on 

biopolymer-biopolymer and biopolymer-solvent interaction forces (enthalpic effects), 

and dominantly on the size and structures of biopolymers (entropic effects) (Schmitt et 

al. 1999). Therefore, the formation of these biopolymer complexes governed by 

electrostatic interactions represents the key parameters of charge density, geometry 

(shape and flexibility of charge distribution), swelling, counterion hydrophilicity, and 

screening (Weinbreck et al. 2004) that explains the strong dependency on pH ad ionic 

strength of the medium.  

The knowledge of protein/polysaccharide complexation inspires the researches 

to build biological systems on this phenomenon. For instance, DNA-gelatin 

nanoparticles formed by salt-induced complex coacervation of gelatin and plasmid 

DNA have been used for the development of a novel system for gene delivery. Besides 

the fundamental interest on biological phenomena, complex coacervation has been used 

in the fields of pharmaceuticals, medicine, foods, cosmetics, etc. Complexation has been 

studied in the purification and recovery of the macromolecules (e.g. protein) on the lab 

scale and offered several advantages such as high removal levels and more thermal 

stability through complexation. Microencapsulation based on the ability of the 

coacervates to form a coating around sensitive materials (e.g. drug particle or an oil 

droplet containing flavors) has been investigated extensively and commercialized. 
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Promising results on the gelatin/gum arabic microcapsules had led to extensive 

investigations on this system and have been proposed applications in the fields of 

pharmacy, cosmetics, carbonless copy paper production, biotechnology, and food 

ingredients. Addition to this system, milk protein/xanthan gum system was also 

suggested as a food ingredient, e.g. fat substitute and meat replacer (Chen et al. 1989).  

The biodegradability of the complexes offers the use of the complexes as 

biopackaging or edible food packages based on the film formation properties of the 

complexes. It has been reported that the coacervate films of sodium caseinate/wheat or 

starch corn displayed good mechanical and gas barrier properties. On the other hand, 

polyelectrolyte films produced by the chitosan/alginate coacervates have represented 

good biocompatibility and found promising in biomedical applications. There have been 

several studies indicating the potential of protein/polysaccharide complexes as 

constituents in the production of biomaterials such as wound dressings, sutures, blood 

substitutes or artificial prostheses, grafts or vessels.  

 

2.3.3. Models on Formation of Coacervate Systems 

 
When the protein and polysachharide dispersions are mixed together at a pH and 

weight ratio where interactions are strong, they can form complexes. However, it has 

been reported that, it is a challenging work to follow the very fast initial events and to 

study the different structural transitions. To overcome this drawback, such mixtures are 

firstly prepared at a pH where no interactions take place, and then acidification is 

performed to focus the specific pH range to determine the potentiometric conditions 

where interactions occur. Upon lowering the pH, the interpolymeric complexes occur at 

a critical pHc value. The critical pH value can be observed above isoelectric point (IEP) 

of protein due to heterogeneous charge distribution and/or randomly charged patches on 

the protein surface. The very first small variations in turbidimetric signals are attributed 

to this formation of soluble intrapolymeric complexes. Further decrease of the pH leads 

to coacervation at pHφ. By analogy to the colloidal systems (Leisner and Imae 2003), at 

the critical pHφ, the coacervates interact together to form a fully percolated system that 

phase separates from the solvent. The pHφ is generally detected by a more or less 

‘strong’ increase in system turbidity.  
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Figure 2.9. Intrapolymer (A) and interpolymer (B) complexes  

(Source: de Kruif et al. 2004). 

 
Consequently, for all systems studied, two major structural transitions in the 

mechanism of complexation have been observed. Thus, the process of complex 

formation was explained by 3-step formation of coacervates 

1. intrapolymeric complexes at pHc 

2. Interpolymeric soluble and insoluble complexes 

3. insoluble complexes and macroscopic phase separation at pHφ 

(coacervation or precipitation) 

There are only a few studies on the structure of the soluble complexes, 

coacervate droplets and coacervate phases that occur during the transitional formation 

of complexes. The recent light-scattering technique based study of Leisner and Imae has 

represented the structure of the complexes through the transitions of interpolymeric 

complexes to coacervates, for the first time. Proposed model, describing the subsequent 

associative micro- and macrophase separation, is schematically shown in Figure 2.10.  
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Figure 2.10. Schematically proposed model for coacervate formation 

for a protein/polysaccharide mixture  

(Source: Leisner and Imae 2003). 

 
The model describes the coacervation mechanism with respect to protonation of 

the protein that occurs below its isoelectric point. Independent protein and 

polysaccharide (1) interact attractively to form transient ‘monomolecular’ 

interpolymeric complexes (2), which remains highly negatively charged but with 

positively charged patches localized at the side of the protein away from the chain. By 

this mean, the protein cation can form transient crosslinks between two polysaccharide 

chains and this formation constitutes the first step to multimolecular interpolymer 

complexes (3). This is followed by aggragation to microgels (4) that is limited by the 

net charge of the biopolymers. By further protonation of the protein almost neutral high 

molecular weight interpolymer complexes (5) with partially collapsing center is formed.  

As the critical size/charge ratio for attraction between microgels is reached, microgels 

stick together to form a microgel cluster (6). However, a complete collapsing is 

hindered due to overcharging or steric hinderence. After a time consuming 

swelling/deswelling process of the microgels for cooperative coupling, eventually, a 

hierarchically branched intramolecular structure (7) with the charge stabilization occurs. 

The equilibrium would be reached at a macroscopic phase separation to the coacervate 

(8) through coagulation of the stabilized microgel clusters (7), leaving an upper phase 

with only sporadically clustered microgels (5). As a consequence, coacervates are 

reported as randomly branched gels with a sponge-like morphology and compact and 

smooth microgel homogeneities larger than 20 nm.  
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Various physico-chemical parameters influence the electrostatic interactions 

between two biopolymers and thus the complex formation. For instance, pH plays a key 

role in the strength of electrostatic interaction as it determined the charge density of 

both polymers. Moreover, the ionic strength of the system has a significant effect on 

coacervation since it has been reported that addition of salt created screening of the 

interactions between two components. Table 2.2 chronologically represents the research 

on the formation of protein/polysaccharide systems based on these parameters by 

several experimental methods such as turbidimetric titration, dynamic and static light 

scattering, viscosimetry, etc. 

Complex coacervation systems have been studied extensively through the 

investigations on complexation of the proteins with both polysachharides and synthetic 

polyelectrolytes. The work reported in this thesis focuses on the complex formation of 

protein/polysaccharide mixtures.  

The trend nowadays, to replace the protein and polysaccharide components by 

other biopolymers to form complexes offering complexation mixtures that may result in 

novel properties and application areas. Among several biopolymers, silk fibroin, as a 

fibrous protein, and hyaluronic acid, as a widely used polysaccharide, has not been 

worked on with respect to coacervate complexation and the potential application of the 

material processed through complexation. The work reported in this thesis focuses on 

the complexation of silk fibroin ad hyaluronic acid and its potential applications in the 

fields of biotechnology and biomedicine. The following subsections represent the 

extensive information on these natural biopolymers. 
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Table 2.2. Factors studied for some protein/polysaccharide systems studied in literature.  

REFERENCES SYSTEMS EXPERIMENTAL 
TECHNIQUES PARAMETERS 

Bungenberg de Jong 1949 Gelatin / GA Light microscopy, Viscosity,  
Turbidity, Phase diagrams 

pH, Pr:Ps*, Cp, ionic 
strength,  
types of ions 

Burgess and Carless 1984 Gelatin / GA Microelectrophoretic mobility pH, Pr:Ps, pl of gelatin, 
ionic strength 

Burgess and Carless 1985 Gelatin / 
Gelatin 

Microelectrophoretic mobility,  
Preparation of gelatin 
microcapsules 

pH, ionic strength, 
temperature,  
gelatine concentration, 
Pr:ps, time, drug 
content 

Burgess and Carless 1986 Gelatin / 
Gelatin 

Microelectrophoretic mobility  
Coacervate yield determination  
Photon correlation spectroscopy 

pH, ionic strength, 
temperature, time,  
treatment of gelatin 
solutions 

Burgess 1990  Gelatin / GA 
BSA / GA 

Microelectrophoretic mobility 
Dry coacervate yield 
determination 

pH, ionic strength, Cp, 
time 

Burgess 1991  BSA / GA 
Microelectrophoretic mobility 
Dry coacervate yield 
determination 

pH, ionic strength, Cp 

Burgess 1994  Gelatin / GA 
BSA / GA 

Microcapsule production 
Particle size stability 
Scanning electron microscopy 

pH, Pr:Ps, stirring 
speed, time 

Girard et al. 2002 
β-lg / Pectin  
(low- and high- 
methylated) 

Potentiometric titrations 
Determination of the quantity of 
â-lg complexed to pectin 
(ultrafiltration) 

Pr:Ps, pH, NaCl, urea, 
temperature 

Girard et al., 2003  
β-lg / Pectin  
(low- and high- 
methylated) 

Isothermal titration calorimetry 
(binding constant, stoichiometry, 
enthalpy, entropy) 
Overlapping binding site model 

Pr:Ps, time 

Plashchina et al. 2001 
Faba bean 
legumin / 
chitosan 

Ultraviolet spectroscopy, 
Viscometry, Calorimetry,  
Turbidimetric titration, Surface 
tension, Emulsion stability 

Pr:Ps, ionic strength, 
pH 

Sanchez et al. 2002 β-lg / GA 

Confocal laser microscopy, small 
angle static light scattering 
(SASLS), Time resolved SASLS, 
Turbidity 

Time, Pr:Ps = 1:1 and 
2:1 

Schmitt et al. 2000 β-lg / GA 
Confocal scanning laser 
microscopy,  
Diffusing wave spectroscopy 

Pr:Ps, â-lg with or 
without aggregates,  
time, Cp = 1% or 5%, 
pH 4.2 or 4.5 

Tuinier et al. 2002 
Casein 
micelles / 
pectin 

Dynamic light scattering 
Adsorption measurements 
Renneting experiments 

Time, concentration in 
GDL,  
pectin concentration, 
percentage of renneting 

Weinbreck et al. 2004 Whey  Protein/ 
Gum Arabic 

 
Small Angle X-Ray Scattering 
Turbidimetric titration 
 

Pr:Ps, ionic strength, 
pH 

 
*Pr:Ps denotes the protein/polysaccharide weight ratio in the biopolymer mixture.  
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2.3.3.1. Silk Fibroin 

 
Silks are protein polymers that are biosynthesized by the epithelial cells within 

the glands of silkworms and spiders. Silk proteins are secreted into the lumens of these 

glands and then spun into fibers (Altman et al. 2003). The most abundant and 

extensively characterized silk is produced by the domestic silkworm Bombyx mori. Silk 

synthesized by B. mori consists of two kinds of protein, sericin and fibroin. Fibroin is 

the structural fibrous protein and constitutes 70% of the intact silk, and sericin is the 

water-soluble glue-like protein that surrounds and binds the fibroin fibers (Magoshi et 

al. 1996). Sericin can be easily removed from the silk fiber by a traditional degumming 

process (treatment of fibers with an alkali salt solution at ∼100 °C), and hence silk 

fibroin is also called degummed silk (sericin-free silk fiber). 

Silk has been commercially used as surgical sutures for decades and as a source 

of textile-grade fibers for centuries. The attractive properties stem from the physical 

chemistry of silk since this protein is made up of almost all fiber (Zhou et al. 2001). 

Recently, interest has been concentrating and dramatically increasing on the use of 

several processed forms of the solubilized silk fibroin in biotechnological materials and 

biomedical applications. On the other hand, fibroin is widely used in cosmetics and also 

suggested as a pharmacological agent or as a food additive. Silk fibroin contains about 

6% essential amino acid and in addition to this, it lowers the blood glucose level with 

respect to its alanine content and enhances the alcohol metabolism of the liver with 

respect to its glycine content (Lue et al. 1993). 

A fibroin molecule is composed of a heavy chain and a light chain connected by 

a disulfide linkage. The larger heavy chain having a molecular mass of ∼350 kDa is 

composed of 12 repetitive domains that constitutes crystalline ordered clusters of 

oligopeptides Gly-Ala-Gly-Ala-Gly-Ser, [Gly-Ala]n-Gly-Tyr and [Gly-Val]n-Gly-Ala (n 

= 1-8). These domains are separated by 11 amorphous regions in which peptides are 

mainly in the sequence of Gly-Ala-Gly-Ser and Gly-Ala-Gly-Ala-Gly-Ser (Hossain et 

al. 2003, Yamada et al. 2001). It is mostly reported that the primary structure of silk 

fibroin is characterized by the crystallizable repeating sequence of six amino acidic 

residues (Gly-Ala-Gly-Ala-Gly-Ser)n since this simple and regular unit forms ∼70% of 

the amino acid sequence. The heavy chain of the silk fibroin comprises mostly 

hydrophobic amino acid residues, whereas the hydroxyl residues of Ser and Tyr along 
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the chain provide affinity to water. The charged amino acid residues, glutamic acid 

(Glu) and aspartic acid (Asp), that reside in two chain ends and in the amorphous region 

illustrate the polyelectrolyte nature of the heavy chain. Light chain of the fibroin with a 

molecular mass of ∼25 kDa has a non-repetitive sequence including higher contents of 

charged amino acids, and it is hydrophilic in nature. However, the light chain has a 

minor contribution in the fiber characteristics (Hossain et al. 2003, Zhou et al. 2001).  

 

 
Figure 2.11. Secondary structure of SF 

(Source: WEB_3 2005).  

 
The major secondary structures of silk fibroin are described as two different 

conformations: silk I (α-helix, random coil) and silk II (β-sheet). Silk I is the water-

soluble structure of fibroin that mimics its liquid structure in the silkworm glands. Silk 

II is the well-oriented anti-parallel β-sheet conformation of the water-insoluble spun 

fibers as shown in Figure 2.11. In this conformation, the polypeptide chains are aligned 

and adjacent chains are connected with hydrogen bonds (>C=O⋅⋅⋅HN<) (Yamada et al. 

2003). The lately reported silk III structure of fibroin represents its surfactant behaviour 

and builds at the water-air interface in thin films (Valuzzi et al. 1999).  

Numerous researchers have reported that the conformational change, from silk I 

to silk II, during the fiber spinning of the silkworm is induced as a result of the applied 

shear and elongation stresses. The silk fibroin fibers with β-sheet confirmation establish 

sufficiently strong intermolecular hydrogen-bonding, which prevents the separation of 

molecules, and hence their dissolution to pure water. However, the fibers are easily 

redissolve in water with very concentrated neutral salt solutions (LiBr, LiSCN, CaCl2) 
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without inducing hydrolytic degradation (Tsukada et al. 1994). By the contribution of 

high concentration of ions, intermolecular interactions are screened and a pathway for 

dissolution is created. Following dialysis after the dissolution provides the preparation 

of the salt-free fibroin solution.  

 

 
Figure 2.12. The relation between conformation, quenching or casting temperature and 

concentration of silk fibroin  

(Source: Magoshi et al. 2000). 

 
Aqueous fibroin solution, which is also called regenerated silk fibroin (RSF), is 

environment-friendly and used in various applications. RSF is of interest as it represents 

a good starting material for the preparation of different forms of materials by the 

application of various processing techniques. Furthermore, the easily controlled 

characteristics of the end product by changing the processing conditions or by applying 

post-processing treatments represent the reason of this interest. The silk I structure is 

metastable and easily changes to the silk II, and therefore the solubility and the 

mechanical charateristics of fibroin-based materials can be controlled by utilizing the 

conformational change of fibroin.  Adjustable processing conditions can be summarized 
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as solution concentration, solution temperature, quenching temperature, drying 

temperature, drying time, presence of an electric field, pH and presence of certain 

enzyme (Putthanarat et al. 2002). Figure 2.12 shows the change of the conformation of 

the casted aqueous silk fibroin samples by quenching or casting temperature and the 

concentration of silk fibroin (Magoshi et al. 2000). Furthermore, the influences of initial 

protein concentration, temperature and pH have been previously designated with respect 

to high hydrogelation tendency of aqueous SF solutions. This brings a material option 

for preparation of biomaterials in the form of hydrogels.  In aqueous solution at neutral 

pH, dissolved fibroin takes the random coil structure (Nemoto et al. 1999).  It has been 

reported that the random coil to silk I transformation occurs at pH > 6 as the negative 

charges provide a strong repulsive component to protein-protein interactions. As the pH 

is lowered, this repulsion decreases and allows a closer approach of neighboring 

molecules. This increases the potential for the formation of a β-sheet structure through 

hydrophobic interactions with a simultaneous increase in viscosity of the solution 

(Hossain et al. 2003). At the pH values closer to the isoelectric point (IEP) (IEP = 3.8-

3.9) of fibroin, especially pH < 4.5, transition from random coil to silk II occurs, and 

concurrently, gelation of the silk fibroin molecules accelerates. Such an observation can 

be interpreted as a typical behaviour of proteins that aggregate near their isoelectric 

points (Kim et al. 2004). The gelation time of fibroin decreases with increasing the 

initial concentration of fibroin and temperature, and gelation is reversible, if its 

exposure to acidic conditions is brief. Otherwise, gelation is irreversible since the 

hydrogen bonds are too strong to be broken at mild conditions (Terry et al. 2004, Kang 

et al. 2000). 

If the end product is a fibroin-based film, casting surfaces are also stated to be 

effective. It was reported that casting onto different surfaces such as polyethylene, glass, 

polystyrene, platinum wire may influence the conformation. As the fibroin-based 

material is processed, numerous reports notice the possibility of further treatments on 

the material to improve its collective properties. The widely applied post-processing 

treatments are stretching, heating and immersion in hydrophilic polar solvents (e.g. 

methanol). Rate and ratio of stretching, heating temperature, concentration of the 

solvent and their application time are used to control the molecular conformation, and 

hence the properties of the resulting fibroin-based material such as solubility and 

morphology (Putthanarat et al. 2002, Nam et al. 2000). 
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Among the possible processed forms of the silk fibroin, there has been a 

growing interest in fibroin films and membranes within the last few decades. Silk 

fibroin has good film-forming capability, and amorphous, water-soluble silk fibroin 

films casted from aqueous regenerated fibroin solution can be made insoluble by means 

of simple physicochemical treatments as they undergo transitions from random coil to 

β-structure. The insoluble silk fibroin films are soft and flexible in wet state and it was 

suggested that water in the films serves as a plasticizer (Minoura 1996). However, these 

films suffer from poor tensile strength in dry state, in non-aqueous environments or on 

exposure to ambient air, and hence, they are very brittle and unsuitable materials for 

practical use. Therefore, the physical properties of silk films require improvement by 

physical or chemical modification. Several studies highlighted that the collective 

properties of these films can be improved by polymer blending as an effective and 

economical technique. Silk blends have been extensively studied as binary systems with 

respect to film formation by many researchers. Blends with synthetic polymers such as 

poly(ethylene oxide) (Jin et al. 2004), polyacrylamide (Freddi et al. 1999), poly(vinyl 

alcohol) (Tsukada et al. 1994, Yamaura et al. 1990) , poly(ethylene glycol) (Gotoh et al. 

1997), polyallylamine (Arai et al. 2002) or with natural polymers such as chitosan 

(Rujiravanit et al. 2003, Park et al. 1999, Chen et al. 1997), cellulose (Freddi et al. 

1995), sodium alginate (Liang and Hirabayashi 1992) have been studied to improve the 

mechanical or thermal or membrane properties of silk films. Silk fibroin/PEO blend 

films showed improved mechanical properties and predictable surface morphology 

based on the based on the PEO content. Thermal and mechanical properties of 

fibroin/polyacrylamide blend films represented significant improvements, whereas 

silk/PVA blend films showed increased permeability to neutral salts. By blending with 

cellulose, films with excellent elastic behaviour was prepared and porous cellulose 

membranes were produced by dissolving the silk in 10% NaOH. In case of chitosan 

addition, conformational transition to silk II is induced and resulted in increased 

crystallinity and mechanical strength in the fibroin/chitosan blend films. Blends may 

have included crosslinking agents such as glutaraldehyde (Rujiravanit et al. 2003), (1-

ethyl-(3-3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) (Bayraktar et al. 

2005) or cosolvents such as water, formic acid (Park et al. 1999) and acetic acid (Chen 

et al. 1997).  

Consequently, silk fibroin, as a representative fibrous protein, takes the attention 

of various scientists and technologists as a promising resource with respect to its unique 
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mechanical properties, the versatility in processing, as well as its biocompatibility, 

biostability and slow rates of biodegradation (Sofia et al. 2001, Perez-Rigueiro et al. 

1998). Fibroin aqueous solution reformed into gel, sponge, powder, film and membrane 

with given properties and environmental stability pointed out its applicability in the 

production of biotechnological and biomedical materials. In addition to these, the 

minimal inflammatory reaction of these silk-based biomaterials supported its suitability 

as scaffolds for tissue engineering, cell culturing applications or implant materials (Fini 

et al. 2005, Meinel et al. 2005, Gotoh et al. 2004). Fibroin hydrogel have been found 

potentially useful as bone replacement material as it improves bone healing and 

maturation (Fini et al. 2005). Fibroin membranes and fibroin/PVA composites have 

been proposed for immobilized matrix of enzymes for the second generation of 

biosensors (Zhang 1998, Qian et al. 1996). It has been also reported that silk fibroin 

membranes have high-dissolved oxygen permeability and water-vapor permeability in 

the wet state, similar to that of human skin, which suggest the potential of fibroin in the 

development of wound dressing artificial skin, soft contact lenses with high oxygen 

permeability, artificial corneas. These promising applications represent fibroin as a soft-

tissue compatible biopolymer (Minoura et al. 1990).  

As a result of benefits of being nontoxic, biocompatible and biodegradable, 

fibroin has been suggested to be used in drug preparation and in drug delivery systems. 

Fibroin gels have been proposed for oral dosage form (Hanawa et al. 1995), membranes 

as controllable medicine-releasing carriers (Li et al. 2001) and fibroin/chitosan matrices 

for a transdermal drug delivery system (Rujiravanit et al. 2003). Chen at al. (1994) 

studied the transport of pharmaceuticals through silk fibroin membranes and reported 

that fibroin membrane as an amphoteric ion-exchange membrane composed of both 

weak acidic and basic groups represents pH-dependent drug permeability. It has shown 

that transport rate of penetrant through a fibroin membrane can be controlled by 

changing the charge-state of the membrane. Membrane permeability can be 

significantly influenced since the effective charge density of membranes composed of 

fibroin molecules can change with pH, if pharmaceuticals can also be ionized with pH 

(Chen et al. 2000). Therefore, it has been stated that fibroin membranes are considered 

to have great potential for controlling the transport of pharmaceuticals such as in drug 

delivery systems. 
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2.3.3.2. Hyaluronic Acid 

 

Hyaluronic acid (HA) is a naturally-occurring linear polysaccharide that is a 

copolymer of N-acetyl-D-glucosamine and D-glucuronic acid disaccharide units 

connected by regularly alternating β-(1→3) and β-(1→4) glucosidic bonds (Figure 

2.13). This endogenic biopolymer was discovered first by Meyer and Palmer (1934) and 

is present in the extracellular matrix of all higher animals as the only non-sulfated 

glucosaminoglycan (Šoltés and Mendischi 2003, Luo et al. 2000). Chosen by Meyer in 

1934, the name hyaluronic acid comes from hyaloid (meaning "vitreous") and uronic 

acid. The term hyaluronate refers to the conjugate base of hyaluronic acid. Because the 

molecule typically exists in vivo in its polyanionic form, it is most commonly referred to 

as hyaluronan (WEB_4 2005). 

HA is found in high concentrations during fetal skin development and it 

contributes to cell migration and differentiation, and it has been reported that HA is the 

first macromolecule to appear in the extracellular matrix during wound healing 

(Alexander et al. 1980). It is also called hyaluronan, as assigned by Balázs et al. (1986), 

and in some cases, hyaluronan is a major constituent of the mature tissues; as, for 

example in the vitreous of human eye, or in synovial joint fluid or it exists as an 

important component such in connective tissues (e.g. cartilage). Industrially, HA is 

obtained from animal tissue such as eyeball, umbilical cord, and it can be produced on a 

large scale by biotechnology as it is also present in the capsule of some strains of 

Streptococci. 

 

 

Figure 2.13. Chemical structure of hyaluronic acid  

(Source: Kim et al. 2003). 
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Under physiological conditions, HA is a polyanion ad its pKa value is estimated 

to be 2.9 (Šoltés and Mendischi 2003). The molecular weight of HA changes in the 

ranges from hundreds of thousands to several millions of Daltons and its extremely high 

molecular weight yield a highly viscous solution even at low concentrations such as 0.1 

wt%. In solution, HA chains assume an expanded ‘somewhat-stiff’ random coil 

conformation. The size of the HA ‘globule’ varies with pH and salt concentration as 

expected for a flexible polyelectrolyte (Cleland 1968). It has been reported by Gibbs et 

al. (1968) that at pH 2.5 the HA solutions were more elastic and exhibited a ‘paste-like’ 

nature on gentle shaking or stirring, which was attributed to a pronounced stiffening of 

HA chains. This was interpreted to occur as a result of a critical balance between the 

repulsive forces (provided by the ionized carboxyl groups) and the attractive 

interactions (electrostatic or hydrogen bonds originated) functioning between the 

molecular chain elements. In addition, Ghosh et al. (1993) indicated that at alkaline pH, 

HA gains a more compact, flexible random coil conformation as the hydrogen bonds 

taking part in the structural organization of HA chains are destroyed resulting in a large 

loss of the intrinsic stiffness.  

Unmodified hyaluronic acid has been found many applications owing to its 

unique viscoelastic nature. This lubricous biopolymer has been used for medical 

purposes for surgical treatments in ophthalmology as a viscoelastic biomaterial 

protecting ocular cells during surgery or in orthopedics for the treatment of joint disease 

through injection of the aqueous solution. Additionally, it is used in cosmetic 

applications to moisturize the skin with respect to its high water retention ability.  

Hyaluronic acid is also an attractive building block for novel biocompatible and 

biodegradable biomaterials with potential applications in drug delivery (Surini et al. 

2003, Luo et al. 2000, Simon et al. 1997) and tissue engineering (Park et al. 2002) and 

with proposed applications in the production of artificial blood vessel and artificial skin 

(Choi et al. 1999, Nishida et al. 1993). Such applications require 

modification/derivatization of HA since it is very soluble in water or in aqueous salt 

solutions and it has quick hydrolytic degradation in biological environment. By these 

means, the recent studies focus on the methods to tailor the physicochemical properties 

and in vivo residence time of HA to specific applications while keeping its excellent 

water absorptivity, intrinsic biocompatibility, biodegradability, and lack of 

immunogenicity thereof. Modified HA based biomaterials can be produced in the form 

of films, gels, sponges, composites, etc. 
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Crosslinking is one of the mechanisms used to make HA-based materials water-

insoluble. Many attempts has been proposed to prepare cross-linked gels of HA having 

reduced water solubility including 1,2,3,4-diepoxybutane in alkaline medium, divinyl 

sulfone in alkaline medium, formaldehyde, glutaraldehyde, dimetylolurea, 

dimethylolethylene urea, ethylene oxide, polyaziridine, polyisocyanate and water-

soluble carbodiimides. Among these reagents, relatively more biocompatible EDC, 

which has good solubility properties, has been widely used. It has been reported that the 

HA crosslinks are obtained by the intermolecular formation of ester bonds between the 

hydroxyl and the carboxyl groups in different molecules (Tomihata and Ikada 1997). 

Balazs et al. (1986) stated that crosslinked gels of HA can slow down the release of a 

low molecular weight substance dispersed therein but not covalently attached to the gel 

macromolecular  matrix. It was also reported that delayed and pulsatile release of 

protein-based drugs are found to be potentially useful through partially esterified HA 

membranes (Simon et al. 1997). In another study, crosslinked hyaluronic acid 

hydrogels, Figure 2.14, are reported to exhibit reverse swelling and drug release 

behaviour under applied electric field. When the electric field is applied, rapid 

contracted and deswelled due to partial protonation of the ionized polyelectrolyte 

network and the drug release was reduced and stopped. On the other had, when the 

current is switched off, the gel swells again and the drugs can diffuse out by the ‘pore’ 

mechanism (Tomer et al. 1995). 
 

 
 

Figure 2.14. Schematic depiction of crosslinked HA hydrogel 

(Source: WEB_5 2005). 
 

Another group of study represents crosslinked HA blends through both amide 

and ester bond formation including the binary systems of HA/PVA (Kim et al. 2003), 

HA/gelatin (Choi et al. 1999) and HA/collagen (Park et al. 2002). Crosslinking was 

applied to the systems through immersion in crosslinking agent solutions, or adding the 

HA backbone 

crosslinks 
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powder form or solutions of these agents into blend solutions. Crosslinked HA/PVA 

hydrogels showed an electrical and pH sensitive behaviour that can be utilized in drug 

delivery systems, whereas crosslinked HA/collagen porous matrices were suggested to 

be used as scaffolds in tissue engineering with improved resistance to enzymatic 

digestion and mechanical properties.  

The formation of water insoluble biocompatible hyaluronic acid polyion 

complexes, without the contribution of a crosslinking agent, was illustrated by the 

patented study of Nishida et al. (1993). In this study, polyion complexes were formed 

through ionic bonds between the carboxyl groups of hyaluronic acid and the amino 

groups of a high molecular weight natural compound and the mixture ration was 1:1. 

The resulting complex was insolubilized to water while retaining excellent water 

absorptivity. It was proposed that the polyion complex can be used a film, tube, etc. for 

an artificial organ such as an artificial heart, an artificial blood vessel and skin etc. 

owing to the excellent biocompatibility of both polyelectrolytes. Later, in 2003, Surini 

et al. attempted to develop a polymeric implant device for the sustained-release of a 

protein drug by utilizing the interaction between chitosan and hyaluronic acid. In this 

study pH and polymer mixing ratio dependence of polyion complexes composed of 

hyaluronic acid and chitosan were investigated. Chitosan, which is also a natural 

polysaccharide, was used as the high molecular weight cationic polyelectrolyte 

pronounced in the study of Nishida et al. This study represented the formation map of 

polyion complexes with respect to pH and weight ratio of the biopolymers. The results 

highlighted the formation of complexes within the pH range where two polyions were 

oppositely charged with a binding ratio of 1:1. The complexes formed were used to 

prepare pellets, which were employed to in vitro insulin release studies. The results 

suggested that polymer-mixing ratio is effective on the release. The release was 

controlled by the three-dimensional network structure of the complexes. In addition to 

this, Kim et al. (2003) reported the electrical sensitive bending behaviour of 

polyelectrolyte complexes composed of chitosan/hyaluronic acid. The bending angle 

measurements were performed in the non-contact DC electric field. Polyelectrolyte 

complexes have shown quick and significant bending that is reversible under the applied 

electric field. The swelling and bending characteristics of the films based on pH and 

medium ionic concentration was also investigated. The results of the study signified that 

such a PEC system can be useful for artificial organ components, sensors, switches and 

electric current mediated drug delivery systems.  
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CHAPTER 3 

 

AIMS OF THE STUDY 

 

The main goal of this thesis was to investigate the complexes formed between 

silk fibroin (SF) and hyaluronic acid (HA). The main motivation is to be able to control 

the delivery of a charged model drug through films, prepared by silk fibroin-hyaluronic 

acid complexes, iontophoretically. 

The specific aims of the study can be summarized as follows: 

� To get insight into complex coacervation between silk fibroin and hyaluronic 

acid and characterize SF/HA complexes 

� To characterize the formation of the SF/HA complex films 

� To study the effect of temperature and pH on the swelling characteristics of 

SF/HA complex films. 

� To study the effect of iontophoresis on the permeation and release of a model 

drug through SF/HA complex films. 
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CHAPTER 4 

 

EXPERIMENTAL 

 
4.1. Materials 

 
Silk Fibroin (SF) was obtained in reeled form from Bursa Institute for Silkworm 

Research (Bursa/Turkey). Hyaluronic acid (HA) sodium salt (MW: 1,600,000 Da, form 

Streptococcus equi) was provided by Fluka-BioChemica (Buchs, Switzerland) in 

powder form. Di-sodium hydrogen phosphate, phosphate dihydrogen phosphate (acid 

and base components for phosphate buffer), ethanol (absolute GR for analysis) and 

sulfuric acid (98+%) were from Merck (Darmstadt, Germany). Calcium chloride-2-

hydrate and sodium chloride were supplied from Riedel-de Haën (Seelze, Germany), 

sodium carbonate (99.5+%) was from Aldrich-Chemie (Steinheim, Germany) and 

timolol maleate salt (MW=432.5) was from Sigma (St. Louis, MO, USA). Dialysis 

tubing (MW Cut-off: 12,000-14,000) was obtained from Sigma (St. Louis, MO, USA) 

and Medicell (London, UK). Sodium sulfide hydrate was provided by Fluka Chemie 

(Buchs, Switzerland). Deionized water was used during all experiments.  

 

4.2. Methods 

 
 The methods included were divided into four parts. The first part included the 

preparation and characterization of the SF and HA stock solutions. Second part 

explained the analysis employed for the characterization of the complex coacervation 

between SF and HA, and third part included the preparation and characterization of the 

SF-HA complex films by instrumental analysis. In the last part, the methods applied for 

permeability and diffusion studies were described. 
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4.2.1. Part I. Preparation and Properties of SF and HA Stock Solutions 

 
4.2.1.1. Preparation of Stock Solutions 

 
Silk fibroin solutions were prepared by subsequent processes of degumming and 

dissolution as described in Figure 4.1. During the degumming process, raw silk was 

kept in 50 times (v/w) of boiling aqueous 0.05% Na2CO3 for 30 minutes and this 

treatment was repeated three times. This was followed by washing several times with 

deionized water and the degummed silk was left drying at room temperature.  

To obtain aqueous SF solution, 1.2 g degummed silk was added to 20 times 

(v/w) of Ajisawa’s reagent (CaCl2/ethanol/water, 111/92/144 in weight) in a Schott 

bottle with a volume of 250 ml (Yamada et al. 2001). Higher amounts per batch of 

dissolution were avoided due to observed gelation during dialysis. The mixture was 

stirred at 78 °C to form a clear solution for 2 hours. The resulting SF solution was then 

dialyzed against deionized water for at least 3 days at sub-ambient temperature to 

remove the neutral salts using a cellulose tubing. Preparation of the cellulose dialysis 

tubings prior to usage is given in Appendix A. Dialysis was accomplished in 2 liter 

Erlenmeyer flasks. The water change was done for half-an-hour intervals for the first 2 

hours and then for 12-hour intervals for the rest of the 3 days. Eventually, the dialysis 

was ended as the dialysate tested negative for chloride ion by performing silver chloride 

precipitation test using AgNO3.  

It has been observed that undissolved fibers and particles may have a seeding 

effect during the concentrating step. Therefore, the dialyzed fibroin solution is filtered 

with a Filtrak 389 filter paper (Barenstein, Germany). The pure aqueous fibroin solution 

with a concentration of 1-2% (w/v) was obtained after filtration. The concentration of 

the SF solution was controlled using a rotary vacuum evaporator, Heidolph Laborota 

4001, run at 30°C and 30 rpm to avoid crystallization induced by temperature and shear 

stress. It was preferred that aqueous silk fibroin solution is prepared by Ajisawa’s 

method just prior to use since the waited samples has shown tendency to form a gel.  

HA was provided in powder form and it was soluble in water or any buffer 

solutions considered. However, HA particles were prone to coagulation during 

dissolution; therefore HA solution was stirred overnight to ensure complete 

solubilization.  
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Figure 4.1. Step-wise preparation of aqueous silk fibroin solution from silk fibers. 
 

4.2.1.2. Molecular Weight Determination of SF 

 
The SF average molecular weight (MW) was determined by size exclusion 

chromatography (SEC). The system consisted of ZORBAX GF-250 column, HPLC 

(Agilent Tech. 1100) and a UV detector. The column was calibrated with two albumin 

standards: Egg Albumin (MW = 45,000) and Bovine Albumin (MW = 66,000) obtained 

from Sigma. 20 µl of sample dispersion (0.5 wt%) was injected into the column after 

filtration through 0.45 µm filters. Mobile phase was 200 mM sodium phosphate (pH 

7.0).  Flowrate through the column was kept at 2 ml/s. 

 

 

Pure aqueous 
fibroin solution  

Raw silk 

Degummed silk 
(sericin-free fibroin fibers) 

Dissolution in 
Ajisawa’s solution

Dialysis  
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Rotary
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4.2.1.3. Electrophoretic Mobility Measurements 

 
Measurements were performed with Zeta-Sizer (Malvern Ins.) apparatus. The 

biopolymer dispersions were injected using a plastic shringe into a quartz-measuring 

cell containing two electrodes. Three experiments (and three runs per experiment) were 

performed. 0.1 (w/v) % HA and SF dispersions were prepared with 10-3M KCl solution.  

 

4.2.2. Part II. Preparation & Characterization of SF-HA Complexation 

 
All experiments based on silk fibroin – hyaluronic acid complex coacervation 

was studied in salt free systems since it has been reported that salt has a screening effect 

on the ionic interaction between the two polymers constituting a binary polyelectrolyte 

system (de Kriuf et al. 2004, Weinbreck et al. 2003a). The analyses were performed at 

room temperature since variations in temperature does not influence the coacervation 

which also signifies that complexation does not include a strong contribution of 

hydrophobic interactions (Kaibara et al. 2000). 

 

4.2.2.1. Turbidimetric Analysis 

 
As a simple method to evaluate biopolymer complexation between SF and HA, 

turbidity of the mixed solution was measured at varying total biopolymer concentrations 

(0.1-2.5 wt%) and biopolymer ratios with respect to pH. The pH of the mixture was 

measured with WTW pH-meter (Inolab) equipped with a Sentix 41 pH electrode, which 

was calibrated with pH 7 and pH 4 buffers. Initially, the pH of the mixture was adjusted 

to pH 5.4 by 0.1 M NaOH. The turbidity of the solution was measured as a function of 

pH by titrating with 0.1 M NaCl with gentle magnetic stirring. Prior to each 

measurement, acid tirated mixture (30 ml) was stirred until the preset pH level was 

reached to a constant value. Then, the mixture was dispensed to the special glass bottles 

of the turbidimeter. The turbidity of the SF-HA mixtures was then monitored by using 

HACH 2100AN turbidimeter.  
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4.2.2.2. Conductometric Analysis 

 
Conductometric analysis were carried out to get additional information about 

complex formation between SF and HA through changes in conductivity of the system. 

All measurements were performed with WTW Cond 340i conductometer set with a 

probe of TetraCon 325 at room temperature (∼25 °C). In order to avoid changes in pH 

during titration both protein and polysaccharide solutions were adjusted to the same pH 

level (3.0). The pH level was selected with respect to the results of turbidimetric 

titration measurements. A volume 40 ml HA solution (0.5 wt%) was titrated by adding a 

solution of 1.0 ml SF solution (2.0 wt%) as the titrant. The system was continuously 

stirred, and after each addition the conductivity was measured and recorded as a 

constant value was reached. On the other hand, pH of the system was also checked 

frequently.  

 

4.2.2.3. Gravimetric Analysis 

 
The gravimetric yield studies were based on the study of Barbani et al. (1999). 

Six sample mixtures were prepared by adding 3 ml (0.3 wt%) HA to each and varying 

the SF volume added between 0.5 – 7 ml. The final volume in each tube was brought to 

10 ml by addition of deionized water at the selected pH. pH of the solutions were 

adjusted by 0.1 M HCl while being stirred in a 25 ml beaker.  Then the mixtures were 

dispensed into test tubes and centrifuged at 3000 rpm for 1 hr. Same procedure was 

applied for pure fibroin and HA solution. The supernatants were analysed by Shimadzu 

UV-1600 spectrophotometer with the absorbance measuring at 272 nm (specific 

wavelength for fibroin) and 229 nm (specific wavelength for hyaluronic acid) to search 

for the excess amount of each component. On the other hand, the phase-separated 

coacervates were washed twice with deionized water at the same pH of the experiment, 

dried and weighed. The amount of coacervate formation and separation was evaluated 

using the formula given below: 

Coacervation yield (wt%) = 
HAofweightSFofweight

eredcovrecomplexofweight
+

  (4.1) 

 

and it was represented as a function of SF concentration.  
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4.2.2.4. Viscosimetric Analysis 

 
Intrinsic properties of biopolymer solutions were measured using a Brookfield 

DV-III rotational Rheometer interfaced to a personal computer and driven by a software 

package supplied by the manufacturers. The range of the rotational speed was 4 - 163 

rpm. Shear rate was started from 5 s-1 and increased up to 200 s-1 with an increment of 5 

s-1. The data was collected at 5 seconds intervals as an average of the three simultaneous 

measurements. The viscosity measurements were carried out at room temperature 

(∼25°C) on 20 ml samples. Pure silk fibroin samples were 0.016 g/ml and hyaluronic 

acid samples with a concentration of 5x10-4 g/ml with respect to its viscous nature.  The 

viscosity of the complexes were measured for a total biopolymer concentration of 0.5 

(w/v) % at a SF:HA weight ratio of 32:1 and 16:1. The measurements were executed at 

three different pH values (7, 3.14 and 2.3) and repeated twice. 

 

4.2.3. Part III. Preparation and Characterization of SF-HA Films 

 

4.2.3.1. Preparation of SF-HA Films 

 
Regenerated silk fibroin (RSF) solution adjusted to desired concentration and 

sodium hyaluronate dissolved in water are mixed at a preset ratio. RSF is slowly poured 

on the HA solution. The order of biopolymer mixing was reported to be effective on 

complex formation and structure of the complexes formed. It was suggested that as the 

whey protein was added to the exopolysaccharide B40, a turbid dispersion was 

obtained, as if to each polysaccharide chain some protein were adsorbed (Weinbreck et 

al. 2003b). For this reason, addition of HA on SF solution was preferred to simulate the 

referred system and the opposite technique was also tested. 

The pH of the solution was concurrently monitored and the pH was adjusted to 

pH value between the pKa of HA and IEP of SF. The mixture was stirred for 4 hours 

and casted on polyethylene Petri-dishes (Diameter = 5 cm) at room temperature. In case 

of drug loading, the films were mixed for 2 more hours after drug addition. The casted 

films were dried at 20 °C and at 80% RH for the first 2 hours, 65% RH for the following 
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2 days in an environmental chamber (Angelantoni Industrie, Italy). The preparation 

conditions and type of the complexes were given in Table 4.1 below. 

 
Table 4.1. Detailed description of the preparation conditions of the complexes. 

Film 
Label pH R* Drying Condition Description 

F1 3.2 - 45°C, 65% RH Pure SF film 

F2 5.5 - 20°C, 65% RH Pure SF film 

F3 5.5 20 20°C, 65% RH SF-HA film 

F4 3.2 20 20°C, 65% RH SF-HA film 

F5 3.2 30 20°C, 65% RH SF-HA film 

F6 3.2 30 20°C, 65% RH SF-HA coacervate particles

F7 3.2 20 room conditions SF-HA film 

F8 3.2 - 20°C, 65% RH Pure HA film 

F9 3.2 20 20°C, 65% RH Drug loaded SF-HA film 
 R*: (SF:HA wt ratio) 

 

The dried films were stored in a desiccator at 10 °C until used to avoid 

contamination. The solubility of the films was controlled by immersing in deionized 

water and buffer solutions, whereas the thickness of the dried and swollen films was 

measured by an electronic digital micrometer.  

 

4.2.3.2. Swelling Measurements 

 
Swelling measurements were performed at 5 different pH values from 2.5 to 7.4 

at both 37°C and 50°C. After immersion in citric acid buffer at a desired temperature 

and pH, the film was taken from buffer solution, filter paper-dried by blotting to remove 

the absorbed water on the surface and then weighed immediately on an electronic 

balance. The film was repeatedly weighed and reimmersed in solution at predetermined 

pH and temperature until the hydrated weight reached a constant value. 

The swelling defined as, the weight of water uptake per unit weight of dried 

films (given by Eqn. 4.2) (Kim et al. 2005), was calculated by measuring the weight of 

swollen films until the weight changes within 1% of the previous measurement.  
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Swelling (%) = 100×
−

d

ds

W
WW   (4.2) 

 
Where Wd is the weight of the dry film and Ws is the weight of the swollen film. 

Each swelling experiment was repeated three times and the average value was taken as 

the percentage of swelling value.  

 Cyclic pH-responsive swelling tests were performed at preset two pH levels, 2.5 

and 7.4, where considerable alterations in swelling can be observed. The films were 

exposed to solutions at pH 2.5 and 7.4 for 30 min and the cycles were repeated for 5 

times.  

 

4.2.3.3. Material Characterization 

 
Complexes precipitated in aqueous solutions (F6) and the homogeneous films 

casted from the complex mixtures (F4, F5), as well as the coacervate formation, were 

characterized by instrumental analysis techniques. 

Thermal analysis of SF-HA coacervates and complex films were determined by 

a differential scanning calorimeter (DSC) (Schimadzu DSC-50) in the 25 – 450°C 

temperature range at a scan rate of 10°C/min using stainless-steel pans under nitrogen.  

Scanning Electron Microscopy (SEM) (Philips XL 30S FEG) analyses were 

performed to show the morphological changes in the membranes. The films were coated 

with gold-palladium by Polaron SC 7610 Sputter Coater prior to imaging. The porosity 

and the roughness of the films were determined by Atomic Force Microscopy (Digital 

Instruments MMAFM-2/1700EXL). The contact mode was used and 10 and 50 µm 

scales were used for the area scanned.   

The changes in the crystalline state were monitored by X-ray diffractometer 

(XRD) (Philips X’pert Pro) with CuKα radiation for 2θ from 7 to 70°. 

Fourier Transform Infrared Spectroscopy (FTIR) analysis was carried out in the 

spectral region of 700-4000 cm-1 using an FTIR spectrophotometer (Digilab FTS 3000 

Mx) equipped with ATR diamond cell accessory.  
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4.2.4. Part IV. Permeability and Release Studies 

 

4.2.4.1. Choice of the Model Drug 

 
Timolol Maleate (TM) is a nonselective beta-adrenergic blocking agent that is 

used in the management of hypertension, angina pectoris, myocardial infarction and 

glaucoma. It undergoes extensive first-pass metabolism and its elimination half-life is 2-

2.6 h. TM (pKa=9.21) exists as predominantly charged ions (98.45%) at pH 7.4. 

Molecular structure of TM was given in Figure 4.2. It was demonstrated that 

transdermal delivery of TM would avoid first-pass metabolism after oral administration 

and would improve the bioavailability of the drug (Kanikkannan et al. 2001).  

 

 
 

Figure 4.2. Structure of timolol maleate salt 

(Source: WEB_6 2005). 

 
Timolol was chosen as a model drug because it is transdermally well tolerated in 

humans, it permeates through human skin (Kubota et al. 1991), and it has suitable 

chemical properties (weak base, pKa≈9.2, adequate lipophilicity) for transdermal 

administration (Sutinen et al. 1999).  

 

4.2.4.2. Drug Permeation Tests 

 
 The permeability of the model drug, timolol maleate, through SF-HA complex 

films was measured at pH 2.5 and 7.4 at 37°C by a modified diffusion-vessels method 

(Yoshizawa et al. 2004). The system used in this study was schematically represented in 

Figure 4.3. Initially, the bottle cap of a smaller vial (20 ml) was punched and the film 

was placed between the cap and the packing material. Then this smaller vial, which 
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constituted the donor, was filled with drug solution. The vial was firmly capped with the 

punched cap, tested for any leakage for 2 hours, and then placed into a larger vial (180 

ml) (receptor). The larger vial contains the buffer solution and shaken at 100 rpm to 

eliminate a boundary layer effect. Except the packing, no support material was used 

since the films were mechanically strong in wet state.  

 

 

Figure 4.3. Vial-in-vial permeation testing system. 

 
The initial donor concentration was 2.0 g/dm3 and the effective surface area for 

flux was 1.5 cm2. The pH of the donor and the receptor solutions were adjusted to the 

same pH level with high precision. The aliquots (0.2 ml) were taken with 1-hour 

interval and UV-spectroscopy (Shimadzu, UV-1601) was used to measure the 

concentration of the drug in the receptor solution at 294 nm wavelength. 
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4.2.4.3. Drug Permeation and Release Tests:  

Passive vs. Iontophoretic Delivery Applications 

  
A schematic drawing of the experimental set-up for the iontophoresis 

applications is given in Figure 4.4. The set-up primarily consisted of a diffusion cell, the 

Iomed iontophoretic drug delivery device used as the power supply and the UV visible 

spectrophotometer with the in situ flow cell installed. Phosphate buffer saline ([NaCl] = 

0.1 M) at the physiological pH 7.4 was used as the acceptor fluid. The flow of the buffer 

solution (approximately 2 ml/min) through the diffusion cell was provided by a 

peristaltic pump.  

 

 
 

Figure 4.4. Iontophoretic drug release set-up.  

 
 A custom-made diffusion cell, schematically shown in Figure 4.5, was used 

within the system. This cell includes two polytetrafluoroethylene (PTFE) parts joined 

end to end and an o-ring in between. The membrane is sealed with two gaskets and 

fixed in the middle as the parts are joined and externally squeezed. Silver/silver chloride 

disc electrodes (Diameter = 1 cm) were used during the experiments to prevent 

electrolysis of water. The silver electrode was placed in the anodal compartment and the 

silver chloride electrode in the cathodal compartment.  
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 The design of the cell enables the in situ analysis of amount of the drug 

delivered to the receptor solution. This was achieved by designing a small volume for 

the receptor chamber, which is 4.2 ml. The diameter of the opening between the 

compartments is 13 mm, which gives an active membrane are of 3.2 cm2. The design of 

the cell ensures an undisturbed laminar flow in the receiver side and mixing was not 

required.  

 

 
 

Figure 4.5. Custom-made diffusion cell for iontophoresis applications.  

 
The upper chamber, having a volume of 5 ml, was filled with PBS or drug 

dissolved in PBS for release studies or permeability studies, respectively, via injection. 

As the experiment started, the PBS solution was pumped through the receptor chamber 

and then passed through the flow-cell installed in the UV visible spectrophotometer, 

which was connected to a computer. The data was recorded and monitored by the use of 

software. The effluent leaving the flow-cell was collected in a beaker. 

 Maximum current density applied was 0.5 mA/cm2, which has been reported as 

the maximum acceptable density for the iontophoretic transdermal delivery producing 

minimal skin damage and irritation (Van der Geest et al. 1998).  

Air Purge 

Donor 
compartment 

Receptor 
compartment 

Membrane

Anode 

   Cathode 

To power supply

To power supply

Blank 
PBS 
IN 

Used 
PBS 
OUT 



 
52

CHAPTER 5 

 

RESULTS AND DISCUSSION 

 
5.1. Part I. Properties of the SF and HA Dispersions 

 
Silk fibroin (SF) aqueous solution was obtained by the dissolution of degummed 

silk fibers in high strength aqueous salt solution of CaCl2 at the amounts proposed by 

the Ajisawa’s method. Eventually, aqueous fibroin solution was obtained by dialysis 

process following dissolution. It has been known that treatment with high salt 

concentration of salt solutions results in smaller polypeptide chains. For this reason, 

molecular weight of the fibroin solution prior to regeneration was investigated. 

 Silk fibroin presented a polydisperse molecular weight distribution. Size 

exclusion chromatography analysis of the various SF solutions showed that the average 

molecular weight of the prepared SF solution was 90 kDa, with a maximum of 240 kDa 

and minimum of 16 kDa. In literature, the results of SDS-PAGE analysis of native 

fibroin from silk glands was given and clear protein bands having molecular masses of 

350 and 25 kDa were obtained by Yamada et al. (2001). The polydispersity in the 

results with the knowledge of the molecular mass of the native silk fibroin denoted that 

the native fibroin molecule degraded into a mixture of polypeptides of various sizes 

during the preparation of the fibroin solution.   

The pH of the prepared aqueous fibroin solutions (10 wt%) were in the range of 

6.2 - 6.7. In the study of Kim et al. (2004), it has been reported that fibroin solutions 

prepared with LiBr resulted in a pH range of 6.5-6.8, whereas the solutions prepared 

with Ajisawa’s method by the use of CaCl2, had the pH values within the range of 5.6-

5.9 due to formation of fibroin cluster by the Ca2+ ions. Relatively higher pH range 

obtained showed that Ca2+ ions could be excluded from the solution medium before the 

formation of ion bridging induced by this divalent ion.  

Prior to complexation experiments, electrophoretic mobilities (µe) of the two 

biopolymers were investigated in order to predict the most appropriate region for the 

formation of the electrostatic complexes (Figure 5.1). The µe of the hyaluronic acid 

(HA) was negative during all analysis and increased with increase of pH, i.e.  -3 e.m.u. 
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at pH 3.08 vs -4.5 e.m.u. at pH 5.01. The pKa value of hyaluronic acid was determined 

as 2.5, which was compatible with the pKa value of the carboxyl groups that was 2.5, 

but lower than the reported pKa value of HA, which was given as 2.9.  
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Figure 5.1. Electrophoretic mobility of 0.1 wt% biopolymer dispersions at 20°C. 

 

  µe of silk fibroin decreased by increasing the pH (5 e.m.u. at pH 2.97  to -0.1 

e.m.u. at pH 3.93). The variation of µe was dependent on the charge balance between 

the amino and carboxyl groups carried by fibroin. A zero value was obtained around pH 

3.9, which indicated the isoelectric point (IEP) of the prepared SF sample. In literature, 

it has been given within the range of 3.8 - 4.2. According to these measurements, strong 

electrostatic interactions between the two biopolymers should be effective in the         

2.5 - 3.9 pH window, where the µe of biopolymers are of opposite charge.  

 

5.2. Part II. SF-HA Complexation 

 
Studies on complex formation between SF and HA were based on the effect of 

pH. As the pH of the medium strongly affects the charge density of the biopolymers, it 

determines the strength of complexation. In this part of the thesis, the pH-window of 

complexation has been established using turbidimetric, gravimetric, conductometric and 
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viscosimetric analysis as well as macroscopic observations. On the other hand, the 

influence of total biopolymer concentration (Cp) and the ratio of the two biopolymers   

(R = SF:HA weight ratio) on complexation have been shown. 

 Electrophoretic mobility studies represented in the previous section showed that 

silk fibroin is in the protonated form, positively charged, below pH 3.9, wheras above 

the pH 2.5 hyaluronic acid is in the deprotonated form, and hence negatively charged. 

For this reason, complex coacervation was expected between these pH values. 

  

5.2.1. Turbidimetric Titration under Acidification 

 
Turbidity is proportional to both the molecular weight and the concentration of 

the particles in a system. Therefore, turbidimetric analysis presents a powerful 

technique in monitoring the formation of coacervate complexes. Turbidimetric titrations 

were performed to obtain qualitative information about the interaction of SF and HA. 

The mixtures of SF and HA showed good compatibility when mixed and a 

transparent solution was obtained with no precipitate formation above the pH of 5. 

Turbidimetric curves of the acid titrated SF-HA mixtures were shown in Figure 5.2 and 

Figure 5.3 in terms of NTU (Nephelometric Turbidity Unit) vs. pH. These figures 

revealed that complexation between SF and HA were in the favor of the proposed pH-

window.  

Figure 5.2 represented the titration curves of SF and HA mixtures for the Cp’s of 

0.5 wt% and 2.5 wt% at constant SF:HA weight ratio (R) of 32:1. At pH > IEPSF, both 

SF and HA are negatively charged and hence repulsive Coulombic forces prevented the 

complexation. This showed that biopolymers were soluble in the mixture and the system 

exhibited a blend of two biopolymers miscible in each other. In this region the turbidity 

was constant and low comparable to those of the pure biopolymer solutions. Further 

decrease of the pH led to the increase in turbidity. All curves illustrated that turbidity 

represented a gradual increase until a certain pH value as the pH of the mixture 

approached to the isoelectric point of fibroin (IEPSF = 3.9). The very first small 

variations in turbidimetric signals in a polyelectrolyte mixture were considered as the 

pHc (pH critical) as the formation of primary soluble intrapolymeric complexes by 

numerous researchers. This variation was seen within the pH range of 4.5 - 6. However, 

these small variations can be more clearly seen by light scattering (Weinbreck et al. 
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2003a), as it occurs on the molecular level. The possibility of such variations above IEP 

of the protein, on the wrong side of the IEP, was attributed to the existence of a local 

protein domain forming a charge patch with an effective charge opposite in sign to net 

protein charge (Grymonpré et al. 2001). Around pH 3.5 a strong increase in system 

turbidity was observed and this point was generally symbolized as pHφ, coacervate 

formation pH (Turgeon et al. 2003). This significant increase in turbidity indicated the 

aggregation of the intrapolymeric complexes giving rise to coacervation, but not the 

beginning of phase separation.  

These observations were in the favor of the formation of electrostatic complexes 

between the two biopolymers and can be confirmed by the sharp increase of the 

turbidity values of the dispersions as the protonated amino groups of the protein 

associated with the deprotonated carboxyl group of the polysaccharide.  
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Figure 5.2. Turbidity of pure SF (▲) and HA (●) solutions; and SF-HA system as a 

function of pH for Cp=0.5% (○) and Cp=2.5% (□) with SF:HA ratio of 

32:1.  

 
The curves overlapped differing only by their intensities by the existence of 

small pH shifts and they showed a peak around pH 3.0. This revealed that complex 

coacervation was independent of total biopolymer concentration as reported by 
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Weinbreck et al. (2004). As demonstrated in earlier studies, total biopolymer 

concentration only influenced the amount and probably the size of the complexes 

formed. On the other hand, during turbidimetric titration analysis it was recognized that 

there was no coacervate formation below Cp of 0.1 wt% (results not shown here), which 

simulated the co-soluble highly diluted case for this system.  

The curves were symmetrical and initial turbidity values reached through the pH 

of 2.5. It was also observed that the maximum turbidity levels reached with an abrupt 

elevation with small increases in the total biopolymer concentration.   

Acidic titration was carried out after monitoring of pH dependent maximum 

complex formation to check whether the aggregated complexes were reversible. 

Turbidity decreased as the dissociation of the carboxyl groups was suppressed, and 

hence the interactions between the biopolymers were weakened. The elevated turbidity 

values was seen due to complex coacervation pH values even lower than 2.9 (reported 

pKa of HA). This was attributed to lower pKa value (2.5) of the carboxylic groups 

(COO¯). Eventually, all coacervates dispersed spontaneously into soluble complexes. 

The final turbidity values were similar to that of the soluble complexes formed prior to 

coacervation. Therefore, one can conclude that the formation/dissociation of the 

aggregated complexes were reversible.  
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Figure 5.3. Turbidity of SF-HA system as a function of pH for SF:HA ratio of 32:1 (○) 

and 16:1 (∆) for Cp=0.5% . 
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On the other hand, as represented in Figure 5.3, as the SF:HA ratio was 

decreased, the maximum turbidity signifying the concentration and the molecular 

weight of the coacervates also decreased, which showed that SF was the limiting 

biopolymer for the coacervation. Moreover, the pH value where the maximum turbidity 

was obtained shifted to lower pH values, since fewer SF molecules were available per 

HA chain and a more acidic pH was necessary to provide more positive charges on SF. 

Therefore, charge compensation and stabilization and hence aggregation of the 

coacervates could be established by further protonation and resultant increase in the 

electrophoretic mobility of protein at lower pH levels for lower SF:HA ratio. 

Consequently, the pH at which the maximum complexation was obtained increased 

when the SF/HA ratio was increased.   

All the curves exhibited similar trends, with maximum turbidity around pH 3.0, 

which reported as the charge neutralization of the coacervates. Consequently, by 

turbidimetric titration, the complex coacervation between SF and HA was observed 

around the pH range of 2.5 - 3.5 as expected. The results showed that there occurred a 

pH-dependent two-step increase and symmetrical decrease of turbidity in the 

biopolymer mixture, pronounced as complex coacervation, and this was dominantly due 

to an electrostatic interaction between the SF and HA as given in Eqn. (5.1) below.  

 

               [HA-COO−] + [SF-NH3]  [HA-COO−] [NH3
+-SF]             (5.1) 

 

During the whole pH range turbidimetric analysis was performed, HA solution 

did not exhibit any change in turbidity. However, there was a slight increase in the 

turbidity of the SF solution around the isoelectric point. This was accepted as a typical 

behaviour of proteins since they aggregate around their isoelectric point as a result of 

charge neutralization.  

Complex coacervation could also be evidenced by naked-eye observations by the 

whitening of the biopolymer mixture as shown in Figure 5.4. At pH 7.12, the mixture 

was transparent, where there observed a change in the solution color as the pH was 

decreased and finally at pH 3.3 it was translucent with a white color. The centrifuged 

sample, which had a pH of 3.3, presented the complete phase-separation. Both phases 

were homogeneous. 
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Figure 5.4. Formation of soluble and insoluble complexes with respect to pH. 

 
Centrifugation was applied since settling of the coacervates was very slow. It 

was indicated by the study of Weinbreck et al. (2004)  that coacervate droplets settle 

down faster if they are fully charge-balanced than if some residual charges are present. 

The prepared SF:HA mixture at pH 3.0 was in excess of HA, therefore SF was in 

insufficient quantity and it could not totally compensate the negative charges of the HA. 

For this reason, a surface layer of HA stabilized the coacervates as the case reported for 

β-lactoglobulin and acacia-gum by Sanchez et al. (2002). The stabilization of the 

coacervates inhibited the interactions between coacervate droplets, and rearrangement 

of the coacervates was needed that resulted in longer time to settle down.  

 

5.2.2. Titration of HA by SF: Conductometric Monitoring 

 
To get more insight into complex coacervation of SF and HA, HA was titrated 

with SF at pH 3.0, where maximum coacervation was established in turbidimetric 

analysis. The response of the system to SF titration was analyzed in terms of 

conductivity (mS/cm) of the system vs. added amount of SF (ml).   

The conductometric curve, shown in Figure 5.5, showed a certain decrease and 

at a point change in the slope. Obviously the conductivity approached a constant value 

as the complexation proceeded. The decrease of the slope revealed that the complex 

formation began to form when the titration begins and the amount of formation 

increased during the titration procedure through the formation of intermolecular 

polyelectrolyte complexes through reversible transient ionic bridges. Instant turbidity 

formation after each addition of SF solution, but abrupt disappearance of the whitening 

pH = 3.3
turbid 

pH = 3.3 
phase separated 

pH = 4.85 pH = 7.12 
transparent 
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by stirring supported this approach. Thus, the initial sharper slope can be explained by 

the efficient pairing of active groups on SF and HA, which was partially and most 

probably regionally avoided and screened by existence of counter ions in the solution. 

On the other hand, coacervation may be also avoided because of the low energetic 

interest of the biopolymers in one phase due to high excess of HA. Consequently, the 

regular ionic crosslink between the monomeric units of the both polyion was interrupted 

because the monomer polyions cannot come to the mutual position as reported by Acar 

and Tulun (1996). 
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Figure 5.5. Conductometric titration at pH 3.0. 

 

By the SF addition proceeded, the critical size/charge ratio was reached, where 

coacervation started as the polyions rearranged themselves with a different coiling 

mechanism for an efficient pairing active groups due to stronger ionic interaction and 

higher affinity of the biopolymers. Thus, the slope of the curve changed, at which point 

the mixture also became translucent, as the effect of counter ions was overcome and so–

called microgel clusters formed trough cooperative coupling. This was also consistent 

with the knowledge of the screening effect of the ions on complex coacervation by 

addition of salt (de Kruif et al. 2004).  

The formed coacervate clusters were negatively overcharged due to residual 

charges on HA chains. Therefore, as more SF was added after the critical value, HA was 

buried within the ionic crosslinks. Thus, the conductivity reached to a certain value by 

further charge stabilization of the formed regular crosslinks.  
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On theoretical basis, SF carries 0.12 mmol amino groups and HA carries 2.5 

mmol carboxyl groups per gram. As shown in conductivity vs. added SF plot, around 45 

ml the plot showed a change in slope. This corresponded to a charge ratio (COO-/NH3
+) 

of approximately 5, which can be assumed as the required critical charge ratio for the 

coacervation to start. It has been observed during several runs repeated that as the pH 

was decreased, the required amount of SF decreased up to five times and the 

coacervation occurred more abruptly. This was attributed to the increase in the fraction 

of the protonated amino groups, and the decrease in the fraction of the deprotonated 

carboxyl groups at lower pH values.  

 

5.2.3. Gravimetric Analysis 

 
 The yield and stoichiometry of the SF-HA coacervation was investigated by 

gravimetric analysis. Figure 5.6 represented the yield of complex formation with respect 

to SF amount in the complex mixture. As the initial SF:HA ratio was decreased, the 

coacervation yield decreased. The gravimetric analysis showed that maximum amount 

of precipitate obtained was close to 30%. This revealed that there existed an optimum 

SF:HA ratio ratio as well as an optimum pH for maximum amount of coacervate 

formation, where a large volume of highly concentrated polymers would be obtained. 

On the other hand, the UV analysis of the supernatants showed that there was high 

excess of both polymers that not incorporated in coacervate formation. This can be 

attributed to excess amount of HA employed to the system, smaller peptide chains of SF 

and the soluble complexes formed by the small peptide chains of SF and HA. It was 

reported that efficiency of coacervation was affected by the molecular weight of the 

protein and the polymers of smaller molecular weight formed smaller intrapolymer 

complexes of higher solubility (Wang et al. 1996). 
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Figure 5.6. Coacervation yield (%) vs. SF (g) in the complex mixture.  

 
The repeated gravimetric analysis showed that coacervate formation was also 

affected by the stirring time of the coacervate mixture. On the other hand, the trials for 

the contribution of higher amounts of SF in the biopolymer mixture did not permit the 

phase separation of the coacervates to achieve higher coacervation yields. It has been 

reported that when biopolymer concentration exceeds a critical value, biopolymer 

become limitedly co-soluble. The reason was shown as the large size and the rigidity of 

biopolymer molecules. Therefore, the entropy of mixing of biopolymers was several 

orders of magnitude smaller than that of the monomers. It was reported that biopolymer 

incompatibility may occur even the corresponding monomers were miscible in all 

proportions. Biopolymer incompatibility was observed between SF and HA biopolymer 

mixture when the concentration of SF exceeded 3 wt%. In literature, this value changed 

within the range of 2 – 12 wt% biopolymer concentration with respect to the charge 

density and the structure of the protein whether it is globular or fibrous (Tolstoguzov 

2003).  

Coacervate phase recovered from the complexation system was dried and 

weighed. The amount of coacervate formed with respect to ratio of available amino 

groups per carboxyl groups in the system was shown in Figure 5.7. By the addition of 

extra positive binding sites, the coacervate amount increased exponentially, since higher 

amounts of HA could be bound to protein chains. This exponential increase could be 

explained by the much higher molecular weight of HA. As the active binding sites were 
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increased, contribution of a larger molecule to the coacervate cluster was induced, 

resulting in a dramatic increase in the coacervate formation. 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.5 1 1.5 2 2.5 3

[NH3
+]/[COO-]

C
oa

ce
rv

at
e 

(g
)

 
Figure 5.7. Coacervate (g) recovered from the complex mixture vs. ratio of the charges 

of the biopolymers at constant pH. 

 
The observed increase in coacervate amount after 1:1 pairing of the charged 

groups and the abrupt increase in coacervate amount showed that coacervation is a very 

flexible system. The system is capable of adapting its chain conformation and charge 

distribution by shifting the dissociation pH values of the charged groups to maintain the 

overall charge balance of the system. Similar case was observed in the system of whey 

protein/gum arabic coacervates (Weinbreck et al. 2004). It was reported that higher the 

initial protein to polysaccharide ratio, higher the ratio of the protein to polysaccharide in 

the coacervate phase regardless of the pH. It was unexpected since the biopolymers 

were mutually charge balanced at each pH with respect to protein polysaccharide ratio. 

Therefore, one can conclude that the complex formation betweeen SF and HA exhibited 

a non-stoichiometric behaviour, which is also the case for similar protein-

polysaccharide systems.  

Furthermore, the supernatant pH was lower than the initial adjusted pH level of 

the complex system at the end of the settling of the coacervates. The decrease in pH can 

be explained by Eqn. (5.2) similar to the chitosan-hyaluronic acid system (Lee et al. 

2003), if it was assumed that the pH of the supernatant was only induced by the 

presence of an excess acid extracted during the formation of the complexes. 
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        [HA-COOH] + [SF-NH3
+]  [HA-COO−] [SF-NH3

+] + [H+]      (5.2) 
 

According to Eqn. (5.2), the protons separated from carboxyl groups moved to 

the supernatant solution during the formation of the coacervates as the HA 

deprotonated. Since at the pH level adjusted, the dissociation of the carboxyl groups is 

constant, this showed that HA was incorporated into the system excessively. This also 

indicated the non-stochiometric behaviour of the system. On the other hand, during acid 

titration of the system (especially at the beginning of coacervation), before reaching a 

value, the pH of the homogeneous (not phase-separated) coacervate mixture showed an 

increasing trend. This increase can be explained by the Eqn. (5.3) below 
 

     [HA-COO−] + [SF-NH2] + [H+]  [HA-COO−] [SF-NH3
+]       (5.3) 

 

Most carboxyl groups were in the deprotonated state just below the isoelectric 

point of fibroin. However, the amino groups of fibroin is in -NH2 form. Thus, as the pH 

of the system was adjusted to a pH level, this level showed positive deviations as the 

amino groups were protonated. This may also lead to a conclusion that the response of 

the hyaluronic acid to titration, thus deprotonation was faster that the protons released 

by the deprotonation of carboxyl groups did not compensate this deviation.   

The induced conformational and structural change of the coacervate phase by 

the incorporation of the biopolymers in excess amounts also indicated that the 

biomaterials as various processed forms of the complex coacervates such as films, 

matrices can be prepared with differing diffusion and barrier properties.  

 

5.2.4. Viscosimetric Analysis 

 
 The viscosity measurements aimed to investigate the compatibility of the 

polymers in the mixture and the association between forming the interpolymer 

complexes in solution. If the viscosity, concentration, and weight fractions of the 

polymers are known, the following equation constituting the additivity rule of the 

biopolymers can be established (Lee et al. 2003): 
 

         )/()/()/( 222111 cwcwc m ηηη +=                   (5.4) 
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where subscripts (1) and (2) refer to SF and HA, respectively; c is the total biopolymer 

concentration; w1  and w2 are the weight ratios of the corresponding two biopolymers in 

the mixture; η1/c1 is the dynamic viscosity of SF at concentration of c1; and η2/c2 is the 

dynamic viscosity of HA at concentration of c2.  

 
Table 5.1. Calculated vs. measured viscosity. 

 

pH R 
Calculated 

Viscocitya (cP)
Measured 

Viscosityb (cP) 
2.3 32 0.83 1.66 
2.3 16 1.20 1.87 
3.2 32 1.72 1.69 
3.2 16 2.82 1.63 
7.5 32 2.17 2.30 
7.5 16 3.82 4.53 

a: Viscosity calculated by Eqn. (5.4). 
b: Viscosity measured at room temperature. 

 
 
 Measured and calculated viscosity values of SF-HA mixtures at varying weight 

ratio (r) and pH was given in Table 5.1. The results indicated that within the pH window 

for complex formation viscosity of the mixtures showed a negative deviation from the 

calculated viscosity values by Eqn. (5.4). This was attributed to formation of a compact 

interpolymer complex. On the other hand, the positive deviation occurred outside this 

window, which was attributed to good compatibility and gel-like association between 

biopolymers by Lee et al. (2003). It was reported that the viscosity decreased by a 

drastic reduction of the two polyelectrolytes through complexation, and formation of the 

compact complexes. In the gel-like complexes, expanded complexes, the viscosity may 

increase (Lee et al. 1997).  

The viscosity of the SF/HA mixture, regardless of the total biopolymer 

concentration and the ratio of the biopolymers in the mixture, decreases at the pH of 

complex formation. It was demonstrated by Bungenberg de Jung (1929) that the 

decrease in viscosity before and during the actual complexation was induced by the 

reduction of the amount of liquid occluded inside the complexes. The decrease in 

viscosity of the polyelectrolyte systems and low viscosity close to the point of 

complexation was reported to be consistent with intrapolymer condensation.  
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Figure 5.8. Viscosity vs. pH for Cp=1.5% and SF:HA=32 ( ) ; Cp=0.5%  

and SF:HA=32 (▲); Cp=0.5% and SF:HA=16 (●). 

 
The effect of pH on the viscosity of the complexation mixture was shown in 

Figure. The viscosity measured at three pH levels (above, within and below the 

proposed pH window, 2.5 - 3.9, for complexation) were calculated as the average of the 

viscosity values recorded between the shear stress range of 40 - 200 cm-1. Larger 

variations below 40 cm-1, as seen in Figure 5.8, were excluded during calculations.  

The viscosity of the mixture decreased due to coacervate formation between the 

oppositely charged SF and HA around pH 3.0. Complex formation led to the shrinkage 

of the intrapolymer complex chains that decreased the viscosity of the system with more 

compact complex formation. The system turned into a colloidal dispersion from a blend 

of two biopolymers, which no more contributed their intrinsic viscosimetric properties 

into the system. Moreover, the viscosity of a dilute polymer mixture was expressed to 

be directly related to the size of the particles (Weinbreck et al. 2003b). Then one can 

conclude that the strongest and larger coacervates at higher amounts were formed at the 

minimum viscosity in relation with turbidimetric analysis.  
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Figure 5.9. Viscosity vs. shear stress plots of SF-HA complex mixtures at pH=3.0.  

The curves represent Cp=1.5% and SF:HA=32 ( ) ;Cp=0.5% and 

SF:HA=32 (▲); Cp=0.5% and SF:HA=16 (●). 

 
Rather lower viscosity of the Cp=1.5% and SF:HA=32 case may be attributed to 

more compact and higher yielded complex formation and the viscosity increase due to 

increase in pH was less pronounced. In case of Cp=0.5% and SF:HA=16, the higher 

values for viscosity was obtained due to higher excess of HA. This was attributed to 

much higher viscosity of HA as compared to SF solutions and also by selective binding 

of HA to the poorly flexible chains of SF to form a precipitate of the complex with the 

increased amount of HA. 

The complexation mixture systems showed a limited shear thinning behaviour 

below the shear stress of 10 cm-1 as shown in Figure 5.9. In combination with the 

previous findings, sharper curves indicated stronger electrostatic interaction between 

biopolymers. Moreover, the phase separated coacervate phase was highly viscous while 

leaving very dilute solution above. In literature, this was confirmed and the coacervate 

phase was expressed as viscous particle dispersion rather than a concentrated 

viscoelastic polymer solution (de Kruif et al. 2004).  
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5.3. Formation and Characterization of SF-HA Complex Films 

 
The complex mixtures, prepared at the proposed pH window (pH 2.5 - 3.5), 

casted and dried under controlled temperature and relative humidity resulted in 

homogeneous transparent films. The preliminary evaluation of the films was their 

solubility in water. The films immersed in both water and various buffer solutions were 

insoluble, whereas pure SF and HA films prepared exhibited fast dissolution in aqueous 

media. At each mixing ratio or mixing order, within the proposed pH range, insoluble 

complex films with differing yields were obtained regardless of 1:1 pairing of the 

charged groups or the weight ratios. Tsuchida et al. (1972) and Kabanov et al. (1980), 

respectively suggested that when one of the biopolymers was in high excess, or when 

the host polymer was dropped upon the guest polymer, coacervation did not occur, and 

this suggestion was opposed by Dragan et al. (1996). Formation of insoluble complexes 

even at high excess of one of the biopolymers was shown as a proof for a greater 

stability of the polyelectrolyte complexes obtained in these conditions and an argument 

for a tight structure that could be achieved. A similar result was obtained for the 

complex formation between chitosan and carboxymethylcellulose (Argüelles-Monal et 

al. 1990). The complex was insoluble irrespective of the mixing way and of the excess 

of the complementary polymers. However, the situation could differ for other protein-

polysaccharide systems with respect to charge density and molecular conformation of 

the biopolymers.  

The complex films underwent a color change in aqueous media; they turned to 

milky white as shown in Figure 5.10. Such a color change was not observed for the pure 

SF and HA films prepared and dried under same conditions. The-color changing 

phenomenon in complex films was related to aggregative state of two biopolymers by 

Wang et al. 1997, that is analogous to the color change of the biopolymer mixture 

during the aggregation of the intrapolymer complexes with respect to induced pH 

changes. When the pH reached a critical value at a specific biopolymer ratio and total 

biopolymer concentration, deprotonated carboxylic acid groups of HA associated with 

the protonated amino groups of SF, which led to the complexation of the SF and HA 

chains. The orientation probably caused the refraction change of the light, so the casting 

solution turned milky-white (Wang et al. 1997). As the films were casted and left to 

drying, the milky-white gradually disappeared and dry transparent yellowish films were 
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obtained. Upon exposition to aqueous environment, they regained the milky-white 

appearance due to the associated complexes in the film. 

 

 
 

Figure 5.10. Appearence of dry (a) and wet (b) insoluble SF-HA complex film. 

 
 Mechanical properties of the materials are of primary importance for 

determining the performance in case of varying stress conditions. The pure SF film 

displayed the typical behavior of brittle materials, as reported. On the other hand, SF-

HA complexes was effective in inducing only a slight improvement on the mechanical 

properties of SF films. As HA content increased, more flexible films at dry state were 

obtained. The films were much more flexible before washed and excess of HA was 

removed. During the parallel studies carried out, SF was crosslinked with EDC (1-ethyl-

(3-3-dimethylaminopropyl)carbodiimide hydrochloride), and SF-HA complex was 

enhanced by EDC. These studies also showed that as the amount of HA in the insoluble 

system was increased by the inducing effect of EDC, more flexible films were obtained. 

It was also reported that EDC also increased the flexibility of the crosslinked films 

(Bayraktar et al. 2005). Incorporation of EDC or plasticizer, such as glycerol can be 

applied to the system to enhance the flexibility on dry state, however, this thesis mainly 

focuses on pure SF-HA complexes. In wet state, SF-HA films were strong and flexible, 

applicable to further analysis.  
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5.3.1. Morphological Examination of the SF-HA Complex Films  

 
 Milky suspension of fine coacervates formed by the complexation of SF and HA 

casted and dried at 20°C and 65% RH. The resultant film was examined by scanning 

electron microscopy (SEM) and Atomic Force Microscopy (AFM). Insoluble SF-HA 

complex films (F4 and F5) had smooth surfaces with finely distributed roundish 

particles as shown in Figure 5.11. In other words, the films displayed so-called sea-

island morphology, which was also met in the SEM photographs of chitosan-alginate 

polyelectrolyte complexes (Freddi et al. 1999). 

 

 
Figure 5.11. SEM photographs of the SF-HA complex film magnified at 2000x (a) and 

15000x (b). 

 
Figure 5.12 (a), (b) and (c) represented the cross-sectional view of the SF/HA 

complex film (F4). The upper side of the film shown in Figure 5.12 (b) was porous 

exhibiting a network-like morphology whereas the lower side of the film had a dense 

characteristic, resulting in an asymmetric cross-section structure. The porous and dense 

sections were magnified (2 µm) in Figure 5.12 (b) and (c), respectively. This may show 

up due to settling of the coacervate particles with higher molecular weight on the lower 

side of the film while leaving the upper side of the film poor in coacervates that led to a 

loose network structure. Asymmetric cross-sectional morphology was only met for the 

case when SF:HA weight ratio was 20, which corresponded to 1:1 pairing of the charges 

in the complex. When this ratio was exceeded, films resulted in denser membranes with 

a symmetric cross-sectional view. This was attributed to faster settling of the 

a b 
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coacervates at higher mixing ratios. Above this ratio, more compact and strongly 

associated complexes may form, resulting in a denser structure. Dense layer particle size 

was around 55 nm and this layer had a colloidal microstructure. The thickness of the 

film shown in Figure 5.12 was 87 µm.  

 
 

 
Figure 5.12. Cross section images of SF/HA complex film with magnification 100x (a), 

porous (b) and dense (c) regions of insoluble SF/HA film (15000x). 

b 

a 

c 
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Figure 5.13. AFM images of SF-HA PEC film with height view (a), view of roughness 

analysis (b), deflection view (c) and 3D height view (d). 

 
SF-HA complex film (F5) was immersed in water for 1 day and the water was 

refreshed periodically to remove the excess amounts of biopolymers and dried again 

under controlled conditions. This resulted in porous film with a low roughness. Figure 

5.13 (a) showed the 2D height image and (d) 3D height image, whereas (b) exhibited 

the deflection image and (c) showed image transition for the roughness analysis of the 

air-surface of the film shown in Figure 5.13 (b). The formation of a porous structure and 

the resulting network seen was attributed to the removed HA from the complex. 

Unreacted excess HA had probably stabilized the complex coacervates at the upper side 

of the film as a filler. When the film was immersed in water, loosely resided HA 

dissolved in water creating channels (functioning as an excipient) in the biopolymer 

matrix. High amount of HA in the immersion solution also supported this suggestion. 

The average pore size of the films was 215 nm and the porosity was homogeneous 

c 

a b 

d 
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throughout the film with a narrow pore-size distribution. Mean roughness of the 50x50 

µm2 scanned area was 4.716 nm and for the 10x10 µm2 scanned area it was 3.697 nm, 

which were comparable. Drying caused height elevations (lighter colored areas) as seen 

in AFM images of all films, however apart from these elevations, the films had a 

smooth texture.  

 

 
 

Figure 5.14. SEM photograph of SF-HA complex films dried under  

controlled conditions (a) and at room temperature (b). 

 

Figure 5.14 represented the insoluble SF-HA complex film (F5) dried at 20°C 

and 65% RH (a) and the complex film (F7) dried at room temperature (b). F5 was 

insoluble and F7 was partially-soluble in water. Although same SF:HA weight ratio was 

employed to both films, F5 resulted in a dense homogeneous texture, whereas F7 

exhibited a rather loose and heterogeneous structure. This effect was also clearly 

observed on AFM images of the complex films dried at room temperature as shown in 

Figure 5.15 below. The formation of and the size of the complex coacervates was 

uneven, whereas the variation of the environmental conditions and relatively faster 

drying kinetics resulted in both macroscopic and microscopic cracks on the surface of 

the films. In this figure, both height (a, c) and deflection (b, d) images of the contact 

mode AFM were obtained to show these cracks on the scanned areas of 50x50 µm2 (a, 

b) and 10x10 µm2 (c, d). 

 

a b 
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Figure 5.15. AFM images showing the formation of cracks on the complex film dried at 

room temperature given as height image for 50x50 µm2 (a) and for 10x10 

µm2 (c); deflection image for 50x50 µm2 (c) and for 10x10 µm2 (d). 

 

On the other hand, no crack formation was observed on the film dried at 20°C 

and 65% RH (F4) (Figure 5.15 (a)). This was attributed to the gradual evaporation of 

water, permitting films to dry at a proper rate, which led to the formation of 

homogeneously sized and distributed complex coacervates resulting in continuous films. 

It was observed that drying conditions had a strong effect on the film formation and the 

resultant film properties. 

The SF control sample (F1) with silk-II conformation were compact and flat 

with a height of 0.582 nm, whereas the formation of complexes resulted in an average 

height of 39.55 nm on the surface of the SF-HA complex film (Figure 5.16 (a)). Pure SF 

sample exhibited densely packed small-sized grains (Figure 5.16 (b)). It was reported 

that β-sheet SF films may exhibit several types of morphologies such as small particles, 

a 

c d 

b 
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grains or nanofibrils (Putthanarat et al. 2002). The complex coacervates were seen as 

roundish grains which also confirmed that they were liquid droplets. The lighter areas 

showed high degree of aggregation of the coacervate droplets.  

 

 
 

Figure 5.16. AFM images of SF-HA complex film (a) and SF control sample with silk II 

conformation (b) dried under controlled controlled conditions. 

 

5.3.2. Thermal Analysis 

 
Differential scanning calorimeter (DSC) is one of the techniques that has been 

applied to study the molecular conformation of silk-based materials and hence their 

physical and structural characteristics. Figure 5.17 below represented the DSC curves of 

the films prepared at different conditions. 

The secondary structure of B.mori silk fibroin (SF) consists of the major 

conformation including random coils (silk I) and β-sheet (silk II). The following 

evaluation of the molecular conformation of SF did not differentiate between random 

coils and silk I structures. It was claimed that distinction between the silk I and random 

coil was impossible even from IR spectra (Asakura et al. 1985). For this reason, both 

conformations were shown as silk I.  

(a) (b)
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Figure 5.17. DSC curves of the films. Pure SF film-II (F1), pure SF film-I (F2), SF-HA 

blend (SF:HA=20) (F3), SF-HA complex film (SF:HA=20) (F4), SF-HA 

complex film SF:HA=30) (F5), phase-separated coacervate network (F6), 

coacervate film (F7), pure HA film (F8). 
 

The pure SF films, F1 and F2, were both prepared at pH 5.5, but dried at 45°C 

and 20°C, respectively. Due to heat treatment, F1 was water insoluble and exhibited a 

strong endothermic peak at 305°C, which was attributed to thermal degradation of SF 

film with silk II conformation. On the contrary, F2 film, which was water soluble, 

showed an exothermic peak around 225°C due to crystallization of the amorphous 

fibroin from random coil (silk I) to β crystals (silk II). The peak of thermal 

decomposition of F2 shifted to a lower temperature (285°C as shown by the dashed line-

F1 

F3 

F4 

F5 

F8 

F2 

F7 

F6 

a b 
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a) with less intensity, by the lower degree of molecular orientation when compared to 

DSC trace of the F1 with β-sheet (silk II) conformation. The peak positions were 

consistent with reported DSC traces of the silk-I and silk-II type fibroin (Xu et al. 2005, 

Um et al. 2001 and Gotoh et al. 1997). 

F3 represented the DSC trace of the SF-HA physical mixture prepared at pH 5.5 

with a SF:HA weight ratio of 20, which corresponded to 1:1 pairing of the charged 

groups on the biopolymers. During the preparation of this mixture, no turbidity was 

seen as naked-eye observation. F3 exhibited a very similar curve to that of F2 with silk I 

structure. An exotherm was seen at 225°C with a lower intensity and a narrower but 

higher intensity endotherm at 285°C. The appearance of the endotherm also showed that 

SF/HA blending did not introduce crystallization. No effect of HA was observed in this 

curve or either in other curves including HA, of which DSC trace was shown with F8. 

This was attributed to partition of HA in the mixtures in very small weight amounts. 

The only difference between the traces of the physical mixture of SF-HA and pure SF 

film with silk I structure was the appearance of a shoulder around 290°C (shown by 

dashed line-b). This was assigned to the formation of soluble interpolymer complexes 

above the isoelectric point of SF due to local positive charge patches. This was 

consistent with the obtained pH-window for the formation of soluble complexes in the 

turbidimetric analysis. On the other hand, preparation of SF-HA complex film at pH 3.2 

at the same weight ratio introduced the formation of silk II structure to F4. As soon as 

two materials were mixed, turbidity (white-milky appearence) was observed during the 

preparation of the complex mixture at the specified pH. The resultant SF-HA complex 

film exhibited silk II conformation, and thermal degradation endotherm did not shift to a 

higher temperature as seen in case of F1 with a positive shift of 20°C. On the other 

hand, the shoulder seen on F3  around 290°C was sharper in case of F4 was attributed to 

transition of soluble intermolecular complexes to insoluble intrapolymeric complexes, 

which resulted in insoluble SF-HA complex films. This shoulder turned into an 

endotherm at the DSC curve F5, which was also prepared at pH 3.2 but at higher SF:HA 

ratio of 30. This increase beyond 1:1 stoichiometry was consistent with previous results 

showing the rearrangement of the charge distribution of the coacervate complexes 

leading to higher coacervation yields. Therefore, as the SF:HA ratio increases, 

complexes with higher thermal stability was obtained due to more compact 

complexation with stronger ionic interactions.  
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F6 exhibited the DSC trace of the coacervate phase centrifuged, filtered and 

dried under controlled conditions. Prior to centrifugation, complex mixture was 

prepared at pH 3.2 with a SF:HA ratio of 30. This procedure resulted in particles 

resembling a network like structure. DSC curve of the coacervate phase showed a 

broader endotherm at 290°C, which supported the appearence of a new peak at this 

temperature attributed to SF-HA complexation. The complex mixture prepared under 

same conditions waited for a gravity-induced phase separation, which was established in 

2 hours without centrifugation and left drying at room conditions. DSC curve of the 

resultant coacervate film, which was partially-soluble, was shown with F7. The 

endotherm showing the thermal degradation of this film was very similar to that of 

soluble fibroin film with silk I structure (F2). However, the crystallization exotherm at 

225°C was not seen, and the endotherm showing the coacervate formation just appeared 

as a plateau. Another point was that macroscopic and microscopic cracks were observed 

on this film as given by the AFM images of this film. Formation of partially-soluble 

films with crack formation under specified conditions signified the effect of drying 

conditions. Partial insolubility of the film (F7) was attributed to silk I to silk II 

transition. 

The exothermic peak at 225°C given as a marker of silk I conformation 

disappeared in all films prepared at pH 3.2. Moreover, the thermal decomposition did 

not shift to a higher temperature, which shows higher thermal stability gained by silk II 

conformation, for these cases. This was attributed to pH-induced conformational 

transition of SF, which probably occured at a lower yield when compared with the 

intensity and decomposition temperature shifts between the DSC traces of F1 and F2. 

These observations revealed that SF/HA complex films did not induce a transition to β-

sheet conformation, and complexation increased the thermal stability by 10°C which 

may be concluded as the result of the specific interactions between SF and HA, whereas 

SF in the complex films underwent a transition to β-sheet by some degree.  
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5.3.3. X-Ray Diffraction Analysis 

 
The following X-ray diffraction (XRD) analyses were performed to get more 

insight into characterization of the SF-HA complex films. Figure 5.18 represented the 

XRD patterns of F1 (SF film with silk-II conformation), F2 (SF film with silk-I 

conformation), F4 (SF-HA complex film, r = 20), F5 (SF-HA complex film, r = 30) and 

F8 (HA film) as previously exhibited in DSC analysis. In the figure the DSC patterns of 

the films were placed in the order of increasing crystallinity.  

SF film with silk-I conformation (F2) showed a weak and wide pattern around 

2θ=20° with a spacing of 4.8 Å due to noncrystalline form as the typical characteristic 

diffraction pattern of amorphous silk fibroin (Saitoh et al. 2004). HA-film also showed 

up a very broad pattern around 2θ=35°. On the other hand, F1 showed a typical 

diffractogram of β-sheet crystalline structure, which had three diffraction peaks: a major 

peak at 17.4° and two minor peaks at 14.3 and 26.3°.   

The diffractograms of F4 and F5 showed that crystalline and amorphous phases 

coexisted  SF-HA complex films. F4 (r=20) showed lower crystalline peaks at 14.3, 

16.9 and 25.5° and weak and broad peak around 20° representing noncrystalline 

structure, whereas F5 (r=30) exhibited a new broad peak at 7.5°, three crystalline peaks 

at 14.4, 17 and 25.4° and a stronger and narrower peak at 20°. The peaks representing 

the crystalline phases had lower intensity with small shifts when compared to that of F1 

and the intensity diminishes as SF:HA weight ratio increased. Small shifts and untypical 

peaks may be caused by the shear forces being effective on casting and drying, giving 

rise to β-sheet characteristics. On the other hand, it was reported that the appearance of 

unknown peaks or spacings may be due to other types of conformations such as helical 

and β-turns or distorsions by the presence of conformers and/segments in which torsion 

angles deviate from those of silk-I or silk-II (Ayutsede et al. 2005). 
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Figure 5.18. X-ray diffraction patterns of SF film-II (F1), SF film-I (F2), SF-HA 

complex film (SF:HA=20) (F4), SF-HA complex film (SF:HA=30) 

(F5), HA film (F8). 

 
 

These findings denoted that complexation between SF and HA through ionic 

interactions reduced the crystallinity, which was induced by the lower pH values that 

favored the β-sheet conformation for SF. Similar behavior was seen for the chitosan-

gelatin polyelectrolyte complex (Yin et al. 1999). It was reported that the crystalline 

peaks appeared on the XRD profiles of the complex became weaker with increasing the 

gelatin content. The weakening of the crystalline peaks induced by increasing the 

protein content of the complex was attributed to strong interactions between gelatin and 

chitosan that led their good compatibility.  
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5.3.4. FT-IR Analysis 

 
Another instrumental technique, infrared spectroscopy (IR), was employed to 

determine the molecular conformation and orientation of SF-HA complex films. IR 

spectrum in the 1800-800 cm-1 range of control can be a fingerprint of prepared films 

since it contains various absorption bands related to different chemical and structural 

features of the prepared films. ATR-IR spectra of the SF-HA complex films, Figure 

5.19, showed small but still significant changes with respect to the SF control film, 

which was prepared at pH 3.2 to check the conformation transition observed in DSC 

analysis. SF-HA complex film was also prepared at 3.2, with a SF:HA ratio of 20, 

simulating the film shown as F4 in the previous analysis. The resultant pure SF film 

showed slow and partial dissolution in water compared to that SF film prepared at pH 

5.5.  

Amide I-IV bands are conformationally sensitive bands for polypeptides and 

proteins. Their intensity and position of these bands give information about the 

molecular conformation of the materials examined in IR spectrum. In amide I and amide 

II regions of the IR spectra of the films, instead of a single characteristic peak, bands 

were observed. In literature, amide I (-CO- and –CN- stretching) appeared to be in the 

region of 1655-1660 cm-1, amide II (-NH- bending) in the region of 1531-1542 cm-1 and 

amide III (-CN- stretching) at 1230 cm-1 were attributed to silk I conformation. On the 

other hand, the appearance of amide I in the region of 1620-1630 cm-1, amide II in the 

region of 1515-1530 cm-1 and amide III at 1240 cm-1 characterized the β-sheet 

conformation (Ayutsede et al. 2005, Freddi et al. 1999, Wang et al. 1997). The 

appearance of strong and broad peak of SF-HA complex film (c) at 1240 cm-1 

represented that the dominant conformation was silk I, when compared to the β-sheet 

dominant conformation of  SF control film (b) which showed 1231 cm-1 absorption 

band of the silk II conformation. On the contrary, SF-HA complex film, as well as the 

SF control film, represented absorption bands of 1637 cm-1 and 1508 cm-1 with 

accompanying peaks of 1654 cm-1 and 1540 cm-1. In addition, the appearance of 950 

cm-1 (-NH- stretching) absorption band on IR spectra of the complex film favored the 

existence β-sheet crystals. Consequently, IR spectra of the films showed that  SF-HA 

complex film, as well as the SF control film, comprised mixtures of silk I (α) and  silk II 

(β) type conformations and complexation did not introduce a positive effect on 
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crystallization; on the contrary, decreased the crystallinity which may enhance during 

drying. The pH-induced crystalline structure of SF was disturbed by formation 

associative compact structures and/or the crystalline phases may be buried into the 

complexes with respect to higher degree of hydrophobicity due to charge stabilization of 

the complexes and the β-sheet conformation. 
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Figure 5.19. ATR-IR spectra of the casted films; HA (a), SF (b); SF-HA complex film 

(c) and drug loaded SF-HA complex film (d). 
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In addition to all, even though new conspicuous peak did not appear, 

considerable increase in amide I, amide II, amide III bands and at 1410 cm-1 

corresponding to valency vibration of carboxylate ion and formation of a shoulder at 

1095 cm-1 corresponding to –C=O- stretching for the SF-HA film evidenced the 

complex formation between the amino groups of SF and carboxyl groups of HA.  

SF-HA complex film (F9), shown in Figure 5.19 (d), was loaded with the model 

drug, timolol maleate, and the characteristic IR spectra of the drug loaded film (d) 

exhibited the highest increase in intensity, which showed that drug molecules that were 

positively charged at the mixing pH probably formed linkages with the excess of the 

deprotonated carboxylic acid groups of HA. 

 

5.3.5. Swelling Tests 

 
The investigations on swelling ability of SF-HA films were carried out in the 

media of pH 2.5 - 7.4. The weight of the films increased rapidly and equilibrated within 

3 hours. The swollen membranes had the milky-white appearance during all swelling 

experiments. Figure 5.20 and Figure 5.21 showed the pH-dependent swelling kinetics 

for the SF-HA complex film (F4) at 37° and 50°, respectively. The films swelled more 

in alkaline condition and shrank in acidic condition regardless of the temperature of the 

salt-free phosphate buffer solutions. The relatively higher swelling in alkaline condition 

occured since the carboxyl groups on SF and the unreacted pendent groups on HA 

probably dissociated into carboxyl anion in alkali condition, which caused the ionic 

repulsion between anionic groups in the network resulted in the conformational 

stretching and the films swelled. On the other hand, the films shrank in acidic condition 

with respect to the coiled conformation owing to the ionic affinity.  
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Figure 5.20. pH-dependent swelling kinetics of the SF-HA complex film at 37°C. 

pH 2.5 (◊); 3.2 (□); 6.5 (○); 5.5(∆); 7.4 (•). 

 
The plots showed that the reason of swelling was mostly due to ionic repulsion 

of the pendent groups on SF since the swelling ratios above and below the IEP of the 

protein was similar and dissociation of carboxyl groups on HA would be completed up 

to these pH levels since it had a very low pKa value. In the region of 2.5 - 4, the 

carboxyl groups on SF are in the form of –COOH with the excess H+ ions present in the 

solution. As the pH increased, H+ ion from carboxyl group combined with OH- in alkali 

and the carboxyl groups dissociated into carboxyl anion.  

The pH value and the degree of dissociation calculated according to Eqn. (5.5) 

are shown in Table 5.2. pKa of HA was taken as 2.5 with respect to electrophoretic 

mobility measurements (Sutani et al. 2002). 
 

                  
110

1
)( +

=
− pHpKa

α         (5.5) 

 

 Degree of dissociation of the carboxyl groups on HA does not show any changes 

above the pH of 4 - 4.5, which confirmed that dissociation of carboxyl groups on HA 

mostly occurred within the pH window of 2.5 - 4.5. Thus, the alterations in swelling at 

alkaline pH were due to dissociation of the carboxyl groups of SF creating higher ionic 

repulsion with the existed negatively charged groups. 
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Table 5.2. Degree of dissociation for HA with respect to pH. 
 

pH α 
2.5 0.50 
3.2 0.83 
4.5 0.99 
5.5 1.00 
6.5 1.00 
7.4 1.00 

 
 In general, for the polyampholyte gels, there occurs a u-shaped swelling profile 

having a minimum around the IEP of the polyampholyte showing the interaction of the  

anionic and cationic units. Shrinking at neutral pH was described by the presence of 

excess amino groups. In our case, there observed only an increase in swelling with the 

increase of pH approving that the cationic units were already consumed through 

complexation with the dissociated units of the HA. Therefore, in all pH levels the 

complex membrane was negatively charged. On the other hand, higher charge density of 

HA caused swelling of the membranes even at highly acidic conditions. Minimum 

equilibrium swelling percentage was recorded as 68% at pH 2.5 and 37°C. 
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Figure 5.21. pH-dependent swelling kinetics of the SF-HA complex film at 50°C.  

pH 2.5 (◊); 3.2 (□); 6.5 (○); 5.5(∆); 7.4 (•). 
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Equilibrium swelling of the complex films was found to be independent of 

temperature as shown in Figure 5.22 below for all pH levels studied. This indicated that 

complex coacervates were surrounded and stabilized by the excess of HA through high 

yield of complexation. As a result, the water molecules was highly ordered around these 

groups at the temperatures examined. Temperature dependent swelling was reported for 

membranes mostly having hydrophobic moieties (Yoshizawa et al. 2004). 

 

60

70

80

90

100

2 3 4 5 6 7 8

pH

Eq
ui

lib
ri

um
 s

w
el

lin
g 

%

 
 

Figure 5.22. Equilibrium swelling percentages of the SF-HA complex films  

with respect to pH at 50°C (•) and 37°C (○). 

 
Table 5.3 represented equilibrium swelling (%) of the various types of SF-based 

films at 37°C based on the pH and ionic strength of the swelling environment. 

Minimum swelling was obtained for the pure SF films with silk-II conformation due to 

its highly rigid structure and no change in swelling was observed with respect to 

changes in ionic strength. Maxiumum swelling was obtained at 0.1 M NaCl 

concentration and pH 7.4 which was attributed to increase in ionic osmotic pressure 

generated from mobile counterions in the network. Further increase of the ionic strength 

of the medium up to 1.0 M NaCl decreased the swelling levels, which denoted the effect 

of high concentration of counterions may hinder the ionic interactions between the 

carboxyl groups lowering the elastic-retractive force exerted on the network due to ionic 

repulsion.  
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Furthermore, loaded SF-HA complex film exhibited lower degree of swelling, 

which was attributed to formation of stronger complexes during preparation of the films 

and this was consistent with IR analysis of F9 film. 

 
Table 5.3. Equilibrium swelling of various SF films with respect to pH  

and ionic strength. 
 

Film Label pH NaCl Conc. [M] Equilibrium 
Swelling Ratio (%)

SF-HA Film (F4) 10.0 - 86 
SF-HA Film  7.4 - 85 
SF-HA Film  6.5 - 84 
SF-HA Film 5.5 - 81 
SF-HA Film 3.2 - 70 
SF-HA Film 2.4 - 67 
SF-HA Film 7.4 0.1 95 
SF-HA Film 7.4 1.0 75 
Insoluble SF Film (F1) 7.4 0.1 53 
Insoluble SF Film 7.4 - 53 
Drug Loaded SF-HA Film (F9) 7.4 0.1 66 

 
In addition to all, complex films prepared with SF and HA were found to be 

highly resistant to both acidic and alkaline conditions even at elevated temperatures up 

to 50°C as no disintegration or disassociation was observed during the experiments. 
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Figure 5.23. pH responsive changes of water content in SF-HA complex films. 

  
Figure 5.23 shows pH responsive changes of the swelling ratio (%) in the SF-HA 

film. The biopolymeric film swelled at alkaline condition (pH 7.4) and shrank at acidic 

condition (pH 2.5). Expansion and shrinkage was repeatedly reversible in response to 

change in pH.  

In literature, numerous drug delivery systems based on swelling-controlled 

mechanism in response to variations in environmental conditions, e.g. pH, have been 

reported (Gupta et al. 2002).  The polymeric network mesh-size of these systems 

showed changes with swelling, which permitted or prevented the release of the drugs. 

Swelling experiments employed to SF-HA complex films showed the films responded 

to the variations in pH regardless of the changes in temperature, which represented that 

SF-HA complex films may be utilized in pH-responsive systems for intelligent drug 

delivery.  
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5.4. Drug Permeability and Release Studies 

 

5.4.1. Permeability of TM Through SF-HA Complexes 

 
The permeation of the model drug, timolol maleate (TM), through SF-HA 

complex film was studied in buffer solution at pH 2.5 and 7.4, at the minimum and 

maximum swelling conditions determined at the previous section, respectively. Figure 

5.24 showed the permeation behaviour of TM through SF-HA complex film (F4) at 

different pH media at 37°C.  
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Figure 5.24. Timolol maleate concentration in permeate through SF-HA complex film at 

pH 7.4 and 2.5. 

 
Overall equation for permeation of the permeation is given by Eqn. (5.6): 
 

     )( RD CCPJ −=          (5.6) 
 

where J is the overall flux; P is the overall permeation coefficient; CR is the solute 

concentration in the receptor vial at time t and CD is the initial solute concentration of 

the donor vial. 
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 Permeation of drugs was assumed to obey Fickian’s law. As such, permeability 

coefficients are determined based on the following Eqn. (5.7) (Li et al. 2002): 
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where VD and VR is the volume of the donor and receptor vial respectively (VR = 180 ml, 

VD = 20 ml), A  is the effective area of permeation (A=1.5 cm2). Thickness of the film 

was 200 µm. 

The evaluated permeabilities of the SF-HA complex films were 12.3x10-3 cm/s 

and 7.1x10-3 cm/s at pH 7.4 and 2.5, respectively. The results revealed that the direct 

correlation between the decreasing of the permeability (P), as shown in Figure 5.24, 

with the decreasing pH. The dependence of P on pH was explained by free volume in 

the film (Yoshizawa et al. 2004). In the systems having the swelling capability, the 

effective free volume is derived from the free volume of water, and the transport of 

solutes is presumed to permeate through the free-water region in the swollen film (Fang 

et al. 1998). As shown in Figure 5.24, SF-HA complex film swelled at higher rates at 

high pH. Due to the fact that the total volume of pores and channels in a unit volume 

increases, the amount of solute transport increase with respect to swelling. On the 

contrary, as the volume of the pores decreased at low pH, P decreased. 

 

5.4.2. Passive vs. Iontophoretic Delivery of TM 

 
The profiles for the passive (current density: I/A = 0) delivery and iontophoretic 

(current density: I/A = 0.5 mA/cm2) transport of TM through SF-HA film (F4) were 

represented in Figure 5.25 (a) and Figure 5.25 (b), respectively. Drug loading (5 mg/ml) 

was employed to the donor compartment at the 15th min. The iontophoretic delivery 

dose was 60 mA.min (1.5 mAx20 min) for each pulses, which were followed by 20 min 

of passive initial section as shown in Figure 5.25 (d). The higher release observed for 

the first pulse of the iontophoretic application could be due to a burst effect in which the 

drug present on the surface layer of the membrane was released instantly upon contact 

with the receptor solution, maintained under sink conditions. It was also observed that 

lag time of the membranes decreased after each pulse, which showed that applied 

electric field also caused reversible changes in the membrane morphology. This was 
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assigned as reversible since passive drug delivery rate was reached to initial values after 

each pulse. 
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Figure 5.25. TM delivery profiles through SF-HA complex film. TM permeation 

through the film in passive mode (a), iontophoretically assisted TM 

permeation form the film (b), release (c) from the drug loaded film,  

(d) applied electric field profile. 

 
Consequently, the instantaneous flux raised as the current was applied and then 

declined when the current application was terminated, and this process was repeated on 

subsequent applications. This showed that the release of TM by permeation through 
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SF/HA complex membranes was enhanced by iontophoresis applied in pulsate fashion. 

This represented that these membranes can be modulated for iontophoresis applications.  

Total mass balance calculations showed that the decline on the peaks caused by 

two reasons: decrease in the drug concentration in the donor compartment and fouling 

caused by adsorption of the drug on the membrane surface.  In literature, it was reported 

that high adsorption of the drug to the membrane, besides the loss of valuable drug 

molecule, probably caused fouling of the material, which influences the membrane’s 

permeability (Stamatialis et al. 2002). Since the film was shown to be negatively 

charged in all pH levels, and the drug molecule was positively charged, ionic 

interactions may have accelerated the possible adsorption mechanism. 

 Drug release from the drug loaded SF-HA complex films (F9), Figure 5.25 (c), 

with or without current application was practically same. Formation of strong 

interactions between the drug and the coacervate complexes led to indistinguishable 

release. Denser membrane structure formed due to strong interactions did not permit the 

drug release from the film even up to 65% swelling was observed. This also showed that 

swelling degree as well as the porosity and pore size distribution had an important effect 

on drug release.  

 These results showed that SF-HA complex system can be used in iontophoretic 

drug delivery systems as a membrane controlling the release of the drug rather than a 

drug loaded matrix.  The response of the system to electric field may have achieved by 

two mechanisms: electro-repulsion (migration) of the drug through the complex film 

under the applied electric field and/or the response of the complex film to the applied 

electric field, which would have increased the permeability of the film.  
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CHAPTER 6 

 

CONCLUSION 

 
This study focused on formation of silk fibroin (SF) – hyaluronic acid (HA) 

complexes and the potential use of SF-HA complex films in drug release systems.  

SF-HA complex coacervation was investigated and it was shown that the 

complexation was dominantly induced by pH that determined charge states of the 

biopolymers. Thus, the pH range for the formation of insoluble and soluble complexes 

were determined with respect to pH of the complex mixture. Insoluble complex 

coacervate formation was observed within the pH range of 2.5-3.5. It was shown that 

the complexes were formed due to electrostatic interactions between SF and HA in this 

pH window, where these two biopolymers were oppositely charged. It was revealed by 

turbidimetric analysis that the formation of insoluble complexes were reversible and 

independent of total biopolymer concentration. Gravimetric analysis performed at 

constant pH showed that total biopolymer concentration and ratio of the biopolymers in 

the complex mixture influenced the amount and probably the size of the complexes 

formed. Formation of the insoluble complex was confirmed and detailed by 

conductometric and viscosimetric analysis. The complexation was evidenced by the 

decrease of the complex mixture viscosity by the formation of dispersion composed of 

aggregated coacervates. Formation of stronger and larger coacervates were confirmed 

by the minimum viscosity and the maximum turbidity observed in the system. These 

analyses determined the appropriate conditions for complexation of these two 

biopolymers conditions for the preparation of the complex films.  

The complex solutions were formed at pH 3.2 with a SF:HA weight ratio of 20-

30 where higher complexation yields may be obtained. The mixtures casted and dried at 

20°C and 65% RH resulted in insoluble complex films irrespective of the mixing order 

or mixing ratio. The films had a homogeneous texture with slightly improved 

mechanical properties. It was also shown that drying had a crucial effect on the 

formation of the insoluble continuous films. The instrumental analysis performed 

revealed the consequences of complex formation between HA and SF. It was also 
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shown that the complex films comprised mixtures of crystalline and non-crystalline 

regions. 

Swelling tests performed on the complex films exhibited that the films swelled 

more in alkaline condition and had a pH-responsive swelling behavior. No effect of 

temperature was observed on swelling characteristics of the films at various pH 

conditions.  The films loaded with the model drug, timolol maleate (TM) showed less 

swelling which was attributed to formation of stronger interaction between the 

positively charged drug molecules and negatively charged excess of HA during the 

formation of drug loaded films. This result was confirmed with the FT-IR analysis.  

SF-HA complex films exhibited higher permeability for TM at alkaline 

condition which was consistent with the swelling tests.  Swelling test also revealed that 

SF-HA complexes can be good candidates for intelligent drug delivery systems, in 

which drug release is based on the response of the system to the environmental 

conditions.  

Drug release studies showed that the drug permeation through SF-HA complex 

films was enhanced by iontophoresis. The permeation of TM was controlled by the 

applied electric field in pulsatile fashion. On the other hand, drug loaded complex film 

did not give any response to the electric field which was reasonable with the formation 

of stronger complexes leading to formation of denser films.  

Consequently, SF-HA complex films were found to be promising for 

iontophoretic drug delivery applications for membrane-permeation-controlled systems, 

rather than a matrix system in which drug was imprinted. 
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APPENDIX A 

 

PREPARATION OF DIALYSIS TUBING 

 
The dialysis tubing was prepared by cutting 30 cm-long tubing from the roll. 

Initially the glycerin is removed by washing the tubes in running water for 3-4 hours. 

After the washing step, the sulfur components are removed by treating the tubes with a 

0.3 % (w/v) sodium sulfide solution at 80°C for one minute. Then it is washed with hot 

water at 60°C for 2 minutes. It is followed by acidification with 0.2% (v/v) sulfuric acid 

and rinsing with hot water to remove the acid. As a result of this process, tubing is 

proposed to retain most proteins of molecular weight 12,000 and greater. 
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APPENDIX B 

 

CALIBRATION CURVES 
 
 

y = 0.0495x
R2 = 0.9994

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.5 1 1.5 2 2.5 3

ABS

Co
nc

en
tr

at
io

n 
(m

g/
m

l)

 
 

Figure B1. Calibration curve of TM dissolved in PBS at pH = 7.4 evaluated 

at λ = 294 nm in UV-visible spectrophotometer. 
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Figure B2. Calibration curve of TM dissolved in PBS at pH = 2.5 evaluated 

at λ = 294 nm in UV-visible spectrophotometer. 
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Figure B3. Calibration curve of aqueous SF solution evaluated 

at λ = 272 nm in UV-visible spectrophotometer. 
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Figure B4. Calibration curve of aqueous HA solution evaluated  

at λ = 217 nm in UV-visible spectrophotometer. 


