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ABSTRACT 
 

In this study, the radical scavenging and iron chelating capacity of proteins from 

heat treated (20 min at 90 oC) or thermally processed (20 min at 121 oC) chick-peas and 

kidney-beans were compared. Lyophilized crude protein extracts from chick-peas 

contained more protein (1.5-3 fold) and showed higher free radical scavenging (up to 

2.3 fold) and iron binding capacity (up to 3 fold) than lyophilized crude protein extracts 

form kidney-beans. The thermal processing of chick-peas did not cause a significant 

change in the radical scavenging capacity of their lyophilized crude protein extracts, but 

improved the iron chelating capacity of these proteins almost 80 %. However, the 

thermal processing reduced both the radical scavenging and iron binding capacity of 

crude lyophilized proteins form kidney beans by 20-40 % and 60 %, respectively. 

Partial purification by ammonium sulfate precipitation or DEAE-cellulose 

chromatography increased the antioxidant capacity of thermally processed chick-pea 

proteins. The DEAE cellulose chromatography also showed the presence of 5 and 3 

antioxidant protein fractions in heat treated and thermally processed chick-peas, 

respectively.  Hot acidic hydrolysis at 80 oC for 30 min in presence of 1.5 M HCl 

increases the specific antioxidant activity of protein extracts, but causes the formation of 

undesired Maillard reaction products. Hot extraction at 85 oC for 30 min at pH 2.5 

extracts the antioxidant proteins selectively, whereas 85 oC for 30 min at pH 9.5 extracts 

both antioxidant proteins and other proteins.  
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ÖZET 
 

Bu çalı�mada ısı uygulaması (90 oC’de 20 dak) veya ısıl i�lem (121 oC’de 20 

dak) uygulanmı� nohut ve kuru fasulye proteinlerinin serbest radikalleri inhibe etme ve 

demir ba�lama kapasitleri kıyaslanmı�tır. Elde edilmi� sonuçlar, liyofilize edilmi� ham 

fasulye protein ekstraktlarına kıyasla, liyofilize edilmi� ham nohut protein 

ekstraktlarının protein içeri�inin 1.5-3 kat, antioksidant aktivitesinin 2.3 kat ve demir 

ba�lama kapasitesinin 3 kat kadar daha yüksek olabilece�ini göstermi�tir. Isıl i�lem 

uygulanması liyofilize ham nohut proteinlerinin serbest radikaller üzerindeki 

aktivitesini etkilememekte, ancak demir ba�alma kapasitelerini yakla�ık % 80 

artırmaktadır. Ancak,  ısıl i�lem uygulaması fasulyelerden elde edilen liyofilize ham 

protein ekstraktlarının serbest radikalleri inhibe etme ve demir ba�lama kapasitesini 

sırasıyla % 20-40 ve % 60 oranında azaltmaktadır. Isıl i�lem görmü� nohut ham protein 

ekstraktlarının amonyum sülfat veya DEAE-selüloz kolon kromatografisi ile kısmi 

olarak safla�tırılması onların serbest radikalleri inhibisyon kapasitesinde artı�a neden 

olmu�tur. DEAE-selüloz kromatografisi ayrıca, ısı uygulamı� nohut protein 

ekstraktlarında 5, ısıl i�lem uygulanmı� nohut protein ekstraktlarında ise 3 antioksidant 

protein fraksiyonu bulundu�unu göstermektedir. Protein ekstraktlarının spesifik 

antioksidant aktivitesi 85 oC’de 30 dak 1.5 M HCl ile asidik hidrolizle artırılabilmekte, 

ancak bu i�lem arzulanmayan Maillard reaksiyon ürünleri olu�turmaktadır. Di�er 

yandan pH 2.5 ve 85 oC’de 30 dak yürütülen ekstraksiyon selektif olarak antioksidant 

proteinlerin, pH 9.5 ve 85 oC’de 30 dak yürütülen ekstraksiyon ise antioksidant ve di�er 

proteinlerin ekstraksiyonu amacıyla kullanılabilmektedir. 
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CHAPTER 1  
 

INTRODUCTION 
 

          The suspicious carcinogenic effects of synthetic antioxidants such as BHA and 

BHT on laboratory animals have raised significant concerns about the use of these 

chemical additives in foods (Madhavi et al. 1996c). Thus, recently, the demand of 

natural antioxidants has increased enormously (Madhavi et al. 1996c, Yang et al. 2000, 

Hwang et al. 2001). The natural compounds are not considered as chemicals and they 

are readily accepted by the consumers.  Also, they have a GRASS (Generally 

Recognized As Safe) status and do not require toxicological testing.  On the other hand, 

natural antioxidants are more expensive than the synthetic ones, since they generally 

need purification before used in food applications (Rajalakshmi and Narasimhan 1996). 

Also, most natural antioxidants effect food color and flavor adversely. For example, 

there are only several odorless and tasteless commercially available phenolic 

antioxidants and this limits the use of highly effective natural phenolic antioxidants in 

foods (Madhavi et al. 1996b, Reische et al. 1998).  Ascorbic acid and its salts or 

derivatives are also important natural or natural identical antioxidants that have GRASS 

status. Due to their limited solubility in lipids, these antioxidants are not suitable for use 

in fat-containing food (Reische et al. 1998). However, after banning and limitations of 

using sulfites in fresh and processed fruits and vegetables, ascorbic acid and derivatives 

became the major sulfite alternatives to prevent enzymatic and non enzymatic browning 

in these products (Sapers et al. 1987, Yemenicioglu 2002). Other natural antioxidants 

include carotenoids which can be used in lipid systems as singlet oxygen quenchers if 

their yellow, orange, or red color is compatible with the food and tocopherols that have 

vitamin E activity in the diet (Reische et al. 1998). Proteins, protein hydrolysates, 

peptides, amines and amino acids are also an important group of natural antioxidants.  

The side chains of proteins show radical scavenging activity (Rajalakshmi and 

Narasimhan 1996) and chelating activity on metal atoms (Reische et al. 1998). Also, 

most proteins are tasteless and odorless, and due to their amphiphilic nature they can 

interact both with hydrophilic and hydrophobic food constituents sensitive to oxidation. 

Many proteins including casein, ovalbumin, oilseed proteins, gliadin, zein, bovine 

serum albumin, yam dioscorin, lactoferrin, sericin, carnosine, etc have been reported to 
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have an antioxidant activity (Rajalakshmi and Narasimhan 1996, Kouoh et al. 1999, 

Kim et al. 2001, Hou et al. 2001, Hu et al. 2003).  

          Legumes a large family of plants cultivated such as common bean (Phaseolus 

vulgaris L.), chickpea (Cicer arietinum L.), lentil (Lens culinaris Medkus), and 

soybeans (Glycine max) are good source of proteins. Due to their agricultural, 

economic, and nutritional values, legumes are consumed in the majority of 

Mediterranean countries (Lquari et al. 2002). However, the studies related to the 

antioxidant properties of legume proteins are concentrated mainly on soy proteins. Chen 

et al. (1995) have isolated six antioxidative peptides form protein hydrolyzates of �-

Conglycinin which is the main soybean protein component. Chen et al. (1996 and 1998) 

have also studied the antioxidant activity of synthetic peptides designed based on an 

antioxidant peptide isolated from the soy protein hydrolizates. The antioxidant potential 

of soy protein hydrolizates in liposomal systems has been demonstrated by Pena-Ramos 

and Xiong (2002), whereas Hu et al. (2003) investigated the antioxidant activity of soy 

protein isolate in oil-in-water emulsions.  

          Dry beans are important source of proteins but have disadvantages such as low 

nutritional value due to limiting amounts of sulfur containing amino acids, low 

digestibility, low bioavailability of essential amino acids, presence of toxic and 

antinutritive factors, and absorption of nutrients by undefined non-protein substances 

(Friedman 1996). Chick-pea seeds, with their good balance of amino acids, high protein 

bioavailability, and relatively low levels of antinutritional factors may be potential 

ingredients for food products (Clemente et al. 1999).  In the literature, there are limited 

studies related to the antioxidant activity of legume proteins other than the soy beans. 

The studies available include that of Okada and Okada (1998) who determined 

significant superoxide scavenging activity of water soluble proteins from broad beans 

and that of Wolosiak and Klepecka (2002) who reported that pea and bean albumins are 

much more effective in inhibiting the superoxide anion radical formation than the 

animal derived albumin preparations. There are no available studies related to the 

antioxidant activity of chick-pea proteins. Thus, in this study we have compared the 

antioxidant activity of crude or partially purified protein extracts from heat treated or 

thermally processed chick-peas and kidney-beans, isolated the major antioxidant protein 

fractions form chick-peas by anion exchange chromatography and tested the effects of 

different modification and extraction methods on antioxidant activity of chick-pea 

proteins. 
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CHAPTER 2 
 

LIPID OXIDATION 
 

2.1. Lipids 
 

          The term lipid refers to any naturally occurring non-polar substance that is nearly 

or totally insoluble in water but soluble in nonpolar solvents. The lipids are important 

bulk components in food and other biological systems and can be classified as (1) 

simple lipids (neutral acylglycerols and waxes), (2) compound lipids (phospholipids and 

glycolipids) and (3) derived lipids (carotenoids, lipid soluble vitamins, steroids etc.). 

The simple lipids are esters of glycerol and fatty acids (Neutral acylglycerols) or esters 

of long chain alcohols and long chain fatty acids (waxes). In compound lipids, in 

addition to alcohols and fatty acids, different compounds (phosphoric acid diesters and 

carbohydrates) exist in the structure. On the other hand, derived lipids are compounds 

that can not be neatly classified as simple or compound lipids.  In fact, these are the 

fatty acids and alcohols which are the building blocks of simple and compound lipids 

(O’Keefe 1998). Unlike to carbohydrates and proteins, lipids possess only few reactive 

sites in the molecule. The major reactions of lipids involve the hydrolysis of their ester 

linkages and oxidation of their double bonds in fatty acids (Davidek et al. 1990). Lipid 

oxidation is one of the most frequent reactions causing the loss of quality in food 

products.  It causes development of various off-flavors and off-odors in edible oils and 

fat-containing foods and this is called the oxidative rancidity (Nawar 1996). The lipid 

oxidation also decreases the nutritional quality of foods and forms some oxidation 

products that can be toxic (Madhavi et al. 1996a). 

  

2.1.1. Basic Chemistry of Lipid Oxidation 
 

          The unsaturation (double bonds) of fatty acids makes them very sensitive to 

oxygen attack that cause complex chemical changes led to off-flavor formation in foods. 

This process is called autoxidation and it is characterized by three main stages (Erickson 

1996, Jadhav et al. 1996); (1) initiation, (2) propagation and (3) termination. 
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2.1.1.1. Initiation 

 
          The initiation of autooxidation takes place by the abstraction of a hydrogen 

radical from the allylic methylene group of a fatty acid and formation of a lipid free 

radical (Davidek et al. 1990, Jadhav et al. 1996).  

 

RH →  R. + H.                                      (a) Formation of lipid free radical 

 

          A free radical is a highly reactive substance defined as a molecular entity having 

single unpaired electron (Kaur and Perkins 1991) and it may form by the effect of metal 

catalysts, irradiation or heat (Jadhav et al. 1996). Also, hydroperoxide decomposition 

may form free radicals.  In fact, since the activation energy for the reaction of fatty acids 

with oxygen and production of free radicals (RH + O2 � R. ) is high, it is proposed that 

the initiation reaction is started by the free radical formation by decomposition of 

hydroperoxides (Nawar 1996). Food materials always contain residual amounts of lipid 

hydroperoxides formed by the effect of singlet oxygen (1O2) or by oxidative enzymes 

such as lipoxygenase. By the effect of metal atoms and light, the hydroperoxides may 

decompose to free radicals such as alkoxy radical (b) and peroxy radical (c) and this 

may initiate oxidation.  

 

ROOH →  RO. + HO.                       (b) Alkoxy radical formation from hydroperoxide 

 

2ROOH →  RO. + ROO. + H2O       (c) Alkoxy and peroxy radical formation from   

                                                                    hydroperoxide 

 

(RH: lipid; R� : Lipid free radical; ROOH: Lipid hydroperoxide; ROO� : Lipid peroxy 

radical; RO� : Alkoxy radical; H� : Hydrogen radical, 1O2: singlet oxygen; 3O3: tripled 

oxygen) 

 

2.1.1.2. Propagation 
 

          The free radicals are very reactive and they attack on molecular oxygen. Thus, in 

propagation step, free radicals are oxidized and converted into other free radical species 
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by chain reaction process (d). Thus, the initial formation of one free radical is 

responsible for the following chemical formation of the other radicals due to the chain 

reaction process.  

 

R. + 3O2  →   ROO.                         (d) Peroxy radical formation from lipid free radical 

 

ROO.  + RH →  ROOH + R.          (e) Abstraction of a new H from another fatty acid  

 

The newly produced lipid peroxy radicals (ROO.) start chain reactions with 

other molecules and form lipid hydroperoxides and new lipid free radicals (e). The free 

radical formed then again converted to peroxy radical and the peroxy radical abstract 

another H from another fatty acid. The peroxy radicals (ROO.) readily abstract 

hydrogen from the doubly allylic methylene groups.  Such methylene groups are central 

CH2 groups in the ‘skipped diene’ units (-CH=CH-CH2-CH=CH-). Thus, in naturally 

occurring lipids containing linoleic or linolenic acid units, the doubly allylic methylene 

groups increase the oxidation potential (Jadhav et al. 1996). The reaction sequence in 

(d) and (e) may be repeated many times and a significant oxidative damage may occur 

only by the effect of small number of free radicals formed in the initiation step. The 

number of repeated reactions in the propagation step may depend on the concentration 

of the reactive lipid and free radicals in the reaction medium. The lipid hydroperoxides 

are the main autoxidation products and they are odorless and tasteless (Jadhav et al. 

1996). However, they are relatively unstable and undergo numerous complex reactions 

such as substrate degradation and interaction. These reactions form many different 

undesirable compounds having various molecular weights and flavor thresholds (Nawar 

1996).   

So far lipid oxidation by chain propagation reaction based on abstraction of a 

hydrogen radical from the allylic methylene group of a fatty acid has been discussed.  

However, chain propagation reactions causing lipid oxidation may also occur by 

addition of free-radical to unsaturated bonds. Such chain propagation reactions, for 

example, occur in �-carotene that contains conjugated carbon-carbon double bonds 

(Jadhav et al. 1996).   
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2.1.1.3. Termination     
 

Initially, the number of free radicals is very small. However, gradually their 

concentration increases and they start to interact with one another. In fact, since free 

radicals contain unpaired electron they tend to react each other to restore normal 

bonding (Kaur and Perkins 1991). The interaction of radicals and formation of non-

radical compounds is termination.  In reaction medium, the highly reactive free radicals 

are not stable and they are readily converted to other reactive species such as peroxy 

radical. This increases the concentration of peroxy radical in the medium and makes the 

combination of two peroxy radical (with the elimination of oxygen) the main 

termination reaction. The combination of peroxy radical with free radical is less frequent 

whereas combination of two free radical occur only at very low oxygen concentrations 

(Davidek et al. 1990).    

R. + R. →  R-R 

R. + ROO. →  ROOR                     Termination reactions 

ROO. + ROO. →  ROOR + O2   

 

2.1.2. Effect of Lipid Oxidation on Food Systems and Human Health 
 

Lipid oxidation is a chemical and biochemical reaction process that leads to the 

formation of free-radicals, hydroperoxides and many other products. The unstable 

hydroperoxides break down to aldehydes, ketones, hydrocarbons, acids and furans that 

form rancid off-flavors and off-odors in foods. Particularly, the cleavage products of 

hydroperoxides are responsible for the formation of rancid off-flavors (Davidek et al. 

1990, Erickson 1998). The thermal degradation of lipid hydroperoxides also generates 

off-flavors, mainly as a result of the formation of carbonyl compounds (Jadhav et al. 

1996). The reaction of lipid oxidation products with proteins also decreases protein 

solubility and nutritive value. The loss of nutritive value of proteins occurs mainly due 

to the destruction of tryptophan, oxidation of methyonine and binding lysine onto 

unavailable compounds (Davidek et al. 1990). The macromolecular substances 

produced by oxidized lipid-protein interactions are often dark colored. The oxidative 

reaction products can also cause discoloration by reacting with other food pigments 
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(Davidek et al. 1990) and they reduce the availability of vitamins such as A, D, E, C and 

folate (Jadhav et al. 1996).  

          Lipid oxidation and it’s radical products have different effects on human health.  

Some of the diseases related to oxidative reactions in body are coronary heart disease 

(e.g. heart attack), aging, DNA damage, parkinsonism, carcinogenesis and tumour 

promotion (Jadhav et al. 1996). 
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CHAPTER 3 

 

ANTIOXIDANTS 
 

3.1. Definition of Antioxidant 
 

Antioxidants are group of chemicals that protect biological systems against the 

potential harmful effects of processes, or reactions that cause oxidation (Decker 1998).  

The U.S Food and Drug Administration defines antioxidants as “preservatives that 

specifically retard deterioration, rancidity, or discoloration due to oxidation” (Specchio 

1992). In most raw materials, the antioxidants exist as natural components. However, 

during food manufacturing and storage the natural antioxidants are exhausted. Thus, the 

addition of antioxidants to food products is necessary to keep food quality and extend 

shelf-life.  

Antioxidants to be used in food products should have some characteristic 

properties.  For example, they should be inexpensive, nontoxic, effective even at low 

concentrations, stable, and have no or minimal effect on color, flavor, and odor 

properties of food products (Reische 1998, Rajalakshmi and Narasimhan 1996). The use 

of antioxidants in food products is regulated by laws and international standards which 

are determined by international associations such as Joint FAO/WHO Expert 

Committee on Food Additives (JECFA), and the European Community’s Scientific 

Committee for Food (SCF) (Rajalakshmi and Narasimhan 1996).   

 

3.2. Classification of Antioxidants 
     

Antioxidants have different activity mechanisms such as free radical scavenging, 

inactivation of peroxides and other reactive oxygen species, chelation of metals, and 

quenching of secondary lipid oxidation products (Decker 1998). According to their 

mechanism of action antioxidants are classified as primary antioxidants and secondary 

antioxidants (Rajalakshmi and Narasimhan 1996).   
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3.2.1. Primary Antioxidants 
 

Primary antioxidants donate hydrogen or electrons to lipid free-radicals and 

interrupt radical chain reactions by converting them into more stable nonradical 

products (a) (Rajalakshmi and Narasimhan 1996). By the same mechanism they also 

react with lipid peroxy and alkoxy radicals and nonlipid free radicals (b,c). In fact, the 

primary antioxidants are most effective before the initiation step which is called 

induction period, where the antioxidants are consumed and free-radicals are formed 

(Reische, 1998). Besides H donation, the primary antioxidants also interact with lipid 

free radicals and form lipid-antioxidant complexes (Rajalakshmi and Narasimhan 1996) 

or they can reduce hydropeoxides to hydroxy compounds (Reische 1998). 

 

AH + R.  � A. + RH                    (a) H donation of antioxidant to lipid free radical 

AH + ROO.  � A. + ROOH       (b) H donation of antioxidant to lipid peroxy radical 

AH + RO.  � A. + ROH              (c) H donation of antioxidant to lipid alcoxy radical 

 

Following donation of H from antioxidants, the antioxidant radicals formed 

further interfere with the chain-propagation reactions by inhibiting the peroxy or alcoxy 

lipid radicals (d,e). The antioxidant radicals also react with each other and contribute to 

termination reactions (f).   

 

ROO.  + A.  � ROOA                (d) Reaction of peroxy radical with antioxidant radical 

RO.  + A.  � ROA                       (e) Reaction of alcoxy radical with antioxidant radical 

A.  + A.  � AA                             (f) Reaction of antioxidant radicals 

 

Primary antioxidants show their activity even at very low concentrations.  

However, at very high concentrations they may act as prooxidants. The synthetic 

phenolic antioxidants are the major primary antioxidants (Rajalakshmi and Narasimhan 

1996, Reische 1998). However, although these antioxidants are highly effective to 

prevent autooxidation, only a few of them is approved for food applications. The major 

considerations of acceptability of synthetic phenolic antioxidants are potential toxicity 

and/or carcinogenicity of these compounds. The examples of these synthetic 

antioxidants include butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), 
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propyl gallate (PG), and tertiary butylhydroquinone (TBHQ). The natural phenolic 

antioxidants and tocopherols can also act as primary antioxidants.  

 

3.2.2. Secondary Antioxidants 
 

The secondary or preventive antioxidants may act through different mechanisms 

to slow down the rate of oxidation. These antioxidants are also called synergists, since 

they promote the antioxidant activity of primary antioxidants. However, they do not 

convert free radicals to more stable products (Reische 1998).  The main types of 

secondary antioxidants include oxygen scavengers and reducing agents, chelators and 

singlet oxygen quenchers.  Also, there are some secondary antioxidants that function by 

decomposing lipid peroxides into stable end products (Rajalakshmi and Narasimhan 

1996).   

Oxygen scavengers and reducing agents act by scavenging oxygen and donating 

H atoms to peroxy radicals and primary antioxidants. The H donation to primary 

antioxidant radicals regenerates primary antioxidants and this enables using primary 

antioxidants more effectively (Rajalakshmi and Narasimhan 1996). Example 

antioxidants in this group include ascorbic acid and its derivatives and sulfides.     

The chelators, on the other hand, include ethylenediaminetetraacetic acid 

(EDTA), citric acid, tartaric acid, citrate esters, phytic acid, lecithin and polyphosphates 

(Rajalakshmi and Narasimhan 1996, Reische 1998). These substances form complexes 

with prooxidant metals such as iron and copper and increase the effect of oxygen 

scavengers and primary antioxidants significantly. The metals accelerate oxidation 

reactions by acting as catalysts in free radical formation reactions. They can also lower 

the activation energy of initiation step. To form active radical species metal atoms can 

either interact directly with lipids (g) or with hydroperoxides (h,i). These reactions can 

be periodic with regeneration of the lower oxidation state of the metals (Reische 1998).    

 

RH + M(n-1) � Mn+ + H+ + ROO                 (g) Metal atom -lipid interaction 

 

 

ROOH + M(n+1)+ � Mn+ + H+ + ROO       (h) Metal atom (lower oxidation state)-                         

                                                                            hydroperoxide interaction 
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ROOH + Mn+ � M (n+1)+ + OH- + RO        (i) Metal atom (higher oxidation  

                                                                            state)-hydroperoxide interaction                                                        

 

The metals in their lower oxidation states accelerate hydroperoxide degradation more 

than metals in their higher oxidation states (Reische 1998). Thus, in presence of metals, 

reducing agents such as ascorbic acid act as prooxidants by converting metals such as 

Fe+3 and Cu+2 to their lower oxidation states (Fe+2 and Cu+) (Madhavi et al. 1996b).      

          Singlet oxygen quenchers, on the other hand, are secondary antioxidants that 

deplete high energy of singlet oxygen and dissipate the energy in the form of heat 

(Reische 1998).  Singlet oxygen is a high energy molecule that is responsible for the 

photooxidation of unsaturated fats and the subsequent generation of hydroperoxides 

(Nawar 1996, Reische 1998).   

 

3.2.3. Miscellaneous antioxidants 
 

          Miscellaneous antioxidants are compounds that act as primary antioxidants or 

secondary antioxidants. The natural phenolic compounds such as flavonoids and related 

compounds, proteins, amino acids, Maillard reaction products, nitrites and nitrates, 

carotenoids, zinc, glucose oxides, superoxide dismutase and catalase and glutathione 

peroxidase enzymes are some examples for miscellaneous antioxidants (Rajalakshmi 

and Narasimhan 1996). With their chain breaking properties the natural phenolic 

compounds can act as primary antioxidants. Carotenoids such as �-carotene, lycopene 

and lutein are singlet oxygen quenchers. Proteins and Maillard reaction products act as 

chelator and radical scavenger (Lindsay 1996, Jadhav et al. 1996). Enzyme glucose 

oxidase is an oxygen scavenger (Labuza and Breene 1989), superoxide dismutase-

catalase enzyme mechanism degrades reactive oxygen species to water and oxygen, 

glutathione peroxidase reduces peroxides to alcohols (Nordberg and Arner 2001). Zinc 

strongly inhibits lipid peroxidation at the membrane level by preventing iron binding 

(Rajalakshmi and Narasimhan 1996).   
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3.3. Sources of antioxidants 
 

3.3.1. Synthetic antioxidants 
 

The antioxidants used in foods are mostly synthetic antioxidants such as BHT, 

BHA, PG and TBHQ (Rajalakshmi and Narasimhan 1996). From these antioxidants, the 

synthetic phenolic antioxidants, BHT and BHA, has a particular importance, since they 

are the most preferred food antioxidants. These antioxidants are strongly lipophilic and 

used extensively in oil-in-water emulsions. They are also fairly thermostable 

antioxidants which are suitable for thermally processed food (Reische 1998).  

Moreover, BHA and BHT are steam volatile. Thus, they easily diffuse into food lipid 

layers and inhibit oxidation when incorporated into food packaging materials (Madhavi 

and Salunkhe 1996). On the other hand, TBHQ is a very thermostable antioxidant which 

is very suitable for frying applications.  It is more effective in vegetable oils than BHA 

and BHT and shows a good synergism with sitric acid (Reische 1998). The other 

synthetic antioxidant is PG which is not suitable for frying applications due to its less 

thermostable nature.  Since PG forms undesirable dark colored complexes with iron and 

copper, its preparations should be combined with chelators (Reische 1998).  

 

3.3.2. Natural antioxidants 
 

          Recently, significant concerns have been raised related to the use of synthetic 

antioxidants in foods (Madhavi et al. 1996c). Particularly, the suspicious carcinogenic 

effects of BHA and BHT on laboratory animals increased the demand of natural 

antioxidants enormously (Madhavi et al. 1996c, Yang et al. 2000, Hwang et al. 2001).  

Since they are not considered as chemicals, natural antioxidants are readily accepted by 

the consumers.  Also, the natural antioxidants have a GRASS (Generally Recognized 

As Safe) status and do not require toxicological testing. However, because of their 

lower effectiveness than synthetic antioxidants, natural antioxidants need mostly a 

purification before used in food applications (Rajalakshmi and Narasimhan 1996). This 

makes natural antioxidants more expensive than the synthetic ones and increases the 

costs. Also, most natural antioxidants effect food color and flavor adversely. In fact, this 

is one of the greatest handicaps for the use of highly effective natural phenolic 
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antioxidants in foods. For example, their strong flavor is the main limitation for the use 

of herb and spice extracts rich in phenolic acids and flavonoids and tea extracts rich in 

catechins (Reische et al. 1998). On the other hand, the rosemary extract containing 

diterpene phenolics, carnisol and carnosic acid, is one of the few commercially available 

odorless and tasteless phenolic extracts (Medhavi and Salunkhe 1996, Reische et al. 

1998).   

         Ascorbic acid and its salts such as sodium or calcium ascorbate or derivatives such 

as erythorbic acid and ascorbyl palmitate are other important natural or natural identical 

antioxidants that have GRASS status. Due to their limited solubility in lipids, except the 

more lipid soluble ascorbyl palmitate, they are not suitable for use in fat-containing 

food (Reische et al. 1998). However, after banning and limitations of using sulfites in 

fresh and processed fruits and vegetables, ascorbic acid and derivatives became the 

major sulfite alternatives to prevent enzymatic and non enzymatic browning in these 

products (Sapers and Ziolkovski 1987, Yemenicioglu 2002).    

         Carotenoids such as �-carotene, licopene, isozeaxanthin, lycopen and lutein are 

also natural lipid soluble antioxidants that are used as singlet oxygen quenchers. 

However, these natural antioxidants can be used only when their yellow, orange, or red 

color is compatible with the food. Another lipid soluble natural antioxidant group is 

tocopherols that have vitamin E activity in the diet (Reische et al. 1998). These natural 

antioxidants present in relatively large amounts in most oil seeds and pass into crude oil 

during pressing and extraction (Davidek et al. 1990). However, the tocopherols show 

more antioxidant activity in lard and animal fats than in edible oils (Davidek et al. 

1990). 

         Proteins, protein hydrolysates, peptides, amines and amino acids are also an 

important group of natural antioxidants. The antioxidant groups in proteins may show 

radical scavenging activity (Rajalakshmi and Narasimhan 1996). Also, some iron 

binding proteins can act as chelating agents (Reische et al 1998). Detailed information 

about the antioxidant activity of proteins has been given in Chapter 4. 
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CHAPTER 4 
 

PROTEINS AND THEIR FUNCTIONAL  

PROPERTIES 
 

4.1. Amino Acids 
 

Amino acids are the building blocks of proteins. They consist of a hydrogen 

atom, an amino group, a carboxyl group and a side chain R group covalently attach to 

an �-carbon atom (Figure 4.1). Depending on the position of �-amino group the amino 

acids are designated D (dextro from latin dexter, right) and L (levo from latin leaves, 

left).  

 

 
Figure 4.1. Amino acid structure (Shuler and Kargi 2002) 

 

 
Figure 4.2. Stereoisomers of chiral amino acids (Horton et al. 1996a) 

 

Natural proteins are composed of 20 amino acids linked end to end through 

peptide bonds. Despite the limited number of amino acids, variations in the amino acid 



 15 

sequence give limitless number of proteins. With the exception of glycine, having H 

atom as R, the 19 amino acids contain at least a single chiral or asymmetric �-carbon 

atom. Thus, minimum two stereoisomers that have nonsuperimposible mirror images 

can exist for each of 19 aminoacid (Fig. 4.2). Such stereoisomers are called 

enantiomers. Two of the 19 amino acid contains two chiral carbon atoms each and 

therefore have four possible stereoisomers each (Voet and Voet 1995a, Horton et al. 

1996a)   

Chemical and physical properties of amino acids such as net charge, solubility, 

chemical reactivity, and hydrogen bonding potential depend on the type of side chain 

groups.    

 

4.1.1. Properties of Amino Acid Side Chains  
 

Side chains contain only five different atoms (H, C, N, O, and S). Some side 

chains are nonpolar and thus hydrophobic whereas others are polar or ionizable at 

neutral pH and therefore hydrophilic. The number of hydrophilic and hydrophobic 

amino acids is the main factor that dictates the shape of folded protein in water.  

According to the chemical properties of their side chains amino acid may be classified 

as aliphatic, aromatic, sulfur-containing, alcohols, bases, acids and amides (Mathews 

and Van Holde 1996, Horton et al. 1996a). 

 

4.1.1.1. Aliphatic R Groups 
 

Alanine (Ala, A), valine (Val, V), leucine (Leu, L), and isoleucine (Ile, I) have 

aliphatic side chains that made up entirely of highly hydrophobic methylene groups. 

Although these amino acids have no reactive functional groups they play an important 

role in the conformation of the proteins by their tendency to hide away from water 

(Stryer 1996, Horton et al. 1996a). The other member of this group Glysine (Gly, G), on 

the other hand, is the simplest amino acid with a H in its R group. Glycine plays a 

unique role in the confirmations of proteins since it is small enough to fit into small 

hollows in protein structure.     
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4.1.1.2. Aromatic R Groups 
 

Phenylalanine (Phe, F), tyrosine (Tyr, Y), and tryptophan (Trp, W) have 

nonpolar hydrophobic aromatic rings in their side chains. Benzene ring on the side 

chain of phenylalanine makes it more hydrophobic than tyrosine and tryptophan. 

Tyrosine and phenylalanine are structurally similar. In tyrosine, the para-hydrogen of 

phenyl alanine is replaced with a hydroxyl group and this makes tyrosine a phenol. In 

tyriptophan, on the other hand, a bicyclic indole group replaces the benzene ring.   

Aromatic R groups absorb UV light. For example tyrosine and tryptophan 

absorb UV light at 280 nm, whereas phenylalanine absorbs UV light weakly at 260 nm. 

Since most proteins have these amino acids in their structure, absorbance at 280 nm is 

frequently used to estimate protein concentration.  

 

4.1.1.3. Sulfur-containing R Groups 
 

Methionine (Met, M), and cysteine (Cys,C) have sulfur-containing R groups. 

Methionine is very hydrophobic due to nonpolar methyl thioeter group in its side chain. 

Although it is hydrophobic cysteine side chain (sulfhydryl group, -SH) is very reactive.  

This group is polarizable and it has an ability to form weak hydrogen bonds with 

oxygen and nitrogen. Moreover cysteine side chain becomes negatively charged by 

ionization.  

The oxidation of cysteine causes the formation of a disulfide called cystine.  

Cystine contains two oxidized cysteine molecules linked by disulfite bonds. Oxidation 

of sulfhydryl groups of cysteine molecules occur more readily at alkaline pH values 

which these groups exist ionized. The disulfide bonds, by cross-linking cysteine 

residues in peptide chains, play an important role to stabilize three-dimensional 

structures of proteins (Branden and Tooze 1998, Ludescher 1996, Horton et al. 1996a).  

 

4.1.1.4. Side Chains with Alcohol Groups 
 

Uncharged polar side chains of the serine (Ser, S), and threonine (Thr, T) 

contain �-hydroxyl groups that give hydrophilic character to these side chains. 

However, unlike to the more acidic phenol side chain of tyrosine, these polar groups do 
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not undergo ionization (protonation-deprotonation) reactions in the pH range of 1 to 14. 

However, these groups can react within active sites of enzymes. Also, both serine and 

threonine side chains are suitable for phosphorylation or fatty acid esterification of 

proteins, since their hydroxyl group can react with acids to form esters (Ludescher 

1996)    

 

4.1.1.5. Basic R Groups  
 

Histidine (His, H), lysine (Lys, L) and arginine (Arg, R) are nitrogenous bases 

that contain hydrophilic R groups positively charged at pH 7. Thus, these amino acids 

give the positive charges of proteins. Especially the most basic arginine is the main 

amino acid responsible from the positive charges of proteins. 

 

4.1.1.6. Acidic R Groups and Amides 
 

          Aspartate (Asp, D) and glutamate (Glu, E) are dicarboxylic amino acids and are 

negatively charged at pH 7. In addition to their α-carboxyl groups, aspartate possesses a 

β-carboxyl group, and glutamate possesses a γ-carboxyl group. Because the side chains 

of aspartate and glutamate are ionized at pH 7, they give negative charges on proteins. 

Aspartate and glutamate are sometimes called aspartic acid and glutamic acid.          

          Asparagine (Asn, N) and glutamine (Gln, Q) are the amides of aspartic acid and 

glutamic acid, respectively. Although the side chains of asparagine and glutamine are 

uncharged, these amino acids are highly polar and are often found on the surface of 

proteins where they can interact with water molecules. The polar amide groups of 

asparagine and glutamine can also form hydrogen bonds with atoms in the side chains 

of other polar amino acids.  

4.1.2. Hydrophobicity of Amino Acid Side Chains 

 

         Since the hydrophobic interactions are the main driving forces affecting protein 

folding, the amino acids’ degree of hydrophobicity gives some important details about 

the major amino acids having roles in protein folding. The various side chains of amino 

acids range from highly hydrophobic to highly hydrophilic. The relative hydrophobicity 
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or hydrophilicity of each amino acid is called its hydropathy. Hydropathy value is 

calculated from the free energy change for transfer of an amino acid residue from the 

interior of a lipid bilayer to water. Amino acids with highly positive hydropathy values 

are considered hydrophobic whereas those with the largest negative values are 

hydrophilic. Table 4.1 shows the hydropathy scale for amino acid residues. This scale 

has been used to predict which segments of membrane proteins are likely to be 

embedded in the lipid bilayer.                           

   

Table 4.1. Hydropathy scale for amino acids (Horton et al. 1996a) 

Amino acid Fee-energy change for transfer 

(kJ/mol) 

Highly hydrophobic  

Isoleusine 3,1 

Phenylalanine 2,5 

Valine 2,3 

Leucine 2,2 

Methionine 1,1 

Less hydrophobic  

Tryptophan 1,5 

Alanine 1,0 

Glycine 0,67 

Ctsteine 0,17 

Tyrosine 0,08 

Proline -0,29 

Threonine -0,75 

Serine -1,1 

Highly hydrophilic  

Histidine -1,7 

Glutamate -2,6 

Asparagine -2,7 

Glutamine -2,9 

Aspartate -3,0 

Lysine -4,6 

Arginine -7,5 
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4.1.3. Ionization of Amino Acids 

 

         The physical properties of amino acids are influenced by the ionic states of the α-

carboxyl and α-amino groups and possible ionizable groups in their side chains. 

Depending on the pH of medium, the α-carboxyl and α-amino groups may present at 

different ionic states (Horton et al. 1996a). At pH values approaching neutrality amino 

acids exist as dipolar ions (Zwitterions). The pH at which the dipolar ion is electrically 

neutral is called the ioelectric point (pI). Also, amino acids may behave as an acid or as 

a base (Fig. 4.3). In other words, amino acids are amphoteric.  

 

Figure 4.3. The ionic states of amino acids in different mediums (Damodaran 1996a) 

 

          As indicated above, in all amino acids, the α-carboxyl and α-amino groups can be 

ionized but in 7 of the 20 amino acids the side chain (R group) is also ionizable (Horton 

1996a, Ludescher 1996) The amino acids which have ionizable side chain are cysteine, 

tyrosine, aspartic acid, glutamic acid, lysine, arginine, and histidine. The ionic states of 

amino acid side chains influence the three-dimensional structures and biological 

functions of proteins. In addition, a number of ionizable amino acid residues are 

involved in catalysis by enzymes. Thus, better understanding of the ionic properties of 

amino acids helps better understanding of enzyme mechanisms.   

 

4.2. Proteins 
 

          Proteins are macromolecules that contain covalently linked and folded chains of 

amino acids and their biological function depends completely on their conformation 

(Horton et al. 1996b). The proteins have different kinds of structural organization such 

as primary, secondary, tertiary and quaternary structures.    
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4.2.1. Primary Structure 
            

         The primary structure of a protein refers to the linear sequence in which the 

constituent amino acids are covalently linked end to end through peptide bonds (also 

known as amide bond). The peptide linkage results from condensation of the α-carboxyl 

and  α-amino group of two amino acids with removal of a water molecule (Fig 4.4).    

 

 
Figure 4.4. Peptide bond formation (Horton et al. 1996a) 

 

The peptide chains are named according to the number of amino acids they 

contain. Dipeptides contain two, tripeptides contain three, oligopeptides contain several 

up to about 20 amino acids. Polypeptide refers to chains of usually more than 20 amino 

acids (Horton et al. 1996a) In a polypeptide, the free amino group at the end of the 

peptide chain is called N-terminus (amino terminus) whereas at the opposite end there is 

a free carboxyl group named C-terminus. The N and C terminus carries positive and 

negative charges at neutral pH, respectively. The side chains of the constituent amino 

acids also contribute to the net charge of protein molecules (Horton et al. 1996a). 

The primary structure defines only the linear sequence of the amino acid 

residues but it gives no information about conformation of the protein. The primary 

structure of a protein determines its physicochemical, structural, biological properties 

and functions and it is like a code for formation of conformation (Damodaran 1996a).    
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4.2.2. Secondary Structure 

 

The secondary structure refers to regular arrangements of polypeptides in terms 

of different secondary structures such as helical forms, �-structures and random coil.  

The helical structures are formed by rotation of bonds around the N-C� and C�-C1 

atoms (Fig. 4.x). The angles of rotation around the N-C� and C�-C1 atoms are called the 

phi (�) and the psi (	), respectively. Depending on these angles different types of 

helical structures may be formed such as �-helix (Fig. 4.5), 
-helix and 310-helix. 

However, the most frequently observed helical structure in proteins is �-helix structure 

that have a phi of (-58, +58) and the psi of (-47,+47) (Voet and Voet 1995b, Horton et 

al. 1996b)  The helical structures are stabilized by H bonds formed between the –C=O 

of each peptide bond and the –NH of the peptide bond four amino acid residues away 

(Fig. 4.6). However, this is one of the most labile structures in proteins and may easily 

be disturbed by the effect of different physical factors such as heating and pressure.    

 

 
Figure 4.5. The structure of �-helix (Segel 1968) 
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Figure 4.6. The configuration of the atoms of peptide units (Damodaran 1996a) 

 

Another secondary structure is �-structures. These are zig-zag structures, more 

stretched than the helical forms. The formation of these structures occurs by suppression 

of H bonds in helical structures simply by heat. Each extended segment contains usually 

5-15 amino acid residues and it is called �-stand. Different �-stands may be aligned and 

form H bonds to form �-sheets. The H bonds in the �-sheets are formed only between 

segments but not within segments as observed in helical structures. The �-stands may 

interact in two ways; (1) the amino acids in the aligned �-stands can all run in the same 

biochemical direction (parallel), N terminal to C terminal, or (2) amino acids in 

successive strands can have different directions, N terminal to C terminal of one stand 

follow the C terminal to N terminal of the other (Fig. 4.7).  

The stability of antiparallel �-sheets are much more than the stability of the 

parallel �-sheets and both forms are more stable than the helical structures (Horton et al. 

1996b, Damodaran 1996a)  
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                                        (a)                                                             (b) 

 
Figure 4.7. The parallel (a) and antiparalle (b) �-sheets (Segel 1968) 

 

4.2.3. Tertiary and Quaternary Structures 
 

Tertiary structure refers to the three dimensional organization of a protein with 

secondary structure segments such as helical structures, �-structures and random coil.  

The driving force for the formation of tertiary structures is hydrophobic interactions that 

cause the folding of polypeptide due to coalescence and burial of the hydrophobic 

amino acid residues through the internal parts. In tertiary structure that contains only a 

single polypeptide chain connection of the secondary structure elements is conducted by 

the loop regions. There are many different loop regions that connect secondary structure 

elements. For example, hairpin loop connects two adjacent antiparallel �-stands, alpha-

alpha loops connect to helical structures, beta-alpha-beta loops (or motifs) connect two 

parallel �-strands, greek-key motif links four or more antiparallel �-structures (Horton 

et al. 1996b). In tertiary structure the hydrophilic helical structures exist at the surface of 

protein whereas the hydrophobic �-structures exist at the center (Fig 4.8). If the number 

of hydrophobic amino acids in the polypeptide is very high, the protein folds to form a 

compact and globular shape. In contrast, too much hydrophilic amino acids in the 

structure dictate the formation of a rod like extended conformation. The tertiary 

structures are stabilized by different types of interactions such as H bonds, ionic 

interactions, dipole-dipole interactions, hydrophobic forces and covalent disulfide bonds 

(Segel 1968). 

The quaternary structure refers to the three dimensional organization of a protein 

when it contains more than one polypeptide. The driving farce for the formation of 
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protein quaternary structures is again hydrophobic interactions. Proteins that contain 

more than 30 % hydrophobic amino acid residues tend to form quaternary structures. In 

such proteins it is physically not possible to bury all the hydrophobic amino acids to the 

internal parts of protein. Thus, two or more proteins having hydrophobic patches 

exposed at the surface tend to come together about their hydrophobic surfaces. This 

mechanism may cause the formation of protein dimers, trimers or tetramers etc (Fig 4.9) 

(Damodaran 1996a). 

 

 
Figure 4.8. Tertiary structure of phaseolin subunit (Damodaran 1996a). 

 

The specific protein-protein interactions such as hydrogen bonding, hydrophobic 

interactions, and electrostatic interactions, on the other hand, are the main interactions 

that stabilize the quaternary structures.   

 

 
Figure 4.9. Schematic representation of the formation of quaternary structures 

(Damodaran 1996a) 
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4.3. Functional Properties of Proteins 
 

Protein functionality is defined as physical and chemical properties which affect 

the behavior of proteins in food system during processing, storage, preparation and 

consumption (Damodaran 1996a). The physical and chemical properties affecting the 

functions of protein depend on their size, shape, amino acid composition and sequence, 

net charge and distribution of charges, hydrophobicity/hydrophilicity ratio, secondary, 

tertiary and quaternary structures, molecular flexibility/rigidity and ability to interact 

with other components (Damodaran 1996a). The functional properties of proteins can 

roughly be classified as; (1) hydrodynamic properties which include viscosity 

(thickness), gelation and texturization and (2) protein surface–related properties which 

include wettability, dispersability, solubility, foaming, emulsification and fat and flavor 

binding. Some proteins posses only one of these functions whereas some other proteins 

are multifunctional. For example, proteins of animal origin such as milk, egg and meat 

proteins are mostly capable of performing multiple functions. Especially, egg white 

proteins show multiple functions such as gelation, emulsification, foaming, water 

binding, and heat coagulation (Damodaran 1996a). Different functions of proteins in 

foods are given in Table 4.2.  

 

Table 4.2. Functional roles of food proteins (Damodaran 1996b) 
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4.3.1. Protein Hydration 

 

One of the essential components of food is water which effects the rheological 

and textural properties of foods depending on its interaction with other food 

components such as proteins and polysaccharides. The interaction of water with 

proteins may effect the functional properties of the proteins such as dispersibility, 

wettability, swelling, solubility, thickening/viscosity, water-holding capacity, gelation, 

coagulation, emulsification and foaming capacity. Thus, to better understand the 

possible functions of proteins in food, it is essential to analyze the hydration of proteins.  

Water molecules bind to proteins through their charged groups (ion-dipole 

interactions); backbone peptides groups: the amide groups of asparagine and glutamine; 

hydroxyl groups of serine, threonine, tyrosine residues (dipole-dipole interactions); non-

polar residues (dipole-induced dipole interaction, hydrophobic hydration). When a dry 

protein interacts with water, the initial hydration occurs at the sites of ionizable groups 

of protein. Then, water clusters form near the polar and charged protein surfaces and 

hydration at the polar surfaces is completed. The hydrophobic hydration of nonpolar 

surfaces then initiates and a water monolyer is formed around the protein. The water 

bind to protein is then associates with the bulk water and hydration is completed (Fig. 

4.10) (Damodaran 1996b). Water binding capacity (also called hydration capacity) of 

proteins defined as grams of water bound per gram of protein when a dry protein 

powder is equilibrated with water vapor at 90-95 % relative humidity (Damodaran 

1996a). It is reported that the globular proteins bind about 0.2-0.5g water per gram of 

protein. Random coiled proteins such as gelatin, on the other hand, can bind almost 99 

times of their weight of water due to the entrapment of water inside protein structure 

(Davidek et al. 1990).  
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Figure 4.10. Protein hydration steps: (A) dry protein, (B) initial hydration at the sites of 

ionizable groups, (C) formation of water clusters near the polar and 

charged protein surfaces, (D) completion of hydration at the polar surfaces, 

(E) hydrophobic hydration at the nonpolar surfaces; completion of 

monolayer coverage, (F) bringing of water associated with protein with the 

bulk water, (G) complation of hydrodynamic hydration (Damodaran 

1996a). 

 

The water binding capacity of proteins are influenced by several environmental 

factors such as pH, ionic strength, type of salts in the medium, temperature and protein 

conformation (Damodaran 1996a, Sikorsky 1997). From these factors the pH is 

particularly effective on water binding. At isoelectric pH the proteins contain both 

positive and negative charges. Thus, the attraction formed between the positive and 

negative charges of different proteins increases protein-protein interactions. This 

minimizes water-protein interactions and causes coagulation and insolubilization. Thus, 

proteins show low hydration at their isoelectric point (pI). At pH values higher or lower 

than their pI, the proteins have a net negative or positive charge, respectively, and this 
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increases the repulsive forces among protein molecules. In this case, the proteins 

interact with water and hydration capacity increases significantly. Due to the ionization 

of the sulfhydryl and tyrosine residues, the water binding capacity of the proteins 

generally reaches the highest level at the pH 8-9 (Damodaran 1996a).   

The presence of low concentrations of salts (<0,2 M) increase the hydration of 

proteins by binding of the hydrated salt ions weakly to charged groups on protein. In 

contrast, at high salt concentrations water-salt ions interactions block the water-protein 

interactions and this causes dehydration of the protein. The increase of temperature, also 

reduces the hydration by decreasing hydrogen bonding and hydration of ionic groups.  

Denaturation may also increase the water binding capacity by increasing the surface 

area to mass ratio with the exposure of some buried hydrophobic groups. However, if 

aggregation occurs, water binding capacity of denatured protein may decrease with the 

increased protein-protein interaction. It should be noted that most denatured food 

protein are insoluble (Davidek et al. 1990). However, the water binding capacity of 

these proteins is not significantly different from that of their native forms (Damodoran 

1996a). This clearly shows that the water holding capacity is not directly related with 

solubility. Moreover, generally water-holding capacity of a protein is more important 

than water binding capacity for food products. The water-holding capacity refers to 

bound water, hydrodynamic water, and the physically entrapped water. It is related 

mainly with the protein structure and defined as ability of the protein to hold the water 

within the protein matrix (Sikorski 1997). There is a positive correlation with the water-

holding capacity and water-binding capacity. 

 

4.3.2. Solubility 
 

Solubility of proteins depends on the equilibrium between protein-protein and 

protein-solvent interactions. High solubility of a protein increases its functionality and 

usage in the food production. Hydrophobic and ionic characteristics of the proteins are 

the major factors that affect the solubility. Hydrophobic interactions decrease the 

solubility because of the promotion of protein-protein interactions while ionic 

interactions increase the solubility by promoting protein-water interactions (Damodaran 

1996a).  
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          Proteins are classified into four categories according to their solubility as, (1) 

albumins; soluble in water at pH 6,6 (e.g. serum albumin, ovalbumin); (2) Globulins; 

soluble in dilute salt solution at pH 7,0 (e.g. glycinin, phaseolin); Glutelins; soluble only 

in acid (pH 2,0) and alkaline (pH 12,0) solutions (e.g. wheat glutelins); (3) Prolamins; 

soluble in 70% ethanol (e.g. zein, gliadins). 

One of the most important factors affecting protein solubility is pH. When 

solubility is plotted against pH, generally a U shaped curve was obtained with minimum 

solubility at isoelectric point (Sikorski 1997). A majority of the food proteins are acidic 

proteins that exhibit minimum solubility at pH 4-5 and maximum solubility at alkaline 

pH.  

Depending on the pH of a medium and pI of proteins, the ionic strength may 

also be highly effective on protein solubility. For example, at pH values lower than the 

pI, protein has a net positive charge. Under this condition, increase of the ionic strength 

of medium by addition of sodium chloride results the preferential binding of negatively 

charged chloride ions to protein. As the salt concentration was increased the net positive 

charge of protein and molecular repulsion reduces. Thus, protein solubility decreases 

since reduced molecular repulsion cause an increase in the hydrophobic interactions that 

promote protein-protein interaction. If pH of the medium is close to the pI of the 

protein, the increase of ionic strength by addition of salt, increases also the 

electronegativity of protein by preferential binding of chloride ions to positive charges 

of protein. This increases the molecular repulsion while destabilizing hydrophobic 

protein-protein interactions and solubility increases. On the other hand, when pH is 

above pI, despite the binding of the sodium and chloride ions to counter groups in 

protein, the net negative charge of protein maintains its solubility (Damodaran 1996b).   

The effect of temperature on solubility of proteins depends on the temperature 

range. For example between 0 and 40 oC solubility of proteins, except highly 

hydrophobic proteins, increase with the increase of temperature. At higher temperatures 

unfolding of proteins expose the hydrophobic groups and cause aggregation and 

precipitation.   

On the other hand, the organic solvents lower the permittivity of an aqueous 

medium. This increase intra- and intermolecular electrostatic forces, both the repulsive 

and attractive. The increased repulsive electrostatic interactions cause the unfolding of 

the protein and the promotion of H bonding and electrostatic attractions by low 

permittivity cause precipitation (Demodaran 1996a).   
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4.3.3. Interfacial Properties of Proteins 
 

Most of the processed food products are two-phase systems such as emulsions or 

foams that are unstable without a suitable amphiphilic (or amphipathic) material 

between the surfaces of their two phases. Proteins containing both hydrophobic and 

hydrophilic groups are amphiphilic molecules that migrate spontaneously to an air-

water interface or an oil-water interface (Damodaran 1996a). The highly viscoelastic 

film formed at an interface by proteins is more stable to mechanical disturbance than 

low-molecular weight surfactants. 

Although all the proteins are amphiphilic, their surface-active properties may 

show difference. The differences in the surface active properties of the proteins are 

primarily attributed to differences in their conformations and differences in the 

physicochemical characteristics of their external surface (Damodaran 1996b). In fact 

these are the conformational stability/flexibility, adaptability of conformation to 

environmental changes and distribution of hydrophilic and hydrophobic groups on the 

protein surface. The major characteristic properties of surface-active proteins are; (1) 

ability to rapidly adsorb to an interface, (2) ability to rapidly unfold and reorient at an 

interface, (3) ability to form a strong cohesive and viscoelastic film at the interface that 

is stable to thermal and mechanical shocks. These characteristics of proteins greatly 

affect their emulsifying and foaming properties (Damodaran 1996a, Damodaran 1996b).  

 

4.3.3.1. Emulsifying Properties 
 

          Emulsions are dispersions of one liquid in another (Walstra 1996). Emulsions 

have three components; oil, water and emulsifier. However, to form the emulsion it is 

essential to apply energy (mostly mechanical energy) and break up oil into small 

droplets. The energy needed to disperse and break up oil droplets is generally provided 

by intence agitation (Walstra 1996). If oil and water are dispersed through the 

application of energy without the use of a emulsifier, the system attempts to achieve the 

conformation of lowest free energy. The total energy can be minimized if the area of 

contact between the two liquits is kept minimized. This can initially be achieved by the 

formation of spherical oil particles. If there is no energy barrier to prevent coalescence, 

the system will continue to lower its total energy content by the formation of larger 
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droplets from smaller ones. After some time phase seperation occurs and emulsion is 

disturbed. The proteins used as emulsifier generally form a lipid around the lipid 

globules and with their electostatic charge and steric hindrance they prevent flocculation 

of lipid globules (Hu et al. 2003, Sikorsky 1997). In other terms coating of lipid droplets 

by protein provides an energy barrier to coalescence. Proteins capable of unfolding at 

water-lipid interface can serve as emulsifier (Damodaran 1996a). The proteins are very 

suitable for oil-in-water food emulsions. However, their limited solubility in oil 

prevents their use in water-in-oil emulsions. Some intrinsic and extrinsic factors that can 

effect the properties of protein stabilized emulsions are given in Table 4.3.  

 

Table 4.3.  Intrinsic and extrinsic factors effective on properties of protein-stabilized 

emulsions (Damodaran 1996a) 

Intrinsic Factors Extrinsic Factors 

pH Type of emulsification equipment 

Ionic strength Rate of energy input 

Temperature Rate of shear 

Presence of low-molecular-weight surfactants  

Sugars  

Oil phase volume  

Type of protein  

Melting point of oil used  

 

         The examples of emulsion-type products stabilized by proteins include milk, egg 

yolk, coconut milk, soy milk, butter, margarine, mayonnaise, spreads, salad dressings, 

frozen desserts, frankfurter, sausage, and cakes (Damodaran 1996a).  

 

4.3.3.2. Foaming Properties 
 

Food foams are dispersions of gas bubbles (mostly air) in a continuous liquid or 

semi solid phase (Sikorsky 1997). There are many processed foam-type foods such as 

whipped cream, ice cream, cakes, bread, soufflés, mousses and marshmallow. The 

unique textural properties of these products are due to tiny air bubbles. In foods the 



 32 

main surface active agents that help in the formation and stabilization of the dispersed 

gas phases are proteins (Damodaran 1996a). 

Generally, protein stabilized foams are formed by bubbling, whipping or shaking 

a protein solution. The foaming property of a protein refers to its ability to form a thin 

firm film at gas-liquid interfaces, so that large quantities of gas bubbles can be 

incorporated and stabilized (Damodaran 1996a). The volume of the gas bubble may 

make up 99% of the total foam volume whereas the contends of protein in food products 

is 0.1-10% (Sikorsky 1997).   

The foams are stabilized by lowering the gas-liquid interfacial tension and 

formation of rupture-resistant, elastic protein film surrounding the bubbles. If the foams 

are not fixed by heat setting of the protein network, they may be destabilized by (1) 

drainage of the liquid from the intersheet space due to gravity, pressure or evaporation; 

(2) diffusion of the gas from the smaller to larger bubbles; (3) coalescence of the 

bubbles by rupture of the protein films (Sikorsky 1997). The environmental factors 

influencing the foam formation and stability are pH, salts, sugars, lipids, protein 

concentration.  

The protein foams are more stable at isoelectric pH of protein if no 

insolubilization of the protein occurs. In isoelectric pH region lack of repulsive 

interaction produces favorable protein-protein interactions and formation of a good film 

at the interface. The lack of repulsion also increases the amount of protein absorbed to 

the interface (Damodaran 1996a, Damodaran 1996b). At pH other than pI, foamability 

of protein is good, but foam stability is poor.  

Due to cross-linking of protein molecules and creation of films with better 

viscoelastic properties, divalent ions such as Ca+2 and Mg+2 improve foamability and 

foam stability. Addition of sucrose, lactose and other sugars and increase of the protein 

concentration improves foamability due to the increased viscosity of liquid phase. In 

contrast, lipids impair the foaming properties. 

 

4.3.4. Flavor Binding 

 

Flavor is one of the important characteristics of the sensory properties of the 

foods. Although proteins are odorless they can bind flavor compounds. Proteins bind 

flavor compounds tightly, retain them during processing of foods, and release them 



 33 

during chewing. In dry conditions proteins bind flavors with van der Waals interactions, 

hydrogen bonding, and electrostatic interactions. In liquid or high moisture products, 

proteins bind flavor through hydrophobic regions on the protein surface. Oilseed 

proteins and whey proteins carry undesirable flavors and this limits their food 

applications (Damodaran 1996a). On the other hand, the flavor binding properties of 

proteins may be exploited by using them as carriers of desired flavors. For example, 

flavor binding property of proteins is particularly useful to produce meat-like flavor 

with meat analogues containing plant proteins (Damodaran 1996a). 

 

4.3.5. Viscosity 
 

The viscosity of a solution is related to its resistance to flow under an applied 

force (or shear stress). Viscosity or consistency of the products is very important for the 

consumer acceptance of several liquid and semisolid-type foods (e.g. soups, beverages).  

High-molecular-weight polymers such as proteins greatly increase viscosity. The 

viscosity behavior of proteins is affected by several variables including size, shape, 

protein-solvent interactions, hydrodynamic volume and flexibility in the hydrated state. 

 

4.3.6. Gelation 
 

A gel is an intermediate phase between a solid and a liquid and it is defined as a 

substantially diluted system which exhibits no steady state flow (Damodaran 1996a). 

They are made up by polymers cross-linked by covalent or noncovalent bonds that form 

a three-dimensional network which entrap water and other small molecular weight 

substances. In gels the proteins are transformed from “sol state” to “gel-like” state.   

Heating, divalent ions and enzymes are used to conduct this transformation and form 

gels. However, the heating is the most frequently used method to obtain protein gels. 

The gelation mechanism of heating involves two steps. The first step usually involves 

the dissociation of the quaternary structure of protein and the second step involves the 

unfolding of protein molecules (Sikorsky 1997). Proteins are transformed into a ‘progel’ 

state due to the denaturation by heating. At a progel state, some degree of protein 

polymerization has already occurred, so that a viscous liquid is formed. The  

denaturation of proteins and unfolding exposes functional groups such as hydrogen 
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bonding groups and hydrophobic sites capable to promote protein-protein interactions 

and causes the formation of a network. The gelation occurs by the cooling of the 

progels. The gels formed mainly by H bonding are reversible and turned to the progel 

state by reheating. However, the gels formed mainly by hydrophobic interactions are 

irreversible due to the temperature stability of the hydrophobic interactions (Damodaran 

1996a). In some proteins heating to about 40 oC may cause gelation whereas some fish 

protein sols turn to gels slowly at 4 oC. For the gelation of ovalbumin, on the other 

hand, it is necessary to apply a two step heating, fisrt to 60-70 oC and then to 85 oC 

(Sikorsky 1997). The denatured proteins may form coagulum-type gels formed 

irreversibly by hydrophobic aggregation due to great number of apolar amino acid 

residues or translucent type gels formed mainly by H bonding due to the low levels of 

nonpolar amino acid residues in protein. 

 

4.3.7. Dough Formation 
 

Food proteins, especially wheat proteins, have ability to form a viscoelastic 

dough suitable for making bread and other bakery products. The formation of dough 

and its characteristics stem form proteins. Gluten in cereals is the major protein for 

dough formation. The dough structure is based on extensive three-dimensional network 

of gluten protein sub-units joined together by disulfide cross-links (Davidek et al. 

1990). Gluten is a mixture of gliadin and glutenins proteins and its amino acid 

composition affects the functionality of gluten in the dough. The high glutamine and 

hydroxyl amino acid residues responsible for the gluten water binding properties 

whereas cysteine and cystine residues have functions in the polymerization of gluten 

proteins due to sulfhydryl-disulfide interchange reactions. 

 

4.3.8. Antioxidant Properties of Proteins 
 

Due to the health concerns related to the use of synthetic antioxidants, extensive 

studies have been carried out to find or develop safe and natural antioxidants. Many 

proteins including casein, soy proteins, ovalbumin, oilseed proteins, gliadin, zein, 

bovine serum albumin, yam dioscorin, lactoferrin, sericin, carnosine, etc have been 

reported to have an antioxidant activity (Rajalakshmi and Narasimhan 1996, Kouoh et 



 35 

al. 1999, Kim et al. 2001, Hou et al. 2001, Hu et al. 2003). It was reported that amino 

acids show their antioxidative properties both as primary antioxidants or secondary 

antioxidants (Sakanaka et al. 2004). The proteins owe their antioxidant activity to their 

constituent amino acids. The antioxidant activity of aromatic amino acids such as 

tyrosine, phenylalanine and tryptophan and sulfur containing amino acids such as 

cysteine is due to their ability to donate protons to free radicals (Hu et al, 2003, 

Rajapakse et al. 2005, Je et al. 2004). On the other hand, the basic amino acids such as 

histidine, lysine and arginine and acidic amino acids such as aspartate and glutamate 

show their antioxidant activity by chelating metal ions (Saiga et al. 2003, Rajapakse et 

al. 2005). The reports of different workers show that histidine may behave as both a 

radical scavenger and a metal chelator due to its imidazole ring (Chen et al. 1996, 

Rajapakse et al. 2005). Thus, this amino acid may have a critical importance for the 

antioxidant activity of proteins. It is also reported that there is a close relationship 

between the hydrophobicity and antioxidant activity of peptides (Chen et al. 1995, 

Rajapakse et al. 2005, Saıga et al. 2003). In fact, many antioxidative peptides contain 

hydrophobic amino acid residues such as valine and leucine at the N-terminus (Kim et 

al. 2001). It seems that the hydrophobicity is important since it increases the interaction 

of protein with the lipids. Moreover, Hu et al. (2003) reported that the cationic 

characteristics of protein inhibit lipid oxidation due to the electrostatic repulsion of 

transition metals away from the lipid droplets. 

The presence of some antioxidant amino acids is not the only factor that 

determines the antioxidative properties of proteins or peptides. The correct positioning 

in the peptide sequence is also a very important factor effective on antioxidant activity 

(Rajapakse et al. 2005, Chen et al. 1996). It was reported that the position of histidine, 

proline, leucine, and glutamic acid in the chains of antioxidative peptides is effective on 

their radical scavenging activities. For example, the peptides having proline at the N-

terminus more effectively prevents oxidation of linoleic acid than peptides having 

proline at the C-terminus (Chen et al. 1996).  Also, peptides having histidine residues at 

the N-terminus show higher metal chelating activity than peptides having histidine at 

the C-terminus (Chen et al. 1998). 

By modification, it is possible to enhance the antioxidant activity of proteins. 

For example, it was reported that Maillard reaction with polysaccharides may increase 

the antioxidant activity of proteins by improving their hydrophilic/hydrophobic balance 

(Nakamura et al. 1998). The antioxidant activity of protein extracts may also be 
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increased by Maillard reaction of proteins with sugars. However, in this case, the 

increase in antioxidant activity is mainly due to the formation of Maillard reaction 

products having high antioxidant activity (Yoshimura et al. 1997, Alaiz et al. 1999, 

Nicoli et al. 1999). The antioxidant activity of proteins can also be increased by their 

hydrolysis with proteases (Chen et al. 1996, Chen et al. 1998, Pena-Ramos and Xiong 

2002) or concentrated acid (Chen et al. 1995). Protein hydrolysates, containing peptides 

and amino acids have long been known to act as potent antioxidants. However, the 

degree of hydrolysis may be very important to obtain optimum antioxidant activity. It 

was reported hat the limited hydrolysis works better than the complete hydrolysis to 

increase the antioxidant activity, since it exposes the functional groups (amino acids or 

peptides) and increases protein-lipid interactions (Hwang et al. 2001). For enzymatic 

hydrolysis, the amino acid sequence of protein is highly effective on the antioxidant 

activity, since it effects the substrates produced by the protease enzyme used in 

hydrolysis (Chen et al 1995).  

 

4.4. Modification of Proteins 
 

         The intentional modification of proteins is conducted to enhance the 

physicochemical and functional properties of proteins (Howell 1996). Food proteins 

have been modified since 5000 B.C. A classical example is enzymatic modification of 

milk proteins in yoghurt and cheese. 

 

4.4.1. Chemical Modification 
 

          Chemical modification of proteins includes the derivatization of the amino acid 

side chains of proteins and hydrolysis of the peptide bonds (Howell 1996). Although 

chemical modification of amino acid side chains can improve functional properties of 

proteins, it can also impare the nutritional values and may create some toxic amino acid 

derivatives that cause regulation problems (Domadoran 1996a). The major amino acid 

side chains involved in chemical modifications and related chemical modifications in 

these groups were given in Table 4.4.  
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Table 4.4. The amino acid side chain groups and related modifications (Howell 1996) 

Side Chain Chemical Modifications 

Amino 

Carboxyl  

Disulfide 

Sulfhydryl 

Thioether 

Phenolic 

Imidazole 

Indole 

Acylation, alkylation 

Esterification, amidation 

Oxidation, reduction 

Oxidation, alkylation 

Oxidation, alkylation 

Acylation, electrophilic substitution 

Oxidation, alkylation 

Oxidation, alkylation 

 

  

4.4.1.1. Acylation 
 

          Acylation of proteins is conducted with acid anhydrides. Mono and dicarboxylic 

acids, e.g. acetic and succinic anhydrides, are commonly used as acylating agents. 

These chemicals react mainly with �-amino groups of lysine. Also, they undergo limited 

reaction with the tyrosine phenolic groups. 

          Acylation with acetic anhydride is called acetylation, whereas acylation with 

succinic anhydrides is called succinylation (Fig. 4.11). Acetylation involves the 

covalent attachment of neutral acetyl groups to positively charged �-amino groups. 

However, succinylation introduces anionic succinate residues to the �-amino group and 

makes net charge of protein negative. This increases molecular repulsion and increase 

solubility (Howell 1996). However, succinylation impairs some functional propertied 

such as heat-gelling properties, foaming and emulsifying activity (Damodaran 1996a). 

 

(a)   
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(b) 

 
Figure 4.11. Acetylation (a) and succinylation (b) of proteins (Howell 1996) 

   

4.4.1.2. Alkylation 
 

          The SH and amino groups can be alkylated by reacting them with iodoacetate or 

iodoacetamide (Fig. 4.12). Reaction with iodoacetate results in elimination of the 

positive charge of lysyl residue, and introduction of negative charges at both lysyl andf 

cyteine residues.  

 
Figure 4.12. Alkylation with iodoacetate and iodoacetamide (Damodaran 1996a) 

    

          The increase of the electronegativity of iodoacetate-treated protein may increase 

the solubility of protein. On the other hand, reaction with iodoacetamide eliminates only 

the positive charges. Reaction of iodoacetamide also effectively block sulfhydryl groups 

and prevent disulfide-induced protein polymerization (Damodaran 1996a).   

 

 



 39 

4.4.1.3.Esterification 
 

The acylation is the most widely used method of chemical modification of food 

proteins. However, since it modifies an essential amino acid (lysine) side chain it causes 

impairment of the nutritional values of protein. Thus, modification of the �- and �-

carboxyl groups of nonessential amino acids aspartic and glutamic acid by esterificaiton 

is more acceptable than the acylation. 

To prepare the esters, carboxyl groups of protein are treated with methanol or 

ethanol in the presence of an acid catalyst (Howell 1996)(Fig. 4.13). Esterification 

blocks the negatively charged carboxyl groups, yielding a protein with an increased 

isoelectric point (pI) or net positive charge. 

          The esterification modifies the functional properties of proteins. For example, 

ethyl-esterified �-lactoglobulin exhibits superior emulsion stability and oil adsorption 

properties at the oil-water interface than its native form (Howell 1996). The esters are 

stable at acid pH, but are readily hydrolyzed at alkaline pH (Damodaran 1996a).  

 
Figure 4.13. Esterification of protein (Howell 1996) 

 

          The esterification modifies the functional properties of proteins. For example, 

ethyl-esterified �-lactoglobulin exhibits superior emulsion stability and oil adsorption 

properties at the oil-water interface than its native form (Howell 1996). The esters are 

stable at acid pH, but are readily hydrolyzed at alkaline pH (Damodaran 1996a).  

 

4.4.1.4.Amidation 
 

          Similar to esterification, amidation also targets nonessential acidic amino acids. 

Carboxyl groups of aspartate and glutamate can be converted to asparagines and 

glutamine, respectively, by reacting with a nucleophilic reagent (such as amine) and a 

water soluble carbodiimide (WSC) (Fig. 4.14).  
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Figure 4.14. Amidation of proteins (Howell 1996) 

 

          Carbodiimides characterized by their unsaturation show addition reaction with a 

range of organic functional groups. For example, by this way essential amino acids may 

be attached covalently to proteins (Howell 1996). By amidation it is also possible to 

retard the thermogelling of egg albumen.   

 

4.4.1.5.Acid hydrolysis   
 

          The mild hydrolysis is applied to obtain high molecular weight products with 

increased functionalities such as solubility, foaming and emulsification. Mild acid 

hyrolisis results in low levels of peptide bond hydrolysis (7 %) accompanied by 

deamidation (10-20%) that results in release of aspartic acid and ammonia (Howell 

1996). On the other hand, high degree of acid hydrolysis is applied to obtain protein 

hydrolisates. Seasonings containing amino acids obtained by acid hydrolysis of proteins 

are important commodities in world (Davidek et al. 1990). Currently, the most 

frequently used raw materials to obtain protein hydrolisates are soybean meal and wheat 

gluten. The process is generally conducted with 20% hydrochloric acid at 110 oC for 

several hours. The crude hydrolisate was then neutralized with sodium hydroxide or 

sodium carbonate and it is filtered and stored for some time to improve its organoleptic 

properties before it is used in food applications (Davidek et al. 1990). The acidic 

hydrolysis causes the loss of some essential nutrients. For example, even dilute acids 

may cause the total loss of tryptophan.  

   

4.4.1.6.Alkaline Hydrolisis 
           

          Deamidation and hydrolysis of peptide bonds by alkali treatment is used generally 

to isolate plant proteins. The extraction is conducted by use sodium hydroxide for 

several hours between 50 and 80 oC. Alkali treatments even at moderate temperatures 

cause racemization of all optically active amino acids and formation of some 

nondigestable D-isomers (Davidek et al. 1990). Serine and aspartic acid residues are the 
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residues that undergo the greatest racemization. The alkali treatment also causes the 

destruction of lysine and cysteine, forms some crosslinked amino acids such as 

lysinoalanine and leads the formation of some possibly toxic compounds. Thus, protein 

hydrolizates are now obtained under mild conditions by using sodium bicarbonate, 

bisulphide and neutral solutions in place of sodium hydroxide (Davidek et al. 1990).      

 

4.4.1.7. Phosphorylation 
 

          Phosphate groups can be covalently attached to proteins to increase their negative 

charges (Fig. 4.15). Inorganic phosphate can be bound to proteins either by O- or N- 

esterificaiton reactions. In O- esterification, during the formation of C-O-P bond 

derivatives, inorganic phosphate react with the hydroxyl groups of serine, threonine and 

tyrosine and form phosphoserine, phosphotreonine and phosphotyrosine, respectively.  

On the other hand, in the C-N-P derivatives produced by N- esterification, the inorganic 

phosphate combines with the amino group of lysine, imidazole group of histidine and 

guanidino group of arginine (Howell 1996). The phosphorylation greatly increases the 

electronegativity of proteins. However, the use of inorganic phosphate in 

phosphorylation produces some protein cross-links that reduce the solubility.  Thus, the 

use of phosphorylation agents such as sodium trimetaphosphate which does not cause 

cross-linking is suggested. Phosphorylation enhances viscosity, water absorption, 

gelation and emulsification. Since phosphorylated proteins are highly sensitive to 

calcium ion induced coagulation, they may be very suitable for simulated cheese type 

products (Damodaran 1996a). The nitrogen-bound phosphate derivatives are less acid 

stable than the oxygen-bound derivatives. Thus, the digestibility of proteins modified by 

nitrogen- bounding of phosphate is not impaired significantly. 

     

 
Figure 4.15. Phosphorylation of proteins (Howell 1996) 
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4.4.2. Enzymatic Modifications 
 

          Enzymes (mostly proteases) are used to modify the functional properties of 

proteins such as viscosity, gelability, moisture-retaining capacity, dispersibility, 

elasticity, and foam stability to different degree (Davidek et al. 1990).   

          In food industry, the limited hydrolysis of proteins by proteases found many 

applications such as solubilization of denatured proteins, maintenance of protein 

solubility in acid media (e.g. in carbonated acid beverages), improvement of 

digestibility (foodstuffs for children, diet-followers, sportsmen, old people, components 

of animal fodder), decomposition of proteins having undesirable properties, 

tenderization of meet and chill proofing of beer (Davidek et al. 1990).      

          A high degree of protein hydrolysis, on the other hand, is applied in the 

preparation of protein hydrolisates for parenteral nutrition, preparation of seasonings 

etc.  

          Depending on the type of protein and the type of modification different protease 

enzymes from animal, plant or microbial origin may be used in the enzymatic 

modification of proteins. For example, to obtain protein hydrolysates containing small 

and nonbitter peptides it is suggested to use aminopeptidases that cleave off dipeptides 

from the amino terminal. The main enzymes used in protein modification include FDA 

approved plant origin enzymes including papain from papaya, bromelain from 

pineapple and ficin from ficus (Howell 1996). Malt proteases may also be used for the 

modification of proteins.  

          In addition to hydrolysis of peptide bonds of proteins it is possible to promote 

enzymatic cross-linking, deamidation or phosphorylation of proteins. For example, by 

using transglutaminase, it is possible to conduct protein cross-linking or introducing 

essential amino acids to proteins (De Jong and Koppelman 2002, Howell 1996). On the 

other hand, peptidoglutaminase catalyses the deamidaiton of proteins by hydrolysis of 

amide of glutamine residues, whereas protein kinase catalyses the phosphorylation of 

proteins (Howell 1996).     
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CHAPTER 5 
 

MATERIALS AND METHODS 
 

5.1. Materials 
 

           Dried chick-peas and kidney-beans (Migros Nohut (koçba�ı), 
ok Fasulye 

(dermason)) were purchased from a supermarket in Izmir (Turkey). The dialysis tubing 

(12000 MW, prepared as described in the product manual), bovine serum albumin 

(fraction V), DEAE-cellulose (fast flow column, prepared as described in product 

manual), insoluble PVPP (polyvinylpolypyrrolidone), ABTS (2,2-Azino-bis-(3-

Ethylbenz-Thiazoline-6-Sulfonic acid)), linoleic acid (99 %), Tween 20 were purchased 

from Sigma Chem. Co. (St. Louis, Mo., USA). Ammonium sulfate (for biochemistry) 

was purchased from Merck (Darmstadt). Trolox, Ferrous chloride tetrahydrate was 

purchased from Fluka (Switzerland). Ferrozine (3-(2-Pyridyl)-5,6-diphenyl-1,2,4-

triazine-4’,4”-disulfonic acid Monosodium salt) was purchased from Fluka (USA).  

Sericin (Silk Biochemical Co. Ltd) was kindly donated by Assistant Professor Dr. O�uz 

Bayraktar from Izmir Institute of Technology.  

 

5.2. Preparation of Samples 
           

  To prepare the heat treated samples, the legumes were first rehydrated in 

distilled water at 12 h at room temperature. The samples were than heat treated at 90o C 

for 20 minutes. On the other hand, for the preparation of thermally processed samples, 

the legumes were put into flasks containing distilled water and thermally processed at 

121o C for 20 minutes. The treated samples were processed immediately to acetone 

powder.    

 

5.3. Preparation of Acetone Powders 
 

          To remove phenolic compounds and lipids, acetone powders were used as source 

of protein extracts. For the preparation of acetone powders, untreated, heat-treated or 
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thermally-processed chick-peas or kidney-beans (prepared by rehydration of 50 g dry 

samples) were homogenized in a Waring blender for 3 min with 200 mL cold acetone. 

The slurry obtained was filtered under vacuum from Buncher funnel containing a 

Whatman No:1 filter paper and the solid residue remained on the filter paper was 

collected. The homogenization with 200 mL cold acetone and filtration were then 

repeated for two more times for the collected residue and the powder, left overnight to 

evaporate the acetone, was stored at -18 oC until used for protein extraction. 

 

5.4. Extraction and/or Modification Methods 
 

5.4.1. Preparation of Crude Protein Extracts of Heat Treated or 

Thermally Processed Chick-peas or Kidney-beans 
 

          The heat treatment of samples was applied for the inactivation of enzyme 

lipoxygenase, whereas thermal processing was applied both for lipoxygenase 

inactivation and modification of antioxidant activity of proteins. To prepare the crude 

protein extracts from heat treated or thermally processed chick-peas or kidney-beans the 

extraction method given by Genovese and Lajolo (1998) was applied by major 

modifications. Briefly, 20 g acetone powder, 0.5 g insoluble PVPP and 180 ml distilled 

water were mixed and extracted with a magnetic stirrer for 2 hours at room temperature. 

The extract was then filtrated from a cheese-cloth (4 layers) to collect the filtrate and the 

cake was discharged. The filtrate was then centrifuged for 30 min at 15000 g (4 oC) and 

clarified. Half of the clarified supernatant was dialyzed for 72 h (48 h against 5 x 2 L 

distilled water and 24 h against 3 x 2 L deionized water) at 4 oC, whereas the remaining 

half was incubated for the same period at the same temperature without application of 

dialysis. At the end of dialysis (or incubation without dialysis) the extracts were 

clarified by centrifugation for 15 min at 4500 g (4 oC) and stored at -18 oC after they 

were lyophilized. The lyophilization was conducted by using a freeze drier (Labconco, 

FreeZone, 6 liter, Kansas City, MO, USA) working between -44 and -47 oC collector 

temperature and 50 x 10-3 and 100 x 10-3 mBar vacuum.  The sample container volume 

was two to three times the sample volume.   
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5.4.2. Preparation of Crude Protein Extracts of Chick-peas by Hot 

Acidic Hydrolysis 
           

          The hot acidic hydrolysis was applied mainly for the modification of antioxidant 

activity of proteins. For this purpose, 4 g acetone powder from rehydrated chick-peas 

was suspended in 65 ml deionzied water and the total volume of the suspension was 

adjust to 130 ml with 3 N HCl. The extract was then heated to 85 oC and maintained at 

this temperature for 10 or 30 minutes under continuous stirring. After heating, the 

extract was cooled to room temperature in an ice water bath and its pH was brought to 

neutrality by addition of 6 N NaOH. The final volume of this extract was then made up 

155 mL, it was further stirred (30 or 50 min for 30 and 10 min heated samples, 

respectively) at room temperature and clarified by centrifugation for 30 min at 15000 g 

(4 oC). Half of the clarified supernatant was dialyzed for 24 h (against 3 x 2 L deionized 

water) at 4 oC, whereas the remaining half was incubated for the same period at the 

same temperature without application of dialysis. At the end of dialysis (or incubation 

without dialysis) the extracts were clarified by centrifugation for 15 min at 5000 g (4 
oC) and assayed for protein and antioxidant activity. 

 

5.4.3. Preparation of Crude Protein Extracts of Chick-peas Obtained 

by Hot Extraction Conducted at Different pH Values 
 

5.4.3.1. Hot Extraction Conducted Close to Neutrality 
 

          The hot extractions conducted close to neutrality aimed mainly the inactivation of 

enzyme lipoxygenase. On this purpose, 4 g acetone powder was suspended in 130 mL 

deionzied water. The extract which pH was almost 6.5 was then heated to 85 oC and 

maintained at this temperature for 30 or 60 minutes under continuous stirring. After 

heating, the extract was cooled to room temperature in an ice water bath and its volume 

was made up 150 mL. For extract heated for 30 min, an additional 30 min stirring was 

applied at room temperature whereas the 60 min heated extract was used without further 

stirring.  The extracts stirred for total of 60 min were then clarified by centrifugation for 

30 min at 15000 g (4 oC). Half of the clarified supernatant was dialyzed for 24 h 

(against 3 x 2 L deionized water) at 4 oC, whereas the remaining half was incubated for 
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the same period at the same temperature without application of dialysis. At the end of 

dialysis (or incubation without dialysis) the extracts were clarified by centrifugation for 

15 min at 5000 g (4 oC) and assayed for protein and antioxidant activity. 

 

5.4.3.2. Hot Extraction Conducted at Acidic or Basic pH Values 
 

          The hot extractions conducted at extreme pH values aimed both the modification 

of proteins and increase of extraction yield of antioxidant proteins. In these extractions, 

4 g acetone powder was suspended in 100 mL deionzied water. The pH of the extract 

was then set to 2.5 (with 0.1 M HCl) or 9.5 (with 0.1 M NaOH) and it was heated to 85 
oC and maintained at this temperature for 30 min under continuous stirring. The extract 

was then cooled to room temperature in an ice water bath and its volume was made up 

150 mL.  After an additional 30 min stirring at room temperature, the extract was 

clarified by centrifugation for 30 min at 15000 g and 4 oC. Half of the clarified 

supernatant was then dialyzed for 24 h (against 3 x 2 L deionized water) at 4 oC, 

whereas the remaining half was incubated for the same period at the same temperature 

without application of dialysis. At the end of dialysis (or incubation without dialysis) 

the extracts were clarified by centrifugation for 15 min at 5000 g (4 oC) and assayed for 

protein and antioxidant activity. 

 

5.5. Partial Purification of Crude Protein Extracts with Ammonium 

Sulfate Precipitation and Dialysis 
  

          For partial purification, solid (NH4)2SO4 was added slowly to undialyzed crude 

protein extracts at 4 oC up to 90 % saturation. The mixture was stirred slowly for 1.5 h 

at 4 oC and the precipitate formed collected by 30 min (or 45 min) centrifugation at 

15000 g (or 4500g) and 4 oC was dissolved in 20 ml distilled water. The extract was 

then dialyzed for 24 h (or 36 h) at 4 oC (against 3 or 4 x 2L of distilled or deionized 

water), clarified by centrifugation for 30 min at 15000 g (4 oC) and then lyophilized and 

stored at -18 oC. 
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5.6. Partial Purification of Antioxidant Proteins by Dialysis and       

DEAE-cellulose Column Chromatography 
 

5.6.1. Purification of Antioxidant Proteins from Dialyzed Crude  Protein 

Extracts of Heat Treated or Thermally Processed Chick-peas 
 

          For the partial purification of heat treated or thermally processed chick-pea 

proteins, crude protein extract was prepared by suspending 10 g acetone powder and 

0.25 g PVPP in 90 ml distilled water. After 2 h stirring at room temperature, the mixture 

was filtered from cheese cloth (4 layers), clarified by centrifugation for 30 min at 15000 

g (4 oC) and dialyzed for 72 h (48 h against 5 x 2 L distilled water and 24 h against 3 x 2 

L deionized water) at 4 oC. Following dialysis the extract was centrifuged for 15 min at 

4500 g (4 oC) and loaded onto DEAE-cellulose column (2.4 cm diameter, 10 cm height) 

previously equilibrated with 0.01 M pH 7.00 Na-phosphate buffer. The washing of the 

column was conducted by 300 mL of equilibration buffer and the column was then 

eluted with a continuous linear gradient of 0-1.5 M NaCl prepared in 0.01 M pH 7.00 

Na-phosphate buffer. Fractions (5 mL) collected from the column were assayed for their 

antioxidant activity against ABTS radical as described in section 5.7, and the inhibition 

period of tests was shortened to 2 min to complete the measurements of all fractions as 

soon as possible and prevent possible changes in the antioxidant properties of proteins. 

The protein content of the fractions, on the other hand, was monitored by measuring 

absorbance value at 280 nm. 

 

5.6.2. Partial Purification of Antioxidant Proteins from Crude Protein 

Extracts of Chick-peas Obtained by Hot Extraction 
 

          To purify antioxidant proteins obtained by hot extraction, 4 g acetone powder was 

suspended in 130 mL deionzied water. The extract was then heated to 85 oC and 

maintained at this temperature for 30 minutes under continuous stirring. After heating, 

the extract was cooled to room temperature in an ice water bath, its volume was made 

up 150 mL and it was further stirred for 30 min at room temperature. The extract was 

then clarified by centrifugation for 30 min at 15000 g (4 oC), incubated for 24 h at 4 oC 

and one more centrifuged for 15 min at 4500 g (4 oC). The crude protein extract was 
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then loaded onto a DEAE-cellulose column (2.4 cm diameter, 10.0 cm height) 

previously equilibrated with 0.01 M pH 7.00 Na-phosphate buffer. The washing of the 

column was conducted by x mL of equilibration buffer and the column was then eluted 

with a continuous linear gradient of 0-1.5 M NaCl prepared in 0.01 M pH 7.00 Na-

phosphate buffer. Fractions (5 mL) collected from the column were assayed for their 

antioxidant activity against ABTS radical and protein as described in section 5.6.1. 

 

5.7. Determination of Antioxidant Activity against ABTS Radical  
 

          The antioxidant activity against ABTS radical was determined as described in Re 

et al. (1999). The ABTS was dissolved in distilled water, oxidized by potassium 

persulfate to form ABTS radical and then diluted with 5 mM pH 7.4 phosphate buffer 

containing 150 mM NaCl (PBS). The reaction mixture for the measurements was 

prepared by mixing 0.1 mL protein extract and 1.9 mL ABTS radical solution (initial 

absorbance at 734 nm was almost 0.700). The discoloration of dark blue colored ABTS 

radical by the antioxidant protein was monitored at 734 nm for 15 min. All 

measurements were performed in triplicate The antioxidant capacities of lyophilized 

protein preparations were determined by dividing the area of their % inhibition of 

ABTS radical  / concentration (�g/reaction mixture) ratio vs. period of inhibition test (in 

1, 6 or 15 min) curves with that area of the same curve of the standard antioxidant 

Trolox. The value determined by this calculation is called AUC (Area Under the Curve) 

value and it represents the antioxidant capacity as µmol Trolox per mg of lyophilized 

protein preparation. Bovine serum albumin and sericin were used as standard proteins 

for comparison. During purification studies the antioxidant activity of proteins were 

given as Trolox and Tyrosine equivalents (see standard curves in Appendixes A and B).  

 

5.8. Determination of Fe+2 Chelating Capacity 
 

          The Fe+2 chelating capacity of protein extracts were determined as described in 

Rajapakse et al. (2005). Briefly, 2 mL protein solution was mixed with 0.1 mL, 1mM 

FeCl2.4H2O solution.  After 30 min incubation at room temperature, 0.1 mL, 0.5 mM 

ferrozine was added into mixture and its absorbance was read at 562 nm after 10 minute 

incubation. The formation of blue color indicates weak Fe+2 chelating capacity whereas 
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the lack of any blue color development shows the strong Fe+2 binding. The percent Fe+2 

chelating capacity of sample was determined by using the following formula; A1-A2/A3 

x 100, where A1 is the final absorbance of the treated sample at  562 nm, A2 is the 

original absorbance of the untreated sample at  562 nm and A3 is the absorbance of 

blank obtained by treating deionized water in place of sample. The Fe+2 chelating 

capacity of samples were given as EDTA equivalents (µmol) per mg of lyophilized 

protein preparation (See standard curve in Appendix C). All measurements were 

performed in triplicate.     

 

5.9. Determination of Lipoxygenase Activity 
 

           In this study the enzyme lipoxygenase was used as an indicator for the 

determination of suitable heat treatment periods of chick-peas and kidney-beans. The 

presence of this enzyme in protein extracts intended to be used as antioxidant is 

undesirable since the enzyme is responsible from lipid oxidation. During preliminaries 

to determine a suitable heating condition for inactivation of enzyme in chick-peas or 

kidney-beans the enzyme extract was prepared by homogenizing 10 g of heat treated or 

unheated (control) sample with 50 mL distilled water in a Waring micro blender for 1 

min. A sample taken from the extract was then clarified by centrifugation for 15 min at 

15 000 g (4 oC) and used in test of enzyme activity. The activity of lipoxygenase was 

determined spectrophotometrically by slightly modifying the method described in 

Yemenicioglu (2002). The reaction mixture was formed by mixing 10 µL of clear 

enzyme extract, 2.95 mL 0.05 M, Na-phosphate buffer (pH 7.0) and 0.05 mL linoleic 

acid solution prepared with Tween 20 as described in Rackis et al (1972). The activity 

of enzyme monitored at 234 nm and 30 oC constant temperature was determined from 

the slope of the initial linear portion of absorbance vs. time curve.   

 

5.10. Determination of Protein Content 
 

Protein was determined by the Lowry method by using bovine serum albumin 

(BSA) as standard (see Appendices D) (Harris 1987). 
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CHAPTER 6 
 

RESULTS AND DISCUSSIONS 
 

6.1. Studies with Crude Protein Extracts of Heat Treated or Thermally 

Processed Chick-peas or Kidney-beans Obtained by Water 

Extraction 
 

          Since this work aimed studying the antioxidant activity of proteins, acetone 

powders were used to obtain phenolic free preparations. In studies with heat-treated or 

thermally processed chick-peas and kidney-beans, PVPP, an insoluble phenolic 

scavenger, was also employed during extraction to ensure the complete elimination of 

residual phenolics. On the other hand, the heat treatment (20 min at 90 oC) conditions 

were optimized by using the enzyme lipoxygenase as an indicator. Since this enzyme is 

responsible from the oxidation of lipids to hydroperoxides it should not exist in 

preparations intended to be used as antioxidant. The thermal processing (20 min at 121 
oC) was applied mainly to modify the antioxidant activity of proteins, but it also 

inactivates the lipoxygenase enzyme.  

 

6.1.1. Protein Content of Lyophilized Crude Protein Extracts of Heat-

Treated or Thermally Processed Chick-peas and Kidney-beans 
 

         Chick-peas and kidney-beans contain almost 27 % and 22 % protein, respectively 

(WEB_1 2005, WEB_2 2005).  In legumes, almost ~70 % the proteins consist of water 

insoluble globulins whereas the remaining protein consist of water soluble albumins 

(Genovese and Lajolo 1998, Vioque et al. 1999). Since extractions in this work were 

conducted with water, the proteins discussed in this study are mainly water soluble 

albumins.   

          As seen in Table 6.1, lyophilized crude chick-pea preparations contained 

significantly higher protein than lyophilized crude kidney-bean preparations. The 

thermal processing increased the protein content of undialyzed lyophilized chick-pea 

extracts slightly. However, a slight reduction was observed in the protein content of 
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undialyzed lyophilized kidney-bean extracts by the thermal processing. The application 

of dialysis caused an increase in protein/nonprotein substances ratio of lyophilized 

chick-pea preparations. In fact, in these extracts almost half of the lyophilized 

preparation was protein. In contrast, the dialysis did not affect the protein content of 

lyophilized kidney-bean preparations significantly. During dialysis, low molecular 

substances are removed from the extracts. The loss of some substances also occurred 

due to insolubilization and consequent separation in centrifugation applied after 

dialysis. For example, in heat treated chick-peas and kidney-beans, dialysis reduced the 

amounts of lyophilized dry powders almost 49 and 79 %, respectively. However, the 

increased protein content of dialyzed lyophilized chick-pea extracts indicates that the 

separated substances in these extracts are mainly non-protein substances. The soluble 

solids in the preparations other than the proteins may be polysaccharides such as soluble 

fractions of starch and pectin and simple sugars. Also, it is possible that an important 

part of the soluble solids exist as protein-polysaccharide complexes (Genovese and 

Lajolo 1998, Baldwin 2001).      

 

Table 6.1. Protein contents of lyophilized preparations obtained from crude protein 

extracts of heat treated or thermally processed chick-peas and kidney-beans 

Protein concentration in lyophilized preparation  

(mg protein /mg lyophilized preparaiton) 

Heat treated Thermally processed 

Source of 

Protein 

undialyzed dialyzed undialyzed Dialyzed 

Chick-peas 

 0.26 0.51 0.34 0.51 

Kidney-beans 

 0.19 0.22 0.15 0.18 

 

6.1.2 Antioxidant Activity of Lyophilized Crude Protein Extracts of 

Heat Treated or Thermally Processed Chick-peas and Kidney-

beans against ABTS Radical   
 

        The results of inhibition tests for lyophilized crude protein extracts obtained from 

heat treated or thermally processed chick-peas and kidney-beans showed the presence of 
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antioxidants in these sources (Table 6.2. and 6.3.). During tests, the inhibitions occurred 

fast in the first minute. After that, the inhibition slowed down through the 6 min, but 

continued slowly up to 15 min or more. Thus, the absorbance values of ABTS radical 

solutions were monitored for 15 min and inhibition / concentration ratios of 

preparations were evaluated for 1, 6 and 15 min separately.   

As given in Figure 6.1 and 6.2, at the end of 15 min inhibition test, chick-pea 

and kidney bean preparations showed higher antioxidant activity than the BSA protein 

against ABTS radical. By comparing the AUC values given in Table 6.4, it was 

determined that the lyophilized chick-pea and kidney bean protein preparations have 2 

to 2.5 and 1.1 to 2 fold higher antioxidant capacity than BSA, respectively (Table 6.4). 

The BSA is accepted as one of the antioxidant proteins that have some important roles 

in the antioxidant mechanism of living cells (Kouoh et al. 1999). Thus, greater 

antioxidant activity of lyophilized chick-pea or kidney bean crude proteins compared to 

BSA showed the good potential of these plant sources for extraction of antioxidant 

proteins.  
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Figure 6.1. Inhibition of ABTS radical by different lyophilized crude protein 

preparations of heat treated or thermally processed chick-peas (for 15 min 

inhibition test) 
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Table 6.2. Inhibition of ABTS radical by lyophilized crude protein preparations of heat 

treated or thermally processed chick-pea 

Sample Concentration 
(µg/reaction mixture) 

% inhibition of ABTS radical 

  1 min 6 min 15 min 

Heat treated (undialyzed) 

 100 13.9 24.2 28.6 

 300 30.9 52.2 62.0 

 600 47.9 71.5 80.3 

 900 58.2 79.4 85.1 

Heat treated (dialyzed) 

 100 22.0 29.4 32.4 

 300 49.1 66.0 73.6 

 600 67.7 84.7 90.5 

 900 77.9 91.6 94.5 

Thermally processed (undialyzed) 

 100 12.8 18.7 20.9 

 300 34.0 51.7 58.3 

 600 53.4 75.4 83.9 

 900 68.2 86.7 90.6 

 1500 76.9 92.0 90.9 

 3000 85.6 92.7 90.9 

Thermally processed (dialyzed) 

 100 15.3 21.0 22.3 

 300 40.2 56.2 62.9 

 600 61.6 80.3 85.3 

 900 73.0 87.2 89.4 

 1500 77.8 88.3 87.7 

 3000 83.6 87.1 85.2 
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Table 6.3. Inhibition of ABTS radical by lyophilized crude protein preparations of heat 

treated or thermally processed kidney-beans 

% inhibition of ABTS radical 
Sample Concentration 

(µg/reaction mixture) 1 min 6 min 15 min 

Heat treated (undialyzed) 

 20 0.71 1.7 2.3 

 100 7.8 12.3 13.4 

 300 24.5 36.9 42.2 

 600 43.7 62.1 71.5 

 900 57.7 76.2 82.9 

Heat treated (dialyzed) 

 20 0.5 2.2 3.3 

 100 8.9 14.1 15.9 

 300 28.9 43.5 50.6 

 600 46.5 68.6 77.4 

 900 53.9 74.5 81.4 

 1500 64.5 82.1 86.6 

 3000 75.3 85.2 85.8 

Thermally processed (undialyzed) 

 100 7.4 9.4 9.9 

 300 21.6 31.2 35.7 

 600 37.0 55.2 64.4 

 900 48.9 68.5 77.2 

 1500 58.1 74.0 78.4 

 3000 72.4 80.4 78.6 

Thermally processed (dialyzed) 

 100 6.9 11.2 11.7 

 300 19.4 30.7 35.1 

 600 32.6 50.1 57.9 

 900 44.0 63.8 71.4 

 1500 61.2 82.3 85.8 

 3000 76.8 88.6 85.8 
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Figure 6.2. Inhibition of ABTS radical by different lyophilized crude protein   

preparations of heat treated or thermally processed kidney-beans (for 15  

min inhibition test) 

 

On the other hand, both lyophilized crude chick-pea and kidney-bean 

preparations showed lower antioxidant activity than sericin (Figure 6.3 and 6.4). 

However, it should be noted that the standard proteins, BSA and sericin, used in this 

study were highly pure, whereas lyophilized preparations’ protein content changed 

between 15 to 51 %. These comparisons also clearly showed the greater antioxidant 

activities of lyophilized crude chick-pea proteins than the lyophilized crude kidney-bean 

proteins. The protein contents of chick-pea preparations were also higher. Thus, it 

seems that the greater antioxidant activity is related with the higher protein content.   
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Figure 6.3. Antioxidant capacity of different lyophilized crude protein preparations of 

chick-peas against ABTS radical 

 

          In heat treated or thermally processed chick-peas, the dialysis increased the 

antioxidant activity of the lyophilized preparations. Thus, it seems that the heat 

treatment or thermal processing helped the separation of the prooxidants or antioxidant 

activity masking substances from these protein preparations by the dialysis. The dialysis 

increased also the antioxidant capacity of lyophilized crude protein preparations 

obtained from heat treated kidney-beans. However, in thermally processed kidney-beans 

dialysis reduced the antioxidant activity of lyophilized protein preparations. This result 

showed the varying response of heating on molecular properties of antioxidant proteins 

or prooxidants or antioxidant activity masking substances in kidney beans.     
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Table 6.4. Antioxidant capacities (AUC values) and inhibition/concentration ratios of 

different lyophilized crude protein preparations against ABTS free radical 

% inhibition of ABTS radical/concentration (µg/reaction mixture) ratio Sample 1 min 6 min 15 min 

Sericin [AUC= 0.148 µµµµmol Trolox/mg protein] 

 0.120 (0-600)a 0.276 (0-300) 0.315 (0-300) 

BSA  [AUC= 0.036 µµµµmol Trolox/mg protein] 

 0.034 (0-1500) 0.056 (0-900) 0.089 (0-900) 

Heat treated chick-peas (undialyzed) [AUC= 0.073 µµµµmol Trolox/mg lyophilized protein 

preparation] 

 0.072 (0-900) 0.133 (0-600) 0.151 (0-600) 

Heat treated chick-peas (dialyzed) [AUC= 0.091 µµµµmol Trolox/mg lyophilized protein 

preparation] 

 0.125 (0-600) 0.160 (0-600) 0.173 (0-600) 

Thermally processed chick-peas (undialyzed) [AUC= 0.077 µµµµmol Trolox/mg lyophilized 

protein preparation] 

 0.095 (0-600) 0.136 (0-600) 0.152 (0-600) 

Thermally processed chick-peas (dialyzed) [AUC= 0.082 µµµµmol Trolox/mg lyophilized 

protein preparation] 

 0.110 (0-600) 0.146 (0-600) 0.157 (0-600) 

Heat treated kidney -beans (undialyzed) [AUC= 0.056 µµµµmol Trolox/mg lyophilized protein 

preparation] 

 0.068 (0-900) 0.093 (0-900) 0.124 (0-600) 

Heat treated kidney-beans (dialyzed) [AUC= 0.067 µµµµmol Trolox/mg lyophilized protein 

preparation] 

 0.068 (0-900) 0.121 (0-600) 0.137 (0-600) 

Thermally processed kidney-beans (undialyzed) [AUC= 0.046 µµµµmol Trolox/mg lyophilized 

protein preparation] 

 0.046 (0-1500) 0.083 (0-900) 0.094 (0-900) 

Thermally processed kidney-beans (dialyzed) [AUC= 0.039 µµµµmol Trolox/mg lyophilized 

protein preparation] 

 0.045 (0-1500) 0.063 (0-1500) 0.087 (0-900) 
aThe numbers in the parenthesis indicate the range of data used in calculations (µg/reaction mixture) 
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Figure 6.4. Antioxidant capacity of different lyophilized crude protein preparations of 

kidney-beans against ABTS radical 

 

6.1.3. Fe+2 Chelating Capacity of Lyophilized Crude Protein Extracts 

of Heat Treated or Thermally Processed Chick-peas and Kidney-

beans 
 

Due to their prooxidant activity, the ability of a compound to bind metal atoms 

is also considered as a type of antioxidant activity (Synergistic antioxidant activity). As 

given in Table 6.5, sericin did not have a considerable Fe+2 chelating activity, whereas 

BSA showed its Fe+2 chelating activity only at high concentrations (Figure 6.5). The 

dialyzed and then lyophilized crude protein extracts obtained from heat treated kidney-

beans and chick-peas showed moderate iron chelating activity. Thermal processing 

increased the chelating capacity of lyophilized chick-pea preparations by 80 %, while it 

reduced the chelating capacity of lyophilized kidney-bean preparations by 60 %.    
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Table 6.5. Fe+2 chelating capacity of lyophilized crude protein preparations of heat 

treated or thermally processed chick-peas and kidney-beans 

Sample 
 

EDTA equivalent of Fe+2 

chelating capacity 
 (µµµµmol EDTA/ mg lyophilized protein 

preparation) 

Sericin  0.003 (0-3000)a 

BSA  0.03 (0-3000) 

Heat treated chick-peas (dialyzed)  0.05 (0-1500) 

Thermally processed chick-peas (dialyzed)  0.09 (0-600) 

Heat treated kidney-beans (dialyzed)  0.07 (0-600) 

Thermally processed kidney-beans (dialyzed)  0.03 (0-1500) 
aThe numbers in the parenthesis indicate the range of data used in calculations (µg/reaction mixture) 
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Figure 6.5. Fe+2 chelating capacity of different lyophilized crude protein preparations of 

heat treated or thermally processed chick-peas and kidney-beans 
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6.1.4. Application of Ammonium Sulfate Precipitation and Dialysis for 

Partial Purification of Crude Protein Extracts of Thermally 

Processed Chick-peas and Kidney-beans 
 

          In this work, the higher protein content and antioxidant activity of lyophilized 

chick-pea preparations indicate that this legume may be a suitable source for the 

extraction of antioxidant proteins. However, the lyophilized crude preparations may 

contain some impurities that may affect the antioxidant activity. Thus, in this study 

crude protein extracts were also partially purified by ammonium sulfate precipitation 

and dialysis. As seen in Tables 6.6 and 6.7, 90 % ammonium sulfate precipitation 

reduced the recovery of antioxidant activity of both chick-pea and kidney-bean extracts 

by 60 %. It seems that the ammonium sulfate did not precipitate some of the 

antioxidants at the studied saturation.  The protein recovery of ammonium sulfate 

precipitation was also 54 % and 50 % for chick-pea and kidney-bean proteins, 

respectively. In chick-pea extracts, the application of dialysis reduced the specific 

antioxidant activity, recoveries of antioxidant activity and protein contend slightly. On 

the other hand, a slight increase was observed in the specific antioxidant activity of 

kidney-bean extracts, possibly due to removal of proteins lacking antioxidant activity by 

the dialysis.   

 

6.1.4.1. Protein Content of Lyophilized Partially Purified Protein              

Extracts Obtained from Thermally Processed Chick-peas and               

Kidney-beans 
 

          Following dialysis, the ammonium sulfate precipitated extracts were lyophilized 

and assayed for protein content. By ammonium sulfate precipitation, an increase in the 

protein content of lyophilized preparation is expected. However, the results of protein 

assays showed the presence of 0.23 and 0.49 mg protein per mg of lyophilizates 

obtained from kidney-beans and chick-peas, respectively. These protein contents are 

very close to the protein contents of dialyzed lyophilized crude preparations (see Table 

6.1). Thus, it is clear that besides proteins, other major hydrocolloids such as starch and 

pectin were also precipitated with the proteins. In fact, this result is not surprising since, 

it is well known from the fruit juice clarification that the removal of one of the 



 61 

hydrocolloids in a colloidal system may cause also the precipitation of others 

(Cemero�lu and Karadeniz, 2001). The abundance of starch in legumes and the high 

affinity of this carbohydrate to proteins also support this hypothesis (Baldwin, 2001). 

 

6.1.4.2. Antioxidant Activity of Lyophilized Partially Purified Protein  

             Extracts Obtained from Thermally Processed Chick-peas and  

             Kidney-beans against ABTS Radical 

 
          The results of inhibition studies were given in Table 6.8. As seen in Figure 6.6., 

the antioxidant activity of ammonium sulfate precipitated, dialyzed and then lyophilized 

thermally processed chick-pea preparation is higher than that of kidney-bean 

preparation obtained by the same method. From the AUC values given in Table 6.9, the 

difference between the antioxidant capacities of two protein preparation was found 2.1 

fold. This result is in line with the antioxidant activity measurements conducted in crude 

dialyzed and undialyzed preparations obtained from the thermally processed chick-peas 

and kidney-beans. However, it should be noted that the higher antioxidant activity of  

 

Table 6.6. Ammonium sulfate precipitation of proteins from thermally processed chick-

peas 

Step 
Vol. 

(mL) 

Total 

antioxidant 

activity (µmol 

Trolox)a 

Total 

protein 

(mg) 

Specific 

antioxidant 

activity (µmol 

Trolox/mg) 

Recovery of 

antioxidant 

activity 

(%) 

Purification 

fold of 

antioxidant 

activity 

Recovery 

of 

protein 

(%) 

Crude extract 

 52.5 89.5 225 0.40 100 1 100 

0-90 % ammonium sulfate precipitation 

 17.5 34.6 122 0.28 39 0.72 54 

36h dialysis at 4 oC 

 21.0 26.9 113 0.24 30 0.60 50 

a for a 15 min test period, 1µmol trolox equals to 0.15 µmol tyrosine 
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Table 6.7. Ammonium sulfate precipitation of proteins from thermally processed 

                  kidney-beans 

Step 
Vol. 

(mL) 

Total 

antioxidant 

activity (µmol 

Trolox)a 

Total 

protein 

(mg) 

Specific 

antioxidant 

activity (µmol 

Trolox/mg) 

Recovery of 

antioxidant 

 activity 

(%) 

Purification  

fold of  

antioxidant  

activity 

Recovery 

of 

protein 

(%) 

Crude extract 

 47 65.8 152 0.43 100 1 100 

0-90 % ammonium sulfate precipitation 

 26 27.8 76 0.37 42 0.84 50 

36h dialysis at 4 oC 

 30 19.8 49 0.40 30 0.93 32 

a for a 15 min test period, 1µmol trolox equals to 0.15 µmol tyrosine 

 

chick-pea preparations is related with their high protein content but not with their 

greater specific antioxidant activity (see Tables 6.6. and 6.7). By considering the AUC 

values, the antioxidant capacity of lyophilized preparations obtained by ammonium 

sulfate precipitation and dialysis were also compared with the antioxidant capacities of 

sericin and BSA. The chick-pea and kidney-bean preparations showed almost 2.8 and 

1.3 fold higher antioxidant capacity than BSA, respectively. However, both preparations 

antioxidant activity was lower than that for the sericin. On the other hand, it should also 

be emphasized that compared to the antioxidant capacity of its crude lyophilized 

preparations (dialyzed or undialyzed), the antioxidant capacity of ammonium sulfate 

precipitated, dialyzed and then lyophilized chick-pea preparation is 1.2-1.3 fold higher.    
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Table 6.8. Inhibition of ABTS radical by ammonium sulfate precipitated lyophilized 

protein preparations of thermally processed Chick-peas and Kidney-beans 

% inhibition of ABTS radical 
Sample Concentration 

(µg/reaction mixture) 1 min 6 min 15 min 

Thermally processed chick-peas 

 
100 18.9 28.9 32.6 

 
300 42.8 62.9 71.6 

 
600 63.5 83.6 89.0 

 
900 73.1 89.0 90.0 

 
1500 74.1 90.0 90.0 

 
3000 87.2 91.2 90.0 

Thermally processed kidney-beans 

 
100 14.7 20.7 23.4 

 
300 34.3 52.3 59.9 

 
600 52.1 75.7 84.2 

 
900 61.2 83.3 89.2 

 
1500 69.8 88.7 92.3 

 
3000 80.2 92.9 92.6 
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Figure 6.6. Inhibition of ABTS radical by ammonium sulfate precipitated lyophilized   

                  protein preparations of thermally processed chick-peas and kidney-beans  

 

Table 6.9. Antioxidant capacities of ammonium sulfate precipitated lyophilized protein 

preparations of thermally processed chick-peas and kidney-beans 

% inhibition of ABTS radical/concentration (µg/reaction mixture) 
ratio Source of 

protein 1 min 6 min 15 min 

Sericin [AUC= 0.148 µµµµmol Trolox/mg protein] 

 0.120 (0-600)a 0.276 (0-300) 0.315 (0-300) 

BSA [AUC= 0.036 µµµµmol Trolox/mg protein] 

 0.034 (0-1500) 0.056 (0-900) 0.089 (0-900) 

Thermally processed chick-peas [AUC= 0.102 µµµµmol Trolox/mg lyophilized protein 

preparation] 

 0.115 (0-600) 0.156 (0-600) 0.247 (0-300) 

Thermally processed kidney beans [AUC= 0.048 µµµµmol Trolox/mg lyophilized 

protein preparation] 

 0.094 (0-600) 0.137 (0-600) 0.154 (0-600) 
aThe numbers in the parenthesis indicate the range of data used in calculations (µg/reaction mixture) 
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Since the partial purification did not increase the specific antioxidant activity and 

protein content of chick-pea preparations, as occurred during dialysis, the increased 

antioxidant activity by partial purification may be related with the removal of some 

prooxidants that reduce the antioxidant activity of crude preparations against ABTS 

radical or removal of antioxidant activity masking substances. 
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Figure 6.7. Antioxidant capacity of ammonium sulfate precipitated lyophilized 

thermally processed chick-pea and kidney-bean proteins against ABTS 

radical 

 

6.1.5. Application of DEAE-cellulose Chromatography to Dialyzed  

          Crude Protein Extracts for Partial Purification of Heat Treated 

or Thermally Processed Chick-pea Antioxidant Proteins   
 

          To increase the purity of antioxidant proteins, crude protein extracts from heat 

treated or thermally processed chick-peas were dialyzed and then applied to DEAE-

cellulose fast flow columns. Our previous findings showed the relationship between 

antioxidant activity and protein content. As seen in Figure 6.8 and 6.9, the elution 
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profiles of antioxidant activities in DEAE-cellulose chromatograms of crude protein 

extracts always followed by protein peaks. Thus, this result confirms that the 

antioxidant activity measured is associated with proteins. In both chromatograms, only a 

little portion of protein was eluted from the columns by washing with the equilibration 

buffer. The antioxidant activities eluted from the columns by washing were also low 

and corresponded almost 10 and 20 % of the total antioxidant activity eluted from the 

chromatography of thermally processed or heat treated chick-pea proteins, respectively. 
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Figure 6.8. Purification of antioxidant proteins from heat treated chick-peas by DEAE-

cellulose anion exchange chromatography (The crude extract was obtained 

by extraction of acetone powder at room temperature and a following 

dialysis; antioxidant activities were determined for 2 min inhibition test)  

 

In both columns, the elution of the major antioxidant protein fractions started by the 

initiation of the linear gradient of NaCl and ended when NaCl concentration reached 

almost to 0.5 M. The protein peaks eluted above 0.5 M NaCl concentration did not 

show considerable antioxidant activity. Thus, it is clear that there is a specific group of 

protein responsible for the antioxidant activity. The chromatograms also showed the 

modification in proteins caused by thermal processing of chick-peas. As seen in Figure 
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6.9, the thermal processing increased mainly the antioxidant activity and protein content 

of first peak (B2) came with the initiation of linear gradient. The thermal processing 

increased also the protein contents of other eluted fractions that show slight to moderate 

antioxidant activity. The increase in the antioxidant protein content and antioxidant 

activity in some fractions by thermal processing may be related with the modification of 

soluble proteins or solubilization of some membrane bound antioxidant proteins. In the 

literature, there are no studies related to the effect of thermal processing on antioxidant 

activity of chick-pea 
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Figure 6.9. Purification of antioxidant proteins from thermally processed chick-peas by 

DEAE-cellulose anion exchange chromatography (The crude extract was 

obtained by extraction of acetone powder at room temperature and a 

following dialysis; antioxidant activities were determined for 2 min 

inhibition test)  

      

proteins. However, it was reported that the thermal processing of bean albumins causes 

the aggregation of proteins by cross-links other than the disulfide bridges (Rocha et al, 

2002).  
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Table 6.10. Purification of antioxidant proteins from dialyzed crude protein extracts of 

heat treated chick-peasa  

Step 
Vol. 

(mL) 

Total 

antioxidant 

activity (µmol 

Trolox)b 

Total 

protein 

(mg) 

Specific 

antioxidant 

activity (µmol 

Trolox/mg) 

Recovery of 

antioxidant 

activity 

(%) 

Purification 

fold of 

antioxidant 

activity 

Recovery 

of 

protein 

(%) 

Crude extract 

 46 68.5 171.1 0.40 100 1 100 

72h dialysis at 4oC 

 50 39.4 126.4 0.31 58 0.78 74 

DEAE-cellulose anion exchange chromatography 

A1 35 4.3 7.6 0.57 6.3 1.42 4.4 

A2 35 6.3 5.7 1.09 9.1 2.73 3.4 

A3 20 3.6 9.5 0.38 5.2 0.94 5.6 

A4 25 2.8 12.5 0.22 4.1 0.56 7.3 

A5 25 2.1 8.4 0.25 3.0 0.62 4.9 

a extraction method: water extraction of acetone powder at room temperature; bfor a 15 min test period 

1µmol trolox equals to 0.15 µmol tyrosine 

 

          It is also interesting to note that the antioxidant activity eluted from DEAE-

cellulose chromatography (Total: 35.5 µmol trolox) of thermally processed chick-peas 

was higher than the antioxidant activity loaded to this column (20.3 µmol trolox). The 

increase of antioxidant activity by purification was observed also in ammonium sulfate 

precipitation studies conducted with thermally processed chick-pea and kidney-bean 

proteins (see section 6.1.4.2). The increase in antioxidant activity was not observed 

following column chromatography of heat treated chick-pea proteins. Thus, this result 

once more showed the possible role of thermal processing in removal of some 

prooxidants or unmasking of the antioxidant activity of proteins after purification. 

Further studies are needed to better understand the actual reasons of the increased 

antioxidant activity of purified thermally processed proteins.   
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          The purification parameters related to application of dialysis and DEAE-cellulose 

chromatographic procedures were also given in Table 6.10 and 6.11.  As occurred in 

partial purification studies with ammonium sulfate, the dialysis reduced the specific 

antioxidant activity and recovery of antioxidant activity. 

 

Table 6.11. Purification of antioxidant proteins from dialyzed crude protein extracts of       

                   thermally processed chick-peasa  

Step 
Vol. 

(mL) 

Total 

antioxidant 

activity (µmol 

Trolox)b 

Total 

protein 

(mg) 

Specific 

antioxidant 

activity (µmol 

Trolox/mg) 

Recovery of 

antioxidant 

activity 

(%) 

Purification 

fold of 

antioxidant 

activity 

Recovery 

of 

protein 

(%) 

Crude extract 

 47 62.2 154.5 0.40 100 1 100 

72h dialysis at 4oC 

 37.5 20.3 100.1 0.20 33 0.50 65 

DEAE-cellulose anion exchange chromatography 

B1 35 3.7 6.6 0.56 5.9 1.39 4.27 

B2 35 23.3 29.8 0.78 37.5 1.94 19.3 

B3 30 8.5 16.4 0.52 13.6 1.28 10.6 
aextraction method: water extraction of acetone powder at room temperature; b for a 15 min test period 

1µmol trolox equals to 0.15 µmol tyrosine 

 
A decline in protein content was also observed by the dialysis. However, since our 

previous results indicated that the nonprotein substances are removed more effectively 

than the proteins, dialysis still serves to increase the protein/nonprotein materials ratio 

and antioxidant activity per mg of lyophilized preparation. By the application of DEAE-

cellulose chromatography, the purity of some fractions increased moderately (1.3-2.7 

fold) whereas some other proteins’ specific antioxidant activity remained almost same 

or reduced below the specific antioxidant activity of dialyzed crude extract. For heat 

treated chick-peas, A1 and A2 fractions, and for thermally processed chick-peas B1, B2 

and B3 fractions are the fractions which showed an increase in specific antioxidant 

activity by the DEAE-cellulose chromatography.  
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6.1.5.1. Antioxidant Activity of DEAE-cellulose Chromatography 

Purified and Lyophilized Major Antioxidant Protein 

Fractions of Heat Treated or Thermally Processed Chick-

peas 
  

          The main antioxidant protein fractions, A2 from heat treated and B2 from 

thermally processed chick-peas, were collected, dialyzed (24h), lyophilized and then 

tested for antioxidant activity (Table 6.12 and Figure 6.10). The antioxidant capacity of 

lyophilized A2 fraction is almost same with that of sericin protein, but 3.8 fold higher 

than that of BSA protein (Table 6.13 and Figure 6.11). The antioxidant activity of B2 

fraction, on the other hand, was almost 0.7 fold lower than that of sericin, but 2.7 fold 

higher than that of BSA. These results indicate the greater antioxidant activity of 

lyophilized A2 fraction than the lyophilized B2 fraction. This apparently occurred as 

result of higher specific antioxidant activity of A2 fraction. However, since the amount 

of lyophilized sample for B2 is almost 3 fold higher than the amount of lyophilized 

sample for A2, the total antioxidant activity of A2 fraction is lower than that of B2 

fraction. 

 

Table 6.12. Inhibition of ABTS radical by main antioxidant protein fractions purified 

from heat treated or thermally processed chick-peas by DEAE-cellulose 

column chromatography 

% inhibition of ABTS radical 
Sample 

Concentration 

(�g/reacton mixture) 1 min 6 min 15 min 

A2 fraction of heat treated chick-peas 

 300 27.1 45.5 53.8 

 600 36.7 65.3 77.5 

 900 60.6 86.1 92.0 

B2 fraction of thermally processed chick-peas 

 300 16.2 21.1 21.7 

 600 37.5 51.1 55.6 

 900 59.4 77.6 80.6 
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Figure 6.10. Inhibition of ABTS radical by main antioxidant protein fractions purified 

from heat treated or thermally processed chick-pea proteins by DEAE-

cellulose chromatography  

 

Table 6.13. Antioxidant capacities (AUC values) and inhibition/concentration ratios of  

main antioxidant protein fractions purified from heat treated or thermally 

processed chick-peas by DEAE-cellulose chromatography   

% inhibition of ABTS radical/concentration (µg/reaction mixture) 
ratio Sample 

1 min 6 min 15 min 

Sericin [AUC= 0.148 µµµµmol Trolox/mg protein]a 

 0.120 (0-600)b 0.276 (0-300) 0.315 (0-300) 

BSA [AUC= 0.036 µµµµmol Trolox/mg protein] 

 0.034 (0-1500) 0.056 (0-900) 0.089 (0-900) 

A2 fraction of heat treated chick-peas [AUC= 0.135 µµµµmol Trolox/mg lyophilized 

protein] 

 0.137 (0-300) 0.241 (0-300) 0.287 (0-300) 

B2 fraction of thermally processed chick-peas [AUC= 0.098 µµµµmol Trolox/mg 

lyophilized protein] 

 0.129 (0-300) 0.174 (0-300) 0.190 (0-300) 
aThe numbers in the parenthesis indicate the range of data used in calculations (µg/reaction mixture) 
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Figure 6.11. Antioxidant capacity of main antioxidant protein fractions (A2 and 

B2)purified from heat treated or thermally processed chick-pea proteins 

by DEAE-cellulose chromatography 

 

6.2. Studies with Crude Protein Extracts of Chick-peas Obtained by 

Hot Acidic Hydrolysis or Hot Water Extraction Conducted at 

Different pH Values  
 

          The hot acidic hydrolysis and extraction at extreme pH values were applied 

mainly for the modification of the antioxidant activity of proteins and increase of the 

extraction yields of proteins, respectively. In this part of the study, the legumes were 

directly processed to acetone powder without any heat application and then the 

extraction of acetone powder was conducted at 85 oC (hot extraction). The high 

temperature used was selected to modify the antioxidant activity of proteins under 

extreme conditions and to inactivate the enzyme lipoxygenase (this was confirmed by 

activity measurements). Also, to better monitor the low molecular weight antioxidant 

proteins that may be extracted or formed under extreme conditions, PVPP was not used 

in extractions. 
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6.2.1. Antioxidant Activity and Protein Content of Crude Protein            

Extracts of Chick-peas Obtained by Hot Acidic Hydrolysis   
 

          In the literature the enzymatic hydrolysis with proteases has been mostly applied 

to obtain protein hydrolysates (Amarowicz and Shahidi, 1997, Rival et al, 2001, Chen et 

al, 1996). It is also well known that heating in highly acidic medium causes the 

hydrolysis of proteins (Bull and Hahn, 1948, Greenberg and Burk, 1927). Thus, in this 

study, limited acidic hydrolysis was applied to determine the effect of this treatment on 

antioxidant activity and protein content of crude protein extracts of chick-peas. As seen 

in Table 6.14, the application of 30 min heating in presence of 1.5 M HCl gave a crude 

extract with high specific antioxidant activity. The application of dialysis reduced the 

specific antioxidant activity of 30 min acid hydrolyzed samples moderately. Thus, the 

increased antioxidant activity of hydrolyzed sample is not mainly due to low molecular 

substances formed by acidic hydrolysis. The reduction of hot hydrolysis period to 10 

min, on the other hand, reduced both the protein content and antioxidant activity, but 

increased the specific antioxidant activity slightly. 

            The results showed that the 30 min acidic hydrolysis at 85 oC may be used to 

increase the protein content and antioxidant activity of crude protein extracts. However, 

it should be noted that the application of hot acidic hydrolysis caused also the formation 

of Maillard reaction products.  In hydrolyzed samples, the light brown color formed 

during hydrolysis indicated the presence of Maillard reaction products in crude extracts. 

The Maillard reaction products are formed by reaction between reducing sugars and 

amino acids or proteins (Yoshimura et al, 1997). The antioxidant activity of Maillard 

reaction products was reported by many different workers (Murakami et al, 2002, 

Yoshimura et al, 1997, Duh et al, 2001). However, the use of preparations containing 

Maillard reaction products needs some toxicological testing, since these products have 

mutagenic activity (Murakami et al, 2002).      
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Table 6.14. Antioxidant activity and protein contents of crude protein extracts of chick-

peas obtained by hot acidic hydrolysis   

Extraction conditions  

of acetone powder 

Protein  

(mg/mL) 

Antioxidant activity 

(�mol trolox/mL) 

Specific antioxidant 

activity (�mol trolox/mg) 

Suspension of acetone powder in 1.5 M HCl / continuous stirring at 85 oC for 30 min / 

neutralization / continuous stirring at room temperature for 30 min / centrifugation    

+ 24h incubation at 4 oC 4.19 2.34 0.56 

+ 24h dialysis at 4 oC 2.95 1.26 0.43 

Suspension of acetone powder in 1.5 M HCl / continuous stirring at 85 oC for 10 min / 

neutralization / continuous stirring at room temperature for 50 min / centrifugation 

+ 24h incubation at 4 oC 2.80 1.65 0.59 

+ 24h dialysis at 4 oC 1.97 0.79 0.41 

 

 

6.2.2. Antioxidant Activity and Protein Content of Crude Protein 

Extracts of Chick-peas Obtained by Hot Water Extraction at 

Different pH Values    
 

          The results of hot extractions conducted at different pH values were given in 

Table 6.15. The application of hot extraction at pH 6.5 and 85 oC for 60 min increased 

the specific antioxidant activity of extracts to almost 80 % of the specific antioxidant 

activity of 30 min acid hydrolyzed sample without a considerable color change in the 

protein extract. The application of dialysis, on the other hand, reduced the protein 

content and antioxidant activity almost 60 and 75 %, respectively. The reduction of 

heating period to 30 min at pH 6.5 and 85 oC reduced the specific antioxidant activity 

and protein content. Also, 30 % reduction occurred in antioxidant activity by reduction 

of heating period. Conducting hot extraction for 30 min at 85 oC by changing extraction 

pH from 6.5 to 9.5 did not increase the specific antioxidant activity. However, this 

increased the protein content of extracts almost 100 %, compared with the protein 

contents of samples extracted at pH 6.5. On the other hand, conducting extraction for 30 

min at 85 oC by changing extraction pH to 2.5 increased the specific antioxidant activity 

to the highest level obtained in extraction studies. The protein content of the extract at 

pH 2.5 reduced considerably. However, it seems that the conditions at this pH were very 
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suitable for the selective extraction of antioxidant proteins and/or other potential 

antioxidants such as peptides, protein-phenolic or carbohydrate-phenolic associates. The 

dialysis of the extract obtained at pH 2.5 reduced the specific antioxidant activity almost 

40 %. Thus, it is clear that the important part of antioxidants in this extract is low 

molecular weight compounds.         

 

Table 6.15. Antioxidant activity and protein contents of crude protein extracts of chick-

peas obtained by hot extraction at different pH values   

Extraction conditions 

of acetone powder 

Protein 

(mg/mL) 

Antioxidant activity 

(�mol trolox/mL) 

Specific antioxidant 

activity (�mol trolox/mg) 

Suspension of acetone powder in deionized water (pH was almost 6.5) / continuous stirring at 85 

oC for 60 min / centrifugation     

+ 24h incubation at 4 oC 3.70 1.70 0.46 

+ 24h dialysis 4 oC 1.37 0.45 0.32 

 

Suspension of acetone powder in deionized water (pH was almost 6.5) / Continuous stirring at 85 

oC for 30 min + at room temperature for 30 min / centrifugation  

+ 24h incubation at 4 oC 3.20 1.17 0.37 

 

Suspension of acetone powder in deionized water / adjustment of pH to 9.5 / continuous stirring at 

85 oC for 30 min + at room temperature for 30 min / adjustment of pH to 6.5 / centrifugation  

+ 24h incubation at 4 oC 6.54 2.21 0.34 

+ 24h dialysis at 4 oC 2.57 0.37 0.14 

 

Suspension of acetone powder in deionized water / adjustment of pH to 2.5 / continuous stirring at 

85 oC for 30 min + at room temperature for 30 min / adjustment of pH to 6.5 / centrifugation 

+ 24h incubation at 4 oC 1.83 1.23 0.67 

+ 24h dialysis at 4 oC 1.39 0.56 0.41 
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6.2.3. Application of Ammonium Sulfate Precipitation and Dialysis for 

Partial Purification of Crude Protein Extracts of Chick-peas 

Obtained by Hot Extraction Conducted at pH Values Close to 

Neutrality 
 

          The summary of the ammonium sulfate precipitation of crude protein extracts 

obtained by 30 min extraction of chick-pea acetone powder at pH 6.5 and 85 oC was 

given in Table 6.16. For chick-pea crude proteins obtained by hot extraction, the 

recovery of protein for ammonium sulfate precipitation was almost 15-20 % higher than 

those of the previous ammonium sulfate precipitations conducted for crude proteins 

extracted from thermally processed chick-peas and kidney-beans at room temperature 

(see Table 6.6. and 6.7). However, similar to previous precipitations the recovery of 

antioxidant activity by ammonium sulfate precipitation was low. In hot extracted chick-

pea crude proteins, the dialysis of ammonium sulfate precipitates further reduced the 

recoveries of antioxidant activity and protein. Thus, it seems that the removal of low 

molecular substances by dialysis and/or insolubilization during dialysis is very high in 

ammonium sulfate precipitated crude protein extracts obtained by hot water extraction.    

 

Table 6.16. Ammonium sulfate precipitation of crude chick-pea proteins obtained by 

hot water extraction conducted at pH values close to neutrality 

Step 
Vol. 

(mL) 

Total 

antioxidant 

activity (µmol 

Trolox)a 

Total 

protein 

(mg) 

Specific 

antioxidant 

activity (µmol 

Trolox/mg) 

Recovery of 

antioxidant 

activity 

(%) 

Purification 

fold of 

antioxidant 

activity 

Recovery 

of 

protein 

(%) 

Crude extract 

 100 145.9 353 0.41 100 1 100 

0-90 % ammonium sulfate precipitation 

 28 53.6 240 0.22 37 0.54 68 

36h dialysis at 4 oC 

 40 21.6 76 0.28 15 0.69 22 
a for a 15 min test period, 1 µmol trolox equals to 0,15 µmol tyrosine 
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6.2.4. Application of DEAE-cellulose Chromatography for Partial 

Purification of Crude Chick-pea Antioxidant Proteins Obtained 

by Hot Extraction Conducted at pH Values Close to Neutrality 
 

          For purification of antioxidant proteins from crude protein extracts obtained by 30 

min extraction of chick-pea acetone powder at pH 6.5 and 85 oC, a crude extract was 

applied to DEAE-cellulose column. To determine the antioxidant activity and protein 

profiles of both low and high molecular weight fractions, the crude extract was not 

dialyzed before chromatography (dialysis was applied before other chromatographic 

separations given in Figures 6.8 and 6.9).   
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Figure 6.12. Purification of antioxidant proteins from chick-pea crude protein extracts 

by DEAE-cellulose anion exchange chromatography (The crude extract 

was obtained by 30 min extraction of acetone powder at pH 6.5 and 85 oC; 

antioxidant activities were determined for 2 min inhibition test)  

 

         As seen in Figure 6.12, for the DEAE-cellulose chromatography of crude protein 

extract, three main peaks, C1, C2 and C3, were obtained for the antioxidant activity. 

From these peaks C3 peak contained two shoulders (C4 and C5), confirmed by the 
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protein peaks following the antioxidant activity peaks. The elution of significant amount 

of antioxidant activity (followed by protein peaks) from the column by washing 

suggests the presence protein fractions which can not bound by the DEAE-cellulose 

anion exchange column.  During previous DEAE-cellulose column chromatographic 

studies of dialyzed crude extracts of thermally processed or heat treated chick-peas, 

there was only little amounts of DEAE-cellulose unbound proteins (see section 6.1.5). 

The crude protein extract obtained by hot extraction was not dialyzed.  Thus, it is 

possible that the unbound substances are low molecular weight proteins that contain 

almost no or little negatively charged groups that contribute to anion exchange reactions 

in DEAE-cellulose column. The rapid elution of C1 suggests the lack of negative 

charges in these proteins whereas later elution of C2 suggests slight binding due to 

limited number of negative charges. The lack of charges in these protein fractions may 

also be due to the complex formation of these proteins with neutral polysaccharides and 

masking of negative charges. Further studies are needed for full characterization of 

antioxidant proteins in chick-peas.      

          The partial purification parameters for the antioxidant activity of the eluted 

protein fractions were also given in Table 6.17. The results indicated that the highest 

purification  

 

Table 6.17. Purification of antioxidant proteins from chick-peasa 

Step 
Vol. 

(mL) 

Total 

antioxidant 

activity(�mol 

Trolox)b 

Total 

protein 

(mg) 

Specific 

antioxidant 

activity (µmol 

Trolox/mg) 

Recovery of 

antioxidant 

activity 

(%) 

Purification 

fold of 

antioxidant 

activity 

Recovery 

of protein 

(%) 

Crude extract 

 50 58.5 160 0.37 100 1.00 100 

DEAE cellulose anion exchange chromatography 

C1 95 16.7 9.1 1.83 28.5 5.00 5.7 

C2 150 16.8 6.1 2.76 28.8 7.53 3.8 

C3 35 5.9 13.1 0.45 10.2 1.24 8.2 

C4 40 5.6 22.4 0.25 9.6 0.68 14.0 

C5 25 2.3 9,5 0.24 3.9 0.65 5.9 

a extraction method: water extraction of acetone powder at 85o C, b for 15 min test period, 1 µmol trolox 

equals to 0.15 µmol tyrosine 
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folds were obtained for the unbound fractions, C1 and C2. It is clear that the lack of 

negative charges in these proteins capable to contribute anion exchange reactions was 

responsible for the separation and resulting purification of these fractions. A slight 

increase in purify of C3 was also observed, whereas other fractions’ purity declined due 

to small amount of antioxidant activity but high protein content in these fractions.    

          On the other hand, the elution profile (a main peak and two shoulders) of 

antioxidant activity by the initiation of NaCl gradient was quite similar with that of 

thermally processed chick-peas (see Figure 6.9). Thus, it seems that the hot extraction 

and thermal processing cause similar modifications in chick-pea proteins bind to 

DEAE-cellulose. However, in chromatography of chick-pea crude proteins obtained by 

hot extraction, the antioxidant activity loaded to column was higher than the antioxidant 

activity eluted. Thus, it is clear that, unlike to thermal processing, hot extraction was not 

effective in removal of prooxidants or antioxidant activity masking substances.          
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CHAPTER 7 
 

CONCLUSIONS 
 

• Kidney-beans and chick-peas contain antioxidant proteins with free radical 

scavenging and metal chelating capacity. 

 

• Lyophilized crude proteins from chick-peas contain more protein and higher free 

radical scavenging activity than lyophilized crude proteins from kidney-beans. 

 

• Free radical scavenging activity of lyophilized crude proteins from heat treated or 

thermally processed kidney-beans and chick-peas is higher than the free radical 

scavenging activity of bovine serum albumin. However, all lyophilized crude proteins 

showed lower free radical scavenging activity than sericin. 

 

• Lyophilized crude proteins from chick-peas and kidney-beans show greater iron 

chelating capacity than bovine serum albumin and sericin. 

 

• Thermal processing does not cause a significant change in free radical scavenging 

capacity of lyophilized crude chick-pea proteins. However, it increases their iron 

chelating capacity. In contrast, thermal processing reduces both free radical scavenging 

and iron chelating capacity of lyophilized crude kidney-bean proteins. 

 

• Dialysis increases the free radical scavenging capacity of lyophilized crude 

thermally processed or heat treated chick-pea and heat treated kidney-bean proteins. 

However, it does not cause a considerable change in the free radical scavenging 

capacity of thermally processed kidney-bean proteins. 

 

• Partial purification by ammonium sulfate precipitation or DEAE-cellulose anion 

exchange chromatography removes the substances that mask the antioxidant activity or 

prooxidants from crude protein extracts of thermally processed chick-peas and this 

causes an increase in the free radical scavenging activity of these extracts.  
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• DEAE-cellulose chromatography showed the presence of five and three 

antioxidant protein fractions in heat-treated and thermally processed chick-peas 

respectively. The free radical scavenging activity of one of the purified antioxidant 

protein fractions from heat treated chick-peas was very close to that of sericin. 

 

• Hot acidic hydrolysis may be used to increase the protein content and specific 

antioxidant activity of crude protein extracts. However, it causes also the formation of 

undesirable light brown colored Maillard reaction products. 

 

• Hot extraction at pH 2.5 can be used for the selective extraction of antioxidant 

proteins, but this method is not very effective for the extraction of other proteins. 

 

• Hot extraction at pH 9.5 is the most effective method for the extraction of 

antioxidant proteins and other proteins. 
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FUTURE EXPECTATIONS 
 

• The results of this study clearly showed the free radical scavenging activity and 

iron chelating capacity of chick-pea proteins. However, further studies are needed to test 

the antioxidant effects of these proteins in real food systems. 

 

• The presence of antioxidant protein fractions in legumes shows the existence 

of genes responsible for the synthesis of these proteins. Molecular biology may be used 

as a tool to obtain legumes with high antioxidant protein content. A detailed scavenging 

in different legumes cultivars is needed.   
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APPENDIX A 

 
Tyrosine Standard for ABTS Radical Cation Discoloration Assay 
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Figure A.1.  Standard curve for Tyrosine 
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APPENDIX B 
 

Trolox Standard for ABTS Radical Cation Discoloration Assay 
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Figure B.1.  Standard curve for Trolox 
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APPENDIX C 
 

EDTA  Standard for Fe+2 chelating capacity assay 
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Figure C.1.  EDTA Standard for Fe+2 Chelating capacity assay 
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APPENDIX D 
 

BSA Standard for Lowry Method 
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Figure D.1.  Protein standard curve for Lowry method 


