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ABSTRACT 

 

 
Inductively couple plasma optical emission spectrometry (ICP-OES) is widely 

used to monitor elements in biological samples from marine organisms for ecological 

evaluations. Matrix effects (particularly those related to acid and salt type and 

concentrations) can present a barrier to the applicability of this instrumental method. To 

have a better understanding of these effects and to choose a suitable internal standard to 

correct for the signal variations, a procedure based on Principal Component Analysis 

(PCA) of the data from an axial-mode ICP-OES instrument with sequential detection 

was performed.   

 Different from other published studies, it was found that ionic lines were more 

affected by matrix changes. Elements with high ionization energies and energy sums 

such as Cd and Zn showed a significant change for signal intensities and calculated 

concentrations due to the presence of acid, salt, and multielement matrix effects. It was 

observed that acid has a higher influence on the analyte signal as compared to the “salt-

only” case. Furthermore, when several interfering elements were present in the sample, 

the matrix effect was either enhanced or reduced when compared with a solution 

containing only a single interfering element. Applicability of the proposed technique for 

the analysis of whale liver homogenate NIST certified material was investigated. The 

values of the corrected concentrations were in good agreement with the certified values, 

confirming the capabilities of the selected internal standards for compensation of matrix 

effects. 
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ÖZET 

 

 
 Deniz canlılarından alınan biyolojik örneklerdeki elementlerin analizi, 

denizlerdeki insan aktivitelerinin izlenmesi ve bu elementlerin deniz canlıları ve 

insanlar üzerindeki etkisinin araştırılması açısından önem taşımaktadır. İndüktif 

eşleşmiş plazma optik emisyon spektrometri (ICP-OES) tekniği element analizleri için 

oldukça sık kullanılmaktadır. Çoğunlukla, kullanılan asit ve tuzun çeşidi ve miktarından 

kaynaklanan matriks etkileri, bu tekniğin etkili bir şekilde kullanımını engelleyen en 

önemli problemlerden biridir. Bu çalışmada, matriks etkilerini daha iyi inceleyebilmek 

ve bu etkilerden kaynaklanan sinyal değişimlerini azaltmada kullanılacak uygun bir 

internal (iç) standart seçmek için Temel Bileşen Analizine dayanan bir prosedür 

uygulanmıştır. Kullanılan eksenel ICP-OES cihazı, siklonik püskürtme çemberi ve 

konsantrik cam püskürtücü içermekte ve dizisel dedeksiyon yapmaktadır. 

 Literatürdeki diğer çalışmalardan farklı olarak, iyonik dalga boylarının matriks 

değişimlerinden atomik dalga boylarına göre daha çok etkilendiği belirlenmiştir. 

Yüksek iyonlaşma enerjisi ve enerji toplamlarına sahip Cd ve Zn gibi elementlerin 

sinyallerinde ve hesaplanan derişimlerinde asit, tuz ve multielement değişimlerine bağlı 

olarak önemli değişiklikler görülmüştür. Asit miktarının değişimin, sadece tuz miktarı 

değişimine göre sinyaller üzerinde daha fazla etkiye sahip olduğu saptanmıştır. Ayrıca, 

örnekte birden fazla engelleyici element bulunmasının, tek engelleyici element içeren 

çözeltiye göre sinyaller üzerinde daha fazla azaltıcı ya da artırıcı bir etkiye sahip olduğu 

gözlenmiştir. 

 Önerilen tekniğin uygulanabilirliği, NIST den temin edilen bir balina karaciğer 

örneği, referans madde kullanılarak test edilmiştir. Düzeltilen derişimler referans madde 

ile karşılaştırıldığında, seçilen internal standartların matriks etkilerinin neden olduğu 

sinyal değişimlerini giderebildiği belirlenmiştir. 
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CHAPTER 1 

 

 

GENERAL CONCEPTS 

ABOUT PLASMA SPECTROMETRY 
 

 

1.1. Introduction 

 
Element analysis is an important area of scientific research because it allows 

monitoring the influence of the elements on human health and the environment. Plasma-

spectrometry techniques, namely inductively coupled plasma optical emission 

spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS), 

are widely used in analytical laboratories for elemental analysis, mainly because of their 

ability to obtain low limits of detection (LOD), high sensitivity, precision and relatively 

high analytical throughput. 

In these techniques, the analytical response depends directly on the number of 

analyte atoms present in the plasma and, thus on the analyte concentration in the 

sample. In ICP-OES, the radiation generated is finally measured using an appropriate 

detection system whereas in ICP-MS, analyte ions are extracted from the plasma and 

then directly recorded (Mora et al. 2003). 

Although it may be said by some that there is no further need for development of 

ICP-OES and ICP-MS, since they have supposedly become mature techniques, work is 

still needed to improve the reliability and the accessibility of the instrument, to improve 

the analytical performance, to extract more information from the spectra, and to obtain 

reliable analytical results by performing more efficient data processing. The current 

developments are mainly related to sample introduction, signal collection, signal 

detection, data acquisition, and data processing (Mermet 2002). 
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1.2. Inductively Coupled Plasma 

 
A plasma is an electrically conducting gaseous mixture containing a significant 

concentration of cations and electrons. In the frequently used argon plasma, argon ions 

and electrons are the principle conducting species, although cations from the sample 

will also be present in lesser amounts. Argon ions, once formed in a plasma are capable 

of absorbing sufficient power from an external source to keep the temperature at a level 

at which further ionization maintains the plasma indefinitely, temperatures as great as 

10,000 K are encountered (Skoog et al. 1998).   

The ICP is a highly efficient atomization source, which means that every 

molecule should be dissociated provided that operating conditions are optimized for this 

purpose. The ionization efficiency is also high, which justifies the use of ICP as an 

ionization source in inorganic mass spectrometry. Moreover, the ICP displays an 

excellent tolerance to high salt concentration: as a consequence, limits of detection in a 

solid prior to digestion are excellent (Mermet 2005). 

The plasma core is the part to which the energy from the induction coil is 

coupled. This induction region (IR) is the hottest zone of the plasma. The core supplies 

energy to the remaining parts of the plasma, particularly to the sample in the aerosol, 

which is introduced via the center carrier gas. The first zone of the plasma, where the 

liquid sample is dried, melted and vaporized, is called the preheating zone (PHZ). In the 

initial radiation zone (IRZ) atoms are formed and excited emitting light. Ionic 

transitions predominate in the normal analytic zone (NAZ) which is found outside of the 

plasma core. Since no more energy is supplied in this zone, the temperature drops. 

Finally, the ions recombine with electrons to form atoms, and atoms react with each 

other to form molecules in the zone called the tail plume (Nölte 2003). Figure 1.1 shows 

the temperature profile of the plasma.  
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Figure 1.1. Temperature profile of the plasma  
(Source: adapted from Skoog et al. 1998) 

Axial viewing mode is generally used in most recent ICP systems. Often axial 

viewing im

axial viewing has an undesired higher 

sensitivity to m

ed to the diameter of the central channel 

with radial viewing, i.e. 4–6 

 

proves the limits of detection by increasing the signal to background ratio 

thereby decreasing the relative standard deviation of the background noise.  

However, it has been reported that 

atrix effects (Dubuisson 1997, Brenner et al. 1997, Dennaud et al. 2001, 

Stepan et al. 2001) and self-absorption phenomena. This can be explained from its 

probing of the atomization zone where most of the matrix effects occur because of 

different atomization kinetics, unlike the radial viewing. Self-absorption is also 

enhanced with axial viewing because this event may occur over a path of 20–25 mm 

along the plasma axis, while the path is reduc

mm. These limitations can be decreased or minimized by 

using robust plasma conditions (Mermet 2002). 
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1.3. R

mber 

density. Sophisticated diagnostics were sugge

s (Mermet 1991, Dennaud et al. 2001).  

micronebulizers efficien

be used to com are different ICP systems and working conditions. This ratio was even 

obustness 

 
The robustness term is used to describe plasma conditions where a change in the 

matrix or reagent concentration does not lead to a significant change in the analyte 

signal (Mermet 1998).  

This term is related to the capability of the plasma to accept a matrix change 

without a change in the plasma conditions, i.e., the temperature and the electron nu

sted to measure these characteristics based 

on Thomson and Rayleigh scattering (Mermet 1998). Because of their complexity, they 

can not be performed with commercially available ICP systems, therefore simple 

experiments are needed.  

It is generally accepted that ionic lines are more sensitive to any change in the 

plasma conditions than atomic lines (Mermet 1998, Dennaud et al. 2001). So if the ratio 

of an ionic line intensity to an atomic line intensity is used, the behavior of the ionic line 

is normalized to that of the atomic line thus the ratio is then independent of the data 

acquisition conditions. Magnesium is commonly used as a test element for this purpose, 

particularly the Mg II 280 nm/Mg I 285 nm line intensity ratio, because the two 

wavelengths are relatively close, the intensities of the ionic and atomic lines are of the 

same magnitude, and transition probabilities values are known with an acceptable 

accuracy in order to compute theoretical ratio

Based on the use of this Mg ratio, it has been verified that by using a high rf 

power (>1.2 kW), low carrier gas flow rate (< 0.8 ml/min) and large injector inner 

diameter (>2.3 mm) robust plasma conditions can be achieved (Romero et al. 1997a, 

Romero et al. 1997b, Mermet 1998). The aim is to obtain a high efficiency of the energy 

transfer between the surrounding plasma and the central channel. Under non-robust 

conditions, the plasma is said to be more sensitive to any small change in the forward 

power or in the amount of aerosol (Mermet 1998, Dennaud et al. 2001). 

The Mg II/Mg I ratio could also be used to study ICP parameters such as 

residence time, aerosol transport rate, carrier gas flow rate, torch design, 

cy and effect of organic solvents, as well as other interferences 

(Dennaud et al. 2001, Fernandez et al. 1994, Grotti et al. 2000 and references therein). 

Since such ratio is independent of the detector, the absolute value of the ratio can also 

p
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used to assign possible origins of the matrix effects, i.e. change of plasma conditions, or 

change in aerosol formation, transport and filtering (Fernandez et al. 1994, Carre et al. 

995, Novotny et al. 1996, Romero et al. 1998b). Preliminary investigations have 

hanged, usually because of robust conditions, but the variation in 

e analyte signal can be explained by problems that arise at the aerosol transport and 

When both  conclusion can be 

iven about the main origin of matrix effects since both the plasma and the spray 

chamber play a role in th ects (D  al. 2001

The theoretical calculation of 80 nm/M 85 nm has been described 

in previous studies (Mer 91). S

determine variables such as excitation energy, Eexc, ionization energy, Eion, excitation 

temperature Texc, ionization temperat

 

1

indicated that the use of robust conditions corresponding to high Mg II/Mg I ratios 

could minimize, but not necessarily suppress matrix effects, particularly when ionic 

lines are of concern (Ivaldi and Tyson 1995, Dubuisson et al. 1997, Brenner et al. 1997, 

Todoli et al. 1998, Brenner et al. 1998). 

The ideal case is observed when both no change in the Mg II/Mg I ratio and 

analyte signal are observed. However it is more common that changing the Mg II/Mg I 

ratio is still accompanied by a change in the analyte signal. This means that the plasma 

conditions were not c

th

filtration level. This indicates also that these effects are not originating in the plasma. 

 the Mg II/Mg I ratio and the analyte signal change, no

g

ese eff ennaud et ). 

 the Mg II 2 g I 2

met 19 aha equation can be used as seen in Equation 1.1 to 

ure Te. 
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The statistical weights and transition probabilities are represented by g and A, 

respectively. When Local thermodynamic Equilibrium (LTE) is assumed, T

⎤⎡ −−
⎟
⎞

⎜
⎛ −⎟

⎞
⎜
⎛ ⋅⋅⎟
⎞

⎜
⎛ ×

= aexciexcionaiii EEETAgI )(
expexp1083.4 ,,2/3

21 λ  (1.1) 

e = Texc = T. 

The “a” and “i” subscripts refer to the atomic and ionic lines, respectively. By using the 

known gA values (Mermet 1991, Dennaud et al. 2001) of 5.32x108 s-1 and 14.85x108 s-1 

for Mg II 280.270 and Mg I 285.213, respectively, it is possible to obtain a relation 

between T, the electron number density, ne, and the Ii/Ia ratio (Table 1.1). It may be 

deduced that a value of at least 10 for Ii/Ia would correspond to an equilibrium in the 

plasma (robustness). 

 

 5



 
 

Table 1.1. Temperature T (Te = Texc = T) (K), electron number density (m-3) and 
MgII/Mg I line intensity ratio computed assuming LTE  
(Source: Dennaud et al. 2001) 

 
T (K) ne (m-3) Ii/Ia
6500 1.01 x 1020 10.8 
7000 2.83 x 1020 11.4 
7500 6.90 x 1020 12.1 
8000 1.51 x 1021 12.7 
8500 3.01 x 1021 13.4 
9000 5.57 x 1021 14.1 
9500 9.70 x 1021 14.8 
10000 1.60 x 1022 15.4 

 

Usually, there is no need to compensate for a different wavelength response 

curve as far as the same measurement conditions are used, e.g. the same high voltage in 

the case of a photomultiplier tube PMT, and the same amplifier gain. However, it may 

be necessary to use a correction factor in some cases. For instance, a 2400 line mm-1 

grating may be used in the first order above 300 nm, and in the second order below 300 

nm to achieve higher resolution in the UV region. Besides the use of an interference 

filter, the order selection can be performed by using a solar blind PMT with a 

wavelength cut-off near 300 nm. Consequently, the wavelength response may exhibit a 

 is the use of an echelle 

rating. The two Mg lines may be located in adjacent orders, or at different locations 

within 

t is reported that a ratio >8 in the radial viewing mode corresponds to robust 

conditi

re usually measured following an optimization of the observation height 

corresponding to the optimum of the ionic line emission. On the contrary, in axial 

significant slope near the two Mg wavelengths. Another case

g

the same order. As the diffraction efficiency is highly dependent on the location 

of the line within the order, it may also be necessary to compensate for a different 

wavelength response. A simple way to establish a correction factor is to assume that the 

continuum has a constant value in the range 280-285 nm. It is then sufficient to measure 

the background emission at 280.2 and 285.2 nm. If B 285/B 280 = ε, the experimental Mg 

II/Mg I ratio has to be multiplied by ε. For instance, this multiplier value equals to 1.85 

and 1.8, for the Perkin-Elmer Optima 3000 and Varian Vista ICP systems, respectively, 

and it should be verified for other systems (Dennaud et al. 2001). 

I

ons (Mermet 1991, Fernandez et al. 1994, Romero et al. 1997b, Dubuisson et al. 

1998c) but lower Mg II/Mg I ratios are also considered to represent robust conditions 

with axial viewing (Dubuisson 1998b).When the radial mode is used, the Mg II/Mg I 

ratios a
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viewing m d (i.e., there is 

no opti tio 

can be

condit  

 effects also 

can be reduced or eliminated by a careful selection of the sample-introduction system 

(Maestre et al. 1999, Mermet 1998, Todoli and Mermet 1998b, Todoli and Mermet 

999, Todoli et al. 2002). In ICP-OES and ICP-MS, the success of the analysis strongly 

depends on estre et al. 

999).  

Generally, liquid samples are used in plasma spectrometry because of their 

 handling and the possibility of preparing calibration standards. 

he main parts of the sample introduction system can be summarized as (Mora et al. 

2003): 

he plasma; 

i

i sol into the plasma base. 

In F

A llowing requirements 

(M

plasma ced into the sample introduction 

stem); low solvent-transport efficiency, in order to avoid plasma deterioration and 

interferences caused by the solvent; good reproducibility; low memory effects, thus 

.e., stability of the system against 

hanges in the sample matrix; ease of handling and low maintenance cost. 

 

ode, both atomic line and ionic line emission zones are probe

mal observation height), therefore an acceptable experimental Mg II/Mg I ra

 lower for axial viewing than for radial viewing, even if the same ICP operating 

ions are used (Dennaud et al. 2001).  

 

1.4. Sample Introduction in Plasma Spectrometry 

 
The main function of the sample introduction system is to introduce the 

maximum amount of analyte into the plasma in the most suitable form without changing 

its stability and without influencing the resulting emission signal (Mora et al. 2003, 

Nölte 2003). It has already been shown by several researchers that matrix

1

the selection of an uction system (Ma appropriate sample-introd

1

homogeneity, ease of

T

i. a nebulizer, which converts the liquid sample into an aerosol; 

ii. a spray chamber, which filters the aerosol and transports it to t

ii. a desolvation system to reduce the mass of solvent reaching the plasma; and, 

v. an injector tube to introduce the aero

igure 1.2. a schematic diagram showing these parts is illustrated. 

n ideal liquid sample-introduction system must fulfill the fo

ora et al. 2003): high analyte-transport efficiency (amount of analyte reaching the 

 relative to the amount of analyte introdu

sy

allowing high analytical throughput; robustness, i

c
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Figure 1.2. Diagram illustrating the sample introduction system 
(Source: Mora et al. 2003) 

 

1.4.1. Nebulizers 

 
The characteristics of the aerosols depend on the amount of available energy and 

on the efficiency of the energy transfer. Therefore the classification of nebulizers is 

i. by atic nebulizers) or of 

the liquid itself (hydraulic nebulizers); 

ii. 

 

based on the type of energy employed. Thus aerosols can be produced;   

the kinetic energy of a high-velocity gas stream (pneum

as the result of mechanical energy applied externally through a rotating (rotating 

nebulizers) or vibrating device (ultrasonic nebulizers); or, 

iii. as a result of the mutual repulsion of charges accumulated on the surface 

(electrostatic nebulizers) (Mora et al. 2003). 

1.4.1.1. Pneumatic Concentric Nebulizers 

 
Pneumatic nebulizers can be classified in two groups according to the geometry 

of the interaction between the gas and liquid streams (Mora et al. 2003):  

 8



 
 

i. pneumatic concentric nebulizers (PCNs) (also known as Meinhard nebulizers) 

(the interaction takes place concentrically) 

ii. cross-flow nebulizers (CFNs) (the liquid-gas interaction occurs perpendicularly) 

In Figure 1.3. several types of the pneumatic nebulizer are shown . 

 

 
 
Figure 1.3. Types of pneumatic nebulizers. (a) concentric, (b) cross-flow, (c) Babington, 

(d) single-bore high-pressure, (e) microwave thermal  
(Source: Mora et al. 2003) 

 

PCNs (Figure 1.3a) are the most common ones because of their simplicity, 

robustness, ease of use and low cost. On the other hand, they have some disadvantages 

such as low transport efficiency (typically about 2% in ICP-OES) and tendency to get 

clogged when using high salt-content solutions (Mora et al. 2003).  

Because of these drawbacks different nebulizer designs have been developed. 

-flow type (based either on the Babington principle, such 

s the V-groove (VGN), the cone-spray, the Hildebrand grid nebulizers, etc.) or based 

on modifications of the conventional PCNs. The thermal nebulizer (TN) also known as 

thermospray has the disadvantage that it is 

Most of them are of the cross

a

not well suited to work with acidic or high 

salt-content solutions and slurries (Mora et al. 2003). 
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1.4.1.2

 
ucer. As 

a consequen  film, a 

. Its main application is in trace analysis of samples 

all amounts of dissolved matter (Nölte 2003, Mora et al. 2003). 

 

o

ry aerosol), before it reaches the plasma 

(tertiary aerosol), som

n in the amount of aerosol reaching the plasma; a decrease in 

lences associated with the aerosol-production process; a thermal and charge 

equilibrium; and a reduction in the aerosol mean-particle size. As a result, a more 

ource is obtained (Mora et al. 2003 and references 

erein).  

 

a, the spray chamber, rather than the nebulizer determines the 

characteristics of the aerosol injected into the plasma (Mora et al. 2003).  

Spray chambers can be classified into three groups: 

. Ultrasonic Nebulizers (USN) 

In USNs, the solution is pumped to the surface of a piezoelectric transd

ce of the interaction between the ultrasonic waves and the liquid

very fine aerosol is obtained. The sensitivity rises by a factor of about 10 when it is 

coupled to a desolvation system

which contain very sm

1.4.2. Aer sol-Transport Phenomena 

 
The characteristics of the aerosols generated are very important since it 

influences both the signal and the noise. The parameters that must be considered for the 

quality of the aerosols are the aerosol droplet-size distribution (DSD) and the mean drop 

diameter, the aerosol yield, and the aerosol cone angle (Mora et al. 2003). 

After the aerosol is generated (prima

e modifications that change its original characteristics occur. All 

the processes that take place along the spray chamber or desolvation system are known 

as “aerosol-transport phenomena” (Mora et al. 2003). The final effects of these 

processes are: a reductio

the turbu

suitable aerosol for the plasma s

th

1.4.3. Spray Chambers 

 
The main function of the spray chamber is to remove larger droplets, since these 

can destabilize the plasma. It is reported that, when less of 5% of the analyte nebulized 

is transported to the plasm
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i. double-pass (DPSC), so-called Scott type or reverse-flow type; 

ii. cyclonic (CSC), which includes several modifications such as vortex type, 

Sturman-Master or vertical rotary;  

iii. single-pass or cylindrical type, also called direct spray chamber. 

DPSC and CSC designs are the most frequently used spray chambers. Figure 1.4 shows 

these listed spray chambers. 

 

 
 

Figure 1.4. Common types of spray chambers. (a) double pass, (b) cyclonic, (c) single 
pass, (d) Genie (Source: Mora et al. 2003). 

 

It has been reported that the DPSC produces finer tertiary aerosols than the CSC. 

As a re

f the aerosol. With this chamber, a significant fraction of the aerosol 

reaches

sult of the worse filtering action, the CSC affords higher analyte and solvent 

transport rates to the plasma than the DPSC. The wash-out times are lower for the CSC 

than for the DPSC. This can be due to the smaller inner volume of the CSC and the fact 

that the solution deposited on the spray-chamber walls can be easily removed in the 

CSC (Maestre et al. 1999, Mora et al. 2003). 

Single-Pass Spray Chambers are used with systems that do not require a strong 

filtering action o

 the plasma; therefore a desolvation system is highly recommended (Mora et al. 

2003). 
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1.4.4. Desolvation Systems 

 
To reduce the solvent load going into the plasma several desolvation systems 

ed. The simplest device used to control this solvent load contains a 

ermostated spray chamber. In this design, the solvent vapor generated inside the spray 

ber is removed from the aerosol stream. Most of desolvation systems include first 

a heati

ecially designed to work efficiently 

at rates as lo

i. the high-efficiency nebulizer (HEN); 

MCN); 

iii. the MicroMist (MM); 

iv. the direct-injection nebulizer (DIN); and, 

have been propos

th

cham

ng step, in which the solvent is totally or partially evaporated from the aerosol 

droplets and a second step in which solvent vapor is removed from the aerosol stream 

(Mora et al. 2003). 

 

1.4.5. Micronebulizers 

 
Micronebulizers (MNs) are the nebulizers sp

w as 10 µl/min. Because the efficiency is improved both in terms of analyte 

and solvent transport, micronebulizers are also called high-efficiency nebulizers. As a 

result, they reduce or suppress waste, which is beneficial with hazardous wastes 

(Mermet 2002). 

Several pneumatic concentric micronebulizers have been described: 

ii. the MicroConcentric nebulizer (

v. the direct-injection high-efficiency nebulizer (DIHEN). 

The HEN, MCN and MM are normally employed with a DPSC and are modified 

versions of the PCNs in which the liquid and gas cross-sectional areas and liquid 

capillary-wall thickness have been reduced. As a consequence, the liquid-gas interaction 

is improved, so that primary aerosols are finer than those generated by a conventional 

nebulizer. But since the HEN works at high pressures, a special gas-transport system is 

needed. Several low-volume spray chambers (LVSCs) have also been developed such 

as Cinnabar and Genie chambers. These spray chambers are reported to produce less 

severe matrix effects with inorganic species than the DPSC (Mora et al. 2003). 
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Because a spray chamber produces primary aerosol losses, sample introduction 

systems that do not include a spray chamber have been developed.  In the DIN, the 

aerosol is generated at the plasma base and no analyte is lost downstream. The DIHEN 

minimizes cost and is easy to operate. It has been reported that both the DIN and 

es, higher sensitivities and lower limits of detection 

an for any of the three remaining pneumatic concentric micronebulizers coupled to a 

spray c

1.5. Detection 

unt often used is the Czerny-Turner. Monochromators are 

designe

Polychromators are often based on the Paschen–Runge optical mounting, with 

lte 2003).  

 

DIHEN have shorter wash-out tim

th

hamber. 

One of the drawbacks of the DIN and DIHEN is that they become easily blocked 

when working with high salt-content solutions. To overcome this, a new version of the 

DIHEN provided with a wider liquid sample capillary, called the large-bore direct 

injection high-efficiency nebulizer (LB-DIHEN), has been developed. The other 

limitations of the direct injection are severe solvent loading, and high velocity of the 

sample input into the plasma, which effect residence time of analyte in the plasma 

(Mermet 2002, Mermet 2005).  

 

 
In principle, there are mainly two dispersive systems in ICP-OES; 

monochromators (so-called sequential systems) and polychromators (so-called 

simultaneous systems).  

The main advantage of monochromators is the flexibility of wavelength 

selection. An optical mo

d in such a way as to give better resolution than polychromators. Scanning 

monochromators can generate spectra in the neighborhood of the analytical line, which 

allows an accurate determination (Nölte 2003).   

the PMTs set up in the so-called Rowland circle. Even if all the analytical lines are 

measured simultaneously, the background correction measurement is typically carried 

out in a sequential manner. The main advantages of classical simultaneous 

spectrometers are short and long term stability and high analysis speed (Nö
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1.5.1. 

 

photocathode. The PMT presents som

wavelength range, including th , noise that is usually 

negligible a re, thus not requiring any cooling device, and high 

 

information is obtained from ectra compared to a photographic plate. In 

the case of a sequen

per element, and with a PMT-based polychromator; only one line can be selected per 

element because of the cost and the phys

PMTs. This then necessitates a detector th  

the PMTs they have a relatively low dark current which gives a great advantage when 

Photomultiplier Tube (PMT) 

A PMT converts the photons into electrons by the photoelectric effect at a 

e important advantages, such as a large 

e UV region down to 120 nm

t room temperatu

amplifier gain. However, since the PMT is a single-channel detector, only little

 the emitted sp

tial system, it would be time consuming to work with several lines 

ical limitation of setting more than 30–40 

at combines photon-current conversion of a

photoelectric detector and the richness of information of a photographic plate which can 

be obtained by using a solid-state multichannel detector (Mermet 2002, Nölte 2003, 

Mermet 2005). 

 

1.5.2. Solid State Detectors  

 
Solid state detectors record wavelength bands and allow a sizeable gain of 

spectral information (array type) combined with simple signal processing capabilities. 

The smallest pictorial unit of a solid state detector is the pixel. The band of neighboring 

pixels which covers the complete detector widths described as an array, while a 

subarray covers only a part of the detector width. The charge capacity of a pixel is a 

measure of how many electrons can be collected in a pixel without being lost to 

surrounding pixels or electrodes. The charge capacity determines the dynamic range and 

linear range of the detector. If the charge capacity is exceeded, the charges spill over to 

adjacent pixels; this is called blooming and appears when the solid state detector is 

strongly overexposed (Nölte 2003).  

Since multichannel detectors are based on charge transfer technology, they are 

categorized under the term charge-transfer device (CTD). CTDs consist of doped pure 

silicon. This light-sensitive material produces charges when struck by photons. Unlike 
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working in the lower wavelength range where there is very little background emission 

of the plasma. This low dark current is further reduced by external cooling to typically 

elow 0oC (Nölte 2003). 

The two dimensional charge-coupled device (CCD) and charge-injection device 

 of linear CCD arrays are currently being used in ICP-

ES systems and these permit fast acquisition of the entire UV-VIS spectrum (Mermet 

2005). 

ubarray has a grounding wire around it to efficiently prevent 

any po

e richness of the acquired information, i.e., the entire UV-VIS 

ectrum (Mermet 2005): 

i. full flexibility in analytical line selection,  

 same element to extend the dynamic range,  

iii. use of a large number of lines of the same element to improve accuracy and 

n the other hand, these detectors have several limitations related to degradation 

in the resolution compared to PMT-based dispersive systems (possibly because of the 

nd shot noise (Mermet 2002). Each individual 

ixel a  an exit slit in solid state detectors. The major difference with a scanning 

monoc

pixel. Because the spectral bandpass of a pixel is larger than the physical line width, the 

b

(CID) detectors or a combination

O

 In order to avoid blooming, the segmented charge-coupled device (SCD) 

detector is subdivided into relatively small photosensitive subarrays which are formed 

during manufacture. Each s

tential spill over of charges to neighboring subarrays (Nölte 2003). 

The advantages of multichannel detection can be divided into two groups. The 

first group is related to th

sp

ii. use of several lines of the

to verify possible matrix effects or spectral interferences,  

iv. qualitative analysis, and  

v. fast diagnostics.  

The second group is related to true simultaneous measurements (Mermet 2005); 

i. speed of analysis,  

ii. time correlation between lines of different elements to improve repeatability 

by internal standardization, and  

iii. time correlation between line and adjacent background intensities to improve 

limits of detection and limits of quantitation. 

O

pixilation), UV response, dynamic range a

p cts as

hromator is that each pixel will provide new information, while a scanning 

monochromator will provide for example only 20% new information for each step. The 

spectrum will be then cut into windows that correspond to the spectral bandpass of the 
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pixelation results in the difficulty of obtaining a fair measurement of the peak intensity 

and summation of pixels must be performed to the loss of the practical resolution. 

Because the absorption of photons in Si is from over a few nm for wavelengths below 

200 nm, the efficiency of CTD detectors is usually poor in the UV therefore several 

techniques have to be used such as lumogen coating, open electrode technology and 

backside illumination (Mermet 2005). Dynamic range needs to be increased in order to 

facilitate the simultaneous measurement of lines with different intensities which can be 

obtained by reducing the readout noise down to a few electrons RMS. Another 

hot noise. For low signals such as background in the UV, the 

stems are usually shot noise limited, which necessitates long integration times to 

signific

lopment 

 

matrix effects are more important since these effects 

are not

eliminated by selection of the appropriate line, then correction of these interferences 

important limitation is the s

sy

antly decrease the relative standard deviation of the signal. This is particularly 

true when determining limits of detection. Moreover, time correlation between signals 

can only be observed if the non-correlated shot noise is not a limitation. It is said that 

multichannel detection with CCD and CID is highly beneficial to OES but these 

detectors at least for the time being are not ideal (Mermet 2002, Mermet 2005). 

 

1.6. Method Deve

For analysis with ICP-OES, a number of parameters are selected and optimized, 

such as analytical lines, excitation conditions, selection of the processing techniques 

(particularly the background correction), checking for and correcting for non-spectral 

interference (Nölte 2003). 

Excellent analytical character of ICP-OES can be limited by spectral and non-

spectral interferences. Non-spectral 

 always obvious.  

 

1.6.1. Spectral Interferences 

 
These types of interferences originate from emissions of the structures of the 

spectral background and from sample components which emit light in the immediate 

neighborhood of the analytical line. If the cause of the spectral interference cannot be 
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may be realized by improving the resolution, masking the interference by matrix 

matching, determining the impact of the interference by measuring an undisturbed 

wavele

r because of changes in the sample transport, 

ebulizer properties, spray chamber aerodynamics and excitation conditions in the 

plasma. It was also reported that these interferences are caused by changes in the 

ple (particularly; viscosity, density, and surface tension), 

hange in the rate of mass transfer into the plasma, temperature change at a constant RF 

power,

 

now possible to measure a larger lement, and consequently some 

general trends for operating conditions in the plasma, the sample introduction system 

and the excitation energy and the ionization state of the elements can be obtained. It has 

been emphasized by Mermet that in the sele ion of a set of lines the possibility of using 

compromised operatin ferent behaviors for a 

change in matrix concentration or nature should be considered (Mermet 2002 and 

references therein).  

Therefore, it is apparent that data 

le information. The purpose is to obtain more accurate data by 

nd chemical interferences, self-absorption, 

nd drift. In addition, the increase in the amount of information should also be very 

ngth of the interferent and subtracting its contribution from the interfering 

analyte line (inter-element correction) and/or applying a correction technique by 

multivariate regression (Nölte 2003). 

 

1.6.2. Non-spectral Interferences 

  
These interferences can occu

n

physical properties of the sam

c

 or a change in the number of electrons in the plasma (Todoli and Mermet 1999, 

Todoli et al. 2002, Nölte 2003 and references therein). These types of interferences can 

be corrected by using matrix matching, use of an internal standard, calibration by 

analyte addition, addition of surfactants and ionization buffers (Nölte 2003).    

 

1.7. Data Processing  

 
Because of the availability of multichannel detection systems in recent years it is

number of lines per e

ct

g conditions and having lines that exhibit dif

processing should be adapted to take full 

benefit of the availab

verifying the possible presence of spectral a

a
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useful 

propriate 

operati

arious matrices will always be a request. Because there 

are no

hale liver 

sample

valuated.  The 

use of 

to obtain a better understanding of matrix effects (various contributions of 

sample introduction system, plasma conditions, torch design and observation mode in 

the matrix effects) (Mermet 2002). 

The use of chemometrics should significantly improve data processing and 

several publications have already shown the advantages of these techniques (Griffiths et 

al. 2000, Moreda-Piñeiro et al. 2001, Grotti and Frache 2003b). Implementation of 

chemometrics in software and better knowledge of matrix effects should result in the 

introduction of an ideal software that should ask a limited number of questions such as: 

what is your matrix?, which elements do you want to determine?, what are the expected 

concentrations?, and what precision is required?. From the answers and based on a data 

base, the software should suggest several sets of analytical lines and ap

ng conditions, i.e. power, nebulizer gas flow rate and integration time, at least for 

the most common matrices (Mermet 2002, Mermet 2005). 

According to Mermet, the need for elemental analysis will remain forever as the 

determination of elements in v

t so many multi-element techniques, there is still room for OES if further 

improvements can be obtained. It is expected that most improvements will be related to 

more efficient data processing to take full benefit of the available emitted information. 

In addition, it is said that the same experiments should be performed on different ICP-

OES instruments and in different conditions, probably through a collaborative study 

(Dennaud et al. 2000, Mermet 2005). 

 

1.8. Aim of This Work 

 
In the following chapters, studies of the elemental analysis of w

s will be presented.  The samples were obtained as part of the 2003 National 

Institute of Standards and Technology (NIST) / National Oceanic and Atmospheric 

Administration (NOAA) Interlaboratory Comparison Exercise for Trace Elements in 

Marine Mammals.   Chapter 2 includes the initial analysis of the samples and focuses on 

the implications associated with the use of ICP-AES and ICP-MS.  For Chapter 3, 

attempts to improve these analyses by using internal standards will be e

Principal Component Analysis (PCA) for choosing the appropriateness of several 

internal standards to compensate for various matrix effects will be demonstrated. 
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CHAPTER 2  

 

 

WHALE LIVER ANALYSIS 
 

 

2.1. Introduction 

 
Metals enter the marine environment both naturally as well as from 

anthropogenic sources. On the other hand, discharges from various anthropogenic 

activities are the major cause of increased environmental concentrations of these 

elements (Hoekstra et al. 2003, Ikemoto et al. 2004). In the last decades, mass 

mortalities occurred in several marine mammal populations and toxic contaminants may 

have b

e bioaccumulation of the elements in their tissues (Mössner et al. 1997, Ponce 

et al. 19

een a factor in a number of epizootics which have affected these animals (Harvell 

et. 1999, Law et al. 2003,). In order to evaluate the degree of contamination by trace 

elements, several investigations have been carried out on marine mammals (Mössner et 

al. 1997, Ponce et al. 1997, Becker 2000, Capelli et al. 2000, Bennett et al. 2001, Zhou 

et al. 2001, Anan et al. 2002a and 2002b, Méndez et al. 2002, Bustamante et al. 2003, 

Hoekstra et al. 2003, Law et al. 2003, Ikemoto et al. 2004, Kunito et al. 2004). 

Marine mammals uptake the metals predominantly from food and due to their 

position at the top of the aquatic food chain and their long life-spans, such uptake can 

lead to th

97, Zhou et al. 2001).  

Although metals are often classified as essential or nonessential, at sufficiently 

high concentrations, they may become toxic and cause multiple symptomatic effects 

that influence the health of both animals and humans (Zhou et al. 2001). The major 

toxic metals causing such effects are As, Cd, Cr, Sn, Ni and Hg. Elements that are 

essential but are potentially toxic include Fe, Se, Cu and Zn which are participating in 

the formation or function of enzymes involved in metabolism (Zhou et al. 2001, 

Bustamante et al. 2003, Ikemoto et al. 2004). Furthermore, there are some recent studies 

suggesting that several elements such as As, Cd, Co, Cr, Cu, Hg, Pb, Se, and V disrupt 
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estrogen receptor (ER)-, androgen receptor (AR)- or glucocorticoid receptor (GR)- 

mediated processes in vivo and in vitro in mammals at the environmentally relevant 

concentrations (Martin et al. 2002, Johnson et al. 2003, Kunito et al. 2004).  

Therefore, it is important to investigate the contamination status of trace 

elements in tissues of marine mammals to reveal their possible adverse effects on these 

animals. Liver is routinely analyzed because it is the principle organ that can provide 

the best measurement for the largest number of elements. Also it is a major 

detoxification location for contaminants; therefore, it is a suitable organ for enzyme and 

metabolite analyses (Becker 2000, Pugh et al. 2003, Kunito et al. 2004). 

Because the metal accumulation indicates the level of contamination of the sea, 

marine mammals could be considered as indicative organisms of marine pollution and 

can be used as an important tool for monitoring the long-term effects of the pollution of 

the marine environment on marine mammals and human health (Mössner et al. 1997, 

Zhou et al. 2001, Cardellicchio 2002). In addition, establishing a long term database on 

contaminants in marine mammals is needed to help in evaluating the role of 

contaminants in mortality events and to provide a basis for exploring, predicting and 

alleviating these events (Zhou et al. 2001, Ruelas-Inzunza and Páez-Osuna 2002). 

Trace element determination in marine species is required to provide 

information about marine environmental quality, to evaluate their impact on human and 

animal health and nutrition, and to identify global, regional and point sources that 

release contaminants into the atmosphere and coastal ecosystem and find proper 

environmental solutions for these contaminants. 

Accurate contaminant data is needed in order to estimate marine environmental 

quality more appropriately and to monitor the health status of certain marine species. 

Certified reference standards for this purpose are often unavailable and this limitation 

can lead to decisions based on subjective analytical results that can have significant 

economic and health consequences (NIST 2004). 

The National Institute of Standards and Technology (NIST) administers periodic 

interlaboratory comparison exercises through several programs, including the National 

Marine

ol and reference 

materials can be managed and a quality controlled resource of selected marine mammal 

 Analytical Quality Assurance Program (NMAQAP), which is supported by the 

National Oceanic and Atmospheric Administration’s National Marine Fisheries Service 

(NOAA/NMFS), through the Marine Mammal Health and Stranding Response Program. 

Through these interlaboratory studies, production of quality contr
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tissues

t al. 1999) atomic absorption spectrometric techniques with flame (FAAS) for 

e determination of Cu, Fe, Mn, Cd, Zn (Cardellicchio et al. 2002, Méndez et al. 2002, 

Ruelas-Inzunza and Páez-Osuna 2002, Bustamante et al. 2003, Kunito et al. 2004); with 

S) for Cd (Monaci et al. 1998, Ancora et al. 2002, Cardellicchio 

t al. 2002, Hoekstra et al. 2002, Ruelas-Inzunza and Páez-Osuna 2002), for Hg 

(Epstein 2000), and for As (Tilbury et al. 2002); with hydride generation (HGAAS) for 

 As (Kunito et al. 2004) and with cold vapor atomic absorption 

ectrometry (CVAAS) for Hg (Epstein and Buehler 1998, Zhou et al. 2001, Kunito et 

al. 2002, Tilbury et al. 2002, Agusa et al. 2004, Ikemoto et al. 2004, Kunito et al. 2004). 

thods described such as advanced mercury 

nalyzer (AMA) (Hoekstra et al. 2002, Bustamante et al. 2003) and flow injection 

mercur

rferences (Tyler 1994). GFAAS has small sample consumption 

in the d

ort analysis times. In general, 

with IC

 can be maintained (Becker et al. 1997a and 1997b, Pugh et al. 2003, NIST 

2004).   

Scientists who are interested in marine studies have studied trace metal 

concentrations in marine mammal tissues (particularly in liver) using different 

analytical approaches including instrumental neutron activation analysis (INAA) 

(Becker e

th

graphite furnace (GFAA

e

the determination of

sp

For Hg determination there are also other me

a

y system (FIMS) (Monaci et al. 1998, Ancora et al. 2002). 

 Atomic absorption techniques have provided accurate determination of many 

trace elements in biological samples. Disadvantages of FAAS are that releasing agents 

or modifiers are necessary and it requires careful control of the flame stoichiometry to 

overcome chemical inte

etermination of trace levels but analysis time is longer than for other techniques. 

Although atomic absorption spectrometry offers sufficient performance, in most cases it 

is a single element technique and is therefore slow for multielement determinations. 

The apparent method of choice for analyzing whale liver is inductively coupled 

plasma mass spectrometry (ICP-MS) (Chang and Jiang 1997, Epstein 2000, Christopher 

2001, Anan et al. 2002a, Hoekstra et al. 2002, Kunito et al. 2002, Law et al. 2003, 

Agusa et al. 2004, Ikemoto et al. 2004, Kunito et al. 2004) for its multielement 

capability, high sensitivity, large dynamic range and sh

P-MS, an upper total dissolved solids (TDS) limit of 0.1-0.2% (Ryan 1998) in 

the solution should not be exceeded to ensure continuous operation for an extended 

period. Above this limit, unacceptable levels of signal instability, deposition on cones 

and a decrease in the nebulization efficiency are encountered.  
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Inductively coupled plasma optical emission spectrometry (ICP-OES) is a useful 

alternative to ICP-MS in the analysis of marine mammal tissues (Monaci et al. 1998, 

002, Bustamante et al.2003, Yılmaz 

003) b cause of its ease of use and ability to handle higher levels of TDS (Johnson 

1996). 

e were 

asked t

 ocean environment, whale liver presents a challenging matrix 

in whic

erit for the whale liver 

sample

 Oceanic 

nd Atmospheric Administration (NOAA) Interlaboratory Comparison Exercise for 

ton Laboratory, 

Capelli et al. 2000, Zhou et al. 2001, Tilbury et al. 2

2 e

It also shares the same properties with ICP-MS such as multielement capability, 

and short analysis times but the sensitivity of ICP-OES is worse than that of either ICP-

MS or GFAAS. 

As a participant of an interlaboratory study administered by NIST, w

o perform measurements for 12 elements (As, Cd, Cu, Fe, Hg, Mn, Mo, Rb, Se, 

Sn, V and Zn) in two quality assurance materials; Beluga Whale Liver Homogenate, 

QC97LH2 and Pygmy Sperm Whale Liver Homogenate, QC03LH3.  

Coming from an

h precision, accuracy, and nonspectroscopic interferences such as EIEs can be 

examined so it would be instructive to use the whale liver matrix for comparison of 

ICP-MS and ICP-OES analyses. Both ICP-MS ad ICP-OES were performed and 

compared with regard to their relative analytical Figures of m

s. 

 

2.2. Experimental 

 

2.2.1. Materials  

 

2.2.1.1. Whale Liver Homogenates  

 
The marine mammal samples used throughout this study were obtained as part 

of the 2003 National Institute of Standards and Technology (NIST) / National

a

Trace Elements in Marine Mammals and supplied by NIST Charles

South Carolina, USA.  
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Marine Mammal Whale Liver Homogenate III (labeled as QC97LH2) had been 

taken by NIST from Beluga Whale (Delphinapterus leucas) livers collected during a 

1997 subsistence hunt at point Lay, Alaska, USA and was used as control material in 

the study. Intercomparison Exercise Whale Liver Homogenate III (labeled as 

QC03LH3) had been taken by NIST from Pygmy Sperm Whale (Kogia breviceps) and 

it had 

 used throughout the study. 

tandard solutions and synthetic samples were prepared from the ICP 

Multielement standard solution IV (1000 mg/L) that contains Ag, Al, B, Ba, Bi, Ca, Cd, 

n, Na, Ni, Pb, Sr, Tl, Zn as purchased from Merck 

armstadt, Germany). 

One mg/L multielement stock solution (containing Cd, Cu, Fe, Mn, and Zn) 

ared by taking 1 ml of 

000 mg/L multielement standard solution IV and then diluting it to 1000 ml. The final 

concen

s (As2O3 has been prepared by adding 5 ml 

aOH and 2.5 ml H2SO4, then diluting to 250 ml). The stock solution of As (10 mg/L) 

was prepared by t en diluting it to a 

been previously issued as an unknown material in the 2001 NIST/NOAA 

Interlaboratory Comparison Exercise for Trace Elements in Marine Mammals. It was 

used again as the unknown sample for the current study. 

These materials had been cryo-homogenized to reduce the possibility of changes 

in sample composition due to thawing and refreezing and their homogeneity verified by 

measurements performed at NIST. They were shipped in nitrogen containers and stored 

in Teflon jars (10 ml) at –80oC until analyses were performed. 

 

2.2.1.2. Reagents and Standard Solutions 

  
Nitric acid (65%) and hydrogen peroxide (30%) were purchased from Riedel-de 

Haen (Germany) and were used for sample digestion and for the adjustment of acid 

content in the standards and samples. Doubly de-ionized water (18.2 MΩcm) obtained 

from a Milli-Q waters system (Millipore, USA) was

S

Co, Cr, Cu, Fe, Ga, In, K, Li, Mg, M

(D

which was used for spiking for the recovery studies was prep

1

tration of this spike was then 33.33 mg/L in the sample. 

A 100 mg/L stock solution of Hg was prepared by mixing 0.1360 g HgCl2 solid 

with 5 ml of 65% HNO3 and then diluting to 100 ml. A 200 mg/L stock solution of As 

was used which was prepared previously from As2O3 to prepare the 10 mg/L stock 

solution of As and other As standard solution

N

aking 2500 µl from the 200 mg/L As solution and th
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final volume of 50 ml. This 10 mg/L As stock solution was used to prepare the As 

standard solution

After taki from solutions, 8 ml of HNO3 and 1 

ml of 30% H2O2 were added to standard solut nal volume of 25 ml 

to attempt match e (H2O2 was added to help dissolve 

organic matter). asurements, 500 µ g/L 

from Merck, Dar ) were adde h samples and standards. 

 

.2.2. Microwave Digestion of Whale Liver Homogenates  

 

s.   

ng appropriate amounts  the stock 

ions and diluted to a fi

ing the acid matrices to th samples 

Before me l of Rh internal standard solution (10 m

mstadt, Germany d to bot

2

In order to minimize contamination, all the receiving vessels and implements 

used in this study were previously washed in a 10% nitric acid solution prior to the 

experiments, and the Teflon vessels used in the microwave digestions were boiled in a 

10% nitric acid solution. A plastic knife was used to transfer the samples into the Teflon 

vessels before weighing to avoid metal contamination. 

For the microwave digestion of control samples, 7 aliquots of approximately 0.4 

g of each homogenized sample were digested in Teflon containers with 8 ml of 65% 

HNO3 and 1 ml of 30% H2O2 using a microwave digestion instrument (MILESTONE 

Microwave Laboratory Systems ETHOS PLUS labstation with HPR-1000/10S high 

pressure segmented rotor). In six of these seven vessels, one ml of H2O was added before 

digestion. Into the other one ml of 1000 mg/L ICP multielement standard solution IV was 

added as a oC for  spike. The microwave oven was operated at 150 oC for 10 min, at 200 

10  min at a power of 500 W. At the end of the  min, then at 200 oC again for 20

temperature progra rntable was rotated  for ventilation. m the tu  continuously for 20 min

After allowing the digest to cool to room temperature, each sample was transferred to 

acid-washed polyet s (and also volum sks) and was brought to a final hylene vial etric fla

volume of 25 ml with ultra pure water. Also, 3 blanks were digested at the same time 

with the liver homo ng 8 ml of 65 2 and 1 ml of genates by addi % HNO3, 1 ml of 30% H2O

H2 els les, appO to the vess . For unknown samp lying the same procedure, 6 aliquots of 

the unknown homo igestegenized sample were d d.  
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2.2.3. Trace Metal Analysis  

 

es, a Hewlett 

Packard

2.2.3.1. Instrumentation and Operating Conditions 

 
Metal analyses were performed by both inductively coupled plasma optical 

emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry 

(ICP-MS) for As, Hg, Cd, Cu, Fe, Mn, and Zn. For ICP-MS analys

 4500 Series ICP-MS with a Shield Torch System was used. Instrument 

operating conditions are listed in Table 2.1.  

 

Table 2.1. ICP-MS instrument operating conditions 
 

ICP-MS Hewlett Packard 4500 Series  
Plasma Gas Flow Rate 15.1 L/min 
Auxiliary Gas Flow Rate 1.00 L/min 
Carrier Gas Flow Rate 1.00 L/min 
Plasma Power 1450 Watt (RF Power) 
Sampling Depth 8 mm 
Torch –H -1.1 mm 
Torch –V 0.7 mm 
Peristaltic Pump 0.1 rps 
S/C Temperature 2oC 
Pump Uptake Speed 0.50 rps 
Uptake Time 20 sec 
Stabilization Time 5 sec 

 
75As, 202Hg, 114Cd, 63Cu, 55Mn, 57Fe, 66Zn, and 103Rh isotopes were analyzed. A 

Varian Liberty Series II inductively coupled plasma optical emission spectrometer 

(Varian Inc., Australia) employing the axial viewing mode, an air path monochromator, 

a cyclonic spray chamber, and a concentric glass nebulizer was used. Instrument 

properties and typical operation conditions are listed in Table 2.2. 
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Table ES inst n and op ng condi  
 

S Var Series 

 2.2. ICP-O rumentatio erati tions 

ICP-OE ian Liberty II  
Optical configur 0.75 m zerny-Turner ation eter C
Grating 90 x 10  hologra0 mm phic 
Grating density 1800 g s/mm  roove
Plasma viewing mode Axial 
Injector id 2.5 mm 

 
Spectrometer

Detector Photomultiplier 

 

Nebulizer Concentric glass 
Spray chamber Cyclonic (Sturman-Masters) 
Torch One-piece quartz type 
Plasma gas flow rate 15.0 L/min 
Auxiliary gas flow rate 1.5 L/min 

 
Sample 

Pum 15 rpm

introduction 

p rate  
Operating frequenc 8y 40.6  MHz 

Type Crys ith s  state dr  
 wa  power tube 
tal controlled w olid iver

and ter cooled
R .2 kW F power 1

 

Interface 

RF Generator 

Nickel cooled cone interface 
 

The Mg II 280 /Mg I 285 ratio used for monitoring the plasm

ex tions  Me . The  that w nd wa 74, 

the  be that  were zed und robust ma 

co e anal  not aff the instru t and pl ondit . 

Elements and their selected wavelengths measured in this study by ICP-OES 

ere As I 228.812 nm, Cd II 226.502 nm, Cu I 324.754 nm, Fe II 259.940 nm, Hg I 

253.652nm, Mn II 257.610 nm, Zn I 213.856 nm, and Rh II 249.077 nm. 

were run.  A Q-test was applied when 

eciding to discard results.  However, in some cases, the Q-test did not allow the 

discard

contained other elements in addition to those analyzed.  It should be noted that the 

a robustness and 

citation condi  as cited by rmet (1991) value as fou s 8.

refore, it can concluded  the samples  analy er plas

nditions and th ysis was ected by men asma c ions

w

For the control samples, four replicates 

d

ing of data.  Therefore, there are four results reported for some control replicates. 

Likewise, all numbers are reported as if four digits were significant except in cases 

where rounding may alter the results. In such cases a guard digit was retained. 

 

2.3. Results and Discussion 

 
The results for the analyses of the control whale liver sample (CWLS) and 

laboratory exercise test whale liver sample (LETWLS) obtained by both ICP-OES and 

ICP-MS techniques are represented in the following tables. The control and test samples 
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control sample contained Mo, Rb, Se, Sn, V at concentrations of approximately 0.685, 

1.31, 24.30, 0.044, and 0.295 µg/g, respectively.  The complex nature of the matrix, the 

roblems associated with the handling and preparation of the sample material, and the 

possible interferences related to the analysis of these materials must be noted.  Where 

 

p

appropriate, explanation is given. 

Table 2.3. Values for the Control Material Beluga Whale Liver Homogenate obtained at 
Hıfzısıhha Institute by using ICP-MS 

 
Element 

(isotope) 

 

Normal 

Calibration 

(ug/g, wet mass) 

NIST 

certified value 

(ug/g, wet mass) 

Difference  

from certified 

value % 

Recoveries 

% 

RSD 

% 

Cd - 114 1.87 ± 0.29 2.35 ± 0.06 20,4 147.3 15,5 

Cu - 63 13.61 ± 0.6 13.16 ± 0.4 3,4 127.9 4,4 

Mn - 55 2.10 ± 0.13 2.37 ± 0.08 11,4 92.12 6,2 

Hg - 202 47.08 ± 1.76 40.31 ± 2.51 16,8 _ 3,7 

Zn - 66 37.46 ± 5.67 26.31 ± 0.66 42.4 169.2 15,1 

As - 75 0.760 ±0.107 0.391 ± 0.027 94.4 _ 14,1 

Fe - 57 442 ± 12 668 ± 15 33.8 80.94 2,7 

 

 

Table 2.4. Values for the Control Material Beluga Whale Liver Homogenate obtained at 
İYTE by using ICP-OES 

 

Element 

(wavelength,nm) 

Normal 

Calibration 

(ug/g, wet mass) 

NIST 

Certified value 

(ug/g, wet mass)

Difference  

from certified 

value % 

Recoveries 

% 

RSD 

% 

Cd II – 226.502 2.05 ± 0.19 2.35 ± 0.06 12.8 91.10 9.3 

Cu I – 324.754 14.54 ± 0.76 13.16 ± 0.4 10.5 103.2 5.2 

Mn II – 257.610 2.41 ± 0.20 2.37 ± 0.08 1.7 82.68 8.3 

Hg I – 253.652 44.19 ± 1.51 40.31 ± 2.51 9.6 _ 3.4 

Zn I – 213.856 33.44 ± 1.78 26.31 ± 0.66 27.1 66.79 5.3 

As I – 228.812 73.83 ± 5.12 0.391 ± 0.027 18782 _ 6.9 

Fe II – 259.940 780 ± 4 668 ± 15 16.8 109.4 0.5 
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2.3.1. Recovery Values 

 
Recoveries were calculated for the elements Cd, Cu, Fe, Mn and Zn. The 

recovery values between 85 – 115 % can 

the ICP-OES analysis for control (CWLS) and test (LETWLS) material, these values for 

Cd (91

rly, Zn had recovery values of 169.2% and 156.1% for control and 

test m

with the certified values, the results for Cd, Cu, and Mn 

hether measured by ICP-MS or ICP-OES were considered acceptable within 

although some problems in accuracy exist.  As can be seen from 

Table 2.3, ICP-MS analysis gave (accuracy) values between 3.4% and 20.4% relative to 

e cer ied values whereas ICP-OES analysis (Table 2.4) gave values between 1.7% 

and 12

 was 9.3%, 5.2%, and 8.3%, 

spectively.  Overall for these three elements, the greatest precision and accuracy were 

obtained for measurements of Cu by both methods. The other elements analyzed (Zn, 

As, Hg, and Fe) overall gave less precise and accurate results.  

be considered acceptable for an analysis. In 

.10% and 90.31%), Cu (103.2% and 106.7%), and Fe (109.4 and 109.1) fall in 

this range whereas Mn (82.7 and 83.01) and Zn (66.79 and 65.30) were outside of this 

range. On the other hand, for the ICP-MS analyses these recovery values were 

somewhat larger for Cd, Cu, Mn and Zn. Cd had a recovery value of 147.3% for control 

material and 132.9% for test material which are very high as compared with the ICP-

OES values. Simila

aterial, respectively. These large values can be explained by the isobaric 

interferences (114Sn on 114Cd and 34S16O16O or 32S34S on 66Zn) which affect the analysis 

of these elements. For Cu and Mn, the differences are not so high. 

 

2.3.2. Control Whale Liver Sample (CWLS) 

 
 When the measured concentrations for the control sample (Beluga Whale liver 

homogenate) are compared 

w

experimental error 

th tif

.8% relative to the same certified values.  For the same control whale liver 

sample, ICP-MS gave the more accurate results for Cu while ICP-OES gave more 

accurate results for Mn.   

 Precision expressed as the percent relative standard deviation (%RSD) for the 

measurement of Cd, Cu, and Mn by ICP-MS were 15.5%, 4.4%, and 6.2%, respectively.  

For the same elements, the precision by ICP-OES analysis

re
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Moreover, according to a t-test applied to the calculated concentrations, for the 

P-MS analysis, the determined value for the concentration of Cu is in good agreement 

.3.2.1. Cadmium 

A lack of accuracy for Cd by ICP-MS can be due to an isobaric interference 

from 114

 

 ICP-OES analysis of Cd has been attributed to 

the rath

 

IC

with the certified value while for the ICP-AES analyses of Cd, Mn, and Hg, their 

determined values were found to be acceptable within the reported error of the certified 

value. Each individual element analyzed in the control material and possible sources of 

errors were described below. 

   

2

 

Sn which was present in the control sample at a concentration of 0.044 µg/g.  It 

is possible to apply a mathematical correction by measuring the intensity of 118Sn and 

using the following equation: 

 

Sn)   (0.0268 -  114 massCd 118114 ×=        (2.1) 

 

where the number 0.0268 represents the ratio of natural abundances of two 

isotopes of Sn (114Sn/118Sn = 0.65% / 24.23%). Such an isobaric interference should 

give a positive error. Based on the precision for our measurements for Cd by ICP-MS 

(15% RSD), it is still possible that Sn is an interferent. Unfortunately, we could not 

perform this correction because of the unavailability of Sn in our ICP multielement 

standard solution.  

Line selection in ICP-OES is very important to avoid spectral interferences. 

When choosing the appropriate emission line for Cd analysis by ICP-OES, the most 

intense line for Cd at 228.802 nm was not chosen due to a spectral overlap of As at the 

same wavelength.  To avoid a known spectral overlap with As, the 226.502 nm line for 

Cd was chosen.  The lack of accuracy for

er large concentration of Fe in the control whale liver sample (WEB_1).  In the 

presence of 100 ppm Fe, an analysis for Cd can give a positive error of approximately 

0.03 ppm. Considering the precision of the analysis (9.3% RSD), it may be possible that 

Fe was a small interference. 
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2.3.2.2. Copper 

  
For all the elements analyzed by ICP-MS and ICP-OES, the best accuracy and 

btained for copper. However, it should be noted that for ICP-OES 

nalyses large deviation (10.5%) from the certified value of copper can be caused by the 

itive errors due to presence of Fe and V in this sample.  In an analysis for 

For Mn, the lack of accuracy in the ICP-MS analysis is most likely due to an 

 at 40Ar15N+ at m/z 55.  The nitric acid matrix (25%) would be a 

ajor source of nitrogen for formation of this isobar. ICP-OES results for Mn were 

r any correction.  As can be inferred from Table 2, the 

measur

known that after a sam le containing Hg is 

nebuliz y c

 as 

vapor in the dead volume of the spray chamber (Nixon et al. 1999). It was thought that 

the use of a complexing agent might be usef emory effects by preventing 

ate in 

precision was o

a

possible pos

Cu, the presence of 100 ppm Fe can give a positive error of approximately 0.003 ppm 

and 100 ppm V can give an error of 0.02 ppm (WEB_1).    

 

2.3.2.3. Manganese 

 
 

isobaric interference

m

successful without the need fo

ed value was less than 2% of the certified value. 

 

2.3.2.4. Mercury  

 
In the analysis of Hg with ICP-MS, the lack of accuracy may be due to its high 

ionization energy (10.44 eV) causing poor ionization efficiency (approx. 30%) and 

severe memory effects (Paul et al. 2003). Although several washings were done 

between the sample runs, this memory effect could not be overcome and a value higher 

than the certified value was found. It is well p

ed into a spra hamber, significant levels of Hg can still be detected for several 

minutes after analysis. Hg either adsorbs onto the spray chamber walls or is retained

ul to reduce m

interactions between the analyte and the surface area of the introduction system. A 

number of different solutions have been used by several researchers with ICP-MS 

analysis to eliminate the mercury memory effect using gold and dichrom
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hydroc

equipped instrument. So to be able to 

easure Hg signals, a less intense Hg atom line at 253.652 nm was chosen. The 

accuracy obtained by ICP-OES was better than for ICP-MS whereas the precision by 

 for Hg was found to be identical. 

2.3.2.6. Arsenic 

Arsenic was the element having the least precise and accurate results in its 

analysi

 

be equal to the ratio of the abundance of the two isotopes 35Cl and 37Cl, which is 

hloric acid (Nixon et al. 1999), sulfur containing complexing agents like D-

penicillamine, Dimercaprol, or Meso-2,3-dimercaptosuccinic acid (DMSA) (Harrington 

et al. 2004, Chen et al. 2000), and 4% (v/v) aqueous methanol (Paul et al. 2003). 

Unfortunately these corrections could not be performed because of the unavailability of 

the ICP-MS instrument on our campus.  

Also, for the ICP-OES analysis of Hg, as in the case of arsenic, the most 

prominent lines of Hg fall below 200 nm (194.163 nm and 184.950 nm having highest 

intensities) requiring use of a vacuum-UV 

m

both instruments

 

2.3.2.5. Zinc 

 
 As can be seen from Table 1 and Table 2, zinc was one of the elements having 

less precise and accurate results obtained by both techniques. In the ICP-MS analysis 

this can be explained by the possible interferences of 34S16O16O or 32S34S on the 66Zn 

signal. The precision obtained in our ICP-OES analysis can be considered to be better 

than for our ICP-MS analyses although the difference between the certified value and 

measured value is high. 

 

 

s by both techniques. Although the ICP-MS results seem much better than for 

ICP-OES, this large difference between the control material and certified value for As 

can be explained by the possible occurrence of Cl in the liver matrix which can cause 

the polyatomic interference of 40Ar35Cl on the 75As signal. Since As is monoisotopic, it 

is not possible to choose another isotope to overcome this interference. A mathematical 

correction is generally used to solve this problem (Van Den Broeck et al. 1997). The 

idea of this correction is that the ratio of the signal for 40Ar35Cl to that of 40Ar37Cl will
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75.77/24.23. To calculate the signal for 40Ar35Cl present at m/z 75 (75As), the signal for 
40Ar37Cl at m/z 77 (77Se) can be measured. Since Se exists in the whale liver matrix, 

re; 

 

then correction will be based on the 82Se signal. The correction equation is therefo

( )[ ]Se  0.815Se  3.127 AsAs 82777575 ×−×−=           (2.2) 

 

Unfortunately, because of the lack of Se element in our ICP multielement standard, this 

correction could not be performed appropriately.  

For our ICP-OES analysis of As, the large errors may possibly can be attributed 

 the detection limits of the ICP-OES and the selected wavelength. Since the most 

m and 193.696 nm, the proper reading of As signals was not possible. The arsenic line 

that was this  n  As line above 200 nm with the 

highest intensity) can explain this erroneous result. Moreover, at 228.802 nm Cd has a 

more int  than As which can cause a s spectr  can be 

corrected by choosing another spectral order. 

 

2.3.2.7. Iron 

 
In the ICP-MS determination of Fe, because of the possible polyatomic 

interference of 0Ar16O on in sa paration, our 

calculatio e based o e isotope. till, there rence of 

ith the 5 seems quite good for ICP-MS, this 

interference m  accuracy. On the other hand, the accuracy 

and precision obtained by ICP-OES appear bett than for ICP-MS. The large gap 

within the entra or the ca  of iron can be another reason 

for the lack of accuracy in the analysis of Fe. Dilution of the , is the 

simplest solution to this problem

 

to

prominent and most intense lines of As are located below 200 nm which are 188.979 

n

 used in study was 228.812 m (possible

ense line seriou al inte ference. Thisr

4 56Fe signal due to water used mple pre

ns wer n the 57F But s  is erfeanother int
40Ar16O1H caused from OH coming from the water environment and thus interfering 

7w Fe signal. Although the precision 

ay be a reason for this lack of

er 

 range of conc tions used f libration

 sample, of course

. 
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2.3.3. I ndard

 
Rh internal calibration was also done to improve the analyses but unfortunately 

the res

atrix, the successful use of Rh as an internal standard was 

preven

that similar 

errors 

on Recoveries 

nternal Sta ization 

ults were not satisfactory so they were not included here. There might be an 

incomplete mixing of Rh with the samples causing inaccurate data collection. In the 

ICP-OES analysis, there is strong spectral interference on the Rh II 249.077 nm signal 

caused by the more intense Fe atom line at 249.064 nm. Possibly due to high Fe 

concentration in the liver m

ted; therefore, the Rh internal standard calibration curves could not be obtained.  

 

2.3.4. Laboratory Exercise Test Whale Liver Sample (LETWLS) 

 
Results from the analysis of the test whale liver sample are shown in Tables 3 

and 4, for ICP-MS and ICP-OES, respectively.  It should be noted of course 

which affected the precision and analysis for the control whale liver sample 

(CWLS) will be present for the sample (LETWLS).  The two matrices are from whale 

liver, but from two different species which live in two different regions of the world.   

 

Table 2.5. Values for the Sample Material Pygmy Sperm Whale Liver Homogenate 
obtained at Hıfzısıhha Institute by using ICP-MS 

 

Element Normal Calibrati
(isotope) (ug/g, wet mass) % Calibration equations 

Cd - 114 6.06 ± 0.16 132.9 y = 344153x + 5181.1 
R2 = 0.9961 

Cu - 63 2.51 ± 0.1 122.4 y = 1054444.19x + 14051.43 
R2 = 0.9986 

Mn - 55 1.24 ± 0.11 85.11 y = 4224337.44x + 8787.23 
R2 = 1.00 

Hg - 202 2.21 ± 0.28 _ y = 157523x - 238.12 
R2 = 0.9998 

Zn - 66 23.38 ± 2.18 156.1 y = 12268x + 12900 
R2 = 0.9764 

As - 75 0.702 ± 0.050 _ y = 149855x - 218.1 
R2 = 1.00 

Fe - 57 512 ± 14 70.03 y = 9747
R

9x – 1786.8 
.9978 2 = 0
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Table 2

(ug/g, wet mass) % Calibration  equations 

.6. Values for the Sample Material Pygmy Sperm Whale Liver Homogenate 
obtained at İYTE by using ICP-OES 

 

Element 
(wavelength, nm) 

Normal Calibration Recoveries 

Cd II – 226.502 5.89 ± 0.07 90.31 y = 49052x + 330,45 
R2 = 0.9999 

Cu I – 324.754 2.45 ± 0.10 106.7 y = 19794x - 73,591
R

 
2 = 0.9996 

Mn II – 257.610 1.26 ± 0.06 83.01 y = 63573x + 78,803 
R2 = 0.9996 

Hg I – 253.652 2.87 ± 0.51 _ y = 4539.3x + 2007.9 
R2 = 1.00 

Zn I – 213.856 22.04 ± 1.54 65.30 y = 51107x - 1788,8 
R2 = 0.9994 

As I – 228.812 186 ± 2.7 _ y = 1480.4x + 134.52 
R2 = 0.9948 

Fe II – 259.940 800 ± 5.9 109.1 y = 10920x + 12003 
R2 = 0.9982 

 

Without the ability to apply corrections, it can only be assumed that the results 

for Cu will be the most accurate and precise based on matrix effects, sample 

sis errors due to sample introduction and interferences.  However, 

 is believed that general comparisons can still be made with respect to the elements 

Cd, Cu

e reasonably correct. Moreover the results for both the 

ICP-M

on of our ICP-AES results 

(not su

preparation, and analy

it

, Mn, Hg, and Zn. 

As the results show, regardless of whether analysis was performed by ICP-MS 

or ICP-OES, the concentrations of metals in the control (CWLS) and test (LETWLS) 

material differ from each other. If we assume similarity for both whale liver matrices, 

then the measured concentrations of Cd, Cu, Mn and Hg in the test whale liver sample 

(LETWLS) are expected to b

S and ICP-OES analyses of these elements is very similar (range 6 - 43%), 

further supporting the validity of the measurements for Cd, Cu, Mn and Hg. 

After receiving the certified values from NIST for the pygmy whale, a t-test was 

applied to the calculated concentrations. According to these results it was found that 

only our submitted results for the ICP-MS analysis of Cd and Zn values were in good 

agreement with the certified values. After a second evaluati

bmitted to NIST), it was seen that our results for the ICP-AES analyses of Cd, 

Cu, Zn and Hg had actually been acceptable within the reported errors of the certified 

values for each of these elements. 
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The concentration of Zn was relatively the same for both whale liver types. In 

contrast, the concentrations of Cd, Cu, Mn and Hg were quite different from one whale 

liver matrix to the other. These differences can most likely be explained by the different 

eographical location in which whale species are found and different feeding habits that 

ese species have. The Beluga whale lives seasonally in ice-free Arctic seas, mainly in 

ircumpolar areas and feeds on plankton, fish, mollusks and other bottom-living 

invertebrates whereas the Pygmy Sperm whale is widely distributed in tropical, sub-

tropical, and temperate seas and eats small fish, cuttlefish, deep-sea shrimps and squid 

(WEB_1). Such differences in matrices further stress the need for preparation and 

availability of appropriate standards by such organizations as NIST. 

It should be noted that an alternative analysis such as the standard addition 

method could improve these analyses. However, generally for ICP analyses, standard 

addition is not preferred because this method is time consuming and not appropriate for 

multielement analysis. 

 

2.3.5. Evaluation of Our Measurements for the NOAA Exercise 

 
For many elements such as Cd, Fe, Hg, Mn, and Zn, ICP-OES showed better 

results when compared with ICP-MS. These can most probably be mainly attributed to 

the isotopic interferences that affected the ICP-MS analysis. Several problems were 

encountered especially in the analysis of As and to some extent for Hg. The general 

accepted methods for the determination of As and Hg are those techniques containing 

hydride generation and cold vapor methods, respectively.  

 

2.4. Conclusions 

 
It is important to monitor the elements in biological samples to assess the impact 

of human activities on the marine environment and to investigate the adverse effects of 

these elements on marine organisms and humans. There are numerous techniques for 

the determination of trace elements in biological samples but the inductively coupled 

plasma (ICP) coupled with mass spectrometry (MS) or optical emission spectrometry 

(OES) are widely used ones.  

g

th

c
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As a participant of an in inistered by 

NIST, we analyzed some of the trace elem ts (As, Cd, Cu, Fe, Hg, Mn and Zn) in 

Beluga and Pygmy Sperm whale liver homogenates, using ICP-MS and ICP-OES 

techniques. For many elements such as Cd, Cu, and Mn the results were considered as 

acc ed 

(Zn

an 

be considered stigations in 

Chapter 3 will be concentrating on the improvement of the ICP-OES analysis of trace 

elements in complex biological matrices such as liver samples. Proper wavelength 

selection, consideration of both atom and ion line, exploring the acid and salt effect and 

alysis, as well as choosing the right internal standard and robust 

lasma conditions will be the main points of focus. 

 

terlaboratory comparison exercise adm

en

eptable within experimental errors by both techniques. The other elements analyz

, As, Hg, and Fe) gave less precise and accurate results.  

Although the accuracy and precision obtained by both instrumental methods c

 as acceptable, these analyses can be improved. Further inve

its influence on our an

p
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CHAPTER 3 

 

ING FOR MATRIX EFFECTS IN ICP-OES 

USING INTERNAL STANDARDS AS SELECTED BY 

atrix effects cause either suppression or 

enhancem

 

CORRECT

PRINCIPAL COMPONENT ANALYSIS 
 

 

3.1. Introduction 

 

3.1.1. Matrix Effects 

 
In inductively coupled plasma optical emission spectrometry (ICP-OES) 

maintaining accuracy and precision is generally limited by the non-spectral 

interferences (so-called matrix effects) that are caused by the major elements in the 

samples (e.g. easily ionizable elements (EIEs) such as Na, K, Li) or reagents used for 

sample digestion and solution storage (e.g. mineral acids such as HNO3, H2SO4, HCl).  

Since the first studies on ICP-OES, matrix effects have been widely investigated 

by several researchers to find possible explanations about their origins and their 

influences on analyte signal. There are two recent reviews by Todoli and his coworkers 

that focus on elemental matrix effects (Todoli et al. 2002) and on acid interferences 

(Todoli and Mermet 1999).  

In the literature it was reported that m

ent of the analyte signal (Brenner et al. 1997, Dubuisson et al. 1998c, Grotti et 

al. 2000, Stepan et al. 2001, Iglesias et al. 2004). Furthermore there is a general 

agreement that matrix effects are generally caused by two major factors (Iglesias et al. 

2004, Kola and Perämäki 2004);  

i.  changes in the energy transfer between the plasma and sample (during the 

processes of atomization, excitation and ionization) and  

 37



 
 

ii. changes in the efficiency of sample aerosol formation, transport and 

filtration.  

In addition, in the study by Iglesias et al. (2004), it was proposed that the magnitude of 

matrix effects depends also on the optical transition of the elements (being a resonant or 

non-resonant line).  

On the other hand, in the case of elemental matrix effects, there is no 

satisfactory study explaining the causes and mechanism of these interferences due to the 

complexity of the processes related to these effects. As explained by Lehn et al. (2003) 

this could be because of the differences in the behaviors of the elements and although a 

hypothesis can be used to explain the effects for the most of the elements, there is 

sually at least one element that does not follow the observed trend. In addition it is also 

difficult to compare the results obtained by the studies performed under different 

002).    

The studies which attempt to find possible mechanisms in order to understand 

the cau

onization by metasTable 

argon, 

nd Olesik 1997, Grotti et al. 2000, Todoli et al. 

2002, L

s that occur in the behavior of the system induced by 

the aci

u

conditions and with different instruments (Todoli et al. 2

ses of EIE effects and to investigate the characterization of these effects, mainly 

focused on the plasma properties, such as electron temperature (Te), electron number 

density (ne), gas-kinetic temperature (Tg), analyte atom and ion number densities which 

affect the electrical and thermal conductivity, viscosity and processes occurring in the 

plasma, such as atomization, excitation and ionization equilibria, volatilization, collision 

processes, ambipolar diffusion, lateral diffusion, Penning i

and charge transfers involving argon species (Mermet 1991, Galley et al. 1993, 

Galley and Hieftje 1994, Wu and Hieftje 1994, Sesi and Hieftje 1996, Romero et al. 

1997a, Romero et al. 1997b, Hobbs a

ehn et al. 2003 and references therein). In addition, there has been other research 

related to aerosol drop size distribution, analyte and solvent transport rates (Romero et 

al. 1997b; O'Hanlon et al. 1997; Dubuisson et al. 1998a; Dubuisson et al. 1998c; 

Mermet 1998, Todoli et al. 2002).  

The acid effects (i.e. change

d) are generally classified in two groups. The first group includes the changes 

related to operating conditions resulting from changes in the physical properties of the 

solution occurring in the sample introduction system (i.e. the reduction in the nebulizer 

aspiration rate when free aspiration is used, primary and tertiary aerosol drop size 

distributions, the modification of mass of the solution transported to the plasma, and the 

element concentration as a function of the drop size, change in the aerosol 
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characteristics due to a variation of the surface tension and volatility, decreased solution 

uptake as a result of increased viscosity). The second group includes the effects caused 

by the processes that occur in the plasma (such as changes in atomization and excitation 

conditions) (Todoli and Mermet 1999, Todoli and Mermet 2000, Brenner and Zander 

2000, G

duction system has a major effect on the matrix 

interfer

rization is complete (Todoli et al. 2002).  

rotti and Frache 2003b, Lehn et al. 2003 and references therein). 

It was reported that the acid effect observed depends on the type and 

concentration of the acid present in the sample (Botto 1985; Stewart and Olesik 1998a). 

In general, at low acid concentrations (< 1% v/v) an increase in the analyte intensity and 

at high acid concentrations a decrease in the net line intensity with respect to water is 

observed (Dubuison 1998a, Todoli and Mermet 1999). 

 

3.1.2. Variables Affecting the Matrix Effects  

 
The liquid sample intro

ences. This can be easily understood by taking into account that the introduction 

system influences the total mass of the analyte and solvent transported towards the 

plasma and the aerosols characteristics. The solvent injected into the plasma modifies its 

thermal characteristics, whereas the aerosol drop size changes the plasma location at 

which the drop vapo

The other most important variables which have an influence on the matrix 

effects are the plasma observation height, the nebulizer gas flow rate (also injector i.d.), 

and the rf power (Todoli et al. 2002). 

In the Initial Radiation Zone (IRZ), elemental matrix effects are known to be 

strongest while in the Normal Heating Zone (NAZ) few effects exist. It was reported 

that studying matrix effects (acid and elemental effects) at a given observation height 

may result in signal variations that do not correspond to the actual situation (Todoli and 

Mermet 1999, Todoli et al. 2002).  

It has been reported that by applying a high power (>1.2kW), a low carrier gas 

rate (< 0.8 ml/min) and high injector i.d. (>2 mm), robust plasma conditions (i.e. 

operating conditions that could allow changes in the nature or concentration of the 

matrix components without a significant change in the analyte signals) are achieved 

(Mermet 1991). It is thought that under robust plasma conditions any observed effect is 

mainly due to the aerosol generation and transport system, i.e. to the sample 
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introduction system and matrix effects can be reduced by using operating conditions 

that lead to an efficient energy transfer between the plasma and the sample (Fernandez 

et al. 1994, Carre et al. 1995, Dubuisson et al. 1998a, Mermet 1998, Stewart and Olesik 

1998a, Stewart and Olesik 1998b, van Veen, and Loos-Vollebregt, 1999).  

A decrease in the gas flow rate leads to a decrease in the solvent and matrix 

plasma

excitation should also be considered. 

or a plasma operated at low rf power and high nebulizer gas flow rate, the electron 

density is low. Under these conditions, the additional electrons supplied by the 

. According to Todoli these 

xtra electrons hardly affected the global electron number density under robust 

conditi

mperature (Texc) both for water and acids are identical. Under non-robust 

plasma

on the excitation energy (Eexc) or energy sum (Esum) of the ionic line appeared (Todoli 

and Me t 19

as a measure o s. Mermet (1991) suggested that for radial viewing 

this rat oul ns. In the case of axial viewing, 

ct that in the radial mode, 

the obs

 load and also an increase in the aerosol residence time, thus increasing the 

efficiency of the energy transfer to the analyte. Increasing the residence time is also 

achieved by employing injector diameters higher than 2 mm. An increase in the rf 

power leads to increases in the total amount of energy available to excite the analyte. 

Moreover, the role of the electrons in the analyte 

F

interferent could modify the extent of analyte excitation

e

ons (Todoli et al. 2002).  

In addition, under robust plasma conditions, electron number density (ne) and 

excitation te

 conditions, reductions in Texc and/or ne and dependence of the signal reduction 

rme 99). 

Generally the Mg II 280.270 nm to Mg I 285.213 nm line intensity ratio is used 

f the plasma robustnes

io sh d be larger than 8 to have robust conditio

Dubuisson et al. (1998b) reported that robust conditions can be represented by a Mg II / 

Mg I ratio of less than 8. This difference is explained by the fa

ervation height is adjusted to obtain optimum of the ionic line emission. In 

contrast, when the axial viewing mode is used, both atomic and ionic line emission 

zones are probed by the collimating system (Dennaud et al. 2001). 

The observation mode also has an effect on how matrix effects may be 

controlled. Several studies have been published which compare the axial (end-on) 

observation mode with the radial (end-on) mode in terms of matrix effects (Ivaldi and 

Tyson 1995, Dubuisson et al. 1997, Brenner et al. 1997, Dubuisson et al. 1998a, Masson 

1999, Masson et al. 2000, Dennaud et al. 2001a, Garavaglia et al. 2002, Sun et al. 

2003). It was observed by these researchers that the axial viewing mode is more 
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sensitive to matrix effects than radial viewing. This is best understood if one considers 

that the axial mode (as opposed to the radial) allows viewing of a larger portion of the 

plasma and therefore larger regions of temperature and plasma energy gradients. The 

atomiza

ed (Brenner et al. 1999, van Veen and de Loos-

Vollebr

ncy as an analytical method, Botto (1985) 

mentio

 to know the exact composition of 

sample

ethod to 

reduce

tion, excitation and ionization events associated with the matrix depend greatly 

on these gradients. 

Although robust operating conditions and proper choice of observation height 

are said to decrease the effects caused by matrices that contain the acid and salt, these 

interferences can not be totally eliminat

egt 1999, Dennaud et al. 2001 and references therein). Different strategies have 

been suggested to compensate for matrix effects.  

 

3.1.3. Methods for Overcoming Matrix Effects 

 
When ICP-OES was still in its infa

ned that methods for correcting the matrix effects should fulfill the following 

conditions: 

i. single set of reference solutions for any aqueous sample matrix should be 

used  

ii. it must be applicable to both single and multielement analysis 

iii. it should be simple and applicable to a mixture of matrices and to 

different compounds 

iv. it should not require periodic calibration 

Unfortunately, there is no single method that meets all of these requirements because of 

the complexity of the effects caused by acid and salt matrices. 

Matrix matching is a frequently applied procedure to overcome matrix effects 

(Todoli and Mermet 1999, Todoli et al. 2002, Iglesias et al. 2004). But, this method is 

not always feasible because it is neither possible

 matrices nor to control the various processes of sample preparation as is the case 

for environmental and biological samples. It is also possible to use the method of 

standard additions, but this technique is generally time consuming and increases the cost 

of the analysis; therefore, it is not recommended for routine analysis. Another m

 matrix effects which are caused by EIEs is the usage of an ionization buffer. 

This is typically an element that is added to solutions and standards at high 
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concentrations and its influence predominates over the influence of other elements such 

as Na or Li. Generally, Cesium (Cs) is chosen as a buffer because of its low ionization 

energy (3.894 eV) and poor sensitivity of detection by ICP-OES (Dennaud et al. 2001a).  

In some case modification of the sample introduction system especially to 

reduce the effects caused by the acids have been attempted (Todoli and Mermet 2002). 

These 

ered, the use of chemometric 

pproaches to study and reduce these interferences has gained great interest and various 

multivariate calibration techniques such as multiple linear regression (MLR), principle 

ial least squares (PLS) have been proposed for 

is purpose (Villaneuva et al. 2000, Griffiths et al. 2000, Grotti et al. 2000, Moreda-

Piñeiro

ide bond strength). These researchers concluded that small differences 

between

response of the lines in the presence of nitric acid.  

ffects 

induce le to correct 

for the rom the interfering species and 

spectral interferences both affecting the analytical signal). 

Griffiths et al. (2000) compared the application of traditional correction 

techniques (such as univariate calibration, inter-element correction, matrix matching) 

modifications include elimination of the spray chamber (Direct Injection 

Nebulizer – DIN), use of desolvation systems and chemical modifiers (Mermet 2002 

and references therein). 

Besides this traditional techniques, because of the complexity of matrix effects 

and because more than one variable must be consid

a

components regression (PCR) and part

th

 et al. 2001 and references therein).  

Lopez-Molinero et al. (1994) tried to find the correlation of the spectral data of 

emission lines in ICP-OES using Principle Component Analysis (PCA). They 

concluded that through theoretical studies of multielemental data (using the energy level 

of the upper and lower state for each transition line, the statistical weights of the upper 

and lower states and the transition probability), it is possible to define groupings of 

spectral lines that possess similar experimental characteristics and these groupings make 

it easier to classify the behavior of the spectral lines.  

Brenner et al. (1995) also applied a principal component analysis procedure to 

classify rare earth elements according to their empirical behavior in the presence of 

nitric acid considering several theoretical parameters (e.g. ionization energy, excitation 

energy, ox

 the strength of the oxide bonds and excitation energy could strongly modify the 

Villaneuva et al. (2000) applied the MLR technique to correct for matrix e

d by Ca and Mg and they concluded that by using MLR it was possib

 total matrix effect (i.e. combination of effects f
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and multivariate techniques like PCR, PLS1, PLS2 and MLR to the complex matrices. 

They concluded that by using matrix matching and PLS1 they could obtain good results 

but they also reported that in the case of incorrect m

mple matrices. 

Therefore, it is ne

ental drift, the accuracy and precision of the 

analyse

aki, 2004).  

i. operation under optimal conditions to minimize the plasma-related matrix 

effects  

iii. ve effects rather than multiplicative ones  

iv. optimal selection of the reference lines 

 

atching of standards and samples, 

matrix matching failed and with elements present at low concentrations the PLS1 

method was not efficient.  

One requirement of multivariate methods is that the factor space defined by the 

multi-element standards used for model calibration must include all possible 

constituents (analytes and interferents) and concentrations of the real sa

cessary to obtain data for the multivariate calibration model using an 

appropriate experimental design (Griffiths et al. 2000).  

 

3.1.4. Internal Standardization 

 
Internal standardization is a well-established calibration method to improve long 

term stability by correcting for instrum

s, and to compensate for matrix effects. By calculating the ratio of the analyte 

and selected internal standard emission intensities, the signal changes caused by matrix 

effects as well as errors due to the flicker noise and drift are expected to be reduced. In 

order to achieve efficient correction the selected internal standard line should behave 

exactly the same way as the analyte line for interference effects and instrumental noise 

(Grotti and Frache 2003b, Kola and Peram

Several researchers (Romero et al. 1997a; Dubuisson et al. 1998c; Chausseau et 

al. 2000b; Stepan et al. 2001; Grotti and Frache 2003b) reported that there are four 

issues to address in order to obtain an efficient internal standardization for ICP-OES 

analyses; 

ii. true simultaneous measurement of the analytical and reference signals  

 consideration of additi
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3.1.4.1. Operation under Optimal Conditions  

 
It is well known that both the operating conditions and the viewing mode 

(radial/axial) greatly affect the correction efficiency of internal standardization. Under 

robust plasma conditions since matrix effects are mainly assigned to the aerosol 

transport and filtering processes, then it is thought that the behavior of each element is 

similar, which simplifies the use of internal standardization to achieve high accuracy 

(Romero et al. 1997a, Dubuisson et al. 1998c, Kola and Perämäki 2004). 

The studies by Mermet and his coworkers (Romero et al. 1997a, Dubuisson et 

aerosol production and transport under robust 

e internal standard but when there is a 

hange in the energy transfer several internal standards are required because of the 

ities of individual lines for matrix effects. On the other hand, non-

robust cond

.1.4.2. True Simultaneous Measurement of the Analytical and 

al. 1998c) showed that the changes in the 

conditions permit the efficient use of a singl

c

different sensitiv

itions were not recommended for internal standardization because of 

possible uncorrelated behavior among the line intensities of various elements under 

these conditions.  

In another study, the so-called Myers-Tracy Signal Compensation Method 

(MTSCM) was used. These researchers measured the emission intensity for the internal 

standard (i.e. Mn) and several analytical lines of different ionization and excitation 

energies simultaneously. They concluded also that the internal standardization was 

efficient when robust operating conditions were used (Todoli and Mermet 1999, Todoli 

et al. 2002).  

Lastly, it has been also concluded by several investigators that the efficiency of 

internal standardization was decreased when the axial viewing mode was used 

compared to the radial mode (Romero et al. 1997a, Dubuisson et al. 1998c, Brenner and 

Zander 2000, Todoli et al. 2002). 

 

3

Reference Signals  

 
It has been reported that any element can be used as an internal standard to 

compensate for matrix effects, provided that true simultaneous measurements of the 
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analytes and the internal standard intensities are performed and this is called real-time 

internal standardization (Sedcole et al. 1986, Mermet and Ivaldi 1993, Ivaldi and Tyson 

1996, Romero et al. 1997a and references therein). Until the 1990s, studies with ICP-

OES had been performed using instruments equipped with photomultiplier tubes (PMT) 

and eit

for each separate element). If such a plot is made for two 

solution

001). He reported that corrections based on these 

‘additiv

her simultaneous polychromators (which are line number limited) or sequential 

monochromators (which are time limited). After the introduction of the detectors such 

as charge injection device (CID) and charge coupled device (CCD) which are based on 

multichannel detection, then more efficient and true time correlation between the 

signals could be obtained (Stepan et al. 2001). 

 

3.1.4.3. Considering Additive Effects  

 
Stepan et al. have reported on the use of a correction scheme to correct for so 

called ‘multiplicative’ and ‘additive’ effects (Stepan et al. 2001). Accordingly 

corrections based on normal internal standardization calibration make a correction 

based on a multiplicative correction factor from a calibration curve. In contrast, Stepan 

demonstrated the simple use of the relationship between signal response as a function of 

energy sum (i.e. the response 

s of different sodium concentration, a ‘quasi-constant shift’ is observed (Stepan 

et al. 2001). Stepan then chose to use the proportionality factor for an arbitrary internal 

standard (nickel in this case) for choosing a proportionality correction based on 

‘additive’ effects (Stepan et al. 2

e’ effects produced better corrections for bias due to sodium matrix interference 

for cases where the standards and samples are matrix mismatched (Stepan et al. 2001). 

 

3.1.4.4. Optimal Selection of the Internal Standards 

 
It has been reported by several authors (Ivaldi and Tyson 1995, Brenner et al. 

1997, Dubuisson et al. 1998c) that the high-energy ion lines are more susceptible to 

interference than the low-energy ion and atomic lines. Suppression of high-energy 

potential lines has been attributed to energy withdrawal from the plasma-energy 

required to atomize the high concentrations of Ca and Na. This process is accompanied 
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by a decrease in excitation temperatures. However, the situation with Na is less 

pronounced and other processes have been invoked to explain variations of line 

intensity with increasing Na concentrations e.g. changes in the quality of the tertiary 

droplet sizes (Brenner and Zander 2000). 

It was also shown that the use of internal standardization was efficient for ionic 

lines si

ording to the nature of 

the line

interactions between the doubly charged matrix ions and argon 

species

6.502 nm) and 

nickel 

nce the behavior of atomic lines is more complex and ionic lines show a similar 

depressive effect to matrix interferences. For example Chausseau et al. (2000) explained 

that ionic and atomic lines have different excitation pathways and therefore, the 

sensitivity to operating conditions will modify the behaviors acc

s.  

It was observed by Chan et al. (2000) that alkali elements produce matrix effects 

less severe than alkaline earth elements and they proposed that for a given periodic 

group of elements, the lower the second ionization potential of the interferent, the 

stronger the matrix effects. Therefore the changes in plasma characteristics are said to 

be attributed to the 

. Thus, since the former has a higher energy the energy of the doubly charged 

species would be transferred to argon. As a result the argon–analyte equilibrium is 

distributed giving rise to a redistribution of the argon and analyte energies (Todoli et al. 

2002 and references therein). 

It was also reported by Brenner et al. (1998) that the magnitude of the correction 

by internal standardization depends on the similarity of the energies of the analyte and 

internal standard emission lines. The choice of the element to be used as an internal 

standard is of crucial importance. 

In general, internal standardization is performed with either an added or a 

contained element. Several elements like scandium (Sc 424.7 nm, Sc II 361.384 nm), 

yttrium (Y 371.030 nm), cobalt (Co 238.892 nm), cadmium (Cd II 22

(Ni II 231.604 nm) have been used as internal standards (Mermet and Ivaldi 

1993, Ivaldi and Tyson 1996, Brenner et al. 1997, Dubuisson et al. 1998c, Grotti and 

Frache 2003b and references therein). Mermet and Ivaldi concluded that a single 

spectral line fully compensates for intensity variations when the energy potentials of the 

analyte lines are similar to that of the internal standard (Mermet and Ivaldi 1993). Other 

researchers used the major constituents of the samples as internal standards such as the 

H-ß 486.133 nm emission line (Botto 1985) and the Argon 794.8 nm line (Hoenig et al. 

1998). Botto (1985) normalized H-ß emission intensities with respect to a reference 
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solution and illustrated the effect of matrix by plotting the normalized H-ß signals 

versus the Ci/H-ß ratio, Ci being the apparent concentration of a given element; it was 

concluded that based on these curves, matrix effects could be efficiently corrected. 

Hoenig et al. (1998) reported that accuracy and precision were improved using argon as 

an internal standard.  

As indicated by several studies, individual lines may show different sensitivity 

for matrix effects and the use of a single internal standard is not usually enough to 

correct for matrix effects; therefore, the use of several internal standards was also 

recommended (Romero et al. 1997a, Todoli and Mermet 1999).  

Several procedures have been suggested based on the use of several internal 

standards, such as the generalized internal reference method (GIRM), the parameter-

related internal standard method (PRISM), interactive matrix matching (IMM), common 

analyte internal standardization (CASI), and the generalized regression neural network 

(GRNN) (Al-Ammar and Barnes 1998, Villaneuva et al. 2000, Grotti et al. 2003a and 

ferences therein).  

In the PRISM method, Ramsey and Thomson applied a PCA method and 

o single plasma parameters, the 

sponses of 24 elements under 10 sets of operating conditions could be predicted 

(Todol

es 1998).  

y applied this procedure to compensate for the matrix effects due to large 

amounts of iron, aluminum, calcium, sodium and potassium (Grotti et al. 2003) and acid 

effects (Grotti a

groups of the emission lines of analytes and potential internal standards indicating their 

empirical behavior with respect to the considered matrix. They concluded that the closer 

the analyte and the reference lines are in the score plot, the higher is their similarity to 

re

observed that by taking only two emission lines with tw

re

i and Mermet 1999, Todoli et al. 2002). 

For the CASI method which was developed by Al-Ammar and Barnes, two lines 

of the analyte were used to compensate for non-spectroscopic interferences. One of the 

lines was used as an internal standard. The method requires that the relative intensity 

changes shown by both lines be as different as possible, since in this way the lines’ ratio 

is a function of the sample composition. Although this method is simple and does not 

require complicated mathematical corrections, finding two appropriate analytical 

spectral lines is sometimes problematic (Al-Ammar and Barn

A systematic procedure which includes the classification of the emission lines 

by PCA was proposed by Grotti and coworkers to choose the suitable internal standard 

and the

nd Frache 2003) separately. They obtained a score plot showing the 
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the matrix effect and the interference on a given analytical line can be eliminated by 

using a reference line which shows similarity to the element of interest according to the 

score plot. They claimed that although their procedure is a general and simple method, 

it should be verified for its efficiency for different instrumental systems or for other 

types of matrix effects.  

In a recent study by Kola and Perämäki (2004), a model was developed for the 

behavi  changing (robust, 

semirobust, and nonrobust conditions) by using multiple linear regression (MLR) in a 

radially viewed

can be used to select internal standards to correct for matrix effects and drift and also 

can be titatively. 

However, they also concluded that by using a simultaneous detection ICP-OES system 

which w  accurate results for obtained 

odels could be realized. 

cipal Component Analysis (PCA) 

 

 describing each specimen 

(Cave 

 (Otto 

1998); 

 

or of the emission lines when the operating conditions are

 sequential instrument. They suggested that this MLR-generated model 

 used to evaluate the efficiency of internal standardization quan

ould give a larger group of emission lines, more

m

 

3.1.5. Prin

Principal Component Analysis (PCA) is a multivariate statistical technique 

which can be applied to a set of variables to reduce their dimensionality. The main idea 

of PCA is to determine the underlying information from multivariate raw data. In other 

words, it can be used to replace a large set of inter-correlated variables with a smaller 

set of independent (i.e. uncorrelated) variables. These new variables (or principal 

components) are linear combinations of the original variables

1998 and references therein, Miller and Miller 2000) so it helps to examine the 

matrix effects caused by sodium and acid at the same time.  

Approximation of the original matrix X by a product of two small matrices (the 

score and loading matrices) is performed according to the following illustration

TTLX =          (3.1) 
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Here X represents the original data matrix which consists of n rows (objects) and p 

columns (features); T is the scores matrix with n rows and d columns (number of 

principal components); L is the loading matrix with d columns and p rows; and 

superscript “T” represents the transpose of a matrix. The columns in T are the score 

vectors and the rows in L are called loading vectors. The principal components can be 

considered as projections of the original data matrix X, on the scores, T.  

If we rearrange the equation 3.1, then the equation becomes  

 

XLT =          (3.2) 

 

The new coordinates are linear combinations of the original variables;  

 

nn

nn

lxlxlxlxt
lxlxlxlxt

23232221212

13132121111

...
...

++++=
++++=

     (3.3) 

 

where t1, t2, … , tn describes the principal components. The coefficients x11, x12, etc. are 

chosen so that the new variables, unlike the original variables, are not correlated with 

each other.  

The principal components are determined according to the maximum variance 

criterion. Each subsequent principal component describes a maximum of variance that 

is not modeled by the former components. Therefore, the first principal component 

accounts for most of the variation in the data set, and the second principal component 

accounts for the next largest variation. Hence in the second component there is more 

information than in the third, etc. Finally as many principal components are computed 

as are needed to explain a preset percentage of the variance.  

Visualization of the data can be obtained by plotting the principal components 

against each other. Since the first principal component and second principal component 
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account for most of the variation in the data set and contain more information, generally 

incipal components is sufficient (Miller and Miller 2000). 

 

ennaud et al. 2001, Todoloi et 

al. 2002 and references therein) have been reported that explore and compensate for 

their combined ef dge a study that 

does not exist.  

a mor riate way of ap zation is by 

using simultaneous det

instruments in their research or routine analyses laboratories. When solid state detectors 

are used, the resolution is degraded as compared to PMT-based systems (Mermet 2002). 

Add , in order to contributio e to obtain 

an ef rnal standardization, the cooli nel detector to 

minimize the readout noise is required (Chausseau et al. 2000). It is reasonable to 

assume that many resea ill not wish to invest in a CCD instrument 

immediately and sequential instruments may indee  the 

work and publications of other authors were reviewed, it was decided to optimize the 

use of a sequential ICP f ent of internal standardization for ple 

matrice

plotting the first two pr

3.1.6. The Aim of the Study 

 
When exploring the matrix interferences researchers in the area of ICP-OES 

analyses often consider either one concomitant element or acid as separate variables of 

research study. Owing to the complexity of the processes involved in the presence of 

both acid and salt matrices, a small number of studies (D

fects on ICP-OES analyses. To the best of our knowle

investigates the use of internal standardization to correct for these combined effects 

Although e approp plying internal standardi

ection, many analysts worldwide have been using sequential 

itionally

ficient inte

 eliminate the n of shot and detector nois

ng of the multichan

rchers worldwide w

d become more economical. After

or assessm analysis of sam

s containing various concentrations of both acid and salt. Also our goal was to 

select the appropriate internal standard by using PCA. Then these selected internal 

standards would be used for the determination of a number of elements present in 

certified whale liver homogenates supplied from NIST.  

 

 50



 
 

3.2. Experimental 

 

 air path monochromator, 

cyclon

3.2.1. Instrumentation and Operating Conditions 

 
The Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) 

(Varian Inc., Australia) includes axial viewing mode, an

ic action spray chamber, and a concentric glass nebulizer. Instrument properties 

and selected operation conditions are listed in Table 3.1. 

 

Table 3.1. Instrumentation and Operating conditions  
  

Varian Liberty Series II 
Optical configuration 0.75 meter Czerny-Turner 
Grating 90 x 100 mm holographic 
Grating density 1800 grooves/mm 
Plasma viewing mode Axial 
Injector id 2.5 mm 

 
Spectrometer 

Detector Photomultiplier 
Nebulizer Concentric glass 
Spray chamber Cyclonic (Sturman-Masters) 
Torch One-piece quartz type 
Plasma gas flow rate 15.0 L/min 

 
Sample 

Auxiliary gas flow rate 1.5 L/min 

introduction 

Operating frequency 40.68 MHz 

Type Crystal controlled with solid state 
driver and water cooled power tube 

RF power 1.2 kW 

 
RF Generator 

Interface Nickel cooled cone interface 
 

es measured were 8.99 ± 0.58 

through

The Mg II 280.270 nm / Mg I 285.213 nm ratio was used for monitoring the 

plasma robustness and excitation conditions. Mermet (1991) suggested that for radial 

viewing this ratio should be larger than 8 to have robust conditions. Dubuisson et al. 

(1998b) reported that for axial viewing, as opposed to radial viewing, a Mg II / Mg I 

ratio less than 8 represents robust conditions. The valu

out our studies here so it can be concluded that the samples were analyzed under 

robust plasma conditions and the analyses were not affected by the instrument and 

plasma conditions.  
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3.2.2. Reagents and Standard Solutions 

 
Nitric acid (65%) and hydrogen peroxide (30%) were purchased from Riedel-de 

Haen (Germany) and were used for sam le digestion and for the adjustment of acid 

content in the standards and samples. Sodium chloride (extra pure) used for the salt 

content of samples and standards was also purchased from Riedel-de Haen (Germany). 

Doubly de-ionized water (18.2 MΩcm) obtained from a Milli-Q waters system 

(Millipore, Bedford, USA) was used throughout the studies. 

Standard solutions and synthetic samples were prepared using an ICP 

Multielement standard solution IV that contains the following elements at a 

concentration of 1000 mg/L:Ag, Al, B, Ba, Bi

p

, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Li, 

Multielement standard solution XVI that 

e, Pb, Li, Mg, Mn, Mo, Ni, Se, Sr, Tl, Ti, V, 

g/L. Single element stock standards of Cd, Mn, Zn, 

centration of 1000 mg/L) and Rh internal standard solution (at a 

concentration of 10 mg/L) we

3.2.3. 

Mg, Mn, Na, Ni, Pb, Sr, Tl, Zn and ICP 

contains Sb, As, Be, Ca, Cd, Co, Cr, Cu, F

Zn all at a concentration of 100 m

Co, and Ni (at a con

re also used for the validation studies. All standard 

solutions were purchased from Merck (Darmstadt, Germany). 

 

Sample Preparation 

 

3.2.3.1. Microwave Digestion of the Sample Materials for Preliminary 

Studies  

 
The marine mammal samples which were supplied by NIST from a previous 

interlaboratory comparison study were also used for these experiments. These samples 

nate as a control whale liver 

mple (CWLS) and Pygmy Sperm Whale (Kogia breviceps) liver homogenate as a 

were Beluga Whale (Delphinapterus leucas) liver homoge

sa

laboratory exercise test whale liver sample (LETWLS). 

For microwave digestion, 0.4 g of each homogenized sample was precisely 

weighed (± 0.1 mg) in Teflon containers with 8 ml of 65% HNO3 and 1 ml of 30% H2O2. 

Microwave digestion was accomplished with a MILESTONE Microwave Laboratory 
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Systems ETHOS PLUS labstation with a HPR-1000/10S high pressure segmented rotor. 

To one of these vessels 1 ml of ICP multielement standard solution was added as a spike. 

For the unspiked samples, 1 ml of H2O was added before digestion. The microwave oven 

was operated at 150 oC for 10 min, at 200 oC for 10 min, then at 200 oC again for 20 min 

at a power of 500W. At the end of the temperature program the turntable was rotated 

continuously for 20 min during ventilation. After allowing the digest to cool to room 

temperature, each sample was transferred to acid-washed polyethylene vials for trial 

studies and to volumetric brought to a final volume flasks for the final studies. Each was 

of 30 ml with ultra pure water.   Also, blanks were digested at the same time with the liver

homogenate ing l of 65% HNO3, l of 30% H2O2 1 ml 2O to the s by add  8 m 1 m  and  of H

vessels.  

 

3.2.3.2. Initial Acid Effect Studies 

 
After taking appropriate am ts from  stock lutions  ml of HNO3 nd 1 

ml of H2O2 were added to sample s tions a e 25 m . For 

the standard solutions w volu  of 50 2 ml of HNO3 and 2 ml of H2O

used in order to match th cid mat s to the ples.  

Before the meas ments, proper

was added to give a final concentration of 0.1 ples.  

In order to investigate the nitric acid effect on the ICP-O  analy  a number 

of standard solutions with a volum  m ontaining Cd, Mn, and Zn were also 

prepared from multielem on IV. A series of id mat  sta ards 

were prepared with the f wing fi concen ions of tric aci  25%, 1 , an  5%. 

To each of the 50 ml solutions, 2 m 30% H  was added.  

 

3.2.3.3

ynthetic sample solutions containing varying multielement (0.05 mg/L, 

0.5 mg

9 ml of 65% HNO3 stock solution and for the 25% HNO3, 19 ml of 65 % HNO3 stock 

oun  the  so , 8  a

olu nd diluted to a final volum of l

2 were ith the me ml, 1

e a rice  sam

ure the  amount of Rh internal standard solution 

mg/L for both standards and sam

ES sis,

e of 50 l c

ent standard soluti ac rix nd

ollo nal trat  ni d: 0% d

l of 2O2

. Combined Acid and Salt Effect Studies 

 
 A set of s

/L, 1 mg/L), acid (0%, 12%, 25%) and sodium (0%, 0.1%, 0.3%) concentrations 

were prepared according to a 33 full factorial design. For the preparation of 12% HNO3, 
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solution were added to the synthetic samples. For the salt content, 0.05g and 0.15g of 

NaCl were added and diluted to 50 ml to obtain 0.1% and 0.3% salt concentrations, 

respectively. For the multielement studies of these synthetic samples, the ICP 

multielement solution XVI was used. Standard solutions were prepared using only this 

multielement standard solution XVI without any addition of acid and salt. The factorial 

design plan containing coded values and real values is shown in Table 3.2. 

 

Table 3.2 Experimental design plan 
 

 

 

 

 

 

 

 

torial design the number 3 corresponds to levels (lowest, middle and 

e Ca 422.673 nm, Co 345.350 nm, Li 

Real values Coded values 
Sample  

no 
Acid 

% (v/
NaCl ME 

 v) % (w/v) (mg/L) Acid NaCl ME 

1 0 0 0.05 -1 -1 -1 
2 0 0 0.5 -1 -1 0 
3 0 0 1.0 -1 -1 1 

 
4 0 0.1 0.05 -1 0 -1 
5 0 0.1 0.5 -1 0 0 
6 0 0.1 1.0 -1 0 1 
7 0 0.3 0.05 -1 1 -1 
8 0 0.3 0.5 -1 1 0 

 
9 0 0.3 1.0 -1 1 1 
10 12 0 0.05 0 -1 -1 
11 12 0 0.5 0 -1 0 

 

 

 

 

 

 

 

 

 

In this fac

12 12 0 1.0 0 -1 1 
13 12 0.1 0.05 0 0 -1 
14 12 0.1 0.5 0 0 0 
15 12 0.1 1.0 0 0 1 
16 12 0.3 0.05 0 1 -1 
17 12 0.3 0.5 0 1 0 
18 12 0.3 1.0 0 1 1 
19 25 0 0.05 1 -1 -1 
20 25 0 0.5 1 -1 0 
21 25 0 1.0 1 -1 1 
22 25 0.1 0.05 1 0 -1 
23 25 0.1 0.5 1 0 0 
24 25 0.1 1.0 1 0 1 
25 25 0.3 0.05 1 1 -1 
26 25 0.3 0.5 1 1 0 
27 25 0.3 1.0 1 1 1 

highest concentrations which are represented as -1, 0, and +1 respectively) and the 

superscript 3 corresponds to the factors that were chosen (acid, salt and multielement 

concentrations). 

Wavelengths were chosen as a compromise between signal intensity and spectral 

interferences. Atom lines used for this study wer
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610.362 nm, Li 670.784 nm, Ni 341.476 nm, Rh 343.489 nm, Mn 279.482 nm, Cu 

24.754 nm, Fe 275.574 nm, Cd 228.802 nm, Zn 213.856 nm and ion lines used were 

Ca 317.933 nm

3

, Co 237.862 nm, Ni 231.604 nm, Rh 251.752 nm, Mn 257.610 nm, Cu 

224.700 nm, Fe 259.940 nm, Cd 214.438 nm. In addition to these elements, Argon 

emission lines at 706.722 nm, 750.387 nm, 751.465 nm, and 772.421 nm were 

measured to check the stability of the plasma during analysis. 

Analytical errors (E) were calculated using the following formulae as suggested 

by Grotti et al. (2003a); 

 

100
)(

1

1 ×
−

=
C

CC
E n         (3.4) 

  100
)(

2

2 ×
−

=
C

CC
E n         (3.5) 

100
)(

3

3 ×
−

=
C

CC
E n         (3.6) 

 

where C1, C2, C3 correspond to the concentrations of solutions that do not contain any 

acid and salt and Cn corresponds the considered analyte concentration.  

 s can be seen from Table 3.2, the first three samples contain only elements 

which were an nce of acid or 

lt. They can be considered as reference solutions for the corresponding multielement 

concentrations t var -3 were used as 

blank correction for all oth  a o riate concentration levels. 

Equation 3.4 was  for t ati ors sol ntaining a 0.05 

mg/L multielemen ke, e 3.5 d alc f errors for the 

solutions containin 0.5 m tie ik

solutions containing a 1.0 m ele ke g d amounts of acid 

and salt. Use of these equati e e ta l b ore clear in the 

discussion part.  

 These anal l err  th  as a m r the principal 

component analysis were  using MATL 5 (The MathWorks, Inc.). 

Using the results from the principal component analysis, score plots and loading plots 

showing the behav  of n line of the  and r ationships between 

the matrices were plotted using Microsoft Excel. 

A

alyzed in three different concentrations without the prese

sa

hat have ying amounts of acid and salt. Samples 1

er samples ccording t  the approp

used he calcul on of err  for the utions co

t spi quation  was use for the c ulation o

g a g/L mul lement sp e and equation 3.6 was used for the 

g/L multi ment spi but havin ifferent 

ons for th xperimen l data wil e made m

ytica ors were en used  the dat atrix fo

processed AB  6.®

iors the emissio s  elements el
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3.2.3.4

 Another set of synthetic sample solutions containing 

ultielement (0.05 mg/L, 0.5 mg/L, 1 mg/L), acid (0%, 12%, 25%) and sodium 

design. It should be noted that for this study instead of multielement stock solutions, 

single element standards of Cd, Mn, Zn, Co, Ni and Rh were used and appropriate 

mounts of these stocks were mixed in order to have a multielement solution of only 

these e

aCl were added and 

diluted

. Validation of Acid and Salt Effect Studies 

 
The use of selected reference (Co, Ni, Rh) and analyte (Cd, Mn, Zn) lines were 

tested with a validation study.

various m

(0%, 0.1%, 0.3%) concentrations were prepared according to the previous factorial 

a

lements. For the preparation of 12% HNO3, 4.62 ml of 5% HNO3 stock solution 

and for the 25% HNO3, 9.42 ml of 65 % HNO3 stock solution were added to the 

synthetic samples. For the salt content, 0.025 g and 0.15 g of N

 to 25 ml to obtain 0.1% and 0.3% salt concentrations, respectively. Standard 

solutions were prepared using only the element standards without any addition of acid 

and salt. In this way the effect of add acid and salt will be readily apparent. 

The wavelengths used for two separate trials for the analysis were listed in Table 3.3. It 

should be noted that these wavelengths were chosen with a compromise between signal 

intensity and spectral interferences.  

 

Table 3.3. The wavelengths used in the validation studies 
 

Wavelengths (nm) 
For the first trial For the second trial Element 

Atom lines Ion lines Atom lines Ion lines 
326.106 214.438 326.106 214.438 Cd 228.802 226.502 228.802 226.502 
279.827 257.610 279.827 257.610 Mn 403.076 259.373 403.076 259.373 
213.856 206.200 213.856 206.200 Zn 334.502 202.551 334.502 202.551 
345.350 228.616 345.350 228.616 Co 340.512 258.033 340.512 237.862 
352.454 231.604 352.454 231.604 Ni 351.505 221.647 341.476 221.647 
343.489 343.489 Rh 369.236 249.077 369.236 249.077 

751.465 751.465 Ar 706.722 - 750.387 - 

656.272 H Hß486.133 - 656.272 - 
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I  argon 

nd hydrogen as the internal standards wer he results and discussion 

section. Only the concentrations obta d I 22 d II 214 lines were 

included in Appendix A.

 

3.2.3.5.  Modified Analysis of Whale Liver Samples Using Internal 

Standardiza  

 
The Beluga Whal elphinapte s) liver h te (CWLS - certified 

material which was supp by NIST) w  used in the preliminary trials was 

digested again for this study using the same digestion procedure.  

t should be noted that the concentrations which were calculated by using

a e not included in t

ined for C 8 and C

  

tion

e (D rus leuca omogena

lied hich was also

Differently, in this procedure, of approxim tely 0.4 g and 0.3 g of aliquots a

homogenized liver samples were digested in Teflon containers with 8 ml of 65% HNO3 

and 1 ml of 30% H2O2 using the microwave digestion to see the effect of changing the 

amount of whale liver being digested. In order to perform internal standardization, to some 

of these vessels 0.1 mg/L of Co, Ni and Rh was added as a spike. After allowing the digest 

to cool to room temperature, each sample was transferred to acid-washed polyethylene 

vials and brought to a final volume of 25 ml with ultrapure water. Also, blanks were 

digested at the same time with the liver homogenates by adding 8 ml of 65% HNO3, and 

1 ml of 30% H2O2 to the vessels.  

Appropriate amount of HNO3 and NaCl were added into the standards for normal 

calibration and internal standardization for ma ix matching. 

The signals of the measured emission lines were listed in Table 3.4. Because of 

its low intensity and possible interference o  Fe line in the whale liver samples, the Rh 

line at 251.752 nm could not be measured properly. It should be pointed out that 

concentrations calculated by using argon and hydrogen as the internal standards were 

only listed for Cd I 228 and Cd II 214 lines in Appendix A. 

 

 

 

 

 

tr

f
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Table 3.4. The wavelengths used for the analysis of whale liver samples 
 

Wavelengths (nm) Element es onAtom lin I  lines 
326.106 214.438 C 2 2 226.502 d 28.80
2 7 257.610 79.82M  259.373 n 403.076

206.200 Z 2 6 202.551 n 13.85

345.350 228.616 C 3 2 237.862 o 40.51
352.454 231.604 Ni 3 7641.4  221.647 

249.077 R 3 6 251.752 h 69.23

751.465 A - r  

H 6 2 - 56.27

 

3.3. Result  Disc

Elements and their selected wavelengths m ed throu  this study are 

own in Tab 5. In e excit oten or at  of 

xcitation and ionizat ntials f c lines are also 

 
 
 
 
 
 

 
 

s and ussion 

 
 easur ghout

sh le 3. this tabl ation p tials f om es and sumic lin

e  first ion pote or ioni listed.  
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Tabl  al. 
2003, Dennaud et al. 2001, Stepan et al. 2001, Brenner and Zander 2000) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

dies 

 

 
 

Elem λ, nm V nergy S

e 3.5. Spectral Line Characteristics (Sources: Romero et al. 1997a, Grotti et

ent EP, e IP, eV E um, eV 
Ca I 422.673  2.93 6.11 9.04 
Ca II 317.933 7.04 6.11 13.15 
Cd I 228.802 5.41 8.99 14.40 
C 6.106 8* 12.6 7 d I  32   3.6 8.99 7 -12.7
Cd II  226.502 5.47 8.99 14.46 
C 14.438 8 1d II 2  5.7 8.99 4.77 
Co I 345.350   3.47* 7.86 11.33 – 11.43 
Co 340.512 .07 11 I  4 7.86 .93 
Co 228.616  84 13 II  5. 7.86 .70 
Co 8.033 5* 12.51 II  25     4.6 7.86  – 12.61 
Co 7.862 13 II 23 5.62 7.86 .48 
C 24.754 2 11u I 3  3.8 7.73 .55 
Cu II 224.700 8.23 7.73 15.96 
Fe I 275.574   4.35* 7.87 12.22 – 12.32 
Fe II 259.940 5.22 7.87 13.09 

 

 
Li I 610.362 3.87 5.39 9.26 
Li I 670.784 1.85 5.39 7.24  

 
Mn I 279.482 4.43 7.44 11.87 
Mn I  403.076 08 7.44 3. 10.52 
Mn I 259.373 I  4.77 7.44 12.21 
Mn 7.610  12.2 II 25 4.81 7.44 5 
Ni I 341.4 176 3.66 7.64 1.30 
Ni I  352.454 7.64 3.54 11.18 
Ni 1.505 1* 11.05 I  35  3.4 7.64  – 11.15 
Ni 231.604 39 14 II 6. 7.64 .03 
Ni 1.647 13 II 22 6.03 7.64 .67 
Rh I 343.489 3.60 7.45 11.05 
Rh 369.236 25* 10.7 8  I   3. 7.45 – 10.
Rh II 251.752  4.76* 7.45 12.21 – 12.31 
R 49.077 1h II  2 7.07 7.45 4.52 
Zn I 213.856 5.80 9.39 15.19 
Z 34.502 8 1n I  3  7.7 9.39 7.19 
Zn II  206.200 6.01 9.39 15.4 
Zn II 202.551 6.12 9.39  15.51 

 “*”  represents the estimated energy values which were calculated by using the equation E = hc/λ .  

 

3.3.1. Initial Acid Effect Stu

In Tables 3.6 and 3.7, values obtained by the second analysis of whale liver 

homogenates are represented. As an internal standard the Rh atomic line at 343.489 nm 

was used and the acid content of both samples and standards were matched to have a 

value of 25% nitric acid.  
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Table 3.6. Values for the Control Material (Beluga Whale Liver Homogenate)  
 

% difference from the 
certified value Element  

(nm) 

Normal  
calibration 

(µg/g, wet mass) 

Internal  
Standard  

calibration  
(µg/g, wet mass) 

NIST  
certified value 

(µg/g, wet mass) Norm 
calibration 

Int Std 
calibration 

Cd I 228 1.99 ± 0.06 2.23 ± 0.12 2.35 ± 0.06 -15.3 - 5.3 

Cu I 324 12.67 ± 0.23 12.63 ± 0.84 13.16 ± 0.4 - 3.7 - 4.0 

Fe II 259 693 ± 0.2 688 ± 33 668 ± 15 3.8 3.0 

Mn II 257 1.34 ± 0.04 2.14 ± 0.03 2.37 ± 0.08 - 43.4 - 9.9 

Zn I 213 27.45 ± 0.68 27.95 ± 1.98 26.31 ± 0.66 4.3 6.2 

 

 

Table 3.7. Values for the Test Material (Pygmy Sperm Whale Liver Homogenate) 
 

% difference from the 
certified value Element Normal  

calibration 

Internal  
Stand

 (nm  (µg/g, wet mass) 

ard  
calibration  

(µg/g, wet mass) 

NIST 
 certified value 
(µg/g, wet mass) Norm 

calibration 
Int Std 

calibration 

)

Cd I 228 5.64 ± 0.02 5.77± 0.38 5.94 ± 0.38 - 5.1 - 2.8 

Cu I 324 2.83 ± 0.04 2.56 ± 0.17 2.74 ± 0.19 3.1 - 6.6 

Fe II 259 712 ± 7.6 677 ± 41 694 ± 45 2.6 - 2.4 

Mn II 257 0.39 ± 0.004 1.17 ± 0.04 1.43 ± 0.10 - 73.0 -18.1 

Zn I 213 25.81 ± 1.48 25.25 ± 2.65 21.15 ± 1.65 22.0 -9.4 

 
As can be seen from the tables, an improvement both for control and test 

material are obtained when using Rh 343 line as the internal standard. Among the 

elements studied, Cd, Mn and Zn values seemed to be very different from the certified 

value, thus requiring correction.  

According to an applied t-test, for the Beluga whale liver sample, calculated 

concentrations for Cu, Fe and Zn were acceptable after only using a simple normal 

calibration (i.e. no internal standard). After applying internal standardization with Rh, 

values for all selected elements except Mn were not different from the certified value at 

the 95% confidence level.  Therefore, it can be concluded that through correction by 

internal standardization, the computed values for all elements were within the 
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uncertainty range of the NIST certified values and successful correction by internal 

standardization was achieved. 

For the Pygmy whale liver sample, values obtained with the normal calibration 

for Cd, Cu and Fe were considered to be acceptable after application of the t-test. The 

calculated concentrations using internal standardization were good as well (i.e., they too 

were not very different from the certified value) for all elements.  However, according 

to the t-test comparison of these results to those of the NIST certified values showed 

that the most significant improvements were only achieved for Cd, Cu and Fe when 

applying correction by internal standardization. 

Furthermore, in order to investigate the effect of the nitric acid content on the 

analysis of Cd, Mn and Zn as well as the ability to apply internal standardization under 

various concentrations of acid content, another study was performed measuring the 

responses of these elements at three different acid levels (5%, 10%, and 25%). Figures 

3.1, 3.2, and 3.3 show the calibration curves which were obtained by normal calibration 

for Cd, Zn, and Mn, respectively. 
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Figure 3.1. Normal calibration graph showing the acid effect for the Cd I 228 line 
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Figure 3.2. Normal calibration graph showing the acid effect for the Zn I 213 line  
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Figure 3.3. Normal calibration graph showing the acid effect for the Mn II 257 line 
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As can be seen there was a similar depressive effect for Cd and Zn lines 

confirming the trend observed by Todoli et al. (2002). Conversely, an enhancement was 

observed in the normal calibration curve for the sample containing Mn at 25% HNO3 

case whereas the effect is almost similar for 5% and 10% HNO3 contents. This can be 

due to the atom and ion line differences chosen for the analysis because it has been 

reported by other researchers that the atomic lines are more sensitive to the changes in 

the matrix than ionic lines (Mermet 2002). It is worth noting that even when Rh was 

used as an internal standard the effect of acid matrix could not be corrected. 

In order to test the reproducibility of this effect of acid on the determined 

concentrations of Cd, Mn, and Zn with respect to both atom and ion lines in the 

presence of nitric acid, new calibration graphs were drawn by using the results from 

similar studies performed in our lab. As can be seen in Figures 3.4 - 3.6, the same 

behavior was observed for both for the ion and atom lines. In contrast to the other 

results (Figs. 3.1 - 3.3), there is an increase in signal intensities when acid is present 

(Figs. 3.4 -3.6).  However, it is interesting to note that after acid is added, the trend 

p  

intensity as a function of acid concentration.  Further studies are needed to understand 

the tre

 

a pears similar in most cases, i.e. simply the presence of acid appears to suppress signal

nds between acid concentration and the point at which either an increase or 

decrease in signal intensity occurs. 
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Figure 3.4. Normal calibration graph showing the acid effect for the Cd I 228 line 
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Figure 3.5. Normal calibration graph showing the acid effect for the Zn I 213 line 
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Obviously there are other factors other than acid which are affecting the 

ntration. Therefore, the combined effect of these factors should be studied. 

. Combined Acid and Salt Effect Studies 

To choose an optimal internal standard, the effect of the expected variation
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ns were prepared according to a 33 full factorial design. Then these 

solution ere measured with ICP-OES. The values obtained are shown in the Tables 

3.6 an

 As can be seen in Table 3.8, the atom lines of Ni, Mn and Rh appear to be less 

affected  acid and salt matrix changes. There was an increase in the concentration 

value m 

to have a serious influence. Differently, a depression was observed for the Cu atom line. 

The oth elements Ca, Li, Fe, Cd and Zn were the most affected elements in the 

presen ed 

s enhancement in the measured concentrations. In the presence of acid 

rix nt, 

ncre her 

tent of the interference (Todoli et al. 2002) so since Ca, 

Fe 

rox. 5 eV), these enhancements on the analyte signals may be expected for these 

 moderate excitation potentials (5.41 and 

Zn 

e ve high 1  ionization potentials (Cd 8.99 eV and Zn 9.39 eV). So it can be 

by Mermet (2002) there is no simple relationship between 
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3.7d  for the three concentration levels which are 0.05, 0.5 and 1 mg/L. 
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have lower excitation potentials (Ca 2.93 eV, Li 1.85 and 3.87 eV and 

e
st

ly), enhancements were also very high. On the other hand, Cd and 

ry 

citation energy and magnitude of the matrix effect regardless of the ionization 



 
 

ncentration  lines (in mg
 

i Li 
670.784 

Ni 
341.476 

Rh 
343.489 

Mn 
279.482 

Cu 
324.754 

Fe 
275.574 

Cd 
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2 
Zn 

213.856 

Table 3.8. Calculated co

Salt 
% 

Ca 
422.673 

Co 
345.350 

L
610.362 

s for selected atom /L) 

Sample Acid 
% 228.80

1 0.04 04 0. 0. 05 060 0 0.05 0.05 0.05 0. 05 05 0. 0.  0.05 0.07 
2 0 0 0.55 0.52 0.50 0.46 51 0. 0. 51 540. 55 50 0. 0.  0.51 0.55 
3 0 0 1.04 1.01 1.01 0.99 1.00 1. 1. 99 0304 00 0. 1.  1.02 1.04 
4 0 0.1 0.38 0.07 0.07 0.11 0.07 0. 0. 06 1107 06 0. 0.  0.06 0.12 
5 1.10 0.56 0. 0. 51 67 0 0.1 0.83 0.58 0.71 62 56 0. 0.  0.64 0.67 
6 0 0.1 1.62 1.21 1.48 2.24 1.12 1. 1. 03 4314 15 1. 1.  1.31 1.37 
7 0 0.3 0.17 0.07 0.04 0.12 0.  0. 0. 06 1003 07 07 0. 0.  0.06 0.12 
8 1.13 0.  0.  76 0 0.3 0.83 0.62 0.73 54 0.63 0.49 44 0.  0.64 0.74 
9 0 0.3 1.66 1.20 1.50 2. 1.  0.  4630 10 1.19 1.05 85 1.  1.27 1.38 

10 0. 0.  0.  11 12 0 0.08 0.08 0.06 06 05 0.09 0.06 05 0.  0.07 0.08 
11 0. 0.  0.  83  12 0 0.50 0.55 0.58 64 53 0.59 0.52 49 0.  0.68 0.73 
12 1. 1.  0.  64  12 0 1.00 1.15 1.17 32 07 1.06 1.05 92 1.  1.37 1.49 
13 0. 0.  0.  10  12 0.1 0.15 0.08 0.06 10 06 0.08 0.05 05 0.  0.06 0.08 
14 0. 0.  0.  75  12 0.1 0.71 0.54 0.65 98 53 0.61 0.52 44 0.  0.63 0.69 
15 1. 1.  0.  46  12 0.1 1.30 1.15 1.30 96 05 1.16 1.01 88 1.  1.27 1.37 
16 0. 0.  0.  08  12 0.3 0.15 0.10 0.06 11 06 0.08 0.06 05 0.  0.06 0.10 
17 1. 0.  0.  72  12 0.3 0.74 0.61 0.65 05 53 0.61 0.50 44 0.  0.62 0.66 
18 0. 2. 1.  0.  39  12 3 1.44 1.16 1.32 07 03 1.13 1.01 86 1.  1.22 1.34 
19  0 0. 0.  0.  10  25  0.08 0.10 0.05 05 05 0.07 0.06 05 0.  0.07 0.13 
20 0 0. 0.  0.  79  25  0.42 0.59 0.49 56 53 0.56 0.51 46 0.  0.65 0.69 
21 0 1. 1.  0.  60  25  0.89 1.15 1.05 19 09 1.05 1.02 92 1.  1.34 1.41 
22 0. 0. 0.  0.  09  25 1 0.08 0.10 0.06 09 05 0.07 0.03 05 0.  0.06 0.07 
23 0. 0. 0.  0.  73  25 1 0.61 0.60 0.60 92 52 0.61 0.50 44 0.  0.61 0.66 
24 0. 1. 1.  0.  42  25 1 1.20 1.15 1.20 81 05 1.13 0.98 87 1.  1.22 1.30 
25 0. 0. 0.  0.  12  25 3 0.11 0.07 0.06 10 05 0.08 0.05 04 0.  0.06 0.07 
26 0. 0. 0.  0.42 0.70  25 3 0.69 0.57 0.62 98 52 0.59 0.49  0.60 0.65 
27 0. 1. 1.05 13  0.85 1.38  25 3 1.32 1.16 1.23 93 1. 0.97 1.20 1.28 
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Table 3.9.  Calculated concentrations for selected ion lines (in mg/L) 
 

Sample Acid 
% 

Salt 
% 

Ca 
317.933 

Co 
237.862 

Ni 
231.6

Rh 
5

Mn Cu 
7

Fe 
9

Cd 
214.438 

Zn 
202.551 04 2 1.752 257.610 224. 00 259. 40 

1 0 0 0.06 0.05 0.05 0.11 0.05 0.06 0.05 0.05 0.07 
2 0 0 0.59 0.53 0.53 0.61 0.52 0.52 0.53 0.53 0.56 
3 0 0 1.09 1.04 1. 1. 1.03 08 04 1.16 03 1.02 1.06 1.
4 0 0.1 0.29 0.06 0.06 0.07 0.06 0.06 0.09 0.07 0.13 
5 0 0.1 0.71 0.61 0.61 0.66 0.62 64 0.62 0.86 92 0. 0.
6 0 0.1 1.52 1.30 1.3 6 5 1.12 1.32 1.31 1.33 1.85 2.0
7 0 0.3 0.17 0.08 0. 22 08 0.10 0.07 0.07 0.08 0.11 0.
8 0 0.3 0.87 0.69 0.77 0.39 0.66 0.66 0.66 1.07 1.47 
9 0 0.3 1.77 1.44 1.58 1.20 1.32 1.35 1.30 2.23 2.88 

10 12 0 0.16 0.08 0.08 0.12 0.08 0.08 0.10 0.12 0.17 
11 12 0 0.90 0.73 0.80 0.50 0.75 0.79 0.74 1.22 1.55 
12 12 0 1.73 1.47 1. 1. 1.48 16 61 1.02 51 1.51 2.42 3.
13 12 0.1 0.17 0.07 0.0 3 7 7 0.1  0.07 0.07 0.07 0.11 0.1
14 12 0.1 0.83 0.67 0. 49 74 0.29 0.66 0.69 0.66 1.10 1.
15 12 0.1 1.52 1.34 1.46 0.92 1.33 1.37 1.32 2.27 2.89 
16 12 0.3 0.16 0.06 0.07 0.05 0.07 0.08 0.07 0.11 0.21 
17 12 0.3 0.76 0.64 0.70 0.31 0.64 0.66 0.63 1.09 1.39 
18 12 0.3 1.51 1.28 1.40 1.14 1.27 1.32 1.27 2.16 2.85 
19 25 0 0.17 0.07 0.09 0.05 0.07 0.08 0.08 0.12 0.27 
20 25 0 0.87 0.70 0.76 0.32 0.73 0.72 0.71 1.16 1.48 
21 25 0 1.67 1.46 1.57 1.15 1.47 1.47 1.45 2.40 2.99 
22 25 0.1 0.10 0.06 0.07 0.10 0.07 0.07 0.07 0.11 0.15 
23 25 0.1 0.76 0.66 0.72 0.32 0.65 0.67 0.65 1.08 1.43 
24 25 0.1 1.51 1.30 1.42 1.13 1.28 1.33 1.28 2.15 2.79 
25 25 0.3 0.12 0.07 0.0 5 8 0.04 0.06 0.07 0.09 0.10 0.1
26 25 0.3 0.74 0.63 0. 37 70 0.32 0.62 0.64 0.62 1.05 1.
27 25 0.3 1.46 1.24 1.36 1.08 1.25 1.27 1.25 2.06 2.70 
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atrix chang urred for all the lines. Among these elements the 

tu  e pro ed b e pr nce alt a cid the  Cd  Zn s 

was more significant for ionic lines.  

 By using these concen tion lues, alytical errors which were used in the 

Principal Component Analysis re c late  usi the win rmu ;  

 

 

 It is apparent from Table 3.9 that the ion lines were strongly influenced by the 
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 Computed errors and corresponding samples are shown in Tables 3.10 and 3.11 

for the atom and ion lines, respectively. Since the first three samples did not contain any 

added interferents (i.e. salt and acid) and they contain only the analytes of interest, they 

were considered as the blanks for the corresponding concentration level. The errors for 

the first three samples (E1, E2, and E3) were considered as the ideal response (no 

matrix effects) and therefore considered as zero error as a necessary point of reference. 

It should also 

273 ×
−C

       (3.14) 

be noted that (-) and (+) signs indicate the difference from the 
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corresponding concentration level and not the true value. Three dimensional graphs of 

these matrix induced errors can be seen in Appendix B. 

Table 3.10.  Matrix-induced errors calculated for atom lines for generating the 
multielement score plot 

 
Error Acid 

% 
Salt
% 

Ca 
422 

Co 
345 

Li 
610 

Li 
670 

Ni 
341 

Rh 
343 

Mn 
279.4 

Cu 
324 

Fe 
275 

Cd 
228.8 

Zn 
213 

E1 0 0 0 0 0 0 0 0 0 0 0 0 0 

E2 0 0 0 0 0 0 0 0 0 0 0 0 0 

E3 0 0 0 0 0 0 0 0 0 0 0 0 0 

E4 0 0.1 -644 -47 -37 -165 -77 -37 -9 -4 -79 -15 -85 

E5 0 0.1 -52 -10 -40 -137 -10 -13 -13 0 -25 -25 -22 

E6 0 0.1 -56 -20 -47 -127 -11 -10 -15 -4 -39 -28 -32 

E7 0 0.3 -236 -35 15 -188 12 -47 -33 -6 -70 -24 -81 

E8 0 0.3 -51 -19 -45 -144 -6 -14 1 14 -42 -24 -36 

E9 0 0.3 -60 -19 -48 -133 -9 -14 -5 14 -41 -25 -33 

E10 12 0 60 75 18 53 36 83 13 3 74 31 22 

E11 12 0 8 -4 -15 -37 -3 -7 -5 5 -55 -33 -33 

E12 12 0 4 -14 -16 -33 -7 -1 -6 7 -59 -35 -43 

E13 12 0.1 -186 -72 -26 -150 -49 -49 4 18 -62 -23 -19 

E14 12 0.1 -29 -4 -30 -112 -3 -11 -4 13 -39 -22 -27 

E15 12 0.1 -25 -14 -29 -99 -5 -11 -1 11 -42 -25 -31 

E16 12 0.3 -204 -98 -30 -160 -39 -63 -18 10 -39 -22 -44 

E17 12 0.3 -35 -16 -30 -127 -3 -10 0 14 -34 -20 -22 

E18 12 0.3 -39 -15 -31 -110 -2 -9 -1 13 -35 -20 -29 

E19 25 0 -48 -109 -2 -26 -31 -46 -14 10 -66 -26 -87 

E20 25 0 23 -12 3 -20 -4 -2 -3 9 -47 -27 -27 

E21 25 0 15 -14 -4 -20 -8 0 -3 7 -55 -31 -35 

E22 25 0.1 -57 -106 -14 -125 -29 -33 45 11 -41 -20 0 

E23 25 0.1 -11 -14 -19 -98 -2 -10 1 14 -35 -19 -21 

E24 25 0.1 -15 -14 -19 -83 -4 -8 2 12 -37 -20 -25 

E25 25 0.3 -109 -36 -19 -137 -36 -51 -2 23 -91 -13 -7 

E26 25 0.3 -26 -9 -23 -111 -1 -6 2 18 -30 -16 -20 

E27 25 0.3 -27 -15 -22 -95 -5 -9 3 15 -34 -18 -23 



 
 

 

Table 
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3.11.  Matrix induced errors calculated for ion lines for generating the 
multielement score plot 

Error Acid 
% 

Salt 
% 

Ca 
317 

Co 
237 

Ni 
231 

Rh 
251 

Mn 
257 

Cu 
224 

Fe 
259 

Cd 
214 202 

Zn 

E1 0 0 0 0 0 0 0 0 0 0 0 

E2 0 0 0 0 0 0 0 0 0 0 0 

E3 0 0 0 0 0 0 0 0 0 0 0 

E4 0 0.1 -367 -18 -10 35 -4 -10 -92 -32 -84 

E5 0 0.1 -21 -15 -15 -8 -18 -23 -17 -63 -63 

E6 0 0.1 -39 -25 -31 3 -28 -29 -29 -75 -91 

E7 0 0.3 -182 -69 -49 7 -28 -29 -67 -101 -210 

E8 0.3 -49 -31 -47 36 -26 -27 -24 -102 -160 0 

E9 0.3 -62 -39 -53 -4 -28 -33 -26 -111 -167 0 

E10 0 167 55 53 10 44 46 100 125 142 12 

E11 0 -54 -38 -52 18 -43 -51 -38 -131 -175 12 

E12 0 -59 -42 -56 12 -46 -48 -43 -129 -194 12 

E13 0.1 -180 -48 -45 -26 -27 -31 -53 -110 -139 12 

E14 0.1 -42 -27 -41 53 -26 -32 -23 -109 -165 12 

E15 0.1 -39 -29 -41 20 -29 -34 -28 -115 -168 12 

E16 0.3 -154 -25 -37 53 -24 -36 -53 -108 -190 12 

E17 0.3 -30 -21 -34 49 -22 -27 -19 -105 -147 12 

E18 0.3 -38 -23 -36 1 -24 -29 -23 -104 -165 12 

E19 0 -172 -40 -68 51 -37 -38 -76 -116 -278 25 

E20 0 -49 -31 -44 48 -38 -39 -34 -118 -162 25 

E21 0 -52 -41 -51 1 -42 -45 -41 -127 -178 25 

E22 0.1 -63 -31 -37 5 -26 -19 -53 -103 -105 25 

E23  0.1 -30 -24 -36 48 -23 -29 -22 -105 -154 25

E24  0.1 -38 -25 -37 3 -24 -31 -24 -104 -159 25

E25  0.3 -91 -49 -54 61 -18 -19 -89 -94 -116 25

E26 0.3 -26 -19 -32 48 -18 -22 -16 -98 -144 25 

E27 0.3 -34 -20 -31 6 -22 -25 -21 -95 -150 25 

  

 ponent analysis was performed. The loading plot 

(showing relationships between the responses of matrix elements) and score plot 

(indicating the behaviors of the chosen analytical lines of the elements with regard to 

the matrices) were generated. By exploring the grouping of the lines in these plots, 

optimal internal standard reference line or lines can be chosen. Since a potential internal 

standard should have similar properties with the elements to be analyzed, the analyte 

and reference lines should have similar responses (or errors) in the considered matrix 

and the signal variation caused by matrix can be compensated for by using this possible 

reference line.  

Next the principal com
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 Figures 3.7 and 3.8 represent the loading plot and the score plot obtained by 

PCA. In Figure 3.7 acid content is shown as “A” and it has a percent acid value. In te 

same graph salt content also has a percent value and was labeled as “S”. When the 

loading plot is examined it can be seen that sample 4 (0.05 mg/L) which have a salt 

content of 0.1% but no acid content shows a very different behavior from the other 

matrices. Samples that do not contain any salt content but have an acid content of 12% 

(11 and 12) and which have an acid content of 25% (20 and 21) are grouped together at 

the upper right side of the graph. Samples that have the same matrices (10 and 19) are 

located very far from this group because of the lowest ME concentration which is 0.05 

m In the same way, the other samples having same similar matrix contents in terms 

of , salt and multielement concentrations (such as 23 and 24; 14 and 15; 26 and 27; 

17 and 18; 8 and 9) are located very close to each other showing the similar responses 

of these matrices. The other group which is distributed at the lower side of the graph 

(Figure 3.7) contains the samples at a concentration of 0.05 mg/L (7, 10, 13, 16, 22, and 

25), except for samples 5 and 6. 

In the score plot (Figure 3.8); the elements showing similar behaviors in the 

considered matrices are grouped in the middle of the graph. It can also be seen that the 

Cd II 214.438, Zn II 202.551, Li I 670.784 and both Ca lines at 317.933 nm and 

422.673 nm are distributed at right side of the graph along the Principal Component 2. 

At the same time Rh I 343, Ni I 34 and Mn I 279 are located at the lower left side of the 

graph. Cu I 324 which is located at the upper right side of the graph, is also far from the 

other grouping. These elements are outside of the grouping occurred in the middle 

indicating the highest analytical errors were obtained by these elements when 

considering total error incurred for samples.  

According to the score plot for the analyzed elements, Rh, Co, Ni and especially 

Rh II 251, Co I 345, Co II 237, Ni II 231 can potentially be used as internal standards 

for the other elements to correct for acid and salt matrix interferences. They were 

chosen as potential internal standards because they do not exist in the reference material 

(whale liver) and they are located closer to the other elements of interest indicating 

greater possible similarity in their behaviors under different matrix conditions. 

Especially Co I 345 line is expected to correct significantly for the Cd I 228 and 

Cu I 324 lines while Co II 237 is expected to be useful for the Mn II 257 line due to the 

closeness of these lines in the score plots. 
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Table 3.12. Normal Calibration and Internal Standard Calibration Results for Cd atom lines. All results are expressed as mg/L. 
 
Emission Line : Cd I 326.106 nm 

  Internal standards 
# none Co 340 Co 345 C C N N Ni Ni R Rh Rh o 237 o 228.6 i 231 i 221  341  352 h 249  343 369 
3 0.98 ± 0.03 0.99 ± 0.03 0.98 ± 0.03 1.00 ± 0.03 0 0. 0. 0.9 0.9 .96 1.0 .9.98 ± 0.04 94 ± 0.03 96 ± 0.03 7 ± 0.02 7 ± 0.02 0  ± 0.0005 0 ± 0.07 0 8 ± 0.05 
6 0.98 ± 0.12 0.91 ± 0.3 0.97 ± 0.05 1 1 1 1. 1.0 1.0 0. .5 .5.02 ± 0.10 .02 ± 0.10 .02 ± 0.10 00 ± 0.10 0 ± 0.03 0 ± 0.04 61 ± 0.14 0 6 ± 0.20 0 3 ± 0.18 
9 0.93 ± 0.07 0.75 ± 0.07 0.86 ± 0.05 0 0 0 0. .9 0.9 0.8 0. 8.95 ± 0.06 .99 ± 0.04 .89 ± 0.03 94 ± 0.04 0 4 ± 0.005 2 ± 0.02 9 ± 0.09 90 ± 0.07 0. 9 ± 0.10 

12 0.81 ± 0.20 0.66 ± 0.20 0.88 ± 0.21 0.84 ± 0.20 0 0 0. 0.8 0.8 0.6 0.8 .8.81 ± 0.20 .74 ± 0.20 76 ± 0.20 7 ± 0.22 6 ± 0.23 8 ± 0.34 3 ± 0.44 0 0 ± 0.41 
15 1.05 ± 0.13 0.97 ± 0.08 1.00 ± 0.02 1 1 0 1. 1.0 1.0 0.9 0.9 .9.06 ± 0.12 .04 ± 0.13 .96 ± 0.12 01 ± 0.12 2 ± 0.12 0 ± 0.12 1 ± 0.11 3 ± 0.09 0 2 ± 0.08 
18 0.81 ± 0.08 0.62 ± 0.07 0.72 ± 0.04 0 0 0 0. 0.8 0. 0.7 0.7 .6.91 ± 0.05 .90 ± 0.03 .80 ± 0.03 87 ± 0.03 1 ± 0.01 76 ± 0.08 4 ± 0.01 1 ± 0.06 0 9 ± 0.02 
21 1.01 ± 0.14 0.87 ± 0.05 0.97 ± 0.14 1 0 1 0. 0.9 0.9 0.8 0.9 .9.00 ± 0.12 .99 ± 0.13 .02 ± 0.02 98 ± 0.14 8 ± 0.14 7 ± 0.12 1 ± 0.24 7 ± 0.31 0 2 ± 0.32 
24 0.95 ± 0.16 0.73 ± 0.14 0.90 ± 0.12 1 0 0 0. 0.9 0.9 0.9 0. 8.00 ± 0.14 .98 ± 0.14 .96 ± 0.16 96 ± 0.15 6 ± 0.14 6 ± 0.16 0 ± 0.15 90 ± 0.16 0. 6 ± 0.13 
27 0.79 ± 0.03 0.59 ± 0.02 0.70 ± 0.04 0 0 0 0. 0.7 0. 0.7 0.7 .7.87 ± 0.05 .87 ± 0.06 .78 ± 0.03 83 ± 0.04 4 ± 0.03 74 ± 0.04 7 ± 0.05 7 ± 0.07 0 3 ± 0.07 
   
Emission Line : Cd I 228.802 nm 

  Intern rds al standa
# none Co 340 Co 345 Co 237 Co 228.6 Ni 231 Ni 221 Ni 341 Ni 352 Rh 249 R Rh 343 h 369 
3 1.00 ± 0.01 1.01 ± 0.01 0.99 ± 0.01 1 1 0 0. 1.0 1.0 1. .0 .9.01 ± 0.02 .00 ± 0.01 .98 ± 0.03 99 ± 0.02 0 ± 0.02 0 ± 0.02 02 ± 0.05 1 1 ± 0.11 0 9 ± 0.09 
6 0.98 ± 0.02 0.90 ± 0.04 0.91 ± 0.02 1 1 0 0. 0.9 0.9 0.6 0. 5.01 ± 0.01 .00 ± 0.01 .98 ± 0.01 99 ± 0.01 5 ± 0.04 5 ± 0.03 9 ± 0.03 62 ± 0.08 0. 9 ± 0.07 
9 0.99 ± 0.01 0.84 ± 0.07 0.90 ± 0.02 0 0 0 0. 0.9 0.9 0.9 0.9 .9.99 ± 0.02 .99 ± 0.01 .95 ± 0.02 96 ± 0.02 6 ± 0.02 7 ± 0.01 9 ± 0.03 6 ± 0.04 0 4 ± 0.01 

12 0.99 ± 0.01 0.85 ± 0.03 0 0 0 0. 0. 0.9 0.9 0.8 0.9 .9.96 ± 0.003 .92 ±0.01 .89 ± 0.01 89 ± 0.004 88 ± 0.01 7 ± 0.01 7 ± 0.01 3 ± 0.11 2 ± 0.18 0 0 ± 0.15 
15 0.97 ± 0.003 0.86 ± 0.03 0.87 ± 0.01 0 0 0 0. 0. .9 0 .8 .8.97 ± 0.01 .95 ± 0.01 .92 ± 0.01 93 ± 0.01 95 ± 0.01 0 3 ± 0.01 .90 ± 0.04 0 8 ± 0.05 0 7 ± 0.06 
18 0.95 ± 0.01 0.78 ± 0.01 0.85 ± 0.03 0 0 0 0. 0.9 .9 0.8 0.8 79.98 ± 0.02 .97 ± 0.01 .94 ± 0.01 97 ± 0.01 1 ± 0.01 0 1 ± 0.002 8 ± 0.02 1 ± 0.02 0.  ± 0.003 
21 0.93 ± 0.01 0.78 ± 0.01 0.88 ± 0.02 0 0 0. 0. 0.9 0. 0.8 0.8 .8.92 ± 0.02 .91 ± 0.01 90 ± 0.005 90 ± 0.01 1 ± 0.02 9 ± 0.01 1 ± 0.06 9 ± 0.10 0 6 ± 0.11 
24 0.94 ± 0.003 0.76 ± 0.01 0.82 ± 0.01 0 0. 0. 0. 0.9 0.8 0.8 0.8 80.96 ± 0.01 95 ± 0.005 92 ± 0.01 95 ± 0.01 0 ± 0.01 9 ± 0.01 7 ± 0.01 3 ± 0.02 0.  ± 0.004 
27 0.91 ± 0.02 0.74 ± 0.03 0.80 ± 0.02 0.97 ± 0.03 0.97 ± 0.04 0.93 ± 0.02 0.96 ± 0.02 0.87 ± 0.01 0.87 ± 0.02 0.94 ± 0.01 0.89 ± 0.03 0.85 ± 0.04 
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Table 3.13. Normal Calibration and Internal Standard Calibration Results for Cd ion lines. All results are expressed as mg/L. 
 

Emission Line : Cd II 226.502 nm 
 Internal standards 

# none Co 340 Co 345 Co 237 Co 228.6 1 1 1 Ni 23 Ni 22 Ni 34 Ni 352 Rh 249 Rh 343 Rh 369 
3 1.00 ± 0.02 1.01 ± 0.01 0.99 ± 0.02 1.00 ± 0.03 0.98 ± 0.02 2 03 3 1.00 ± 0.0 1.00 ± 0.0  0.99 ± 0.0 1.00 ± 0.03 1.01 ± 0.06 1.01 ± 0.12 0.99 ± 0.10 
6 0.97 ± 0.03 0.89 ± 0.03 0.90 ± 0.03 1.00 ± 0.01 0.98 ± 0.01 2 1 5 0.97 ± 0.0  0.99 ± 0.0 0.93 ± 0.0 0.95 ± 0.04 0.68 ± 0.03 0.61 ± 0.08 0.59 ± 0.08 
9 1.01 ± 0.02 0.86 ± 0.06 0.93 ± 0.02 1.02 ± 0.03 1.01 ± 0.01 2 01 3 0.97 ± 0.0 0.99 ± 0. 0.99 ± 0.0 0.98 ± 0.05 1.01 ± 0.02 0.98 ± 0.04 0.96 ± 0.01 
12 1.07 ± 0.01 0.92 ± 0.04 1.04 ± 0.001 1.00 ± 0.01 0.96 ± 0.01 2 01 2 0.96 ± 0.00  0.96 ± 0. 1.06 ± 0.0 1.06 ± 0.01 0.91 ± 0.12 1.01 ± 0.19 0.99 ± 0.16 
15 1.03 ± 0.01 0.91 ± 0.02 0.92 ± 0.01 1.03 ± 0.01 1.00 ± 0.003 1 2 2 0.98 ± 0.0  0.99 ± 0.0 1.00 ± 0.0 0.98 ± 0.01 0.96 ± 0.05 0.94 ± 0.07 0.92 ± 0.07 
18 0.99 ± 0.02 0.81 ± 0.02 0.88 ± 0.05 1.02 ± 0.02 1.00 ± 0.002 2 01 1  0.98 ± 0.0  1.00 ± 0. 0.95 ± 0.0 0.94 ± 0.01 0.90 ± 0.01 0.84 ± 0.03 0.81 ± 0.0002
21 1.00 ± 0.01 0.83 ± 0.02 0.94 ± 0.02 0.98 ± 0.02 0.96 ± 0.01 1 1 2 0.96 ± 0.0 0.97 ± 0.0 0.97 ± 0.0 0.96 ± 0.01 0.87 ± 0.07 0.96 ± 0.12 0.92 ± 0.12 
24 1.00 ± 0.02 0.81 ± 0.02 0.87 ± 0.02 1.02 ± 0.02 1.00 ± 0.01 2 01  0.98 ± 0.0  1.01 ± 0. 0.96 ± 0.01 0.95 ± 0.02 0.93 ± 0.02 0.89 ± 0.02 0.86 ± 0.01 
27 0.95 ± 0.02 0.77 ± 0.04 0.83 ± 0.02 1.01 ± 0.03 1.00 ± 0.04 0.97 ± 0.02 03 0.99 ± 0. 0.90 ± 0.01 0.90 ± 0.02 0.98 ± 0.01 0.93 ± 0.03 0.89 ± 0.03 
Emission Line : Cd II 214.438 nm 

 Internal standards 
# none Co 340 Co 345 Co 237 Co 228.6 Ni 231 Ni 221 Ni 341 Ni 352 Rh 249 Rh 343 Rh 369 
3 1.00 ± 0.01 1.00 ± 0.01 0.98 ± 0.01 1.00 ± 0.02 0.98 ± 0.01 3 2 2 0.97 ± 0.0  0.98 ± 0.0 0.99 ± 0.0 0.99 ± 0.03 1.01 ± 0.05 1.01 ± 0.11 0.99 ± 0.10 
6 1.00 ± 0.04 0.92 ± 0.04 0.93 ± 0.04 1.03 ± 0.02 1.02 ± 0.02 3 02 4 1.01 ± 0.0 1.02 ± 0. 0.99 ± 0.0 0.95 ± 0.07 0.70 ± 0.05 0.63 ± 0.10 0.60 ± 0.09 
9 1.05 ± 0.01 0.90 ± 0.06 0.96 ± 0.01 1.06 ± 0.02 1.05 ± 0.004 1 01 2 1.01 ± 0.0 1.03 ± 0. 1.03 ± 0.0 1.02 ± 0.04 1.05 ± 0.01 1.03 ± 0.03 1.01 ± 0.003 
12 1.11 ± 0.005 0.95 ± 0.03 1.08 ± 0.005 1.04 ± 0.003 1 1  1.00± 0.01 1.00 ± 0.0  1.00 ± 0.0  1.10 ± 0.01 1.10 ± 0.02 0.94 ± 0.12 1.05 ± 0.20 1.03 ± 0.16 
15 1.08 ± 0.004 0.96 ± 0.03 0.96 ± 0.01 1.08 ± 0.01 1.05 ± 0.01 1 02 1 1.03 ± 0.0 1.04 ± 0. 1.05 ± 0.0 1.03 ± 0.01 1.01 ± 0.04 0.98 ± 0.06 0.97 ± 0.07 
18 1.05 ± 0.02 0.86 ± 0.01 0.93 ± 0.05 1.08 ± 0.01 1.06 ± 0.01 2 01 2 1.03 ± 0.0 1.06 ± 0. 1.00 ± 0.0 1.00 ± 0.01 0.96 ± 0.03 0.89 ± 0.02 0.86 ± 0.01 
21 1.05 ± 0.01 0.87 ± 0.02 0.99 ± 0.02 1.03 ± 0.02 1.01 ± 0.01 2 03 2 1.01 ± 0.00  1.02 ± 0.0  1.02 ± 0.0 1.01 ± 0.01 0.92 ± 0.07 1.01 ± 0.12 0.97 ± 0.13 
24 1.06 ± 0.02 0.87 ± 0.03 0.92 ± 0.03 1.09 ± 0.02 1.06 ± 0.01 2 01 1 1.04 ± 0.0 1.07 ± 0. 1.02 ± 0.0 1.01 ± 0.02 0.99 ± 0.03 0.95 ± 0.03 0.91 ± 0.02 
27 1.03 ± 0.01 0.83 ± 0.04 0.90 ± 0.03 1.09 ± 0.02 1.08 ± 0.03 1.04 ± 0.01 1.07 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 1.06 ± 0.03 1.01 ± 0.05 0.97 ± 0.05 
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Table 3.14. Normal Calibration and Internal Standard Calibration Results for Mn atom lines. All results are expressed as mg/L. 
 
Emission Line : Mn I 279.482 nm 

 Internal standards 
# non Co C C C 9 43 369 e  340 o 345 o 237 o 228.6 Ni 231 Ni 221 Ni 341 Ni 352 Rh 24 Rh 3 Rh 
3 0 .0 1. .0 0. 0 4 1 .09 1. 1± 0.01 1 2 ± 0.02 00 ± 0.01 1 1 ± 0.005 99 ± 0.002 .98 ± 0.02 0.98 ± 0.01 0.99 ± 0.01 1.01 ± 0.02 1.06 ± 0.0  1.05 ± 0. 0 1.03 ± 0
6 07 .9 0. 1. 1. 1 1 0 .06 1.  ± 0.02 0 8 ± 0.05 99 ± 0.02 09 ± 0.04 09 ± 0.04 .07 ± 0.02 1.08 ± 0.04 1.01 ± 0.03 1.01 ± 0.03 0.78 ± 0.00  0.69 ± 0. 6 0.67 ± 0
9 07 .9 0. 1. 1. 1 1 0 02 1.  ± 0.02 0 2 ± 0.08 98 ± 0.02 07 ± 0.02 07 ± 0.03 .03 ± 0.03 1.04 ± 0.04 1.03 ± 0.01 1.04 ± 0.01 1.12 ± 0.0  1.08 ± 0. 04 1.06 ± 0.

12 3 .8 .9 0. 0 0 1 .14 0.9  ± 0.003 0 0 ± 0.03 0 0 ± 0.003 87 ± 0.004 .84 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.81 ± 0.1  0.89 ± 0. 7 0.88 ± 0
15 2 .9 0. 1. 1. 0 5 0 .07 1.0  ± 0.01 0 1± 0.03 92 ± 0.01 02 ± 0.01 00 ± 0.01 .97 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.0  0.96 ± 0. 7 0.94 ± 0
18 6 .8 0. 1. 1. 1 2 0 005 1.0  ± 0.01 0 8 ± 0.02 95 ± 0.04 09 ± 0.02 08 ± 0.01 .05 ± 0.01 1.08 ± 0.01 1.01 ± 0.01 1.02 ± 0.003 1.01 ± 0.0  0.93 ± 0. 3 0.90 ± 0.
21 8 .7 0. 0. 0. 0 6 1 .11 0.8  ± 0.003 0 4 ± 0.01 83 ± 0.01 86 ± 0.02 85 ± 0.01 .85 ± 0.01 0.85 ± 0.01 0.85 ± 0.02 0.85 ± 0.01 0.79 ± 0.0  0.87 ± 0. 0 0.83 ± 0
24 9 .8 0. 1 0 0 1 00 .02 0.9  ± 0.02 0 1 ± 0.01 86 ± 0.02 .01 ± 0.03 .99 ± 0.02 .97 ± 0.01 0.99 ± 0.02 0.93 ± 0.01 0.94 ± 0.01 0.95 ± 0.0  0.90 ± 0. 1 0.86 ± 0
27 7 0. 1. 1. 1.  3 0 .06 0.98 ± 0.01 0. 9 ± 0.03 86 ± 0.03 03 ± 0.02 03 ± 0.03 00 ± 0.003 1.02 ± 0.01 0.92 ± 0.01 0.94 ± 0.003 1.05 ± 0.0  0.99 ± 0. 5 0.94 ± 0
Emission Line : Mn I 403.076 nm 

 Internal standards 
# non Co C C C 9 43 369 e  340 o 345 o 237 o 228.6 Ni 231 Ni 221 Ni 341 Ni 352 Rh 24 Rh 3 Rh 
3 98 .9 0. 0.9 0. .03 ± 0.09  ± 0.07 0.  ± 0.01 0 9 ± 0.02 99 ± 0.01 8 ± 0.003 96 ± 0.01 0.98 ± 0.01 0.96 ± 0.001 0.97 ± 0.01 0.98 ± 0.01 1.04 ± 0 1.01 1.00
6 16 .0 1. 1. 1. 1 2 0 .06 1.  ± 0.03 1 6 ± 0.07 10 ± 0.03 18 ± 0.05 18 ± 0.06 .20 ± 0.05 1.17 ± 0.06 1.11 ± 0.03 1.10 ± 0.01 0.87 ± 0.00  0.76 ± 0. 7 0.73 ± 0
9 08 .9 1. 1. 1. 1 2 00 .03 1.  ± 0.03 0 2 ± 0.08 01 ± 0.03 07 ± 0.02 07 ± 0.04 .06 ± 0.03 1.05 ± 0.04 1.04 ± 0.02 1.04 ± 0.01 1.14 ± 0.0  1.08 ± 0. 5 1.07 ± 0

12 8 .7 0. 0. 0. 0 .11 ± 0.17  ± 0.15 0.8  ± 0.01 0 6 ± 0.04 88 ± 0.01 82 ± 0.01 79 ± 0.02 .81 ± 0.01 0.79 ± 0.01 0.87 ± 0.02 0.87 ± 0.02 0.78 ± 0 0.85 0.83
15 9 .9 1. 1. 1. 1 4 0 .06 1.0  ± 0.01 0 7 ± 0.03 00 ± 0.01 08 ± 0.01 07 ± 0.01 .06 ± 0.01 1.05 ± 0.02 1.06 ± 0.02 1.05 ± 0.01 1.06 ± 0.0  1.01 ± 0. 5 1.00 ± 0
18 8 .8 0. 1. 1.  0 0 .01 1.0  ± 0.01 0 9 ± 0.03 98 ± 0.04 11 ± 0.03 10 ± 0.01 1.09 ± 0.02 1.09 ± 0.01 1.03 ± 0.003 1.03 ± 0.02 1.04 ± 0.00 3 0.94 ± 0. 5 0.91 ± 0
21 8 .7 0. 0. 0. 0  8 1 .12 0.8  ± 0.01 0 3 ± 0.02 85 ± 0.03 86 ± 0.01 85 ± 0.01 .87 ± 0.01 0.85 ± 0.01 0.85 ± 0.02 0.85 ± 0.001 0.80 ± 0.0  0.86 ± 0. 2 0.83 ± 0
24 8 .8 0. 1. 1. 1 2 0 .01 1.0  ± 0.02 0 9 ± 0.03 97 ± 0.03 11 ± 0.02 08 ± 0.02 .09 ± 0.02 1.09 ± 0.01 1.03 ± 0.01 1.03 ± 0.02 1.06 ± 0.0  0.99 ± 0. 2 0.96 ± 0
27 4 .8 0. 1. 1. 1 5 0 .07 1.0  ± 0.01 0 4 ± 0.03 94 ± 0.04 10 ± 0.02 10 ± 0.03 .09 ± 0.01 1.09 ± 0.01 0.99 ± 0.02 0.99 ± 0.01 1.13 ± 0.0  1.05 ± 0. 7 1.01 ± 0
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Emission Line : Mn II 257.610 nm 

 Internal standards 
# none Co 340 Co 345 Co 237 Co 228.6 Ni 231 Ni 221 Ni 341 Ni 352 Rh 249 Rh 343 Rh 369 
3 1.00 ± 0.01 1.01± 0.03 1.01 ± 0.01 1.00 ± 0.005 0.99 ± 0.01 1.00 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.06 ± 0.03 1.04 ± 0.09 1.02 ± 0.07 
6 0.94 ± 0.02 0.87 ± 0.03 0.89 ± 0.02 0.96 ± 0.004 0.96 ± 0.004 0.97 ± 0.02 0.96 ± 0.002 0.90 ± 0.04 0.90 ± 0.05 0.69 ± 0.03 0.61 ± 0.08 0.59 ± 0.08 
9 0.96 ± 0.01 0.82 ± 0.07 0.89 ± 0.02 0.96 ± 0.01 0.96 ± 0.02 0.94 ± 0.02 0.93 ± 0.03 0.93 ± 0.01 0.93 ± 0.03 1.01 ± 0.01 0.96 ± 0.02 0.95 ± 0.004 

12 1.04 ± 0.01 0.90 ± 0.04 1.03 ± 0.01 0.97 ± 0.01 0.94 ± 0.01 0.96 ± 0.01 0.93 ± 0.01 1.03 ± 0.02 1.03 ± 0.02 0.92 ± 0.13 1.01 ± 0.20 0.99 ± 0.17 
15 0.96 ± 0.01 0.86 ± 0.03 0.88 ± 0.01 0.96 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.93 ± 0.004 0.94 ± 0.01 0.93 ± 0.004 0.94 ± 0.04 0.90 ± 0.05 0.89 ± 0.06 
18 0.95 ± 0.02 0.79 ± 0.02 0.86 ± 0.04 0.97 ± 0.01 0.96 ± 0.004 0.96 ± 0.02 0.96 ± 0.003 0.91 ± 0.02 0.91 ± 0.01 0.91 ± 0.02 0.83 ± 0.02 0.80 ± 0.01 
21 0.99 ± 0.01 0.83 ± 0.02 0.96 ± 0.02 0.97 ± 0.01 0.96 ± 0.003 0.98 ± 0.01 0.96 ± 0.01 0.96 ± 0.02 0.96 ± 0.01 0.90 ± 0.08 0.98 ± 0.12 0.94 ± 0.13 
24 0.95 ± 0.01 0.78 ± 0.02 0.84 ± 0.02 0.97 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.003 0.90 ± 0.002 0.90 ± 0.01 0.92 ± 0.01 0.86 ± 0.02 0.83 ± 0.002 
27 0.90 ± 0.005 0.73 ± 0.02 0.81 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.94 ± 0.01 0.94 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.97 ± 0.04 0.91 ± 0.06 0.87 ± 0.06 
Emission Line : Mn II 259.373 nm 

 Internal standards 
# none Co 340 Co 345 Co 237 Co 228.6 Ni 231 Ni 221 Ni 341 Ni 352 Rh 249 Rh 343 Rh 369 
3 1.01 ± 0.01 1.02 ± 0.03 1.00 ± 0.01 1.01 ± 0.003 0.99 ± 0.01 1.00 ± 0.01 0.98 ± 0.004 1.00 ± 0.01 1.01 ± 0.01 1.06 ± 0.03 1.05 ± 0.09 1.03 ± 0.07 
6 0.95 ± 0.02 0.87 ± 0.03 0.88 ± 0.02 0.97 ± 0.05 0.96 ± 0.003 0.96 ± 0.02 0.96 ± 0.001 0.91 ± 0.04 0.90 ± 0.05 0.69 ± 0.03 0.61 ± 0.08 0.59 ± 0.08 
9 0.96 ± 0.01 0.82 ± 0.07 0.88 ± 0.02 0.96 ± 0.005 0.96 ± 0.02 0.94 ± 0.02 0.94 ± 0.03 0.93 ± 0.01 0.93 ± 0.02 1.00 ± 0.002 0.96 ± 0.02 0.95 ± 0.01 

12 1.05 ± 0.01 0.90 ± 0.04 1.02 ± 0.01 0.98 ± 0.02 0.95 ± 0.02 0.96 ± 0.01 0.94 ± 0.01 1.04 ± 0.02 1.04 ± 0.02 0.92 ± 0.13 1.01 ± 0.21 0.99 ± 0.18 
15 0.97 ± 0.01 0.86 ± 0.04 0.87 ± 0.01 0.96 ± 0.01 0.94 ± 0.02 0.93 ± 0.01 0.93 ± 0.001 0.94 ± 0.005 0.93 ± 0.01 0.94 ± 0.04 0.91 ± 0.05 0.90 ± 0.06 
18 0.96 ± 0.01 0.79 ± 0.02 0.85 ± 0.04 0.98 ± 0.02 0.97 ± 0.01 0.96 ± 0.02 0.97 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.91 ± 0.01 0.83 ± 0.03 0.81 ± 0.004 
21 1.00 ± 0.01 0.84 ± 0.02 0.95 ± 0.03 0.98 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 0.98 ± 0.02 0.97 ± 0.001 0.91 ± 0.08 0.99 ± 0.13 0.95 ± 0.14 
24 0.95 ± 0.01 0.77 ± 0.02 0.83 ± 0.02 0.97 ± 0.01 0.95 ± 0.01 0.94 ± 0.02 0.95 ± 0.05 0.90 ± 0.01 0.90 ± 0.02 0.91 ± 0.02 0.86 ± 0.03 0.83 ± 0.01 
27 0.91 ± 0.01 0.74 ± 0.03 0.80 ± 0.03 0.96 ± 0.02 0.96 ± 0.03 0.94 ± 0.01 0.95 ± 0.01 0.87 ± 0.01 0.87 ± 0.004 0.98 ± 0.04 0.92 ± 0.06 0.88 ± 0.06 
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Table 3.15. Normal Calibration and Internal Standard Calibration Results for Mn ion lines. All results are expressed as mg/L. 
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Table 3.16.  Normal Calibration and Internal Standard Calibration Results for Zn atom lines. All results are expressed as mg/L. 
 

Emission Line : Zn I 213.856 nm 
 Internal standards 

# none Co 340 Co 345 Co 237 Co 228.6 Ni 231 Ni 221 Ni 341 Ni 352 Rh 249 Rh 343 Rh 369 
3 1.00 ± 0.01 1.03 ± 0.01 1.01 ± 0.004 1.02 ± 0.01 1.01 ± 0.01 1.00 ± 0.03 1.00 ± 0.01 1.00 ± 0.02 1.02 ± 0.02 1.06 ± 0.05 1.05 ± 0.11 1.03 ± 0.09 
6 0.95 ± 0.03 0.89 ± 0.02 0.90 ± 0.03 0.99 ± 0.02 0.99 ± 0.02 0.97 ± 0.01 0.98 ± 0.01 0.92 ± 0.05 0.92 ± 0.05 0.69 ± 0.02 0.61 ± 0.08 0.59 ± 0.07 
9 0.96 ± 0.01 0.83 ± 0.07 0.89 ± 0.02 0.97 ± 0.01 0.97 ± 0.02 0.94 ± 0.02 0.95 ± 0.02 0.93 ± 0.01 0.94 ± 0.03 1.01 ± 0.01 0.97 ± 0.03 0.96 ± 0.003 

12 0.96 ± 0.01 0.84 ± 0.02 0.95 ± 0.01 0.91 ± 0.004 0.88 ± 0.001 0.88 ± 0.01 0.87 ± 0.02 0.95 ± 0.004 0.96 ± 0.02 0.85 ± 0.10 0.94 ± 0.17 0.92 ± 0.14 
15 0.96 ± 0.01 0.87 ± 0.03 0.88 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.93 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.05 0.92 ± 0.06 0.91 ± 0.07 
18 0.93 ± 0.01 0.78 ± 0.01 0.84 ± 0.03 0.97 ± 0.02 0.97 ± 0.02 0.94 ± 0.01 0.96 ± 0.01 0.89 ± 0.02 0.91 ± 0.004 0.90 ± 0.02 0.83 ± 0.02 0.80 ± 0.01 
21 0.91 ± 0.01 0.77 ± 0.02 0.87 ± 0.02 0.91 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.89 ± 0.02 0.89 ± 0.01 0.83 ± 0.07 0.91 ± 0.12 0.87 ± 0.12 
24 0.92 ± 0.01 0.76 ± 0.02 0.81 ± 0.01 0.95 ± 0.004 0.93 ± 0.003 0.92 ± 0.02 0.93 ± 0.01 0.88 ± 0.01 0.89 ± 0.02 0.89 ± 0.02 0.84 ± 0.03 0.81 ± 0.01 
27 0.89 ± 0.003 0.73 ± 0.02 0.79 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.92 ± 0.01 0.94 ± 0.02 0.85 ± 0.01 0.86 ± 0.01 0.96 ± 0.04 0.91 ± 0.06 0.87 ± 0.06 
Emission Line : Zn I 334.502 nm 

 Internal standards 
# none Co 340 Co 345 Co 237 Co 228.6 Ni 231 Ni 221 Ni 341 Ni 352 Rh 249 Rh 343 Rh 369 
3 1.15 ± 0.18 1.13 ± 0.16 1.14 ± 0.18 1.18 ± 0.17 1.16 ± 0.17 1.17 ± 0.18 1.15 ± 0.16 1.16 ± 0.16 1.16 ± 0.18 1.04 1.14 1.10 
6 0.99 ± 0.10 0.87 ± 0.14 0.91 ± 0.09 1.05 ± 0.10 1.05 ± 0.10 1.04 ± 0.11 1.04 ± 0.10 0.98 ± 0.07 0.92 ± 0.09 0.65 ± 0.07 0.61 ± 0.14 0.58 ± 0.13 
9 1.17 ± 0.18 1.00 ± 0.17 1.07 ± 0.17 1.18 ± 0.16 1.20 ± 0.15 1.15 ± 0.16 1.17 ± 0.16 1.14 ± 0.16 1.11 ± 0.22 1.14 ± 0.19 1.16 ± 0.20 1.13 ± 0.16 

12 1.07 ± 0.39 0.88 ± 0.38 1.04 ± 0.38 1.03 ± 0.33 0.99 ± 0.33 0.99 ± 0.31 0.98 ± 0.31 1.08 ± 0.36 1.05 ± 0.39 1.36 1.66 1.59 
15 1.01 ± 0.16 0.95 ± 0.14 0.97 ± 0.08 1.04 ± 0.15 1.03 ± 0.15 1.00 ± 0.13 1.00 ± 0.14 1.02 ± 0.14 0.96 ± 0.15 0.89 ± 0.17 0.91 ± 0.15 0.89 ± 0.14 
18 1.19 ± 0.32 1.12 ± 0.38 1.26 ± 0.46 1.45 ± 0.39 1.44 ± 0.40 1.40 ± 0.42 1.43 ± 0.40 1.35 ± 0.39 1.35 ± 0.44 1.05 ± 0.31 1.00 ± 0.24 0.97 ± 0.27 
21 1.22 ± 0.07 1.05 ± 0.16 1.24 ± 0.19 1.29 ± 0.13 1.28 ± 0.14 1.28 ± 0.15 1.27 ± 0.15 1.28 ± 0.14 1.26 ± 0.15 1.12 ± 0.32 1.31 ± 0.41 1.25 ± 0.41 
24 1.23 ± 0.16 1.02 ± 0.15 1.13 ± 0.18 1.34 ± 0.18 1.32 ± 0.17 1.30 ± 0.15 1.32 ± 0.16 1.25 ± 0.15 1.24 ± 0.16 1.26 ± 0.07 1.25 ± 0.06 1.19 ± 0.08 
27 1.18 ± 0.03 0.95 ± 0.07 1.07 ± 0.14 1.32 ± 0.12 1.33 ± 0.12 1.28 ± 0.10 1.30 ± 0.10 1.19 ± 0.10 1.17 ± 0.11 1.28 ± 0.21 1.26 ± 0.23 1.20 ± 0.23 
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Table 3.17.  Normal Calibration and Internal Standard Calibration Results for Zn ion lines. All results are expressed as mg/L. 
 

Emission Line : Zn II 202.551 nm 
 Internal standards 

# none Co 340 Co 345 Co 237 Co 228.6 Ni 231 Ni 221 Ni 341 Ni 352 Rh 249 Rh 343 Rh 369 
3 1.00 ± 0.01 1.03 ± 0.01 1.01 ± 0.01 1.02 ± 0.01 1.01 ± 0.01 1.00 ± 0.03 1.00 ± 0.01 0.99 ± 0.01 1.00 ± 0.02 1.06 ± 0.04 1.05 ± 0.10 1.03 ± 0.08 
6 0.99 ± 0.06 0.92 ± 0.04 0.93 ± 0.06 1.03 ± 0.04 1.02 ± 0.04 1.01 ± 0.05 1.02 ± 0.04 0.95 ± 0.08 0.94 ± 0.08 0.71 ± 0.05 0.63 ± 0.10 0.61 ± 0.10 
9 1.10 ± 0.05 0.95 ± 0.08 1.03 ± 0.05 1.12 ± 0.05 1.12 ± 0.04 1.08 ± 0.05 1.09 ± 0.05 1.07 ± 0.06 1.06 ± 0.08 1.15 ± 0.08 1.11 ± 0.09 1.10 ± 0.06 

12 1.17 ± 0.03 1.02 ± 0.01 1.16 ± 0.03 1.11 ± 0.02 1.07 ± 0.02 1.07 ± 0.03 1.06 ± 0.03 1.16 ± 0.02 1.15 ± 0.03 1.03 ± 0.10 1.14 ± 0.18 1.11 ± 0.15 
15 1.18 ± 0.01 1.06 ± 0.04 1.07 ± 0.01 1.19 ± 0.01 1.17 ± 0.02 1.14 ± 0.01 1.15 ± 0.0003 1.15 ± 0.005 1.12 ± 0.01 1.15 ± 0.05 1.12 ± 0.06 1.11 ± 0.07 
18 1.11 ± 0.01 0.93 ± 0.01 1.01 ± 0.04 1.16 ± 0.02 1.15 ± 0.02 1.12 ± 0.01 1.14 ± 0.01 1.07 ± 0.02 1.06 ± 0.004 1.07 ± 0.03 0.99 ± 0.02 0.96 ± 0.01 
21 1.14 ± 0.03 0.97 ± 0.04 1.09 ± 0.05 1.13 ± 0.03 1.12 ± 0.03 1.12 ± 0.04 1.12 ± 0.04 1.11 ± 0.04 1.09 ± 0.02 1.03 ± 0.12 1.13 ± 0.18 1.09 ± 0.19 
24 1.16 ± 0.01 0.96 ± 0.003 1.03 ± 0.02 1.20 ± 0.03 1.18 ± 0.02 1.16 ± 0.02 1.18 ± 0.02 1.11 ± 0.02 1.10 ± 0.02 1.12 ± 0.001 1.06 ± 0.01 1.02 ± 0.01 
27 1.11 ± 0.01 0.91 ± 0.02 0.99 ± 0.05 1.19 ± 0.04 1.19 ± 0.05 1.15 ± 0.02 1.17 ± 0.03 1.05 ± 0.02 1.05 ± 0.02 1.19 ± 0.06 1.13 ± 0.09 1.08 ± 0.09 
Emission Line : Zn II 206.200 nm 

 Internal standards 
# none Co 340 Co 345 Co 237 Co 228.6 Ni 231 Ni 221 Ni 341 Ni 352 Rh 249 Rh 343 Rh 369 
3 1.01 ± 0.002 1.02 ± 0.01 1.02 ± 0.002 1.01 ± 0.01 1.00 ± 0.01 0.99 ± 0.02 0.99 ± 0.01 1.00 ± 0.01 1.01 ± 0.02 1.07 ± 0.04 1.05 ± 0.10 1.03 ± 0.08 
6 1.03 ± 0.06 0.94 ± 0.03 0.97 ± 0.06 1.05 ± 0.04 1.04 ± 0.04 1.04 ± 0.04 1.04 ± 0.04 0.99 ± 0.08 0.98 ± 0.09 0.74 ± 0.04 0.65 ± 0.10 0.62 ± 0.09 
9 1.09 ± 0.03 0.93 ± 0.06 1.02 ± 0.03 1.09 ± 0.04 1.09 ± 0.02 1.05 ± 0.03 1.06 ± 0.03 1.06 ± 0.05 1.06 ± 0.06 1.13 ± 0.04 1.08 ± 0.06 1.06 ± 0.03 

12 1.16 ± 0.02 1.00 ± 0.02 1.15 ± 0.01 1.08 ± 0.01 1.04 ± 0.01 1.04 ± 0.02 1.04 ± 0.02 1.14 ± 0.01 1.15 ± 0.02 1.02 ± 0.12 1.11 ± 0.20 1.09 ± 0.16 
15 1.15 ± 0.02 1.02 ± 0.04 1.05 ± 0.02 1.14 ± 0.01 1.12 ± 0.02 1.09 ± 0.02 1.10 ± 0.01 1.12 ± 0.02 1.10 ± 0.02 1.12 ± 0.07 1.08 ± 0.08 1.06 ± 0.09 
18 1.10 ± 0.02 0.91 ± 0.02 0.99 ± 0.05 1.13 ± 0.01 1.12 ± 0.01 1.09 ± 0.02 1.11 ± 0.01 1.05 ± 0.02 1.05 ± 0.01 1.05 ± 0.03 0.96 ± 0.02 0.93 ± 0.01 
21 1.09 ± 0.01 0.91 ± 0.02 1.05 ± 0.03 1.07 ± 0.01 1.06 ± 0.01 1.06 ± 0.01 1.06 ± 0.01 1.06 ± 0.02 1.06 ± 0.001 0.99 ± 0.10 1.08 ± 0.14 1.03 ± 0.15 
24 1.11 ± 0.01 0.90 ± 0.02 0.98 ± 0.02 1.13 ± 0.003 1.11 ± 0.004 1.09 ± 0.02 1.11 ± 0.01 1.06 ± 0.01 1.06 ± 0.02 1.07 ± 0.03 1.00 ± 0.03 0.97 ± 0.02 
27 1.08 ± 0.02 0.87 ± 0.04 0.96 ± 0.04 1.13 ± 0.02 1.14 ± 0.02 1.10 ± 0.01 1.12 ± 0.005 1.02 ± 0.02 1.03 ± 0.01 1.17 ± 0.04 1.09 ± 0.07 1.04 ± 0.07 
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3.3.3.1. Test for Significance 

 
 Further data manipulation was warranted to determine the level of significant 

improvement for our results. In order to only consider data that was well above the limit 

of detection for our ICP-OES instrument, only data from solutions containing 1 mg/L 

were further considered in our assessments of whether or not significant improvements 

had indeed obtained. Furthermore, to make the data set more manageable, firstly for the 

normal calibration results the values that were outside of the 5% range of 1 mg/L 

(between the 0.95 and 1.05 mg/L) were sorted out and these were considered as the 

samples requiring improvement. Then the internal standard calibration results were 

checked only for the ones that had a problem with normal calibration. Concentration 

values within this 5% range were generally assumed to be reliable (within experimental 

error) and therefore did not warrant correction using internal standardization. 

 In order to determine whether these improvements were significant or not a test 

for comparison (Student’s t test) of the two means obtained from the normal calibration 

and internal standard calibration was applied.  

 Standard equations for t-test in the comparison of two means are as follows: 
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 Here x1 and x2 are defined as the averages for two sets of data consisting of n1 

and n2 measurements with standard deviations s1 and s2. For our case x1 values were 

taken as averages from the normal calibration values and x2 values were taken as 

averages from the corrected values with internal standardization, s1 and s2 are taken as 

the standard deviations from normal calibration and corrected concentrations.  

 According to this test, if the calculated t is greater than the tabulated t at the 

considered confidence level (95% or 90%), the two results are considered to be 

different, i.e. a significant improvement thus observed with the use of internal 
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standardization. Comparison was done according to the tabulated t values for n1 + n2 – 2 

(i.e. 4) degrees of freedom which is 2.132 at the 90% confidence level. 

 In the Tables through 3.16 and 3.27, these t-tests applied for the selected 

samples are illustrated. “NC” stands for the value obtained by the normal calibration in 

mg/L and the values that fall in the range of 5% (0.95 – 1.05 mg/L) in some cases the 

values that are in the 2% range (0.98 – 1.02 mg/L) were also checked for the 

significance of improvement. “ND” is used to indicate that the results obtained by 

internal standardization are not different from the normal calibration values and hence 

no significant improvement was obtained so these values are represented as ND-NI (no 

difference-no improvement). Similarly, “D” indicates that the values obtained by 

normal calibration and internal standardization were significantly different and an 

improvement had been achieved with the proposed internal standards therefore “DI” 

sign is used for these values.  

 

3.3.3.2. Internal Standardization for the Determination of Cd 

 
 Tables 3.18 - 3.21 show the t-test values for the Cd lines. 
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Table 3.18.  t-test values for Cd line at 326.106 nm (all concentrations are in mg/L) 
 
Emission line: Cd I 326.106 nm 

 NC 
Co 

340 

Co 

345 

Co 

237 

Co 

228.6 

Ni 

231 

Ni 

221 

Ni 

341 

Ni 

352 

Rh 

249 

Rh 

343 

Rh 

369 

Sample 9 0.93   0.95 0.99        

t calc    0.34 1.36        

t tab (4) 90%    2.13 2.13        

result    NDNI NDNI        

Sample 12 0.81  0.88     0.87 0.86    

t calc   0.40     0.39 0.29    

t tab (4) 90%   2.13     2.13 2.13    

result   NDNI     NDNI NDNI    

Sample 18 0.81   0.91 0.90  0.87      

t calc    1.96 2.06  1.42      

t tab (4) 90%    2.13 2.13  2.13      

result    NDNI NDNI NDNI NDNI      

Sample 24 0.95   1.00 0.98 0.96 0.96 0.96 0.96    

t calc    0.38 0.23 0.11 0.11 0.10 0.05    

t tab (4) 90%    2.13 2.13 2.13 2.13 2.13 2.13    

result    NDNI NDNI NDNI NDNI NDNI NDNI    

Sample 27 0.79   0.87 0.87  0.83      

t calc    2.19 2.12  1.53      

t tab (4) 90%    2.13 2.13 2.13 2.13      

result    DI         

 

 

Table 3.19.  t-test values for Cd line at 228.802 nm (all concentrations are in mg/L) 
 

Emission line: Cd I 228.802 nm 

 NC 
Co 

340 

Co 

345 

Co 

237 

Co 

228.6 

Ni 

231 

Ni 

221 

Ni 

341 

Ni 

352 

Rh 

249 

Rh 

343 

Rh 

369 

Sample 24 0.94   0.96 0.95  0.95      

t calc    3.98 2.02  1.70      

t tab (4) 90%    2.13 2.13  2.13      

result    DI NDNI  NDNI      

Sample 27 0.91   0.97 0.97  0.96   0.94   

t calc    2.76 2.53  2.50   2.46   

t tab (4) 90%    2.13 2.13  2.13   2.13   

result    DI DI  DI   DI   
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Table 3.20. t-test values for Cd line at 226.502 nm (all concentrations are in mg/L) 
 

Emission line: Cd II 226.502 nm 

 NC 
Co 

340 

Co 

345 

Co 

237 

Co 

228.6 

Ni 

231 

Ni 

221 

Ni 

341 

Ni 

352 

Rh 

249 

Rh 

343 

Rh 

369 

Sample 6 0.97   1.00 0.98  0.99      

t calc    1.52 0.81  0.95      

t tab (4) 90%    2.13 2.13  2.13      

result    NDNI NDNI  NDNI      

Sample 12 1.07  1.04 1.00 0.96 0.96 0.96 1.06 1.06  1.01 0.99 

t calc   6.82 11.00 14.13 22.77 16.66 1.38 2.23  0.58 0.93 

t tab (4) 90%   2.13 2.13 2.13 2.13 2.13 2.13 2.13  2.13 2.13 

result   DI DI DI DI DI NDNI DI  NDNI NDNI 

Sample 15 1.03    1.00 0.98 0.99 1.00 0.98 0.96   

t calc     5.55 5.94 3.42 2.11 4.55 2.24   

t tab (4) 90%     2.13 2.13 2.13 2.13 2.13 2.13   

result     DI DI DI NDNI DI DI   

Sample 27 0.95   1.01 1.00 0.97 0.99   0.98   

t calc    2.91 2.12 1.25 2.17   2.39   

t tab (4) 90%    2.13 2.13 2.13 2.13   2.13   

result    DI NDNI NDNI DI   DI   
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Table 3.21.  t-test values for Cd line at 214.438 nm (all concentrations are in mg/L) 
 

Emission line: Cd II 214.438 nm 

 NC 
Co 

340 

Co 

345 

Co 

237 

Co 

228.6 

Ni 

231 

Ni 

221 

Ni 

341 

Ni 

352 

Rh 

249 

Rh 

343 

Rh 

369 

Sample 9 1.05     1.01   1.02   1.01 

t calc      5.85   1.68   11.51 

t tab (4) 90%      2.13   2.13   2.13 

result      DI   NDNI   DI 

Sample 12 1.11 0.95 1.08 1.04 1.00 1.00 1.00    1.05 1.03 

t calc  8.30 8.92 21.64 25.18 22.69 13.37    0.48 0.64 

t tab (4) 90%  2.13 2.13 2.13 2.13 2.13 2.13    2.13 2.13 

result  DI DI DI DI DI DI    NDNI NDNI

Sample 15 1.08 0.96 0.96  1.05 1.03 1.04 1.05 1.03 1.01 0.98 0.97 

t calc  6.96 18.39  5.51 10.54 4.28 2.90 6.92 2.82 2.81 2.85 

t tab (4) 90%  2.13 2.13  2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 

result  DI DI  DI DI DI DI DI DI DI DI 

Sample 18 1.05       1.00 1.00    

t calc        2.52 3.52    

t tab (4) 90%        2.13 2.13    

result        DI DI    

Sample 21 1.05  0.99  1.01 1.01 1.02 1.02 1.01  1.01  

t calc   4.77  5.23 5.67 4.83 2.56 3.63  0.52  

t tab (4) 90%   2.13  2.13 2.13 2.13 2.13 2.13  2.13  

result   DI  DI DI DI DI DI  NDNI  

Sample 24 1.06     1.04  1.02 1.01 0.99 0.95  

t calc      1.13  3.28 3.00 3.54 5.12  

t tab (4) 90%      2.13  2.13 2.13 2.13 2.13  

result      NDNI  DI DI DI DI  

Sample 27 1.03        0.98 0.99   

t calc         4.00 1.79   

t tab (4) 90%         2.13 2.13   

result         DI NDNI   

 

 When the normal and internal standard calibration Tables for the Cd lines were 

examined, it is observed that values closer to 1 mg/L are obtained when normal 

calibration except for the Cd 326 atom line. By considering the t-test results obtained it 

can be said that, internal standardization for the Cd 326 line did not work very well and 

only the Co 237 ion line was successful for correcting for the interference on sample 27 

(25% acid, 0.3% salt). For the Cd I 228 line, the ion lines of Co at 237 nm and 228.6 

nm, Ni at 221 nm and Rh at 249 nm showed significant improvements for samples 24 
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(25% acid, 0.1% salt) and 27 (25% acid, 0.3% salt) but the results for sample 21 (25% 

acid, no salt) couldn’t be corrected. For the Cd II 226 line, all proposed internal 

standards except the atom lines of Co at 340 nm, Ni at 341 nm, and of Rh at both 343 

nm and at 369 nm improved the measured concentration values for sample 12 (12% 

acid, no salt) significantly. The other concentrations which were in the 5% determined 

range but outside of 2% range (i.e., samples 15 (12% acid, 0.1% salt) and 27 (25% acid, 

0.3% salt) with the concentrations of 1.03 and 0.95 mg/L respectively) were also 

improved by the Co II 237, Co II 228.6, Ni II 231, Ni II 221, Ni I 352 and Rh II 249 

lines. For the Cd 214 ion line, normal calibration values were higher than the true value 

especially in the presence of salt and acid and all chosen lines helped to correct these 

positive errors for samples 12 (12% acid, no salt), 15 (12% acid, 0.1% salt) and 24 

(25% acid, 0.1% salt). There were also some significant improvements for the 

concentration values that were within 5 and 2% determined range for samples 9 (no 

acid, 0.3% salt), 18 (12% acid, 0.3% salt), 21 (25% acid, no salt) and 27 (25% acid, 

0.3% salt). 

 In summary, for Cd it can be seen that using the Co atom lines at 340 and 345 

nm and Rh atom lines at 343 and 369 nm for internal standard correction did not show 

much improvement but the Co ion lines at 237 and 228.6 nm and Ni lines at 221, 231 

and 352 nm and the Rh ion line at 249 nm were successful in correcting for acid/salt 

interferences when improvement was needed. The greatest improvements were seen for 

the Cd 226 and Cd 214 ion lines. 

 

3.3.3.3. Internal Standardization for the Determination of Mn 

 
 Tables 3.22 - 3.25 show the t-test values to determine the significance of internal 

standard corrections for the Mn lines. 
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Table 3.22.  t-test values for the Mn line at 279.482 nm (all concentrations are in mg/L) 
 

Emission line: Mn I 279.482 nm 

 NC 
Co 

340 

Co 

345 

Co 

237 

Co 

228.6 

Ni 

231 

Ni 

221 

Ni 

341 

Ni 

352 

Rh 

249 

Rh 

343 

Rh 

369 

Sample 6 1.07 0.98 0.99     1.01 1.01    

t calc  3.00 5.67     2.58 2.70    

t tab (4) 90%  2.13 2.13     2.13 2.13    

result  DI DI     DI DI    

Sample 9 1.07  0.98   1.03 1.04 1.03 1.04    

t calc   4.50   2.15 1.15 2.77 2.21    

t tab (4) 90%   2.13   2.13 2.13 2.13 2.13    

result   DI   DI NDNI DI DI    

Sample 18 1.06  0.95   1.05  1.01 1.02 1.01   

t calc   4.96   1.91  5.70 7.52 4.16   

t tab (4) 90%   2.13   2.13  2.13 2.13 2.13   

result   DI   NDNI  DI DI DI   

 
 
Table 3.23.  t-test values for the Mn line at 403.076 nm (all concentrations are in mg/L) 
 

Emission line: Mn I 403.076 nm 

 NC 
Co 

340 

Co 

345 

Co 

237 

Co 

228.6 

Ni 

231 

Ni 

221 

Ni 

341 

Ni 

352 

Rh 

249 

Rh 

343 

Rh 

369 

Sample 9 1.08  1.01    1.05 1.04 1.04    

t calc   2.78    1.01 1.71 2.18    

t tab (4) 90%   2.13    2.13 2.13 2.13    

result   DI    NDNI NDNI DI    

Sample15 1.09 0.97 1.00    1.05  1.05  1.01 1.00 

t calc  6.04 11.95    3.97  5.48  2.51 2.53 

t tab (4) 90%  2.13 2.13    2.13  2.13  2.13 2.13 

result  DI DI    DI  DI  DI DI 

Sample 18 1.08  0.98     1.03 1.03 1.04   

t calc   3.60     6.12 4.12 5.49   

t tab (4) 90%   2.13     2.13 2.13 2.13   

result   DI     DI DI DI   

Sample 24 1.08  0.97     1.03 1.03  0.99 0.96 

t calc   5.01     3.39 3.18  5.06 9.53 

t tab (4) 90%   2.13     2.13 2.13  2.13 2.13 

result   DI     DI DI  DI DI 

Sample 27 1.04       0.99 0.99   1.01 

t calc        4.15 5.31   0.84 

t tab (4) 90%        2.13 2.13   2.13 

result        DI DI   NDNI 
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Table 3.24.  t-test values for the Mn line at 257.610 nm (all concentrations are in mg/L) 
 

Emission line: Mn II 257.610 nm 

 NC 
Co 

340 

Co 

345 

Co 

237 

Co 

228.6 

Ni 

231 

Ni 

221 

Ni 

341 

Ni 

352 

Rh 

249 

Rh 

343 

Rh 

369 

Sample 6 0.94   0.96 0.96 0.97 0.96      

t calc    1.77 1.40 1.68 1.27      

t tab (4) 90%    2.13 2.13 2.13 2.13      

result    NDNI NDNI NDNI NDNI      

Sample 9 0.96         1.01   

t calc          5.86   

t tab (4) 90%          2.13   

result          DI   

Sample 12 1.04          1.01 0.99 

t calc           0.31 0.59 

t tab (4) 90%           2.13 2.13 

result           NDNI NDNI

Sample 18 0.95   0.97         

t calc    2.18         

t tab (4) 90%    2.13         

result    DI         

Sample 24 0.95   0.97         

t calc    1.97         

t tab (4) 90%    2.13         

result    NDNI         

Sample 27 0.90   0.95 0.95 0.94 0.94   0.97   

t calc    3.19 2.76 7.48 5.57   2.85   

t tab (4) 90%    2.13 2.13 2.13 2.13   2.13   

result    DI DI DI DI   DI   
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Table 3.25.  t-test values for the Mn line at 259.373 nm (all concentrations are in mg/L) 
 

Emission line: Mn II 259.373 nm 

 NC 
Co 

340 

Co 

345 

Co 

237 

Co 

228.6 

Ni 

231 

Ni 

221 

Ni 

341 

Ni 

352 

Rh 

249 

Rh 

343 

Rh 

369 

Sample 6 0.95   0.97         

t calc    1.60         

t tab (4) 90%    2.13         

result    NDNI         

Sample 9 0.96         1.00   

T calc          5.66   

T tab (..) 90%          2.13   

comment          DI   

Sample 12 1.05  1.02 0.98       1.01 0.99 

t calc   2.89 5.99       0.32 0.57 

t tab (4) 90%   2.13 2.13       2.13 2.13 

result   DI DI       NDNI NDNI

Sample 18 0.96   0.98 0.97  0.97      

t calc    1.75 1.81  1.19      

t tab (4) 90%    2.13 2.13  2.13      

result    NDNI NDNI  NDNI      

Sample 24 0.95   0.97         

t calc    2.22         

t tab (4) 90%    2.13         

result    DI         

Sample 27 0.91   0.96 0.96  0.95   0.98   

t calc    3.63 3.07  6.36   2.85   

t tab (4) 90%    2.13 2.13  2.13   2.13   

result    DI DI  DI   DI   

 

 For the Mn atom line at 279 nm, using the atom lines for Co at 340 and 345 nm 

and for Ni at 341 and at 352 nm were successful as expected from the closeness of these 

two lines in the PCA plots. Although they are located very far from each other in the 

score plot, the Ni II 231 line was also helpful for correcting the interferences for this 

line. The Rh II 249 line worked only for correction in the determination of Mn in 

sample 18 (12% acid, 0.3% salt). The inaccuracies for samples 12 (12% acid, no salt) 

and 21 (25% acid, no salt) could not be corrected by using any of these internal 

standards. 

 For the other selected Mn atom line at 403 nm, the values obtained by normal 

calibration were outside of the determined range and significant improvements were 
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obtained by using the Co I 340, Co I 345, Ni II 221, Ni I 341, Ni I 352, Rh II 249, Rh I 

343, and Rh I 369 nm lines as the internal standards. The problematic samples 12 (12% 

acid, no salt) and 21 (25% acid, no salt) could not be corrected by using these proposed 

internal standards. The concentration values for sample 27 which was outside of the 2% 

accepted range was also corrected by the Ni atom lines at 341 nm and 352 nm. The 

normal calibration results for the Mn 257 and 259 ion lines were already within the 5% 

accepted range except for samples 6 (no acid, 0.1% salt) and 27 (25% acid, 0.3% salt) 

showing no need for internal standard correction. The Co ion lines (237 and 228.6 nm), 

the Ni ion line at 221 nm and the Rh ion line at 249 nm proved useful for correction of 

quantitative results for Mn ion lines analyses. For the Mn 257 nm line, the Ni 231 nm 

ion line (both showing similarity according to the score plot) also proved to be useful. 

In addition, the concentration results of samples between 9 and 24 were between the 5 

and 2% determined range for Mn ion lines. Among these samples significant 

improvements were achieved for sample 9 (no acid, 0.3%salt) with the Rh II 249 line. 

For the Mn 257 line, the Co 237 ion line was successful in correcting the inaccuracy of 

sample 18 (12% acid, 0.3% salt). For the Mn 259 line, the Co II 237 and Co I 345 lines 

helped to improve the determined values for samples 12 (12% acid, no salt) and 24 

(25% acid, 0.1% salt). 

 Among the selected internal standards, Co I 345 nm, Ni I 341 nm and Ni I 352 

nm were successful in particular for the Mn atom lines, Co II 237 was successful only 

for Mn ion lines, and Rh II 249 showed significant improvements both for the Mn atom 

and ion lines. 

 

3.3.3.4. Internal Standardization for the Determination of Zn 

 
Tables 3.26 - 3.29 illustrate the t-tests applied for the Zn lines. 
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Table 3.26.  t-test values for the Zn line at 213.856 nm (all concentrations are in mg/L) 
 

Emission line: Zn I 213.856 nm 

 NC 
Co 

340 

Co 

345 

Co 

237 

Co 

228.6 

Ni 

231 

Ni 

221 

Ni 

341 

Ni 

352 

Rh 

249 

Rh 

343 

Rh 

369 

Sample 6 0.95   0.99 0.99 0.97 0.98      

t calc    2.03 1.93 1.32 1.56      

t tab (4) 90%    2.13 2.13 2.13 2.13      

result    NDNI NDNI NDNI NDNI      

Sample 9 0.96   0.97 0.97     1.01 0.97  

t calc    1.61 1.46     4.82 0.92  

t tab (4) 90%    2.13 2.13     2.13 2.13  

result    NDNI NDNI     DI NDNI  

Sample 15 0.96   0.97         

t calc    2.10         

t tab (4) 90%    2.13         

result    NDNI         

Sample 18 0.93   0.97 0.97  0.96      

t calc    3.36 3.17  2.98      

t tab (4) 90%    2.13 2.13  2.13      

result    DI DI  DI      

Sample 24 0.92   0.95         

t calc    6.55         

t tab (4) 90%    2.13         

result    DI         

Sample 27 0.89   0.96 0.96  0.94   0.96   

t calc    3.81 3.35  5.57   3.23   

t tab (4) 90%    2.13 2.13  2.13   2.13   

result    DI DI  DI   DI   
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Table 3.27.  t-test values for the Zn line at 334.502 nm (all concentrations are in mg/L) 
 

Emission line: Zn I 334.502 nm 

 NC 
Co 

340 

Co 

345 

Co 

237 

Co 

228.6 

Ni 

231 

Ni 

221 

Ni 

341 

Ni 

352 

Rh 

249 

Rh 

343 

Rh 

369 

Sample 9 1.17 1.00           

t calc  1.20           

t tab (4) 90%  2.13           

result  NDNI           

Sample 12 1.07  1.04 1.03 0.99 0.99 0.98  1.05    

t calc   0.09 0.15 0.27 0.28 0.33  0.06    

t tab (4) 90%   2.13 2.13 2.13 2.13 2.13  2.13    

result   NDNI NDNI NDNI NDNI NDNI NDNI NDNI    

Sample 18 1.19         1.05 1.00 0.97 

t calc          0.53 0.80 0.89 

t tab (4) 90%          2.13 2.13 2.13 

result          NDNI NDNI NDNI

Sample 21 1.22 1.05           

t calc  1.62           

t tab (4) 90%  2.13           

result  NDNI           

Sample 24 1.23 1.02           

t calc  1.62           

t tab (4) 90%  2.13           

result  NDNI           

Sample 27 1.18 0.95           

t calc  5.24           

t tab (4) 90%  2.13           

result  DI           
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Table 3.28.  t-test values for the Zn line at 202.551 nm (all concentrations are in mg/L) 
 

Emission line: Zn II 202.551 nm 

 NC 
Co 

340 

Co 

345 

Co 

237 

Co 

228.6 

Ni 

231 

Ni 

221 

Ni 

341 

Ni 

352 

Rh 

249 

Rh 

343 

Rh 

369 

Sample 9 1.10 0.95 1.03          

t calc  2.71 1.94          

t tab (4) 90%  2.13 2.13          

result  DI NDNI          

Sample 12 1.17 1.02        1.03   

t calc  8.47        2.29   

t tab (4) 90%  2.13        2.13   

result  DI        DI   

Sample 18 1.11  1.01        0.99 0.96 

t calc   4.66        8.24 18.32 

t tab (4) 90%   2.13        2.13 2.13 

result   DI        DI DI 

Sample 21 1.14 0.97        1.03   

t calc  5.84        1.49   

t tab (4) 90%  2.13        2.13   

result  DI        NDNI   

Sample 24 1.16 0.96 1.03         1.02 

t calc  27.30 11.21         13.06 

t tab (4) 90%  2.13 2.13         2.13 

result  DI DI         DI 

Sample 27 1.11  0.99     1.05 1.05    

t calc   4.26     3.95 4.21    

t tab (4) 90%   2.13     2.13 2.13    

result   DI     DI DI    
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Table 3.29.  t-test values for the Zn line at 206.200 nm (all concentrations are in mg/L) 
 

Emission line: Zn II 206.200 nm 

 NC 
Co 

340 

Co 

345 

Co 

237 

Co 

228.6 

Ni 

231 

Ni 

221 

Ni 

341 

Ni 

352 

Rh 

249 

Rh 

343 

Rh 

369 

Sample 6 1.03       0.99 0.98    

t calc        0.72 0.82    

t tab (4) 90%        2.13 2.13    

result        NDNI NDNI    

Sample 9 1.09  1.02   1.05       

t calc   2.92   1.55       

t tab (4) 90%   2.13   2.13       

result   DI   NDNI       

Sample 12 1.16 1.00   1.04 1.04 1.04   1.02   

t calc  9.67   11.78 8.72 8.06   2.09   

t tab (4) 90%  2.13   2.13 2.13 2.13   2.13   

result  DI   DI DI DI   NDNI   

Sample 15 1.15 1.02 1.05          

t calc  5.60 7.17          

t tab (4) 90%  2.13 2.13          

result  DI DI          

Sample 18 1.10  0.99     1.05 1.05 1.05 0.96  

t calc   3.65     3.31 4.48 2.83 8.77  

t tab (4) 90%   2.13     2.13 2.13 2.13 2.13  

result   DI     DI DI DI DI  

Sample 21 1.09  1.05       0.99  1.03 

t calc   2.14       1.82  0.69 

t tab (4) 90%   2.13       2.13  2.13 

result   DI       NDNI  NDNI

Sample 24 1.11  0.98        1.00 0.97 

t calc   10.02        5.10 12.46 

t tab (4) 90%   2.13        2.13 2.13 

result   DI        DI DI 

Sample 27 1.08  0.96     1.02 1.03   1.04 

t calc   4.82     3.92 4.80   0.87 

t tab (4) 90%   2.13     2.13 2.13   2.13 

result   DI     DI DI   NDNI

  

 The values determined by normal calibration for all Zn lines generally showed 

inaccuracies of 5% or above thus requiring improvement. Even though the Ni 231 ion 

line is located very close to the Zn 213 line in the score plot, it didn’t work well for the 

validation study. But another Ni ion line at 221 nm helped to correct the effect of the 
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acid/salt matrix interference on the Zn 213 line. The Co II 237 line located very close to 

the Zn I 213 in the score plot actually did show an improvement for this line as 

anticipated. The Co II 228 and Rh II 249 lines were helpful for the correction of 

samples 18 (12% acid, 0.3% salt) and 27 (25% acid, 0.3% salt), respectively but none of 

the selected internal standards could provide an improvement for sample 24 (25% acid, 

0.1% salt). For sample 9 (which already had a concentration value within the 5% and 

2% acceptable range in the normal calibration), a significant improvement was obtained 

with Rh ion line at 249 nm. For the problematic Zn 334 atom line some improvements 

were achieved but only the Co 340 atomic line showed a significant correction. 

Although the Zn 202 ion line is outside of the grouping in the score plot, the Co, Ni and 

Rh atom lines at 340, 345, 341, 352, 343 and 369 nm, respectively, provided significant 

improvements for this line. Only the Rh ion line helped to correct the inaccuracy of this 

line for sample 12 (12 acid, no salt). For the Zn II 206 line, all internal standard lines 

were successful in correcting the results from the normal calibration, the Co I 345 line 

being the best.  

 Atomic Co lines at 340 and 345 nm showed the most significant improvements 

when ratioed with the Zn ion lines for Zn determination. The Rh II 249 line also 

demonstrated good correction ability for Zn except for the Zn I 334 line.     

 

3.3.4. Comparison of the Results with the Previous Experiments  

 
 The comparison of the concentration values obtained from the several trials for 1 

mg/L analyte concentration level can be seen in Tables 3.30, 3.31 and 3.32 for Cd, Mn 

and Zn, respectively. The line graphs of these values can be seen in Appendix D. 

  In these tables and graphs “SE” stands for the trials in which single element 

standards were used and “ME” stands for the trials performed with multielement 

standards. It should be noted here that solutions prepared using one single element 

standard also contains the other standards. For example, in the preparation of Cd 

synthetic samples, the other single element standards of Mn, Zn, Co, Ni and Rh were 

also added to these samples so they are not truly single element solutions but at least 

they do not contain any other interfering element that exists in the multielement 

standard solution.  
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Table 3.30.  Comparison of the normal calibration results from the previous 
experiments for the Cd lines. All concentrations are expressed as mg/L. 

 
Emission Line : Cd I 326.106 nm 

Sample Acid % Salt % Actual SE3 SE2 SE1 ME2 ME1 
3 0 0 1.00 0.98 0.74 0.96   
6 0 0.1 1.00 0.98 1.09 0.88   
9 0 0.3 1.00 0.93 0.72 0.81   

12 12 0 1.00 0.81 0.41 0.87   
15 12 0.1 1.00 1.05 0.92 1.04   
18 12 0.3 1.00 0.81 0.84 0.87   
21 25 0 1.00 1.01 1.17 0.83   
24 25 0.1 1.00 0.95 0.88 0.78   
27 25 0.3 1.00 0.79 0.73 0.88   

Emission Line : Cd I 228.802 nm 
Sample Acid % Salt % Actual SE3 SE2 SE1 ME2 ME1 

3 0 0 1.00 1.00 0.99 0.97 1.02 0.99 
6 0 0.1 1.00 0.98 1.07 0.90 1.31 1.34 
9 0 0.3 1.00 0.99 1.04 0.90 1.27 1.31 

12 12 0 1.00 0.99 0.99 0.92 1.37 1.33 
15 12 0.1 1.00 0.97 0.95 0.92 1.27 1.26 
18 12 0.3 1.00 0.95 0.95 0.88 1.22 1.19 
21 25 0 1.00 0.93 0.96 0.91 1.34 1.26 
24 25 0.1 1.00 0.94 0.93 0.88 1.22 1.19 
27 25 0.3 1.00 0.91 0.93 0.85 1.20 1.14 

Emission Line : Cd II 226.502 nm 
Sample Acid % Salt % Actual SE3 SE2 SE1 ME2 ME1 

3 0 0 1.00 1.00 0.99 0.97   
6 0 0.1 1.00 0.97 1.17 0.86   
9 0 0.3 1.00 1.01 1.11 0.84   

12 12 0 1.00 1.07 1.05 0.94   
15 12 0.1 1.00 1.03 0.99 0.90   
18 12 0.3 1.00 0.99 0.98 0.84   
21 25 0 1.00 1.00 1.02 0.92   
24 25 0.1 1.00 1.00 1.00 0.87   
27 25 0.3 1.00 0.95 0.95 0.81   

Emission Line : Cd II 214.438 nm 
Sample Acid % Salt % Actual SE3 SE2 SE1 ME2 ME1 

3 0 0 1.00 1.00 0.99 0.96 1.06 0.98 
6 0 0.1 1.00 1.00 1.24 0.85 1.85 1.83 
9 0 0.3 1.00 1.05 1.17 0.82 2.23 2.10 

12 12 0 1.00 1.11 1.07 0.92 2.42 2.15 
15 12 0.1 1.00 1.08 1.01 0.89 2.27 1.99 
18 12 0.3 1.00 1.05 1.00 0.82 2.16 1.88 
21 25 0 1.00 1.05 1.06 0.92 2.40 2.03 
24 25 0.1 1.00 1.06 1.03 0.87 2.15 1.90 
27 25 0.3 1.00 1.03 0.98 0.82 2.06 1.84 
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Table 3.31.  Comparison of the normal calibration results from the previous 
experiments for the Mn lines. All concentrations are expressed as mg/L. 

 
Emission Line : Mn I 279.482 nm 

Sample Acid % Salt % Actual SE3 SE2 SE1 ME2 ME1 
3 0 0 1.00 1.01 1.02 1.01 1.00 0.96 
6 0 0.1 1.00 1.07 1.11 1.12 1.15 1.12 
9 0 0.3 1.00 1.07 1.10 1.13 1.05 1.06 

12 12 0 1.00 0.93 0.98 0.93 1.05 0.95 
15 12 0.1 1.00 1.02 1.08 1.05 1.01 0.98 
18 12 0.3 1.00 1.06 1.11 1.07 1.01 0.95 
21 25 0 1.00 0.88 0.97 0.88 1.02 0.90 
24 25 0.1 1.00 0.99 1.04 1.02 0.98 0.91 
27 25 0.3 1.00 0.98 1.07 1.04 0.97 0.91 

Emission Line : Mn I 403.076 nm 
Sample Acid % Salt % Actual SE3 SE2 SE1 ME2 ME1 

3 0 0 1.00 0.98 1.03 0.98   
6 0 0.1 1.00 1.16 1.24 1.20   
9 0 0.3 1.00 1.08 1.20 1.17   

12 12 0 1.00 0.88 1.04 0.90   
15 12 0.1 1.00 1.09 1.24 1.14   
18 12 0.3 1.00 1.08 1.31 1.09   
21 25 0 1.00 0.88 1.03 0.87   
24 25 0.1 1.00 1.08 1.28 1.11   
27 25 0.3 1.00 1.04 1.26 1.08   

Emission Line : Mn II 257.610 nm 
Sample Acid % Salt % Actual SE3 SE2 SE1 ME2 ME1 

3 0 0 1.00 1.00 1.01 1.01 1.03 0.99 
6 0 0.1 1.00 0.94 1.01 0.90 1.32 1.29 
9 0 0.3 1.00 0.96 0.96 0.86 1.32 1.31 

12 12 0 1.00 1.04 1.01 0.95 1.51 1.40 
15 12 0.1 1.00 0.96 0.90 0.88 1.33 1.28 
18 12 0.3 1.00 0.95 0.91 0.83 1.27 1.21 
21 25 0 1.00 0.99 0.99 0.93 1.47 1.33 
24 25 0.1 1.00 0.95 0.92 0.87 1.28 1.21 
27 25 0.3 1.00 0.90 0.87 0.83 1.25 1.16 

Emission Line : Mn II 259.373 nm 
Sample Acid % Salt % Actual SE3 SE2 SE1 ME2 ME1 

3 0 0 1.00 1.01 1.02 1.00   
6 0 0.1 1.00 0.95 1.00 0.90   
9 0 0.3 1.00 0.96 0.97 0.85   

12 12 0 1.00 1.05 1.01 0.95   
15 12 0.1 1.00 0.97 0.91 0.88   
18 12 0.3 1.00 0.96 0.93 0.83   
21 25 0 1.00 1.00 1.00 0.93   
24 25 0.1 1.00 0.95 0.92 0.86   
27 25 0.3 1.00 0.91 0.87 0.82   
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  Comparison of the normal calibration results from the previous 
experiments for the Zn lines. All concentrations are expressed as mg/L. 

Emission Line : Zn I 213.856 nm 
Sample Acid % Salt % Actual SE3 SE2 SE1 ME2 ME1 

3 0 0 1.00 1.00 1.01 1.00 1.04 1.01 
6 0 0.1 1.00 0.95 1.09 0.91 1.37 1.39 
9 0 0.3 1.00 0.96 1.04 0.85 1.38 1.42 

12 12 0 1.00 0.96 1.01 0.87 1.49 1.41 
15 12 0.1 1.00 0.96 0.96 0.86 1.37 1.31 
18 12 0.3 1.00 0.93 0.96 0.83 1.34 1.28 
21 25 0 1.00 0.91 0.99 0.85 1.41 1.31 
24 25 0.1 1.00 0.92 0.95 0.83 1.30 1.24 
27 25 0.3 1.00 0.89 0.92 0.81 1.28 1.22 

Emission Line : Zn I 334.502 nm 
Sample Acid % Salt % Actual SE3 SE2 SE1 ME2 ME1 

3 0 0 1.00 0.78 0.98    
6 0 0.1 1.00 0.99 1.16    
9 0 0.3 1.00 0.83 0.99    

12 12 0 1.00 1.07 1.00    
15 12 0.1 1.00 1.01 1.02    
18 12 0.3 1.00 1.42 1.05    
21 25 0 1.00 1.32 0.78    
24 25 0.1 1.00 1.31 0.98    
27 25 0.3 1.00 1.24 0.90    

Emission Line : Zn II 202.551 nm 
Sample Acid % Salt % Actual SE3 SE2 SE1 ME2 ME1 

3 0 0 1.00 1.00 1.01 0.96 1.08 1.02 
6 0 0.1 1.00 0.99 1.07 0.85 2.06 2.03 
9 0 0.3 1.00 1.10 1.17 0.78 2.88 2.70 

12 12 0 1.00 1.17 1.11 0.86 3.16 2.84 
15 12 0.1 1.00 1.18 1.05 0.85 2.89 2.59 
18 12 0.3 1.00 1.11 1.04 0.79 2.85 2.51 
21 25 0 1.00 1.14 1.13 0.86 2.99 2.68 
24 25 0.1 1.00 1.16 1.09 0.84 2.79 2.51 
27 25 0.3 1.00 1.11 1.03 0.81 2.70 2.44 

Emission Line : Zn II 206.200 nm 
Sample Acid % Salt % Actual SE3 SE2 SE1 ME2 ME1 

3 0 0 1.00 1.01 0.99 1.00   
6 0 0.1 1.00 1.03 1.29 0.89   
9 0 0.3 1.00 1.09 1.23 0.81   

12 12 0 1.00 1.16 1.09 0.91   
15 12 0.1 1.00 1.15 1.04 0.89   
18 12 0.3 1.00 1.10 1.03 0.84   
21 25 0 1.00 1.09 1.09 0.91   
24 25 0.1 1.00 1.11 1.05 0.88   
27 25 0.3 1.00 1.08 1.02 0.84   

If the normal calibration values obtained from all trials for sample 3 that did not 

e any salt or acid content were examined, it could be seen that the values were 
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very close the true value (1 mg/L). For the other samples there were some inaccuracies 

that indicate the presence of the acid and salt matrix interferences on analyte signals. 

For all Cd, Mn and Zn lines, the calculated concentrations for the last three samples 21 

(25% acid, no salt), 24 (25% acid, 0.1% salt) and 27 (25% acid, 0.3% salt) were 

generally more than 5% inaccurate and compensation by internal standardization was 

achieved with the selected Co, Ni and Rh lines in the validation study. These samples 

have the highest acid and salt contents and also show the effect of acid and salt matrix.  

 Although there were different observations for the values obtained for all 

elements (Cd, Mn and Zn) it appears that there is a general trend for all elements 

concerning the presence of only acid and only salt contents in the samples. When the 

acid content of the samples were increased, there were an enhancement of the analyte 

signal with respect to the salt-only case. This seems to show that acid has a higher 

influence on the analyte signal as compared to the “salt-only case”. When salt was 

added to the samples, the measured concentrations showed a decrease (negative error). 

 The most striking observation achieved when the results from previous 

experiments were compared with the latest ones was the difference that occurred in the 

results regarding the standards used for the trials. The concentrations calculated from 

the first two trials (ME1 and ME2) were much higher than those obtained from the 

subsequent experiments (SE1, SE2 and SE3). The effect was even worse for the ion 

lines. The only difference between the preparations of these trials was the use of ICP 

multielement standard solution in the former trial which contains not only the elements 

of interest (Cd, Mn, Zn, Co, Ni), but also a complex array of other elements including 

Ca and Li. For the latter trials which investigated the use of Co, Ni and Rh as internal 

standards, the solutions only contained the elements under study (Cd, Mn, Zn, Co, Ni, 

and Rh).  

 Similar observations have been reported in previous studies and it has been 

shown by the other researchers that calcium causes a stronger matrix effect than sodium 

and depending on the elements considered when several interferent elements are present 

in the sample, the matrix effect is either enhanced or reduced with respect to a single 

concomitant solution (Todoli and Mermet 2002).  

 In order to illustrate the relationship between the elements (Cd, Mn Zn, Co, Ni 

and Zn) when the concentrations were obtained using single element standard solutions, 

PCA was applied again. Tables 3.33 and 3.34 demonstrate the calculated errors used as 

the data matrix for the PCA by using previously mentioned formulae. It should be noted 
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fference from the sample 1 and not the true 

ensional graphs of these matrix induced errors can also be seen in 

 

  Matrix induced errors obtained for atom lines when generating the single 
element score plot 

Error Acid 
% 

Salt 
% 

Cd 

326 

Cd 

228 

Co 

340 

Co 

345 

Mn 

279 

Mn 

403 

Ni 

352 

Ni 

351 

Zn 

213 

Rh 

343 

Rh 

369 

E1 0 0 0 0 0 0 0 0 0 0 0 0 0 

E2 0 0.1 9 7 -6 -10 -10 -23 -4 -6 9 -46 -49 

E3 0 0.3 16 7 -7 -10 -11 -20 -5 -6 15 -16 -21 

E4 12 0 10 6 2 -3 8 7 1 0 13 -23 -26 

E5 12 0.1 -8 6 -7 -9 -3 -17 -3 -1 14 -10 -16 

E6 12 0.3 10 10 -5 -7 -6 -12 -1 -4 17 -20 -27 

E7 25 0 14 6 -1 -3 13 11 -3 -1 15 -25 -29 

E8 25 0.1 19 10 -10 -12 -1 -13 -4 -5 17 -16 -21 

E9 25 0.3 9 12 -11 -13 -3 -11 -3 -6 19 -12 -19 

3.34. Matrix induced errors obtained for ion lines when generating the single 
element score plot 

Error Acid
% 

Salt 
% 

Cd 

226 

Cd 

214 

Co 

258 

Co 

228 

Mn 

257 

Mn 

259 

Ni 

231 

Ni 

221 

Zn 

202 

Zn 

206 

Rh 

249 

E1 0 0 0 0 0 0 0 0 0 0 0 0 0 

E2 0 0.1 11 11 9 11 11 11 10 12 11 11 -33 

E3 0 0.3 14 15 12 17 15 16 14 17 19 19 7 

E4 12 0 3 4 5 5 5 5 6 5 11 10 -31 

E5 12 0.1 7 8 10 11 12 12 10 11 12 11 4 

E6 12 0.3 14 14 15 19 17 17 17 19 17 16 9 

E7 25 0 5 4 6 6 7 7 9 6 10 9 -12 

E8 25 0.1 11 10 13 15 14 15 13 15 13 12 6 

E9 25 0.3 17 15 17 21 18 18 19 20 15 17 10 

Figure 3.9 shows a score plot obtained from PCA using the results from

periments that used the single element standards.  
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Figure 3.9. The score plot obtained by the PCA (using single element standards) 
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It should be noted that the elements used generating this plots are different from 

ents used for the construction of the previous score plot (i.e., the plot obtained 

ultielement standard Figure 3.8). In spite of this difference, if we compare

 that Mn I 279 line and Rh I 343 line are located far from 

e way Ni II 231, Co I 345, Mn II 257 and Zn I 213 lines

same grouping cluster.  

 of Whale Liver Samples 

After the validation study applicability of the selected internal standards was 

er homogenates supplied from NIST. 

Samples S1-1 and S1-2 (replicate of S1) were digested using 0.4 g liver 

ogenates, whereas S2-1 and its replicates S2-2 and S2-3 were digested using 0.3 g 

ogenates. These samples were not spiked with the chosen internal standards 

al calibration was used for the calculation of Cd, Mn, and Zn concentrations. 

ples S6-1 and S6-2 (which contain 0.4 g liver homogenates) and S7-1 and 

 homogenates) were spiked with the determined internal 

al calibration and internal standardization were 

late the concentrations in order to see the effect of using spiked 

s.  

In Table 3.35 the calculated concentration values using normal calibration both 

ples are shown. The Cd 326 atom line and Mn 403 atom 

t included in these tables due to erroneous results obtained by these lines. In 

ine whether the concentrations were different from the certified values

 was applied. Table 3.36 shows these results. “D” sign 

at the calculated concentrations are different from the certified value. “ND” 

 used to point out that the calculated concentrations are not very different from

rtified value therefore these concentrations can be accepted.   

 

 

 

 

 



 
 

Table 3.35. The concentration values for Beluga whale liver homogenates (in ug/g, wet mass) obtained by normal calibration 
 

samples Cd 228.802 Cd 226.502 Cd 214.438 Mn 279.482 Mn 257.610 Mn 259.373 Zn 213.856 Zn 206.200 Zn 202.551 
S1 2.50 2.51 2.36 1.05 2.52 3.32 41.24 42.14 41.77 0.4 g S1-2 2.47 2.55 2.40 1.28 2.39 3.26 29.94 30.27 30.52 
S2 2.55 2.55 2.39 1.28 2.68 3.53 29.23 29.31 29.67 

S2-2 2.40 2.44 2.31 0.33 2.32 3.18 29.64 29.55 30.22 0.3 g
S2-3 2.51 2.53 2.31 0.22 2.46 3.34 29.57 30.20 30.15 

no
 in

te
rn

al
 st

d 
sp

ik
e 

 average 2.49 ± 0.06 2.52 ± 0.04 2.35 ± 0.04 0.83 ± 0.52 2.47 ± 0.14 3.33 ± 0.13 31.93 ± 5.21 32.29 ± 5.52 32.47 ± 5.21 
S6 2.52 2.54 2.39 2.84 4.46 5.22 28.49 28.77 29.46 0.4 g S6-2 2.75 2.78 2.58 2.88 4.25 5.04 30.16 30.78 30.98 
S7 2.55 2.56 2.34 1.00 2.35 3.21 30.58 30.73 31.33 0.3 g S7-2 2.56 2.54 2.33 1.84 2.67 3.55 30.61 30.68 30.96 

w
ith

 in
te

rn
al

 
st

d 
sp

ik
e 

 average 2.59 ± 0.11 2.61 ± 0.12 2.41 ± 0.12 2.14 ± 0.90 3.43 ± 1.08 4.25 ± 1.02 29.96 ± 1.00 30.24 ± 0.98 30.68 ± 0.83 
 

 

Table 3.36. The results obtained by the t-test. (Certified values for Cd is 2.35 ± 0.06, for Mn is 2.37 ± 0.08 and for Zn is 26.31± 0.66 ug/g, wet 
mass) 

 
 Cd 228.802 Cd 226.502 Cd 214.438 Mn 279.482 Mn 257.610 Mn 259.373 Zn 213.856 Zn 206.200 Zn 202.551 

For unspiked samples 
calc. conc 2.49 ± 0.06 2.52 ± 0.04 2.35 ± 0.04 0.83 ± 0.52 2.47 ± 0.14 3.33 ± 0.13 31.93 ± 5.21 32.29 ± 5.52 32.47 ± 5.21
t calculated 3.712 4.969 0.120 6.541 1.485 14.018 2.389 2.407 2.621 

ttab (8)  CL: 95% 2.306 2.306 2.306 2.306 2.306 2.306 2.306 2.306 2.306 
result D D ND D ND D D D D 

For spiked samples 
calc. conc 2.59 ± 0.11 2.61 ± 0.12 2.41 ± 0.12 2.14 ± 0.90 3.43 ± 1.08 4.25 ± 1.02 29.96 ± 1.00 30.24 ± 0.98 30.68 ± 0.83
t calculated 4.365 4.290 1.013 0.584 2.233 4.174 6.607 7.208 8.816 

ttab (7)  CL: 95 % 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 
result D D ND ND ND D D D D 
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It can be seen that for all Cd lines there is no considerable difference between 

ples digested with 0.4 g and 0.3 g liver homogenates both for spiked and 

ples. The calculated concentrations for Cd were different from the

t-test for the Cd II 214 

difference between the certified values; therefore, the value

ted. 

For the Mn 279 atom line there was a considerable difference between the 

ples containing 0.4 g and 0.3 g whale liver homogenates both for spiked and 

ples. Furthermore, concentrations for unspiked samples were very 

m the certified value but for spiked samples these differences were not 

r Mn lines at 257 and 259 nm, for unspiked samples 

uch regarding the digested samples using 0.4 g and 

 it seems that spiked samples were affected by 

ount. For Mn 257 line, according to the t-test, results

ples are not different from the certified value. 

For all lines of Zn, only S1-1 differs from the other samples for both spiked and

t-test applied; there is a significant difference

een the calculated values and certified values. 

To summarize, for Cd atom lines at 326 and 228 nm and the ion line at 226 nm

provement is needed. In the same way, concentrations obtained by Mn I 279 and 

 and finally all Zn lines need to be improved by using 

rnal standard calibration.   

Corrected concentrations obtained by internal standardization were listed in

n respectively. In these tables t-test values can also 

indicates that the calculated concentrations 

ifferent from the certified value so there is no improvement after the application of 

rnal standardization. On the other hand “ND” sign is used to indicate the corrected 

ns by internal standardization are significantly different from the certified 

provement by the selected internal standards are represented with the 

 

 

 

 

 

 

 



 
 

Table 3.37. The calculated concentrations for Cd lines by using Co, Ni and Rh as the internal standards and test for significance values 
 

 Internal standards 

 106 

Emission line: Cd I 326.106 nm 
 Co I 340 Co I 345 Co II 237 Co II 228 Ni II 231 Ni II 221 Ni I 341 Ni I 352 Rh II 249 Rh I 369 

sample 9.69 ± 2.34 13.87 ± 4.20 13.60 ±5.13 8.44 ± 5.44 12.43 ± 4.21 11.75 ± 3.85 7.48 ± 5.64 7.98 ± 5.81 3.07 ± 2.40 18.28 ± 8.96 
t calculated 7.141 6.251 4.992 2.547 5.447 5.561 2.071 2.210 0.684 4.048 

ttab (7)  CL: 95 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 
result DNI DNI DNI DNI DNI DNI NDI NDI NDI DNI 

 
Emission line: Cd I 228.802 nm 

 Co I 340 Co I 345 Co II 237 Co II 228 Ni II 231 Ni II 221 Ni I 341 Ni I 352 Rh II 249 Rh I 369 
sample 0.25 ± 0.02 2.69 ± 0.10 2.54 ± 0.13 2.53 ± 0.02 2.40 ± 0.25 2.19 ± 0.17 2.48 ± 0.19 2.30 ± 0.09 0.92 ± 0.14 2.71 ± 0.04 
t calculated 66.440 6.406 3.066 5.546 0.432 1.999 1.481 0.997 21.169 10.035 

ttab (7)  CL: 95 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 
result DNI DNI DNI DNI NDI NDI NDI NDI DNI DNI 

 
Emission line: Cd II 226.502 nm 

 Co I 340 Co I 345 Co II 237 Co II 228 Ni II 231 Ni II 221 Ni I 341 Ni I 352 Rh II 249 Rh I 369 
sample 2.46 ± 0.17 2.75 ± 0.12 2.63 ± 0.13 2.64 ± 0.03 2.39 ± 0.26 2.12 ± 0.17 2.15 ± 0.19 2.67 ± 0.04 0.99 ± 0.15 2.55 ± 0.04 
t calculated 1.380 6.388 4.315 8.860 0.354 2.784 2.258 9.120 19.305 5.645 

ttab (7)  CL: 95 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 
result NDI DNI DNI DNI NDI DNI NDI DNI DNI DNI 

 
Emission line: Cd II 214.438 nm 

 Co I 340 Co I 345 Co II 237 Co II 228 Ni II 231 Ni II 221 Ni I 341 Ni I 352 Rh II 249 Rh I 369 
sample 2.66 ± 0.13 2.79 ± 0.20 2.59 ± 0.10 2.48 ± 0.08 2.20 ± 0.30 2.20 ± 0.17 2.44 ± 0.09 2.23 ± 0.14 0.93 ± 0.11 2.36 ± 0.10 
t calculated 4.629 4.665 4.674 2.724 1.129 1.884 1.753 1.841 25.057 0.231 

ttab (7)  CL: 95 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 
result DNI DNI DNI DNI NDI NDI NDI NDI DNI NDI 
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Table 3.38. The calculated concentrations for Mn lines by using Co, Ni and Rh as the internal standards and test for significance values 
 

 Internal standards 

 107 

Emission line: Mn I 279.482 nm 
 Co I 340 Co I 345 Co II 237 Co II 228 Ni II 231 Ni II 221 Ni I 341 Ni I 352 Rh II 249 Rh I 369 

sample 2.69 ± 0.40 2.80 ± 0.06 2.55 ± 0.39 2.67 ± 0.19 1.87 ± 0.37 2.08 ± 0.34 2.53 ± 0.40 2.32 ± 0.23 1.31 ± 0.09 2.64 ± 0.26 
t calculated 2.005 6.831 1.138 3.222 3.336 2.037 0.987 0.509 18.453 2.331 

ttab (5)  CL: 95 2.571 2.571 2.571 2.571 2.571 2.571 2.571 2.571 2.365 2.571 
result NDI DNI NDI DNI DNI NDI NDI NDI DNI NDI 

 
Emission line: Mn I 403. nm 

 Co I 340 Co I 345 Co II 237 Co II 228 Ni II 231 Ni II 221 Ni I 341 Ni I 352 Rh II 249 Rh I 369 
sample  2.02 ± 0.22 1.83 ± 0.09 1.90 ± 0.20 1.90 ± 0.04 1.55 ± 0.21 1.50 ± 0.19 1.82 ± 0.23 2.02 ± 0.09 0.98 ± 0.19 2.08 ± 0.10 
t calculated 3.460 7.857 4.848 7.683 8.286 9.448 5.315 5.073 15.046 4.152 

ttab (5)  CL: 95 2.571 2.571 2.571 2.571 2.571 2.571 2.571 2.571 2.365 2.571 
result DNI DNI DNI DNI DNI DNI DNI DNI DNI DNI 

 
Emission line: Mn II 257.610 nm 

 Co I 340 Co I 345 Co II 237 Co II 228 Ni II 231 Ni II 221 Ni I 341 Ni I 352 Rh II 249 Rh I 369 
sample 3.66 ± 0.46 3.72 ± 0.01 3.44 ± 0.44 3.55 ± 0.17 2.72 ± 0.43 2.80 ± 0.39 3.31 ± 0.46 2.79 ± 0.23 1.53 ± 0.07 3.68 ± 0.27 
t calculated 7.152 22.505 6.138 13.525 2.032 2.752 5.182 3.956 16.727 11.136 

ttab (5)  CL: 95 2.571 2.571 2.571 2.571 2.571 2.571 2.571 2.571 2.365 2.571 
result DNI DNI DNI DNI NDI DNI DNI DNI DNI DNI 

 
Emission line: Mn II 259.373 nm 

 Co I 340 Co I 345 Co II 237 Co II 228 Ni II 231 Ni II 221 Ni I 341 Ni I 352 Rh II 249 Rh I 369 
sample  2.43 ± 0.68 2.71 ± 0.72 2.36 ± 0.98 2.34 ± 0.61 1.98 ± 0.86 1.88 ± 0.70 2.17 ± 0.67 2.01 ± 0.79 0.46 ± 0.11 2.59 ± 0.79 
t calculated 0.238 1.227 0.025 0.148 1.206 1.798 0.784 1.190 30.035 0.730 

ttab (5)  CL: 95 2.571 2.571 2.571 2.571 2.571 2.571 2.571 2.571 2.365 2.571 
result NDI NDI NDI NDI NDI NDI NDI NDI DNI NDI 
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Table 3.39. The calculated concentrations for Zn lines by using Co, Ni and Rh as the internal standards and test for significance values 
 

 Internal standards 
Emission line: Zn I 213.856 nm 

 Co I 340 Co I 345 Co II 237 Co II 228 Ni II 231 Ni II 221 Ni I 341 Ni I 352 Rh II 249 Rh I 369 
sample 32.22 ± 1.41 30.98 ± 1.35 30.38 ± 1.24 30.91 ± 0.85 26.66 ± 2.60 25.84 ± 1.27 26.65 ± 1.70 27.19 ± 0.54 7.53 ± 1.13 34.79 ± 1.34 
t calculated 8.378 6.862 6.376 9.167 0.293 0.722 0.415 2.134 31.425 12.562 

ttab (7)  CL: 95 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 
 result DNI DNI DNI DNI NDI NDI NDI NDI DNI DNI 

 
Emission line: Zn II 206.200 nm 

 Co I 340 Co I 345 Co II 237 Co II 228 Ni II 231 Ni II 221 Ni I 341 Ni I 352 Rh II 249 Rh I 369 
sample 30.21 ± 2.35 29.78 ± 0.91 29.90 ± 1.09 30.26 ± 0.94 25.22 ± 1.73 25.31 ± 1.02 26.96 ± 1.54 27.04 ± 0.36 7.49 ± 1.17 34.35 ± 1.39 
t calculated 3.588 6.641 6.145 7.427 1.314 1.796 0.859 1.969 30.749 11.554 

ttab (7)  CL: 95 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 
 result DNI DNI DNI DNI NDI NDI NDI NDI DNI DNI 

 
Emission line: Zn II 202.551 nm 

 Co I 340 Co I 345 Co II 237 Co II 228 Ni II 231 Ni II 221 Ni I 341 Ni I 352 Rh II 249 Rh I 369 
sample 30.84 ± 2.35 30.85 ± 1.31 30.58 ± 1.22 30.85 ± 0.67 25.47 ± 2.03 25.79 ± 1.26 26.92 ± 1.65 27.34 ± 0.71 6.96 ± 1.00 33.89 ± 1.09 
t calculated 4.169 6.832 6.778 10.181 0.879 0.810 0.768 2.253 35.040 12.985 

ttab (7)  CL: 95 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 2.365 
 result DNI DNI DNI DNI NDI NDI NDI NDI DNI DNI 
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 When these tables are explored it is seen that for Cd, significant improvements 

were obtained especially by using selected Ni lines. Rh II 249 and Rh I 369 lines were 

also useful for Cd I 326 and Cd II 214 lines respectively. On the other hand Co lines 

were not successful for correcting the results for Cd. The concentrations for Mn I 403 

line could not be corrected with internal standardization. For Mn 279 all proposed 

internal standards except Co II 228, Ni II 231 and Rh II 249 were helpful to obtain 

concentrations which were not different from the certified value. For Mn 259 line, 

significant improvements were achieved by using all proposed internal standards except 

Rh II 249 nm. By using all the Ni lines, concentrations that were not very different from 

the certified value were obtained for all Zn lines. 

 

3.4. Conclusion 

 
ICP-OES is still one of the most appropriate techniques for elemental analysis 

with some important features. However, its potentially excellent analytical 

characteristics are degraded in the presence of matrix effects. When robust plasma 

conditions are used, these effects are reduced but not totally eliminated; therefore, 

generally different methods such as internal standardization may be applied to 

compensate for these effects. 

The choice of appropriate internal standard is very important since the success 

of internal standardization highly depends on the similarity between the analyte and 

internal standard.  

In these studies the applicability of the PCA method for choosing the proper 

internal standards to compensate for the matrix effects caused by acid and salt was 

examined. 

Although it has been reported by other researchers that the energies of the 

analyte and internal standard lines should be similar, in this study no simple 

relationships between the energies of analytes and internal standards were observed.  

It was found that elements having the highest energies such as Cd and Zn were 

more affected in the presence of acid and salt matrices. Moreover, it is known that the 

lines with close excitation energies are expected to behave similarly in the presence of 

acid and salt matrices. Unlike the observations of other authors, the results obtained in 

this study showed that the lines with close excitation energies like the Cd II 226 nm line 
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(14.47 eV) and the Cd II 214 nm line (14.77 eV) as well as the Zn II 206 nm (15.40 eV) 

and Zn II 202 nm lines (15.51 eV) had similar responses in the presence of matrix 

effects. 

 For all Cd, Mn and Zn lines, the calculated concentrations for the samples 

having high acid and salt content indicating the matrix effects were generally more than 

5% inaccurate and compensation by internal standardization was achieved with the 

selected Co, Ni and Rh lines in the validation study.  

Significant difference was observed between the analysis of samples and 

standards which were prepared from multielement solutions versus single element 

solutions. These results confirmed that calcium causes a stronger matrix effect than 

sodium and when several interferent elements are present in the sample (Ca, Na and Li 

in our case), the matrix effect is either enhanced or reduced with respect to a single 

concomitant solution.  

 In the analysis for real samples all proposed Ni lines (Ni II 231, Ni II 221, Ni I 

341 and Ni I 352 lines) proved to be useful for use as internal standards.  
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APPENDIX A 
 

CORRECTED CONCENTRATIONS BY USING ARGON AND HIDROJEN  
AS THE INTERNAL STANDARDS  

 
Table A.1.The calculated concentrations for Cd I 228 and Cd II 214 in the validation study by using argon and hydrogen as the internal standards 
 

Sample Cd 228/Ar 750 Cd 228/Ar 751 Cd 228/H 656 Cd 228/H 486 Cd 214/Ar 750 Cd 214/Ar 751 Cd 214/H 656 Cd 214/H 486 

 

3 1.03 ± 0.02 1.03 ± 0.01 1.03 ± 0.02 0.90 ± 0.03 1.02 ± 0.02 1.02 ± 0.01 1.02 ± 0.02 0.89 ± 0.03 
6 0.82 ± 0.02 0.82 ± 0.03 0.99 ± 0.02 0.96 ± 0.03 0.84 ± 0.003 0.84 ± 0.01 1.01 ± 0.03 0.98 ± 0.02 
9 0.70 ± 0.01 0.71 ± 0.01 1.00 ± 0.04 2.96 ± 3.23 0.75 ± 0.01 0.76 ± 0.01 1.07 ± 0.03 3.14 ± 3.40 

12 0.73 ± 0.01 0.75 ± 0.01 1.10 ± 0.06 2.08 ± 1.46 0.83 ± 0.004 0.84 ± 0.003 1.24 ± 0.06 2.36 ± 1.66 
15 0.72 ± 0.01 0.73 ± 0.01 1.09 ± 0.05 2.97 ± 3.20 0.8 ± 0.01 0.82 ± 0.01 1.21 ± 0.06 3.31 ± 3.56 
18 0.7 ± 0.01 0.71 ± 0.01 1.11 ± 0.05 1.26 ± 0.13 0.77 ± 0.01 0.78 ± 0.02 1.22 ± 0.05 1.38 ± 0.15 
21 0.7 ± 0.01 0.71 ± 0.003 1.29 ± 0.01 7.48 ± 10.52 0.79 ± 0.01 0.8 ± 0.01 1.45 ± 0.02 8.36 ± 11.73 
24 0.65 ± 0.01 0.67 ± 0.005 1.26 ± 0.05 3.55 ± 3.43 0.74 ± 0.01 0.75 ± 0.01 1.42 ± 0.04 3.98 ± 3.78 
27 0.61 ± 0.01 0.62 ± 0.01 1.40 ± 0.23 6.00 ± 7.99 0.69 ± 0.01 0.7 ± 0.01 1.57 ± 0.28 6.64 ± 8.78 

 

Table A.2. The values calculated for Cd I 228 and Cd II 214 lines in the analysis of beluga whale liver samples by using argon and hydrogen as 
the internal standards 

 
Sample Cd 228/Ar 751 Cd 228/H 656 Cd 214/Ar 751 Cd 214/H 656 

S6 2.57 2.43 2.58 2.48 
S7 2.63 2.48 2.52 2.45 
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APPENDIX B 
 

3-D GRAPHS FOR THE MATRIX INDUCED ERRORS 
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Figure B.1. 3-D graph for the matrix induced errors calculated for atom lines for generating the multielement score plot 
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Figure B.2. 3-D graph for the matrix induced errors calculated for ion lines for generating the multielement score plot 
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Figure B.3. 3-D graph for the matrix induced errors calculated for atom lines for generating the single element score plot 
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Figure B.4. 3-D graph for the matrix induced errors calculated for ion lines for generating the single element score plot 
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APPENDIX C 
 

LINE GRAPHS FOR THE VALIDATION STUDY 
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Figure C.1.  Line graphs for the Cd atom lines for the values obtained in the validation 

study: (a) for Cd I 326, (b) for Cd I 228  
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Figure C.2.  Line graphs for the Cd ion lines for the values obtained in the validation 

study: (a) for Cd II 226, (b) for Cd II 214 
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Figure C.3.  Line graphs for the Mn atom lines for the values obtained in the validation 

study: (a) for Mn I 279, (b) for Mn I 403 
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Mn II 259
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Mn II 257

0,5

0,6

0,7

0,8

0,9

1,0

1,1

3 6 9 12 15 18 21 24 27

sample no

ca
lc

ul
at

ed
 c

on
c.

 (m
g/

L)

NC
Co 340
Co 345
Co 237
Co 228,6
Ni 231
Ni 221
Ni 341
Ni 352
Rh 249
Rh 343
Rh 369

 
(b) 

 
sample 3 6 9 12 15 18 21 24 27 
Acid % 0 0 0 12 12 12 25 25 25 
Salt % 0 0.1 0.3 0 0.1 0.3 0 0.1 0.3 

 
Figure C.4.  Line graphs for the Mn ion lines for the values obtained in the validation 

study: (a) for Mn II 259, (b) for Mn II 257 
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Figure C.5.  Line graphs for the Zn atom lines for the values obtained in the validation 

study: (a) for Zn I 213, (b) for Zn I 334 
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Zn II 202
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Figure C.6.  Line graphs for the Zn ion lines for the values obtained in the validation 

study: (a) for Zn II 202, (b) for Zn II 206 
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LINE GRAPHS FOR COMPARISON OF RESULTS 
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Figure D.1.  Line graphs for the Cd atom lines for comparison of the results from 

different experiments: (a) for Cd I 326, (b) for Cd I 228 
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Figure D.2.  Line graphs for the Cd ion lines for comparison of the results from 

different experiments: (a) for Cd II 226, (b) for Cd II 214  
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Figure D.3.  Line graphs for the Mn atom lines for the values obtained in the validation 

study: (a) for Mn I 279, (b) for Mn I 403  
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Mn II 257
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Figure D.4.  Line graphs for the Mn ion lines for the values obtained in the validation 

study: (a) for Mn II 259, (b) for Mn II 259  
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Zn I 213
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Figure D.5.  Line graphs for the Zn atom lines for the values obtained in the validation 

study: (a) for Zn I 213, (b) for Zn I 334  
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Zn II 202
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Figure D.6.  Line graphs for the Zn ion lines for the values obtained in the validation 

study: (a) for Zn II 202, (b) for Zn II 206 


