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ABSTRACT 
 

DYNAMIC ANALYSIS OF DOUBLE WISHBONE SUSPENSION 

 
In this study, the natural frequencies, body displacements, velocities, and 

accelerations of a quarter-car with double wishbone suspension are examined by 

considering the proportionally damped system. Two models of quarter-car suspension 

system are idealized employing two different assumptions due to the suspension links to 

describe the dynamic behaviour of vehicles running on base excitation. In the first 

model, the links of the suspension are assumed to be rigid and the stiffness and mass 

matrices of the model are obtained by using the analytical method. In the second model, 

the links of the suspension are assumed to be flexible and the elastic stiffness, mass, and 

geometric stiffness matrices are obtained by using Finite Element Method. In order to 

express the linear equation of motion, suspension link forces required for the geometric 

stiffness matrices are assumed as constant. Also, the oscillations of the suspension links 

are neglected since the base displacement is chosen in small amplitude. 

Two Matlab programs regarding the aforementioned models have been 

developed. Firstly, the natural frequencies of the models are found. Then, the 

displacements, velocities, and acceleration of the car body are presented in graphical 

forms for the specified car speed. The excellent agreement between results of the 

analytical model and finite element model is observed for both natural frequencies and 

the time reponses. The effect of loads on suspension link on the dynamic behaviour of 

suspension system is also studied. 
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ÖZET 
 

ÇİFT ENİNE YÖN VERİCİ ASKI SİSTEMİNİN DİNAMİK ANALİZİ 

 
Bu çalışmada, çift enine yön vericili çeyrek bir aracın doğal frekansları, 

gövdenin yerdeğiştirme, hız ve ivmeleri oransal sönümlü bir sistem gözönüne alınarak 

incelenmiştir. İki çeyrek-araç süspansiyon sistemi modeli zemin uyarısı altındaki bir 

aracın dinamik davranışını tanımlamak için süspansiyon uzuvları dolayısıyla iki değişik 

kabul kullanılarak modellenmiştir. Birinci modelde, süspansiyonun uzuvları rijit olarak 

kabul edilip kütle ve direngenlik matrisleri analitik method ile elde edilmiştir. İkinci 

modelde, süspansiyon uzuvları esnek olarak kabul edilmiş ve elastik direngenlik, kütle 

ve geometrik direngenlik matrisleri sonlu elemanlar methodu ile elde edilmiştir. Hareket 

denklemini lineer olarak ifade etmek için geometrik direngenlik matrisi için gerekli olan 

süspansiyon uzuv kuvvetleri sabit olarak kabul edilmiştir. Ayrıca süspansiyon 

uzuvlarının salınımı zemin yerdeğiştirmesinin küçük genlikte seçilmesinden dolayı 

ihmal edilmiştir. 

Bahsedilen modellerle ilgili iki Matlab programı geliştirilmiştir. İlk olarak, 

modellerin doğal frekansları bulunmuştur. Daha sonra, araç gövdesinin yerdeğiştirme, 

hız ve ivmeleri belirlenmiş araç hızları için grafiksel formlarda sunulmuştur. Hem doğal 

frekanslar hem de zaman cevapları için analitik ve sonlu eleman modellerinin sonuçları 

arasında mükemmel uyum gözlenmiştir. Süspansiyon uzuvlarındaki yüklerin 

süspansiyonun dinamik davranışına etkisi de çalışılmıştır. 
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CHAPTER 1 

 

INTRODUCTION 

 
Suspension systems have been widely applied to vehicles, from the horse-drawn 

carriage with flexible leaf springs fixed in the four corners, to the modern automobile 

with complex control algorithms. The suspension of a road vehicle is usually designed 

with two objectives; to isolate the vehicle body from road irregularities and to maintain 

contact of the wheels with the roadway. 

Isolation is achieved by the use of springs and dampers and by rubber mountings 

at the connections of the individual suspension components. 

From a system design point of view, there are two main categories of 

disturbances on a vehicle, namely road and load disturbances. Road disturbances have 

the characteristics of large magnitude in low frequency (such as hills) and small 

magnitude in high frequency (such as road roughness). Load disturbances include the 

variation of loads induced by accelerating, braking and cornering. Therefore, a good 

suspension design is concerned with disturbance rejection from these disturbances to the 

outputs. Roughly speaking, a conventional suspension needs to be “soft” to insulate 

against road disturbances and “hard” to insulate against load disturbances. Therefore, 

suspension design is an art of compromise between these two goals (Wang 2001). 

Today, nearly all passenger cars and light trucks use independent front 

suspensions, because of the better resistance to vibrations. One of the commonly used 

independent front suspension system is referred as double wishbone suspension. 

In the literature, a number of studies exist dealing with the double wishbone 

suspension system. A sample of the relevant literature is as follows: 

İbrahim Esat described a method for optimization of the motion characteristics 

of a double wishbone front suspension system by using a genetic algorithm. The 

analysis considered only the kinematics of the system (Esat 1999). 

T.Yamanaka, H.Hoshino, K. Motoyama developed prototype of optimization 

system for typical double wishbone suspension system based on genetic algorithms. In 

this system, the suspension system was analyzed and evaluated by mechanical system 

simulation software ADAMS (Yamanaka, Hoshino and Motoyama 2000). 
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Hazem Ali Attia presented dynamic modelling of the double wishbone motor-

vehicle suspension system using the point-joint coordinates formulation. In his paper, 

the double wishbone suspension system is replaced by an equivalent constrained system 

of 10 particles. Then the laws of particle dynamics are used to derive the equations of 

motion of the system (Attia 2002). 

The aim of this study is to find the effects of link flexibilities and axial link 

loads on the natural frequencies and also to obtain the vibration displacements, 

velocities, and accelerations of the car body for different suspension models under 

typical sinusoidal base excitations. The quarter car with the double wishbone 

suspension system is modelled for two different approaches to the suspension links to 

be rigid and flexible. Therefore, the dynamic analyses of these models are investigated 

by the analytic method and the finite element method. Matlab computer programs have 

been developed for numerical calculations. 

This study consists of five chapters. Chapter 2 introduces the suspension 

systems and examines vehicle dynamics. Solid axle and independent suspension 

systems are presented. Double wishbone suspension system is introduced in detail. 

Vehicle dynamics under different cases and kinetic analysis of double wishbone 

suspension are examined. Chapter 3 deals with the analytical method and the finite 

element method. The element stiffness, the mass and the geometric matrices are 

explained for the plane frame element respectively. Modelling of double wishbone 

suspension is presented in two models. Vibrations of the double wishbone suspension 

system, natural frequencies and response to base excitation are studied. Chapter 4 

applies the finite element and analytical method to the double wishbone suspension 

models which are the topics of chapter 3. Results of the kinetic analysis of the double 

wishbone suspension and results of the vibration analysis of the two models are 

examined. Conclusion is presented in Chapter 5. 
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CHAPTER 2 

 

DYNAMICS OF SUSPENSION SYSTEMS 

 
2.1. Introduction to Suspension Systems 

 
The primary functions of a vehicle’s suspension systems are to isolate the 

structure and the occupants from shocks and vibrations generated by the road surface. 

The suspension systems basically consist of all the elements that provide the 

connection between the tires and the vehicle body and are designed to meet the 

following requirements: (1) Ride comfort, (2) Road-holding, and (3) Handling. 

The first requirement mentioned above for the suspension system requires an 

elastic resistance to absorb the road shocks. This primary function is fulfilled by the 

suspension springs. Various different types of springs have been used in vehicle 

suspensions such as leaf springs, helical coil springs, torsion bar springs, air springs, 

rubber springs. 

It is obvious that a suspension system must be able to withstand the loads acting 

on it. These forces may be in the longitudinal direction such as acceleration and braking 

forces, in the lateral direction such as cornering forces, and in the vertical direction. 

This chapter consists of two main sections. In the first section, the types of 

suspension systems are introduced and the advantages of double wishbone suspension 

system are presented. In the second section, vehicle dynamics are presented under 

different cases in order to obtain axial loads on the double wishbone suspension links.  

 

2.2. Types of Suspension Systems 

 
Suspensions generally fall into either of two groups-solid axles and independent 

suspensions. Each group can be functionally quite different, and so will be itemized 

accordingly for discussion. 
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2.2.1. Solid Axle Suspension Systems 

 
In solid axle suspension systems, wheels are mounted at the ends of a rigid beam 

so that any movement of one wheel is transmitted to the opposite wheel causing them to 

steer and camber together. 

Solid drive axles are used on the rear of many cars and most trucks and on the 

front of many four-wheel-drive trucks. Solid beam (non-driven) axles are commonly 

used on the front of heavy trucks where high load-carrying capacity is required. 

Solid axles have the advantage that wheel camber is not affected by body roll. 

Thus there is little wheel camber in cornering, except for that which arises from slightly 

greater compression of the tires on the outside of the turn. In addition, wheel alignment 

is readily maintained, minimizing tire wear. The major disadvantage of solid steerable 

axles is their susceptibility to tramp-shimmy steering vibrations. The most common 

solid axles are Hotchkiss, Four link and De Dion. 

 

2.2.2. Independent Suspension Systems 

 
In contrast to solid axles, independent suspensions allow each wheel to move 

vertically without affecting the opposite wheel. Nearly all passenger cars and light 

trucks use independent front suspensions, because of the advantages in providing room 

for the engine and the better resistance to steering vibrations. The independent 

suspension also has the advantage that it provides inherently higher roll stiffness 

relative to the vertical spring rate. Further advantages include easy control of the roll 

centre by choice of the geometry of the control arms, larger suspension deflections, and 

greater roll stiffness for a given suspension vertical rate. 

Over the years, many types of independent front suspension have been tried such 

as MacPherson, Trailing arm, Swing axle, Multi link and Double wishbone suspension. 

Many of them have been discarded for a variety of reasons, with only two basic 

concepts, the double wishbone and the MacPherson strut, finding widespread success in 

many varied forms. 
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Double wishbone Suspension (SLA, A-arms) 

 
The most common design for the front suspension of American car following 

World War II used two lateral control arms to hold the wheel. The upper and lower 

control arms are usually of unequal length from which the acronym SLA (short-long 

arm) gets its name. 

These are often called “A-arms” in the United States and “wishbones” in Britain. 

This layout sometimes appears with the upper. A-arm replaced by a simple link, or the 

lower arm replaced by a lateral link, the suspensions are functionally similar. The SLA 

is well adapted to front-engine, rear-wheel-drive cars because of the package space it 

provides for the engine oriented in the longitudinal direction. 

Design of the geometry for a SLA requires careful refinement to give good 

performance. The camber geometry of an unequal-arm system can improve camber at 

the outside wheel by counteracting camber due to body roll, but usually carries with it 

less-favourable camber at the inside wheel (equal-length parallel arms eliminate the 

unfavourable condition on the inside wheel but at the loss of camber compensation on 

the outside wheel). At the same time, the geometry must be selected to minimize tread 

change to avoid excessive tire wear (Gillespie 1992). 

The compact design of a coil spring makes it ideal for use in front suspension 

systems. Two types of coil spring mountings are used. In the first type the spring is 

positioned between the frame and the lower control arm as shown in Figure 2.1. This 

mounting is most often used on cars with a conventional frame or a partial front frame. 

The second type of mounting is shown in Figure 2.2. In this mounting, the coil spring is 

positioned between the upper control arm and a spring tower formed in the inner section 

of the fender (Remling 1983). 

The wishbones may or may not be equal or parallel. The wishbones are parallel 

and equal in length as shown in Figure 2.3.(a). The parallel and unequal length 

wishbone suspension system is shown in Figure 2.3.(b). A further refinement is the non-

parallel, unequal length wishbone suspension system illustrated in Figure 2.3.(c) 

(Ünlüsoy 2000). 
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Figure 2.1. A first type of independent front suspension system 
                                       (Source: Remling 1983) 
 

 

 

 
 

Figure 2.2. A second type of independent front suspension system  
                                    (Source: Remling 1983) 
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(a) Parallel and equal   (b) Parallel and unequal   (c) Nonparallel and unequal 
Figure 2.3. Double wishbone suspension designs 

                                                  (Source: Ünlüsoy 2000) 
 

2.3. Vehicle Dynamics 

 
The subject of “vehicle dynamics” is concerned with the movements of vehicles 

“automobiles, trucks, buses and special-purpose vehicles” on a road surface. The 

movements of interest are acceleration and braking, and turning or cornering. Dynamic 

behaviour is determined by the forces imposed on the vehicle from the tires, gravity, 

and aerodynamics. The vehicle and its components shall be studied to determine what 

forces will be produced by each of these sources at a particular maneuver and trim 

condition, and how the vehicle will respond to these forces. For that purpose, it is 

essential to establish a rigorous approach to modelling the vehicle and conventions that 

will be used to describe motions. The basic vehicle model and its parameters are given 

in Figure 2.4 and Table 2.1. 

 

 
 

Figure 2.4. Basic vehicle model 
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Table 2.1. Description of parameters for the basic vehicle model 
 

 
       Parameters Descriptions 

 
 b Width of vehicle 
 B Front axle track width 
 h Height of vehicle 
 H Height of center of gravity 
 l Length of vehicle 
 L Wheelbase 
 LF Distance from front axle to CG 
 LR Distance from rear axle to CG 

 

2.3.1. Static Axle Loads 

 

 
 

Figure 2.5. Static axle loads on the vehicle 

 

Consider the vehicle shown in Figure 2.5. The weight of vehicle acting at its 

centre of gravity is: 

gmG ⋅=  (2.1) 

The loads on the front and rear axles are found by using the equilibrium 

equations; 

L
L

.GG R
FA =  (2.2) 

L
L.GG F

RA =  (2.3) 

Static load on one wheel of the front axle is: 

2
FA

FAw
G

G =  (2.4) 

x 
z 

G

  GRA 

L

LF LR 
  GFA 



 9

2.3.2. Dynamic Axle Loads 

 
Dynamic behaviour is determined by the forces imposed on the vehicle from the 

tires, gravity and aerodynamics. In a real car, the wheel loads are constantly changing. 

These loads may be in the longitudinal direction such as acceleration and braking 

forces, in the lateral direction such as cornering forces, and in the vertical direction. In 

order to demonstrate how wheel loads can be calculated, a number of operational and 

simplifying assumptions are made. 

Preliminary analysis is done assuming steady state operating conditions. The 

assumptions are smooth road way, constant speed cornering, constant longitudinal 

acceleration, constant grade. All calculations presented are based on the main 

assumption that the chassis of the car under consideration is rigid. 

Calculation of the loads at each wheel in different operating conditions will be 

discussed for the rest of this section: 

♦ The vehicle braking on level ground (Longitudinal weight transfer) 

♦ The vehicle at the instant of cornering (Lateral load transfer on banking) 

♦ The vehicle on a downhill grade 

♦ The vehicle at the instant of  braking on a downhill grade 

 

Case 1 : The Vehicle Braking on Level Ground  

(Longitudinal Weight Transfer) 

 

 
 

Figure 2.6. Forces acting on a vehicle during braking 
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G
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The car is under negative acceleration as shown in Figure 2.6, an inertial 

reaction force denoted by (G/g.a) acting at the centre of gravity opposite to the direction 

of the acceleration. During the vehicle decelerates, load is transferred from the rear axle 

to the front axle.  

By considering the equilibrium of moments about the front and rear tire-ground 

contact points, the normal loads on the front and rear axles are: 

FAdynG  = 
L

H.a.mL.G R +  (2.5) 

RAdynG  = 
L

H.a.mL.G F −  (2.6) 

The transferred load to the front axle is found from the following equation: 

TG = FAdynG  - FAG  (2.7) 

 

Case 2 : The Vehicle at the instant of Cornering 

(Lateral Load Transfer on Banking) 

 
When a car in a steady state turn with constant speed on banking as shown in 

Figure 2.7, load is transferred from the inside to the outside pair of wheels. During the 

steady-state turn an inertial reaction force called centrifugal force is developed which 

opposes the lateral acceleration produced by tire cornering forces. The cornering force 

produced by the tires, RL SS + , results in a lateral acceleration.  

The centrifugal force which results from the speed V , the radius of the bend 

R and the total weight of the vehicle is; 

R
VmFc

2.
=  (2.8) 

During the turning, tires are required to produce longitudinal or side forces to 

hold the vehicle in the desired turn. The cornering force produced by the tires: 

RL SSS += = Gf s . = )( RSdynLSdyns GGf +  (2.9) 

where fs  is the friction coefficient between the road and tire. 

The dynamic axle loads are found by using the moment equilibriums; 

RSdynG  = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
β−β+⎟

⎠
⎞

⎜
⎝
⎛ β+β sin.Hcos.

2
Bsin.

2
Bcos.H.

R.g

2V.
B
G  (2.10) 
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LSdynG  = ⎥
⎦

⎤
⎢
⎣

⎡
β+β+⎟

⎠
⎞

⎜
⎝
⎛ β−β sin.Hcos.

2
Bcos.Hsin.

2
B.

R.g
V.

B
G 2

 (2.11) 

Transferred load from the left side to the right side of the vehicle while cornering; 

CG  = RSdynG  - 2
G  (2.12) 

(Milliken F. and Milliken L., 1995) 

 

 

 

Figure 2.7. Forces acting on a vehicle during cornering 

 

Case 3 : The Vehicle on a Downhill Grade 

 
A negative grade causes load to be transferred from the rear to the front axle. On 

roads, the grade angle occasionally reaches 10 to 12 percent. 

The major external forces acting on a two axle vehicle are shown in Figure 2.8. 

In the longitudinal direction, the aerodynamic resistance aR , rolling resistance of the 

front and rear tires rfR  and rrR  are neglected for this case. 

The dynamic loads on the front and rear axle are determined by summing 

moments equilibriums; 

FAdynG  = )Cos.LSin.H.(
L
G

R α+α  (2.13) 

RAdynG  = )Sin.HCos.L.(
L
G

F α−α  (2.14) 

β  

β x 

z 

y 

β

H 

RS  

 

RSdynG  
LS  

G 

FC 

B LSdynG  
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Figure 2.8. Forces acting on a vehicle on a downhill grade 
 

Transferred load from rear axle to front axle is: 

TG = FAdynG  - FAG  (2.15) 

 

Case 4 : The Vehicle at the instant of Braking on a Downhill Grade 

 
The effects of grade and longitudinal negative acceleration (braking) can be 

combined in finding the changes in front and rear loads. The external forces acting on a 

decelerating vehicle is shown in Figure 2.9. In addition to the braking force, rolling 

resistance of tires, aerodynamic resistance and transmission resistance also affect 

vehicle motion during braking are considered for this case. 

 

 
Figure 2.9. Forces acting on a vehicle braking on a downhill grade 
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The dynamic loads on the front and rear axle are determined by summing 

moments equilibriums; 

FAyinG  = ]H.FH.F)cos.Lsin.H.(G[
L
1

hDAR −+α+α  (2.16) 

RAdynG  = ]H.FH.F)sin.Hcos.L.(G[
L
1

AhDF −+α−α  (2.17) 

The braking inertia force is: 

amFA .=  (2.18) 

The aerodynamic forces produced on a vehicle arise from two sources; form (or 

pressure) drag and rolling resistance of the tires. Drag is the largest and most important 

aerodynamic force. The aerodynamic drag is: 

2.
2

.. VAcF a
DD

ρ
=  (2.19) 

The drag coefficient, Dc , is determined empirically for the car. The frontal 

area, A  is the scale factor taking into account the size of the car. The frontal area of the 

vehicle in range of 79-84% of area calculated from the overall vehicle width and height. 

The frontal area %80 of area is: 

hbA ..80,0=  (2.20) 

The aerodynamic force is assumed to be acting on the centre of the vehicle 

cross-section area: 

2h
hH =  (2.21) 

The other major vehicle resistance force on level ground is the rolling resistance 

of the tires by the equation; 

αcos.. RR fGF =  (2.22) 

By considering the force equilibrium in the horizontal direction, the following 

relationship is established; 

αsin..).( GFFamGGfFFF DRRAdynFAdynsBrBfB +−−=+=+=  (2.23) 

where BfF  and BrF  are the braking forces of the front and rear axles, respectively. The 

magnitude of the transmission resistance is small and can be neglected in the braking 

calculations (Wong 1993, Gillespie 1992). 
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2.4. Kinetic Analysis of Double Wishbone Suspension 

 
In this section, the forces on the double wishbone suspension system are given. 

The maximum force dynG  and lateral force dynS  at the centre of the front axle tyre 

contact for the vehicle braking and cornering on a downhill grade are defined. The 

forces xB  and yB  are on the joint B of the lower suspension and xA  and yA  are on the 

joint A of the upper suspension control arm. 

The loads on the A and B joints are found by summing moments about points 

“A” and “B”. The moment equilibrium; 0=∑ BM ; 

dSbGbaAcA dindinyx ..).(. +=−+  (2.24) 

where δcos.Ax FA =  and δsin.Ay FA = , in which AF  is the force acting on the link 

AE. The force equilibriums in the direction x and y; 

xdynx ASB +=  (2.25) 

ydyny AGB −=  (2.26) 

(Reimpell 1973) 

 

            
(a) (b) 

 
Figure 2.10. Double wishbone suspension system: (a) Kinematic model of double 

wishbone suspension (b) Forces on the lower and upper arms 
(Source: Reimpell 1973) 

 

 

δ  

dynG  

dynS  
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CHAPTER 3 
 

MODELLING AND DYNAMIC ANALYSIS 
 

3.1. Introduction to Finite Element 

 
In Finite Element Method, a complex region defining a continuum is discretized 

into simple geometric shapes called finite elements. The material properties and the 

governing relationships are considered over these elements and expressed in terms of 

unknown values at the nodes. An assembly process, duly considering the loading and 

constraints, results in a set of equations. Solution of these equations gives us 

approximate behaviour of the continuum (Belegundu and Chandrupatla 1997). 

In this chapter, use of the analytical method and finite element method for the 

dynamic analysis of double wishbone suspension system is described. Mass, stiffness 

and geometric stiffness matrices are derived. The plane frame element is selected to 

model the double wishbone suspension members. 

 

3.2. Characteristic Matrices of the Plane Frame Element  

 
A planar (2-D) frame element is subjected to both axial and bending 

deformations. Therefore, the plane frame element has three degrees of freedom per node 

together with local displacements ( 1u , 1v  and 1θ ) and global displacements ( 1u , 1v and 

1θ ) as shown in Figure 3.1. The nodal displacement vector is given by; 

{ } { }Tvuvuq 222111 ,,,,, θθ=  (3.1) 

The element stiffness matrix for a 2-D frame element can be constructed by 

superimposing both axial and bending stiffness (Bang and Kwon 1997). 

The element kinetic and strain energy functions for plane frame element are 

given in terms of local coordinates, as follows; 

T  = 
2

1
∫ +
e

uA )( 22 νρ dx  (3.2) 

where the overdot shows the differentiation with respect to time. 
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Figure 3.1. Plane frame element 
(Source: Belegundu and Chandrupatla 1997) 

 

U  = 
2

1 2)(∫ ∂
∂

e x
uEA dx  + 

2

1 2
2

2

)(
x

EI
e ∂

∂
∫

ν  dx  (3.3) 

In these expressions, u and v  are the axial and transverse displacement 

respectively. The displacement functions are; 

u  = [Nu (ξ)] {u}e (3.4a) 

v  = [Nν  (ξ)] {v}e (3.4b) 

The subscripts u  and v  are introduced here to differentiate between axial and 

transverse displacements. [Ni(ξ)] represents the shape functions. The detail explanations 

of shape functions can be found in references (Petyt 1990, Belegundu and Chandrupatla 

1997). 

 

3.2.1. Elastic Stiffness Matrix 

 
Substituting the displacement functions given in Equation (3.4) into the strain 

energy expression given in Equation (3.3) gives, 

Ue = 
2

1 {u}e
T[ k~ ]e{u}e (3.5) 

 

 

1u  
1v  

1θ  

2θ  

2v  

2u  

2u  

2v  

1v  

1u  

β  
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where 

[ k~ ]e = 32a
EI Z

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

−
−
−

−

22

22

22

22

430230
330330
00)/(00)/(

230430
330330
00)/(00)/(

aaaa
aa

rara
aaaa
aa

rara

zz

zz

 (3.6) 

in which e = 2a and AIr zz /2 =  (Petyt 1990). 

 

3.2.2. Geometric Stiffness Matrix 

 
The geometric strain energy in the element is; 

gU  = dx
x
v

2
P 2

L

0
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∫ = { } [ ] { }qsq e
T ~

2
1  (3.7) 

The geometric stiffness matrix [ ]s~  for a plane frame is developed from the 

Equation (3.7); 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−−
−

=

22

22

1660460
63606360
000000
4601660
63606360
000000

60
~

aaaa
aa

aaaa
aa

a
Ps e  (3.8) 

where e = 2a and P is the axial force, (Cook, Malkus and Plesha 1989). 

 

3.2.3. Mass Matrix 

 
Substituting the displacement functions given in Equation (3.4) into the kinetic 

energy expression given in Equation (3.2) gives; 

T  = 
2

1 { u }e
T[ m~ ]e{ u }e (3.9) 
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where 

[ m~ ]e = 
105

Aaρ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−

−
−

22

22

82206130
2278013270
00700035
61308220
1327022780
00350070

aaaa
aa

aaaa
aa

 (3.10) 

in which e = 2a, ρ is the mass per unit volume, and A is the cross-sectional area of 

each element (Petyt 1990). 

 

3.2.4. Stiffness of the Spring 

 
In finite element model, stiffness of helical-shaped springs used in suspension 

system may be expressed in matrix notation considering the plane frame element 

displacement vector as follows; 

[ sk~ ] = k

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

000000
010010
000000
000000
010010
000000

 (3.11) 

where k is the stiffness coefficient of the spring by the equation; 

3

4

64 s

s

nR
dG

k =  (3.12) 

The stiffness is a function of the shear modulus (Gs), the diameter of the turns of 

coils (Rs), the diameter of the coils (d), and the number of the coils (n) (Inman 1996). 

 

3.2.5. Coordinate Transformation  

 
If a frame member is inclined in global coordinate system as shown in Figure 

3.1, the element stiffness, mass and geometric stiffness matrices require the planar 

transformation. Figure 3.1 shows the nodal freedoms in local and global systems. 
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The relation between the local and global displacements is; 

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

2

2

2

1

1

1

θ

θ

v
u

v
u

  =  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

100000
0000
0000
000100
0000
0000

cs
sc

cs
sc

  

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

2

2

2

1

1

1

θ

θ

v
u

v
u

 (3.13) 

where βcos=c  and βsin=s . 

In the short notation, Equation (3.13) can be written as; 

{u }e = [R]e{u }e (3.14) 

Substituting Equation (3.14) into the energy expressions given in Equations 

(3.2) and (3.3) gives, 

T  = 
2

1 {u }e
T[m]e{u }e (3.15) 

eU  = 
2

1 {u }e
T[k]e{u }e (3.16) 

gU  = 
2

1 {u }e
T[s]e{u }e (3.17) 

The stiffness and mass matrices for a planar frame element are expressed in 

terms of the global coordinate system as given below, 

[M]e = [R]e
T[ m~ ]e[R]e (3.18) 

[K]e = [R]e
T[ k~ ]e[R]e (3.19) 

[S]e = [R]e
T [ ]s~ e [R]e (3.20) 

(Kwon and Bang 1997, Petyt 1990). 

 

3.3. Modelling of Double Wishbone Suspension 

 

3.3.1. Modelling Assumptions 

 
Figure 3.2 shows a part of a chassis with a double wishbone suspension system. 

The mechanical system consists of a main chassis, a double wishbone suspension sub-

system and a wheel. A suspension spring, lower and upper arms are included in the 

suspension sub-system. The lower and upper arms are modelled by simple links. 
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The chassis is constrained to move vertically upward or downward. The wheel 

can be modelled as a linear translational spring. The motion of the wheel over the road 

provides a vertical input which excites the body of the vehicle. 

The quarter car with the double wishbone suspension is modelled depending on 

two different assumptions due to the suspension links. In the first model, the links of the 

suspension are assumed to be rigid links. In the second model, finite element model, 

links are modelled to be flexible. 

 

 
 

Figure 3.2. A quarter car with the double wishbone suspension 
                                       (Source:Gillespie 1992) 
 

For analysis purpose, the model of the quarter car with the double wishbone 

suspension assumed to travel with constant velocity on a road surface characterized by a 

displacement )(tyg . Angular displacements of the lower and upper links are negligible 

since the amplitude of the base displacement (amplitude of )(tyg  ) is chosen in small 

amplitude. On the other hand, in order to have the linear equation of motion, axial link 

forces are assumed as constant. 

 

3.3.2. Simple Modelling of Suspension System 

 
Double wishbone suspension of a quarter car is modelled assuming the 

suspension links to be rigid. The model is shown in Figure 3.3.  

The mass tm  represents approximately the mass of the wheel plus part of the 

mass of the suspension arms, cm  represents approximately 1/4 of the car mass. 
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The excitation comes from the road irregularity. It is considered that the spring 

is located in the middle of the lower control arm. 

The kinetic and strain energies; 

2
3

2
1 2

1
2
1 vmvmT tc +=  = { } [ ]{ }qMq T

2
1  (3.21) 

( ) ( )2
12

2
3 2

1
2
1 vvkvykU gt −+−=  = { } [ ]{ }qKq T

2
1  (3.22) 

 
 

 

Figure 3.3. Simple model of the suspension system 

 

The Lagrange’s equations; 

i
ii

Q
q
U

q
T

dt
d

=
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  ni ..,.........2,1=  (3.23) 

where the total strain energy ge UUU += , and iQ  are generalised forces.  

The Lagrange’s equations (3.23) yield the equations of motions in matrix form 

to find the natural frequencies; 

[ ]{ } [ ]{ } { }QqKqM =+  (3.24) 

CAR BODY 

TIRE 

tm  

cm  

k  

1v  

3v  1v  

2v  

tk  

rL  

Y2

ROAD CONTOUR 
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The equation (3.23) can be written for 1v ; 

1
11

Q
v
U

v
T

dt
d

=
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  (3.25) 

2
)( 31

2
vv

v
+

=  (3.26) 

0
4

31
1 =⎟

⎠
⎞

⎜
⎝
⎛ −

+
vv

kvmc  (3.27) 

The equation (3.23) can be written for 3v ; 

2
33

Q
v
U

v
T

dt
d

=
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  (3.28) 

( ) 0
4

13
33 =⎟

⎠
⎞

⎜
⎝
⎛ −

+−+
vv

kyvkvm gtt  (3.29) 

The differential equations in matrix form are; 

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
+−

−
+

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡

gttt

c

ykv
v

kkk
kk

v
v

m
m 0

)4(4
44

0
0

3

1

3

1  (3.30) 

The system characteristic matrices are; 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

t

c

m
m

M
0

0
 (3.31) 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
+−

−
=

tkkk
kk

K
)4(4

44
 (3.32) 

The generalized force vector is; 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

=
)(

0
tyk

Q
gt

 (3.33) 

On the other hand, Equation (3.30) represents a mathematical model shown in 

Figure 3.4. 

If the base displacement is defined by a single frequency harmonic of the form 

as, tSinwYty eg .)( = . The frequency of base motion, ew , is; 

r
e L

Vw π2
=  (3.34) 

where V is the vehicle speed and Lr is the period of the road profile. 
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Figure 3.4. A quarter car suspension model 
(Source:Gobbi and Mastinug 2001) 

 

3.3.3. Finite Element Modelling of Suspension System 

 
The lower and the upper arms are divided into two elements, as shown in Figure 

3.5. The degrees of freedom of node i are iu , iv  and θ i. The degree of freedom iv  is 

transverse displacement and iu  is axial displacement and θ i is slope or rotation. 

The global displacement vector; 

{ } { }Tvuuvuvuvuq 7654544333222111 ,,,,,,,,,,,,,,, θθθθθθθ=  (3.35) 

The local degrees of freedom for a single element are represented by Equation (3.1); 

{ } { }T
e vuvuq 222111 ,,,,, θθ=  

The connectivity table for the element solution is given in Table 3.1. Every node 

in an element has both a local coordinate and a global coordinate. The elastic stiffness, 

geometric stiffness, mass matrices are found from Equations (3.6), (3.8), and (3.10) for 

each the plane frame element. The global stiffness, geometric, and mass matrices are 

obtained by assembling these element matrices. The spring element given in Equation 

(3.12) is considered a frame element. 

 

1v  

3v  

)(tyg

tm

cm

4/k  

tk  
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Figure 3.5. Finite element model of the suspension system 

 

 

Table 3.1. Global freedom numbers for the finite element model 
 

Local Freedom Numbers 
Element 

Number 1 2 3 4 5 6 

I 1 2 3 4 5 6 

II 4 5 6 7 8 9 

III 1 2 15 12 13 14 

IV 12 13 14 10 8 11 

V 12 13 14 1 2 16 
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3.3.4. Proportional Damping 

 
For the sake of simplicity, proportional damping is employed to find the time 

response of the system. Proportional damping matrix is given by; 

[C] = a1 [M] + a2 [K] (3.36) 

where a1 and a2 are proportional damping coefficients. 

The damping ratio for the nth mode of such a system is: 

nξ  = n
n

w
a

w
a

2
1

2
21 +  (3.37) 

The coefficients a1 and a2 can be determined from specified damping ratio iξ  

and jξ  for the ith and jth modes, respectively. Expressing Equation (3.37) for these two 

modes in matrix form leads to 

⎭
⎬
⎫

⎩
⎨
⎧
ξ
ξ

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡

j

i

jj

ii

a
a

ww
ww

2

1

/1
/1

2
1  (3.38) 

These two algebraic equations can be solved to determine the coefficients 1a  

and 2a . If both modes are assumed to have the same damping ratio ξ  , which is 

reasonable based on experimental data, then 

ji

ji

ww
ww

a
+

ξ=
2

1           
ji ww

a
+

ξ=
2

2  (3.39) 

(Cook 1989, Chopra 1995). 

 

3.4. The Equation of Motions of the Suspension System 

 
The equation of motion considering the proportional damping after the assembly 

procedure takes the form; 

[ ]{ } [ ]{ } [ ] [ ] { } { }QqSKqCqM =+++ )(  (3.40) 

where, { }q  is the column matrix of nodal displacements and [C] is proportional 

damping matrix given in Equation (3.36). The method of solving Equation (3.40) 

depends upon whether the applied forces are harmonic, periodic, transient or random. 
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3.5. Vibrations of the Double Wishbone Suspension System 

3.5.1. Natural Frequencies 

 
In order to obtain the natural frequencies, Equation (3.40) is reduced to general 

eigenvalue problem given below; 

(( [ ] [ ]SK + ) - [ ]Mw2 ).{ }q  = 0 (3.41) 

where [ ]K , [ ]S  and [ ]M  are the global elastic stiffness, geometric stiffness, and mass 

matrices, respectively, and { }q  is global displacement vector. The eigenvalue problem is 

then solved by Matlab programs developed for two different models. 

 

3.5.2. Response to Base Excitation 

 
When a structure moves with the time under prescribed loads and motions of its 

supports; that is asked for a time-history analysis. Runge-Kutta integration method of 

time-history analysis is used to the numerical solutions. Matlab has two different 

Runge-Kutta based simulations: ode23 and ode45. These are automatic step-size 

integration methods. The M-file ode23 uses a simple second- and third-order pair of 

formulas for medium accuracy and ode45 uses a fourth- and fifth-order pair for greater 

accuracy. The detail information can be found in reference (Inman 1996). 

Equation (3.40) is rewritten considering the initial conditions subject to a force 

that is function of time as; 

[ ]{ } [ ]{ } [ ] [ ] { } { })()()()()( tQtqSKtqCtqM =+++  (3.42a) 

{ } { }0)0( qq =                { } { }0)0( qq =  (3.42b) 

In order to use the ode functions in Matlab, Equation (3.42) is transformed to 

first order differential equation by defining two new vectors by { } { }qy =1  and 

{ } { }qy =2 . Then multiplying Equation (3.42) by [ ] 1−M  yields the coupled first-order 

vector differential equations; 

{ } { }21 yy =  

{ } [ ] [ ] [ ] { } [ ] [ ]{ } [ ] { }QMyCMySKMy 1
2

1
1

1
2 )( −−− +−+−=  (3.43) 

with initial conditions { } { }01 )0( qy =  and { } { }02 )0( qy = . 
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Equation (3.43) is written as the single first-order equation; 

{ } [ ]{ } { })()()( tftyAty +=                 { } { }0)0( yy =  (3.44) 

where 

[ ] [ ] [ ] [ ] [ ]⎥⎦
⎤

⎢
⎣

⎡
−+−

= −− CMSKM
I

A 11 )(
0

 (3.45) 

and 

{ } { }
{ }⎥⎦

⎤
⎢
⎣

⎡
=

)(
)(

)(
2

1

ty
ty

ty                             { } [ ] { }⎥⎦
⎤

⎢
⎣

⎡
= − )(

0
)( 1 tQM

tf  (3.46) 

{ } { }
{ }

{ }
{ }⎥⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

0

0

2

1
0 )0(

)0(
q
q

y
y

y  (3.47) 

Here { })(ty  is the ( 12nx ) state vector, where the first 1nx  elements correspond 

to the displacement { })(tq  and the second 1nx  elements correspond to the velocities 

{ })(tq (Inman 1996). 
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CHAPTER 4 

 

NUMERICAL APPLICATIONS 

 
4.1. Results of the Kinetic Analysis of the Double Wishbone Suspension 

 
In this section, based on the procedure described Section 2.4, the kinetic analysis 

of a double wishbone suspension system is presented. The main purpose of this section 

is to provide the axial force of the suspension links. The numerical data corresponding 

to the typical vehicle model used in defining the loads are given in Table 4.1. These 

forces are necessary to find the geometric stiffness properties of these links. The 

dynamic loads of the typical vehicle model shown in Figure 2.4 are analyzed. 

 

Table 4.1. Numerical data of a typical vehicle model 
 

    Parameters                           Numerical data 

b (mm) 1961 

B (mm) 1670 

fs 0,6 

GFA/ GRA 44/56 

h (mm) 2220 

H (mm) 1160 

l (mm) 4800 

L (mm) 2900 

LF (mm) 1624 

LR (mm) 1276 

m (kg) 3050 

R (m) 100 

α (degree) 11 

β  (degree) 0 
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Loads on the Vehicle for Different Road Conditions 

 
The minimum acceleration value “a” given in brake regulation 71/320/EEC 

(ECE R13) is used. Rolling resistance coefficient fR = 0.015, aerodynamic drag 

coefficient cD = 0.32, air density ρ =1.228 kg/m3 are chosen for the passenger car from 

the reference (Gillespie 1992). Static axle loads are calculated as 13164 N ( FAG ) and 

16755 N ( RAG ) for front and rear axle, respectively. The static load on one wheel of the 

front axle is 6582 N ( FAwG ). Dynamic axle loads are given in Table 4.2 for a vehicle 

speed of 80 and 120 km/h. 

 

Table 4.2. Dynamic loads on the front one wheel of the vehicle 
 

Dynamic loads (N) 
Road conditions 

Gdyn Sdyn 

Braking and cornering on a downhill grade 

( Case 2 + Case 4 ) V=80 km/h 
17162 9081 

Braking and cornering on a downhill grade 

( Case 2 + Case 4 ) V=120 km/h 
25992 13754 

 

Forces on the Suspension System Model 

 
The calculated values of the joint forces for two different vehicle speeds are 

given in Table 4.3 with the suspension link parameters (a, b, c, and d) shown in Figure 

2.10(b). 

 

Table 4.3. Forces on the double wishbone suspension 
( a= 154.68, b= 96.68, c= 248.17, d=265.67, and 0=δ  ) 

 
Force on joints (N) Vehicle speed (km/h) 

Ax Ay Bx By 

80 2927 463 12009 16698 

120 4434 702 18187 25290 
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4.2. Results of the Vibration Analysis of the Simple Model of the 

Suspension System 

 
The physical properties of the suspension model in Figure 3.3 are given in Table 

4.4. 

 

Table 4.4. Data of the vehicle and suspension 
 

Parameters Value 

mc (kg) 750 
mt (kg) 50 

k (N/mm) 340 
kt (N/mm) 235 
ξ  (-) 0.2 

 
 

The spring stiffness value is found from Equation (3.12) by using the following 

data; d=21.2 mm, Gs= 8.273e+004 N/mm2 (for steel spring), n= 6.25 and Rs=50 mm. 

The proportional damping coefficients a1 and a2 are found from Equation (3.39) as 

3.236 and 0.0045, respectively. 

 

4.2.1. Natural Frequencies 

 
A Matlab program depending on Equation (3.41) along with Equations (3.31) 

and (3.32) is developed to find the natural frequencies of the simple model of the 

suspension. Using the numerical data given in Table 4.4, the natural frequencies are 

found as 1w = 9.101 rad/s and 2w = 80.190 rad/s. 

 

4.2.2. Response to Base Excitation 

 
The road profile is chosen as sinusoidal in cross section with parameters 

6=rL m and Y = 0.02 m. For the two vehicle speeds of 80 km/h and 120 km/h; the 

excitation frequencies are determined from Equation (3.34) as 1ew = 23.272 rad/s and 

2ew = 34.908 rad/s. Figures 4.1 and 4.2 depict the time variations of the vertical 
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displacements of the car body, tire axis and the road profile for two different conditions 

aforementioned. Also, Figures 4.3 and 4.4 show plot of the displacements, velocities, 

and accelerations of the car body versus time for the two different excitation 

frequencies. 
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Figure 4.1. Plot of the displacements vs time for simple model (V=80 km/h) 
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Figure 4.2. Plot of the displacements vs time for simple model (V=120 km/h) 
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Figure 4.3. Plot of the displacement, velocity, and acceleration vs time for  

                              simple model (V=80 km/h) 
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Figure 4.4. Plot of the displacement, velocity, and acceleration vs time for  

                              simple model (V=120 km/h) 
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4.3. Results of the Vibration Analysis of the Finite Element Model of 

the Suspension System 

 
The physical properties of the suspension model in Figure 3.4 are given in Table 

4.5. 

 

Table 4.5. Numerical data for the finite element model 
 

Parameters Numerical Data 

E (N/m2) 2.1e+011 

ρ  (kg/m3) 7830 

43,21 ,,  (m) 0.2 

4321 ,,, AAAA  (m2) 6.0e-004 

4321 ,,, IIII  (m4) 1.2e-007 

ξ  (-) 0.2 

 

4.3.1. Natural Frequencies 

 
A Matlab program depending on Equation (3.41) along with Equations (3.6), 

(3.8), (3.10), and (3.11) is developed to find the natural frequencies of the finite element 

model of the suspension. Using the numerical data given in Tables 4.4 and 4.5, the 

natural frequencies are found as 1w = 9.032 rad/s and 2w = 79.043 rad/s. 

 

4.3.2. Response to Base Excitation 

 
Similar investigations given in Section 4.2.2 are carried out for finite element 

model of the suspension system and the results are presented in Figures 4.5-4.8. 
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Figure 4.5. Plot of the displacements vs time for unloaded FE model (V=80 km/h) 
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Figure 4.6. Plot of the displacements vs time for unloaded FE model (V=120 km/h) 
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Figure 4.7. Plot of the displacement, velocity, and acceleration vs time for unloaded 

                      FE model (V=80 km/h) 
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Figure 4.8. Plot of the displacement, velocity, and acceleration vs time for unloaded 

                      FE model (V=120 km/h) 
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4.4. Results of the Vibration Analysis of the Finite Element Model of 

the Suspension System under the Axial Loads 

 
The same physical properties of the suspension model given in Table 4.5 are 

considered. 

 

4.4.1. Natural Frequencies 

 
Under the axial loads given in Table 4.3, the natural frequencies are found as 

1w = 8.005 rad/s and 2w = 76.099 rad/s. 

 

4.4.2. Response to Base Excitation 

 
Similar investigations given in Section 4.2.2 are carried out for finite element 

model of the suspension system with loaded links (links are loaded by joint forces ). 

The results are presented in Figures 4.9-4.12. 
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Figure 4.9. Plot of the displacements vs time for loaded FE model (V=80 km/h) 
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Figure 4.10. Plot of the displacements vs time for loaded FE model (V=120 km/h) 
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Figure 4.11. Plot of the displacement, velocity, and acceleration vs time for loaded 

                         FE model (V=80 km/h) 
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Figure 4.12. Plot of the displacement, velocity, and acceleration vs time for loaded 

                         FE model (V=120 km/h) 

 

4.5. Comparisons and Discussions of Results 

 
The effect of flexibility of the suspension links are examined for the natural 

frequencies. It may be noted that the natural frequencies do not depend on the link 

flexibilities strongly. Moreover, they are close to each others. On the other hand, the 

axial loads acting on the suspension links are reasonably effective on the natural 

frequencies of the system. 

It can be seen from Figures 4.1-4.2 that when the speed of the car increases, the 

amplitude of the car body decreases. Also, it can be seen from the same figures that the 

displacements amplitude of the car body is lower than those of the tire. 

It is observed from the Figures 4.1, 4.5, and 4.9 (V=80 km/h) or Figures 4.2, 4.6, 

and 4.10 (V=120 km/h) that the displacements amplitude of the car body for all model 

are close to each others for the specified car speed. Similar observation can be made for 

the velocity and acceleration magnitudes of the car from the Figures 4.3, 4.7, and 4.11 

(V=80 km/h) or Figures 4.4, 4.8, and 4.12 (V=120 km/h). 

 



 39

CHAPTER 5 

 

CONCLUSION 

 
The effects of link flexibilities and axial link loads on the natural frequencies 

and also the vibration displacements, velocities, and accelerations of the car body for 

different double wishbone suspension models under typical sinusoidal base excitations 

have been analysed. 

The quarter car with the double wishbone suspension system has been modelled 

for two different approaches to the suspension links to be rigid and flexible. Therefore, 

the dynamic analyses of these models have been investigated by the analytic method 

and the finite element method. Matlab computer programs have been developed for 

numerical calculations. 

In the first model the link flexibilities are not included due to modelling 

approach. However, in the second model, finite element model, the suspension link 

flexibilities and the axial loads acting on suspension links are taken into account to find 

the natural frequencies and the time response under base excitations. 

Analysis of the results showed that the agreement between the simple model and 

flexible model without unloaded links is excellent for both natural frequencies and the 

time reponses. Therefore, the simple model is adequate for the first design step. 

However, in order to obtain the more accurate results, for example natural frequencies 

and time responses, it is necessary to consider the finite element model of the 

suspension system. 
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