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July 2006
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to my parents, to my brother for their constant moral support.

I am grateful to Izmir Institute of Technology (IYTE) for giving me a full

time assistantship during my thesis.

This work was partially supported by The Scientific and Technical Research

Council of Turkey, Turkish Academy of Sciences, Turkish Atomic Energy Commis-

sion (TAEK).



ABSTRACT
FLAVOR VIOLATION IN SUPERSYMMETRY

This thesis work is meant as an introduction to supersymmetry and its phe-

nomenological implications for flavor-changing phenomena. After a survey of the

basic features of the standard model of electroweak interactions, it continues with

a through definition and basic derivation of the fundamental concepts of supersym-

metric field theories, including superspace, superfield and superpotential.

In a supersymmetric theory, all interactions are to be symmetric under the ex-

change of bosons and fermions – the superpartners. However, supersymmetry must

be an explicitly yet softly broken symmetry of nature, and supersymmetry breaking

parameters, the so-called soft terms, give rise to various phenomena observable at

present and future experiments. The mixing among different flavors of matter – the

flavor violation – is one such phenomenon which exhibits a strong dependence on

the structure of the soft terms. In particular, decoupling of superpartners from the

particle spectrum at a threshold energy near the ultraviolet scale of the standard

model induces sizeable corrections to flavor violating interactions. These corrections

are strong enough to disqualify an otherwise viable high-scale flavor model by a con-

frontation with experiments at low energy. This thesis work focusses a class of flavor

models, following from strings or supergravity, and provides a through analysis of

their sensitivities to supersymmetric threshold corrections.
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ÖZET
SÜPERSİMETRİDE ÇEŞNİ KIRINIMI

Bu tez çalışması süpersimetriye ve süpersimetrinin çeşni degişimi olayındaki

implikasyonlarına giriş olarak hazırlanmıştır. Standard Model elektro-zayıf etk-

ileşimlerin temel özelliklerinin incelenmesinden sonra süpersimetrik alan teorilerinin

süperuzay, süperalan ve süperpotansiyel gibi temel kavramlarının tanımı ve basit

türetimleri çalışılmıştır.

Süpersimetrik bir teoride tüm etkileşimler bosonlar ve fermionların

(süpereşlerin) degişimi altında simetrik kalmak durumundadırlar. Buna rag-

men süpersimetri doganın açıkça ve yumuşakça kırılmış bir simetrisi olmalıdır

ve yumuşak (soft) terimler olarak adlandırılan süpersimetri kırınım parametreleri

günümüz ve gelecek deneylerde çeşitli gözlemlenebilir fenomenlerin ortaya çıkmasına

sebep olacaktır. Maddenin farklı çeşnilerinin birbirine karışması -çeşni kırınımı-

yumuşak (soft) terimlere güçlü baglılık gösteren olaylardan biridir. Özel olarak

Standard Model’in morötesi skalasına yakın eşik enerjisinde süpereşlerin parçacık

spektrumundan ayrışması çeşni ihlal eden etkileşimlere önemli düzeltmeler getirmek-

tedir. Bu düzeltmeler, aksi taktirde geçerli olan yüksek skala çeşni modelini düşük

enerjilerdeki deneylerle geçersiz kılacak kadar güçlüdür.

Bu tez çalışmasında çeşni modellerinin bir sınıfına odaklanarak süpersimetrik

eşik düzeltmelerine duyarlılıkları analiz edilmiştir.
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CHAPTER 1

INTRODUCTION

The matter forming up the universe we live in is made up of tiny building

blocks held together by appropriate forces. Therefore, a complete picture of nature

will arise only after we discover what types of matter (the flavor) and what kinds

of forces exist at short distances. As dictated by the quantum theory, the theory

of subatomic systems, for probing physical systems of smaller and smaller size one

needs to make characteristic energy of scattering processes higher and higher. Hence,

the physics of fundamental particles is a high-energy physics.

The so-called standard model of particle physics (SM) is an inside story of the

atom, or better, the nucleus. One one hand, it provides a consistent model of how

known hadrons (e.g. neutron, proton, pion and many more mesons and baryons) are

formed from a few fundamental particles – the quarks. On the other hand, it explains

how two seemingly unrelated phenomena, electromagnetism and radioactivity, can

be tied up to a common origin. It is these virtues of the model and it is its success

against numerous experiments that have been performed so far that make it ’the

standard model’ (Weinberg 1967).

According to SM, there exist two main classes of matter: six leptons (electron,

muon, tau lepton and their associated neutrinos) and six quarks (up, down, charm,

strange, top and bottom). The quarks form the known kinds of hadrons (i.e. mesons

and baryons) by a special force that binds them together: the strong force. This

strong force is a confining force in that quarks are never liberated as free particles;

they are always imprisoned in hadrons.

On the other hand, as we know well from radioactivity, neutron in an unstable

nucleus gets converted into proton accompanied by electron and its neutrino. This

phenomenon, the radioactivity, requires a distinct force which operates on both

leptons and hadrons: the weak force.

Finally, electromagnetic force mediates interactions among the charged mat-

ter: electron, muon, tau lepton and all six quarks. The neutrinos are electrically

neutral. The quarks posses fractional electric charge. For instance, up quark has
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got −2/3 of the electron’s electric charge whereas electric charge of the down quark

equals 1/3 of electron’s electric charge.

One of the most important aspects of the SM is that it is a gauge theory i.e.

quark and lepton fields exhibit exact invariance under a set of symmetry groups.

In fact, each of the aforementioned force fields stem from the requirement of local

gauge invariance which cannot be implemented unless a mediator – a gauge field

– is introduced. In this sense, strong force which binds quarks together follows

from invariance of entire SM langangian under the rephasings exp
{
i
∑8

a=1 fa(x)λa
}

where fa(x) are local functions and λa are 3×3 hermitian unit-determinant matrices

forming special unitary SU(3) group. This group, the color gauge group SU(3)c, gives

rise to colorless objects, the hadrons, thanks to its confining nature (Wilson 1974).

Under this gauge group, each quark is assigned three distinct colors (blue, green,

red) not related to electromagnetic spectrum.

The weak force responsible for radioactivity also follows from a gauge princi-

ple. Knowing that weak interactions violate parity (Wu et al. 1957), this gauge prin-

ciple is expected to differentiate between left-handed (the massless particles whose

momenta are parallel to their spins) and right-handed (the massless matter whose

momenta are anti-parallel to their spins) matter. In fact, weak force is based on in-

variance of left-handed quarks and leptons under the rephasings exp
{
i
∑3

i=1 gi(x)σi
}

where gi(x) are functions of coordinates and σi are 2×2 hermitian unit-determinant

matrices forming special unitary SU(2) group. This group, the isospin group SU(2)L

correctly generates the nuclear reactions which lead to radioactivity. Under this

gauge group, left-handed matter is assigned into doublets. For instance, left-handed

up and down quarks and left-handed electron-neutrino and electron form doublets.

Finally, electromagnetism follows form a gauge principle, too. However, the

invariance implemented in the SM is based not on the electric charge directly but

on hypercharge i.e. the difference between particle’s electric charge and isospin.

For instance, left-handed quark doublets possess 1/3 hypercharge and left-handed

leptons doublets −1. On the other hand, right-handed top quark obtains 4/3, right-

handed tau lepton −2 and right-handed strange quark −2/3 hypercharge. Hyper-

charge is a local invariance of the SM i.e. its lagrangian is invariant under rephasing

exp {ih(x)Y } of a matter field with hypercharge Y . This invariance forms a unitary

2



one-parameter gauge group, U(1)Y .

In summary, gauge principle is a fundamental notion for explaining funda-

mental forces in nature, and SM is a gauge theory based on SU(3)c⊗SU(2)L⊗U(1)Y

gauge invariance. This invariance comprises all forces in nature, except gravity.

The SM has shown excellent agreement with all the experiments conducted

so far. However, it has got a number of problems whose solutions might require a

further yet-to-be found extension. These problems can be summarized as follows:

Problem 1 (Gauge Hierarchy Problem): One of the most important

features of the SM is the presence of a mass generation mechanism. Indeed, when

SU(3)c⊗SU(2)L⊗U(1)Y is an exact invariance of the theory none of the quarks and

leptons possesses mass. Their masses are generated via the Higgs field (an SU(2)L

doublet introduced with the same philosophy as Ginzburg-Landau order parameter

needed for explaining superconductivity) whose most likely value is zero in the sym-

metric vacuum (no massive matter) and is non-zero in the broken vacuum. This

mismatch between the symmetries of the lagrangian and vacuum state gives rise to

spontaneous breakdown of SU(2)L⊗U(1)Y down to electromagnetism (represented

by U(1)Q invariance), and generates masses of quark and leptons while giving rise

to a massive neutral vector particle Z and a charged vector particle W . This mech-

anism (Higgs 1966, Kibble 1967) works consistently and admits a clear physical

interpretation only at the classical level, however. Indeed, once quantum mechanical

corrections are included one finds that the order parameter sector, the Higgs sector,

is destabilized completely. This destabilization is so strong that the ’weak force’

becomes as weak as gravity which is in obvious contradiction with experiments e.g.

the atomic bomb. This quantum anomaly of the Higgs sector can disqualify SM to

be an ultimate description of nature, and hence the lesson: it is necessary to invent

a mechanism to stabilize the SM Higgs sector against wild quantum fluctuations.

Problem 2 (Flavor Problem): The second issue concerns masses of lep-

tons and quarks. Indeed, in the SM these particles receive their masses from the

condensation of the Higgs field i.e. via its non-vanishing vacuum expectation value.

However, the experimentally well-established masses and mixings among quarks (as

well as those of the leptons) are neither predicted nor constrained by the model.

This problem, the flavor problem, must be understood within the extension of the

3



SM which solves Problem 1 above. Saying differently, any extension of the SM must

be analyzed from the point of view of flavor problem i.e. its flavor violation potential

must be determined.

In addition to these two problems, the SM may be criticized by its lack of

explaining the following phenomena:

• Though electromagnetism and weak force are tied up to a common origin the

strong force is left aside. Is there a way of unifying strong force with others?

Moreover, gravity is left aside completely. Is there a way of unifying all these

four forces of nature into one single force?

• Observations show that approximately 20% of matter in the universe is a non-

shining one. Standard model does not have candidate for this. Can it be

extended to cover this important component of matter?

• Though fundamental equations are symmetric between matter and anti-

matter, the universe we live in seems not so. We are made up of matter

but anti-matter is missing. Can SM explain how this asymmetry has arisen?

In the next chapter we will give a detailed discussion of the two main problems

above. Then, in Chapter III, we will use observations made in SM as motivations for

introducing a new symmetry, the supersymmetry. In Chapter IV we will specialize

to minimal supersmmetric standard model – a common prototype model to discuss

phenomenological implications of supersymmetry. In Chapter V we will discuss fla-

vor problem in supersymmetric framework. In particular, we will discuss sensitivity

of high-scale flavor structures to radiative corrections.
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CHAPTER 2

HIERARCHY PROBLEMS IN THE SM

2.1. Flavor Problem in the SM

In the SM there exist three families (generations) of fermions. Flavor

physics describes interactions that distinguish between the fermion generations. The

fermions experience two types of interactions which are called gauge and Yukawa

interactions. Gauge interactions are responsible for where two fermions couple to

a gauge boson, and Yukawa interactions responsible for where two fermions cou-

ple to a scalar. Within the Standard Model framework (Glashow 1961, Weinberg

1967), there are twelve gauge bosons, related to gauge symmetry which are based

on group properties. Now, we can divide behavior of interactions into two cate-

gories: interaction and mass bases. In the interaction basis, gauge interactions,

each factor group factor in SU(3)c⊗SU(2)L⊗U(1)Y has a single coupling, are diago-

nal. According to this, the interaction eigenstates have no gauge couplings between

fermions of different generations, as well. On the other hand, Yukawa interactions

are quite complicated in the interaction basis, the interaction eigenstates do not

have well-defined masses since there are Yukawa couplings that involve fermions of

different generations. Flavor physics is related to part of the SM that depends on

the Yukawa couplings. In the mass basis, Yukawa interactions are diagonal. The

mass eigenstates have well defined mass. However, the gauge interactions related

to spontaneously broken symmetries (appendix B) can be quite complicated in the

mass basis. In particular, the SU(2)L gauge couplings are not diagonal, that is they

mix quarks of different generations. Therefore, flavor problem in the SM concerns

size and structure of mixings among different quark flavors i.e. flavor violation.

There exist 6 different quark flavors u , d , s , c , b , t , 3 different charged lep-

tons e , µ , τ and their corresponding neutrinos νe , νµ , ντ . We can nicely include all

these particles into the SM framework, by organizing them into 3 families of quarks

and leptons. Thus, we have 3 nearly identical copies of the same SU(2)L⊗U(1)Y

structure, with masses as the only difference (further details (Novaes 1999)).
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Let us consider the general case of N generations of fermions, and denote

ν ′
j, l

′
j, u

′
j, d

′
j the members of the weak family j (j = 1, . . . , N), with definite

transformation properties under the gauge group. Owing to the fermion replication,

a large variety of fermion–scalar couplings are allowed by the gauge symmetry. The

most general Yukawa Lagrangian has the form

LY = QI
LjY

d
jkHd

I
kR +QI

LjY
u
jkH̃u

I
kR + LILjY

`
jkH`

I
kR, (2.1)

QI
Li(3, 2)+1/6, uIRi(3, 1)+2/3, dIRi(3, 1)−1/3, LILi(1, 2)−1/2, `IRi(1, 1)−1. (2.2)

In these notations basically mean that, for example, the left-handed quarks, QI
L,

are in a triplet (3) of the SU(3) group, a doublet (2) of SU(2) matrix properties and

carry hypercharge Y = QEM − T3 = +1/6,where H(1, 2)+1/2 is the Standard Model

Higgs doublet, and H̃ = iσ2H
∗. The index I denotes interaction eigenstates. The

index i = 1, 2, 3 is the flavor (or generation) index, explicit form eq(1.16) lagrangian,

LY =
∑

jk





(
ū′
j, d̄

′
j

)
L


Y (d)

jk


 φ(+)

φ(0)


 d′kR + Y

(u)
jk


 φ(0)∗

−φ(−)


 u′

kR




+
(
ν̄ ′
j, l̄

′
j

)
L
Y

(l)
jk


 φ(+)

φ(0)


 l′kR



 + h.c., (2.3)

where encodes Yukawa matrices Y
(d)
jk , Y

(u)
jk and Y

(l)
jk (up quarks, down quarks and

and leptons respectively) each being 3 × 3 non-hermitian matrix in the space of

fermion flavors.

The Standard Model gauge interactions do not distinguish between the differ-

ent generations. Another way to state this is to say that the gauge interactions are

flavor-blind. The strength of the gauge interactions depends on the gauge quantum

numbers given in and not on the flavor index i. Most important for our purposes,

the interaction of the SU(2)L gauge bosons (W a
µ , a = 1, 2, 3) with quarks is given

by

−LW =
g

2
QI
Liγ

µτaQI
LiW

a
µ . (2.4)

The 4× 4 matrix γµ operates in Lorentz space (it describes the combination of two

spin-1/2 quark fields and one spin-1 gauge boson field into a Lorentz scalar) and the

6



2×2 matrix τ a operates in the SU(2)L space (it describes the combination of the two

quark doublets and the W a-triplet into an SU(2)L singlet). The coupling QI
LiQ

I
Li

can be equivalently written as QI
Li1ijQ

I
Lj where the 3× 3 unit matrix 1 operates in

flavor space and makes the universality of the gauge interactions manifest.

The spontaneous symmetry breaking (SSB) mechanism generates the masses

of the weak gauge bosons, and gives rise to the appearance of a physical scalar

particle in the model, the so-called “Higgs”. The fermion masses and mixings are

generated through the SSB (the details can be found in (Appendix B) and (Pich

2005)).

To transform to the mass basis, one has to take into account spontaneous

symmetry breaking . Within the Standard Model this breaking is the result of a

vacuum expectation value assumed by the neutral component of the Higgs doublet,

φ0 = v√
2

with the electroweak breaking scale of order v ≈ 246 GeV. Upon the

replacement <(φ0) → (v + H0)/
√

2, the Yukawa interactions give rise to mass

terms:

LM = (Md)ijdILid
I
Rj + (Mu)ijuILiu

I
Rj + (M`)ij`ILi`

I
Rj, (2.5)

where

Mf =
v√
2
Y f , (2.6)

The mass basis corresponds, by definition, to diagonal mass matrices. We

can always find unitary matrices VfL and VfR such that

VfLMfV
†
fR = Mdiag

f (2.7)

with Mdiag
f diagonal and real. The mass eigenstates are then identified as

dLi = (VdL)ijd
I
Lj dRi = (VdR)ijd

I
Rj

uLi = (VuL)iju
I
Lj uRi = (VuR)iju

I
Rj

lLi = (VlL)ijl
I
Lj lRi = (VlR)ijl

I
Rj

νLi = (VνL)ijν
I
Lj

(2.8)
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Note that, since the neutrinos are massless, VνL is arbitrary.

The charged current interactions (that is the interactions of the charged

SU(2)L gauge bosons W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ)), which in the interaction basis are

described by ;

−LW± =
g√
2
uILiγ

µdILjW
+
µ + h.c.. (2.9)

The charged current interaction for quarks in the mass basis is:

−LW± =
g√
2
uLiVuLγ

µV †
dLdLjW

+
µ + h.c.. (2.10)

u i
dj

i jV

W

Figure 2.1: Feynman graphs illustrating flavor-violating W± couplings.

The 3× 3 unitary matrix,

VCKM = VuLV
†
dL, (2.11)

is called the Cabibbo-Kobayashi-Maskawa matrix (CKM) mixing L matrix for

quarks (Cabibbo 1963, Kobayashi and Maskawa 1973). It depends on four pa-

rameters: three real angles and one phases. The CKM matrix is a unitary matrix

which contains information on the strength of flavor changing decays. Technically,

it specifies the mismatch of quantum states of quarks when they propagate freely

and when they take part in the weak interactions.
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As a result of the fact that VCKM is not diagonal, the W± gauge bosons can

couple to left-handed quark (mass eigenstates) of different generations. Within the

Standard Model, this is the only source of flavor changing interactions (Pich 1996,

Nir 1998). In general, if massive neutrinos are included in the model then lepton

sector also exhibits non-trivial flavor mixings. Experiments are meson factories

have already measured all entries of VCKM to a fairly good precision (Eidelman et

al. 2004).

The problem is that the SM does not provide an explanation for hierarchy of

quark and lepton masses as well as mixing among different quark flavors. As will be

seen in Chapter IV, this is also a problem in supersymmetric models, and it is nec-

essary to determine if the model passes tests provided by the existing experimental

results.

2.2. The Gauge Hierarchy Problem in the SM

Although the Standard Model provides a very well description to known

phenomena, it seems that the Standard Model is still insufficient. It is not the

complete story. There are some problems that are not solved with this model, such

as the quadratic divergences. Particles receive some quantum corrections from loops.

Let us look at these quantum corrections.

Figure 2.2: A fermion loop contribution to the Higgs boson in the Standard Model.

While fermion masses receive radiative corrections from diagrams, these cor-

rections are logarithmically divergent.

δmf '
3α

4π
mf ln(Λ2/mf) (2.12)
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where Λ is an ultraviolet cutoff. It is the highest energy scale in the calculation.

The SM, being an effective theory, is valid below this cutoff scale. Above the cutoff

scale some unknown new physics takes place. We do not know what this physics is

like? If the SM is a true description of Nature all the way up to Planck scale then

Λ ∼MP , these corrections are still small,

δmf ≤ mf (2.13)

However, scalar masses receive quantum corrections from couplings, these

corrections are quadratically divergent. When we ignore the gravitational interac-

tions, scalar masses accept the largest quantum corrections.

δm2

H ' g2

f

∫
d4k

1

k2
∼ O(

α

4π
Λ2) (2.14)

δm2

H ' g2

∫
d4k

1

k2
∼ O(

α

4π
Λ2) (2.15)

δm2

H ' λ

∫
d4k

1

k2
∼ O(

α

4π
Λ2) (2.16)

where gf is from fermion coupling, g is from gauge boson coupling, and λ is from

quartic scalar couplings. We expect MW ∼ mH ,however Λ�MW . That is

δm2

H � m2

H (2.17)

The fact that the ratio MP

MW
is very large poses the hierarchy problem. There

are a few technics to control the hierarchy problem and cancelling divergences (Drees

1996, Martin 1997). But they are not simple solutions. An alternative and simpler

solution to this problem exist if we introduce new particles with similar masses and

appropriate couplings but with a half unit spin difference.Then the δm2

H is

m2

H ' O(
α

4π
)(Λ2 +m2

B)−O(
α

4π
)(Λ2 +m2

F) = O(
α

4π
)(m2

B −m
2

F) (2.18)
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Figure 2.3: Scalar fermion loop contributions to the Higgs self energy.

If the bosons and fermions all have the same masses, then the radiative

corrections vanish identically. The only requirement for the hierarchy is preserving

the weak scale, so we need only this requirement;

| m2

B −m
2

F |≤ 1TeV 2 (2.19)

The lesson one learns from these observations is that, scalar masses can be

protected against wild radiative corrections if the scalar field under concern couples

to fermions and bosons in a correlated fashion i.e. couplings to fermions and bosons

must be related in a highly tuned way, and moreover, fermion and scalar masses

must be equal. Enforcement of such relations on fermionic and bosonic fields is

a fine-tuning and thus an unwanted property. However, this fine-tuning impasse

would be avoided if these aforementioned relations derive from a symmetry princi-

ple. The symmetry principle with these properties is nothing but supersymmetry

– a symmetry that exchanges fermions and bosons. In the next chapter we will

discuss implications and relevance of this symmetry with motivation obtained by

observations made of scalar masses.
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CHAPTER 3

SUPERSYMMETRY BASICS

It is easily seen from the examples which are previous chapter that, a new

symmetry is needed for stabilizing scalar (the Higgs) mass against violent quantum

fluctuations. That must be such a symmetry theory that can protect the Higgs mass

from quadratically divergent corrections.

This symmetry model must connect fermions and bosons. There must be a

generator of this symmetry that turn a bosonic state into a fermionic one, vice versa.

If this were possible, it would imply that bosons and fermions are merely different

manifestations of the same state, and in some sense would correspond to an ultimate

form of unification. For a long time, it was believed that such a symmetry trans-

formation was not possible to implement physical theories. At present, however, we

know that such transformations can be defined, and, in fact, there exist theories that

are invariant under such transformations. These transformations are known as Su-

persymmetry (SUSY) transformations. This new symmetry, which mixes bosons and

fermions, is called Supersymmetry (Peskin 1996, Martin 1997, Aitchison 2005).

Let the operator Q be generator of such transformations:

Q | Boson〉 = | Fermion〉 (3.1)

Q | Fermion〉 = | Boson〉 (3.2)

An exciting feature of the Supersymmetry algebra is that there exist quantum field

theories in which the supersymmetry generators Q may be represented in terms of

conserved currents Jα
m :

Qα =

∫
d3Jα

0 (3.3)

The currents Jα
m are local expressions of the field operators. The algebra is satis-

fied because of the canonical equal-time commutation relations, and Hilbert space

spans a representation of the supersymetry algebra (Wess and Bagger 1992). In

parallel to the idea, it is natural to ask if our current quantum field theories exploit
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all the kinds of symmetries which could exist, consistent with Lorentz invariance.

Consider the symmetry ”charges” that we are familiar with in the SM, for example

an electromagnetic charge of the form

Qα = e

∫
d3ψ†ψ (3.4)

or an SU(2) charge (isospin operator) of the form

T = g

∫
d3ψ†(τ/2)ψ (3.5)

All such symmetry operators are themselves Lorentz scalars. This implies that when

they act on a state of definite spin J, they cannot alter that spin:

Q | J〉 =| sameJ, possibly different member of symmetry multiplet〉 (3.6)

It is known that one vector ”charge”, the 4 momentum operator Pµ generates

space-time displacements, and its eigenvalues are conserved 4-momenta. There is

also the angular momentum operator represented by an antisymmetric tensor Mµν .

At this point one can ask if there is a conserved charge Qµν corresponding to angular

momentum operator. To see this, we can consider letting such a charge act on a

single particle state with 4-momentum (Ellis 2002) p:

Qµν | p〉 = | (αpµpν + βgµν) | p〉 (3.7)

whose right-hand side follows from the covariance arguments. Now consider a two

particle state | p(1), p(2)〉, and assume that Qµν ’s are additive, conserved, and act

only one particle at a time, like other known charges. Then

Qµν | p(1), p(2)〉 = | (α(p(1)
µ p(1)

ν + p(2)
µ p(2)

ν + 2βgµν) | p(1), p(2)〉 (3.8)

In an elastic process of the form 1 + 2→ 3 + 4 we will then need (from conservation

of the eigenvalues)

p(1)
µ p(1)

υ + p(2)
µ p(2)

υ = p(3)
µ p(3)

υ + p(4)
µ p(4)

υ (3.9)

But we have also 4-momentum conservation:

p(1)
µ + p(2)

µ = p(3)
µ + p(4)

µ (3.10)
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Hence a common solution of the last two equations give

p(1)
µ = p(3)

µ , p(2)
µ = p(4)

µ ; p(1)
µ = p(4)

µ , p(2)
µ = p(3)

µ (3.11)

which means that only forward or backward scatterings can occur. This is of course

unacceptable. The general message, important for us, is that there seems to be no

room for further conserved operators with non-trivial Lorentz transformation prop-

erty. The existing such operators Pµ and Mµν do allow proper scattering process to

occur, but imposing any more conservation laws over-restricts the possible configura-

tions. Such was the conclusion of the Coleman-Mandula theorem. Supersymmetries

avoid the restrictions of the Coleman-Mandula theorem by relaxing one condition.

According to the Coleman-Mandula theorem:

• The S-Matrix is based on a local, relativistic quantum field theory in 4D

space-time

• There are only a finite number of different particles associated with one particle

states with a given mass, and there is an energy band gap between the vacuum

and the one particle states.

The theorem states that most general Lie algebra of symmetries of S-Matrix contains

energy-momentum operator Pµ , the Lorentz generator Mµν , and a finite number

of Lorentz-scalar operators. They generalize the notion of Lie algebra to include

algebraic systems whose defining relations involve anticommutators as well as com-

mutators. The generators turn out to be ”charges” which transform under Lorentz

Transformations as spinors; that is to say, objects transforming like a fermionic

field. We may denote such a charge by Qa, the subscript a indicating the spinor

component. For such a charge, equation (3.7) will clearly not hold; rather

Qa | J〉 = | J± 1/2〉 (3.12)

As a result of this, the algebra, Superalgebra, involves commutation as well as

anticommutation relations. What is the framework of this algebra? What is it look

like? Because our spinorial charge Qa is a symmetry operator, it must commute

with the hamiltonian of the system

[Qa, H] = 0 (3.13)
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and so must the anticommutator of two different components

[{Qa, Qb}, H] = 0 (3.14)

The spinorial Q’s have two components, so as a and b vary the symmetric object

{Qa, Qb} obtains three independent components, and we suspect that it must trans-

form as a spin-1 object . However, as usual in a relativistic theory, this spin-1 object

should be described by a 4-vector, not a 3 vector . Further, this 4-vector is con-

served. There is only one such conserved 4-vector operator (from Coleman-Mandula

theorem) Pµ. So the Qa’s must satisfy an algebra of the form,

{Qa, Qb} ∼ Pµ (3.15)

It is this simple-looking expression that leads to supersymmetry algebra.

3.1. Supersymmetry Algebra

The operators Q and Q† are fermionic operators, so they carry half-integer

spin. Q and Q† basically satisfy the algebra of commutation and anticommutation

relations. Basically,

{Q,Q†} ∝ P µ (3.16)

{Q,P µ} = {Q†, P µ} = 0 (3.17)

{Q,Q} = {Q†, Q†} = 0 (3.18)

where P µ is momentum i.e translation generator.

In this chapter, we shall follow this philosophy in the rest of the thesis,

and develop the idea of supersymmetry in simple terms. We aim at studying a

Lagrangian for particles of spins 0 and 1
2

which exhibits a supersymmetry invariance.

We then develop some elegant notions of superspace and superfields, eventually

returning to show that our Minimal Supersymmetric extension of the SM Lagrangian

may be obtained simply from the superfield formalism. To begin, however, we must

warm up by refreshing our knowledge of Lorentz transformations with Poincaré

algebra.
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3.1.1. Poincaré Algebra and Spinors

Supersymmetry algebra is a mathematical formalism for describing the re-

lation between bosons and fermions (Ramond 1990, Mohapatra 1996). In a su-

persymmetric world, every boson would have a partner fermion of equal mass, and

vice versa. To explore the consequences of this assertion and to attempt at ex-

plain why the present-day world does not appear supersymmetric, physicists and

mathematicians have developed an algebraic method for describing the symmetries

involved. Traditional symmetries in physics are generated by objects that transform

under various representations of the Poincaré group. Supersymmetries, on the other

hand, are generated by objects that transform under the spinor representations of

Poincare algebra. According to the spin-statistics theorem, bosonic fields commute

while fermionic fields anticommute. In order to combine the two kinds of fields into

a single object the introduction of a grading under which the bosons are the even

elements and the fermions are the odd elements is required. We need to extend our

Poincaré algebra to the new formalism (Peskin and Schroeder 1995).

P : xρ → x
′

ρ = λρσx
σ + aρ

= xρ + ωρσx
σ + aρ

= exp[−iω
µν

2
Mµν − iaµPµ]xρ (3.19)

so that for infinitesimal rotations and translations one obtains

x
′

ρ → xρ − i
ωµν

2
Mµνx

ρ − iaµPµxρ (3.20)

with differential operator equivalents

Pµ = i∂µ

Mµν = −i(xµ∂ν − xν∂µ) (3.21)

satisfying

[Pµ, Pν ] = 0

[Mµν , Pρ] = i(gνρPµ − gµρPν)

[Mµν ,Mρσ] = i(gνρMµσ + gµσMνσ − gµρMνσ − gνσMµρ) (3.22)
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Let us note that general Lorentz generators include both spin and orbital parts:

Mµν = −i(xµ∂ν − xν∂µ) +
1

2

µν∑
(3.23)

where

µν∑
=

i

2
(γµγν − γνγµ) (3.24)

{γµ, γν} = 2gµν (3.25)

3.1.2. Lorentz Transformation of ΨL and ΨR

The fermion wavefunctions, or fields, have four components , not two. How-

ever, the simplest SUSY theory (Peskin 1996, Csaki 1996) involves a complex scalar

field and two-component fermionic field. We first aim to understand the nature of

the two-component fields which together constitute a Dirac spinor. This difference

has to do with different ways the two parts of the 4-component Dirac field transform

under Lorentz transformations. Understanding how this works is important for us

to be able to write down SUSY transformations. We write

Ψ =


 ΨL

ΨR


 ≡


 ψ

χ


 (3.26)

The Dirac equation gives then

(E-σ.p)χ = mψ

(E+σ.p)ψ = mχ (3.27)

Notice that as m→ 0, eq.(3.26) becomes σ.p = Eψ0, and E → |p|, , and hence

the zero mass limit of (3.26):

(σ.p/|p|)ψ0 = ψ0 (3.28)

which means that ψ0 is an eigenstate of the helicity operator. For m 6= 0, ψ

and χ have well-defined Lorentz transformation properties, and they are the two-

component spinors. Although not helicity eigenstates, ψ and χ are eiegnstates of

γ5, in the sense that in the chiral representation, the projection operators PL and
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PR, defined via

PL =
1− γ5

2
=


 1 0

0 0




PR =
1 + γ5

2
=


 0 0

0 1


 (3.29)

satisfy

PLΨ =


 1 0

0 0





 ΨL

ΨR


 =


 ΨL

0


⇒


 ψα

0


 (3.30)

and

PRΨ =


 0 0

0 1





 ΨL

ΨR


 =


 0

ΨR


⇒


 0

χα̇


 (3.31)

Therefore, PL and PR decompose Ψ into two different helicity representations. It

is easy to check that PRPL = 0 , P 2
R = P 2

L = 1. The eigenvalue of γ5 is called

chirality, ψ has chirality +1, and χ has chirality -1. We can now start analyzing

basic transformations properties in Poincaré algebra:

1

2

µν∑
=

i

4
(γµγν − γνγµ)

=
i

4





 0 σµ

σµ 0





 0 σν

σν 0


−


 0 σν

σν 0





 0 σµ

σµ 0







=
i

4


 σµσν − σνσµ 0

0 σµσν − σµσµ




= i


 σµν 0

0 σµν


 (3.32)

Under a Lorentz transformation

Ψ
′

(x′) = S(Λ)Ψ(x) (3.33)

where

S(Λ)−1γµS(Λ) = Λµ
νγ

ν (3.34)
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The S(Λ) consistent with this is given by

S(Λ) = exp{− i
2
ωµν

1

2

µν∑
} = exp{1

2
ωµν


 σµν 0

0 σµν


}

=


 exp{(1

2
ωµνσ

µν} 0

0 exp{(1
2
ωµνσ

µν})




(3.36)

so that

S(Λ)Ψ =


 exp{1

2
ωµνσ

µν}ΨL

exp{1
2
ωµνσ

µν}ΨR


 =


 S(Λ)LΨL

S(Λ)RΨR


 (3.37)

which read explicitly


 ψα

χα̇


 =


 S(Λ) β

α ψβ

S(Λ)α̇
β̇
χβ̇


 (3.38)

One notes that

(σµν)† = (σµσν − σνσµ)†

= (σνσµ − σµσν)

= −σµν (3.39)

and hence

SL(Λ)† = SR(Λ)−1 (3.40)

and

Ψ′ = Ψ
′

γ0

= (SΨ)†Ψ
′

γ0 ⇒ Ψ†γ0S−1 = ΨS−1 (3.41)

with

S†γ0 = γ0S−1 (3.42)

These results are important for our purposes.
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3.1.3. Charge Conjugation

The charge conjugation operator Ψ → Ψc transforms the Dirac equation by

changing the sign of the charge e

((i∂µ + eAµ)−m)Ψc = 0

The charge conjugation operator is interpreted as converting a particle into its an-

tiparticle and vice versa (Ramond 1990, Peskin and Schroeder 1995). The charge-

conjugated spinor is given by

Ψc = CΨ
T

(3.43)

with the property CγµTC−1 = −γµ. Similarly, Lorentz transformation operator can

be shown to satisfy CS(Λ)−1T = S(Λ)C. Therefore, one finds from eq.(3.40)

Ψc′ = (CΨ
T
)
′

= CΨ
′T

= C(ΨS−1)T

= CS−1TΨ
T

= SCΨ
T ≡ SΨc (3.44)

Specializing to chiral representation (appendix A) one finds

C = −iγ0γ2

= −i


 0 1

1 0





 0 σ2

σ−2 0


 =


 iσ2 0

0 −iσ2


 (3.45)

so that

Ψ
T

= (Ψ†γ0)T

= [
(
Ψ†
L , Ψ†

R

)

 0 1

1 0


]T

=
(
Ψ†
R , Ψ†

L

)T
≡


 Ψ∗

R

Ψ∗
L


 (3.46)

Thus, the charge conjugation simply flips ψ and χ:

Ψc = CΨ
T

=


 iσ2Ψ∗

R

−iσ2Ψ∗
L


 =


 (ΨR)c

(ΨL)c


 (3.47)
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More explicitly, for

Ψ =


 ΨL

ΨR


 =


 ψα

χα̇


 (3.48)

its charge conjugation reads to be

Ψc =


 (ΨR)c

(ΨL)c


 =


 χα

ψ
α̇


 (3.49)

where we introduced the un-dotted and dotted spinor indices via

χα = εαβ(χ
β̇)∗ ≡ εαβχ

β

ψ
α̇

= εα̇β̇(ψβ)
∗ ≡ εα̇β̇ψβ̇ (3.50)

As a result of these, one concludes that

ψα̇ ≡ (ψα)
∗ ; χα ≡ (χα̇)∗ (3.51)

εαβ = εα̇β̇ = iσ2 =


 0 1

−1 0




εαβ = εα̇β̇ = −iσ2 =


 0 −1

1 0


 (3.52)

At this point it is useful to check how manifest the Lorentz transformation

properties. Using ψ
′

α = SL(Λ) β
α ψβ we get

ψ
′α = εαβψ

′

β

= εαβSL(Λ) γ
α ψγ

= εαβSL(Λ) γ
α εγδ︸ ︷︷ ︸ψ

δ = (SL(Λ)−1)Tαδψ
δ (3.53)

(−iσ2) exp(
1

2
ωµνσ

µν)(iσ2) ≡ exp

(
1

2
ωµν(−σµν)T

)
(3.54)

It is also useful to see that

ψχ ≡ ψαχα = ψαεαβχ
β = −ψβεαβχα → ψβεβαχ

α = ψβχβ ≡ ψχ

= εαβχβψα = −εαβψαχβ = εβαψαχβ → ψβχβ ≡ ψχ (3.55)
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where we can now make the invariance manifest:

χψ → χ
′

ψ
′

= χ
′αψ

′

α

= (SL(Λ)−1)Tαβχ
β(SL(Λ) γ

α )ψγ

= (SL(Λ)−1) α
β χ

β(SL(Λ)) γ
α )ψγ

= χβ(SL(Λ)−1) α
β (SL(Λ)) γ

α ψγ

= χβδ γ
β ψγ = χβψβ = χψ (3.56)

Similarly, one can show Lorentz invariance of

χψ ≡ χα̇ψ
α̇

= ψα̇χ
α̇ ψχ = (χψ)† = (ψχ)† (3.57)

as well. In summary,

ψ
′

α = SL(Λ) β
α ψβ

ψ
′α = (SL(Λ)−1)Tαβψ

β ≡ ψβ(SL(Λ)−1) α
β

χ
′α̇ = (SL(Λ)−1)†α̇

β̇
χβ̇ ≡ SR(Λ)α̇

β̇
χβ̇

χ
′

α̇ = (SL(Λ))∗α̇
β̇χβ̇ = (SR(Λ)−1) β̇

α̇ χβ̇ ≡ χβ̇(SR(Λ)−1)β̇ α̇ (3.58)

where one also recalls that

χψ ≡ χαψα = −χαψα

χψ ≡ χα̇ψ
α̇

= −χα̇ψα̇ (3.59)

Electrically neutral fermions are represented by Majorana spinors. They are

given by

Ψc
M = ΨM =


 ψα

χα̇


 (3.60)

As a result of charge conjugation and transformation properties, the Majorana mass

term reads as

1

2
mΨmΨm =

1

2
m

(
Ψ†
R , Ψ†

L

)

 ΨL

ΨR




=
1

2
m(Ψ†

RΨL + Ψ†
LΨR)

=
1

2
m[(ψα̇)∗Ψα + (Ψα)

∗ψ
α̇
]
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=
1

2
m[ψαψα + ψα̇ψ

α̇
]

=
1

2
m(ψψ + ψψ)

=
1

2
m[ψψ+h.c].

Here, before closing, we note that leptons and quarks are Dirac spinors; they

are not electrically neutral. However, the fermionic partners of gauge bosons and

that of the neutral component of the Higgs doublets are all Majorana spinors. In this

sense, Majorana spinors turn out to be rather common objects of supersymmetric

models.

3.1.4. The Vector Current

From (3.58) we should have the transformation properties

ψ
′

α = SL(Λ) β
α ψβ −→ (σµν) β

α =
1

4
(σµσν − σνσµ) β

α

χ
′α = SR(Λ)α̇

β̇
χβ̇ −→ (σµν)α̇

β̇
=

1

4
(σµσν − σνσµ)α̇

β̇
(3.62)

so that (σµ)αα̇and (σµ)αα̇ are seen to generate right transformations. We can make

two types of vector currents:

χσµχ = χα(σµ)αα̇χ
α̇ = (ΨR)†σµ(ΨR) = ΨγµPRΨ (3.63)

ψσµψ = ψα̇(σ
µ)α̇αψα = (ΨL)†σµ(ΨL) = ΨγµPLΨ (3.64)

Consider first their hermitian conjugates:

(χ1σ
µχ2)

∗ = χ2σ
µχ1 and (Ψ1γ

µPRΨ2)
† = Ψ2γ

µPRΨ1 (3.65)

(ψ1σ
µψ2)

† = ψ2σ
µψ1 and (Ψ1γ

µPLΨ2)
† = Ψ2γ

µPLΨ1 (3.66)

Their transpositions give

χ1σ
µχ2 = χα1 (σµ)αα̇χ2

α̇ = −χ2
α̇(σµ)αα̇χ

α
1

= −χ2β̇ε
α̇β̇(σµ)αα̇ε

αβχ1β = χ2β̇ε
α̇β̇(σµT )αα̇ε

αβχ1β

= χ2β̇ [(iσ2)(σµT )(−iσ2)]β̇β︸ ︷︷ ︸χ1β = −χ2β̇(σ
µ)β̇βχ1β (3.67)

− [σ2(σµT )σ2]β̇β = −σβ̇β
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likewise

χ1σ
µχ2 = −χ2σ

µχ1

ψ1σ
µψ2 = −ψ2σ

µψ1 (3.68)

These relations follow from

Ψ1γ
µPLΨ2 = (Ψ1γ

µPLΨ2)

= −Ψ†
2P

T
L γ

µTΨ1
T

= Ψ
c

2CP
T
L γ

µTC−1Ψc
1

= Ψ
c

2CP
T
LC

−1CγµTC−1Ψc
1

= −Ψ
c

2γ
µPRΨc

1 (3.69)

and

Ψ1γ
µPLΨ2 = Ψ†

1Lσ
µΨ2L = ψ1α̇(σ

µ)α̇αψ2α = ψ1(σ
µ)ψ2

Ψ2
c
γµPRΨ

c

1 = Ψc
1L

†σµΨc
1L = (ψ

α̇

2 )∗(σµ)αβ̇(ψ
β̇

1 )

= ψα2 (σµ)αβ̇ψ
β̇

1 = ψ2(σ
µ)ψ1 (3.70)

According to ( 3.69) the rules of charge conjugation may be summarized as

ΨT = −Ψ
c
C ; Ψ

T
= C−1Ψ

c
(3.71)

CγµTC−1 = −γµ (3.72)

Cγ5TC−1 = −γ5 (3.73)

As a result of these;

Ψi =


 ψiα

χα̇i


 ,Ψc

i =


 χiα

ψ
α̇

i


 (3.74)

ψ1(σ
µ)ψ2 = −ψ2(σ

µ)ψ1 = −Ψ
c

2γ
µPRΨc

1 = Ψ1γ
µPLΨ2 (3.75)

ψ2(σ
µ)ψ1 = −ψ1(σ

µ)ψ2 = −Ψ
c

1γ
µPRΨc

2 = Ψ2γ
µPLΨ1 (3.76)

χ1(σ
µ)χ2 = −χ2(σ

µ)χ1 = −Ψ
c

2γ
µPLΨc

1 = Ψ1γ
µPRΨ2 (3.77)

χ2(σ
µ)χ1 = −χ1(σ

µ)χ2 = −Ψ
c

1γ
µPLΨc

2 = Ψ2γ
µPRΨ1 (3.78)

ψ1(σ
µ)χ2 = −χ2(σ

µ)ψ1 = −Ψ
c

2γ
µPRΨc

1 = Ψ1γ
µPLΨ2 (3.79)

χ2(σ
µ)ψ1 = −ψ1(σ

µ)χ2 = −Ψ
c

1γ
µPRΨc

2 = Ψ2γ
µPLΨ1 (3.80)
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and also the scalar ones

χ1ψ2 = ψ2χ1 = Ψ
c

2PLΨc
1 = Ψ1PLΨ2 (3.81)

ψ1χ2 = χ2ψ1 = Ψ
c

1PRΨc
2 = Ψ2PLΨ1 (3.82)

ψ1ψ2 = ψ2ψ1 = Ψ
c

2PLΨc
1 = Ψ1PLΨ2 (3.83)

χ1χ2 = χ2χ1 = Ψ
c

2PLΨc
1 = Ψ2PLΨ1 (3.84)

ψ1ψ2 = ψ2ψ1 = Ψ
c

2PRΨc
1 = Ψ1PRΨ2 (3.85)

χ1χ2 = χ2χ1 = Ψ
c

2PRΨc
1 = Ψ2PRΨ1 (3.86)

This subsection summarizes the transformation properties of vector and

scalar bilinears of two-component spinors, together with their four-component coun-

terparts.

3.2. SUSY-Poincaré Algebra

Supersymmetry is of considerable interest among physicists and mathemati-

cians. It follows from a theorem proved by Haag, Sohnious and Lopuszanski. They

proved that supersymmetry algebra is the only graded Lie algebra of symmetries

of the S-matrix consistent with relativistic quantum field theory (Wess and Bagger

1992). Before we begin, however, we first recall the supersymmetry algebra:

[P µ, Qα] = [P µ, Q
α̇
] = 0 (3.87)

since translation only x not the spinors. Now consider the generator of angular

momentum:

[Mµν , Qα] = −i(σµν) β
α Qβ

[Mµν , Q
α̇
] = −i(σµν)α̇

β̇
Q
β̇

(3.88)

since

Q
′

α = (1 +
1

2
ωµνσ

µν) β
α Qβ = Qα +

i

2
ωµν [M

µν , Qα]

Q
′α

= (1 +
1

2
ωµνσ

µν)α̇
β̇
Q
β̇

= Q
α̇

+
i

2
ωµν [M

µν , Q
α̇
] (3.89)

Moreover,

{Qα, Qβ} = {Qα̇, Qβ̇} = 0 (3.90)
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since

[P µ, {Qα, Qβ}] = {[P µ, Qα], Qβ}+ {Qα, [P
µ, Qβ]} = 0 (3.91)

The indices (α, β, α̇, β̇) run from one to two and denote two-component Weyl spinors.

The indices (µ, ν) run from zero to three and identify Lorentz four vectors. Therefore

one finds,

{Qα, Qβ̇} = 2(σµ)αβ̇Pµ , {Qα̇
, Qβ} = 2(σµ)αβ̇Pµ

(3.92)

as the only possibility to close the algebra. These equations give rise to SUSY-

Poincaré Algebra.

It is useful to discuss positive-definiteness of energy as well. Using the rela-

tions

4σµν = σµσν − σνσµ

2gµν = σµσν + σνσµ (3.93)

one obtains

4σµν + 2gµν = 2σµσν (3.94)

so that

σµσν = gµν + 2σµν

Tr[σµσν ] = 2gµν (3.95)

Using these relations, one shows that

(σν)β̇α{Qα, Qβ̇} = 2(σν)β̇α(σµ
αβ̇

)Pµ

= 2Tr[σνσν ]Pµ

= 4gµνPµ = 4Pν (3.96)

and, for ν = 0, one finds

4P 0 = (σ0)β̇α{Qα, Qβ̇}

= δβ̇α{Qα, Qβ̇}

= QαQβ̇ +Qβ̇Qα

= Qα(Qα)
∗ + (Qα)

∗Qα (3.97)
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which is manifestly nonnegative. That energy, P0, either vanishes or takes positive

values implies that the vacuum state | 0〉 has to have strictly vanishing energy:

< 0|P 0|0 >= 0︸ ︷︷ ︸⇐⇒ Qα|0 >= 0︸ ︷︷ ︸ (3.98)

vacuum energy is zero⇐⇒ SUSY is manifest (3.99)

where SUSY is short-hand for supersymmetry. This exact vanishing of the vacuum

energy reminds one at once the cosmological constant problem. Indeed, the vacuum

energy density arising from even the quark-hadron phase transition turns out to be

far beyond the experimental result. Had we lived in a strictly supersymmetric world

we would have no such problem; a small breaking of supersymmetry would generate

the requisite experimental value. However, the lowest likely scale of supersymme-

try breaking lies somewhere thousand times the proton mass, and supersymmetry

brings up no possibility of nullifying the vacuum energy. One notes here that, a

true solution of the cosmological constant problem should exist in far infrared via,

presumably, a modification of the Einstein gravity.

The Coleman-Mandula theorem concludes that the most general Lie algebra

of symmetries of the S-matrix contains the energy-momentum operator Pµ, the

Lorentz rotation generatorMµν . The operators Q act in a Hilbert space with positive

definite metric eq.(3.93).

3.2.1. Supersymmetry Multiplets

We proceed drive some physical consequences of the results obtained in previ-

ous section. In a theory which is supersymmetric, the operators Q, generators of the

symmetry, will commute with the Hamiltonian. The energy-momentum four-vector

Pµ commutes with the supersymmetry generators Qα and Qα̇. The mass opera-

tor P 2 is a Casimir operator, so irreducible representations of the supersymmetry

algebra must have equal masses. Indeed,

[P µ, Qα] = [P µ, Qα̇] = 0 =⇒ [P 2, Qα] = [P 2, Qα̇] = 0 (3.100)
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where P 2 is the Casimir operator of the SUSY-Poincaré algebra. This implies that

mass must common for all members of a multiplet (finite dimension representation).

However, this is not true for W 2 = −m2J2. This can be seen from

W µ =
1

2
εµνρσP νMρσ (3.101)

W 2 = −m2J2 where J i =
1

2
εijkMjk (3.102)

The main reason is that spins of members of a multiplet change by actions of Qα

and Qβ̇. As aresult we have:

• Qα and Qβ̇ change fermion number by 1 unit (boson ←→ fermion)

• {Qα, Qβ̇} = 2(σµ)αβ̇Pµ does not change the fermion number.

We can prove that every representation of the supersymmetry algebra con-

tains an equal number of bosonic and fermionic states. We begin by introducing a

fermion number operator NF , such that (−)NF has eiegenvalue +1 on bosonic states

that -1 on fermionic states. It follows immediately that

(−1)NFQα = −Qα(−1)NB (3.103)

Then, for any finite dimensional representation of the algebra, we find

Tr[(−1)NF {Qα, Qβ̇}] = Tr[−Qα(−1)NFQβ̇ + (−1)NFQβ̇Qα]

= Tr[−Qα(−1)NFQβ̇ + (−1)NFQβ̇Qα] = 0 (3.104)

so that multiplet is to contain equal numbers of fermionic and bosonic degrees of

freedom. More explicitly, the identity

Tr[(−1)NF {Qα, Qβ̇}] = Tr[(−1)NF 2(σµ)αβ̇Pµ] = 2Tr[(−1)NF ] or (σµ)αβ̇Pµ = 0(3.105)

proves that 2Tr[(−1)NF ] vanishes for a system with non-vanishing 4-momentum.

3.2.2. Massless Supersymmetry Multiplet

Since W 2 = −m2J2 , the massless particles satisfy W 2 = 0. Hence

W µ = −λpµ =
J.P

|P | p
µ (3.106)
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where the constant of proportionality is called the ”helicity”. We define normalized

states

< p, λ|p, λ >= 1 (3.107)

with P µ = pµ|p, λ > and W µ = λpµ|p, λ >. We can always choose |p, λ > such that

Qα|p, λ >= 0 (α = 1, 2) (3.108)

because if not, |p, λ′

>= Qα|p, λ > because of QαQα = 0. We go to a particular

Lorentz frame with momentum

pµ = (E, 0, 0, E) (3.109)

where

{Qα, Qβ̇}|p, λ >= 2(σµ)αβ̇Pµ|p, λ >= 4E


 0 0

0 1


 |p, λ > (3.110)

Hence

Q1̇|p, λ >= 0 (3.111)

while

< ψ|ψ >= 1 if |ψ >= 1√
4E
Q2̇|p, λ >= − 1√

4E
Q

2̇|p, λ >
(3.112)

Now we can show that

Pµ|ψ > = pµ|ψ > (3.113)

W µ|ψ > = (λ− 1

2
)pµ|ψ > (3.114)

or

|ψ > = |p, λ− 1

2
>=

1√
4E

Q2̇|p, λ > (3.115)

involving a 1/2 unit shift of the angular momentum.
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3.2.3. Superspace

Just as Lorentz invariance is inherently manifest in the 4-dimensional

Minkowski space, the superspace formalism , originally introduced by Salam and

Strathdee (Salam and Strathdee 1974) to extend Minkowski space-time by anti-

commuting coordinates, leads one to a higher dimensional spacetime xµ → (xµ, θ)

with Grassmann coordinates θα. These coordinates are represented by a Majorana

spinor in four-component formalism and by a Weyl spinor in two-component for-

malism. To formulate a supersymmetric field theory, we must first represent the

supersymmetry algebra (3.2.) in terms of fields not necessarily living on their mass

shells. Anticommuting parameters ξα and ξα̇ simplify the task. The superspace

is spanned by the coordinates (xµ, θα, θβ̇) where Grassmann coordinates satisfy:

{θα, θβ} = {θα, θβ̇} = {θα̇, θβ̇} = 0. Then, under translations

xµ −→ x
′µ = xµ + aµ U(a) = 1− iaµPµ (3.116)

for Minkowski coordinates, and

θα −→ θα + ξα

θ
α̇ −→ θ

α̇
+ ξ

α̇
U(ξ) = 1− i(ξQ+ ξQ) (3.117)

for Grassmann coordinates.

Then, SUSY-Poincaré algebra can be expressed in terms of the commutators

only:

[P µ, ξQ] = [P µ, ξQ] = 0 (3.118)

[Mµν , ξQ] = −iξσµνQ (3.119)

[Mµν , ξQ] = −iξσµνQ (3.120)

[ξQ, ηQ] = [ξQ, ηQ] = 0 (3.121)

[ξQ, ηQ] = 2(ξσµνη)Pµ (3.122)

where further details are given in (Wess and Bagger 1992, Mohapatra 1996).
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3.2.4. Superspace Translation

It is convenient to express SUSY generators as translation operators in the

superspace. Superfields (supermultiplet) provide an elegant and compact description

of supersymmetry representations. They simplify the addition and multiplication

of representations and prove very useful in the construction of interacting particles.

We shall show that superfields may always be constructed from component repre-

sentations. Component fields may always be recovered from superfields by power

series expansion.

We begin with the observation that the supersymmetry algebra may be

viewed as a Lie algebra with anticommuting parameters. This motivates us to

define a group element via:

G(xµ, θ, θ) ≡ exp{i(xµPµ + θQ+ θQ)}

G(aµ, ξ, ξ) ≡ exp{i(aµPµ + ξQ+ ξQ)} (3.123)

It is easy to multiply two group elements using Haussdorff’s formula because

all higher commutators vanish due to SUSY-Poincaré algebra. Indeed, using

eAeB = e(A+B+ 1

2
[A,B]+...) (3.124)

we obtain

G(xµ, θ, θ)G(aµ, ξ, ξ) = exp{i(xµPµ + θQ+ θQ)} exp{i(aµPµ + ξQ+ ξQ)}

= exp{i(ξQ+ ξQ+ aµPµ) + i(Qθ +Qθ + xµPµ)

+
i2

2
[ξQ+ ξQ+ aµPµ, Qθ +Qθ + xµPµ] + .....} (3.125)

so that multiplication of two generators gives

G(xµ, θ, θ)G(aµ, ξ, ξ) = exp{i[(ξ + θ)Q+ (ξ + θ)Q+ (xµ + aµ)Pµ]

− 1

2
([ξQ, θQ︸ ︷︷ ︸] + [ξQ, θQ︸ ︷︷ ︸]} (3.126)

=⇒ 2ξσµθPµ − 2θσµξPµ

= exp{i[(θ + ξ)Q+ (θ + ξ)Q+ (xµ + aµ + iξσθ − iθσξ)Pµ]}

(3.127)
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which is nothing but a translation in the superspace. Hence, the action of G(aµ, ξ, ξ)

on the superfield f(xµ, θ, θ) is given by

G(aµ, ξ, ξ)f(xµ, θ, θ)G−1(aµ, ξ, ξ) ≡ exp{−i(ξQ+ ξQ+ aµPµ)}f(xµ, θ, θ)

= f(xµ + aµ + iξσθ − iθσξ, θ + ξ, θ + ξ)

= f(xµ, θ, θ) + (aµ + iξσθ − iθσξ) ∂f
∂θα

+ ξα̇
∂f

∂θα̇
+ ...

= [1− iξα(Qα)− iξα̇(Q
α̇
)− iaµ(Pµ)]f(xµ, θ, θ)

(3.128)

which is nothing but the linear representations of Qα and Qα̇ on superfields. As

usual, multiplication of group elements induces a motion in the parameter space.

This motion may be generated by the differential operators Q and Q :

Pµ = i∂µ (3.129)

iQα = − ∂

∂θα
− iσµαα̇θ

α̇
∂µ (3.130)

iQα̇ =
∂

∂θ
α̇

+ iθασµαα̇∂µ (3.131)

Here we use the same letters Q, Q for the differential operators as for the group

generators because the differential operators do indeed represent infinitesimal group

action on the parameter space eq.(3.92). It is useful to recall the important identity

ξQ = ξα̇Q
α̇ = −ξα̇Qα̇ (3.132)

while analyzing certain quantities. It might be instructive to check this identity by

an explicit calculation:

(1− iξQ)(xµ + θ
α̇
) = (1− iξα̇Qα̇)(x

µ + θ
α̇
)

= xµ + θ
α̇ − ξα̇(− ∂

∂θ
α̇

+ iθασµαα̇∂)(xµ + θ
α̇
)

= xµ + θ
α̇

+ ξ
α̇ − iξα̇θασµαα̇ (3.133)

where the last term at right-hand side equals iθασµαα̇ξ
α̇. We note, however, the sign

change in eq.(3.129). This stems from the fact that the successive product of group

elements corresponds to a motion with the order of multiplication reversed.

We now define the covariant derivatives in superspace:

Dα =
∂

∂θα
− i(σµ)αα̇θ

α̇
∂µ (3.134)

Dα̇ = − ∂

∂θ
α̇

+ iθασµαα̇∂µ (3.135)
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which necessarily satisfy the anticommutation relations

{Dα, Qβ} = {Dα, Qβ̇} = {Dα̇, Qβ} = {Dα̇, Qβ̇} (3.136)

{Dα, Dβ} = {Dα̇, Dβ̇} = 0 (3.137)

{Dα, Dβ̇} = 2i(σµ)αα̇∂µ (3.138)

It might be instructive to check the last equality explicitly:

{Dα, Dβ̇} = (
∂

∂θα
− i(σµ)αα̇θ

α̇
∂µ)(−

∂

∂θ
α̇

+ iθασµαα̇∂µ)

+ (− ∂

∂θ
α̇

+ iθασµαα̇∂µ)(
∂

∂θα
− i(σµ)αα̇θ

α̇
∂µ)

= − ∂

∂θα
∂

∂θ
α̇
− ∂

∂θ
α̇

∂

∂θα︸ ︷︷ ︸
+i

∂

∂θα
θλσνλα̇∂α̇ + iσµ

αβ̇
θ
β̇
∂µ

∂

∂θ
α̇

+ i
∂

∂θ
α̇
σµ
αβ̇
θ
β̇
∂µ + iθλσνλα̇∂ν

∂

∂θα

+ σµ
λβ̇
θ
β̇
θλσνλα̇∂µ∂ν + θλσνλα̇σ

µ

αβ̇
θ
β̇
∂ν∂µ

= iσµλα̇∂µ(
∂

∂θα
θλ + θλ

∂

∂θα
) + iσµ

αβ̇
∂µ(

∂

∂θ
α̇
θ
β̇

+ θ
β̇ ∂

∂θ
α̇
)

+ σµ
αβ̇
σνλα̇(θ

β̇
θλ + θλθ

β̇
)∂µ∂ν

= iσµλα̇δ
λ

α ∂µ + iσµ
αβ̇
δ β̇
α̇ ∂µ

= 2i(σµ)αα̇∂µ (3.139)

Hence the result

{iQα, iQα̇} = −{Dα, Dα̇}

{Qα, Qα̇} = {Dα, Dα̇}. (3.140)

3.2.5. General Superfields

We are now ready to introduce superfields and superspace. Elements of

superspace are labelled by F̂ (x, θ, θ). Superfields are functions of superspace which

should be understood in terms of their power series expansion in θ and θ. In general,

F̂ (x, θ, θ) = f(x) + θφ(x) + θχ(x) + θθm(x)

+ θθn(x) + θσµθV (x) + θθθλ(x)

+ θθθψ(x) + θθθθd(x) (3.141)
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where we have used (θθ) = θαθα and (θθ) = θα̇θ
α̇. It is easy to see that there are no

more terms other than these:

i) any combination having more than two θ’s or θ must vanish by their anti-

commuting property:

(θθ)θ1 = θAθAθ
1 = (θ1θ2 − θ2θ1)θ1

= −(θ1θ2 − θ2θ1)θ1 = −(θθ)θ1 (3.142)

where (θθ)θ1 = 0 and similarly for θ2 and (θθ)θ
Ȧ
.

ii) any higher rank tensorial structures must disappear:

(ψσµνχ) = −(χσµνψ) (3.143)

and hence,

(θσµνθ) = 0 (3.144)

iii) (θσµθ) = 0 does not appear since it can be rewritten using

(θσµθ) = −(θσµθ) (3.145)

and finally, we have the condition of result being a Lorentz scalar or pseudoscalar.

The quantatities f(x), φ(x), χ(x),m(x), n(x), V (x), λ(x), ψ(x) and d(x) are

called component fields. Their geometric character is determined by their transfor-

mation properties under the Lorentz group, given that Φ̂(x, θ, θ) is a Lorentz scalar

or pseudoscalar. We deduce that

• f(x), m(x) and n(x) are complex scalar or pseudoscalar fields

• ψ(x) and φ(x) are left-handed Weyl spinors

• χ(x) and λ are right-handed Weyl spinor fields

• V (x) is a four-vector field

• d(x) is a scalar field

which show that a general superfield involves fields of varying transformation prop-

erties.
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All higher powers of θ and θ vanish. It is easy to verify that linear combi-

nations of superfields are again superfields. Similarly, products of superfields are

again superfields because Q and Q are linear differential operators eq.(3.128). Thus

we see that superfields form linear representations of the supersymmetry algebra.

In general, however, the representations are highly reducible. We may eliminate

the extra component fields by imposing covariant constraints such as DF̂ = 0 or

F̂ = F̂ †. Superfields shift the problem of finding supersymmetry representations

to that of finding appropriate constraints. Note that we must reduce superfields

without restricting their x-dependence through differential equation in x-space.

Superfields satisfying the condition DΦ̂ = 0 are called chiral or scalar su-

perfields. This constraint does not yield a differential equation in x-space. Extra

conditions however, often give differential equations. For example, DDΦ̂ = DΦ̂ = 0

yields massless field equations, while DΦ̂ = DΦ̂ = 0 implies Φ̂ = a constant.

Let us discuss chiral superfields in detail:

Dα̇Φ̂(x, θ, θ) = 0 (3.146)

on the superfield Φ̂(x, θ, θ) is compatible with SUSY. Because

Dα̇θ = 0 (3.147)

Dα̇y = Dα̇(x
µ − iθσµθ) (3.148)

= +iθασµαα̇ − θασµαα̇ = 0 (3.149)

Superfield Φ̂(x, θ, θ) is a function of y and θ only :

Φ̂(x, θ, θ) = Φ̂(y, θ)

= ϕ(y) +
√

2θψ(y) + θθF (y) (3.150)

= ϕ(x) +
√

2θψ(x) + θθF (x)

− i∂µφθσθ +
i√
2
θθ∂µψσ

µθ − 1

4
∂µ∂

µϕθθθθ (3.151)

with similar results for Φ̂†. In general, we have two possibilities of great physical

relevance:

DαΦ̂
† = 0 =⇒ φ† right-handed chiral superfield

Dα̇Φ̂ = 0 =⇒ φ left-handed chiral superfield (3.152)
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Vector superfields are defined to satisfy V̂ = V̂ †. It is possible to construct all

supersymmetric renormalizable Lagrangians in terms of vector and scalar superfield

(Wess and Bagger 1992)).

Fields obeying the chiral conditions (3.152 ) are called scalar fields or left-

handed and right-handed chiral fields, and fields obeying the reality condition

Φ̂(x, θ, θ) = Φ̂†(x, θ, θ) are called vector fields. Chiral fields are used to represent

matter fields, and vector fields are used to represent gauge fields.

It might be useful to check how component fields transform under SUSY

transformations. Hence we consider

δΦ̂ = −i(ξQ+ ξQ)Φ

= −i(ξαQα + ξ
α̇
Qα̇)Φ

= ξα(
∂

∂θα
+ iσµαα̇θ

α̇
∂µ)Φ + ξ

α̇
(
∂

∂θ
α̇

+ iθασµαα̇∂µ)Φ (3.153)

where after expanding we get

δΦ̂ =
√

2ξψ + 2ξθF − 2i(θσµξ)(∂µφ) +
i√
2
θθ∂µψσ

µξ

+ i
√

2ξ
α̇
θασµαα̇θ

β

︸ ︷︷ ︸ ∂µψβ +
i√
2
θθ∂µψ

†σµαα̇ξ
α̇

+ ...

=
√

2ξψ + 2ξθF − 2i(θσµξ)(∂µφ) + i
√

2θθ∂µψσ
µξ + ....

= δϕ+
√

2θδψ + θθδF + .... (3.154)

Hence scalar, fermionic and F components of a chiral superfield transform as

δϕ =
√

2ξψ (3.155)

δψα =
√

2ξαF −
√

2i(∂µϕ)σµαα̇ξ
α̇ (3.156)

δF =
√

2i∂µψσ
µξ (3.157)

which are highly suggestive in that under a supersymmetry transformation the scalar

component gets converted into the fermionic component and the fermionic does into

the scalar component.

3.2.6. Interactions of Superfields

An immediate question that comes to mind concerns the way one can write

down interactions among the superfields. For instance, how can we write down

36



Yukawa interactions in superfield language? To answer this and similar questions,

it is useful to consider typical interaction terms among chiral superfields.

It is interesting to observe that appendix A and (Simonsen 1995) product

of two chiral superfields gives

Φ̂i(y, θ)Φ̂j(y, θ) = ϕi(y)ϕj(y) +
√

2θ(ψi(y)ϕj(y) + ϕi(y)ψj(y))

+ θθ[ϕi(y)F (y) + ϕj(y)F (y)− ψi(y)ψj(y)] (3.158)

which contains terms up to θ order, just like a single chiral superfield. However, a

similar bilinear with one superfield replaced by its hermitian conjugate gives

Φ̂†
i (y, θ)Φ̂j(y, θ) = ϕ†

i (y)ϕj(y) +
√

2θψj(y)ϕ
†
i +
√

2θψi(y)ϕj(y)

+ 2θψiθψj + Fiϕ
†
i (y)θθ + F †

i ϕi(y)θθ +
√

2θθθψiFj

+
√

2θθθψiF
†
j + θθθ†i (y)Fj(y) + θθθθF †

i (y)Fj(y) (3.159)

which is quite different than (3.158). In particular, (3.159) is seen to contain higher

order terms in θ. In fact, (3.158) behaves as a chiral superfield whereas (3.159) does

as a vector superfield.

Consider integration of (3.158) with the measure d2θ (which is, of course,

identical to derivative operation ∂2/∂θ2). Such an integration (or equivalently, dif-

ferentiation) gives ϕi(y)F (y) + ϕj(y)F (y) − ψi(y)ψj(y) which is nothing but the

F component of Φ̂i(y, θ)Φ̂j(y, θ). This F term generates holomorphic interactions

among the component fields, for instance, their Yukawa interactions. The higher or-

der combination of chiral superfiels, such as Φ̂i(y, θ)Φ̂j(y, θ)Φ̂k(y, θ) also consists of

θθ component as the highest order term. One notices that, such holomorphic struc-

tures are capable of generating bilinear and trilinear interactions among component

fields via their θ component i.e. F component. In particular, Yukawa couplings

among scalar and fermion fields can be generated via the F component of the trilin-

ear term generated by their associated superfields.

Similarly, consider θθθθ component of (obtained via quartic integration or

differentiation) (3.159). It gives, precisely F †
i Fj. It is the highest component of

Φ̂†
i (y, θ)Φ̂j(y, θ), and its integration over Grassmann numbers yields the D term

contribution. The D terms result in quartic interactions among the scalar fields.

In general, in a supersymmetric field theory, the lagrangian of the compo-

nent fields follows form F and D term contributions. The simplest example is the
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holomorphic bilinear and trilinear interactions discussed above. Consider the object

Ŵ =
1

2
µijΦ̂iΦ̂j +

1

3
λijkΦ̂iΦ̂jΦ̂k (3.160)

where (i, j, k) run over all fields allowed in a specific model. As follows from dis-

cussions above, the F component of this object yields all Yukawa interactions plus

a set of quadratic, trilinear and quartic interactions among the scalars. In fact,

W is a fundamental object for determining holomorphic interactions among com-

ponent fields. This quantity, Ŵ , is called ’superpotential’ and it is of fundamental

importance for determining interactions among component fields.
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CHAPTER 4

The Minimal Supersymmetric Standard Model

(MSSM)

We now consider the symmetries of the scattering matrix S in the physi-

cal world, that is, those transformations that can be reduced to an interchange of

asymptotic states. Before the discovery of supersymmetry, supposedly a symmetry

of nature, the only symmetries known were the following: (1) the ones corresponding

to the Poincare group; (2) the so called internal global symmetries, both of them

ruled by a Lie algebra; and (3) discrete symmetries such as parity (P), charge con-

jugations (C) and the time reversal (T). In 1967 a theorem due to Coleman and

Mandula established rigorously that, under quite general conditions, these are the

only symmetries allowed for S matrix if we do not want to induce trivial scattering

(fixed angles and speeds) in 2→ 2 processes.

The Supersymmetry appears precisely when we assume that the generators

of the new symmetry we want to add have a spinorial character instead of a scalar

one, therefore transforming under ( 1
2
, 0) and (0, 1

2
) representations of the Lorentz

group (i.e see sec.(3.2.2. )) . Fermionic (spinorial) generators necessarily have an

anti-commutative algebra, generically known as a graded Lie algebra. The algebra

is not closed with just the SUSY generators, thus it can not be understood as an

internal symmetry, but it rather forms an extension of the space-time symmetries

of the Poincare group (check previous chapter for algebraic properties).

Following this line of thought, one could relax some other hypotheses of the

Coleman-Mandula theorem in order to introduce new theories. SUSY is the only

known extension allowed by the S matrix symmetries (3.98). Accepting as the

only valid extension of the Coleman-Mandula theorem requires the presence of a

graded Lie algebra, and one can show (Haag, Lopuszańki and Sohnius theorem)

that spinorial generators different from those of SUSY are forbidden.

We have already introduced the basic concepts like ”superfields” and ”su-

perspace”. In general, one extends the usual 4D Minkowski spacetime by adding

constant Weyl spinors to obtain the superspace. In one adds just one set of spino-
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rial coordinates (θ, θ) then the supersymmetric theory is called N=1 supersymmetry.

The more the spinoral coordinates higher the supersymmetry. In essence, what is

done is to add additional Grassmann coordinates xµ →
(
xµ, θ, θ

)
for obtaining the

superspace. The superfields are defined on the superspace, and actions of supersym-

metric charges can be represented by appropriate differential operators. All these

have been discussed in detail in Chapter III above.

The spinoral character of extra dimensions guarantee that the functions de-

fined in the superspace are necessarily polynomial functions of the (θ, θ̄). Thus we

can decompose the functions (superfields) on this superspace in components of θ0,

θα, θ̄α̇, θαθβ, etc. Each of these components will be a function of the space-time

coordinates. Similar to usual spacetime, we can define in the superspace scalar

superfields as well as vector superfields.

As we have seen in Chapter III, a scalar chiral field in superspace has 4

independent component fields (Wess and Bagger 1992, Gates et al. 1983):

ΦL = ϕ+
√

2θψ + θθF ≡ (ϕ, ψ, F ) (4.1)

ΦR = ϕ∗ +
√

2θ̄ψ̄ + θ̄θ̄F ∗ ≡ (ϕ∗, ψ̄, F ∗) (4.2)

where ϕ is a scalar field, ψ and ψ̄ are Weyl spinors (left-handed and right handed

Dirac fermions) and F is an auxiliary scalar field. This auxiliary field, in physical

world, is not a dynamical field since its equations of motion do not involve time

derivatives. To this end we are left with a superfield, whose components represent

an ordinary scalar field and an ordinary chiral spinor. So if nature is described by

the dynamics of this field we would find a chiral fermion and a scalar with identical

quantum numbers. That is supersymmetry relates particles which differ by spin 1/2.

When a SUSY transformation (Q) acts on a superfield it transforms spin s particles

into spin s± 1/2 particles.

Thus, for a N = 1 SUSY, we find that for any chiral fermion there should

be a scalar particle with exactly the same quantum numbers. This fact holds on

the basis of the absence of quadratic divergences in boson mass renormalization,

since for any loop diagram involving a scalar particle there should be a fermionic

loop diagram, which will cancel quadratic divergences between each other, though

logarithmic divergences remain. In fact, as one recalls from discussions in Chapter II,
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the quadratic sensitivity of scalar sector to ultraviolet cutoff is the main motivation

for introducing supersymmetry.

Supersymmetric interactions can be introduced by means of generalized

gauge transformations, and by means of a generalized potential function, the super-

potential given at the end of Chapter III. The superpotential encodes Yukawa-type

interactions as well as the scalar potential of the model.

As no scalar particles have been found at the electroweak scale we may di-

rectly infer that, even if SUSY exists, it must be broken. We can allow SUSY to be

broken while maintaining the property that no quadratic divergences arise: its is the

so-called Soft-SUSY-Breaking mechanism (Girardello and Grisaru 1981). We can

achieve this by introducing only a small set of terms with dimensionful couplings, to

with: masses for the components of lowest spin of a supermultiplet and triple scalar

interactions. However, other terms like explicit fermion masses for the matter fields

would violate the Soft-SUSY-Breaking condition; they have to wait for breakdown

of the gauge symmetry.

The MSSM is the minimal supersymmetric extension of the SM. It is intro-

duced by means of an N = 1 SUSY, with the minimum number of new particles.

Thus, for each fermion f of the SM there are two scalars related to its chiral com-

ponents called “sfermions” (f̃L,R), for each gauge boson V there is also a chiral

fermion: “gaugino” (ṽ), and for each Higgs scalar H there is another chiral fermion:

“higgsino” (h̃). In the MSSM it turns out that, in order to be able to give masses

to up-type and down-type fermions, we must introduce two Higgs doublets with

opposite hypercharge, and so the MSSM Higgs sector possesses the structure of the

so-called 2HDM (Gunion et al. 1990).

To build the MSSM Lagrangian we must build a Lagrangian invariant under

the gauge group SU(3)C ⊗SU(2)L⊗U(1)Y , it must also include the superfields with

the particle content of the Figure 4.1 and in addition it must contain the terms that

break supersymmetry softly. But this Lagrangian violates the baryonic and leptonic

number, so we have to introduce an additional symmetry.
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In the case of the MSSM this symmetry is the so-called R-symmetry. It is a

discrete symmetry which comprises the spin (S), the baryonic number (B) and the

leptonic number (L) to generate the so-called R-parity of a field:

R = (−1)2S+L+3B (4.3)

Clearly, this quantity is 1 for the SM fields and −1 for their supersymmetric part-

ners. In the way the MSSM is implemented R-parity is conserved, this means that

R-odd particles (the superpartners of SM particles) can only be created in pairs.

This implies that any scattering process must end with the lightest supersymmet-

ric partner, and that particle must be absolutely stable. Though remains outside

this thesis work, this lightest supersymmetric partner (LSP) is a viable candidate

for dark matter in the universe (Boer 2005). In this sense, SUSY may be envi-

sioned to generate a solution for dark matter problem mentioned in Chapter I, the

Introduction of the thesis.

4.1. MSSM field content

Figure 4.1: MSSM field content.

The field content of the MSSM consist of the fields of the SM plus all their
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supersymmetric partners, and an additional Higgs doublet. The figure 4.1 shows

all the correspondences and all the fields. All these fields suffer some mixing, so

the physical (mass eigenstates) fields look much different from these ones, as shown

in Table 4.1. The gauge fields mix up to give the well known gauge bosons of

the SM, W±
µ , Z0

µ, Aµ, the gauginos and higgsinos mix up to give the chargino

and neutralino fields, and finally the left- and right-chiral sfermions mix among

themselves in sfermions of indefinite chirality. Other than this, as we recall from

Chapter II, the quarks themselves mix with each other in the way the CKM matrix

points.

Name Mass eigenstates Gauge eigenstates

Higgs bosons h0 H0 A0 H± H0
d H

0
u H

−
d H+

u

squarks t̃1 t̃2 b̃1 b̃2 t̃L t̃R b̃L b̃R

sleptons τ̃1 τ̃2 ν̃τ τ̃L τ̃R ν̃τ

neutralinos Ñ1 Ñ2 Ñ3 Ñ4 B̃0 W̃ 0 H̃0
d H̃

0
u

charginos C̃±
1 C̃±

2 W̃± H̃−
d H̃+

u

Table 4.1: The mass and gauge eigenstates of some fields contained in the MSSM

spectrum.

4.2. Lagrangian

The MSSM interactions come from three different kinds of sources:

• Superpotential:

Ŵ = ÛYuQ̂Ĥu + D̂YdQ̂Ĥd + ÊYeL̂Ĥd + µĤuĤd (4.4)

The superpotential contributes to the interaction Lagrangian with two differ-

ent kinds of interactions. The first one is the Yukawa interaction, which is

obtained from (4.4) just by replacing two of the superfields by their fermionic

components setting the third to its scalar component (these should be clear
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from analyses presented in Chapter III, for a general supersymmetric theory):

VY = εij

[
EYeL

iHj
d +DYdQ

iHj
d + UYuQ

iHj
u + µH̃ i

uH̃
j
d

]

+εij

[
ẼYeL

iH̃j
d + D̃YdQ

iH̃j
d + ŨYuQ

iH̃j
u

]

+εij

[
ẼYeL

iH̃j
d + D̃YdQ

iH̃j
d + ŨYuQ

iH̃j
u

]

+ h.c. .

(4.5)

The second kind of interactions are obtained by first computing the F terms,

F = ∂W/∂ϕi and squaring:

VW =
∑

i

∣∣∣∣
∂W (ϕ)

∂ϕi

∣∣∣∣
2

, (4.6)

ϕi being the scalar components of the superfields.

• Interactions related to the gauge symmetry, which contain:

– the usual gauge interactions

– the gaugino interactions:

VG̃ψψ̃ = i
√

2gaϕkλ̄
a (T a)kl ψ̄l + h.c. (4.7)

where (ϕ, ψ) are the spin 0 and spin 1/2 components of a chiral superfield

respectively, T a is a generator of the gauge symmetry, λa is the gaugino

field and ga its coupling constant.

– and the D-terms, related to the gauge structure of the theory, but that

do not contain neither gauge bosons nor gauginos:

VD =
1

2

∑
DaDa , (4.8)

with

Da = gaϕ∗
i (T a)ij ϕj , (4.9)

where again ϕi are the scalar components of the superfields.

• Soft–Breaking interaction terms:

V I
soft =

g√
2MW cos β

εij

[
ẼmeAeL̃

iHj
d + D̃mdAdQ̃

iHj
d + ŨmuAuQ̃

iHj
u

]
+ h.c. .(4.10)
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plus mass terms for the scalar component of each superfield. These trilin-

ear interactions, with dimensionful trilinear couplings Af , may be viewed as

Yukawa interaction in the scalar sector. The supersymmetry breaking effects,

though not unique at all, are such that mass-squareds of the scalar fields and

triliear couplings are of similar size.

The full MSSM Lagrangian is then:

LMSSM = LKinetic + LGauge − VG̃ψψ̃ − VD − VY −
∑

i

∣∣∣∣
∂W (ϕ)

∂ϕi

∣∣∣∣
2

−V I
soft −H†

dm
2
1Hd −H†

um
2
2Hu −m2

d,u

(
HdHu +H†

dH
†
u

)

−1

2
mψaψa − 1

2
M w̃iw̃i −

1

2
M ′ B̃0B̃0

−L̃†m2
L̃
L̃− Ẽ†m2

Ẽ
Ẽ − Q̃†m2

Q̃
Q̃− Ũ †m2

Ũ
Ũ − D̃†m2

D̃
D̃ , (4.11)

where we have included all of the soft SUSY-breaking terms.

From the Lagrangian (4.11) we can obtain the full MSSM spectrum, as well

as their interactions, which contain the usual gauge interactions, the fermion-Higgs

interactions that correspond to a 2HDM (Gunion et al. 1990), and the pure

SUSY interactions. A very detailed treatment of this Lagrangian, and the process

of derivation of the forthcoming results can be found in (Simonsen 1995).

4.2.1. Higgs boson sector

The Higgs sector of the MSSM is that of a 2HDM, with some SUSY restric-

tions. After expanding (4.11) the Higgs potential reads

V = m2
1 |Hd|2 +m2

2 |Hu|2 −m2
d,u

(
εij H

i
dH

j
u + h.c.

)

+
1

8
(g2 + g′2)

(
|Hd|2 − |Hu|2

)2
+

1

2
g2 |H†

dHu|2 . (4.12)

The neutral Higgs bosons fields acquire a vacuum expectation value (VEV),

< Hd >0 =


 υd

0


 , < Hu >0=


 0

υu


 (4.13)

From the physical shell these VEVs must satisfy:

M2
W =

1

2
g2(v2

u + v2
d) ≡ g2 v

2

2
(4.14)
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M2
Z =

1

2
(g2 + g′2)v2 ≡M2

W cos2 θW (4.15)

tan β =
vu
vd

, 0 < β <
π

2
(4.16)

tan θW =
g′

g
(4.17)

where θW and gauge boson masses have already been measured. Here, the additional

parameter tan β is an unknown of the model, and it signals the presence of more

than one single Higgs doublet.

These VEV’s make the Higgs fields to mix up. There are five physical Higgs

fields: a couple of charged Higgs bosons (H±); a “pseudoscalar” Higgs (CP = −1)

A0; and two scalar Higgs bosons (CP = 1) H0 (the heaviest) and h0 (the lightest).

There are also the Goldstone bosons G0 and G±. The relation between the physical

Higgs fields and that fields of (4.1) is

 −H

±
d

H±
u


 =


 cosβ −sinβ

sinβ cosβ





 G±

H±


 (4.18)


 H0

d

H0
u


 =


 υd

υu


 +

1√
2


 cosα −sinα

sinα cosα





 H0

h0




+
i√
2


 −cosβ −sinβ

sinβ cosβ





 G0

A0


 (4.19)

were α is special to real parts of H0
u,d i.e. the neutral Higgs sector. All the masses of

the Higgs sector of the MSSM can be obtained with only two parameters, the first

one is tanβ, and the second one is a mass; usually this second parameter is taken

to be either the charged Higgs mass mH± or the pseudoscalar Higgs mass mA0 . We

will take the last option. From (4.12) one can obtain the tree-level mass relations

between the different Higgs particles,

m2
H± = m2

A0 +M2
W ,

m2
H0,h0 =

1

2

(
m2
A0 +M2

Z ±
√(

m2
A0 +M2

Z

)2 − 4m2
A0 M2

Z cos2 2β

)
(4.20)

The immediate consequence of such a constrained Higgs sector, is the exis-

tence of absolute bounds (at tree level) for the Higgs masses:

0 < mh0 < mZ < mH0 , mW < mH± (4.21)
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where experiments have already bounded mh, the lightest Higg mass, to be larger

than 114 GeV. Therefore, these tree-level relations are far from representing the

reality; one needs radiative effects to be incorporated into the Higgs potential. This

we do in the analysis given in next chapter.

4.2.2. The SM Interactions

In this part we give some expressions to obtain some MSSM parameters as

a function of the SM parametrization.

As stated above, the Higgs VEV’s can be obtained by means of (4.17), and

the Z mass can be obtained at tree-level via the relation:

sin2 θW = 1− M2
W

M2
Z

.

Fermion masses are obtained from the Yukawa potential (4.5) by letting the neutral

Higgs fields acquire their VEV(4.17). The up-type fermions get their masses from

the H0
u whereas H0

d gives masses to down-type fermions, so

mu = huv2 =
hu
√

2MW sin β

g
, md = hdv1 =

hd
√

2MW cos β

g
,

and the Yukawa coupling can be obtained as

λu =
hu
g

=
mu√

2MW sin β
, λd =

hd
g

=
md√

2MW cos β
. (4.22)

4.2.3. Sfermion sector

The sfermion mass terms are determined by the F terms computed from the

superpotential (4.6), the D-terms as well as the Soft–Breaking terms (4.11). By

letting the neutral Higgs fields get their (4.13), one obtains the following mass

matrices:

M2
q̃ =


 M2

q̃L
+m2

q + cos 2β(−s2
W )M2

Z mqM
q
LR

mqM
q
LR M2

q̃R
+m2

q + cos 2β Qq s
2
W M2

Z


(4.23)

where Q the electric charge of the corresponding fermion and sW = sin θW (Haber

and Kane 1985, Ferrera 1985). The mixings among left– and right–chirality squarks,
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MLR,RL, follow from the F terms (the ones depending on µ) and soft terms (the ones

involving Af ):

Mu
LR = Au − µ cot β ,

Md
LR = Ad − µ tan β . (4.24)

We define the sfermion mixing matrix as (q̃′a = {q̃′1 ≡ q̃L, q̃′2 ≡ q̃R} are the weak-

eigenstate squarks, and q̃a = {q̃1, q̃2} are the mass-eigenstate squark fields)

q̃′a =
∑

b

R
(q)
ab q̃b (4.25)

with the mixing matrix

R(q) =


 cos θq − sin θq

sin θq cos θq


 (4.26)

diagonalizing the mass-sqaured matrix of the sfermion under concern:

R(q)†M2
q̃R

(q) = diag{m2
q̃2
,m2

q̃1
} (mq̃2 ≥ mq̃1) (4.27)

This expression is valid for describing the mixing between the left– and right–

chiralities of a given sfermion. In other words, it is intra-generational mixing. How-

ever, on top of such mixings, there exist mixings among different generations of down

and up squarks, separately. These intergenerational mixings are discussed below.

4.2.4. Flavor Changing Neutral Currents

The most general MSSM includes tree-level flavor changing neutral currents

(FCNCs) among sfermions. They induce loop-level FCNC interactions among the

SM particles. Given the observed smallness of these interactions, tree-level SUSY

FCNCs are usually avoided by including one of the two following assumptions: either

the SUSY particle masses are very large, and their radiative effects are suppressed

by the large SUSY mass scale; or the soft SUSY-breaking squark mass matrices are

aligned with the SM quark mass matrix, so that both mass matrices are simultane-

ously diagonalized. However, if one looks closely, it is easy to realize that the MSSM
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does not only include the possibility of tree-level FCNCs, but it actually requires

their existence (Duncan 1983). Indeed, the requirement of SU(2)L gauge invariance

means that the up-left-squark mass matrix can not be simultaneously diagonal with

the down-left-squark mass matrix, and therefore these two matrices cannot be simul-

taneously diagonalized unless both of them are proportional to the identity matrix.

However, even then we could not take such a possibility seriously, for the radiative

corrections would produce non-zero elements in the non-diagonal part of the mass

matrix (i.e. induced by H± and χ±). All in all, we naturally expect tree-level FCNC

interactions mediated by the SUSY partners of the SM particles. As an example,

in the MSSM one can not set the FCNC Higgs bosons interactions to zero without

inconsistency with UV divergence being absent (Hikasa and Kobayashi 1987). The

potentially largest FCNC interactions are those originating from the strong super-

symmetric (SUSY-QCD) sector of the model (viz. those interactions involving the

squark-quark-gluino couplings and squark-quark-higgsino couplings). In the next

chapter we will mainly concentrate on such. These couplings induce FCNC loop ef-

fects on more conventional fermion-fermion interactions, like the gauge boson-quark

vertices.

In general, sfermions of a given electric charge (say, up squarks) exhibit a

rather generic structure of flavor mixings. Typically one has the structure

M2
q̃ =


 M2

LL M2
LR

M2
RL M2

RR


 (4.28)

where (1, 1) element describes mixing among left-handed sfermions, (1, 2) element

does mixing among left– and right–handed sfermions, and finally (2, 2) element holds

for right-handed sfermions. This is a 6× 6 mass-squared matrix, and contributions

of sfermions to rare processes requires its full diagonalization. The 6 mass-eigenstate

squarks exhibit non-negligible flavor-changing vertices with gluinos and quarks. This

is the source of SUSY flavor violation and it arises from flavor structures of the

squark soft mass-squareds as well as their trilinear couplings.

In computing the contributions of sparticle loops to FCNC processes, some-

times it proves useful to use an approximation scheme instead of full diagonalization

of the squark soft mass-squareds (4.28). The idea is to represent SUSY-induced am-

plitudes in terms of ”mass insertions” instead of sparticle mixing angles. In general,
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we define mass insertion between a sfermion of chirality a in generation i and the

one with chirality b and generation j as follows:

(δab)ij =
(M2

ab)ij
M2

0

(4.29)

where M 2
0 stands for the mean of the diagonal terms. The use of mass insertions

provides an easy-to-follow way of sparticle contributions. However, for this method

to be applicable the flavor-violating entries of the sfermion mass-squared matrix

must be sufficiently small compared to the diagonal ones (Demir 2003).

Of course, low energy meson physics puts stringent constraints on the possible

value of the FCNC couplings, especially for the first and second generation squarks

which are sensitive to the data on K0 − K̄0 and D0 − D̄0 (Gabbiani et al. 1996,

Misiak et al. 1997, Buras and Lindner 1998). The third generation system is, in

principle, very loosely constrained since present data on B0− B̄0 mixing still leaves

a wide-enoug room for FCNCs (Barbieri and Giudice 1993).

4.2.5. Renormalization Group Equations (RGE)

Irrespective of if we are discussing SM or MSSM or some other model; the

quantities depend on scale at which theory is renormalized. The main reason is

that Green functions are truncated at a specific order and thus there is an explicit

dependence on the scale of renormalization. For collider processes, for instance, it is

necessary to compute all masses and couplings at the scale relevant for the collider.

Indeed, even if we are given a set of soft-breaking masses at the Planck scale, for

estimating certain physical observables to be measured at the LHC, it is necessary to

renormalize all soft masses and coupling down to the scale of Q = 1 TeV. The scale-

dependence of lagrangian parameters are obtained by solving the Renormalization

Group Equations (RGE) that they obey. They are first order coupled differential

equations, and running of parameters could be quite substantial. For example,

experimental values of gauge couplings at Q ∼ MZ are quite different but their

running under RGEs make them unite at a scale Q ∼ 1016 GeV.

In order to characterize RGE’s we need to identify some basic examples for

some soft masses at two loop order (Martin and Vaughn 1993). Basically, we

can show general constructions of RGE’s and then construct an example for our
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purposes. We consider a general N = 1 supersymmetric SU(3)c gauge theory. The

chiral superfields Φi contain a complex scalar φi and a two-component fermion ψi

which transform as a (possibly reducible) representation R of the gauge group G.

The superpotential is

W =
1

6
Y ijkΦiΦjΦk +

1

2
µijΦiΦj + LiΦi . (1)

The RGEs for the gauge coupling and the superpotential parameters Y ijk, µij and

Li and the gaugino mass M are known previously. Let tA ≡ (t)Aji denote the

representation matrices for the gauge group G. Then

(tAtA)ji ≡ C(R)δji TrR(tAtB) ≡ S(R)δAB

define the quadratic Casimir invariant C(R) and the Dynkin index S(R) for the

representation R. For the adjoint representation [of dimension denoted by d(G)],

C(G)δAB = fACDfBCD with fABC are structure constants of the group. The evolu-

tion of the superpotential couplings are given by

d

dt
Y ijk = Y ijp[

1

16π2
γ(1)k
p +

1

(16π2)2
γ(2)k
p ] + (k ↔ i) + (k ↔ j) (4.30)

d

dt
µij = µip

[
1

16π2
γ(1)j
p +

1

(16π2)2
γ(2)j
p

]
+ (j ↔ i) (4.31)

d

dt
Li = Lp

[
1

16π2
γ(1)i
p +

1

(16π2)2
γ(2)i
p

]
(4.32)

where

γ
(1)j
i =

1

2
YipqY

jpq − 2δji g
2C(i) (4.33)

γ
(2)j
i = −1

2
YimnY

npqYpqrY
mrj + g2YipqY

jpq[2C(p)− C(i)]

+ 2δji g
4[C(i)S(R) + 2C(i)2 − 3C(G)C(i)]. (4.34)

In these equations, C(r) always refers to the quadratic Casimir invariant of the

representation carried by the indicated chiral superfield, while S(R) refers to the

total Dynkin index summed over all of the chiral superfields. The objects γ
(1)j
i

and γ
(2)j
i arise completely from the wave-function renormalization in the superfield

approach.
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Given the running of Yukawa couplings Yijk above, then the trilinear cou-

plings run as follows:

d

dt
hijk = 1

16π2

[
β

(1)
h

]ijk
+ 1

(16π2)2

[
β

(2)
h

]ijk
(4.35)

whose structures is similar to that of the Yukawa coupings due to the holomoprhicity

of the couplings. Here beta function coefficients are given by

[β
(1)
h ]ijk =

1

2
hijlYlmnY

mnk + Y ijlYlmnh
mnk − 2

(
hijk − 2MY ijk

)

g2C(k) + (k ↔ i) + (k ↔ j) (4.36)

and

[β
(2)
h ]ijk = −1

2
hijlYlmnY

npqYpqrY
mrk − Y ijlYlmnY

npqYpqrh
mrk − Y ijlYlmnh

npqYpqrY
mrk

+
(
hijlYlpqY

pqk + 2Y ijlYlpqh
pqk − 2MY ijlYlpqY

pqk
)
g2 [2C(p)− C(k)]

+
(
2hijk − 8MY ijk

)
g4

[
C(k)S(R) + 2C(k)2 − 3C(G)C(k)

]

+ (k ↔ i) + (k ↔ j) (4.37)

The running of the soft masses can also be obtained in a similar fashion:

d

dt
(m2)

j

i =
1

16π2
[β

(1)

m2 ]
j
i +

1

(16π2)2

[
β

(2)

m2

]j
i

(4.38)

with beta function coefficients

[β
(1)

m2 ]
j
i =

1

2
YipqY

pqn(m2)
j

n +
1

2
Y jpqYpqn(m

2)
n

i + 2YipqY
jpr(m2)

q

r

+ hipqh
jpq − 8δjiMM †g2C(i) + 2g2tAji Tr[tAm2] (4.39)

and

[β
(2)

m2 ]
j
i = −1

2
(m2)

l

iYlmnY
mrjYpqrY

pqn − 1

2
(m2)

j

lY
lmnYmriY

pqrYpqn

− YilmY
jnm(m2)

l

rYnpqY
rpq − YilmY jnm(m2)

r

nYrpqY
lpq

− YilmY
jnr(m2)

l

nYpqrY
pqm − 2YilmY

jlnYnpqY
mpr(m2)

q

r

− YilmY
jlnhnpqh

mpq − hilmhjlnYnpqY mpq − hilmY jlnYnpqh
mpq − YilmhjlnhnpqY mpq

+

[
(m2)

l

iYlpqY
jpq + YipqY

lpq(m2)
j

l + 4YipqY
jpl(m2)

q

l + 2hipqh
jpq
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− 2hipqY
jpqM − 2Yipqh

jpqM † + 4YipqY
jpqMM †

]
g2 [C(p) + C(q)− C(i)]

− 2g2tAji (tAm2)lrYlpqY
rpq + 8g4tAji Tr[tAC(r)m2]

+ δji g
4MM † [

24C(i)S(R) + 48C(i)2 − 72C(G)C(i)
]

+ 8δji g
4C(i)(Tr[S(r)m2]− C(G)MM †) (4.40)

The full set of RGEs can be found in appendix B taken from (Martin and

Vaughn 1993).
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CHAPTER 5

FLAVOR VIOLATION

It is essential for the existing and planned colliders and of the meson factories

to test the standard model (SM) and determine possible ’new physics’ effects on

its least understood sectors: breakdown of CP, flavor and gauge symmetries. In

the standard picture, both CP and flavor violations are restricted to arise from

CKM matrix, and the gauge symmetry breaking is accomplished by introducing

the Higgs field. However, the Higgs sector is badly behaved at quantum level; its

stabilization against quadratic divergences requires supersymmetry (SUSY) or some

other extension of the standard model (SM).

We proceed that Supersymmetric theories are prime candidates to replace the

standard electroweak model, among which the minimal extension (MSSM) occupies

a special place. It is known from the SUSY perspective due to the null collider

searches that yet unobserved supersymmetric spectra implies the existence of a

soft symmetry breaking mechanism which might have impact on our perception

of the fundamental physics if SUSY is really the way chosen by the mother Nature.

The soft breaking sector of the MSSM accommodates novel sources for CP and

flavor violations. The Yukawa couplings, which are central to Higgs searches at the

LHC, differ from all other couplings in the lagrangian in one aspect: the radiative

corrections from sparticle loops depend only on the ratio of the soft masses and

hence they do not decouple even if the SUSY breaking scale lies far above the weak

scale. In this sense, non-standard hierarchy and texture of Higgs-quark couplings,

once confirmed experimentally, might provide direct access to sparticles irrespective

of how heavy they might be.

In order to explain the observed flavor mixing patterns and the spectrum of

fermion masses, many theoretical and phenomenological models are developed. Ra-

diative mechanisms, textures, family symmetries and the seasaw mechanism can be

mentioned among them, which are related with each other to some extend. While

the origin of flavor is not known in both of the models, in the minimal supersymmet-

ric theory fermion masses are related with two Higgs doublets contrary to the unique



Higgs doublet of the SM. In the MSSM up(down) type Higgs fields can couple to

up (down) quarks at the tree level, however, once radiative corrections are realized

the coupling properties of Higgs bosons change, leaving fermion masses and flavor

mixing currents disturbed by the loop effects.

Interestingly, SUSY explanation of the flavor mixing observed among

fermions could be quite different from what is proposed in the SM. This situation

brings opportunities offered by SUSY to have some explanations associated with

phenomena like, the hierarchy of charged fermions mass spectra, origin of flavor

mixing and CP violation which suffers from an adequate answer within the realm of

the SM. Solid examples concerning this issue will be given in the following parts for

quark sector only. Here it suffices to stress that instead of the standard electroweak

explanation of the observed flavor mixing, it may also be attributed to the soft

breaking sector of the SUSY. Naturally, this possibility worsens the flavor problem .

Nevertheless, the shortcomings of the SM like inadequate explanation of the baryon

asymmetry observed in the the universe, no dark matter candidate,...etc. (for MSSM

motivations) raise questions on the flavor mixing interpretations of the standard

model, even if it faces no serious problem in confrontation with data, for the time

being. We expect this situation to change as colliders begin to probe deeper energies

where decoupling properties of supersymmetrics particles become more severe.

Related with flavor physics, on the experimental side, high precision deter-

mination of the flavor mixing parameters ensured by B meson factories opened up

a new era, which will be enriched with the start of the LHC and the ILC . Accu-

mulation of the related data will demand interpretation of quark mixing and CP

violation and thereby provide useful hints towards discovering the hidden dynamics

behind fermion mass generation and CP violation. On the theoretical side it should

be noticed that Yukawa matrices are the sole sources of flavor mixing and fermion

masses for the SM. This case is very similar for Minimal Flavour Violation (MFV)

SUSY models, in which flavor and CP violation is governed entirely by the CKM

matrix .

For general SUSY models the case is more complicated due to additional

structures present within those theories. On one hand, flavor mixing observed

among quarks is explained within the standard model, further, consistency of SM
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expectations with experiments is also impressive, on the other hand, there are also

important possibilities emerging from the supersymmetric theories that they may

alter the whole picture, especially from the viewpoint in which SM is seen as a

residue of a higher effective theory. In this respect, flavor physics opens a beautiful

door, denoting supersymmetric theories have additional sources of flavor violating

terms which could be the hidden reason for the observed quark mixing. This idea

may be clarified by the production of the well known quark mixing patterns with

the contributions coming from the other sources of flavor mixing terms around the

weak scale.

Indeed, it is important to study aspects of supersymmetric theories as general

as possible that may give us such hints. As is well known different supersymmetric

models predict distinct soft breaking sectors and this can be seen in the superpo-

tential of the Higgs sectors. Interactions of Higgs doublets, especially those related

with flavor violation may give us important clues as to which supersymmetric model

is to replace the SM and about the mechanism behind the symmetry breaking. Most

probably phenomenological approaches will play a crucial role in this direction. Ac-

tually, in SUSY models flavor violation may stem from various sources which include

not only the Yukawa couplings of the standard theory but also trilinear couplings

and soft mass terms of the additional symmetry. This issue is addressed in a recent

paper of Chankowski et al.(Chankowski et al 2005) in which a classification of the

flavor violating sources is given within the Supergravity (SUGRA) framework.

In this chapter, we will study the MSSM with the consideration of radiative

corrections on squark-gluino and squark-higgsino loops . Our calculations for ra-

diative calculations are based on a recent work (Demir 2003) which discusses the

radiative corrections to Yukawa couplings from sparticle loops and their impact on

FCNC observables and Higgs phenomenology. Notice that, FCNC SUSY contri-

butions do not arise from the mere supersymmetrization of the FCNC in the SM.

They originate from the FC couplings of gluinos and neutralinos to fermions and

sfermions as stated in (Duncan 1983) previous chapter. When supersymmetry is

broken and the heavy degrees of freedoms are integrated out this symmetry of the

Higgs sector is also broken, which eventually can change the coupling properties of

the Higgs bosons with fermions and/or bosons of the SM.

56



5.0.6. The Formalism

The superpotential of the MSSM ( 4.4) encodes the rigid parameters µ and

Yukawa couplings Yu,d,e (of up quarks, down quarks and of leptons) each being a

3× 3 non-hermitian matrix in the space of fermion flavors.

The breakdown of supersymmetry is parameterized by a set of soft (i.e. op-

erators of dimension ≤ 3) terms (Chung et al. 2005)

Lsoft = m2
Hu
H†
uHu +m2

Hd
H†
dHd + Q̃†m2

QQ̃+ Ũm2
UŨ

† + D̃m2
DD̃

† + L̃†m2
LL̃+ Ẽm2

EẼ
†

+

[
ŨYA

u Q̃Hu + D̃YA
d Q̃Hd + ẼYA

e L̃Hd + µBHuHd +
1

2

∑

α

Mαλαλα + h.c.

]
(5.1)

where trilinear couplings YA
u,d,e like Yukawas themselves are non-hermitian flavor

matrices whereas the sfermion mass-squareds m2
Q,...,E are all hermitian. In general,

all of the parameters in the second line and off-diagonal entries of the sfermion

mass-squared matrices are endowed with CP–odd phases; they serve as sources of

CP violation beyond the SM. The Yukawa matrices, trilinear couplings and sfermion

mass-squareds facilitate flavor violation in processes mediated by sparticle loops.

The MSSM possesses 21 mass parameters, 36 mixing angles and 40 CP-odd phases

in addition to ones in the SM (Dimopoulos and Sutter 1995). Consequently, there

is a 97-dimensional parameter space to be scanned in confronting theory with ex-

periments at Mweak. In supergravity or string models the parameters of (4.4) and

(5.1) are determined by compactification mechanism and structure of the internal

manifold (Bouquet et al. 1984, Hall et al. 1986, Brignole et al. 1997).

The parameters of (4.4) and (5.1) are scale- dependent. They are rescaled

to Q = Mweak via the MSSM RGEs (Ross and Roberts 1992, Kelley et al. 1991,

Castano et al. 1994, Avdeev et al. 1998) and Appendix C with boundary conditions

specified at Q = MGUT . The RG running of model parameters is crucial. In fact,

various phenomena central to supersymmetry phenomenology e.g. gauge coupling

unification, radiative electroweak breaking, induction of flavor structures even for

flavor-blind soft terms are pure renormalization effects. The Yukawa couplings, µ

parameter and gauge couplings form a coupled closed set of observables (Demir

2005) in that their scale dependencies are not affected by soft-breaking sector unless

some sparticles are decoupled before reaching Mweak. Flavor mixings exhibited by
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m2
Q at Q = Mweak can stem from m2

Q,U,D or Yu,d or YA
u,d or all of them. Therefore,

a given pattern of flavor mixings in, for instance, kaon system can be sourced by

various flavor matrices in rigid as well as soft sectors of the theory.

The flavor structures at Mweak arising from solutions of RGEs are further re-

habilitated by taking into account the decoupling of sparticles at the supersymmetric

threshold. Indeed, once part of the sparticles are integrated out of the spectrum the

effective theory below Mweak can exhibit sizeable non-standard effects in certain

scattering channels of the SM particles (Demir 2003, Curiel et al. 2003, Atwood et

al. 2002). Taking the effective theory below Mweak to be two-Higgs-doublet model

(2HDM) one finds

Yd
eff = Yd(Mweak)− γd + tan β Γd

Yu
eff = Yu(Mweak) + γu − cot β Γu (5.2)

where Yd,u(Mweak) are solutions of the corresponding RGEs evaluated at

Q = Mweak, and γd,u and Γd,u are flavor matrices arising from squark-gluino and

squark-Higgsino loops. Their explicit expressions can be found in(Demir 2003) and

Appendix D.

The physical quark fields are obtained by rotating the original gauge eigen-

state fields via the unitary matrices V u,d
R,L that diagonalize Yu,d

eff :

(
V d
R

)†
Yd

effV d
L = Yd , (V u

R )† Yu
effV u

L = Yu (5.3)

where Yd = diag.
(
hd, hs, hb

)
and Yu = diag.

(
hu, hc, ht

)
are physical Yukawa matri-

ces whose entries are directly related to running quark masses 4.2.2. at Q = Mweak.

In general, whatever flavor textures are adopted at MGUT , the resulting CKM

matrix, V corr
CKM ≡ (V u

L )† V d
L , must agree with the existing experimental bounds (Ei-

delman et al. 2004). Clearly, in the limit of vanishing threshold corrections Γu,d

and γu,d, physical CKM matrix V corr
CKM reduces to V tree

CKM computed by diagonalizing

Yu,d(Mweak) . Reiterating, it is with comparison of the predicted CKM matrix,

V corr
CKM , with experiment that one can tell if a high-scale texture, classified to be

viable at tree-level by considering V tree
CKM only, is spoiled by the supersymmetric

threshold corrections. The experimental bounds on the absolute magnitudes of the

CKM entries (at 90% CL) read collectively as:
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|V exp
CKM | =




0.9739 0.9751 0.2210 0.2270 0.0029 0.0045

0.2210 0.2270 0.9730 0.9744 0.0390 0.0440

0.0048 0.0140 0.0370 0.0430 0.9990 0.9992




(5.4)

where left (right) window of in each entry refers to lower (upper) experimental

bound on the associated CKM element. Clearly, the largest uncertainity occurs in

|Vtd|. These matrix elements are measured at Q = MZ , and for a comparison with

predictions of the effective theory below Q = Mweak they have to be scaled from MZ

up to Mweak. This can be done without having a detailed knowledge of the parti-

cle spectrum of the effective 2HDM at Mweak ( as emphasized above, the effective

theory may consist of some light superpartners in which case beta functions of cer-

tain couplings get modified as exemplified by analyses of b → sγ decay in effective

supersymmetry (Degrassi et al. 2000, Demir and Olive 2002)) since RG running

of the CKM elements is such that VCKM(1, 1), VCKM(1, 2), VCKM(2, 1), VCKM(2, 2)

and VCKM(3, 3) do not evolve with energy scale, to an excellent approximation (Ole-

chowski and Pokorski 1986, Barger et al. 1993). Therefore, it is rather safe to

confront the CKM matrix predicted by the effective theory at Mweak with the ex-

perimental results (5.4) entry by entry excluding, however, VCKM(1, 3), VCKM(3, 1),

VCKM(2, 3) and VCKM(3, 2) for which renormalization effects can be sizeable.

In the next parts, we will compute supersymmetric threshold corrections to

Yukawa couplings of quarks for certain prototype flavor textures defined at Q =

MGUT . In particular, we will evaluate radiatively corrected CKM matrix as well as

couplings of the Higgs bosons to quarks to determine the impact of the decoupling of

squarks out of the spectrum at Mweak on scattering processes at energies accessible

to present and future colliders.

5.1. RGE’s, Textures and a Mathematica Package (SUFLA)

Evolution of gauge, Yukawa and soft symmetry breaking terms are described

by a set renormalization group equations which are known for the MSSM up to 3–
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loops , (see also for 2-loop results which we use in our calculations). Those equations

connect the SUSY breaking scale with the GUT scale. Analytical solutions of the

RGEs are not known (except in the form of simple renormalization group invariants),

but there are a number of softwares that can numerically solve RGEs of the MSSM

in certain frameworks. Some of the codes that can be mentioned include Isajet,

Softsusy and Suspect , which enable understanding the interesting properties of

evolving terms under the RGEs. In order to characterize those terms one can assume

them in special forms as hierarchic, diagonal (including universal or non-universal)

and democratic structures.

While the exact form of the Yukawa textures or trilinear couplings or that

of soft mass terms are not known a priori, string theory or GUT predictions ensure

certain candidates. Strongest constraints that can be applied on these textures arise

from weak scale observables which are to be supported by additional assumptions

like unification of gauge couplings. For instance there are string motivations to

imagine Yukawa matrices in certain forms at the high scale and they are to be

evolved with the running gauge couplings which are expected to unify at the GUT

scale. On the other hand, whatever the form of those structures at the high scale

they should respect the existing collider bounds realized at the low scale. In this

sense, studying FCNC transitions yields important projections on the allowed forms

of string or GUT realizations.

As a matter of the fact, to handle the issue, we use 2-loop Renormalization

Group Equations (RGEs) of the Minimal Supersymmetric Standard Model (MSSM)

, in a top-down approach. That is we assume strict unification of gauge couplings

at the Grand Unified Theory (GUT) scale together with suitable choice of Yukawa

matrices which should approximately reproduce correct mass and mixing of quarks,

approximate prediction for the mass of MSSM particles in accordance with the

SPA point benchmark values, which respects the known constraints for today. Of

course we can use an alternative approach in which weak scale parameters are well

known from the beginning and used to predict the properties of gauge couplings and

Yukawa textures at the GUT scale. Those two approaches are equivalent if threshold

corrections are ignored. Since there are well measured quantities like quark mixing

matrix, mass of quarks (at least for the third generation) and gauge couplings, the
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scale of unification is predicted as ∼ 2.5× 1016 GeV in such a typical approach.

Actually, there a number of studies that can successfully reveal the correct

form of the CKM matrix under RGEs . It is common in those studies that predicted

form of Yukawa matrices bring the CKM with high precision. However when correc-

tions on Higgs couplings are in charge Yukawa matrices are to be deformed, which

even has capacity to change the whole picture. Candidates for the form of Yukawa

matrices chosen by the mother Nature ranges from simple textures, texture zeros,

hierarchic textures to democratic textures. We will actually concentrate on two dis-

tinct forms among the mentioneds. Related with, please notice that, the unitary

transformations acting on the quark fields also transform (mass)2 matrices, from

which indirect relation of existing bounds should be inferred. Obviously, existence

of corrections on the entries of Yukawa matrices changes the tree level prediction of

the quark mixing matrix and also quark masses with the relaxation of constraints

on flavor violating processes.

It is our aim to probe certain forms of Yukawa matrices, trilinear couplings

and soft terms under RGEs such that existing bounds on the FCNC processes should

be respected for certain forms and for all forms considered they should also (at least

approximately) reproduce some of the well known phenomena like quark masses and

their mixings when SUSY scale threshold corrections on the Higgs boson couplings

are also realized. We use Supersymmetric Parameter Analysis (SPA) top-down data

point in order to benchmark our results Fig.5.1.

RGEs of sources of flavor violating terms and their textures are considered,

where certain examples are given as subsections. We first discuss in sensitivities of

the GUT-scale CKM-ruled hierarhic and democratic Yukawa textures to supersym-

metric threshold corrections when trilinear couplings are proportional to Yukawas.

We investigate effects of flavor mixings in squark mass-squared matrices on textures

analyzed. We determine effects of threshold corrections on Yukawa textures which

would not qualify physical tree level.

In general,testing high-scale flavor structures with experimental data involves

three basic ingredients:

1. Specification of flavor textures in rigid and soft sectors at the messenger scale

(which we take to be the MSSM gauge coupling unification scale Q = MGUT ∼
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1016 GeV).

2. Rescaling of lagrangian parameters to low-scale Q = Mweak ∼ TeV via renor-

malization group flow. This stage is particularly important due to (i) largeness

of the logs (logMGUT/Mweak) involved, and (ii) modifications of flavor struc-

tures because of mixings with others.

3. Integration out of the superpartners at Mweak to achieve an effective theory

which comprises the SM particle spectrum with possible imprints of supersym-

mety in various couplings. For FCNC phenomenology this step is important as

it induces flavor-nonuniversal couplings of gauge and Higgs bosons to fermions.

An analytic treatment of these three steps is simply not possible. Therefore, one

needs a dedicated computer code to implement the integration of RGEs from string

scale down to the electrowek scale. We prefer to use Mathematica to implement

the code, and we name it SUFLA (derived from SUpersymmetric FLAvor viola-

tion). SUFLA, after feeding in the flavor structre at the string scale, integrates the

RGEs at two loop level (Martin and Vaughn 1993), and after making appropriate

conventional changes in the flavor matrices it computes supersymmetric threshold

corrections (Demir 2003). The output of the code involves all physical masses and

mixings within the MSSM with most general flavor and CP violation properties.

The flow diagram of SUFLA is given in Fig. 5.1.

Any high-scale flavor structure specified in step 1 is classified to be phe-

nomenologically viable if it agrees with experimental data after step 3. The first

two steps have been widely discussed in literature by identifying flavor violation

sources in general supergravity (Bouquet et al. 1984, Chankowski et al. 2005) and

confronting them with experimental data on fermion masses and mixings as well as

various observables in kaon and beauty systems (Campbell et al. 1987, Hagelin et

al. 1994).

So far analysis of the third step above has been restricted to TeV-scale su-

persymmetry where gauge (Atwood et al. 2002) and Higgs (Demir 2003) bosons

have been found to develop flavor-changing couplings to fermions. In particular,

emphasis has been put on the couplings of Z (Atwood et al. 2002) and Higgs

(Curiel et al. 2003, Arhrib et al. 2005, Foster et al. 2005, Hahn et al. 2005) to bs
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Figure 5.1: Flow diagram for the Mathematica package SUFLA.

since mixing between second and third generation fermions exhibits a theoretically

clean and experimentally wide room for new physics. These analyses have led to

conclusion that flavor violation sources in sfermion sector can have a big impact on

Higgs phenomenology as well as various rare processes in kaon and beauty systems

(Demir 2003).

5.2. High-Scale Textures and Threshold Corrections

First of all, for standardization and easy comparison with literature (e.g. with

the computer codes ISAJET (Paige et al. 2003) and SOFTSUSY (Allanach 2002))

we take SPS1a′ conventions for supersymmetric parameters (Aguilar-Saavedra et al.

2005)

tan β = 10 , m0 = 70 GeV , A0 = −300 GeV , m1/2 = 250 GeV (5.5)
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and completely neglect supersymmetric CP-violating phases, as mentioned before.

Instead of scanning a 97-dimensional parameter space for specifying what high-scale

parameter ranges are useful for what low-energy observables, which is actually what

has to be done, we simplify the analysis by focussing on certain prototype textures

at high scale. In general, for any flavor matrix in any sector of the theory there exist,

boldly speaking, three extremes: (i) completely diagonal, (ii) hierarchical, and (iii)

democratic textures. There are, of course, a continuous infinity of textures among

these extremes; however, for definiteness and clarity in our analysis we will focus on

these three structures.

5.2.1. Flavor violation from Yukawas and Trilinear couplings

In this subsection we investigate effects of superymmetric threshold correc-

tions on high-scale textures in which Yukawa couplings exhibit non-trivial flavor

mixings and so do the trilinear couplings since we take

YA
u,d,e = A0Yu,d,e (5.6)

at the GUT scale. The soft mass-squareds, on the other hand, are taken entirely

flavor conserving i.e. they are strictly diagonal and universal at the GUT scale. It is

with direct proportionality of trilinear couplings with Yukawas and certain ansatze

for Yukawa textures that, we will study below sensitivities of certain high-scale

Yukawa structures to supersymmetric threshold corrections at the TeV scale.

5.2.1.1. CKM-ruled Texture

We take Yukawa couplings of up and down quarks to be

Yu = diag
(
3.5 10−6, 1.3 10−3, 0.4566

)

Yd =




6.2368 10−5 −1.4272 10−5 5.9315 10−7 e0.3146i

2.4640 10−4 1.07074 10−3 −4.0458 10−5

1.6495 10−4 e1.047i 1.81465 10−3 4.8476 10−2


 (5.7)

with no flavor violation in the lepton sector: Ye = diag. (1.9 10−5, 4 10−3, 0.071).

The flavor violation effects are entirely encoded in Yd which exhibits a CKM-ruled
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hierarchy in similarity to Yukawa textures analyzed in (Chankowski et al.

2005) i.e. this choice of boundary values of the Yukawas leads to correct CKM

matrix (Eidelman et al. 2004) at Mweak upon integration of the RGEs.

At the weak scale the Yukawa matrices, trilinear couplings and squark soft

mass-squareds serve as sources of flavor violation. The trilinear couplings, under

two-loop RG running (Ross and Roberts 1992, Kelley et al. 1991, Castano et

al. 1994, Avdeev et al. 1998) with boundary conditions (5.6), attain the flavor

structures

YA
u =




−7.2 10−3 0 0

1.70 10−6 e0.5641i −2.67 2.9 10−4

6.24 e1.047i 10−3 6.8 10−2 −532.7




YA
d =




−0.204 −0.191 −0.138 e−1.039i

−0.567 −3.495 −1.436

−0.384 e1.046i −4.19 −134.24


 (5.8)

both measured in GeV at Mweak = 1 TeV. Clearly, YA
u is essentially diagonal

whereas (2, 3), (3, 2) and (2, 2) entries of YA
d are of the same size.

Though they start with completely diagonal and universal boundary values,

the squark soft squared masses develop flavor-changing entries at Mweak = 1 TeV:

m2
Q = (533.67 GeV)2




1.07 0.0 0.0

0.0 1.07 −2.2 10−4

0.0 −2.2 10−4 0.86




m2
D = (530.76 GeV)2




1.01 0.0 0.0

0.0 1.01 −1.5 10−4

0.0 −1.5 10−5 0.99


 (5.9)

with m2
U = (497.11 GeV)2 diag. (1.15, 1.15, 0.69). The numerical values of the pa-

rameters above exhibit good agreement with well-known codes like ISAJET (Paige

et al. 2003) and SOFTSUSY (Allanach 2002). The presence of flavor violation

in the soft sector of the low-energy theory gives rise to non-trivial corrections to

Yukawa couplings and in turn to the CKM matrix. Indeed, use of (5.8) and (5.9)

in (Demir 2003) introduces certain corrections to the tree-level Yukawa matrices

Yu,d(Mweak) to generate Yeff
u,d in (5.2). In fact, V tree

CKM (obtained from Yu,d(Mweak))
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and V corr
CKM (obtained from Yu,d

eff ) compare to exhibit spectacular differences:

|V tree
CKM | |V corr

CKM | =




0.9746 0.9795 0.2241 0.2015 0.0037 0.0034

0.2240 0.2014 0.9737 0.9788 0.0406 0.0375

0.0079 0.0066 0.0400 0.0371 0.99917 0.9993




(5.10)

where left (right) window of in (i, j)-th entry refers to |V tree
CKM(i, j)| (

|V corr
CKM(i, j)|). Clearly, |V tree

CKM | agrees very well with |V exp
CKM | in (5.4) entry by en-

try. This qualifies (5.7) to be the correct high-scale texture given experimental

FCNC bounds at Q = MZ . However, radiative corrections induced by decoupling of

squarks, gluinos and Higgsinos at the supersymmetric threshold Mweak = 1 TeV is

seen to leave a rather strong impact on the CKM entries. Consider for instance (1, 1)

entries of V exp
CKM , V tree

CKM and V corr
CKM . Present experiments provide a 1.64σ significance

to |V exp
CKM(1, 1)| around a mean value of 0.745 as is seen from (5.4). The tree-level pre-

diction, |V tree
CKM(1, 1)|, takes the value of 0.9746 which is rather close to the center of

the experimental interval. However, once supersymmetric threshold corrections are

included this tree-level prediction gets modified to |V corr
CKM(1, 1)| = 0.9795. This value

is obviously far beyond the existing experimental limits as it is a 13.39σ effect. Sim-

ilarly, |V corr
CKM(1, 2)|, |V corr

CKM(2, 1)|, |V corr
CKM(2, 2)| and |V corr

CKM(3, 3)| are, respectively,

12.36σ, 12.36σ, 11.95σ and 2.30σ effects.

Obviously, deviation of |V corr
CKM(i, j)| from |V tree

CKM(i, j)| (comparison with ex-

periments at Q = MZ is meaningful especially for (i, j) = (1, 1), (1, 2), (2, 1), (3, 3)

entries whose scale dependencies are known to be rather mild (Olechowski and Poko-

rski 1986, Barger et al. 1993)), when the latter falls well inside the experimentally

allowed range, obviously violates existing experimental bounds in (5.4) by several

standard deviations. Consequently, supersymmetric threshold corrections entirely

disqualify the high-scale texture (5.7) being the correct texture to reproduce the

FCNC measurements at the weak scale. This case study, based on numerical values

for Yukawa entries in (5.7), manifestly shows the impact of supersymmetric thresh-

old corrections on high-scale textures which qualify viable at tree level. The physical
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quark fields, which arise after the unitary rotations (5.3), acquire the masses

Mu(Mweak) = diag. (' 0, 0.545, 149.45)

Md(Mweak) = diag.
(
3.35 10−3, 5.76 10−2, 2.33

)
(5.11)

all measured in GeV. In this physical basis for quark fields, V corr
CKM governs the

strength of charged current vertices for each pair of up and down quarks. These

mass predictions are to be evolved down to Q = MZ to make comparisons with

experimental results. This evolution depends on the effective theory below Mweak.

Speaking conversely, the high-scale texture (5.7) has to be folded in such a way that

resulting mass and mixing patterns for quarks agree with experiments below the

sparticle threshold Mweak.

5.2.1.2. Hierarchical Texture

The Yukawa couplings are taken to have the structure (as can be motivated

from (?Ko and Kobayashi 2004, Chankowski et al 2005))

Yu =




2.6463 10−4 5.8163 10−4i −1.0049 10−2

−5.8163 10−4i 2.2587 10−3 1.0049 10−5i

−4.8233 10−3 −9.0437 10−6i 0.495




Yd =




3.9808 10−4 8.1167 10−4 e0.734i −1.1431 10−3

8.1167 10−4 e−0.734i 2.7997 10−3 2.04844 10−3i

−1.1431 10−3 −1.6461 10−3i 4.97 10−2


 (5.12)

with no flavor violation in the lepton sector: Ye = diag. (1.9 10−5, 0.004, 0.071).

Here both Yu and Yd exhibit a hierarchically organized pattern of entries . In a

sense, the hierarchic nature of Yd in (5.7) is now extended to Yu so as to form a

complete hierarchic pattern for quark Yukawas at the GUT scale.

At the weak scale, the Yukawa matrices above, trilinear couplings, and squark

soft mass-squareds serve as sources of flavor violation. The trilinear couplings, under

two-loop RG running (Ross and Roberts 1992, Kelley et al. 1991, Castano et

al. 1994, Avdeev et al. 1998) with boundary conditions (5.6), obtain the flavor
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structures

YA
u =




−0.4315 −1.1442i 10.637

1.1466i −4.4531 −4.8631 10−3i

5.0657 −0.1046i −524.07




YA
d =




−1.2934 −2.6494 e0.734i 3.1221

2.6428 e−0.731i −9.1395 5.2606i

3.4532 −5.6827i −135.861


 (5.13)

both measured in GeV at Mweak = 1 TeV. Clearly, in contrast to (5.8),

now both YA
u and YA

d develop sizeable off-diagonal entries, as expected from (5.12).

Though they start with completely diagonal and universal boundary values, the

squark soft squared masses develop flavor-changing entries at Mweak = 1 TeV:

m2
Q = (533.69 GeV)2




1.07 1.9 10−5 e1.144i 2.14 10−3

1.9 10−5 e−1.144i 1.07 3.17 10−4i

2.14 10−3 −3.17 10−4i 0.86




m2
U = (496.76 GeV)2




1.16 −6.66 10−6i 9.6 10−3

6.66 10−6i 1.16 −1.4 10−5i

9.6 10−3 1.4 10−5i 0.685




m2
D = (531.07 GeV)2




1.01 3.3 10−5 e1.06i 3.75 10−4

3.3 10−5 e−1.06i 1.01 −6.62 10−4i

3.75 10−4 6.62 10−4i 0.99


(5.14)

whose average values show good agreement with (5.9) but certain off-diagonal

entries exhibit significant enhancements when the corresponding entries of Yukawas

and trilinear couplings are sizeable.

The flavor-violating entries of Yukawas, trilinear couplings and soft mass-

squareds collectively generate radiative contributions γu,d, Γu,d to the Yukawa cou-

plings below Mweak (Demir 2003). In fact, V tree
CKM (obtained from Yu,d(Mweak)) and

V corr
CKM (obtained from Yu,d

eff ) confront as follows:

|V tree
CKM | |V corr

CKM | =




0.9745 0.9773 0.2243 0.2118 0.0049 0.0034

0.2240 0.2116 0.9737 0.9766 0.0417 0.0379

0.0109 0.0091 0.0405 0.0370 0.99912 0.99927




(5.15)
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where left (right) window of in (i, j)-th entry refers to |V tree
CKM(i, j)| (

|V corr
CKM(i, j)|). Clearly, |V tree

CKM | falls well inside the 1.64σ experimental interval in

(5.4) entry by entry. In this sense, Yukawa matrices in (5.17) qualify to be the

correct high-scale textures given present experimental determination of VCKM at

Q = MZ . However, this agreement between experiment and theory gets spoiled

strongly by the inclusion of supersymmetric threshold corrections. Indeed, as is

shown comparatively by (5.20), V corr
CKM violates the bounds in (5.4) significantly.

More precisely, |V corr
CKM(1, 1)|, |V corr

CKM(1, 2)|, |V corr
CKM(2, 1)|, |V corr

CKM(2, 2)|, |V corr
CKM(3, 3)|

turn out to have 7.65σ, 6.83σ, 6.77σ, 6.79σ, 3.28σsignificance levels, respectively.

These significance levels are far beyond the existing experimental 1.64σ intervals

depicted in (5.4). As a result, supersymmetric threshold corrections are found to

entirely disqualify the high-scale texture (5.12) to be the correct texture to repro-

duce the FCNC measurements at the weak scale. This case study therefore shows

the impact of supersymmetric threshold corrections on high-scale textures which

qualify viable at tree level. The physical quark fields, which arise after the unitary

rotations (5.3), acquire the masses

Mu(Mweak) = diag. (0.0065, 0.98, 153.82)

Md(Mweak) = diag. (0.0071, 0.155, 2.37) (5.16)

all measured in GeV. In this physical basis for quark fields, V corr
CKM is responsible for

charged current interactions in the effective theory below Mweak. The morale of the

analysis above is that, the high-scale flavor structures (5.12) are to be modified in

such a way that V corr
CKM agrees with V exp

CKM with sufficient precision. Aftermath, the

question is to predict quark masses appropriately at Q = Mweak so that, depending

on the particle spectrum of the effective theory beneath, existing experimental values

of quark masses at Q = MZ are reproduced correctly.
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5.2.1.3. Democratic Texture

In this subsection, we take Yukawa couplings to be (as can be motivated from

relevant works (Fritzsch and Plankl 1990, Abel et al. 2003, Branco et al. 2004))

Yu =




0.1475 0.1443 0.1458

0.1443 0.1475 0.1458

0.1456 0.1458 0.1456


 (5.17)

Yd =




0.01583 0.01452(1− 10−2i) 0.01553(1− 10−2i)

0.01452(1 + 10−2i) 0.01944 0.01617(1 + 2 10−2i)

0.01551(1 + 10−2i) 0.01617(1− 2 10−2i) 0.01604




with no flavor violation in the lepton sector: Ye = diag. (1.9 10−5, 4 10−3, 0.071).

Here both Yu and Yd exhibit an approximate democratic structure so that

Yu,d(Mweak) generate correctly masses and mixings of the quarks at the weak scale.

Clearly, in the exact democratic limit two of the quarks from each sector remain

massless, and therefore, a realistic flavor structure is likely to come from small per-

turbations of the exact democratic texture (Fritzsch and Plankl 1990, Abel et al.

2003, Branco et al. 2004). Another important feature of exact democratic texture

is that all higher powers of Yukawas reduce to Yukawas themselves up to a mul-

tiplicative factor, and this gives rise to linearization of and in turn direct solution

of Yukawa RGEs in the form of an RG rescaling of the GUT scale texture (Demir

2005). These properties remain approximately valid for perturbed democratic tex-

tures like (5.17).

At the weak scale, the Yukawa matrices above, trilinear couplings, and squark

soft mass-squareds serve as sources of flavor violation. The trilinear couplings, under

two-loop RG running (Ross and Roberts 1992, Kelley et al. 1991, Castano et

al. 1994, Avdeev et al. 1998) with boundary conditions (5.6), obtain the flavor

structures

YA
u = −




182.44 175.57 178.81

175.69 182.32 178.81

178.62 178.81 178.67



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YA
d = −




44.41 40.07 e−0.0117i 43.39 e0.0115i

39.44e0.0101i 55.46 e−0.0013i 44.82 e0.0218i

43.09 e−0.099i 45.17 e−0.0216i 44.79 e0.0016i


 (5.18)

both measured in GeV at Mweak = 1 TeV. Though not shown explicitly, each entry

of YA
u is complex with a phase around 10−7 – 10−6 in size.

Though they start with completely diagonal and universal boundary values,

the squark soft squared masses develop flavor-changing entries at Mweak = 1 TeV:

m2
Q = (533.67 GeV)2




1.0 0.0672 0.0670

0.0672 1.0 0.0673

0.0670 0.0673 1.0




m2
U = (497.38 GeV)2




1.0 0.1526 0.1524

0.1526 1.0 0.1524

0.1524 0.1524 1.0


 (5.19)

m2
D = (530.59 GeV)2




1.0 5.046 10−3 e−0.01i 4.826 10−3 e0.01i

5.046 10−3 e0.01i 1.0 5.289 10−3 e0.02i

4.826 10−3 e−0.01i 5.289 10−3 e−0.02i 1.0




whose average values show good agreement with (5.9) and (5.14). The off-diagonal

entries of each squark soft mass-squared are of similar size due to the democratic

structure of the Yukawa couplings. The flavor-mixing entries m2
Ũ

are the largest

among all three mass squareds.

The flavor-violating entries of Yukawas, trilinear couplings and soft mass-

squareds collectively generate radiative contributions γu,d, Γu,d to the Yukawa cou-

plings below Mweak (Demir 2003). In fact, V tree
CKM (obtained from Yu,d(Mweak)) and

V corr
CKM (obtained from Yu,d

eff ) confront as follows:

|V tree
CKM | |V corr

CKM | =




0.9748 0.9685 0.2229 0.2490 0.0083 0.0085

0.2229 0.2489 0.9739 0.9674 0.0421 0.0463

0.0092 0.0104 0.0419 0.0459 0.99908 0.99889




(5.20)

where left (right) window of in (i, j)-th entry refers to |V tree
CKM(i, j)| (

|V corr
CKM(i, j)|). Obviously, |V tree

CKM | agrees very well with |V exp
CKM | in (5.4) entry by
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entry. This qualifies (5.17) to be the correct high-scale texture given present experi-

mental determination of VCKM at Q = MZ . The most striking aspect of (5.20) is the

fact that supersymmetric threshold corrections push V tree
CKM beyond the experimen-

tal bounds. More precisely, |V corr
CKM(1, 1)|, |V corr

CKM(1, 2)|, |V corr
CKM(2, 1)|, |V corr

CKM(2, 2)|,
|V corr
CKM(3, 3)| turn out to have 17.22σ, 14.21σ, 14.21σ, 15.22σ, 16.40σ significance

levels, respectively. These are obviously far beyond the existing experimental 1.64σ

significance intervals depicted in (5.4). As a result, supersymmetric threshold correc-

tions are found to entirely disqualify the high-scale texture (5.17) to be the correct

texture to reproduce the FCNC measurements at the weak scale. Here, it is worthy

of noting that deviation of |V corr
CKM(i, j)| from |V tree

CKM(i, j)| (for i, j = 1, 2) turns out

to be similar in size for CKM-ruled (see eq. 5.10) and democratic (see eq. 5.20)

textures. It is smallest for the hierarchical texture (see eq. 5.15). Therefore, CKM-

ruled texture in (5.7) and democratic one in (5.17) exhibit a pronounced sensitivity

to supersymmetric threshold corrections in comparison to hierarchical texture in

(5.12).

The physical quark fields, which arise after the unitary rotations (5.3), acquire

the masses

Mu(Mweak) = diag. (0.055, 1.27, 144.78)

Md(Mweak) = diag. (0.099, 0.27, 2.4) (5.21)

all measured in GeV. In this physical basis for quark fields, V corr
CKM is responsible for

charged current interactions in the effective theory below Mweak. The morale of the

analysis above is that, the high-scale flavor structures (5.17) are to be modified in

such a way that V corr
CKM agrees with V exp

CKM with sufficient precision. Aftermath, the

question is to predict quark masses appropriately at Q = Mweak so that, depending

on the particle spectrum of the effective theory beneath, existing experimental values

of quark masses at Q = MZ are reproduced correctly.

5.3. Inclusion of Flavor Violation from squark soft masses

In this section we extend GUT-scale flavor structures analyzed in Sec. 3.1 by

switching on flavor mixings in certain squark soft mass-squareds. In other words,
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we maintain Yukawa textures to be one of (5.7), (5.12) or (5.17), and examine what

happens to CKM prediction if squared masses of squarks possess non-trivial flavor

mixings at the GUT scale.

The effective Yukawa couplings Yu,d
eff beneath Q = Mweak receive contri-

butions from all entries of m2
Q,U,D(Mweak) via respective mass insertions (Demir

2003). Generically, larger the mass insertions larger the flavor violation potential

of Yu,d
eff . Consequently, main problem is to determine the relative strengths of

on-diagonal and off-diagonal entries of m2
Q,U,D(Mweak) given that they start with a

certain pattern of flavor mixings. Take, for instance, m2
Q which evolves with energy

scale via at single loop level. That this is the case can be seen explicitly by consid-

ering, for instance, democratic texture for Yukawas (5.17) together with (5.6) and

strict universality and flavor-diagonality of the soft masses, except

m2
Q(0) = m2

0




1 1 1

1 1 1

1 1 1


 (5.22)

which contributes maximally to each term . Even with such a democratic pattern

for Yukawas, trilinear couplings and m2
Q(0), however, one obtains at Mweak = 1 TeV

m2
Q = (533.37 GeV)2




1.0 −0.0512 −0.0510

−0.0512 1.0 −0.0513

−0.0510 −0.0513 1.0


 (5.23)

with similar structures for m2
U and m2

D. Alternatively, if one adopts (5.7) or (5.12)

setups the off-diagonal entries of squark soft mass-squareds at Mweak are found to

remain around m2
0 which are much smaller than the on-diagonal ones. Therefore,

Yukawa textures (and hence those of the trilinear couplings) studied in sec.4.2.1

lead one generically to hierarchic textures for squark soft mass-squareds at Q =

Mweak irrespective of how large the flavor mixings in m2
Q,U,D(0) might be. In fact,

predictions for CKM matrix remain rather close to those in sec.4.2.1. This is actually

clear where off-diagonal entries of m2
Q,U,D are seen to evolve into new mixing patterns

via themselves and those of Yukawas and trilinear couplings. In conclusion, evolution

of squark soft masses is fundamentally Yukawa-ruled and when Yukawas at the GUT

scale are taken to shoot the measured value of CKM matrix, the mass insertions
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associated with m2
Q,U,D(Mweak) are too small to give any significant contribution to

Yu,d
eff .

For generating sizeable off-diagonal entries for m2
Q,U,D(Mweak) it is necessary

to abandon either Yukawa textures analyzed sec.4.2.1 or proportionality of trilinear

couplings with Yukawas. Therefore, we take Yukawa couplings at the GUT scale

precisely as (5.17), we maintain (5.6) for both YA
d and YA

e , and we take m2
U(0) and

m2
D(0) strictly flavor-diagonal as in all three case studies carried out in previously.

However, we take m2
Q(0) as in (5.22) above, and YA

u as

YA
u (0) = −150 GeV




1 1 1

1 1 1

1 1 1


 (5.24)

which certainly violates (5.6) that enforces trilinears to be proportional to the corre-

sponding Yukawas. Then two-loop RG running from Q = MGUT down to Q = Mweak

gives

YA
u =




−262.087 −259.342 −260.709

−259.474 −261.954 −260.709

−260.688 −260.674 −260.735




YA
d =




−41.435 37.091 e−0.0127i −40.408 e0.0124i

−36.171 e0.0102i 52.230 e−0.0019i −41.558 e0.0228i

39.983 e−0.0300i 42.075 e−0.0224i −41.683 e0.0025i


 (5.25)

both measured in GeV at Mweak = 1 TeV. Though not shown explicitly, each entry

of YA
u is complex with a phase around 10−7 – 10−6 in size. On the other hand,

squark soft mass-squared at Q = Mweak are given by

m2
Q = (516.58 GeV)2




1.0 −0.13 −0.13

−0.13 1.0 −0.13

−0.13 −0.13 1.0




m2
U = (455.49 GeV)2




1.0 −0.3852 −0.3853

−0.3852 1.0 −0.3853

−0.3853 −0.3853 1.0


 (5.26)

m2
D = (532.91 GeV)2




1.0 4.34 10−3 e−0.01i −4.15 10−3 e0.01i

4.34 10−3 e−0.01i 1.0 −4.55 10−3 e0.02i

−4.15 10−3 e0.01i −4.55 10−3 e0.02i 1.0



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where small phases in off-diagonal entries of m2
Q and m2

U are neglected. A compari-

son with (5.19) reveals spectacular enhancements in mass insertions pertaining m2
Q

and m2
U.

The trilinear couplings (5.25) and squark mass-squareds (5.26) give rise

to non-trivial changes in flavor structures of Yu,d(Mweak) by generating effective

Yukawas Yu,d
eff beneath Q = Mweak. Then the CKM matrix V tree

CKM obtained from

Yu,d(Mweak) and V corr
CKM obtained from Yu,d

eff compare as:

|V tree
CKM | |V corr

CKM | =




0.9748 0.9637 0.2229 0.2668 0.0083 0.0080

0.2229 0.2666 0.9739 0.9626 0.0421 0.0480

0.0092 0.0132 0.0419 0.0468 0.99908 0.99888




(5.27)

where left (right) window of in (i, j)-th entry refers to |V tree
CKM(i, j)| (

|V corr
CKM(i, j)|). Obviously, |V tree

CKM | agrees very well with |V exp
CKM | as was the case

in (5.20). This qualifies (5.17) to be the correct high-scale texture given present

experimental determination of VCKM at Q = MZ . However, implementation of

supersymmetric threshold corrections is seen to leave a big impact on certain en-

tries of the physical CKM matrix. Indeed, |V corr
CKM(1, 1)|, |V corr

CKM(1, 2)|, |V corr
CKM(2, 1)|,

|V corr
CKM(2, 2)|, |V corr

CKM(3, 3)| turn out to have 6.06σ, 23.99σ, 23.89σ, 26.52σ, 4.35σ sig-

nificance levels, respectively. These are to be contrasted with standard deviations

computed for (5.20) in Sec. sec.4.2.1 above. Needless to say, these deviations are

far beyond the experimental sensitivities and thus supersymmetric threshold correc-

tions completely disqualify the flavor textures (5.17) in a way different than (5.20)

due to new structures (5.22) and (5.24).

Finally, physical quark fields, which arise after the unitary rotations (5.3),

acquire the masses

Mu(Mweak) = diag. (0.138, 1.26, 143.3)

Md(Mweak) = diag. (0.140, 0.304, 2.42) (5.28)

all measured in GeV. These mass predictions are close to those obtained within

democratic texture. As in all cases discussed above especially light quark masses
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fall outside the existing experimental bounds, and choice of the correct high-scale

texture must reproduce both V corr
CKM and quark masses in sufficient agreement with

experiment.

5.4. A Purely Soft CKM?

We have just discussed how prediction for the CKM matrix depends cru-

cially on the inclusion of the supersymmetric threshold corrections. This we did

by negation i.e. we have taken certain Yukawa textures which are known to gener-

ate CKM matrix correctly at tree level, and then included threshold corrections to

demonstrate how those the would-be viable flavor structures get disqualified.

In this section we will do the opposite i.e. we will take a Yukawa texture which

is known not to work at all, and incorporate supersymmetric threshold corrections

to show how it can become a viable one, at least approximately. For sure, a highly

interesting limit would be to start with exactly diagonal Yukawas at the GUT scale

and generate CKM matrix beneath Mweak via purely soft flavor violation i.e. flavor

violation from sfermion soft mass-squareds and trilinear couplings, alone. However,

this limit seems difficult to realize, at least for SPS1a′ parameter values, since it

may require tuning of various parameters, in particular, soft mass-squareds of Higgs

and quark sectors (Demir 2003). Even if this is done by a fine-grained scan of the

parameter space, it will possibly cost a great deal of fine-tuning. Indeed, threshold

corrections depend on ratios of the soft masses (Demir 2003), and generating a

specific entry of the CKM matrix can require a judiciously arranged hierarchy among

various soft mass parameters – a parameter region certainly away from the SPS1a′

point.

Therefore, we relax the constraint of strict diagonality and consider instead

GUT-scale Yukawa matrices with five texture zeroes which are known to be com-

pletely unphysical as they cannot induce the CKM matrix (Fritzsch and Xing 2000).

In fact, this kind of textures has recently been found to arise from heterotic string

(Braun et al. 2006) when the low-energy theory is constrained to be minimal su-

persymmetric model (Braun et al. 2005, Bouchard et al. 2006). Consequently, we

take Yukawas at Q = MGUT to be
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Yu =




0 9.249 10−5 1.428 10−3

1.307 10−3 0 0

0.4675 0 0




Yd =




0 9.0 10−5 1.3 10−3

1.42 10−3 0 0

0.047 0 0


 (5.29)

with no flavor violation in the lepton sector: Ye = diag. (1.9 10−5, 0.004, 0.071).

Both Yu and Yd are endowed with five texture zeroes, and they precisely conform

to the structures found in effective theories coming from the heterotic string (Braun

et al. 2006). Besides, though left unspecified in (Braun et al. 2006), we take

sfermion mass-squareds strictly flavor-diagonal as in Sec. 4.2.1, and let YA
e obey

(5.6). For trilinear couplings pertaining to squark sector we take

YA
u (0) =




0 0 0

0 −30.469 −74.029

0 −74.029 −97.406




YA
d (0) =




0 0 0

0 −25.241 −68.185

0 −67.545 −63.990


 (5.30)

both measured in GeV. These trilinear couplings do not obey (5.6); they

are given completely independent flavor structures, in particular, they exhibit O(1)

mixing between second and third generations. The first generation of squarks is

decoupled from the rest completely. Two-loop RG running down to Q = Mweak

modifies GUT-scale textures (5.30) to give

YA
u =




0 −0.157 −2.426

−1.326 −75.382 −183.335

−474.410 −126.247 −167.265




YA
d =




0 −0.231 −3.341

−3.114 −78.521 −212.328

−103.062 −205.742 −193.530


 (5.31)
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both measured in GeV. The texture zeroes in (5.30) are seen to elevated to

small yet nonzero values via RG running. The squark soft mass-squareds, on the

other hand, exhibit the following flavor structures at Mweak = 1 TeV:

m2
Q = (560.63 GeV)2




0.936 −0.029 −0.036

−0.029 1.051 −0.049

−0.036 −0.049 1.012




m2
U = (523.88 GeV)2




1.155 −3.1 10−4 −2.9 10−4

−3.1 10−4 1.107 −5.5 10−2

−2.9 10−4 −5.5 10−2 0.738




m2
D = (548.52 GeV)2




1.043 −3.72 10−4 −3.54 10−4

−3.72 10−4 0.997 −5.322 10−2

−3.54 10−4 −5.322 10−2 0.960


 (5.32)

where off-diagonal entries are seen to be hierarchically small so that contri-

butions to Yu,d
eff from squark soft mass-squareds are expected to be rather small.

The use of Yukawas, trilinear couplings and squark mass-squareds, all

rescaled to Mweak = 1 TeV via RG running, give rise to modifications in Yukawa cou-

plings after squarks being integrated out. In fact, the CKM matrix V tree
CKM obtained

from Yu,d(Mweak) and V corr
CKM obtained from Yu,d

eff compare as:

|V tree
CKM | |V corr

CKM | =




0.9999 0.9751 0.0044 0.2216 0.0 0.0079

0.0044 0.2218 0.9999 0.9742 0.0 0.0412

0.0 0.0014 0.0 0.0419 1.0 0.99912




(5.33)

where left (right) window of in (i, j)-th entry refers to |V tree
CKM(i, j)| (

|V corr
CKM(i, j)|). It is clear that V tree

CKM by no means qualifies to be a realistic CKM

matrix: |V tree
CKM(i, j)| = 0 for (i, j) = (1, 3), (3, 1), (2, 3), (3, 2); moreover, Cabibbo

angle is predicted to be one order of magnitude smaller. In addition, its diagonal

elements turn out to be well outside the experimental limits. However, once su-

persymmetric threshold corrections are included certain entries are found to attain

their experimentally preferred ranges. Indeed, |V tree
CKM(1, 1)| and |V tree

CKM(3, 1)| fall
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right at their upper bounds, and |V tree
CKM(1, 3)| far exceeds the experimental bound.

The predictions for these entries are not good enough; they need to be correctly

predicted by further arrangements of the GUT-scale textures. Nevertheless, for the

main purpose of illustrating how threshold corrections influence flavor structures at

the IR end, the results above are good enough for what has to be shown since all

other entries turn out to be in rather good agreement with experimental bounds.

The case study illustrated here shows that, even unphysical Yukawa textures with

five texture zeroes, can lead to acceptable CKM matrix predictions once supersym-

metric threshold corrections are incorporated into Yukawa couplings.

The corrected Yukawa couplings lead to the following quark mass spectrum:

Mu(Mweak) = diag. (0.168, 0.93, 151.6)

Md(Mweak) = diag. (0.0325, 0.0711, 2.31) (5.34)

all measured in GeV. These predictions are not violatively outside the experimental

limits, except for the up quark mass. A rehabilitated choice for the GUT-scale

textures (5.29) should lead to a fully consistent prediction for CKM matrix (with

much better precision than in, especially the (1, 3), (3, 1) entries of (5.33) above)

together with precise predictions for quark masses (modulo sizeable QCD corrections

while running from Q = Mweak down to hadronic scale).
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CHAPTER 6

CONCLUSION

The theoretical framework called supersymmetry has already had a consid-

erable impact on the development of theoretical physics, in spite of not having been

discovered yet. A basic knowledge of supersymmetry is now considered to be an

indispensable part of the contemporary high-energy physics. This master of science

thesis is meant to be a means of gaining such a basic insight. We have here tried to

give a concise and thorough survey of the mathematical and physical foundations of

supersymmetry and its phenemonology, as well as giving some familiarity with the

most common concepts which appear in the literature. In order to make the work

comprehensible for readers not familiar with physics beyond relativistic quantum

mechanics and basic quantum field theory, we have also provided, basic notation

and other auxiliaries in the body and appendices of the thesis.

The main novelty in this work is the material presented in Chapter V where

we discussed effects of supersymmetric threshold corrections on Higgs boson cou-

plings to quarks. The effective theory below the SUSY breaking scaleMSUSY consists

of a modified Higgs sector; in particular, the tree level Yukawa couplings receive im-

portant corrections from sparticle loops. In contrast to the minimal flavor violation

scheme, the Yukawa couplings acquire large corrections from those of the heavier

ones. Unlike the light quarks, the top and bottom Yukawas remain stuck to their

Minimal Flavor violation (MFV) values to a good approximation. Therefore, the

SUSY flavor violation sources mainly influence the light sector whereby modifying

several processes they participate. These corrections are important even at low

tan β. The FCNC processes are contributed by both the sparticle loops and Higgs

exchange amplitudes. The constraints on various mass insertions can be satisfied by

a partial cancellation between these two contributions if MSUSY is close to the weak

scale. Therefore, existing bounds on various mass insertions overlook the potentially

important contributions coming from Higgs exchange. In this sense, what is done in

this thesis work opens up a new avenue for phenomenology of the supersymmetric

models.



The material contained in Chapter V implies that high-scale flavor struc-

tures (stemming from strings or supergravity) which may be classified viable may

be completely disqualified once SUSY threshold corrections are included. This we

have shown in Chapter V by analyzing CKM-ruled, Hierarchical and Democratic

textures which exhibit good agreement with data in the absence of threshold cor-

rections. However, once such corrections are included we end up with a completely

unacceptable correction for various entries of the CKM matrix. Thus, it is impor-

tant to take into account such corrections while contrasting high-scale textures with

experiment.

Apart from thes, we have presented an opposite example of the effects of

threshold corrections. Indeed, in general, textures with 5 texture zeroes are known to

be completely incapable of producing low-energy data, the CKM matrix. However,

we have shown that a recently advocated string model with 5 texture zeroes turn

out to show good agreement with experiment once SUSY threshold corrections are

included. This shows that, the existing sole flavor matrix, the CKM matrix, may

originate at least partially from soft SUSY breaking sector.

The main conclusion of this thesis work is that integration of superpartners

near the TeV scale out of the spectrum gives rise to, in the presence of tree-level

flavor violation in Yukawa and soft-breaking sectors of the theory, a number of

phenomena:

• Down quark Yukawa couplings (to a lesser extent those of the up type quarks)

receive large radiative corrections influencing, among other things, the Higgs

branching into various quarks. This effect can be directly observed in experi-

ments within LHC.

• The effective, physical CKM matrix turns out to receive rather large correc-

tions from Higgs threshold corrections so that several string or supergravity

textures classified viable in the literature turn out to disagree with experi-

ments.

• Several stringy textures which cannot generate a viable CKM matrix under

RGE flow turn exhibit good agreement with experiment after the inclusion of

SUSY threshold corrections.
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We thus conclude that radiative corrections in the presence of SUSY flavor

violation can give rise to a number of important phenomena testable at upcoming

experiments such as LHC and ILC.
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APPENDIX A

Notation and Conventions.

1.1. Relativistic Notation.

In this report we will adopt standard relativistic units, i.e.

h̄ = c = 1. (A.1)

A general contravariant and covariant four-vector will be denoted by

Aµ = (A0;A1, A2, A3) = (A0;A)

Aµ = (A0;−A1,−A2,−A3) = (A0;−A)



 . (A.2)

The compact “Feynman slash” notation

A/ = γµAµ, (A.3)

will be used. The metric tensor, gµν , which connects Aµ and Aµ, is defined by

gµν = diag (1,−1,−1,−1). (A.4)

Moreover, we will use the (relativistic) summation convention which states

that repeated Greek indices, µ, ν, ρ, σ, τ, are summed from 0 to 3 and latin indices

run from 1 to 3 unless specifically indicated to the contrary.

The Minkowski product (the four-product) will be denoted by AB and defined

as

AB ≡ AµBµ = A0B0 −AB (A.5)

Practical notation for the four-gradients, ∂µ and ∂µ, will be used

∂µ ≡ ∂

∂xµ
= (

∂

∂t
;−∇), (A.6)

∂µ ≡
∂

∂xµ
= (

∂

∂t
;∇). (A.7)
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The totally antisymmetric Levi-Civita tensors in three and four dimensions

are respectively defined by

εijk =





+1 , for even permutations of 123

−1 , for odd permutations

0 , otherwise,

(A.8)

εµνρσ =





+1 , for even permutations of 0123

−1 , for odd permutations

0 , otherwise,

(A.9)

where

εijk = εijk, (A.10)

εµνρσ = −εµνρσ. (A.11)

1.2. Pauli Matrices.

The well known Pauli matrices are defined by

σ1 =


 0 1

1 0


 , σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1


 , (A.12)

and satisfy the commutator relation

[σi, σj] = 2iεijkσk, i, j, k = 1, 2, 3.

From this definition it is evident that

(σi)† = σi, i = 1, 2, 3, (A.13)

(σi)2 = 1, (A.14)

Tr(σi) = 0. (A.15)

For later use, we also introduce1

σ0 =


 1 0

0 1


 , (A.16)

1Note that different signs are used in the literature for the definition of this quantity.
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and a useful arrangement of these matrices is

σµ = (σ0 ; σσ) = (σ0 ; σ1, σ2, σ3).

The index structure of the σ-matrices is given by

σµ = [σµαα̇]. (A.17)

We now introduce some “Pauli related” matrices defined by

σ̄µ α̇α ≡ σµ αα̇ = εα̇β̇εαβσµ
ββ̇
, (A.18)

where the “metrics” ε and ε̄ have been used. By direct computations one can

establish the following relations

σ̄0 = σ0 (A.19)

σ̄i = −σi, i = 1, 2, 3. (A.20)

Moreover, the following relations are true

σµαα̇σ̄
β̇β
µ = 2 δ βα δ

β̇
α̇ (A.21)

Tr(σµσ̄ν) = 2gµν (A.22)

(σµσ̄ν + σν σ̄µ) βα = 2 gµνδ βα (A.23)

(σ̄µσν + σ̄νσµ)α̇
β̇

= 2 gµνδα̇
β̇

(A.24)

(σµσ̄νσρ + σρσ̄νσµ) = 2 (gµνσρ + gνρσµ − gµρσν) (A.25)

(σ̄µσν σ̄ρ + σ̄ρσν σ̄µ) = 2 (gµν σ̄ρ + gνρσ̄µ − gµρσ̄ν) (A.26)

Tr(σµσ̄νσρσ̄σ) = 2 (gµνgρσ + gµσgνρ − gµρgνσ − iεµνρσ). (A.27)

Most of the above relations are easily proved by direct computations. Besides,

Müller-Kirsten and Wiedemann, have proved most of them, and in particular

eq. (A.27) which is the most difficult one.

Anti-symmetric matrices σµν and σ̄µν are defined by

σµν =
i

4
(σµσ̄ν − σν σ̄µ), (A.28)

σ̄µν =
i

4
(σ̄µσν − σ̄νσµ). (A.29)
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By utilizing the index structure of the σ-matrices, it is easily seen that σµν and σ̄µν

must have the index structure σµν = [(σµν) βα ] and σ̄µν = [(σ̄µν)β̇α̇]. In fact are σµν

and σ̄µν the generators of SL(2, C) in the spinor representations ( 1
2
, 0) and (0, 1

2
)

respectively. The proofs together with the establishment of the below formulae can

be found in ( 3.39),(Ramond 1990):

σµν † = −σ̄µν , (A.30)

σµν =
1

2i
εµνρσσρσ, (A.31)

σ̄µν = − 1

2i
εµνρσσ̄ρσ, (A.32)

Tr(σµν) = Tr(σ̄µν) = 0 (A.33)

Tr(σµνσρσ) =
1

2
(gµρgνσ − gµσgνρ) +

i

2
εµνρσ, (A.34)

Tr(σ̄µν σ̄ρσ) =
1

2
(gµρgνσ − gµσgνρ)− i

2
εµνρσ. (A.35)

1.3. Dirac Matrices.

The Dirac γ-matices are defined by the anticommutation (Clifford) relations

{γµ, γν} = 2gµν . (A.36)

From the four γ-matrices above, it is possible to define a “fifth γ-matrix” by

γ5 ≡ γ5 ≡ iγ0γ1γ2γ3(A.37)

It possesses the following properties which follows easily from the definitions (A.36)

and (A.37)

{γ5, γµ} = 0, (A.38)

(γ5)2 = 1. (A.39)

We will now state three explicit representations of the γ-matrices, namely the

so-called Dirac representation, the Majorana representation, and finally the Chiral

representation.
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1.3.1. Representations

The lowest non-trivial representation of these matrices is of dimension four.

and we will concentrate on this represntation. From now on, we will assume that a

four dimensional representation is used.

1.3.1.1. The Dirac Representation or Canonical Basis.

In this particular representation the γ-matrices read

γ0 =


 1 0

0 −1


 , (A.40)

γi =


 0 σi

σ̄i 0


 , i = 1, 2, 3, (A.41)

γ5 =


 0 σ0

σ̄0 0


 , (A.42)

where 1 denotes the 2 × 2 identity matrix and σµ and σ̄µ are the Pauli matrices

defined in the previous section.

1.3.1.2. The Majorana Representation.

In this representation all γ-matricrs are pure imaginary and have the explicit

form:

γ0 =


 0 σ2

−σ̄2 0


 , (A.43)

γ1 =


 iσ3 0

0 iσ3


 , (A.44)

γ2 =


 0 −σ2

−σ̄2 0


 , (A.45)

γ3 =


 −iσ

1 0

0 iσ1


 , (A.46)
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and finally

γ5 =


 σ2 0

0 −σ2


 . (A.47)

1.3.1.3. The Chiral representation or Weyl Basis.

This basis is of particular interest to persons doing SUSY. In this represen-

tation the γ-matrices take on the explicite form

γµ =


 0 σµ

σ̄µ 0


 , (A.48)

γ5 =


 −1 0

0 1


 . (A.49)
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APPENDIX B

Spontaneous Symmetry Breaking (SSB)

Let us consider a Lagrangian, which:

1. Is invariant under a group G of transformations.

2. Has a degenerate set of states with minimal energy, which transform under G

as the members of a given multiplet.

If one arbitrarily selects one of those states as the ground state of the system, one

says that the symmetry becomes spontaneously broken.

A well-known physical example is provided by a ferromagnet: although the

Hamiltonian is invariant under rotations, the ground state has the spins aligned into

some arbitrary direction. Moreover, any higher-energy state, built from the ground

state by a finite number of excitations, would share its anisotropy. In a Quantum

Field Theory, the ground state is the vacuum. Thus, the SSB mechanism will appear

in those cases where one has a symmetric Lagrangian, but a non-symmetric vacuum.

The existence of flat directions connecting the degenerate states of minimal

energy is a general property of the SSB of continuous symmetries. In a Quantum

Field Theory it implies the existence of massless degrees of freedom.

2.0.2. Goldstone theorem

Let us consider a complex scalar field φ(x), with Lagrangian

L = ∂µφ
†∂µφ− V (φ) , V (φ) = µ2φ†φ+ h

(
φ†φ

)2
. (B.1)

L is invariant under global phase transformations of the scalar field

φ(x) −→ φ′(x) ≡ exp {iθ}φ(x) . (B.2)

In order to have a ground state the potential should be bounded from below,

i.e. h > 0. For the quadratic piece there are two possibilities:
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|φ|

V(φ)

2
ϕ

|φ|
ϕ

1

V(φ)

Figure B.1: Shape of the scalar potential for µ2 > 0 (left) and µ2 < 0 (right).

In the second case there is a continuous set of degenerate vacua, corresponding to

different phases θ, connected through a massless field excitation ϕ2.

1. µ2 > 0: The potential has only the trivial minimum φ = 0. It describes a

massive scalar particle with mass µ and quartic coupling h.

2. µ2 < 0: The minimum is obtained for those field configurations satisfying

|φ0| =

√
−µ2

2h
≡ v√

2
> 0 , V (φ0) = −h

4
v4 . (B.3)

Owing to the U(1) phase-invariance of the Lagrangian, there is an infinite

number of degenerate states of minimum energy, φ0(x) = v√
2

exp {iθ}. By

choosing a particular solution, θ = 0 for example, as the ground state, the

symmetry gets spontaneously broken. If we parametrize the excitations over

the ground state as

φ(x) ≡ 1√
2

[v + ϕ1(x) + i ϕ2(x)] , (B.4)

where ϕ1 and ϕ2 are real fields, the potential takes the form

V (φ) = V (φ0)− µ2ϕ2
1 + h v ϕ1

(
ϕ2

1 + ϕ2
2

)
+
h

4

(
ϕ2

1 + ϕ2
2

)2
. (B.5)

Thus, ϕ1 describes a massive state of mass m2
ϕ1

= −2µ2, while ϕ2 is massless.

The first possibility (µ2 > 0) is just the usual situation with a single ground

state. The other case, with SSB, is more interesting. The appearance of a mass-

less particle when µ2 < 0 is easy to understand: the field ϕ2 describes excitations

around a flat direction in the potential, i.e. into states with the same energy as the
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chosen ground state. Since those excitations do not cost any energy, they obviously

correspond to a massless state.

The fact that there are massless excitations associated with the SSB mech-

anism is a completely general result, known as the Goldstone theorem (Goldstone

1961): if a Lagrangian is invariant under a continuous symmetry group G, but the

vacuum is only invariant under a subgroup H ⊂ G, then there must exist as many

massless spin–0 particles (Goldstone bosons) as broken generators (i.e. generators

of G which do not belong to H).
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APPENDIX C

Renormalization Group Equations

The two-loop beta functions for the superpotential parameters are:

d

dt
µ =

1

16π2
β(1)
µ +

1

(16π2)2
β(2)
µ (C.1)

d

dt
Yu,d,e =

1

16π2
β

(1)
Yu,d,e

+
1

(16π2)2
β

(2)
Yu,d,e

(C.2)

with:

β(1)
µ = µ

{
Tr(3YuY

†
u + 3YdY

†
d + YeY

†
e)− 3g2

2 −
3

5
g2
1

}

β(2)
µ = µ

{
− 3Tr(3YuY

†
uYuY

†
u + 3YdY

†
dYdY

†
d + 2YuY

†
dYdY

†
u + YeY

†
eYeY

†
e)

+
[
16g2

3 +
4

5
g2
1

]
Tr(YuY

†
u) +

[
16g2

3 −
2

5
g2
1

]
Tr(YdY

†
d) +

6

5
g2
1Tr(YeY

†
e)

+
15

2
g4
2 +

9

5
g2
1g2 +

207

50
g4
1

}

β
(1)
Yu

= Yu

{
3Tr(YuY

†
u) + 3Y†

uYu + Y†
dYd −

16

3
g2
3 − 3g2

2 −
13

15
g2
1

}

β
(2)
Yu

= Yu

{
− 3Tr(3YuY

†
uYuY

†
u + YuY

†
dYdY

†
u)−Y†

dYdTr(3YdY
†
d + YeY

†
e)

− 9Y†
uYuTr(YuY

†
u)− 4Y†

uYuY
†
uYu − 2Y†

dYdY
†
dYd − 2Y†

dYdY
†
uYu

+
[
16g2

3 +
4

5
g2
1

]
Tr(YuY

†
u) +

[
6g2

2 +
2

5
g2
1

]
Y†
uYu +

2

5
g2
1Y

†
dYd

− 16

9
g4
3 + 8g2

3g
2
2 +

136

45
g2
3g

2
1 +

15

2
g4
2 + g2

2g
2
1 +

2743

450
g4
1

}

β
(1)
Yd

= Yd

{
Tr(3YdY

†
d + YeY

†
e) + 3Y†

dYd + Y†
uYu −

16

3
g2
3 − 3g2

2 −
7

15
g2
1

}

β
(2)
Yd

= Yd

{
− 3Tr(3YdY

†
dYdY

†
d + YuY

†
dYdY

†
u + YeY

†
eYeY

†
e)
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− 3Y†
uYuTr(YuY

†
u)− 3Y†

dYdTr(3YdY
†
d + YeY

†
e)− 4Y†

dYdY
†
dYd

− 2Y†
uYuY

†
uYu − 2Y†

uYuY
†
dYd +

[
16g2

3 −
2

5
g2
1

]
Tr(YdY

†
d)

+
6

5
g2
1Tr(YeY

†
e) +

4

5
g2
1Y

†
uYu +

[
6g2

2 +
4

5
g2
1

]
Y†
dYd

− 16

9
g4
3 + 8g2

3g
2
2 +

8

9
g2
3g

2
1 +

15

2
g4
2 + g2

2g
2
1 +

287

90
g4
1

}

β
(1)
Ye

= Ye

{
Tr(3YdY

†
d + YeY

†
e) + 3Y†

eYe − 3g2
2 −

9

5
g2
1

}

β
(2)
Ye

= Ye

{
− 3Tr(3YdY

†
dYdY

†
d + YuY

†
dYdY

†
u + YeY

†
eYeY

†
e)

− 3Y†
eYeTr(3YdY

†
d + YeY

†
e)− 4Y†

eYeY
†
eYe +

[
16g2

3 −
2

5
g2
1

]
Tr(YdY

†
d)

+
6

5
g2
1Tr(YeY

†
e) + 6g2

2Y
†
eYe +

15

2
g4
2 +

9

5
g2
2g

2
1 +

27

2
g4
1

}

The above results for the MSSM have all appeared before. Now we apply our

results of arriving at the two-loop beta functions for the soft-breaking trilinear scalar

couplings:

d

dt
hu,d,e =

1

16π2
β

(1)
hu,d,e

+
1

(16π2)2
β

(2)
hu,d,e

(C.3)

β
(1)
hu

= hu

{
3Tr(YuY

†
u) + 5Y†

uYu + Y†
dYd −

16

3
g2
3 − 3g2

2 −
13

15
g2
1

}

+Yu

{
6Tr(huY

†
u) + 4Y†

uhu + 2Y†
dhd +

32

3
g2
3M3 + 6g2

2M2 +
26

15
g2
1M1

}

β
(2)
hu

= hu

{
− 3Tr(3YuY

†
uYuY

†
u + YuY

†
dYdY

†
u)−Y†

dYdTr(3YdY
†
d + YeY

†
e)

− 15Y†
uYuTr(YuY

†
u)− 6Y†

uYuY
†
uYu − 2Y†

dYdY
†
dYd − 4Y†

dYdY
†
uYu

+
[
16g2

3 +
4

5
g2
1

]
Tr(YuY

†
u) + 12g2

2Y
†
uYu +

2

5
g2
1Y

†
dYd

− 16

9
g4
3 + 8g2

3g
2
2 +

136

45
g2
3g

2
1 +

15

2
g4
2 + g2

2g
2
1 +

2743

450
g4
1

}

+Yu

{
− 6Tr(6huY

†
uYuY

†
u + huY

†
dYdY

†
u + hdY

†
uYuY

†
d)

− 18Y†
uYuTr(huY

†
u)−Y†

dYdTr(6hdY
†
d + 2heY

†
e)− 12Y†

uhuTr(YuY
†
u)

−Y†
dhdTr(6YdY

†
d + 2YeY

†
e)− 6Y†

uYuY
†
uhu − 8Y†

uhuY
†
uYu
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− 4Y†
dYdY

†
dhd − 4Y†

dhdY
†
dYd − 2Y†

dYdY
†
uhu − 4Y†

dhdY
†
uYu

+
[
32g2

3 +
8

5
g2
1

]
Tr(huY

†
u) +

[
6g2

2 +
6

5
g2
1

]
Y†
uhu +

4

5
g2
1Y

†
dhd

−
[
32g2

3M3 +
8

5
g2
1M1

]
Tr(YuY

†
u)−

[
12g2

2M2 +
4

5
g2
1M1

]
Y†
uYu

− 4

5
g2
1M1Y

†
dYd +

64

9
g4
3M3 − 16g2

3g
2
2(M3 +M2)−

272

45
g2
3g

2
1(M3 +M1)

− 30g4
2M2 − 2g2

2g
2
1(M2 +M1)−

5486

225
g4
1M1

}

β
(1)
hd

= hd

{
Tr(3YdY

†
d + YeY

†
e) + 5Y†

dYd + Y†
uYu −

16

3
g2
3 − 3g2

2 −
7

15
g2
1

}

+Yd

{
Tr(6hdY

†
d + 2heY

†
e) + 4Y†

dhd + 2Y†
uhu +

32

3
g2
3M3 + 6g2

2M2 +
14

15
g2
1M1

}

β
(2)
hd

= hd

{
− 3Tr(3YdY

†
dYdY

†
d + YuY

†
dYdY

†
u + YeY

†
eYeY

†
e)

− 3Y†
uYuTr(YuY

†
u)− 5Y†

dYdTr(3YdY
†
d + YeY

†
e)− 6Y†

dYdY
†
dYd

− 2Y†
uYuY

†
uYu − 4Y†

uYuY
†
dYd +

[
16g2

3 −
2

5
g2
1

]
Tr(YdY

†
d)

+
6

5
g2
1Tr(YeY

†
e) +

4

5
g2
1Y

†
uYu +

[
12g2

2 +
6

5
g2
1

]
Y†
dYd

− 16

9
g4
3 + 8g2

3g
2
2 +

8

9
g2
3g

2
1 +

15

2
g4
2 + g2

2g
2
1 +

287

90
g4
1

}

+Yd

{
− 6Tr(6hdY

†
dYdY

†
d + huY

†
dYdY

†
u + hdY

†
uYuY

†
d + 2heY

†
eYeY

†
e)

− 6Y†
uYuTr(huY

†
u)− 6Y†

dYdTr(3hdY
†
d + heY

†
e)

− 6Y†
uhuTr(YuY

†
u)− 4Y†

dhdTr(3YdY
†
d + YeY

†
e)− 6Y†

dYdY
†
dhd

− 8Y†
dhdY

†
dYd − 4Y†

uhuY
†
uYu − 4Y†

uYuY
†
uhu − 4Y†

uhuY
†
dYd

− 2Y†
uYuY

†
dhd +

[
32g2

3 −
4

5
g2
1

]
Tr(hdY

†
d) +

12

5
g2
1Tr(heY

†
e) +

8

5
g2
1Y

†
uhu

+
[
6g2

2 +
6

5
g2
1

]
Y†
dhd −

[
32g2

3M3 −
4

5
g2
1M1

]
Tr(YdY

†
d)−

12

5
g2
1M1Tr(YeY

†
e)

−
[
12g2

2M2 +
8

5
g2
1M1

]
Y†
dYd −

8

5
g2
1M1Y

†
uYu +

64

9
g4
3M3 − 16g2

3g
2
2(M3 +M2)

− 16

9
g2
3g

2
1(M3 +M1)− 30g4

2M2 − 2g2
2g

2
1(M2 +M1)−

574

45
g4
1M1

}
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β
(1)
he

= he

{
Tr(3YdY

†
d + YeY

†
e) + 5Y†

eYe − 3g2
2 −

9

5
g2
1

}

+Ye

{
Tr(6hdY

†
d + 2heY

†
e) + 4Y†

ehe + 6g2
2M2 +

18

5
g2
1M1

}

β
(2)
he

= he

{
− 3Tr(3YdY

†
dYdY

†
d + YuY

†
dYdY

†
u + YeY

†
eYeY

†
e)

− 5Y†
eYeTr(3YdY

†
d + YeY

†
e)− 6Y†

eYeY
†
eYe +

[
16g2

3 −
2

5
g2
1

]
Tr(YdY

†
d)

+
6

5
g2
1Tr(YeY

†
e) +

[
12g2

2 −
6

5
g2
1

]
Y†
eYe +

15

2
g4
2 +

9

5
g2
2g

2
1 +

27

2
g4
1

}

+Ye

{
− 6Tr(6hdY

†
dYdY

†
d + huY

†
dYdY

†
u + hdY

†
uYuY

†
d + 2heY

†
eYeY

†
e)

− 4Y†
eheTr(3YdY

†
d + YeY

†
e)− 6Y†

eYeTr(3hdY
†
d + heY

†
e)

− 6Y†
eYeY

†
ehe − 8Y†

eheY
†
eYe

+
[
32g2

3 −
4

5
g2
1

]
Tr(hdY

†
d) +

12

5
g2
1Tr(heY

†
e) +

[
6g2

2 +
6

5
g2
1

]
Y†
ehe

−
[
32g2

3M3 −
4

5
g2
1M1

]
Tr(YdY

†
d)−

12

5
g2
1M1Tr(YeY

†
e)− 12g2

2M2Y
†
eYe

− 30g4
2M2 −

18

5
g2
2g

2
1(M1 +M2)− 54g4

1M1

}

d

dt
B =

1

16π2
β

(1)
B +

1

(16π2)2
β

(2)
B (C.4)

β
(1)
B = B

{
Tr(3YuY

†
u + 3YdY

†
d + YeY

†
e)− 3g2

2 −
3

5
g2
1

}
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+µ

{
Tr(6huY

†
u + 6hdY

†
d + 2heY

†
e) + 6g2

2M2 +
6

5
g2
1M1

}

β
(2)
B = B

{
− 3Tr(3YuY

†
uYuY

†
u + 3YdY

†
dYdY

†
d + 2YuY

†
dYdY

†
u + YeY

†
eYeY

†
e)

+
[
16g2

3 +
4

5
g2
1

]
Tr(YuY

†
u) +

[
16g2

3 −
2

5
g2
1

]
Tr(YdY

†
d) +

6

5
g2
1Tr(YeY

†
e)

+
15

2
g4
2 +

9

5
g2
1g

2
2 +

207

50
g4
1

}

+µ

{
−12 Tr(3huY

†
uYuY

†
u + 3hdY

†
dYdY

†
d + huY

†
dYdY

†
u + hdY

†
uYuY

†
d + heY

†
eYeY

†
e)

+
[
32g2

3 +
8

5
g2
1

]
Tr(huY

†
u) +

[
32g2

3 −
4

5
g2
1

]
Tr(hdY

†
d) +

12

5
g2
1Tr(heY

†
e)

−
[
32g2

3M3 +
8

5
g2
1M1

]
Tr(YuY

†
u)−

[
32g2

3M3 −
4

5
g2
1M1

]
Tr(YdY

†
d)

− 12

5
g2
1M1Tr(YeY

†
e)− 30g4

2M2 −
18

5
g2
1g

2
2(M1 +M2)−

414

25
g4
1M1

}
.

Finally, we turn to the β-functions for the scalar (mass)2 terms of the (m2)
j
i type

in the MSSM. It is convenient to define the quantities

S = m2
Hu
−m2

Hd
+ Tr[m2

Q −m2
L − 2m2

u + m2
d + m2

e] (C.5)

S ′ = Tr
[
−(3m2

Hu
+ m2

Q)Y†
uYu + 4Y†

um
2
uYu + (3m2

Hd
−m2

Q)Y†
dYd − 2Y†

dm
2
dYd

+ (m2
Hd

+ m2
L)Y†

eYe − 2Y†
em

2
eYe

]

+

[
3

2
g2
2 +

3

10
g2
1

] {
m2
Hu
−m2

Hd
− Tr(m2

L)
}

+

[
8

3
g2
3 +

3

2
g2
2 +

1

30
g2
1

]
Tr(m2

Q)

−
[
16

3
g2
3 +

16

15
g2
1

]
Tr(m2

u) +

[
8

3
g2
3 +

2

15
g2
1

]
Tr(m2

d) +
6

5
g2
1Tr(m2

e)
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σ1 =
1

5
g2
1

{
3(m2

Hu
+m2

Hd
) + Tr[m2

Q + 3m2
L + 8m2

u + 2m2
d + 6m2

e]
}

σ2 = g2
2

{
m2
Hu

+m2
Hd

+ Tr[3m2
Q + m2

L]
}

σ3 = g2
3Tr[2m2

Q + m2
u + m2

d] .

d

dt
m2 =

1

16π2
β

(1)

m2 +
1

(16π2)2
β

(2)

m2 (C.6)

β
(1)

m2

Hu

= 6Tr[(m2
Hu

+ m2
Q)Y†

uYu + Y†
um

2
uYu + h†

uhu]

− 6g2
2|M2|2 −

6

5
g2
1|M1|2 +

3

5
g2
1S

β
(2)

m2

Hu

= − 6Tr

[
6(m2

Hu
+ m2

Q)Y†
uYuY

†
uYu + 6Y†

um
2
uYuY

†
uYu

+ (m2
Hu

+m2
Hd

+ m2
Q)Y†

uYuY
†
dYd + Y†

um
2
uYuY

†
dYd

+ Y†
uYum

2
QY†

dYd + Y†
uYuY

†
dm

2
dYd + 6h†

uhuY
†
uYu + 6h†

uYuY
†
uhu

+ h†
dhdY

†
uYu + Y†

dYdh
†
uhu + h†

dYdY
†
uhu + Y†

dhdh
†
uYu

]

+
[
32g2

3 +
8

5
g2
1

]
Tr[(m2

Hu
+ m2

Q)Y†
uYu + Y†

um
2
uYu + h†

uhu]

+ 32g2
3

{
2|M3|2Tr[Y†

uYu]−M ∗
3 Tr[Y†

uhu]−M3Tr[h†
uYu]

}

+
8

5
g2
1

{
2|M1|2Tr[Y†

uYu]−M ∗
1 Tr[Y†

uhu]−M1Tr[h†
uYu]

}
+

6

5
g2
1S ′

+ 33g4
2|M2|2 +

18

5
g2
2g

2
1(|M2|2 + |M1|2 + Re[M1M

∗
2 ]) +

621

25
g4
1|M1|2

+ 3g2
2σ2 +

3

5
g2
1σ1
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β
(1)

m2

Hd

= Tr
[
6(m2

Hd
+ m2

Q)Y†
dYd + 6Y†

dm
2
dYd + 2(m2

Hd
+ m2

L)Y†
eYe + 2Y†

em
2
eYe

+ 6h†
dhd + 2h†

ehe

]
− 6g2

2|M2|2 −
6

5
g2
1|M1|2 −

3

5
g2
1S

β
(2)

m2

Hd

= − 6Tr

[
6(m2

Hd
+ m2

Q)Y†
dYdY

†
dYd + 6Y†

dm
2
dYdY

†
dYd

+ (m2
Hu

+m2
Hd

+ m2
Q)Y†

uYuY
†
dYd + Y†

um
2
uYuY

†
dYd

+ Y†
uYum

2
QY†

dYd + Y†
uYuY

†
dm

2
dYd + 2(m2

Hd
+ m2

L)Y†
eYeY

†
eYe

+ 2Y†
em

2
eYeY

†
eYe + 6h†

dhdY
†
dYd + 6h†

dYdY
†
dhd + h†

uhuY
†
dYd

+ Y†
uYuh

†
dhd + h†

uYuY
†
dhd + Y†

uhuh
†
dYd + 2h†

eheY
†
eYe + 2h†

eYeY
†
ehe

]

+
[
32g2

3 −
4

5
g2
1

]
Tr[(m2

Hd
+ m2

Q)Y†
dYd + Y†

dm
2
dYd + h†

dhd]

+ 32g2
3

{
2|M3|2Tr[Y†

dYd]−M ∗
3 Tr[Y†

dhd]−M3Tr[h†
dYd]

}

− 4

5
g2
1

{
2|M1|2Tr[Y†

dYd]−M ∗
1 Tr[Y†

dhd]−M1Tr[h†
dYd]

}

+
12

5
g2
1

{
Tr[(m2

Hd
+ m2

L)Y†
eYe + Y†

em
2
eYe + h†

ehe] + 2|M1|2Tr[Y†
eYe]

−M1Tr[h†
eYe]−M ∗

1 Tr[Y†
ehe]

}
− 6

5
g2
1S ′ + 33g4

2|M2|2

+
18

5
g2
2g

2
1(|M2|2 + |M1|2 + Re[M1M

∗
2 ]) +

621

25
g4
1|M1|2

+ 3g2
2σ2 +

3

5
g2
1σ1

β
(1)

m2

Q

= (m2
Q + 2m2

Hu
)Y†

uYu + (m2
Q + 2m2

Hd
)Y†

dYd + [Y†
uYu + Y†

dYd]m
2
Q + 2Y†

um
2
uYu
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+ 2Y†
dm

2
dYd + 2h†

uhu + 2h†
dhd −

32

3
g2
3|M3|2 − 6g2

2|M2|2 −
2

15
g2
1|M1|2 +

1

5
g2
1S

β
(2)

m2

Q

= − (2m2
Q + 8m2

Hu
)Y†

uYuY
†
uYu − 4Y†

um
2
uYuY

†
uYu − 4Y†

uYum
2
QY†

uYu

− 4Y†
uYuY

†
um

2
uYu − 2Y†

uYuY
†
uYum

2
Q − (2m2

Q + 8m2
Hd

)Y†
dYdY

†
dYd

− 4Y†
dm

2
dYdY

†
dYd − 4Y†

dYdm
2
QY†

dYd − 4Y†
dYdY

†
dm

2
dYd − 2Y†

dYdY
†
dYdm

2
Q

−
[
(m2

Q + 4m2
Hu

)Y†
uYu + 2Y†

um
2
uYu + Y†

uYum
2
Q

]
Tr(3Y†

uYu)

−
[
(m2

Q + 4m2
Hd

)Y†
dYd + 2Y†

dm
2
dYd + Y†

dYdm
2
Q

]
Tr(3Y†

dYd + Y†
eYe)

− 6Y†
uYuTr(m2

QY†
uYu + Y†

um
2
uYu)

−Y†
dYdTr(6m2

QY†
dYd + 6Y†

dm
2
dYd + 2m2

LY
†
eYe + 2Y†

em
2
eYe)

− 4
{
Y†
uYuh

†
uhu + h†

uhuY
†
uYu + Y†

uhuh
†
uYu + h†

uYuY
†
uhu

}

− 4
{
Y†
dYdh

†
dhd + h†

dhdY
†
dYd + Y†

dhdh
†
dYd + h†

dYdY
†
dhd

}

− h†
uhuTr[6Y†

uYu]−Y†
uYuTr[6h†

uhu]− h†
uYuTr[6Y†

uhu]−Y†
uhuTr[6h†

uYu]

− h†
dhdTr[6Y†

dYd + 2Y†
eYe]−Y†

dYdTr[6h†
dhd + 2h†

ehe]

− h†
dYdTr[6Y†

dhd + 2Y†
ehe]−Y†

dhdTr[6h†
dYd + 2h†

eYe]

+
2

5
g2
1

{
(2m2

Q + 4m2
Hu

)Y†
uYu + 4Y†

um
2
uYu + 2Y†

uYum
2
Q + 4h†

uhu − 4M1h
†
uYu

− 4M∗
1Y

†
uhu + 8|M1|2Y†

uYu + (m2
Q + 2m2

Hd
)Y†

dYd + 2Y†
dm

2
dYd
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+ Y†
dYdm

2
Q + 2h†

dhd − 2M1h
†
dYd − 2M∗

1Y
†
dhd + 4|M1|2Y†

dYd

}

+
2

5
g2
1S ′ − 128

3
g4
3|M3|2 + 32g2

3g
2
2(|M3|2 + |M2|2 + Re[M2M

∗
3 ])

+
32

45
g2
3g

2
1(|M3|2 + |M1|2 + Re[M1M

∗
3 ]) + 33g4

2|M2|2

+
2

5
g2
2g

2
1(|M2|2 + |M1|2 + Re[M1M

∗
2 ]) +

199

75
g4
1|M1|2

+
16

3
g2
3σ3 + 3g2

2σ2 +
1

15
g2
1σ1

β
(1)

m2

L

= (m2
L + 2m2

Hd
)Y†

eYe + 2Y†
em

2
eYe + Y†

eYem
2
L + 2h†

ehe

− 6g2
2|M2|2 −

6

5
g2
1|M1|2 −

3

5
g2
1S

β
(2)

m2

L

= − (2m2
L + 8m2

Hd
)Y†

eYeY
†
eYe − 4Y†

em
2
eYeY

†
eYe − 4Y†

eYem
2
LY

†
eYe

− 4Y†
eYeY

†
em

2
eYe − 2Y†

eYeY
†
eYem

2
L

−
[
(m2

L + 4m2
Hd

)Y†
eYe + 2Y†

em
2
eYe + Y†

eYem
2
L

]
Tr(3Y†

dYd + Y†
eYe)

−Y†
eYeTr[6m2

QY†
dYd + 6Y†

dm
2
dYd + 2m2

LY
†
eYe + 2Y†

em
2
eYe]

− 4
{
Y†
eYeh

†
ehe + h†

eheY
†
eYe + Y†

eheh
†
eYe + h†

eYeY
†
ehe

}

− h†
eheTr[6Y†

dYd + 2Y†
eYe]−Y†

eYeTr[6h†
dhd + 2h†

ehe]

− h†
eYeTr[6Y†

dhd + 2Y†
ehe]−Y†

eheTr[6h†
dYd + 2h†

eYe]
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+
6

5
g2
1

{
(m2

L + 2m2
Hd

)Y†
eYe + 2Y†

em
2
eYe + Y†

eYem
2
L + 2h†

ehe

− 2M1h
†
eYe − 2M∗

1Y
†
ehe + 4|M1|2Y†

eYe

}
− 6

5
g2
1S ′

+ 33g4
2|M2|2 +

18

5
g2
2g

2
1(|M2|2 + |M1|2 + Re[M1M

∗
2 ]) +

621

25
g4
1|M1|2

+ 3g2
2σ2 +

3

5
g2
1σ1

β
(1)

m2
u

= (2m2
u + 4m2

Hu
)YuY

†
u + 4Yum

2
QY†

u + 2YuY
†
um

2
u + 4huh

†
u

− 32

3
g2
3|M3|2 −

32

15
g2
1|M1|2 −

4

5
g2
1S

β
(2)

m2
u

= − (2m2
u + 8m2

Hu
)YuY

†
uYuY

†
u − 4Yum

2
QY†

uYuY
†
u − 4YuY

†
um

2
uYuY

†
u

− 4YuY
†
uYum

2
QY†

u − 2YuY
†
uYuY

†
um

2
u − (2m2

u + 4m2
Hu

+ 4m2
Hd

)YuY
†
dYdY

†
u

− 4Yum
2
QY†

dYdY
†
u − 4YuY

†
dm

2
dYdY

†
u − 4YuY

†
dYdm

2
QY†

u − 2YuY
†
dYdY

†
um

2
u

−
[
(m2

u + 4m2
Hu

)YuY
†
u + 2Yum

2
QY†

u + YuY
†
um

2
u

]
Tr[6Y†

uYu]

− 12YuY
†
uTr[m2

QY†
uYu + Y†

um
2
uYu]

− 4
{
huh

†
uYuY

†
u + YuY

†
uhuh

†
u + huY

†
uYuh

†
u + Yuh

†
uhuY

†
u

}

− 4
{
huh

†
dYdY

†
u + YuY

†
dhdh

†
u + huY

†
dYdh

†
u + Yuh

†
dhdY

†
u

}
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− 12
{
huh

†
uTr[Y†

uYu] + YuY
†
uTr[h†

uhu] + huY
†
uTr[h†

uYu] + Yuh
†
uTr[Y†

uhu]
}

+
[
6g2

2 −
2

5
g2
1

]{
(m2

u + 2m2
Hu

)YuY
†
u + 2Yum

2
QY†

u + YuY
†
um

2
u + 2huh

†
u

}

+ 12g2
2

{
2|M2|2YuY

†
u −M∗

2huY
†
u −M2Yuh

†
u

}

− 4

5
g2
1

{
2|M1|2YuY

†
u −M∗

1huY
†
u −M1Yuh

†
u

}
− 8

5
g2
1S ′

− 128

3
g4
3|M3|2 +

512

45
g2
3g

2
1(|M3|2 + |M1|2 + Re[M1M

∗
3 ]) +

3424

75
g4
1|M1|2

+
16

3
g2
3σ3 +

16

15
g2
1σ1

β
(1)

m2

d

= (2m2
d + 4m2

Hd
)YdY

†
d + 4Ydm

2
QY†

d + 2YdY
†
dm

2
d + 4hdh
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APPENDIX D

Radiative Corrections
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(D.2)

for the off–diagonal elements. These expressions (D.1) and (D.2), with

i, j = 1, 2, 3, complete the radiative corrections to down quark interactions with

112



Higgs fields, Repeating a similar analysis for the up quark sector, one finds
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ũi

L
, |µ|2

)

Γuii =
2αs
3π

(Yu)ii µ
?M?

g I3

(
M2

ũi
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ũi
R
, |Mg|2

) (
δuij

)
LL

+
2αs
3π

(Yu)jj µ
?M?

gM
2
Ũ
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