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ABSTRACT 
 

DESIGN AND PROTOTYPING OF A MECHATRONIC SYSTEM AS A 

DRAG REDUCTION DEVICE FOR BUSSES 

 

 In this thesis study it is intended to design a mechatronic device which will act 

as a drag reducer for busses. The drag reduction device will be a self operating system, 

which will be attached onto the front side of the bus. Since the device will operate at the 

front of the vehicle, it will reduce the front drag force. The mechatronic drag reduction 

device will have two states; these are the open and close states. Therefore, the device 

will operate only when it is necessary to operate. That is, normally when the drag force 

experienced by the vehicle is not at important levels, then the device will stay closed. In 

the closed position the device will occupy the least space so that it does not cause any 

difficulties for the driver. However, when the drag force increases, then the device 

opens and builds itself on the front of the vehicle. The basic idea behind this device is to 

produce an extra volume of mass at the front of the bus, which will change the incoming 

airflow, so that the least resistance is experienced by the bus. By reducing the drag force 

a corresponding amount of fuel saving could be achieved.  

 The mechatronic device design is made by parametric solid modeling software 

SolidWorks. The shape of the mechatronic device and the mechanism design will all be 

made in computer environment. The fluid flow analyses will be also made by using an 

Engineering fluid dynamics software program called Cosmos FloWorks. The most 

efficient shape for the mechatronic drag reduction device will be designed by the 

computer software.   

 In the scope of this project a small low-speed wind tunnel will be constructed. 

Besides the virtual analyses made with computer software, real flow tests will be carried 

out by using a 1:50 scale model bus, attached with a model of the mechatronic drag 

reduction device. In the wind tunnel tests, the relative reduction in drag forces will be 

investigated. 
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ÖZET 

 

OTOBÜSLER �Ç�N TEPK� KUVVET�N� AZALTACAK MEKATRON�K 

S�STEM TASARIMI VE PROTOT�P �MALATI 

 

 Bu tez çalı�masının amacı otobüsler için rüzgar tepki kuvvetini azaltacak 

mekatronik bir burun tasarımıdır. Tasarlanacak olan burun kendin kendine çalı�abilme 

fonksiyonuna sahip akıllı bir sistem olacaktır. Mekatronik burun otobüsün on tarafına 

monte edilecektir ve bu alanda olu�an tepki kuvvetini azaltmaya yönelik çalı�acaktır. 

Sistemin iki konumu olacaktır, bunlar açık ve kapalı konumlarıdır. E�er otobüse etkiyen 

direnç kuvveti az ise o zaman sistemin açık olmasına gerek yoktur ve kapalı duracaktır. 

Kapalı halde iken sistem en az hacmi kaplayacak �ekilde ve otobüsün sürü�ünde bir 

engel te�kil etmeyecek �ekilde bir hal alacaktır. Ancak otobüse etkiyen direnç kuvveti 

arttı�ı zaman, mekatronik burun açılacak ve otobüsün ön tarafında belli bir �ekli 

olu�turacaktır. Burun sahip oldu�u �ekil itibariyle otobüse çarpan hava akımının yönünü 

de�i�tirecektir ve böylelikle havanın kar�ı koyma kuvvetini azaltacaktır.  

 Mekatronik burnun tasarımı bir parametrik katı modelleme programı olan 

SolidWorks kullanılarak yapılacaktır. Her bir parçanın tasarımı ve bütün olarak 

mekanizmanın çalı�ması bu sayede belirlenecektir. Sistemin simülasyonu ise bir 

akı�kanlar mekani�i simülasyon programı olan Cosmos FloWorks kullanılarak 

yapılacaktır. Bu �ekilde otobüse etkiyen direnç kuvvetini en etkili �ekilde azaltan burun 

�ekli belirlenecektir.  

 Bu tez projesi çerçevesinde ufak çaplı bir dü�ük hızlı rüzgar tüneli imal 

edilecektir. Bilgisayarda yapılan analizlerin yanı sıra bu tünel kullanılarak 1:50 oranında 

küçültülmü� bir otobüs modeli üzerinde mekatronik burnun testi yapılacaktır.  
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CHAPTER 1 

 

INTRODUCTION 

 

 This research intends to develop a mechatronic device which will serve as a drag 

reducer. The device is designed for a typical commercial travel bus however; the 

proposed methods and the device with slight modifications can be applied to other 

heavy duty vehicles. The device focuses on the front drag force reduction. It consists of 

mechanical and electronical parts. Due to the mechanical parts, which together make up 

a mechanical system, the device will be able to open and close itself. That is, the device 

will have two states, ON and OFF. From this point of view it can be said that the device 

is an active drag reduction element. The operation principle of the device is to simply 

alter the shape of the vehicle in order to affect the airflow. By providing a more 

streamlined flow and preventing pressure increases, the total drag force affecting the 

vehicle will be reduced. Because this device utilizes an electronic logic circuit, the 

device itself will be able to decide whether to open or close. In other words, if the 

vehicle experiences a high drag force, the device will open in order to reduce it.  

 In the following chapter; basic knowledge on aerodynamic drag force is given 

and then related background information on the drag reduction concept is presented. 

Later the design and simulation of the mechatronic drag reduction device in a computer 

environment is given. Afterwards; the mechanical and electronical part designs are 

presented. Finally; conclusions of the achieved results and future research opportunities 

are proposed. 

 

1.1. The Definition of Drag Force 

 

 The term “Drag Force” can be broadly defined as the mechanical force which is 

created when a solid object moves inside a fluid. The drag force is a vectoral force, 

which means that it has both a magnitude and a direction. When an object moves 

through a medium, whether liquid or gas, the drag force is acting in the direction 

opposite to the direction of motion. In other words, the drag force is a resistive force, 

which prevents or makes the motion difficult. Therefore gaining insight into the nature 
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of drag force is very important subject in vehicle design. No matter if it is a ground 

vehicle like automobiles and trucks, or a sea vehicle like ships and boats, or air vehicles 

like planes and jet fighters; the existence of drag force applies to almost any kind of 

moving vehicle.  

 Drag force can be roughly divided into four major components. These are the 

Pressure (Form) drag, the Skin (Friction) drag, the Induced drag and the Parasite drag.  

 

1.1.1. The Pressure (Form) Drag  

 

 The Pressure drag, or also called as Form drag, is a shape depending drag force. 

This means that if the object has a quite complex shape with sharp corners and quick 

directional changes in the body contour, then the fluid flowing around it can not adapt 

itself to these geometrical changes and starts to separate from the surface of the object. 

When this happens the local properties of the air, like velocity and pressure will vary 

around the object. This varying pressure distribution will change the momentum of the 

gas molecules and due to the momentum change a force will be produced. This force is 

called as the Pressure Drag Force. Pressure drag is mostly occurring at the front and 

back of the vehicle (Fig. 1.1). At the front of the vehicle a pressure increase is observed, 

which is called as the Fore body Drag or Front Drag. Whereas at the back of the 

vehicle a pressure decrease, which is mostly the case, is called as the Base Drag. 

 

 
Figure 1.1. Sources of drag for a semi-trailer 

 (Source: Web_1,2005) 
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1.1.2. The Skin (Friction) Drag 

 

 As the name already implies, the skin drag is related with the surface properties 

of the object. Technically, when the body moves inside the fluid, it has a boundary layer 

containing fluid particles moving at the same speed. Since the surrounding fluid is 

stationary, some amount of energy is required to accelerate the fluid particles in contact 

with the object surface. This required energy depends on the physical properties 

between the fluid and the object. For example, for an object which has a very smooth 

surface with very low friction constant, the generated skin friction drag force will be 

low. However, for an object with a rough surface and high friction constant, the 

occurring drag force will be much higher. Therefore, almost any type of vehicle, 

including airplanes and ships, is specially coated with certain chemicals in order to 

reduce the skin friction drag force.  

 

1.1.3. The Induced Drag  
 

 Similar to the pressure drag force, the induced drag force is also a shape related 

drag force. The difference of the object’s shape causes the flow to have different paths 

above and below the object, resulting in a pressure difference. The induced drag force is 

produced this way, which is also called as the drag force due to lift. This type of drag 

force is especially important in the wing design for air planes. However, this type of 

drag force also becomes critical for F1 racing cars, where the induced force can become 

large enough to lift the vehicle.  

 

1.1.4. The Parasite Drag 

 

 Apart from the other drag components, the parasite drag is not a shape related 

drag force. Mainly the parasite drag is the collection of all other drag sources caused by 

any apparatus or system belonging to the object. Such as the drag forces produced by 

wing mirrors, windshield sweepers, wheels, ventilation and all other things can be 

examples of parasite drag.  
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Table 1.1. Drag levels for commercial vehicles and busses  

(Source: Web_2, 2005) 

 Commercial Vehicles Busses 

Skin Friction 5% 7% 

Fore Body 20% 25% 

Underbody (Induced) 50% 30% 

Base 25% 38% 

  

 

1.2. The Determination of Drag Force 

 

 All the different components of drag force combine and build a total drag force 

which is affecting the object. There exists a mathematical expression which is used to 

determine the drag force acting on a moving object. This is called as the Drag Force 

Formula and can be expressed as below.   

 

                                               DD CAVF ××××= ρ2

2
1

                                             (1.1)                

 

 As it can be clearly seen from equation (1.1), the overall drag force (FD), 

depends on several parameters. It is directly proportional with the square of the objects 

speed (V2). This shows how sensitive the drag force is to an increase in speed. The drag 

force is also directly proportional to the largest cross sectional area of the object (A), 

along the direction of motion. Two objects with identical shape but of different size 

would experience different drag forces. The one with the larger area would experience 

more drag force then the smaller one. The drag force is also directly proportional with 

the viscosity of the fluid (�), that the object is moving in. That is, the more viscous the 

fluid, the more force it exerts on the object. If two identical objects would move at the 

same speed, one in water and one in air, the one moving in water would be subject to a 

larger drag force. Maybe the most important parameter that the drag force directly 

depends on is the Coefficient of drag (CD). The higher the value of coefficient of drag, 

then the higher drag forces the object experiences.  
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 The coefficient of drag value is a specific parameter for each different type of 

object and shape (Table 1.2). Since there is not much chance to reduce the drag force by 

changing the first three parameters of equation (1.1), the best way left is to reduce the 

coefficient of drag value of the objects. Therefore, the common goal for vehicle 

designers is to keep the coefficient of drag value for the new designs as low as possible 

in order to reduce the drag force.  

 

Table 1.2. CD values for different objects  

(Source: Web_2, 2005) 

Type of  Object Coefficient of Drag, CD 

Rough Sphere  0.40 

Smooth Sphere  0.10 

Hollow semi-sphere opposite stream 1.42 

Hollow semi-sphere facing stream 0.38 

Hollow semi-cylinder opposite stream 1.20 

Hollow semi-cylinder facing stream 2.30 

Open Wheel, rotating, h/D=0.28 0.58 

Squared flat plate at 90° 1.17 

Sports Car 0.3 -0.4 

Economy Car 0.4 -0.5 

Tractor-Trailer 0.7-0.9 

Man (upright position) 1.0 - 1.3 

Parachutist 1.0 - 1.4 

VW Polo (class A) 0.37 

BMW 520i (class D) 0.31 

 

1.3. The Importance of Drag Force Reduction 

  

 The drag force is affecting many different areas, such as the transportation area 

or the industrial area. However, it is obvious that the most sensitive area to drag force is 

the transportation area. The dominant transportation sector, which is affected by drag 

force, is the ground vehicles. Therefore, the economic improvements and success of 
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these areas are greatly dependent on the drag force. Data shows that the energy use of 

ground vehicles is six times larger than both the energy use of aircraft and watercraft in 

the US (Wood, 2004). A review shows that the ground vehicles use approximately 50% 

of their total energy to overcome drag force, whereas air and water vehicles use 90% of 

their energy. Further analysis shows that the total drag of ground vehicles is comprised 

of 20% skin friction drag and 80% pressure drag (Wood, 2004). A review (Fig. 1.2) of 

the energy consumption of ground vehicles within the US shows that the energy 

demands of automobiles stay constant whereas the energy demands of light and heavy 

duty vehicles increase. From this point of view it is very important to realize that small 

contributions to drag reduction could turn into big economical success.  

 Drag force is not only affecting road vehicles, but also sea and aircraft are 

subject to drag forces. Designers in these areas are constantly searching for better 

designs which will provide less drag forces.  

 

 
Figure 1.2. A review of energy consumption of ground vehicles  

(Source: Wood, 2004) 

 

1.3.1. Drag Force Reduction in Sea Vehicles 

 

 Boats and ships are the very early transportation means that humans used to 

transport both passengers and other goods. In today’s transportation area, sea 

transportation still covers an important portion. Since the drag force is directly 

proportional with the viscosity of the fluid, the drag forces in water will be higher when 
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compared with the air. Therefore ships with reduced drag force have become an 

important point in ship design. In fact, one of the first attempts to improve ship design 

came from the Vikings. The Vikings started to make their ships taller and with smaller 

hulls than their counterparts. This design revision enabled them to achieve higher 

speeds in the seas which provided them an important power. Since then, in maritime 

technology, engineers and designers are seeking for better hull designs which will have 

less resistance to the water flow around it. Some examples of new hull designs are the 

Multihull, Slender monohull and the Semi planning monohull. The multihull design has 

a smaller surface area, lower weight and as a result experiences less drag than any other 

hull form. On the other hand, the slender monohull design is narrow and light. It 

operates with minimum pressure drag but provides limited buoyancy and stability. Next, 

the semi planning monohull design has a deep v-shaped bow to cut through the waves 

and a wide shallow rear with a concave or slightly hollow profile under water. 

Generally in most ship hull designs an artificial nose called as a “bubble” are placed at 

the front of the ship (Fig. 1.3). The purpose of this part is to divide the water line so that 

less drag resistance is produced by the water on the ship. Furthermore, some other 

sophisticated methods, like using gas turbines and water jets in ships are used in order 

to improve ship design. Also, in ship technology the material selection for the outer part 

of the ship, which stays in contact with the water, becomes important. The friction drag 

between the ship and the water is also an important source for drag. Especially algae’s 

or other factors like corrosion on the hull surface can cause the friction drag to 

dramatically increase. Therefore special materials and coatings are used to provide a 

long lasting low friction surface.  

 The same facts are also applied to underwater vehicles, especially U-boots. 

Since U-Boots are generally underwater and their entire outer surface is subject to sea 

water, the importance of the outer material and coating has primary importance. 

Another important point is the body shape of these vehicles. It is obvious that almost 

any type of U-Boot has a similar shape, which is like a longitudinally stretched tear 

drop. The reason for this situation is that aerodynamically the tear drop shape has the 

lowest coefficient of drag parameter. This means that, it shows the least resistance to the 

flow. Therefore if there are no restrictions related with the shape, designers tend to liken 

the shape of their designs to the tear drop shape.  
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Figure 1.3. Ship hull design tests in a water tank  

(Source: Web_7,2005) 

 

1.3.2. Drag Force Reduction in Air Vehicles 

 

 In aircraft design, drag force has been always an important design consideration. 

Since the drag force is directly proportional to the square of the speed of the object, the 

drag forces related with very high speeds become extremely important. Like it was the 

case in U-Boots, airplanes also have broadly similar shapes which also resemble the 

basic tear drop shape (Fig. 1.4). Such design of air planes has greatly reduced the 

pressure drag force, but due to the very high operating speeds, planes are still greatly –

effected by skin friction drag. For modern aircraft, the skin friction drag accounts for 

more than half of the total drag, therefore more sophisticated methods are proposed to 

reduce this drag force. Some of the methods include; producing extra plasma fields, 

vibration, using actuators, flow additives (micro bubbles, polymers and surfactants), 

flow ribblets, flow blowing or suction in the boundary layer, injection of gases viscosity 

or different temperature and active boundary layer heating.  

 

 
Figure 1.4. Commercial type air plane  

(Source: Web_8, 2005) 
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1.3.3. Drag Force Reduction in Ground Vehicles 

 

 At the very early times when the automobile technology was not that developed 

and cars could not reach high speeds, the concept of drag force was not that important 

for automobile makers and designers. As manufacturing technologies improved and 

knowledge increased, automobiles and other vehicles like busses and trucks also started 

to improve. For example, they were able to reach higher speeds. However, the drawback 

of these technological advances was that, better vehicles with higher performance 

consumed more energy and this energy was provided by fuel. Sooner or later the 

concept or fuel efficiency started to became one of the important design issues in 

vehicle design. Designers started to make more fuel efficient vehicles. At that time the 

aerodynamic properties of the car started to play an important role in designing the 

shape of the vehicles. The goal was to design vehicles with lower resistance to airflow. 

This, in other words, was to reduce the drag force on vehicles, and it was accomplished 

by changing the body shapes of the vehicles. Also, their goal was to reduce the 

coefficient of drag of the vehicles. The progress in vehicle design can be easily seen 

when looking at the early automobile designs and how they evolved (Fig. 1.5).  When 

looking closely, it can be noticed that the early automobiles had too many sharp corners 

and edges. In later designs, these straight edges and corners started to became smoother 

and rounder. Each new design shows a dramatical decrease in the coefficient of drag 

value. Still today every year vehicle manufacturers bring out newer vehicles to the 

market, which have very different design concepts in comparison to previous ones. The 

reason is that achieving a slightly better performance and fuel efficiency could move the 

manufacturer ahead of its counterparts. From this point of view the development of 

vehicle technology is a never ending story and especially in these days even small 

improvements could have significant effects on the market.  
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Figure 1.5. Coefficient of drag values of early cars  

(Source: Web_3, 2005) 

 

1.4. Previous Works Done in Drag Reduction for Heavy Duty Vehicles 

 

 The drag reduction process in fact includes the relative treatments for all of the 

different drag components, which are mainly the pressure and skin friction drag. 

However, research data (Wood 2004) shows that the pressure drag component has a 

much greater effect on the total drag force affecting ground vehicles, therefore more 

research and proposed drag reducing devices are based on pressure drag reduction. The 

attempts to reduce the pressure drag force on vehicles can be basically divided into two 

groups. The first group deals with providing a more attached flow over the vehicle, 

whereas the second group is focusing on separating the flow (Wood 2004).  

 The concept of vehicle design with a more attached flow profile is rather old 

technology. As stated above, the examples of this development process can be found in 

each different area of transportation vehicles. The attached flow technologies include 

smoothing out the edges and corners of the vehicles to provide a more streamlined 

shape. Throughout the years both heavy duty vehicles like trucks and busses, as well as 

passenger cars and light weight vehicles have evolved from a box shaped figure to a 

more curved shape with smoother contours and better aerodynamic properties (Fig. 1.6). 

This type of vehicle shaping has provided drag reduction rates up to 30 %.  
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Figure 1.6. Change in shape for heavy duty vehicles  

(Source: Wood, 2004) 

 

 Compared with the attached flow technology, the separated flow technology is a 

rather new concept. The basic idea of this technology is to alter the flow field around 

the vehicle in order to control the airflow and hence reduce the high pressure 

differences.  The first attempts in this area were made by Mason and Beebe (Mason and 

Bebe 1978) from General Motors. They tested different add on devices in order to 

reduce the base drag of a tractor trailer (Fig. 1.7).  The devices they tested were guide 

vanes, vertical and horizontal splitter plates and non ventilated cavity. The experiments 

showed that only the non ventilated cavity design, which in fact are plates attached at 

the back of the trailer, had significant effects on drag reduction. By varying the depths 

of the plates, they concluded that the optimum plate length is 0.13d, where d stands for 

the height of the trailer. The result was a 5% of drag reduction for a 48 foot trailer. In 

fact the concept of base plates has its origins in aircraft technology, where Bearmann 

(Bearmann 1965, Bearmann 1966) in 1966 applied this technology to reduce the base 

drag of blunt trailing edge airflows and achieved a 10% drag reduction.  
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Figure 1.7. Mason and Beebe’s add on devices  

(Source: Mason and Bebe, 1978) 

 

 Later in the 1970’s the same technology of base plates was tested by Hucho on 

smaller mini van style vehicles. From his experiments he showed that the result 

coincides with the previous results in reference (Mason and Bebe 1978). The same 

technology was further investigated in 1988 at the NASA Ames Research Center. This 

time researchers moved the base plates to an inset from the perimeter of the trailer (Fig. 

1.8). In this approach the optimum plate length is found to be 0.36w at an inset of 

0.06w, where w represents the width of the trailer. From the experiments it is concluded 

that for a 48 foot trailer a drag reduction of 10% could be achieved over a ±15º yaw 

angle range.  

 
Figure 1.8. Base plates attached to the back of a trailer  

(Source: Wood, 2004) 
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 An important source of drag for a typical tractor trailer combination is the gap 

between the tractor and the trailer. Various researches have been made to understand 

how the gap size affects the total drag force (Wood and Bauer 2003). Results show that 

reducing the length of the gap has positive effects on drag reduction, also blocking and 

sealing the gap greatly reduces the drag force. Wood and Bauer (Wood and Bauer 2003) 

proposed an aerodynamic device which is called as the Cross Flow Vortex Trap Gap. 

Initially the concept of vortex traps were developed for aircraft, that is for various 

airfoils and three dimensional wings, by Kasper (Kruppa 1977). Wood and Bauer 

applied this technology to ground vehicles by attaching plates vertically to the front face 

of the trailer (Fig. 1.9). When the airflow enters the gap, it starts to form turbulence and 

increase the drag force. However, when the plates are present, the air streams are 

individually trapped between the plates and prevented from forming into a large 

turbulence, hence decreasing the total drag. A drag reduction up to 30% is claimed to be 

achieved by this way.  

 

 
Figure 1.9. Cross flow vortex trap gap device 

 (Source: Wood and Bauer, 2003) 

 

 Another important achievement in drag reduction technology was developed by 

Englar (Englar 2001). Englar transferred the existing pneumatic aircraft technology to 

heavy duty ground vehicles. The pneumatic aerodynamic device consists of blowing air 
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into the boundary layer of the free stream (Fig. 1.10) and thereby increasing the 

momentum of the air. Blowing slots on both the leading edge and the trailing edge can 

provide a drag reduction rate about 50% when blowing with 1 psig blowing pressure. 

Tests showed that by increasing the blowing rate of the air, an 84% drag reduction 

could be achieved.  

 

 
Figure 1.10.  Schematic of pneumatic aerodynamic technology applied to heavy 

vehicle trailer (Source: Englar, 2001) 

 

 A similar device to Englar’s was developed by Modi (Mode and Desphonde 

2001) who also applied the same principle from aircraft technology to ground vehicles. 

Modi used the Moving Surface Boundary Layer concept as a template and tested the use 

of rolling cylinders as moving surfaces (Fig. 1.11). The rotating cylinders add 

momentum to the airflow and thus provide a more controlled flow around the vehicle. A 

Drag Reduction of 30 % has been reported by this study.  

 

 
Figure 1.11.  Schematic of rotating cylinder applied to heavy vehicle trailer 

(Source: Mode and Desphonde, 2001) 

 

 A different approach was proposed by Wood and Bauer (Wood and Bauer 2001, 

Wood and Bauer 2003), which initially was used in the industrial area. The device is 

merely a porous skin which is mounted onto the trailing surface and/or aft portions of 

the ground vehicle (Fig. 1.12). The porous surface is separated from the surface of the 

trailer by at least one thickness of the porous skin. The function of the porous surface is 
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to reduce the flow separation in the base and wake regions, prevent turbulence 

formation and support the attached flow. Results show that a drag reduction of 15% 

could be achieved this way.  

 

 
Figure 1.12. Porous surface attached to the rear surfaces of the trailer  

(Source: Wood, 2004) 

  

Vortex generators are another type of aerodynamic devices which have been used in 

aircraft technology. The idea behind vortex generators is to energize the airflow in order 

to prevent the flow separation and thus reduce drag force. One of the aerodynamic 

devices based on this principle was proposed by Wood and Bauer (Wood and Bauer 

2003), which is called as the Vortex Strake Trailer Base Treatment Device (Fig. 1.13). 

The vortex strakes are installed at the rear surfaces of the trailer to energize the airflow 

and prevent it from creating turbulence in the wake region of the trailer. It is reported 

that drag reductions greater than 10% have been achieved with this design.  

 

 
Figure 1.13. Vortex strake trailer base treatment device  

(Source: Wood and Bauer, 2003) 
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 A similar device proposed by Wood and Bauer (Wood and Bauer 2003) is the 

Undercarriage Flow Treatment Device. This device is simply a contraction cone design, 

which adds momentum to the flow coming below the vehicle and directs it with 

increased velocity into the wake region of the trailer (Fig. 1.14). The basic principle of 

this aerodynamic device is to prevent or reduce the turbulence formation at the wake 

region of the trailer. In this design; the shapes of the flaps are important. Tests showed 

that this device achieved a drag reduction greater than 10%.  

 

 
Figure 1.14. Undercarriage flow treatment device  

(Source: Wood and Bauer, 2003) 
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CHAPTER 2 

 

ENGINEERING FLUID DYNAMICS 

 

2.1. Introduction to Engineering Fluid Dynamics (EFD) 

 

 Cosmos FloWorks belongs to a new generation of fluid dynamic simulation 

software. This new approach amongst simulation software is referred to as “Engineering 

Fluid Dynamics” (EFD). Despite the fact that both EFD and CFD (Computational Fluid 

Dynamics) software are based on the same mathematical model, there are some 

important radical differences between them. The basic differences of EFD software is; 

 

• Integrated with a Solid Modeling Software 

• Easy to Use 

• Reduced Analysis Time 

• Easier Iterative Design Testing 

 

 The integration of fluid dynamics software into solid modeling software has 

brought many advantages over the conventional CFD software. Traditional CFD 

software are stand alone products which means that the user created geometry must be 

converted into the proper format to be used with the analysis package. Most of the time 

the conversion is made in terms of surface data, which generally requires considerable 

amount of effort and lacks reliability. Small design features in the model, like gaps or 

small extrusions, are superfluous to the analysis. Due to the integration of EFD software 

into CAD software, the CAD data of the solid model can be easily transferred to the 

analysis software without dealing with conversion issues related with the analysis code. 

Moreover they can automatically detect superfluous features and adapt the analysis to it, 

resulting in faster calculation time.  

 As opposed to CFD software, which requires highly trained specialists, EFD 

programs do not require deep technical knowledge of fluid dynamics concepts. The 

primary importance of EFD analysis programs is that they are easy to learn. While CFD 

soft wares require the user to specify specific flow related parameters like relaxation 
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factors, turbulence transition points or residual requirements, EFD soft wares basically 

require the engineering goal of the analysis with the desired accuracy. Then the internal 

solver algorithm automatically specifies the most appropriate parameters for the 

analysis, such as the mesh generation for the model. The automatic detection of these 

parameters also leads to a faster convergence of the desired goals which results in 

shorter calculation times.  

 Generally in engineering design it is essential to improve the design and ask the 

“what if” questions. According to the analysis results, models are redesigned and tested. 

In this sense it is important to rapidly adapt existing designs with small modifications 

into the analysis. The fully integrated EFD software provides a basis for a collaborative 

design environment.  

 

2.2. Fundamentals of Computational Fluid Dynamics 

 

 Basically the term Computational Fluid Dynamics stands for the use of 

computer power to analyze and solve classic fluid dynamic problems. The most 

essential consideration in CFD is how each different CFD program approaches the 

continuous fluid flow problem and solves it with numerical methods on the computer. 

The general method, which is widely accepted, is to divide the spatial domain into small 

discrete cells to form a volume mesh. Then an appropriate mathematical algorithm is 

used to solve the equations of motion that is Euler equations for inviscid flow and 

Navier-Stokes equations for viscid flow.  The mesh generation can be either irregular, 

which requires that each cell must be stored in memory separately, or regular. In the 

case of a highly dynamic problem occupying a wide range scale, the mesh generation 

itself must be modified with time. In this case, adaptive mesh refinement methods are 

used. Apart from the mesh based method, alternative solution methods exist such as, 

smoothed particle hydrodynamics, spectral methods and Lattice Boltzmann methods. 

The first one utilizes a Lagrangian method to solve the fluid problem, whereas the 

second one is a technique which uses the spherical harmonics and Chebyshev 

polynomials as a base function to solve the problem. The last one simulates an 

equivalent mesoscopic system on a Cartesian grid instead of solving the macroscopic 

system.    
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 The Navier-Stokes equations are used to determine Laminar flow. However; 

turbulence flow requires a different method because of the range of length scales in 

turbulent flow. In these cases turbulence models like Large Eddy Simulation (LES) and 

Reynolds averaged Navier-Stokes (RANS) are used with the k-� model or the Reynolds 

stress model. In most cases other equations like heat transfer and chemical reaction are 

also simultaneously solved.  

 The basic methodology for typical CFD software is the same, despite their 

different approach; 

 

1. The geometry of the problem is defined, mostly using CAD tools. 

2. The mesh is generated. The fluid volume is divided into discrete cells. 

3. Physical modeling is defined, such as conservation laws, motion, etc. 

4. Boundary conditions are specified. If required initial conditions are also defined. 

5. The equations are solved numerically. 

6. Analysis solutions are visually presented. 

 

2.2.1. Mesh Generation Method 

 

 Mesh generation or “discretization”, is generally made numerically rather than 

analytically. It is important to ensure that the discretization can handle discontinuous 

solutions. Some of the methods being used are:  

 

• Finite Volume Method 

• Finite Element Method 

• Finite Difference Method 

• Boundary Element Method 

 

Amongst these methods the first one is the standard approach used in many CFD 

programs. In this method the governing mathematical equations are independently 

solved for each discrete control volume. The integral approach in (2.1) is inherently 

conservative that is, quantities such as density remain physically meaningful.  

                                                 0=+
∂
∂

����� FdAQdV
t

                                             (2.1) 
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Where Q is the vector of conserved variables and F is the vector of fluxes. 

The Finite Element Method is generally used for structural analysis of solids, the Finite 

Difference Method is limited with simple geometries which have regular meshes and in 

the Boundary Element Method the boundary occupied by the fluid is divided into 

surface meshes.  

 

2.2.2. Turbulence Models 

 

 Turbulent fluid motion is highly random, unsteady and three dimensional. Also, 

it consists of many eddies with different lengths and time scales. It is believed that the 

turbulent flow can be exactly described by the Navier-Stokes equation. Tough 

numerical solutions are available for these equations, the current storage capacity and 

speed of computers is not sufficient to obtain a solution for a practically relevant flow. 

This method is known as Direct Numerical Solution (DNS). Since the turbulent flow 

can not be calculated with an exact method, different methods are used.   

 

• Reynolds averaged Navier-Stokes (RANS) 

• Large Eddy Simulation (LES) 

• Detached Eddy Simulation (DES) 

 

2.2.2.1. Reynolds Averaged Navier Stokes 

 

 In the Reynolds averaged Navier-Stokes (RANS) method is obtained from the 

Navier-Stokes equations. The Navier-Stokes equations are derived from the basic 

conservation laws that apply to the motion of a fluid. These are the basically the mass 

and momentum conservation laws and the viscous effects on the fluids.  In the 

following equations � represents the density of the fluid; p is the pressure; � stands for 

the kinematic viscosity and u is the velocity vector of the fluid.  

 

Conservation of Mass: 

 

                                                            0)( =⋅∇+
∂
∂
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                                            (2.2) 
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Conservation of Momentum: 
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     Viscous Effects: 

 

                                                               uFVis
2∇=ν                                                  (2.4) 

 

Finally for incompressible fluids with constant density the Navier-Stokes equation will 

become; 
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 The Reynolds averaged Navier-Stokes equation is obtained by assuming the 

physical variables to be composed of mean and fluctuating components, which is known 

as Reynolds decomposition. 
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 The mean components are constant over time whereas the fluctuating components vary 

with time. The fluctuating components are expressed in terms of the mean components 

and then only the mean components are solved. The resulting solutions describe the 

mean flow field and introduce an additional unknown called as Reynolds Stress.  
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The Reynolds stresses have significant effect on the flow and must be modeled in terms 

of mean flow quantities.  
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 One of the methods, based on Boussinesq (1877), is the Eddy Viscosity method, 

assuming that the energy dissipation within the turbulent flow can be modeled by an 

“eddy viscosity”.  

                        (2.8) 

 

                                                                                                                                       

Where �t is the eddy viscosity and k is the turbulent kinetic energy. The turbulent 

kinetic energy is defined as; 

  

                                                                                                                                      (2.9)    

 

Dimensional analyses show that the eddy viscosity can be formulated as; 

 

                                                                                                                                    (2.10) 

 

Where C is a dimensionless constant, �T is the velocity scale and l is the length scale.  

 Another method is the Mixing Length Model proposed by Prandtl. In this model 

the eddy viscosity is defined by; 

 

                                                                                                                                    (2.11)           

                     

 The turbulent kinetic energy, k, is commonly determined by the k-� model. This 

model relates the eddy viscosity to the turbulent kinetic energy, k, and the turbulent 

dissipation rate, �. The model is also called a two equation model, because it requires an 

additional partial differential equation to incorporate the turbulent dissipation rate. 
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 Other methods derived from the k-� model are the RNG k-� method, in which k-� are 

derived from a statistical technique known as Renormalization Group Method. The 

RNG k-� model has improved predictions in transitional flows, wall heat and mass 

transfer and high streamline curvature and strain rate. Another method is the k-� 
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realizable model which uses a variable C� instead of constant. This model has improved 

performance in planar and round jets, rotation, boundary layers with strong separation 

and strong streamline curvature.  

 In cases where flow separation is important, the k-� method is used. The k-� 

model is also a two equation model and thus requires two additional partial differential 

equations: one for the modified k equation of the k-� model and one for the � transport 

equation. In this model � is an inverse time scale that is associated with the turbulence. 

The turbulent viscosity is expressed as follows; 

 

 

                      (2.13) 

 

 Another model is the Spalart-Allmaras one equation model. This model solves 

one conservation equation and is developed for use in unstructured codes in aerospace 

industry. This shows good performance in attached-wall bounded flows and flows with 

mild separation and recirculation. However it is not suitable for massively separated 

flows, free shear flows and decaying turbulence.  

 The Reynolds Stress model is also called the seven equation model and uses 

additional transport equations for the six independent Reynolds stresses. This model is 

especially good in predicting complex flows including cyclone flows, swirling 

combustor flows and flows involving separation.  

 

2.2.2.2. Large Eddy Simulation (LES) 

 

 The Large Eddy Simulation is a technique in which the large scale motions of 

the flow are calculated. The smaller motions are filtered and modeled using a Sub-grid 

model. LES can accurately predict the large scale turbulent structures that are most 

important in the transport quantities. LES requires a more refined mesh than RANS but 

a coarser mesh than DNS, which places it in between them in terms of computational 

effort.  
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2.2.2.3. Detached Eddy Simulation 

 

 Detached Eddy Simulation (DES) is a hybrid technique, where LES calculations 

are carried out in fine regions of RANS model sub-grid scale formulation. DES model 

provides more numerically feasible and accurate results for massively separated flows.  

 

2.3. Cosmos FloWorks 
 
 Cosmos FloWorks uses the Reynolds averaged Navier-Stokes equations along 

with the k-� type of turbulence model. The code uses a segregated type solver. The 

solution scheme for this type of solver is as follows: 

 

1. Firstly, the momentum equations are solved. (u,v,w) 

2. The pressure correction equations are solved. To correct fluxes and velocities. 

3. Finally, the transport equations for other numbers are solved.  

 

2.4. CFD vs. Wind Tunnel 
  

 Engineering problems often require an experimental approach to clearly 

understand and visualize the problem. Strength analysis and Fluid flow analysis are the 

most common types of experiments made in engineering science. Today, the 

developments in computer science make it possible to conduct these experiments 

entirely in the software environment. There are quite important advantages of the 

computer simulations against the real experiments. Especially in Fluid Dynamic 

experiments, there are important differences in performing a Wind Tunnel test and by 

using Computational Fluid Dynamic programs on the Computer.  

 Wind tunnel experiments are very expensive processes. Either the designer must 

build a small scaled wind tunnel which fits his needs, or he must pay for wind tunnels to 

conduct the experiment. However, by using CFD simulation software, no additional 

equipment or system is required. One PC with optimum configuration will suffice for 

the entire analysis of the flow problem. The cost of this will be far cheaper than the real 

wind tunnel experiment. Another fact is that wind tunnel experiments last longer than 

CFD simulations. The experimental setup must be prepared certain measurements must 

be made to be able to get better results from the tests. On the other hand, in CFD 
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simulation all the detailed adjustments are made by the software itself, and if needed the 

operator can easily modify them. In virtual simulation the operator has more control 

over the setup, and can get results from any desired point on the model. In the wind 

tunnel though, measurement devices must be applied to the points of interest and this 

brings some limitation to the experiment. In real world experiments, the model has to be 

scaled according to the properties of the wind tunnel. In the CFD simulation there is no 

need for such a limitation, the model can be tested at any scale. Another important 

advantage of CFD simulation is that any experiment can be repeated, however in the 

real case some experiments can not be repeated, because of economical issues or other 

problems. Wind tunnel experiments require authorized and specialized personnel. Some 

type of experiments could be dangerous and special training may required. However 

with CFD simulation any type of experiment can be safely simulated and no special 

training is needed. Even newer technologies in CFD software which are called EFD 

(Engineering Fluid Dynamics) software are simply goal oriented and do not require 

special knowledge on fluid dynamics.  

 All these important differences between CFD simulation and real wind tunnel 

testing clearly show that, use of CFD software is a more efficient way to obtain 

information on a certain fluid problem. Improved modeling techniques of fluid flow and 

numerical analyses methods make today CFD programs reliable. Especially for low 

budget projects or small personal or educational projects it is more preferable to choose 

CFD simulation. However, it should be taken into account that the wind tunnel tests can 

provide more realistic results than software simulations. Therefore, it is important that 

the researcher decides whether it is required to do a wind tunnel test or not. Generally in 

research projects involving fluid dynamics, it is preferred to use both soft ware 

simulation and wind tunnels.  
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CHAPTER 3 

 

THE MECHATRONIC DRAG REDUCTION DEVICE 

 

3.1. The Purpose of the Device 

 

 In this project it is aimed to design an aerodynamic drag reduction device for 

busses. However, the proposed device will also be also easily applicable to other heavy 

duty vehicles like trucks and tractor trailers. There are basically three important 

differences of this device which distinguishes it from the previously mentioned 

aerodynamic drag reducers.  

 The aerodynamic drag reduction devices which have been developed are 

basically dealing with the reduction of the base drag and with the gap between the 

tractor and the trailer. A large portion of those devices are shaping the flow at the rear 

of the vehicle in order to prevent less turbulence and hence reduce the total drag force 

acting on the vehicle. The rest of the devices are operating with the same principle and 

dealing with the turbulence formation inside the gap between the tractor and trailer. 

Each of those different devices provide different amount of drag reduction. This shows 

that research on drag force reduction has been mainly focused on base drag reduction. 

In contrary to those devices, the mechatronic drag reduction device is focusing on the 

front drag reduction. The front drag and base drag together make up the pressure drag. 

Data shows that for a commercial bus the base drag is the dominant component (Table 

1.1). However, the effect of the front drag can not be ignored. A reduction in the front 

drag force will also turn into a reduction reduce in the total drag force. 

 Another important property which the great majority of previous devices in 

common have is that they are somehow passive devices. By the word “passive” it is 

meant that, these devices do not have an actively operating mechanism part. Most of 

them are specially designed plates, stripes or other forms of material. Those types of 

aerodynamic devices operate on the vehicles until they are removed from the vehicle. 

Therefore the driver has no control over the devices to let them operate or not. While 

some of the devices do not affect much the visual appearance of the vehicle, some of 

them could result in a bad visual appearance. Meanwhile, the mechatronic drag 
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reduction device unlike previous devices does not alter the overall shape or appearance 

of any vehicle. As the name of it already implies, this device is in fact a mechatronic 

system which consists of both mechanical and electronical parts. Due to this 

mechatronic design, the device has two conditions. These are the ON and OFF 

positions. This means that, the device is either closed and does not operate, or it is open 

and operates. The benefit of such a design is that, the vehicle device operates only when 

it is necessary to operate and the driver can also manually enable or disable the device 

according to different situations.  

 It may be noticed that all of the previous research done and the devices proposed 

are done for trucks and mainly tractor trailers. As it was mentioned previously the 

energy consumption of light and heavy duty vehicles increases every year. Therefore 

research has been made on those heavy duty vehicles. However, it should be considered 

that busses are also a sort of heavy duty vehicle, when classified according to the miles 

traveled per year. From this point of view, drag reduction research in bus technology is 

as important as in truck technology. In this project the mechatronic drag reduction 

device is designed for long distance travel busses. However, the basic concept of the 

device can be easily adapted to any kind of heavy duty vehicle.  

 

3.2. The Operation Principle 

  

 As it was already stated above, the mechatronic drag reduction device is dealing 

with the front drag reduction of a typical travel bus. Therefore it is going to operate at 

the front side of the vehicle (Fig. 3.1).  

 
Figure 3.1. The mechatronic drag reduction device 
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 It is important that the vehicle does not cause any restrictions to the drivers 

viewing range during the trip. To overcome this issue, the device has been designed as a 

mechatronic system, which means that the device is able to open and close itself. When 

the vehicle is moving on a highway at 100 km/h then the least distance it should have 

with the vehicle in the front should be 50 meters. This is a general rule in traffic, which 

states that the least space which be conserved between two adjacent vehicles is the half 

of the speed in meters. From this point of view, when the bus is moving with such large 

speeds on the highway, the device is sitting in the unused area for the driver, which 

means that it does not cause any complication to the drivers view. Similarly, when the 

device is in its OFF or closed position it also does not interfere with the drivers view 

because it changes its shape into a smaller volume and fits into a smaller space (Fig. 

3.2).  

 

 
Figure 3.2. The closed position of the device 

 

 The operation principle of the mechatronic drag reduction device is basically 

very similar to the previous introduced devices. In all aerodynamic drag reduction 

devices, the common operation principle is to affect the flow field around the vehicle. 

Exactly the same idea holds for the mechatronic drag reduction device. The basic idea is 

to alter the shape of the vehicle in order to provide a more attached flow around it. To 

improve the airflow, the device has been designed in a certain geometrical shape. The 

most important parameter which affects the airflow and the overall drag reduction rate 

is the geometrical specification of that particular shape. Assume that a bus, without the 

device installed, is moving on the highway at a speed of 120 km/h. When there is no 
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wind, the air is assumed to be stationary and the vehicle is penetrating the air at that 

speed. While the vehicle is moving through the air, it will trap some of the air at its 

front. Since it will not be easy for the air to escape to the sides because of the geometric 

front shape of the bus, the pressure in that area will increase. On the other hand, at the 

back of the vehicle the airflow will produce turbulence and create wake regions, where 

the pressure will be relatively low. Hence, a drag force dependent on the pressure 

difference between these two places will be generated. Therefore to achieve a lower 

drag force, the pressure difference at these places must be kept as low as possible. In the 

case where the drag reduction device is installed, the frontal shape of the vehicle will 

change. This deformation in body shape will also influence the airflow around the 

vehicle. Due to the shape of the device, the airflow coming towards the vehicle is 

prevented from directly hitting the front of the vehicle. The smoothly curved contours 

of the device also enable the airflow to easily escape to the sides, so that they do not 

increase the pressure in that area. In this way, a more attached flow and a more 

streamlined shape is given to the vehicle. The pressure gradient between the front and 

rear of the vehicle will be reduced, which also means a reduction in the overall drag 

force.  

 As stated above, the mechatronic drag reduction is an active mechanism which 

is able to close and open itself. There are a couple of benefits this. First of all, in this 

design the device has two states. Either it is open and operates as a drag reducer, or it is 

closed. Why this function is important can be easily understood with an example. 

Assume that a travel bus going from city A to B is traveling on the highway. When the 

bus is on the highway its speed will be high and automatically the drag force affecting 

the bus will increase. In this case the driver will want to activate the mechatronic drag 

reduction device to reduce the experienced drag force and the consumption of fuel. 

However, to reach city B the bus has to pass through a number of cities, where it must 

go through the city traffic and obey the speed obligations. Furthermore, if the rush hour 

city traffic is taken into consideration it is obvious that the bus will move at relatively 

low speeds and very small distances will be kept between adjacent vehicles. Moreover, 

in traffic the driver has to be able to do critical maneuvers. Therefore, it makes more 

sense to disable the drag reduction device so that the vehicle returns to its original state. 

The mechatronic drag reduction device can either be controlled manually by the driver 

or the device can automatically decide whether to open or not, based on its electronic 

logic circuit.  
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3.3. The Design of the System 

 

 The design of the mechatronic drag reduction device has been done in two steps. 

In the first step, the appropriate shape of the device has been evaluated. Then, in the 

second step of the design process the mechanical and electronical parts of the system 

were designed. In this chapter, the evolution of the design process is explained.   

 In designing the shape of the drag reduction device, the determination of the 

geometry, which directly affects the drag reduction rate, has become the most important 

part of the design process. Since the device will directly affect the flow field of the 

vehicle, a clear understanding must be gained on how different geometric shapes affect 

the airflow. In order to have wider testing possibilities, the design process was made 

entirely in a computer environment. The three dimensional model of the bus, is 

simulated by using SolidWorks™ modeling software. The Wind tunnel analyses are 

made using a commercial Fluid Dynamics program, called Cosmos™ FloWorks, which 

is an EFD (Engineering Fluid Dynamics) Software and also a SolidWorks™ plug-in.  

 The three dimensional model of the bus (Fig 3.3) is modeled in full-scale (1:1) 

after a MAN Fortuna type model bus (1:50). The detail level for the model is kept at a 

point between very simple and realistic. A very simple model was not preferred since it 

would lack some important properties like the side mirrors, air conditioner housings, 

which in fact have significant influence on the airflow. Therefore a more detailed model 

was modeled, but also bearing the fact in mind that a too complicated model would 

require more complex analysis. The following device designs and fluid dynamic 

analyses are all based on this bus model.  

 

 
Figure 3.3. 3D model of the bus 
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 The design process of determining the shape of the device was basically a trial 

and error approach. That is, different types of shapes have been modeled and tested on 

the device at speeds ranging from 50 to 130 km/h within 10 km/h intervals. In the 

simulation software, the calculation options, mesh generation and other particular 

parameters related with the flow analysis are left at their default values. Due to the 

nature of EFD software, only the desired goal, the ambient conditions and the simple 

flow definitions like the fluid type are defined. The software automatically reconfigures 

the required parameters to best fit the problem.  

 In the beginning of the study, the basic shapes have been applied to the vehicle 

and tested as described above. These basic shapes simply have the profiles of a half 

cylinder, a triangle, a rectangle with chamfered edges and an oval shape (Fig.3.4).  

 

 
 

Figure 3.4. Basic shapes attached on the bus 

 

 The idea behind testing these different groups of shapes is to find out, at least in 

a broad sense, their effect on the flow. Therefore, it is preferred to do the analyses in 

two dimensions (2D). The benefit of 2D analysis is that the calculation time is much 

shorter to that of 3D analysis. In addition, 2D analyses may provide a reliable estimate 

on how the different shapes will behave in a full 3D analysis. The goal in the analyses is 

set as the Force affecting the model in the direction of flow, which in other words is the 

Drag Force affecting the model. The results of the tests for the initial shapes are listed in 

Table 3.1 and Figure 3.5.  
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Table 3.1. 2D Analysis results for the basic shapes 

 Experienced Drag Force (N) 

Air Speed(km/h) Half Cylinder Triangle Rectangle Oval 

50 115,405 135,005 112,298 106,848 

60 171,781 200,4285 166,2925 158,651 

70 228,156 265,852 220,287 210,454 

80 303,207 352,7925 292,3175 280,0765 

90 378,258 439,733 364,348 349,699 

100 472,471 551,229 454,8215 435,236 

110 566,683 662,725 545,295 520,773 

120 680,405 796,281 654,987 625,125 

130 794,127 929,837 764,679 729,477 

 

 

 

 
Figure 3.5. Graphical representation of the drag force on the different models 

 

As it can be clearly seen from the tabulated results and from the above graph, each 

shape experiences different amounts of drag force. The graph also shows how the drag 

force is increasing with the speed. The obtained results show that the least drag force 
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was experienced by the oval shaped device. When plotting the reduction in drag forces 

with the respective air speeds for these shapes it can be seen that as the air speed 

increases, the efficiency of the devices also increase. This can be seen in Figure 3.6, 

where at 130 km/h air speed; more than 450 N of force is reduced by the device.  

 

 

Figure 3.6. Reduction in drag force with the air speed 

 

 The effect of the devices over the Coefficient of drag of the bus is visualized in 

Figure 3.7. It can be seen how each of the devices change the coefficient of drag value 

of the bus. The plain bus, which means there is no device attached to it, shows the 

greatest coefficient of drag. The oval shape also produces the smallest coefficient of 

drag value.  
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Figure 3.7. Change in Coefficient of drag value with air speed 

 

 After observing the results that the oval shape is the most efficient one in terms 

of reducing the drag force, the research on the shape design was focused on this oval 

shape. Based on the initial shape, different variations of it have been designed and 

modeled. These variations are made basically by changing the length or L parameter of 

the initial shape (Fig.3.8). The other parameters, D and H, are the same for each shape.  

 

 
Figure 3.8. Basic curve which is modified with changing the L parameter 
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By varying the L parameter, thirteen different shapes have been derived (Fig. 3.9).  

 

 
Figure 3.9. Variations of the oval shape  

 

The L parameters for these shapes are given in Table 3.2.  

 

Table 3.2. The L parameters of the shapes 

Shape  L (in cm) 

1 62 

2 70 

3 80 

4 84 

5 96 

6 98 

7 111 

8 117 

9 126 

10 137 

11 147 

12 156 

13 170 

 

 

 These shapes, which in fact are two dimensional curves, can be defined 

mathematically with a 10th degree polynomial. When defining the curves in the 
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Cartesian coordinate system, the lower end of the curve is placed at the origin. 

According to this, each of these curves can be written in the form as; 

 

      kjxixhxgxfxexdxcxbxaxxy ++++++++++= 2345678910)(    (3.1) 

 

By changing the constants from a through k, all of the above curves can be 

geometrically defined. In Appendix A the constants a-k for constructing the equation of 

the curves is given.  

 Each of those shapes has different geometrical specifications. Rather extreme 

differences have been also made, to see how they would affect the drag force. 

Afterwards, each of these shapes has been also tested in a 2D analysis to get an 

overview on the performances of each shape. The results of the analyses are represented 

in Table 3.3. In Figure 3.11 it can be seen how the drag force on the bus changes when 

the devices are placed, and how the fifth device, or shape, experiences the least 

resistance. In the next plot, it can be seen how much drag force is reduced by the 

devices at different air speeds (Fig. 3.12). After plotting the Cd values for the devices at 

each speed level, it can be seen how they are different for each shape and tend to 

produce a straight line. The R2 shows that how well the data fit into the straight line 

function. If R2 is 1, then the proposed fitting curve coincides with the data.  

 Results showed that the fifth one experienced the least drag force at each speed 

level. Therefore after this stage, the process was focused on that particular shape (Fig. 

3.10).  

 

 
Figure 3.10. The device shape with best performance in 2D tests  
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Table 3.3. Analysis results 

 

 

 

 

 Basic Shapes and the Corresponding Drag Forces (N) Air Speed 
(km/h) 1 2 3 4 5 6 7 8 9 10 11 12 13 

50 159,331 155,369 132,571 132,516 109,105 112,753 138,838 146,112 115,204 128,326 161,192 148,605 116,957 

60 230,3 224,913 191,996 191,789 156,962 163,305 200,592 210,649 166,652 185,654 233,048 214,964 167,999 

70 320,124 307,932 260,633 262,006 213,788 221,215 274,288 288,588 227,327 251,774 318,325 295,607 230,191 

80 410,103 404,472 341,588 343,093 278,332 290,17 358,908 379,122 295,945 330,627 418,258 388,121 300,593 

90 531,441 512,786 433,35 436,302 352,886 367,809 456,567 481,832 376,329 419,736 531,144 495,876 380,632 

100 659,103 635,472 535,151 539,925 434,942 453,257 563,159 595,894 464,613 519,808 655,954 610,62 472,75 

110 802,359 773,06 650,988 654,63 529,221 550,064 682,224 723,277 563,577 631,739 795,769 743,532 571,689 

120 957,535 921,246 778,423 783,603 631,416 648,729 812,671 860,676 669,575 747,133 946,94 888,944 679,06 

130 1114,58 1083,66 910,448 920,116 740,415 760,301 962,443 1014,58 791,359 879,435 1112,98 1044,23 801,04 
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 Figure 3.11. Resultant drag force with the different shapes 
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Figure 3.12. Change in drag force with the change in L parameter 
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Figure 3.13. Change in the coefficient of drag values with the air speed 

Cd vs. Air Speed Graph
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 By taking the average of the Cd values and tabulating them as below, it can be 

easily seen that the fifth device produces the smallest resistance to the airflow.  

 

Table 3.4. Equations of the fitting curves for the Cd values of the shapes 

 Equation of Fitting Curve R2 Coefficient of Drag (Cd) 

1 y = 9E-05x + 0,1635 0,7545 0,17 

2 y = 6E-05x + 0,1604 0,9752 0,16 

3 y = 3E-05x + 0,1379 0,8861 0,14 

4 y = 5E-05x + 0,1371 0,9869 0,14 

5 y = 7E-06x + 0,114 0,3374 0,11 

6 y = -3E-06x + 0,1192 0,0422 0,12 

7 y = 4E-05x + 0,1442 0,9143 0,15 

8 y = 5E-05x + 0,151 0,9523 0,15 

9 y = 2E-05x + 0,1203 0,8054 0,12 

10 y = 3E-05x + 0,1337 0,7641 0,13 

11 y = 5E-05x + 0,1676 0,9098 0,17 

12 y = 8E-05x + 0,1527 0,9449 0,16 

13 y = 2E-05x + 0,1217 0,8348 0,12 

Plain Bus y = 5E-05x + 0,1816 0,9024 0,19 

 

 In the next steps, the shape designs were merely variations of this shape. In an 

iterative way, step by step the designs were improved, resulting in a lesser drag force. 

After a satisfying point was reached in 2D tests, the improved designs were tested in 3D 

tests. 3D analyses require much more time to complete but it gives a more realistic 

solution. It was seen from the 2D analysis results that at each speed level, the force 

reduction rates are proportional. This means, if one shape is more efficient than the 

other one, then it is more efficient in all speed stages. Therefore in the 3D analysis it 

was decided that the tests might be conducted at 100 km/h and 130 km/h. The most 

efficient shape would also achieve better results at the different speeds.  

 First the plain Bus moving at 100 km/h speed is simulated and a result of 

2259.9N drag force is recorded. Then the speed is increased to 130 km/h and a drag 
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force of 3828.08N is obtained. According to equation (1.1) this corresponds to a 

Coefficient of Drag value of about 0.59.  

 The device shapes were accordingly modified in order to meet the three 

dimensional flow conditions. The right and left ends of the device were cut and rounded 

so that the airflow may also have smooth passing around the device. The 3D shapes of 

these devices are also defined mathematically with a polynomial of 10th degree (see eqn. 

3.1). For these shapes, a curve profile is used, which in fact is the profile when looking 

to the device from the side. And to round off the sides another curve profile is used, 

which simply cuts the shape from the sides. In this way the shapes are represented with 

two curves. The first one gives the extrusion profile and the second one gives the cut 

profile for the sides. The equations of these curves are given in Appendix B.  

  After a series of analysis, a device shape as seen in below figure has resulted in a 

drag force of 2075.09N at 100 km/h and 3516.96N at 130 km/h, which means a 

Coefficient of drag value of 0.54. The efficiency in drag reduction of this shape is 

therefore found to be as 8.5% (Fig. 3.14).  

 

 
 

Figure 3.14. Device with a drag reduction rate of 8.5% 

 

 In Figure 3.15 it can be seen how the air flow is moving around the bus. It can 

be seen that the incoming air flow, which hits the front of the bus increases the pressure 

there. 



 43 

 
Figure 3.15. Flow lines over the device with 8.5% drag reduction rate 

 

 Modifying this design by changing the depth and curvature of the shape, an 

improved version has been obtained (Fig. 3.16 and Fig. 3.17). This design has reduced 

the drag force on the bus to 2032.71N at 100 km/h and 3441.96N at 130 km/h, which 

resulted in a decrease of the Coefficient of drag value to 0.53. With this amount of 

reduction in drag force, a drag reduction rate of about 10.2% has been achieved.  
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Figure 3.16. Device with a drag reduction rate of 10.2% 

 

 
Figure 3.17. Flow lines over the device with 10.2% drag reduction rate 
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 Finally, by changing the geometric properties of the last design an improved 

design has been obtained (Fig. 3.18). This design has more depth then the previous one 

but due to its larger curvature radius, the airflow exerts less resistance on it. The sides 

are curved more and a more smoother flow from the under side to the upper side of the 

device is made. In Figure 3.19, it can be clearly seen how the pressure increase on the 

front of the bus is reduced. Hence, in the simulation, the new drag force is found to be 

1981.51N at 100km/h and 3348.82N at 130 km/h. This corresponds to a Coefficient of 

drag value of 0.52. In this way a drag reduction of about 12% has been achieved with 

this improved device shape. In the ongoing design steps, a better design could not be 

achieved. Therefore this design is chosen to be the shape of the mechatronic drag 

reduction device. 

 

 
 

Figure 3.18. Device with a drag reduction rate of 12% 
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Figure 3.19. Flow lines over the device with 12% drag reduction rate 

 

 In the subsequent test and device designs this amount of drag reduction was not 

exceeded. In addition, this amount of drag reduction rate for an already low-drag 

experiencing bus is a rather satisfying result. Therefore, this shape was chosen as the 

device shape that the mechatronic drag reduction device should possess.  
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3.4.  Determination of the Opening and Closing Mechanism of the 

Device 

 

 In the preceding sections it was explained that the device has two states. These 

are the ON and OFF positions. In the fully opened position the device has to become the 

shape as depicted in Fig.2.1 and when it is closed it must be able to get smaller and fit 

into a smaller space. The challenging point in the mechanism design is to achieve a 

smooth and reliable transition between the opened and closed positions. This section 

introduces some of the mechanisms that were considered. Both advantages and 

disadvantages related with these mechanisms are investigated. 

 

3.4.1. Balloon Method 

 

 This method is in fact not a mechanism. In this method the device’s operation 

will be very similar to a balloon. That is, the device will be made out of an air proof 

material, which will be cut and sewed together to that shape. Then this is going to be 

placed onto the front of the vehicle. To open the device, air is blown into it so that it 

expands and becomes the predefined shape. The air pressure inside the device must be 

held at some level, so that the required rigidity of the device is established. Simply, to 

close the device, the air inside of it is taken out with a vacuum pump and it contracts 

back. The major advantage of this type of on/off mechanism is that, it is very simple. 

There are not any motors, linkages or any other system required. The most important 

parameters which need to be considered are to accurately obtain the desired shape when 

the device is opening. Another issue is the material selection for the device. It is of 

primary importance that the material of the device be hard and tough enough, so that 

during the cruise it will resist outside effects like stones or nails so as not to explode. 

Also, the required pressure inside the device must be sufficient enough to resist the air 

pressure outside the vehicle and not deform. Therefore it requires powerful pumps.  

 The major drawbacks of the balloon method, is the inflation risk of the device. 

When hit by an object during a drive at high speeds, the sudden impact of the inflating 

air could probably cause the driver to loose control over the bus. This could 

unfortunately lead to an accident. Another disadvantage of this type of device could be 

the risk of deformation of the shape of the device while moving at high speeds or 
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deformation due to side winds. Since a deformation in the shape of the device directly 

affects its aerodynamics, any deformation would create an undesirable situation. 

 Putting all the advantages and disadvantages into consideration, it was decided 

that this type of opening and closing mechanism would not be a good selection. 

Therefore another method, the Box method was investigated to be used as the opening 

and closing mechanism.  

 

3.4.2. Box Method 

 

 In this technique the device is divided into four parts. When the parts come 

together, they form the desired shape of the device by opening like the covers of a box. 

The device can be divided into four parts; these are the upper right, lower right, upper 

left and lower left parts. The parts are normally resting on top of each other. When the 

device starts to open, these parts turn by a desired amount around their turning axes and 

form the device (Fig. 3.20). The important point in this technique is to achieve a very 

accurate motion of the parts, so that they flawlessly form the total device. In this method 

there are two important requirements: angular motion to rotate the parts and a locking 

mechanism to hold them in position against the drag force.   

 The Box method unfortunately has some important disadvantages which make it 

rather inefficient to use as the opening and closing mechanism. One of the most 

important drawbacks is the space occupied by the device when it is in its closed 

position. In other words, this type of mechanism does not provide a satisfying amount 

of volume reduction for the device. Another factor is that this mechanism requires high 

torque operation since the four distinct parts, which make up the whole device, are to be 

turned by their turning axis. Also, great precision is required to bring the parts into their 

correct places and hold them there during the trip.  

 Therefore, as a third alternative, another mechanism was investigated. This 

mechanism is called as the Accordion Method and its working principle is similar to 

that of an accordion.  
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Figure 3.20. 3D representation of the box model 

 

3.4.3. Accordion Method 

 

 In this opening and closing technique, the device is composed of five distinct 

parts, which are simply making up the total device when adding them end to end. When 

numerating these parts, beginning from the base one attached to the vehicle as number 

1, then the most outer one will be number five. These parts are designed so that each 

part will be able to fit through the previous one. That is number two moves through 

number one, then number three moves through number two and so on. In this way the 

whole device is gradually constructed (Fig. 3.21). There will be stoppers in each part, 

which will stop the next part at some certain distance, so that the original shape of the 

device can be exactly produced. The closing of the device occurs in a similar way. This 

time the smallest part, which is the fifth one, starts to move in. Then the fourth part, 

then the third part and so on, until all parts are retracted back to their original positions. 

In their original position they sit inside each other and inside the first part. In this way 

the device’s volume is greatly reduced. The advantage of this technique is that it is more 

stable and reliable than the previous ones. The whole mechanism is driven by a linear 

motion. However, the drawback is that the device will not have a smooth leveled 

surface, which means that there will be some level differences between the parts. But 

this will not cause important problems, since the gaps and level differences between the 

parts can be sealed or treated with elastic materials in order to fill the gap when the 

device opens.  

 After considering these methods of opening and closing, it was decided that the 

accordion method would be the most suitable in order to achieve the desired motion. In 
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the next section, the operation principle and a detailed explanation of the opening and 

closing mechanism is explained.  

 

 
Figure 3.21. 3D representation of the accordion method 

 

3.5. Engineering Calculations of the Mechanism 

 

 After deciding the type of opening and closing mechanism, the ways of 

achieving this task were investigated. As it was broadly explained in the previous 

section, the device will consist of five parts. These parts will come together and form 

the desired shape of the device as seen in Figure 2.10. In order to achieve this task, the 

primary condition is that each part must be able to fit into the previous part. In this way 

when the device is closed, only the first part, the one attached to the bus, will be seen. 

When the device opens, the other parts will come out of each other and build the device 

(Fig. 3.22).  
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Figure 3.22. States of the device during opening 

 

 As it can be seen from the figure above, the mechanism is operated with a 

horizontal force. In order to provide this horizontal motion, a screw and nut system is 

going to be used (Fig. 3.23). The green cylinder, which is seen in the below figure 

represents the motor, is placed on the rotating shaft. The shaft is in fact a threaded shaft, 

which has opposite threads on the right and left portions of the motor. On the shaft there 

are two parts which are able to move along the shaft and serve as the connection 

between the shaft and the links. Since these parts are moving on threads with opposite 

angles, their motion will also be opposite to each other. In other words, when the shaft 

turns in a clockwise direction, then the parts will move towards each other and come 

closer to the motor. However, if the shaft turns in a counter clockwise direction, the 

parts will expand outward, away from the motor.  

 
Figure 3.23. Isometric view of the mechanism when open 
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Under the threaded shaft, there is a smooth finished shaft which basically locks the 

moving parts, so that they can not rotate. The moving parts have pins on their top 

surfaces, where the links are connected. The links’ other ends are connected to the fifth 

part of the device (Fig. 3.24).  

 

 
Figure 3.24. The horizontal motion is given to the fifth part 

 

The working principle of this mechanism is very simple. When the shaft rotates in a 

clockwise direction, then the parts move towards each other. Since the links are 

connected to the fifth part, they are pushing it forward. Similarly, when the shaft rotates 

in the opposite direction, the links spread apart and pull the fifth part back.  

 In order to have this system work, the parts are connected to each other through 

four shafts placed at their respective corners. In this way the parts can move smoothly 

inside each other. The cylinders have caps at their ends, so that the parts cannot 

completely get out from each other (Fig. 3.25). In the opening sequence, first the fifth 

part starts to slide along the cylinders until it comes to the caps. Then the fifth part 

moves together with the fourth part. Then fourth part pulls the third part, and finally the 

system stops when the second part is held by the first part.  
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Figure 3.25. The caps holding the parts 

 

Similarly in the closing sequence, the fifth part starts to move back. When it reaches the 

inside wall of part four, it starts to push it too. When part five and four reach the inside 

wall of part three, part four pushes part three too. In this way, the parts push each other 

back, until the second part has reached the inside wall of the first part. In this position 

the device is closed and all parts rest in the first part. Below in Fig. 3.26, it can be seen 

how the links move and the system works.    

 
Figure 3.26. View of the mechanism while opening 
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In the mechatronic drag reduction device it is important that the links, which 

opens and closes the system, are capable of handling with the forces that occur during 

their work. In order to prevent any unwanted situations, the links must be chosen of 

right material. In order to choose the material for the links, a force analysis on the links 

is made. The analyses are made for one link, since the other link will be the same.  

 As it can be seen in Figure 3.27, in order to calculate the reaction forces at the 

points A and C, the drag force has to be determined. The analysis is made for the open 

position of the mechanism. The Drag Force (Fd) is found out to be around 2000 N, 

while moving at 160 km/h. Since the system is designed for maximum 130 km/h, a 

factor of safety of 1.23 is taken applied in the calculations. The links are identical and 

symmetric about the center, therefore the drag force affecting each link is 1000 N. The 

lengths of the links are 0.749 m.  

As the material for the links and sliders, there were choices available such as 

steel, iron and aluminum. In this project it was important to select a material with a high 

strength to weight ratio. This means that a lightweight material with high strength was 

required. Therefore amongst the other material types, Aluminum 1100 is chosen. The 

main reason of choosing this type of material is that, it has satisfying strength and is 

very light when compared to steel. The specific properties of this material are given in 

Table 3.5.   

 

Table 3.5. Material properties of Aluminum 1100 

Aluminum 1100 

Shear Strength  62,1 MPa 

Elastic Modulus (E) 68,9 GPa 

Shear Modulus 26 GPa 

Ultimate Bearing Stress 159 MPa 

Tensile Yield Stress 34,5 MPa 

Shear Yield Stress 19 MPa 

 

The force analysis according to the first link is shown below.  
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Figure 3.27. Free body diagram of links 

 
Equilibrium of forces along y direction; 
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Equilibrium of forces along y direction; 
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So, the resultant reaction force at points A and C becomes;  
 

NFF CA 1390≅=  
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The shear stress occurring at the pins (Fig. 3.28) is found as; 
 

 
 

Figure 3.28. Shear stress at the pins 
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The deflections of the links are calculated (Fig. 3.29); 
 

 
Figure 3.29. Deflection in the links 
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By replacing the material properties of Aluminum 1100, the deflection becomes; 
 

m
GPa
MPa

y 749,0
26
97,0 ×=∆  

 
my 9105,6 −×≅∆  

 
 
 
The Bearing Stress in the links; 
 

b
Bearing A

F=σ     

 
Where Ab is the Bearing surface (Fig. 3.30.),  
 

 
Figure 3.30. Bearing stress in the link 
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 These calculations are made for the critical components; therefore it is assumed 

that if these results provide an enough factor of safety, the other parts will be safe too. 
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When comparing the results found above with the material properties in Table 3.3. it 

can be clearly seen that the chosen material is suitable for the job (Table 3.4).  

 

Table 3.6. Comparison table  

Calculated Values Critical Values Factor of Safety 

1,97 MPa 19 MPa n= 10 

1,61 MPa 159 Mpa n=99 

 

 Another design consideration is the determination of the motor and the threaded 

shaft. In determining these parts, the most important point is that the torque of the motor 

will be enough to turn the shaft and resist the axial force along the shaft. Since, the 

greatest torque will be required during the opening phase; the calculations are made in 

the open state. Therefore the axial force which the motor must overcome is found, in the 

previous section as Ax, as 966 N.  

 The thread is chosen as a square thread, which is mainly used in this kind of 

applications especially in jacks. The properties of the thread are as follows; 

 

Major diameter, d = 30 mm 

Pitch, p, = 4mm, double threaded 

Coefficient of friction, � = 0.08 

F = 966 N 

 

The mean diameter, dm becomes; 

 

mm
p

ddm 28230
2

=−=−=  

 

The lead becomes; 

 

mml 842 =×=  

 

The torque is calculated according to the below equation, which is the formula 

for jacks torque requirement against the load condition.  
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From this result it can be said that a motor with a torque of 3 Nm, will be enough for 

opening and closing the device.  

 

3.6. Design of the Electronic Control Unit 

 

 The basic operation of the electronic control unit is to provide the 

communication between the device and the vehicle and to control whether the device 

works properly. In this project it is not intended to provide a detailed electronic circuit 

layout for the system. The scope of the electronic design is to identify the operation of 

the electronic control unit and establish a logical frame for it.  

 Generally, in most mechatronic systems and devices, the basic task of its 

electronic system and the control unit is to provide smooth working of the mechanical 

parts. From this point of view, it can be easily said that, the electronic control unit of 

this device should be able to control the device parts’ opening and closing motions. 

Therefore the control unit has to control the motor. However, controlling the motor 

requires a communication and a decision center, which must be able to decide whether 

to open or not. Since the device is going to be a smart system, it has to control some 

parameters during the operation. The most important parameter which the device has to 

keep track of is the outside wind speed, or the vehicle speed. According to these values, 

the control unit estimates the drag force on the vehicle and decides whether it is 

necessary to open the device or not. The vehicle’s speed can be obtained by using a 

tachometer and the wind speed can be obtained by air speed measuring devices. If the 

threshold drag or velocity value for drag or air has been exceeded, then the device 

decides to open itself. Similarly if the vehicle slows down, then the device automatically 

closes itself. Alternatively, a direct connection to the driver cabin can also provide a 
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manual control over the device. In this way the driver acts like a supervisor over the 

device, and in urgent situations, takes total control over the device.  

 The electronic control unit also has to take care of the device during opening and 

closing sequences. Since the opening and closing mechanism is operating in a step by 

step way, a problem in one step could cause problems in the rest of the operation. 

Therefore, the control unit has to monitor the mechanism for any problems. Some type 

of switches placed between the parts could give feedback about the position and 

condition of the device. In the case of a problem, the control unit should alarm the 

driver.   

 

3.6.1. The Sensors 

 

 Sensors are used to determine the air speed. A sensor is placed onto the front of 

the vehicle, in order to receive the airflow that would be experienced by the device. The 

sensor transmits an amount of voltage proportional to the air speed, to the electronic 

circuit, where it is further processed.  

 

3.6.2 The Circuit  
 

 The electronic circuit is the core of the electronic system. It is based on 

microcontroller technology. The main element is a PIC (Programmable Integrated 

Circuit) microcontroller. The function of the PIC is to calculate the drag force on the 

vehicle according to the received values from the sensors. The drag force is calculated 

according to the general drag force formula as depicted in (1.1). The V values are 

obtained from the air speed sensors. When the vehicle starts to increase its speed, the air 

speed sensors will experience faster airflow. Thus, the drag forces calculated by the 

circuit will become higher. When a certain amount of magnitude in force has been 

exceeded, the microcontroller will send signals to the drag reduction device and give the 

ON command. Similarly, if the vehicle starts to slow down and the drag force decreases 

below a certain limit, the microcontroller will send the OFF command. In this way a 

simple control algorithm is used to control the drag force acting on the vehicle.  
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3.6.3. The Motor and Switches 

 

 The motor is the actuating device that will bring the mechanism into motion. It 

is controlled by the signals of the microcontroller and driven through a motor driver 

circuit. The requirement of the motor is that, it must be strong enough to open the 

system. In choosing the motor, it is considered that the device should be able to open at 

higher speeds, where the drag force also has a remarkable effect on the device. 

Therefore a motor with the required torque calculated in the previous section is 

required.   

 The switches are placed inside the device between each stage. The idea is to 

control whether all stages of the device have been fully opened. The switches also give 

feedback to the microcontroller so that it knows at which stage the device is and 

whether it is fully opened or not. If the signals from all the switches are successfully 

sent to the microcontroller, the microcontroller concludes that the device is opened (or 

closed) and sends the STOP command to the motor.  
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CHAPTER 4 

 

DEVICE TESTS 

 

4.1. The Purpose of Testing the Device 

  

 Today almost any fluid flow problem can be simulated in computer software. 

The benefits of these simulation soft wares have been widely discussed in the previous 

section. It is sure that the simulation results give a good estimate on the flow 

phenomena and the results. Simulation results may in some cases greatly coincide with 

the real world results, but in some cases the results can be quite different. Therefore, in 

most research projects dealing with fluid dynamics, firstly an investigation of the 

problem and solutions are carried out in computer environment. This greatly speeds up 

the phase where some solutions and questions about the problem are asked. In other 

words, computer simulation has a very important effect in understanding the problem 

and getting answers to the different “If, What” questions. After the solution is greatly 

evaluated by software simulations, then the validations of these results are made by 

using wind tunnels or other real condition tests. The main advantage of such a 

procedure is that, it saves the researcher a considerable amount of time, since doing all 

of the preliminary tests in wind tunnels would be a huge time, money and effort 

expense.  

 The importance of wind tunnel tests can not be neglected. The easiness and wide 

range of possibilities in simulation software is a major advantage, but since solutions 

are obtained through ideal conditions and through mathematical expressions they are 

just estimates for the real conditions. Therefore the same tests are also conducted in 

wind tunnels to validate the computer simulation results and obtain more realistic 

solutions.  If very carefully conducted wind tunnel tests can achieve an accuracy of 

about 90%. To perform a useful wind tunnel test, the data obtained from the model 

should be scalable to obtain forces, moments and other dynamic forces that would exist 

on the full-scale prototype. There are two basic requirements which must be satisfied in 

wind tunnel testing.  
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 The most obvious requirement is that the model and the prototype should be 

geometrically similar. That is the relative dimensions in model and prototype should 

have a constant scale factor. 

        The other requirement is that the model and prototype flows must be kinematically 

similar. This condition is achieved when the velocities in the flows, in both model and 

prototype, have the same direction and magnitude which are proportional by a constant 

scale factor at each corresponding point.  

 Two flows are dynamically similar when both flows have kinematic and 

geometric similarity. In dynamically similar flows, the identical forces are parallel at 

each corresponding point and are proportional by a scale factor. In order to achieve the 

dynamic similarity between the flows, all forces important to the flow must be 

considered.  

 The test conditions must be established in such a way that the related forces 

between the model and the full-scale prototype must be scaled by a constant factor. 

Only when these conditions between the flows are established, data obtained from the 

wind tunnel test may be related quantitatively to the prototype flow. To ensure the 

dynamic similarity between the flows, dimensionless analysis show that the Reynolds 

numbers in both cases must be the same. In the case of predicting the drag force on a 

sphere, the results obtained from the model flow can be related to the prototype flow by 

using the relation of dynamic similarity.   
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As long as the Reynolds numbers are matched, the tests can be conducted in different 

conditions.   
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 In wind tunnel tests, several factors which greatly affect the results must be 

considered well. One of them is the detail level of the model geometry. More detailed 

models which are close to the full scaled prototype may give more accurate results. 

However, generally this is not the case since all of the details can not be provided in 

small scaled models. Another important point is the selection of the proper scale for the 

model. The scale must be chosen according to the wind tunnels test section properties. 

The wall and ground floor effects are important factors that are affecting the flow of the 

model. The Blockage Ratio must be considered carefully when determining the scale. 

The blockage ratio is defined as the ratio of the model frontal area to the test section 

cross sectional area. The blockage ratios can vary according to the conditions, but a 

value of 5% is sufficient. 

 The above explained requirements and facts about wind tunnels are thoroughly 

examined during the research. Apart from the computational simulation, a wind tunnel 

test was also considered important. In order to provide a test solution for our project, a 

small scaled Low Speed wind tunnel construction was evaluated. The requirements of 

the wind tunnel test section depending on the model size are listed in Table 4.1.   

 

Table 4.1. Wind tunnel requirements for different scales 

Scale  Air Speed (km/h) Test Section Cross Section (m2) 

1/50 6000 0,036 

1/25 3000 0,146 

1/10 1200 0,911 

1/5 600 3,643 

1 120 91,086 

 

 In order to match the Reynolds numbers, as the model gets smaller in size, the 

required air speed inside the test section increases. Also, depending on the model size, 

the test section cross sectional area, calculated upon a blockage ratio of 5%, changes. 

According to results it can be said that as the model gets smaller, a smaller wind tunnel 

is required. However, in a smaller wind tunnel the required air flow speed, to establish 

the dynamic similarity, increases dramatically, and vice versa.  

 Considering the situation and available chances, it was decided that matching 

the Reynolds number in the wind tunnel would be a very expensive and tedious task. As 
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it is seen from the table above,  in the case of very small models, the amount of air 

speed which needs to be provided in order to match the Reynolds numbers becomes 

very high. According to this criterion the maximum air speed required in this project 

would be 6500 km/h, for 130 km/h simulation. Unfortunately constructing a wind 

tunnel capable of these speeds is not possible in this project. However, since the 

important point in doing this wind tunnel tests is to compare the efficiency of different 

devices on the model, the unmatched Reynolds numbers will not cause a great issue. 

The differences of the drag forces with each different device attached will show the drag 

reduction ratio of the devices. However since the Reynolds numbers are not matched, 

the corresponding drag forces on the original model can not be estimated.  

 The tests will be done on a 1:50 scaled model bus, which was used as the model 

in the computer simulations. Since the efficiency of the device and its effect on the air 

flow, depends on its shape, the wind tunnel tests will be carried out with a passive 

device. This means that, the device will not be a mechatronic device, but it will be an 

aluminum block, which is modeled after the determined shape of the device, attached 

onto the front of the bus. In order to conduct the tests, a simple wind tunnel will be 

constructed capable of testing the model bus and device.  

 

4.2. Wind Tunnels 

 

 Wind tunnel tests are very important in getting information about fluid 

dynamics. The very early wind tunnels were used in the aviation area, to measure the 

drag and lift characteristics of different wing types. Since then, wind tunnels have been 

in use in many different areas, including the automotive industry and other special 

purposes. Basically, the purpose of a wind tunnel test is to get information on how the 

tested object reacts to air flow. The objects to be tested can be full scale or model 

vehicles, building models, ship models or even small city models. Today airplanes and 

race cars are thoroughly studied with wind tunnel tests. However, it should be also 

known that wind tunnel tests can not be 100% accurate in simulating real world 

conditions. In fact, in wind tunnel tests a laminar flow is applied to the object, but in the 

real world the flow is always in a turbulent form. This makes the wind tunnel test results 

not identical to the real case. However, in the case of very improved wind tunnels 

almost 90% of the real conditions can be produced, which means that the obtained 
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results can greatly represent the real values. Wind tunnels are constructed according to 

what purpose they will serve. There are very large wind tunnels in industrial use and in 

important research centers. There are also smaller wind tunnels in universities and 

schools for educational purposes.  

 Wind tunnels can be distinguished according to their speeds. For example, wind 

tunnels testing airplanes and jets are called as Supersonic wind tunnels. These tunnels 

are able to produce air speeds higher than the speed of sound. On the other hand wind 

tunnels which produce rather slower air speeds for testing ground vehicles and other 

objects are called as Low Speed wind tunnels. Wind tunnels can be also divided 

according to their operation principles. According to this criterion, wind tunnels can be 

either Closed Loop or Open Loop type wind tunnels.  

  

4.2.1. Closed Loop Wind Tunnels 

 

 Closed loop type wind tunnels circulate the air in a closed loop (Fig. 4.1). In this 

type of tunnel the air is turned at the corners by means of turning vanes. In closed loop 

tunnels the power loss is less when compared with the open loop tunnels. The major 

advantage is that the flow can be controlled better, and hence a more laminar and less 

turbulent flow condition can be achieved. However, these types of tunnels occupy more 

space and require special attention with the turning vanes and guides inside the tunnel. 

Leakage is also another important factor which has to be handled carefully. Closed loop 

wind tunnels are mainly used in big facilities where full scale tests can be performed. 

Expensive construction costs make these types of tunnels difficult to be used in small 

scale research activities.  
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Figure 4.1. Closed loop type wind tunnel 

 

4.2.2. Open Loop Wind Tunnels 

 

 Open loop wind tunnels have a rather simple operation principle. The basic 

difference between open loop and closed loop wind tunnels is that, in open loop tunnels 

the inlet and exit of the tunnel is connected to the atmosphere (Fig. 4.2). This means that 

in this type of wind tunnel surrounding air is taken into the tunnel and let out at the exit. 

This type of wind tunnel is rather uneconomical when compared with the closed loop 

type tunnel. Another disadvantage is that the flow inside the test section is coming with 

an outside turbulence; it is not a quality laminar flow. However, this type of tunnel is 

easy to construct and has very low construction cost when compared to the closed loop 

tunnel.  

  

 
  

Figure 4.2. Open loop type wind tunnel 
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 After carefully investigating both types of wind tunnels and considering the 

goals of the project, it was decided that a small scale open loop type wind tunnel would 

fit into this project. In the next chapter the design of the wind tunnel and its parts will be 

explained.  
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CHAPTER 5 

 

DESIGN OF THE WIND TUNNEL 

 

5.1. Parts of the Wind Tunnel 
 

 An open loop wind tunnel consists basically of five parts. These parts are called 

as the settling chamber, contraction cone, test section, diffuser and fan section. The size 

of the wind tunnel depends on the size of the test section. The size of the test section is 

determined according to the size of the object to be tested. In other words, the size of 

the wind tunnel is determined according to the size of the object. In the following 

sections, the design of the wind tunnel parts is explained. 

 

5.1.1. Test Section 

 

 The test section is the section where the test object is placed and the desired 

measurements are made. The starting point of a wind tunnel design is generally the 

determination of the test sections size. The sizes are determined according to the size of 

the object to be tested. When determining the test section size, one must take Blockage 

into consideration. Blockage is defined as the ratio of the largest cross sectional area of 

the model along the flow direction to the cross sectional area of the tunnel. According to 

the blockage ratio, the size of the tunnel cross section must be large enough so that the 

effect of the side walls and the blockage effect of the object do not cause significant 

errors. Today wind tunnels have different blockage ratios, ranging from 10% to 5%. In 

this project it is decided that a blockage ratio of 5% is going to be applied. The cross 

sectional area of the model bus, which is going to be used, is found to be 0.0032 m2. 

Therefore in order to achieve the blockage condition, the size of the test section is 

determined as 30x30 cm (Fig. 5.1). In this case the cross sectional area of the test 

section will be 0.09 m2, and 5% of this area corresponds to 0.0045 m2. As it can be 

easily seen the area occupied by the model is less than the blockage ratio times the cross 

sectional area of the tunnel. After the determining the area of the test section, the length 

of the test section is determined. The important factor in determining the length for the 
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test section is to have enough length for the flow to combine after it has passed the 

model. Therefore, for the model bus having a length of 25 cm, the length of the test 

section is decided as 60 cm. In order to have good visibility during the tests, the tests 

sections side plates are made out of Plexiglas.    

 
Figure 5.1. The test section 

 

5.1.2. Contraction Cone 

 

 The purpose of the contraction cone is to take the low velocity air coming from 

the settling chamber and accelerate it by passing it through a smaller area to the test 

section. It is also important that the contraction cone accelerates the high volume, low 

velocity air with less turbulence. How much the air will be accelerated depends on the 

contraction ratio. The contraction ratio is the ratio of the inlet and outlet areas of the 

contraction cone. Keeping the contraction ratio high, will make the air accelerate more, 

but the occupied space of the contraction cone will become a problem. Different wind 

tunnel designs have different contraction ratios. In this wind tunnel design, a rather 

moderate contraction value, a 9:1 ratio is applied. According to this ratio, one end of the 

contraction cone, the one connected to the test section, is of 30x30 cm. The larger end is 

of 90x90 cm (Fig. 5.2). The length of the contraction cone is determined as 60 cm. The 

curvature of the contraction cone is designed such that the air will flow smoothly 

through it.   
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Figure 5.2. The contraction cone 

 

5.1.3. Diffuser  

 

 The diffuser lies between the test section and the fan. The primary purpose of 

the diffuser is to slow down the air speed, as it comes out from the test section. The 

diffuser also prevents the air stream from turbulating and entering back into the test 

section. It has a cross section which gradually changes from a square to a circle with an 

inner diameter of 56 cm (Fig. 5.3). At the end of the diffuser the fan is placed. 

According to some previous wind tunnel design notes, the departure angle of the 

diffuser is taken as 4 degrees. The length of the diffuser then becomes 186 cm.   

 



 72 

 
Figure 5.3. The diffuser 

 

5.1.4. Settling Chamber 

 

 The settling chamber is placed before the contraction cone, where the air enters 

the wind tunnel (Fig. 5.4). The purpose of the settling chamber is to straighten the 

airflow and reduce the turbulence. In order to have a laminar flow condition inside the 

test section, the settling has some flow conditioning devices in it. These devices 

basically prevent the swirling inside the airflow and make it flow in one direction along 

the tunnel. Honeycomb flow straighteners (Fig. 5.5) are placed inside the settling 

chamber. Other than the Honeycomb structures, two wire mesh screens are also 

inserted, in order to smooth the airflow.  
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Figure 5.4. The settling chamber 

 

 

 

 

 
Figure 5.5. Honeycomb flow straighteners 

(Source: Web_9, 2006) 

 

5.1.5. Fan  
 

 In a wind tunnel the force that drives the air through the tunnel is produced by a 

fan. It is important that the fan is selected so that it can produce the desired air speed 

inside the test section and meet the pressure losses inside the tunnel. In this project the 
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maximum air speed inside the test section is determined as 30 m/s. According to this 

value, the air flow rate that the fan must have can be easily computed as below. 

                                                Q (m3/h)= V (m/s)x A (m2)x(3600s/h)                         (5.1) 

 

Where Q, represents the air mass flow rate, V the air speed and A the cross sectional 

area of the test section. If we put the V and A values into equation (4.1), then the air 

mass flow rate is found as 9720 m3/h. Also, taking into account the pressure losses in 

the system, it was decided that a fan capable of producing at least 10 000 m3/h air flow, 

could be used as the driving unit for the tunnel.  

 

5.2. Manufacturing of the Wind Tunnel 
 

 The manufacturing of the parts explained in the preceding sections, were done 

by a local enterprise. The wind tunnel parts were made out of sheet metal, by forming 

processes. The parts of the wind tunnel are separately manufactured and dyed. By 

bolting the parts together the wind tunnel will look like in below figure (Fig. 5.6). 

 

 

 
Figure 5.6. 3D view of the wind tunnel 
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The Fan used in the wind tunnel is a suction type centrifugal fan. It is operated by a 2.2 

kW, 1400 rpm and three phase alternative current motor (Fig. 5.7).  

 

 
Figure 5.7. The Fan 

 

 In order to be able to control the air speed inside the tunnel a frequency 

controller for the fan is required. The frequency controller basically enables the user to 

decrease or increase the drive speed of the fan. Therefore, a 2.2 kW fan frequency 

controller from Siemens has been obtained (Fig. 5.8).  

 

 
Figure 5.8. The frequency controller of the fan 
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 The honeycomb flow straighteners are made out of metal stripes in rectangular 

shapes (Fig. 5.9)  

 

 
Figure 5.9. Flow straighteners inside the settling chamber 

 

 After connecting the test section to the diffuser and contraction cone, and the fan 

to the diffuser, the wind tunnel looks like below (Fig. 5.10) 

 

 
Figure 5.10. The wind tunnel  
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CHAPTER 6 

 

WIND TUNNEL TESTS 

 

 The wind tunnel tests are made with 3 different device shapes. These shapes are 

the ones which were obtained through the design stage (Fig. 6.1). The devices to be 

used in the tunnel tests are manufactured from Aluminum (Fig. 6.2) and attached to the 

model bus and the corresponding drag forces are measured.  

 
Figure 6.1. The 3d models of the devices tested in the wind tunnel 

 

 

 
Figure 6.2. The aluminum devices tested in the wind tunnel 
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 The resulting drag forces are measured with a force measuring system (Fig. 6.3).  

The force measuring system consists of a lab scale and a weight. Inside the test section, 

the bus is connected to a string. The string goes around a pulley and its other end is 

attached to a weight. When there is no air flowing inside the tunnel, the scale will read 

the weight of the mass hanging on the string. However, as soon as the air speed  

increases in the tunnel, the drag force will push the bus backwards and cause the weight 

to lift, thus changing the scales measurement. In this way it will be possible to see how 

much drag force is affecting the bus at different speeds and with different devices 

attached. In this way a comparison between the different test speeds and device shapes 

will be possible.  
 

 
Figure 6.3. 3D view of the force measurement system 

 

 In the wind tunnel, the system is constructed by using a pulley made in the 

machine shop and a scale with ±1 gram tolerance (Fig. 6.4).  

 

  



 79 

 
Figure 6.4. Force Measurement System 
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CHAPTER 7 

 

TEST RESULTS 

 

 The wind tunnel tests were conducted at different air speeds ranging from 55 

km/h to 115 km/h, in 5 km/h intervals. The drag force occurring on the bus is measured 

in the case of the plain bus, and with the three devices attached. Before conducting the 

experiments it was estimated that the results would coincide with the simulation results.  

The wind tunnel tests were conducted six times for each device type and then the 

average results are used to compare the devices. The obtained average results for the 

different devices are given in below table. The forces are read as grams from the scale 

and converted to Newton using the equality of 1kg 	 10N.   

 

Table 7.1. Wind tunnel test results 

 Drag Forces (N) 

Air Speed (km/h)  Device A Device B Device C Plain Bus 

55 0,13 0,12 0,09 0,09 

60 0,18 0,16 0,12 0,14 

65 0,23 0,20 0,16 0,19 

70 0,27 0,26 0,21 0,24 

75 0,32 0,31 0,26 0,30 

80 0,37 0,36 0,32 0,36 

85 0,43 0,42 0,37 0,43 

90 0,50 0,48 0,44 0,50 

95 0,57 0,54 0,52 0,58 

100 0,64 0,62 0,59 0,66 

105 0,70 0,69 0,66 0,73 

110 0,76 0,74 0,72 0,79 

115 0,82 0,79 0,78 0,86 
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Wind Tunnel Test Results
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Figure 7.1. Wind tunnel results for the tested devices 
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Figure 7.2. Amount of reduced drag force with the air speed 
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Figure 7.3. Reduction rate of drag force with air speed 
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Figure 7.4. Coefficient of drag values at each speed level
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 As it can be clearly seen from the test results, the flow around the bus is 

changing when the devices are attached to it. At lower speeds it is noticed that the plain 

bus achieves less drag force than the other two devices but as the air speed increases, 

the results change as expected (Fig. 7.1). That is, the drag force acting on the plain bus 

is greater then the device attached cases. The unexpected situation at the lower speeds is 

arising from measurement and other system errors. This can be also better seen in 

Figure 7.2, which shows the reduction in drag force. As it can be seen for the devices B 

and C, the graph starts from the negative region, which means that they increase the 

drag force. However at higher speeds, more specifically after 90 km/h, they turn to 

reduce the drag force and show positive performance. On the other hand device C 

already starts in the positive region and it decreases the drag force up to 0.08N. In the 

plot, the fitting curves are also seen, which are polynomial functions of the third order. 

It can be seen from Table 7.2 the equations of these fitting curves and the R2. They 

show that these fitting curves greatly represent the data, since they are very close to 1.  

 

Table 7.2. Equations of the fitting curves for reduction in drag force 

 Equations of the Fitting Curves R2 

Device A y = -4E-07x3 + 0,0001x2 - 0,0084x + 0,141 0,9885 

Device B y = -3E-07x3 + 7E-05x2 - 0,0054x + 0,0868 0,9650 

Device C y = 2E-07x3 - 7E-05x2 + 0,0084x - 0,277 0,9670 

 

 In Figure 7.3, the reduction rate in drag force due to the devices can be seen and 

the equations of the fitting curves and the R2 values are represented in Table 7.3. The 

plot shows that the reduction rate settles around 8-9% at the highest speeds.  

 

Table 7.3. Equations of the fitting curves for reduction rate in drag force  

 Equations of the Fitting Curves R2 

Device A y = 0,0005x3 - 0,1369x2 + 13,815x - 464,88 0,9968 

Device B y = 0,0004x3 - 0,1273x2 + 12,329x - 395,33 0,9399 

Device C y = 0,0004x3 - 0,109x2 + 9,5826x - 259,88 0,5992 
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 The change in the coefficient of drag values and the corresponding fitting 

functions are represented in Figure 7.4 and Table 7.4. They show that the Cd values 

change with the air speed.  

 

Table 7.4. Equations of the fitting curves for Cd values 

 Equations of the Fitting Curves R2 

Device A y = 1E-08x3 - 4E-06x2 + 0,0006x - 0,0102 0,9654 

Device B y = 6E-09x3 - 3E-06x2 + 0,0005x - 0,0106 0,9878 

Device C y = -2E-08x3 + 2E-06x2 + 5E-05x - 0,0017 0,9970 

Plain Bus y = 1E-08x3 - 6E-06x2 + 0,0008x - 0,0229 0,9960 

 

 

 Normally, the Cd values should be the same at each speed level, since it is a 

constant value. This reason for these changing Cd values is that, the Reynolds numbers 

were not matched inside the wind tunnel. Therefore the Cd values changed during the 

tests. However, it should be noticed that the Cd values are becoming close to each other 

as the air speed increases. This is occurring because of the nature of bluff bodies. Since 

a bus is also a bluff body, the coefficient of drag becomes constant after some point. 

The fitting curves also show that their slope becomes smaller. That is, the drag force 

acting on the plain bus is greater then the device attached cases. The unexpected 

situation at the lower speeds is arising from measurement and other system errors.  

 The wind tunnel results showed that placing the devices at the front of the bus 

has positive effects on reducing the drag force. It was expected to have such an 

improvement in drag force reduction. Especially the third device, that is the device C, 

which was selected as the most efficient design in the computer simulation, showed also 

in the tunnel tests the best reduction rate. The drag force reduction rates of the devices 

after the point all devices produce positive reduction rate, are listed in below table.  

 

Table 7.5. Drag force reduction rates 

Device Type Drag Force Reduction Rate (after 85 km/h) 

Device A 2,5% 

Device B 5,6% 

Device C 10,7% 
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 It is seen that the third device has achieved a reduction in drag force of about 

11%. This amount of reduction is very close to the results of the computer simulation, 

which was 12%. This shows that the wind tunnel data almost coincides with the 

computer simulation results.  
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CHAPTER 8 

 

 CONCLUSION AND FUTURE WORKS 

 

 In this research project, it was investigated what effect a drag reducing device 

applied on the front of a bus, has in terms of drag force reduction. Study showed that by 

only reducing the front drag, the overall drag force can be reduced. As opposed to other 

passive drag reduction devices, a mechatronic system was designed as a drag reducer. 

Initially the drag reduction device is simulated totally in the computer environment. The 

fluid dynamics simulation of the device under different flow conditions has been 

investigated and an efficient device shape is determined. Afterwards, to validate the 

simulation results and observe the real flow condition, a small low speed wind tunnel 

has been constructed. Testing three different devices in the wind tunnel showed that 

they have an effect on the drag force. Wind tunnel test results showed that the different 

geometrical shapes of the devices have different effect on the air flow, and thus cause 

different amounts of drag force reduction. Test results for the tested three devices 

showed a reduction in drag force as 3%, 8% and 11%. These results indicate that the 

mechatronic drag reduction device can have important effects on the drag force 

reduction and fuel savings in busses.    

 In the first chapter it was seen that a lot of research has been done on drag force 

reduction and all of them have reported different amount of success. The next step in 

drag reduction research should be combining different drag reduction devices into one 

system.  

 This project can be carried on by modifying this design to trucks and tractor 

trailers. In this way, the drag reduction device will be applicable to more vehicles and 

from economic point of view; a bigger success can be achieved. Looking at the 

mechatronic drag force reduction concept, from a very different point of view, it can be 

suggested that this concept might be useful for tall buildings and skyscrapers, where at 

high stages the air streams become important. A device, in a similar concept, attached 

on to a building could reduce the drag force on the building in high wind speed 

situations.  
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 The mechatronic drag reduction device is designed for the reduction of the front 

drag. However, the base drag occurring at the back of the vehicle has also major effects 

on the total drag. Therefore an improved design which deals with both the front and 

base drag can be investigated. In order to achieve the base drag reduction, a mechatronic 

device acting like base plates can be designed and attached at the back of the vehicle. In 

such a combination of devices, the air flow around the vehicle will be more under 

control, which means less turbulence and less drag force.  

 Another research direction can be the treatment of the underbody of heavy 

vehicles. An important problem in tractors and trucks is that the gap between the vehicle 

and the ground is relatively high when compared with busses. During the trip, airflow 

enters the underbody and increases the drag force. This problem can be solved by 

designing a mechatronic system, which covers the sides of the vehicle and prevents the 

air from flowing in. In this way the wheels of the vehicle can be also enclosed with the 

mechatronic system. Simply, the mechatronic system will work as a curtain, which 

opens and closes, during the trip.  

 In conclusion, success in drag force reduction can have a very big impact on 

transportation. Small improvements in the fuel efficiency of heavy duty vehicles and 

busses can turn into significant amounts of fuel savings. This in turn would have an 

important effect on the total economy. When looking from this point of view, it can be 

realized that newer research in drag force reduction could bring important advantages to 

the transportation arena.  
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APPENDIX A 

 

EQUATION CONSTANTS OF THE 2D CURVES 

 

kjxixhxgxfxexdxcxbxaxxy ++++++++++= 2345678910)(  

 

 1 2 3 
a -1,40534539215375E-25 -6,99773191329921E-26 6,65812915415760E-25 
b 9,94998126802744E-22 4,84375877245302E-22 -3,90279686497418E-21 
c -3,06256432416883E-18 -1,44949434040106E-18 9,62769684849071E-18 
d 5,37359518844703E-15 2,46023205869615E-15 -1,29555563189788E-14 
e -5,92006166823590E-12 -2,61438738329730E-12 1,02583916856241E-11 
f 4,24951203362301E-09 1,81528614724480E-09 -4,74155116189202E-09 
g -1,99561643669828E-06 -8,38029784905916E-07 1,12198444862505E-06 
h 6,00212175668062E-04 2,59486471683356E-04 -3,97638102568671E-05 
i -1,11066657494011E-01 -5,53584372328490E-02 -4,38747201811742E-02 
j 11,95132158743 8,29827389339269 10,2597613900575 
k 1,01854769561967E-03 1,73273416878128E-02 8,29150996274857E-02 

 
 
 
 
 
 
 

 4 5 6 
a -6,37116230064170E-26 -9,53088724811969E-26 -1,73895668479268E-26 
b 4,46177621564911E-22 6,66649689617561E-22 1,19220942212895E-22 
c -1,35558206948189E-18 -2,02214175076168E-18 -3,58696855392731E-19 
d 2,34677147913984E-15 3,49132299679159E-15 6,29727707430116E-16 
e -2,55905169515651E-12 -3,78851227076187E-12 -7,27114047131429E-13 
f 1,83814398426579E-09 2,69609227014050E-09 5,92389216355748E-10 
g -8,87743146474176E-07 -1,27902571056171E-06 -3,55679533746278E-07 
h 2,91991096398279E-04 4,06631983970680E-04 1,59592258504626E-04 
i -6,70595966039148E-02 -8,79033043786645E-02 -5,24387258822675E-02 
j 10,6039768811366 12,7670857210645 10,9508220307748 
k 6,54070471876524E-03 9,01517358942769E-03 2,36147450430986E-03 
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 7 8 9 
a 1,34394050493312E-25 1,08370356222471E-25 1,98083807799831E-25 
b -9,35770692627377E-22 -7,60980951347334E-22 -1,37360540281631E-21 
c 2,80776628583208E-18 2,30279133810263E-18 4,10835597827636E-18 
d -4,73841686776784E-15 -3,91815953236423E-15 -6,92169641413158E-15 
e 4,91372978611321E-12 4,09172636321310E-12 7,18471547566566E-12 
f -3,19606103404341E-09 -2,67083890283670E-09 -4,70175230249814E-09 
g 1,25674648412853E-06 1,04231552443770E-06 1,88312970038799E-06 
h -2,52926525963325E-04 -1,97438353276255E-04 -4,04064094969398E-04 
i 2,39838680540150E-03 -7,11533562336214E-03 1,81168131223705E-02 
j 8,6776262274357 9,9013000964824 9,3147236586731 
k -1,17162952165434E-02 -9,08317771952424E-03 -1,58693248459995E-02 

 
 
 
 

 
 10 11 12 

a 1,26646250287409E-25 -2,27363760633644E-25 2,94678417101154E-25 
b -8,87778209108963E-22 1,26488179740777E-21 -2,05578687504103E-21 
c 2,68035036478176E-18 -2,85656071695737E-18 6,18318762426199E-18 
d -4,54635507797434E-15 3,29497803688950E-15 -1,04732695282538E-14 
e 4,72643161946719E-12 -1,93538027636335E-12 1,09327759204704E-11 
f -3,06322662697095E-09 3,99471436750234E-10 -7,20713401749308E-09 
g 1,17943662771534E-06 1,06744398669290E-07 2,92531371632042E-06 
h -2,14608672086150E-04 -3,10490144902836E-05 -6,52526899307047E-04 
i -1,22200907780952E-02 -2,81096478597611E-02 4,30274752224175E-02 
j 11,9531418711739 12,9965602297075 10,4213047143927 
k -1,10245562763070E-02 -5,45356770825832E-02 -2,74679879311419E-02 

 

 

 

 13 
a 3,41725152926695E-25 
b -2,37880883943359E-21 
c 7,13595695943066E-18 
d -1,20486821912985E-14 
e 1,25286274655294E-11 
f -8,21979999651725E-09 
g 3,31641132885069E-06 
h -7,34229611613212E-04 
i 4,81317551585442E-02 
j 11,4241597545403 
k -3,29053963831731E-02 
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APPENDIX B 

 

EQUATION CONSTANTS OF THE 3D SHAPES 

kjxixhxgxfxexdxcxbxaxxy ++++++++++= 2345678910)(  

 
 Extrusion Curve (8,5%) 

 
 Cut Curve (8.5%) 

a -1,08673554464251E-24 a -2,71823059605449E-28 
b 6,76662800070080E-21 b 3,32992186637645E-24 
c -1,81418737416540E-17 c -1,78240194249921E-20 
d 2,74119182665908E-14 d 5,47477606551021E-17 
e -2,56586335503994E-11 e -1,06562956735571E-13 
f 1,54090978203979E-08 f 1,36957293925969E-10 
g -5,95209802937551E-06 g -1,17525555452718E-07 
h 1,44647528134323E-03 h 6,67448475703154E-05 
i -2,12001725993415E-01 i -2,44957487989376E-02 
j 17,40728256805380 j 5,55710739671287 
k 0,86056226830359  k 0,16009196843718 

 
Extrusion Curve (10,2%)  Cut Curve (10,2%) 

a -3,28647907106386E-25 a -5,03460983567601E-28 
b 1,99352153446352E-21 b 6,16667990366200E-24 
c -5,18220425005290E-18 c -3,24689282574071E-20 
d 7,54436094949344E-15 d 9,61176242533786E-17 
e -6,75163177201373E-12 e -1,75815293630692E-13 
f 3,84655278282194E-09 f 2,05990495733793E-10 
g -1,40782387205793E-06 g -1,55615091529928E-07 
h 3,34087020123503E-04 h 7,51102530810894E-05 
i -5,46976039720778E-02 i -2,29392218957108E-02 
j 6,68666761677826 j 4,42658855167444 
k 0,35861476829042 k 0,28544149737463 

 
Extrusion Curve (12%) Cut Curve (12%) 

a 2,27274594089769E-25 a -3,10286114928942E-28 
b -1,38865993735889E-21 b 3,79124204844572E-24 
c 3,60929993846428E-18 c -2,01275737841895E-20 
d -5,20270736475936E-15 d 6,09171453997543E-17 
e 4,54565996781255E-12 e -1,15885225089408E-13 
f -2,46434112428839E-09 f 1,44005142543513E-10 
g 8,05082830726229E-07 g -1,17691589074997E-07 
h -1,37550291021924E-04 h 6,23109049914090E-05 
i 2,42173717094038E-03 i -2,08294367671619E-02 
j 3,70778382054542 j 4,38245417424267 
k -0,19018406390805  k 0,30834253888755 
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APPENDIX C 

 

SOLIDWORKS® AND COSMOS FLOWORKS® 

 

 The design of the mechatronic drag reduction device was entirely made in 

SolidWorks. The three dimensional model of the bus and the mechanism of the device 

is simulated inside Solidworks (Fig. A.1). Then the fluid dynamics analysis of the 

model is made in Cosmos FloWorks (Fig. A.2).  

 

 

 
Figure C.1. Mechanism design in SolidWorks 

 

 

 

 

 

 



 96 

 
Figure C.2. Flow simulation in Cosmos FloWorks 
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APPENDIX D 

 

STRENGTH ANALYSIS 

  

 The strength analysis of the links used in the mechatronic drag reduction device 

is made by using CosmosXpress, which is a static strength analysis tool for SolidWorks. 

The links are tested under varying load conditions and modified according to the 

analysis results. Below figures show how the links may deform under excessive loads.  

 

 
Figure D.1. Deformed shape of link 

 

 
Figure D.2. Deformed shape of slider 


