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ABSTRACT 

 
          From the first day it was discovered, HIV remains as one the major health 

threats of 21st century and the methods tried up to now focused on the short-term 

solutions which were efficient at blocking HIV replication, but also resulted with drug-

resistant strains, instead of methods which would completely eliminate HIV-infected 

cells from potential reservoirs. In this study, the design of a special DNA vector 

encoding a toxic protein to be expressed only in cells infected with HIV, thereby not 

damaging to healthy cells and the test of the efficacy of this vector in the cell culture 

conditions without using HIV infection was aimed. The toxic gene (suicide gene) 

presumed to create the desired effect was placed under the transcriptional control of 

HIV promoter LTR and so that the expression of the toxic gene was made dependent 

upon the tat regulator gene of HIV. In order to prevent leaky gene expression stemming 

from the basal gene expression from LTR even if it was not induced by Tat, and thereby 

having potential to damage healthy cells, the prerequisite cis-acting DNA sequences 

were cloned downstream of the toxic gene. So that, the transcripts produced could retain 

in the nucleus and would require the function of a second regulator protein ‘Rev’ which 

is a molecular chaperone for being transmitted into the cytoplasm. If the efficiency of 

this model prooved, a full-protective suicide vector will have been designed and this 

vector may be suggested to be tested in gene therapy trials of HIV infection in the 

future. 
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ÖZET 

 
          Bulundu�u ilk günden beri HIV 21. yüzyılın en büyük sa�lık tehlikelerinden 

birini olu�turmaktadır ve �u ana kadar kullanılan yöntemler HIV ile infekte hücrelerin 

tamamen elimine edilmesini sa�layacak yöntemler yerine HIV replikasyonunu bloke 

ederek etkili olan fakat ilaca dirençli su�ların olu�umuna da zemin hazırlayan kısa 

vadeli çözümler üzerinde yo�unla�mı�tır. Planlanan bu çalı�mada, infekte olmayan 

hücrelere zarar vermeyip sadece HIV ile infekte hücrelerde üretilebilecek toksik bir 

proteini kodlayan geni içeren özel bir DNA molekülünün olu�turulması ve bu vektörün 

etkinlik derecesinin HIV infeksiyonu kullanılmadan hücre kültürü ortamında test 

edilmesi amaçlanmı�tır. Arzu edilen etkiyi yarataca�ı dü�ünülen toksik gen (intihar 

geni) HIV promotoru LTR’ın transkripsiyonel kontrolu altında olacak �ekilde 

klonlanarak toksik proteinin üretimi HIV ‘tat’ regulator genine ba�ımlı hale 

getirilmi�tir. LTR promotorunun ‘tat’ tarafından transaktive edilmedi�i durumlarda da 

olu�abilen ve sa�lıklı hücrelere zarar verebilecek olan kaçak gen ekspresyonunu 

önlemek için gerekli cis-acting DNA dizinleri de kullanılmı�tır. Böylece olu�an 

transkriptlerin nukleusta alıkonması ve sitoplazmaya geçerek toksik proteini 

üretebilmeleri için ikinci bir regulator gene, moleküler �aperon ‘rev’ e de ba�ımlılı�ı 

sa�lanarak tam korumalı bir sistem olu�turulması amaçlanmı�tır. Olu�turulan DNA 

vektörünün etkinli�i kanıtlanabilirse, gelecekte HIV infeksiyonunun gen terapisiyle 

önlemesini sa�lamak için yapılan testlerde kullanımı önerilebilecek olan bir DNA 

molekülü olu�turulmu� olacaktır. 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

1.1.  AIDS Statistical Data  

 
 Following its discovery, HIV-1 remains a major threat to public health and a 

challenge of the 21st century. According to the latest updates of the reports by 

UNAIDS, approximately 40 million people are living with HIV around the world 

(Mikkelsen Henning, 2nd National AIDS Symposium 2004, symposium notes). In 

2004, estimated 4.9 million people around the world became infected and 3.1 million 

people died from AIDS. Though the beginning of the epidemic was seen in Africa, 

AIDS is, however, not confined to Africa, it is a truly global epidemic. Also in Turkey, 

the numbers of reported HIV infections have been slowly and steadily increasing and 

according to WHO estimated 5000 people are now living with HIV in Turkey 

(Mikkelsen Henning, 2nd National AIDS Symposium 2004, symposium notes). 

 

1.2. Emergence and Overview of HIV-1 Infection 

 
 Historically, the disease was recognized before the virus. In 1981, clinicians 

noted that a very rare cancer, Kaposi’s sarcoma, was appearing in young men in  New 

York and that this was associated with immune deficiency (Dimmock&Primrose, 

1994). A few of the patients with Kaposi’s sarcoma also had Pneumocystis pneumonia 

and other opportunistic infections such as mucosal candidiasis (a fungal infection), 

disseminated cytomegalovirus infection (a latent herpesvirus), and chronic Herpes 

simplex virus-induced ulcers. The common feature of the affected patients was that 

they all had evidence of T-lymphocyte dysfunction. By 1982, it was clear that a new 

disease had appeared, characterized by severely impaired immune system, its related 



 2 

opportunistic infections and cancer. It was named acquired immune deficiency 

syndrome (AIDS) (Levine, 1991). 

 The human pathogen Human Immunodeficiency Virus (HIV), previously 

termed Human T-Lymphotropic Virus III (HTLV-III) or Lymphadenopathy-Associated 

Virus (LAV), is a retrovirus with an unusually complex genetic structure (Levine, 

1991). The HIV genome encompasses not only the three structural genes (gag, pol, env) 

common to other known retroviruses, but also at least four nonstructural gene products. 

HTLV-III differs from HTLV-I and HTLV-II in many aspects of its structure and 

biology. While infection of human T lymphocytes with HTLV-I or HTLV-II often 

results in transformation and immortalization (Poiesz et al., 1980; Miyoshi et al., 1981), 

infection with HTLV-III generally leads to cell death (Sinoussi et al., 1983; Gallo et al., 

1984). 

 Characteristics properties of lentiviruses including HIV-1 and HIV-2 include 

high genetic complexity and incubation periods of months to many years before disease 

development (Coffin et al., 1992). 

 Upon infection of helper CD4+  T lymphocytes and other CD4+ cells (eg. 

macrophages) with HIV-1 which causes over 99% of human infections, after a long, 

symptomless incubation period of approximately 8 years, CD4+ lymphocytes decline to 

such a low level that the immune system can no longer function efficiently, thus 

resulting in the immunodeficiency which gives the virus its name 

(Dimmock&Primrose, 1994).  

 The most important type of regulatory T-cells are known as helper/inducer cells 

which are responsible for activating B-cells as well as nearby natural killer cells and 

macrophages. Once the helper T-cell recognizes a specific foreign antigen, it releases 

lymphokines which activate B-cells to produce the corresponding antibody 

(Radunskaya et al., 2002). Thus, the dicrease in T helper cells seen in HIV infected 

people prevents the synthesis of antibodies and this eventually results with the 

breakdown of cellular immunity. 

 Macrophages are a type of very large phagocyte that engulfs and digests foreign 

agents. Macrophages also secrete cytokines including interferon and tumor necrosis 

factor, which can stimulate more macrophages and NK cells or kill malignant cells 

(Radunskaya et al., 2002). 

 The common feature of the affected patients was that they all had T-lymphocyte 

dysfunction also lymphadenopathy (the enlargement of the lymph nodes). Decreased 
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numbers of CD4 cells and a falling ratio of CD4 to CD8 cells (helper to killer T cells) 

are the common indicators of disease progressing and once the diagnosis of AIDS is 

made, with all its symptoms, 50% of individuals will not survive for more than 1 year 

(Levine, 1991). 

 

1.3. HIV-Cell Interactions and Infection 

 
 Entry of HIV-1 into host cells requires the expression of the receptor CD4+ and 

a fusion coreceptor. Several chemokine receptors and closely related 7-transmembrane 

molecules function as coreceptors for HIV entry. Among these, the chemokine 

receptors CCR5 and CXCR4, which are the principal receptors for macrophage-tropic 

and T-cell-tropic viruses, respectively, are the most commonly used (Dorns et al., 

2003). 

 HIV has the ability to infect cells displaying the CD4 cell-surface protein. 

Although a number of cells, including B cells and certain brain and intestinal cells, 

have very low levels of CD4 on their surfaces, the two cell types most commonly 

infected are macrophages and T-helper (TH cells) (Levy, 1998). 

 HIV infection normally occurs first in macrophages (Clouse et al., 1995). At the 

cell surface, the macrophage CD4 molecule binds to the gp120 protein of HIV. The 

viral gp120 protein then interacts with another macrophage protein, the membrane-

spanning chemokine receptor CCR5 which acts as coreceptor for HIV (Bernad et al., 

2003). Individuals who express a variant CCR5 protein through homozygosity for a 32-

bp deletion in the CCR5 gene do not bind HIV and do not acquire HIV infection (Gallo 

et al., 1995).Therefore, inhibition of the interaction of HIV with CCR5 in vivo could 

have a significant effect for preventing disease progression. 

 After HIV has infected the macrophage APCs (antigen presenting cells), a 

different form of gp120 is made, which in turn binds to a different coreceptor, the 

CXCR4 chemokine receptor on T cells (Golding et al., 1996). HIV then enters and 

destroys the CD4 T-helper lymphocytes, which are responsible for cell-mediated 

inflammatory responses and B-cell help (Adachi et al., 1996). 

 Thus, HIV starts as a macrophage infection and progresses to a T-cell infection. 

The net result of HIV infection is the systematic destruction of macrophages and T 

cells, leading to breakdown of immunity. This situation has serious health 
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consequences. In a normal human, CD4 cells constitute about 70% of the total T-cell 

pool; in AIDS patients, the number of CD4 cells steadily decreases and by the time 

opportunistic infections become established, CD4 cells may be almost absent (Brock, 

Biology of Microorganisms, 2003).  

 Finally, the loss of both humoral and cellular immune function and the 

appearence of opportunistic infections caused by fungi, mycobacteria, viruses in HIV 

infected patients indicates the progression of the disease to AIDS. This results in the 

death of the patient within one year (Levine et al., 1991). 

 

1.4. Possible Treatment Methods for HIV Infection 

 
 Today’s HIV/AIDS therapy can be divided into three major classes, which are 

chemotherapy, vaccine, and gene therapy. 

 

1.4.1. The Failure of Chemotherapy 

 
 Since the discovery of zidovudine (ZDV, AZT) as an effective antiretroviral 

agent against human immunodeficiency virus type 1 (HIV-1) (Mitsuya et al., 1985), 

drug therapy has been widely used in the treatment of AIDS. However, the emergence 

of resistance mutants during antiviral drug monotherapy interrupted the value of this 

finding. The inefficient success obtained with drug monotherapy stems from three 

realities: 1) The large number of HIV virions produced daily (Markowitz et al., 1995; 

Emini et al., 1995; Ho et al., 1996), 2) The inherent variabiliy yielded by RNA virus 

replication (Coffin, 1992), and 3) The inability of available drugs to completely 

suppress replication (Richman, 1994). Combination of antiretroviral drugs targeting the 

reverse transcriptase (RT) and/or protease of HIV-1 can suppress plasma levels of the 

virus and delay disease progression in HIV-1-infected people, thus reducing the rate of 

HIV and AIDS-related mortality (Gulick et al., 1997; Hammer et al., 1997). Despite 

their ability to suppress viral replication for extended periods of time, current 

antiretroviral therapies have been unable to eradicate HIV-1 from infected people 

(Pierson et al., 2000) 

 Treatment failure related with antiretroviral resistance can be investigated under 

three categories:  
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1) Clinical failure: occurrence or recurrence of HIV-related events, 2) Immunologic 

failure: CD4 count decline to an unacceptable range and failure to adequately increase 

CD4 count, 3) Virologic failure: Incomplete virologic response or lack of response and 

virologic rebound (Nesli Basgoz, 2nd National AIDS Symposium 2004, symposium 

notes). Thus, highly active anti-retroviral therapy (HAART) can suppress the level of 

detectable HIV in the circulation but does not eliminate integrated provirus from 

peripheral reservoirs (Fauci et al., 1997; Richman et al., 1997). Therefore, cessation of 

the treatment can lead to a rapid rebound in circulating virus (Vilde et al., 2003; 

Gunthard et al., 2003). 

 Finally, the severe toxic side-effects of the drugs and the frequent emergence of 

drug-resistant viruses necessitate that the other two approaches should be studied 

basically and clinically in more detail. 

 

1.4.2. The Failure of Vaccine Development 

 
 The handicaps for an effective AIDS vaccine include the genetic and antigenic 

variability of the virus, the gaps in the biology of virus-host interaction and the 

complexity of the clinical studies in terms of technical and ethical concepts (Gallo, 

2001). The greatest problem with all kind of virus vaccines (subunit formulations, live 

vector vaccines, all virus formulations-inactivated dead or attenuated live-, and nucleic 

acid based vaccines) envisaged for HIV infection is that there is no animal model to 

proove the safety of vaccines. HIV can not infect and cause AIDS in small animals 

routinely used. The live attenuated vaccines, which have been successful in preventing 

viral diseases, can not be used for a fatal disease like AIDS. The subunit vaccines, 

which are safe in general, do not appear to work well for HIV/AIDS as judged by the 

results in animal experiments (Adachi et al., 1998). 

 What is mostly important is that most of the vaccines generally stimulate the 

humoral immunity, ineffective to stimulate both arms of the immune system (Giaretta 

et al., 1998). Antigenic variability of the virus as well as the necessity of stimulating 

both arms of the immune system to obtain a good level of protection are important 

issues that have to be adressed when developing an effective vaccine.  



 6 

 The pitfalls of long-term antiviral treatment together with the difficulties of 

developing an effective vaccine prompted the scientific community to discover new 

approaches for the treatment of HIV infection. 

 

1.4.3. A New Treatment Approach for HIV Infection/AIDS:  

          Gene Therapy 

 
 Gene therapy of AIDS aims at the long-term reconstitution of the pool of CD4+ 

T lymphocytes with autologous cells made resistant to HIV infection. 

 A number of gene therapeutic strategies have been proposed for the treatment of 

AIDS. One approach intracellular immunization (Baltimore, 1988), aims to render 

HIV-1 permissive cells resistant to HIV-1 infection by introducing anti-HIV molecules 

such as antisense RNAs (Chuah et al., 1994; Morgan&Walker, 1996), ribozymes (Paik 

et al., 1997; Wang et al., 1998; Wong-Staal et al., 1998), RNA decoys (Smith et al., 

1996; Fraisier et al., 1998), and trans-dominant negative mutants (Chinen et al., 1997; 

Davis et al., 1998). 

 Despite their efficacy in cell culture systems, uncertainties remain about the 

ultimate therapeutic benefit of these various strategies. For example, delivery of TAR 

RNA decoys (Sullenger et al., 1990) may lead to interference with the normal function 

of the cellular TAR-binding proteins. Strategies based upon viral transdominant mutant 

proteins may unmask toxic interactions with host proteins. Transdominant mutants of 

Gag, for instance, interfere with release of infectious viral particles (Trono et al., 1989) 

but may also interfere with normal cellular function of cyclophilin A, to which it may 

still bind (Luban et al., 1993). The potential also exists for interaction of transdominant 

Rev mutants with host cell factors in the hematopoietic lineage (Malim et al., 1989). 

Ribozymes that cleave HIV-1-specific RNAs require an ordered secondary structure for 

their activity, and double-stranded RNA structures are among the most potent inducers 

of toxic interferon responses.  

 A second approach is vaccination using expression vectors for viral proteins, 

and a large-scale clinical trial based on Moloney murine retroviral vector-mediated 

transfer of the HIV-1 env and rev genes (Galpin et al., 1994; Su et al., 1997).  

 Finally, a third approach was the use of suicide gene to induce the death of 

HIV-1 infected cells, thereby preventing virus spread. To minimize unwanted side 
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effects, it is essential to develop a technique that will enable tissue-specific gene 

transfer and expression only in targeted cells. This tecnique which will be told in detail 

later in this chapter means much in terms of welcoming these requirements. 

 

1.5. HIV-1 Genome 

 
 The genome of HIV-1 is complex and contains nine known open reading 

frames. The different proteins are expressed by ribosomal frameshifting (for Gag-Pol) 

and by the production of alternatively spliced mRNAs from the full-length precursor 

RNA (Figure 1. 1) (Pavlakis et al., 1990). 

 HIV-1 encodes regulatory proteins that promote the expression of the viral 

genome. Tat and Rev are essential for virus production (Haseltine et al., 1986; Wong-

Staal et al., 1986). A third factor, Nef, is not essential for virus propagation in tissue 

culture (Levy et al., 1987). 

  

1.5.1. Mechanism of Action of Tat 

 
 The transcriptional transactivator (Tat) is a key regulatory protein of HIV. It is 

expressed early after the virus integrates into the cell, and stimulates the elongation of 

RNA polymerase II (RNAPII). This type of transcriptional control had not been 

previously found. Therefore, work on Tat established a new paradigm in the field of 

eukaryotic biology. 

 Tat activation is dependent upon a stable RNA stem-loop structure, that extends 

from the transcription initiation site to +57, known as TAR (Rosen et al., 1985; 

Muesing et al., 1987; Feng&Holland, 1988; Garcia et al., 1989; Selby et al., 1989) 

which serves as the binding site for Tat (Dingwall et al., 1990). Tat, in conjunction with 

TAR RNA, results in marked stimulation of the elongation properties of RNA 

polymerase II (Kao et al., 1987; Laspia et al., 1989-1990, Feinberg et al., 1991; 

Marciniak&Sharp, 1991; Kato et al., 1992) and these effects are probably mediated by 

association of Tat with RNA polymerase II or other components of the HIV-1 

transcriptional elongation complex (Keen et al., 1996; Mavankal et al., 1996). 

Alterations in TAR RNA structure markedly decrease Tat activation, and viruses 

containing TAR RNA mutations exhibit several thousand-fold decreases in replication 
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upon infection of peripheral blood mononuclear cells (PBMCs) or T-cell lines (Harrich 

et al., 1994-1995-1996; Klaver&Berkout, 1994). 

 Tat has been shown to activate transcription in trans from the HIV-1 LTR, 

increasing the steady-state levels of all HIV-1 mRNAs up to 1000-fold (Sodroski et al., 

1984-1985; Arya et al., 1985).  

 The HIV-1 LTR is appoximately 640 bp in length and segmented into the U3, 

R, and U5 regions (Figure 1.1). The U3 region is further subdivided into the 

modulatory region, the enhancer element comprising two NF-�B-binding sites and the 

core region with the TATAA box and three GC-rich binding sites for Sp1 transcription 

factors (Gaynor, 1992). The R region contains the 59 nucleotide trans-activation-

responsive (TAR) element forming a highly stable stem-loop RNA structure 

(Feng&Holland, 1988) (Figure 1.3). 
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Figure 1.1. HIV-1 genome and most prominent interactions between viral and host proteins 

(Source: Alexandra Trkola, 2004) 
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Figure 1.2. Model for Tat-LTR Interaction 

(Source: Erik D. A. De Clercq, 2001) 

 

 

 

 
 

Figure 1.3. Model for the activation of RNA polymerase II by Tat and                   

cellular cofactors (Source: Erik D. A. De Clercq, 2001) 
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1.5.2. Mechanism of Action of Rev 

 
 Retroviral replication requires utilization of incompletely and unspliced RNA 

and many retroviruses have evolved mechanisms to circumvent the requirement for 

splicing in nuclear export of RNA. In the case of the complex retrovirus human 

immunodeficiency virus type 1 (HIV-1), nuclear export of incompletely spliced 

mRNAs is mediated by the Rev/RRE system, where the viral encoded Rev-protein 

which is 19-kDa (Feinberg et al., 1986; Sodroski et al., 1986; Felber et al., 1989) binds 

in trans to a cis-acting sequence termed the Rev-responsive element (RRE) present on 

intron containing RNAs (Daly et al., 1989; Felber et al., 1989; Perkins et al., 1989; 

Zapp&Green, 1989; Cochrane et al., 1990; Heaphy et al., 1990; Malim et al., 1990; 

Olsen et al., 1990).  Complete dependence on Rev for the export of RRE-containing 

RNAs has been demonstrated in several mammalian and amphibian cell lines 

(Emerman et al., 1989; Hammarskjold et al., 1989; Cochrane et al., 1991; Fischer et al., 

1994; Malim et al., 1989).   

 Over 30 distinct mRNAs falling into three major classes are produced during 

HIV infection: doubly spliced 1.8 kb RNAs encoding the tat, rev and nef regulatory 

genes, singly spliced 4 kb RNAs for the vif, vpr, and vpu/env genes, and finally the 

unspliced 9 kb virion RNA which also acts as the mRNA for the gag/pol gene (Figure 

1. 4) (Arrigo et al., 1990; Kim et al., 1989; Purcell&Martin, 1993; Schwartz et al., 

1990). Ordered expression of these diverse populations of mRNAs is controlled by the 

viral regulatory protein Rev, which promotes the export of the 4 kb and 9 kb mRNAs 

from the nucleus (Malim et al., 1989). 

 Rev activity requires a 351 nucleotide RNA element called the Rev response 

element (RRE) which is located in the env gene and is thefore present on each of the 

HIV mRNAs encoding the viral structural and accessory proteins (Malim et al., 1989; 

Mann et al., 1994; Rosen et al., 1988). Initially, a monomer of Rev binds to a specific 

high-affinity site within the RRE (Bartel et al., 1991; Heaphy et al., 1991). 

Subsequently, up to nine further molecules bind to the RRE in a co-operative manner 

through protein-protein and protein-RNA interactions (Charpentier et al., 1997; Heaphy 

et al., 1991; Kjems et al., 1991; Malim&Cullen, 1991; Mann et al., 1994, Zemmel et al., 

1996). 
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 While fully spliced RNAs are readily exported from the nucleus, RNAs 

containing introns are retained in the nucleus by commitment factors, such as the U1 

snRNP or SR proteins, until fully spliced or degraded. Rev induces the export of RRE-

containing target RNAs and so that either prevents or reverses nuclear retention (Figure 

1. 5). Capped, polyadenylated mRNAs are normally efficiently transported from the 

nucleus to the cytoplasm via channels in the nuclear membrane that are termed nuclear 

pores. However, if an RNA contains a recognizable intron, this induces an interaction 

with cellular splicing factors which have been termed commitment factors 

(Legrain&Rosbash, 1989). These commitment factors include the U1 small nuclear 

ribonucleoprotein (snRNP) particle as well as members of the serine-arginine-rich (SR) 

class of splicing factors. If the splice sites are recognized by the nuclear commitment 

machinery but are then found to be nonfunctional, the defective RNA can be degraded. 

Most importantly, recognition by commitment factors effectively blocks the nuclear 

export of the target RNA until the intron(s) present in the RNA are fully removed 

(Legrain&Rosbash, 1989; Chang&Sharp, 1989). The purpose of the cellular 

commitment machinery is therefore twofold. First, these factors function in the 

identification of introns and thus are essential for appropriate splicing. Second, these 

factors retain immature transcripts in the nucleus and thus prevent pre-mRNAs from 

encountering the cytoplasmic translational machinery of the cell. The advantage of this 

retaining process is that the cell is protected from the deleterious effect which could 

result from the generation of defective proteins which are the products of the translation 

of pre-mRNAs that include introns within the intended protein coding sequence. 

 To achieve a balance between the expression of the fully spliced, singly spliced, 

and unspliced mRNAs, HIV uses a variety of different mechanisms. Splicing rates are 

reduced by the virus through the use of sub-optimal splice acceptor sequences 

(Chang&Sharp, 1989; Dyhr-Mikkelsen&Kjems, 1995; McNally&Beemon, 1992; 

O’Reilly et al., 1995). In addition, at least two types of cis-acting RNA signals in 

addition to the RRE are required for Rev-dependent export of unspliced mRNA to the 

cytoplasm. First, splicing rates are reduced by cis-acting inhibitory sequences located 

adjacent to the splice acceptor sequences of the first and second exons of the tat and rev 

genes (Amendt et al., 1994; Barksdale&Baker, 1995; Staffa&Cochrane, 1995). 

 Several studies suggest the presence of additional sequences within the coding 

regions of the HIV-1 env and gag genes which may participate in regulating HIV gene 

expression, either independently or in connection with the rev/RRE. 
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Figure 1.4. HIV-1 viral mRNAs 

(Source: Erik D. A. De Clercq, 2001) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Nuclear commitment machinery and splicing 

(Source: Bryan R. Cullen, 1998) 
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 The presence of cis-acting repressor sequences (CRS) located within the env 

gene upstream of the RRE was firstly identified by Rosen et al. using chimeric 

chloramphenicol acetlytransferase (CAT)-env reporter plasmids (Rosen et al., 1988). 

The inhibitory effect of CRS sequences was detected in the absence of rev and did not 

need the splice sites. These inhibitory regions have not been analyzed independently of 

the RRE. Observations by Hadzopoulou-Cladaras et al. (1989) and Dayton et al. (1988) 

have shown that expression of the gag gene requires the presence of the RRE in cis and 

the rev gene product in trans and suggest the presence of cis-acting sequences in the 

HIV-1 gag gene. 

 In the study of Maldarelli et al., two regions, inhibitory region 1 (IR-1) and IR-

2, which inhibited expression of reporter genes in two independent test systems were 

identified in the gag and pol genes, respectively (Maldarelli et al., 1991). The inhibitory 

effects were orientation dependent and functioned only when they were part of the 

transcriptional unit. Analysis of the transcripts revealed that IR-containing RNA was 

synthesized but accumulated in the nucleus of transfected cells. One possible role for 

these elements is to ensure that unspliced pre-mRNAs are not degraded in the nucleus 

prior to export to the cytoplasm by sequestering the RNA in nuclear sub-compartments 

that are inaccessible to the splicing machinery (Berthold&Maldarelli, 1996; 

Chang&Sharp, 1989; Mika�lian et al., 1996). 

 It is interesting that nine copies of the sequence AUUUA exist within the gag-

pol region of HIV-1. Sequence analysis has shown that all the lentiviruses studied up to 

now contain AU-rich regions suggesting that these viruses may have been regulated by 

the same mechanism (Wagner et al., 1991). 

 Instability is also important for other types of mRNAs encoding products 

involved in growth control, such as c-fos, c-myc, lymphokines and cytokines. Histone 

and transferrin receptor mRNAs are regulated by mRNA stability too. 

 Though Rev is found to localize predominantly in the nucleolus of transfected 

cells, it can shuttle between the cytoplasm and the nucleus (Meyer&Malim, 1994). Rev 

accomplishes this task through the action of various functional domains: 1) a nuclear 

localization signal (NLS) that directs Rev import into the nucleus (Cochrane et al., 

1990; Malim et al., 1989; Perkins et al., 1989; Hope et al., 1990) 2) a RNA binding 

region that interacts with its target RNA in the nucleus (Cochrane et al., 1990; 

Hadzopoulou-Cladaras et al., 1989; Heaphy et al., 1990; Malim et al., 1989; Rosen et 

al., 1988; Zapp&Green, 1989), and 3) a nuclear export signal (NES) that targets the 
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Rev-RRE complex to the cytoplasm (Fischer et al., 1995; Meyer et al., 1996). The 

presence of both NLS and NES permits Rev to shuttle between the nucleus and 

cytoplasm of a cell, but it accumulates mostly in the nucleus and nucleolus (Cochrane 

et al., 1990; Malim et al., 1989; Perkins et al., 1989; Hope et al., 1990). (Figure 1.6). 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

Figure 1.6. The Rev shuttling cycle 

(Source: Erik D. A. De Clercq, 2001) 
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1.6. The Potential Applications of Suicide Gene Therapy 

 

1.6.1. General Features of Suicide Genes 

 
  Suicide genes encode for enzymes that can convert a relatively nontoxic 

prodrug into a highly toxic agent. The ideal suicide gene must be:  

1) non-immunogenic 2) have low basal toxicity 3) allow for long-term stable 

expression in transduced cells 4) its activation should result in the elimination of all 

transduced cells 

 Suicide genes may be based on endogenous pro-apoptotic molecules, such as 

Fas, caspases and human CD20. Inducible Fas is based on a self-protein and is 

minimally immunogenic (Chen et al., 1996). Its inducer AP1903 does not seem to have 

any toxicity (Morley et al., 2001). Activation of inducible Fas leads to apoptosis in the 

majority of transduced cells, but not in complete elimination. Instead of inducible Fas, 

using inducible caspase mıolecules may be better since caspases are downstream of Fas 

in the apoptosis-signaling cascade and are far from many anti-apoptotic molecules such 

as c-FLIP and Bcl-2. Also, human CD20 has been proposed as a non-immunogenic 

suicide gene. Exposure to a monoclonal chimeric anti-CD20 Ab in the presence of 

complement results in rapid killing of up to 90% of transduced cells (Bambacioni et al., 

2000). Although this result is promising, complete elimination of transduced cells has 

not been achieved.  

 Besides with the endogenous suicide genes told above, several metabolic 

suicide genes have been described including the Herpes simplex virus type-1 thymidine 

kinase (HSV-1 TK) (Moolten, 1986), the Escherichia coli cytosine deaminase 

(Austin&Huber, 1993), and the Varicella zoster thymidine kinase genes (Averett et al., 

1991). From these metabolic suicide genes, the two, Escherichia coli cytosine 

deaminase and Herpes simplex virus type-1 thymidine kinase (HSV-1 TK) have 

obtained much attention.  

 Cytosine deaminase (CD) is found primarily in yeasts and bacteria and its 

expression results with the deamination of cytosine to form uracil (Neuhard et al., 

1992). Mammalian cells lack CD and therefore can not convert cytosine to uracil. 

However, in the transduced cells expressing cytosine deaminase, the relatively non-

toxic pyrimidine derivative 5-fluorocytosine (5-FC, 5-Cyt, flucytosine) is converted to 
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the highly potent chemotherapeutic agent 5-fluorouracil (5-FU, 5-Fura) (Scheiner et al., 

1957) which is used in the treatment of cancers (Weckbecker, 1991). Therefore, CD has 

been used as a suicide gene in animal (Sakai et al., 1985) and human (Cosand et al., 

1994) cancer therapy models. 5-FU itself is also a prodrug, which must be converted to 

cytotoxic fluoronucleotides such as FUTP and FdUMP (Diasio et al., 1990). Gaining an 

insight about the potential suicide genes is important in terms of developing alternative 

models and/or replacing the inappropriate ones with the new ones. Debus et al., 

examined the efficacies of the suicide genes CD and TK alone and in combination in  

vitro (Dunning prostate adenocarcinoma cell line, R3327 AT-1, which was retrovirally 

transfected with a suicide gene) and in vivo (via injection to rats) (Debus et al., 2003). 

According to their experimental system, although the application of each single 

enzyme/prodrug mechanism resulted in an effective in vitro killing of tumor cells, only 

the combination of both systems allowed a reliable elimination of tumors in vivo. 

 While searching for the appropriate suicide gene, it is also important to make a 

selection according to the purpose. For example, the diphteria toxin, which kills cells at 

an extremely low concentration (Neville&Hudson, 1986) by enzymatically inhibiting a 

single cellular target-elongation factor 2 (EF2) to prevent protein synthesis (Bodley et 

al., 1980) may be a better choice in several situations. However, it does not necessarily 

mean that the selected suicide gene serves to the desired purpose. For example, 

Caruso&Klatzmann tested the effect of this toxin under the control of the HIV promoter 

(Caruso&Klatzmann, 1991). However, viable transformants were not be able to be 

generated under the control of the HIV promoter. 

  

1.6.2.  The HSV-TK/GCV System and Utilization of This System in 

Several Disease Models 

 
 HSV-1 thymidine kinase expression is not deleterious to mammalian cells and it 

can, unlike mammalian thymidine kinase, selectively phosphorylate certain nucleoside 

analogs to the monophosphate form(Shaeffer et al., 1977; Grill et al., 1983); 

subsequently, the nucleoside monophosphate is converted by cellular phosphorylases to 

its triphosphate form, whose incorporation into DNA by the cellular DNA polymerase 

� leads to inhibition of cellular DNA synthesis (Elion et al., 1980; Huang et al., 1985) 

and eventually cell death, a process that has been termed ‘Thymidine Kinase 
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Obliteration’ (TKO) (Evans et al., 1988-1989). The suicide strategy using the HSV-TK 

gene was originally developed for use in the treatment of cancer (Moolten, 1986). 

Cancer cells were killed both by the direct cytotoxicity of GCV (ganciclovir)-

triphosphate and as a result of the bystander effect in which GCV-triphosphate was 

transferred from transduced cells to untransduced cells. In the TK/GCV system the 

bystander effect is caused by the transport of the phosphorylated form of ganciclovir 

via gap junctions into adjacent cells (Stambrook et al., 1993). In vivo, systemic immune 

responses may also be effective in tumor regression after HSV-TK and GCV treatment 

(Barba et al., 1994; Caruso, 1996). 

 Transducing cells with the Herpes simplex virus thymidine kinase (HSV-TK) 

gene to confer sensitivity to the prodrug (ganciclovir or acylovir) is a well-known 

strategy and has also been exploited in clinical trials (Moolten, 1986; Bonini et al., 

1997). Cell death mediated by the HSV-TK/GCV system can occur via different 

pathways, depending on the cell type. While apoptosis has been shown to be the cause 

of death in human colon cancer cells (Freeman, 1993; Vite et al., 1998) and in human 

and rat glioma cells (Colombo, 1995; Mervelo&Samejima, 1995),  nonapoptotic death 

was in question in TK-expressing hepatocellular carcinoma cells (Tsukamoto&Kaneko, 

1995) and in B16 melanoma cells (Vite et al., 1998; Chong et al., 1997). This system 

prooved its efficiency in various cancer models. For example, in a model of mouse 

prostate cancer using the RM-1 cell line, injection of an adenovirus (Ad) expressing 

HSV-TK into a primary tumor followed by GCV therapy not only inhibited local tumor 

growth but also supressed spontaneous metastatic activity (Thompson et al., 1997). On 

the other hand, it is important to emphasize that the importance of cell type must never 

be neglected since while one model works well for a specific cell type, it may not 

necessarily be resulted with the same effect for a different cell type. According to the 

investigations carried out up to now, the sensitivity towards GCV varied in different 

tumor cell lines. In this context, the direct measurement of the enzyme activity in terms 

of phosphorylating capacity may be a more sensitive indicator of therapeutic efficacy 

than the determination of the protein content of the enzyme.  

 Many cytokines (IL-12, IL-4, IL-6, IL-7, INF-�, TNF-�, and GM-CSF) have 

been employed for stimulation of immune responses against different tumors (Salvadori 

et al., 1996; Colombo&Forni, 1994). So, immonogene therapy using cytokines has 

emerged as a new strategy in the treatment of cancer. Of all the cytokines tested, IL-12 

possessed the strongest antitumor activity. Thus, the bystander effect can be further 
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increased by co-transfer of suicide genes and cytokine genes. Chen et al., demonstrated 

this synergism in the treatment of colon carcinoma cell lines CC36 and MCA-26. They 

showed that combined administration of interleukin-2, granulocyte macrophage colony-

stimulating factor and HSV-TK was superior to single agent therapy (Chen et al., 1995-

1996). 

 Though the acyclovir can be employed as well, as a substrate for HSV-TK, the 

ganciclovir seems to be a better choice. In the H9 and CEM T-lymphocyte cell lines 

tested, it was observed that GCV possessed low cytotoxicity and potent inhibitory 

properties for an efficient HSV-1 TK gene therapy. For ACV (acyclovir), HSV-1 TK 

dependence was also observed but ACV was needed at much higher concentrations and 

longer treatment durations (Drake et al., 1997; Balzarini et al., 1993; Kurtyama et al., 

1996). 

 Besides with its usage as a gene therapy to selectively kill HSV-1 TK-

expressing cells among a population of dividing tumor cells, it has also used to study 

the lineage formation in cultured cells and transgenic animals (Borrelli et al., 1988) and 

to achieve conditional ablation of targeted cell types in transgenic mice (Heyman et al., 

1989). This system has also been utilized to develop novel strategies for controlling 

parasitic infections. Papadopoulou et al., showed that Leishmania spp. amastigotes 

expressing TK were specifically eliminated by 85% within macrophages when treated 

with ganciclovir (Papadopoulou et al., 1997). 

 

1.6.3.  The HSV-TK/GCV System and Utilization of This System in 

HIV Infection 

 
 Gene therapy as a possible treatment of HIV infection has been investigated in 

tissue culture experiments (Yu et al., 1994) and in patients (Woffendin et al., 1996). 

The use of HSV-TK as a therapeutical gene for gene therapy of HIV infection has been 

proposed by many researches (Venkatesh et al., 1990; Caruso&Klatzmann, 1992; 

Brady et al., 1994; Caruso et al., 1995).  

 The characteristics of HIV replication make it suitable for obtaining a rapid 

HIV-dependent suicide gene of infected cells. First, the HIV promoter is inefficient in 

the absence of the HIV-encoded regulatory protein Tat (Arya et al., 1985; Cullen, 

1990). Second, there is a temporal program of mRNA accumulation during the HIV 
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replication cycle. In the initial phase, multiply spliced mRNAs encoding HIV 

regulatory proteins are produced while the mRNAs encoding HIV structural proteins 

are not significantly expressed until 24 hour after viral infection, at which time virus 

production becomes apparent (Baltimore et al., 1989). Because of this reason, a toxic 

gene placed under the control of the HIV regulatory sequences is anticipated to be 

expressed at a basal low level in noninfected cells and would be switched on in the 

initial phase of HIV replication, before HIV structural protein synthesis is initiated. 

This should result in cell death before the release of newly synthesized viral particles 

and so that prevent viral spread.  Such an approach where the conditionally lethal gene 

was placed under the control sequences of the virus to link the expression of the toxic 

gene dependent upon the viral replication is generally called virally directed enzyme 

prodrug therapy (VDEPT) and aims at killing the cells upon infection of the virus, 

limiting both the virus produced and the generation of latently infected cells (Mullen, 

1994; Connors, 1995). 

 When the problems arose from chemotherapy and the limitations in the 

development of an effective vaccine for preventing HIV infection are considered, this 

strategy is quite promising since it makes more sense to simply sacrifice HIV-infected 

cells instead of trying to interfere with viral replication.  

 

1.7. Aim of the Project 

 
 In this study, we aimed to design an efficient DNA plasmid vector to be tested 

for its selective killing of cells expressing HIV-1 regulatory genes. For this purpose, the 

first step was the construction of plasmid vectors carrying HIV-1 regulatory genes ‘tat’ 

and/or ‘rev’ since the transfection of these plasmid vectors into HeLa CD4+ cells would 

generate tat and/or rev expressing HeLa cell lines. Then co-transfection of these cell 

lines with the suicide plasmid vector whose expression is dependent on the HIV-1 

regulatory genes could result in the selective depletion of these cells. For the 

construction of the suicide plasmid vector, a conditionally lethal toxic gene Herpes 

simplex virus type 1 thymidine kinase (HSV-1 TK) gene was placed under the 

trancriptional control of the HIV-1 promoter LTR  so that the expression of the toxic 

gene was rendered dependent upon the Tat protein of HIV-1. In order to impose 

additional constraints on TK expression, other cis-acting sequences INS and RRE 
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which are important for the action of Rev was cloned downstream of the TK coding 

sequences so that TK mRNA expressed in the presence of Tat would be retained in the 

nucleus and would require co-expression of Rev for transport to the cytoplasm since 

HIV-1 Rev protein was also important as a molecular chaperone to generate the 

transport of  the unspliced transcripts into the cytoplasm where they could be translated.  

Intron containing RNA (TK and INS-RRE sequences flanked by splice sites in the pre-

mRNA) will be synthesized but accumulate in the nucleus of transfected cells. Not only 

RRE but also INS element of the p17gag gene of HIV-1 are needed for Rev to stimulate 

the export of unspliced mRNA from the nucleus (Mikaélian et al., 1996). Therefore 

INS sequences are very important for Rev-regulated expression since the degradation of 

the unspliced pre-mRNAs prior to the export to the cytoplasm are also achieved by INS 

sequences (Berthold&Maldarelli, 1996; Chang&Sharp, 1989). Depending on the splice 

sites flanking the TK and INS-RRE sequences, in Rev-independent expression, these 

intervening regions will be removed. This model which was created to prevent the 

expression of the toxic protein in the absence of Rev is anticipated to solve a 

cumbersome handicap experienced by other researchers in the past. Previous studies 

have indicated that HIV LTR was not completely silent in the absence of Tat since host 

transcription factors interacting with specific sequences on the HIV LTR have been 

shown to provide a basal level of transcription (Westphal et al., 1988; Chinnadurai et 

al., 1990; Caroso&Klatzmann, 1991-1992; Dinges et al., 1995; Giaretta et al., 1998; 

Minchin et al., 2004). This resulted with a low but detectable level of TK expression in 

transduced but not induced cells. Because of this reason, we aimed to construct a more 

tightly controlled system where the targeted cells could be killed without giving any 

harm to uninduced cells. If this aim is accomplished, a suicide vector dependent upon 

the HIV-1 regulatory gene expression will have been constructed without using HIV 

infection. 

 It is important to emphasize that in case the desired aim of the project was 

accomplished, it can not directly be used in clinical trials. Gene therapy trials in the 

world are still in their infancy and currently, most gene therapy protocols are phase I 

clinical trials determining toxicity.  
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CHAPTER 2 

 

 

MATERIALS AND METHODS 
 

 

2.1. Materials 
 

 A detailed list of commonly used buffers, solutions and their compositions are 

presented in Appendix A. 

 

2.2. Methods 

 

2.2.1. Bacteriological Techniques 
 

 A list of bacterial strains, plasmids and their sources were presented in Table 

2.1. E. coli Dh5& strain was used for all the manipulations in the study. Bacteria were 

grown at 37 °C in LB medium with continuous agitation ranging between 180-200 rpm 

during 12-16 hours which refers to the definition of ‘overnight’ term (with the 

exception of approximately 45-60 min incubation period in order to let antibiotics to be 

expressed in transformation). When required, the antibiotics ampicillin and tetracyclin 

were used at final concentrations of 50 and 10 µg/ml, respectively. 

 For the selection of transformants, LB media containing 1.5% (w/v) agar and 

appropriate antibiotic were used. 
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Table 2.1. List of bacterial strains and plasmids 

 

Strain Description Reference 

E.coli Dh5&

  

F¯ , �80 	 lacZ 	 MIS, 	 (lacZYA- argF), U169 Woodcock, 

et al., 1989 

Plasmid Decription Reference 

pIRES  PCMV IE , IVS, SV40 pA, IRES sequence, f1 ori, Neor, 

Ampr 

Clontech 

pMEP4 Ampr, Ori P, ColE1 ori, PhmetIIa , SV40 pA, 

Hygr, EBNA-1 

 

Invitrogen 

pMEP-IRES PhmetII in pMEP4 episomal expression 

vector replaced by IRES, CMV enhancer, 

CMV promoter, and IVS fragments in 

pIRES 

 

This study 

pMEP-

IRES-rev 

HIV-1 rev cDNA cloned in the forward orientation in 

pMEP-IRES expression vector 

This study 

pMEP-

IRES-tat 

HIV-1 tat cDNA cloned in the forward orientation in 

pMEP-IRES expression vector 

This study 

                                                                                                          (cont. on next page) 
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Table 2.1 (cont.) 

pMEP-

IRES-rev-tat 

HIV-1 tat cDNA cloned in the forward 

orientation in pMEP-IRES-rev expression 

vector 

 

This study 

pCV1 mammalian expression vector containing hybrid 

regulatory sequences (1.5 kb of pBR322 sequences 

adjacent to 1.8 kb cDNA sequences which encode both 

Tat and Rev) 

NIH 

pNL4-3  Full-length, replication- and infection- 

competent chimeric molecular clone of 

HIV-1 

 

NIH 

pNL4-3-

MunI 

a re-ligated 9147 bp DNA sequence generated from MunI 

digestion of HIV-1 molecular clone pNL4-3 

This study 

pREP9   Ampr, Ori P, ColE1 ori, PRSV , SV40 pA, EBNA-1, Neor Invitrogen 

pREP-LTR PRSV   in pREP9 replaced by 748 bp-length LTR and sd1 

sequences in pNL4-3 

This study 

pREP-LTR-

INS-RRE 

2007 bp-length INS, RRE and sa7 

sequences cloned downstream of LTR in 

pREP-LTR 

 

This study 

                                                                                                             (cont. on next page)
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Table 2.1 (cont.) 

pREP-TK TK (thymidine kinase) fragment derived from HSV 

(Herpes Simplex Virus) genomic DNA cloned 

downstream of  PRSV  in pREP9 

This study 

pREP-LTR-

INS-RRE-

TK 

1144 bp-length TK suicide gene cloned downstream of 

LTR in pREP-LTR-INS-RRE 

This study 

pREP-CAT CAT (chloramphenicol acetyl transferase) 

fragment cloned downstream of PRSV in 

pREP9 

 

This study 

pREP-LTR-

INS-RRE-

CAT 

670 bp-length CAT gene cloned downstream of LTR in  

pREP-LTR-INS-RRE 

This study               

pCI-Neo PCMV IE , SV40 Late poly(A), f1 ori, SV40 Enhancer and 

Early Promoter, SV40 ori, neo, Ampr 

Promega 

pcDNA 3.1 / 

HisB / lacZ 

PCMV  , lacZ, Ampr, ColE1 ori, SV40 ori, Neor Invitrogen 

pREP-LTR-

INS-RRE-

TK-lac 

1471-bp length XbaI-XhoI fragment in pREP-LTR-INS-

RRE-CAT-lac replaced by 1945-bp length XbaI-XhoI 

fragment in pREP-LTR-INS-RRE-TK 

This study 

pREP-LTR-

INS-RRE-

CAT-lac 

3195-bp length lacZ gene cloned downstream of INS-RRE 

in pREP-LTR-INS-RRE-CAT reporter expression vector 

This study 
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2.2.1.1. Maintenance of Bacterial Strains 
 

  E. coli Dh5& strains were streaked on LB agar supplemented with appropriate 

antibiotic if necessary and kept at 4 °C for short term storage. In case LB broth culture 

was needed for experimental procedures, a healthy-looking single colony was picked 

with a loop and inoculated into LB broth again supplemented with appropriate 

antibiotic if required. Inoculated bacteria were grown until log or mid-log phase at 37 

°C with continuous agitation. 

 Long-term storage of manipulated strains were generated by transferring them 

into 1.5 ml vials containing 20% (v/v) glycerol in LB broth which then placed into -80 

°C. 

 

2.2.1.2. DNA Isolations 

 

2.2.1.2.1. Small-scale Plasmid Isolation with Alkali-lysis Method 
 

 1.5 ml of culture obtained from 10 ml broth culture supplemented with 

appropriate antibiotic was transferred to an eppendorf tube and centrifuged for 1 min at 

maximum speed. Supernatant was discarded and this step was repeated once again 

since more cell volume was used at initial stage, much more plasmid DNA was 

obtained. After removing supernatant, the pellet was resuspended in 200 µl ice-cold 

Solution I with vigorous vortex. Glucose in solution I increases the osmotic pressure 

outside the cell, hence cells are destroyed. Released DNA is protected from degrading 

enzymes with the presence of EDTA which functions by binding divalent cations 

necessary for DNAse activity. At this lysis stage, pH is kept constant (8.0) because of 

Tris. Following treatment of cells with Solution I, 400 µl Solution II was added 

immediately. The tube was inverted gently for 5-6 times until a transparent view was 

observed. Because of the presence of NaOH in Solution II, constant pH is no longer 

continued at this stage. The pH of solution becomes approximately 12 at which value 

genomic DNA and proteins are denatured but supercoiled plasmid DNA is not affected. 

This is the crucial point of plasmid isolation method in which the name of the 

procedure refers to this fact. Thereafter, immediately 300 µl ice-cold Solution III was 

added and the tube was inverted gently for 5-6 times again. The tube containing 
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Solution I, Solution II, and Solution III was incubated on ice and solution mix became 

neutralized at this stage. DNA strands denatured at previous stage because of the effect 

of NaOH are renatured thanks to the presence of acetic acid in Solution III. Potassium 

acetate in Solution III precipitates both cell wastes and E. coli chromosomal DNA. 

After incubation period on ice, the tube was centrifuged for 5 min at 12000 rpm. 

Considering the fact mentioned above; following centrifugation, cell wastes and 

chromosomal DNA resided in the pellet, and the plasmid DNA in the supernatant. The 

supernatant was transferred to a new eppendorf tube and subjected to the purification 

steps. 

 

2.2.1.2.2. Alternative Small-scale Plasmid Isolation Methods 
 

During the study, plasmid isolation kits mentioned below were also employed. 


 Macharey-Nagel NucleoSpin plasmid 


 Roche High Pure Plasmid Isolation Kit 

All the steps were performed according to the manufacturer’s recommendations. 

 

2.2.1.2.3. DNA Isolation from Agarose Gel with Applichem DNA         

                Isolation Kit 

 
 After restriction digestion of plasmid DNA molecules with suitable enzymes 

and confirmation of the successful digestion with a small volume of digestion mixture 

(generally one-tenth) loaded into agarose gel, a new agarose gel ranging between 0.8 

and 2% (w/v) agarose depending on the weight of molecules for a better seperation was 

prepared and the remainder of the digestion mixture was loaded into the wells and 

molecules were let to be seperated at 80 V current. DNA bands that would be used in 

the further construction steps were excised with a sterile surgical blade and placed into 

an eppendorf tube. 3 volumes gel weight of 6 M NaI solution was added to the tube and 

the tube was incubated for 10-15 min at 55 °C by taking the tube from water bath every 

2 or 3 min and vortexing vigorously. When it was clearly visible that the gel slice 

dissolved, 6-8 µl glassmilk solution was added to the sample and vortexed vigorously. 

The sample was incubated for 5 min at room temperature by vortexing every 1 or 2 

min. For fragments less than 1000-bp length, incubation was carried out at 55 °C in 
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order to improve binding efficiency. Then, the sample was centifuged for 1 min at 

maximum speed. Supernatant was discarded and the pellet was washed 2 times with 

wash solution provided with kit. After washing steps, the pellet was dissolved in the 

desired volume of sterile dH2O and incubated for 10 min at 55 °C for the elution of 

DNA. A final centrifugation step for 2 min at maximum speed resulted with DNA in 

supernatant. By taking care of not to touch the pellet with pipette tip, the supernatant 

was transferred into a new eppendorf tube.  

 

2.2.1.2.4. Large-scale Plasmid Isolation 
 

 For this purpose, two commercial kits were used according to the 

manufacturer’s recommendations.  


 Macharey-Nagel NucleoBond Plasmid DNA Purification Kit: 

 This kit was used to obtain high volume recombinant DNA molecules after the 

confirmation of the cloning. After the required cloning analysis was generated with the 

presumed recombinant DNA molecules tested, the one that could be called the correct 

clone was transformed to competent E. coli cells, a fresh colony was inoculated in 100 

ml LB broth supplemented with the ampicillin, and high-volume plasmid isolation 

which would be the starting material for the following cloning series was obtained. 


 Roche Genopure Plasmid Midi Kit: DNAs to be used in eukaryotic cell transfection 

experiments were generated with this kit. 

 

2.2.1.3. Bacterial Transformations 

 

2.2.1.3.1. Preperation of Chemically Competent E. coli 
 

 E. coli Dh5& strain was used to prepare competent cells with CaCl2 treatment. 

A single colony was picked and inoculated into 100 ml LB broth and grown overnight 

at 180 rpm at 37 °C. The next day, in order to allow the culture reach the mid-log 

phase, 1 ml overnight culture was transferred into 100 ml fresh LB broth (1:100 

dilution) and incubation was continued for approximately 3 hours at 37 °C with 

continuous agitation. Following this incubation step, 100 ml culture was transferred 

into 2 sterile, ice-cold 50 ml falcon tubes each with the volume of 40 ml culture. Falcon 
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tubes were incubated on ice for 20 min to cool the culture. Cells were pelleted by 

centrifugation at 5000 rpm for 10 min at 4 °C. After discarding supernatant completely, 

the cell pellet was resuspended in 8 ml of ice-cold 100 mM CaCl2 and centrifuged at 

5000 rpm for 10 min at 4 °C. Supernatant was discarded and the pellet was treated with 

8 ml of ice-cold 100 mM CaCl2 again, and centrifuged at the same conditions told 

above. Supernatant was removed again and finally the cells were resuspended in 1600 

µl ice-cold 100 mM CaCl2 (1600 µl for the cells in one falcon tube) very gently. Then, 

this final suspension volume was divided into aliquots. Sterile eppendorf tubes were 

already kept on ice. 160 µl of this CaCl2 treated cell suspension was transferred into 

one eppendorf tube, then 40 µl sterile glycerol was added and mixed gently.  

 The prepared competent cells were either used immediately for transformation 

or stored at -80 °C for later use.  

 

2.2.1.3.2. The Uptake of Plasmid DNA by Competent E. coli Cells 
 

 Frozen competent E. coli cells (200 µl) were thawed on ice. The DNA of interest 

(0.1-1 µg DNA in 1-10 µl DNA suspension) was added to the cells and incubated on ice 

for 20 min. The cells were then heat shocked for 90 sec at 42 °C followed by incubation 

on ice for 1-2 min (no more than 2 min). At this stage, the cells have recently taken up a 

plasmid. 500 µl LB broth was added to the culture followed by incubation at 37 °C for 

45-60 min with continuous agitation. During this short incubation period in LB broth in 

the absence of antibiotic, plasmid replication and expression would be underway. 

Therefore, at the later step which was the plating of transformed competent cells on LB 

agar plates containing appropriate antibiotic followed by overnight incubation at 37 °C, 

when plated cells encountered the antibiotic, they would already have synthesized 

sufficient amount of antibiotic resistance enzymes to be able to survive. 

 

2.2.1.3.3. Transformation with TransformAid Bacterial   

                Transformation Kit 
 

 The kit was used according to the manufacturer’s recommendations for a few 

trials. 
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2.2.2. Cell Culture and Transfection Techniques 

 

2.2.2.1. Mammalian Cells 
 

 HeLa (Human cervical epitheloid carcinoma) (Scherer et al., 1953) cells were 

used in the study. HeLa cells were preferred because of the advantages such as rapid 

growth, high plating efficiency and transfection efficiency they offer.  

 

2.2.2.2. Maintenance and Passage of HeLa Cell Lines 
 

 HeLa cell lines were maintained in T25 flasks containing 5 ml of medium (35 

mm, 60 mm and 94 mm tissue culture dishes were also used in the study with growth 

volumes of 2, 4 and 10 ml respectively). HeLa cells were grown in DMEM with 10% 

(v/v) FBS at 37 °C in a 5%CO2/95% air humidified incubator. The media of transfected 

HeLa cells were supplemented with 250µg/ml hygromycin. 

            Since allowing monolayer cultures to become overconfluent would result with 

the deterioration of cells, examining the confluency state of cells with an inverted 

microscobe was a daily practice. HeLa cells were passaged at a ratio of 1:3 or 1:4 every 

2-3 days at confluence. Firstly, the medium was removed completely and the cells were 

washed with Versene solution. The cells were then treated with the proteolytic enzyme 

trypsin (0.25% w/v) which works by digesting the proteins in the cell membrane that 

anchor the cell to the surface of tissue culture vessel. Trypsin was washed around the 

cells gently and trypsinization time was tried to be kept at minimum since trypsin would 

also digest other cell membrane proteins. Suspended cells were transferred to falcon 

tubes and serum was added at half volume of the trypsin used to inhibit further action of 

trypsin on the cells. Following 2 min centrifugation step at 1500 rpm, supernatant was 

removed and cell pellet was gently recovered in fresh DMEM-10% FBS. Resulting cell 

suspension was then transferred to the fresh tissue culture vessels at the desired dilution 

rates.  
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2.2.2.3. Freezing and Recovery of Cell Stocks 
 

 For long term storage, HeLa cells which were just confluent were removed from 

the surface they anchor by trypsinization and centrifuged to form pellet. Then, the cell 

pellet was resuspended in 1 ml of freezing mixture (90% serum, 10% DMSO). After 

gentle mixing, the cells were transferred to 2 ml cryotubes. In order to protect the cells 

from deleterious effect, freezing was done slowly at -80 °C by wrapping the cryotubes 

with a thick layer of tissue paper. 

 When required, cryotubes were thawed in a 37 °C water bath and the cells were 

directly transferred to a tissue culture dish containing appropriate amount of growth 

medium. Cells were left undisturbed for 24 hours. 

 

2.2.2.4. Mammalian Cell Transfections 
 

 In order to transfect our plasmids of interest into HeLa cells, X-tremeGENE Q2 

Transfection Reagent was used according to the manufacturer’s instructions.  

 HeLa cells when they were approximately at 50% confluency were transfected 

with the plasmid vectors and placed under the appropriate antibiotic selection 2 days 

after transfection until clones appeared. Untransfected HeLa cells and untransfected but 

exposed to antibiotic selection HeLa cells served as control groups.  

 

2.2.2.5. Preparation of Genomic DNA from Mammalian Cells 
 

 Nucleospin Genomic DNA from Tissue Kit was used for this purpose according 

to the manufacturer’s instructions. 

 

2.2.2.6. Preparation of RNA from Mammalian Cells 
 

 Promega SV Total RNA Isolation System was used according to the 

manufacturer’s instructions.   

 Because of the relatively unstable nature of RNA, RNase-free equipment was 

used while handling RNA. Electrophoresis tanks, water and other solutions used was 

treated with DEPC which is a strong inhibitor of RNases. Integrity of isolated RNAs 



 32 

was verified with agarose gel electrophoresis before employed for RT-PCR 

experiments. 

 

2.2.2.7. RT-PCR 

          
 In order to perform PCR using RNA as a template, RNA must be reverse 

transcribed into cDNA in a reverse transcription reaction. In this study, 2-step RT-PCR 

(RT and PCR were carried out seperately) was employed. Fermentas RevertAid™ M-

MuLV Reverse Transcriptase kit was used for RT reaction. 

 Template RNA (0.1-5 µg), oligo(dT)18 (0.5 µg) was put into a sterile tube and 

the volume was completed to 11 µl with DEPC-treated water. This mixture was 

incubated at 70 ºC for 5 min and chilled on ice. Then, 4 µl 5X reaction buffer, 2 µl 10 

mM dNTP mix (final concentration: 1 mM), 1 µl Ribonuclease inhibitor (20 U) were 

added in the order given and finally 1 µl DEPC-treated water was added to adjust the 

volume to 19 µl. After the mixture was incubated at 37 ºC for 5 min, 200 units of 

RevertAid™ M-MuLV Reverse Transcriptase (1 µl) was added into the mixture and 

then incubated at 42 ºC for 60 min. The reaction was stopped by heating at 70 ºC for 10 

min. 

 The generated cDNA was used as template for PCR reaction carried out with 

sequence-specific primers which consisted of 30 or 40 cycles, beginning with the initial 

denaturation step at 94 ºC for 3 min, followed by consisting a 1 min denaturation step at 

94 ºC, a 1 min annealing at 60 ºC, and a 1 min extension at 72 ºC. A 10 min primer 

extension at 72 ºC completed the sequence. 

    
2.2.3. DNA Manipulation Techniques 

 

2.2.3.1. Digestion of DNA with Restriction Enzymes 

 
 The restriction enzymes used in the study were purchased from Fermentas and 

the digestions were carried out with the concentrated buffers supplied with the enzymes 

according to the manufacturer’s recommendations.  
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2.2.3.2. End-fill Reactions 
 

 The achievement of the cloning by blunt end ligation necessitates the filling of 

protruding ends not compatible with each other. For this purpose, T4 DNA Polymerase 

(Fermentas) was used with all four dNTPs according to the manufacturer’s 

recommendations. 

 

2.2.3.3. Dephosphorylation of DNA 
 

 In order to prevent self-ligation of vector termini and thus to facilitate the 

cloning experiments, phosphate groups at the 5' termini of vector DNAs were removed 

by CIAP (Calf Intestinal Alkaline Phosphatase) (Fermentas) 

 5 µl CIAP buffer (supplied with the enzyme), 14 µl dH2O and 1 U CIAP was 

added to 30 µl of reaction mixture containing 1.5 µg excised DNA. Dephosphorylation 

reaction was carried out at 37 °C for 30 min followed by the inactivation of the CIAP at 

85 °C for 15 min. DNA was then purified with Applichem DNA purification kit. 

 

2.2.3.4. DNA Ligation Reactions 

 
 In order to join double strand DNA molecules that either have blunt ends or 

compatible cohesive ends, T4 DNA ligase (Fermentas) was used according to the 

manufacturer’s recommendations with some modifications. 

 Excluding the minority of reactions carried out at room temperature, all 

reactions were carried out at 4 °C for overnight.  

 

2.2.4. Separation and Purification of DNA Fragments 

 

2.2.4.1. Agarose Gel Electrophoresis 

 
 Agarose gels (0.8-1.5% (w/v)) were prepared by adding the required amount of 

agarose for resolution of linear DNA fragments into 1× TAE electrophoresis buffer and 

melting the heterogenous mixture in a microwave oven until a transparent view was 
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observed. After cooling the melted solution, EtBr was added at the concentration of 0.5 

µg/ml from a 10 mg/ml stock and it was poured into a horizontal gel apparatus and gel 

combs were placed and the gel was allowed to harden. Upon removing of the comb 

from the hardened gel, the gel was placed into an electrophoresis tank containing 

sufficient electrophoresis buffer overlaying the gel. DNA samples prepared with 6× gel 

loading buffer were loaded into the wells of the gel and they were exposed to an electric 

constant at 80V for the movement of the DNA molecules. The movement of the DNA 

molecules could be observed with bromophenol blue present in the gel loading dye and 

thus the power supply was turned of when bromophenol blue was exceeding half of the 

gel. Finally, DNA fragments were visualized in UV transilluminator. 

 

2.2.4.2. Phenol-Chloroform Extraction 
 

 For the sake of simplicity, DNA volume to be purified was completed to 200 µl 

with sterile dH2O and 2 volumes of phenol (400 µl) was added, followed by vortexing 

and centrifugation at 10000 rpm for 3 min. Leaving yellow phenol phase at the bottom, 

the upper phase was transferred into a new 1.5 ml eppendorf tube and equal volumes of 

phenol (200 µl) and chloroform (200 µl) were added followed by vigorous vortexing 

and centrifugation at 10000 rpm for 3 min. Phenol-chloroform phase remained at the 

bottom and the upper phase was transferred into a new tube and treated with 400 µl 

chloroform followed again by vortexing and centifugation at 10000 rpm for 3 min. 

Upon transfer of the upper phase into a new tube, 1/10 volume of the sample (20 µl) 3 

M Na-Acetate (pH 5.2) was added and mixed thoroughly. 2.5 volumes of the sample 

(500 µl) cold 99% (v/v) EtOH was added and mixed well followed by centrifugation at 

10000 rpm for 15 min. Liquid phase was discarded completely and DNA pellet was 

washed with 2.5 volumes of the sample (500 µl) 70% (v/v) ethanol, followed by 

centrifugation at 10000 rpm for 3 min. This washing step was repeated once more to 

make DNA sample of interest completely free of any remaining contaminants. Then, 

liquid phase was discarded and DNA pellet was dried at room temperature. Finally, 

pellet was dissolved in the desired volume of dH2O.  
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2.2.4.3. Alternative DNA Purification Methods 
 

 In the study, some commercial kits mentioned below were taken advantage as 

well for the purification of DNA samples. All these purification kits were used 

according to the manufacturer’s recommendations though some minor modifications 

were made whenever they were necessary. 

Applichem DNA Isolation Kit 

Macherey-Nagel NucleoSpin Extract 2 in 1 

Roche High Pure PCR Product Purification Kit    

 

2.2.5. Quantification of DNA Samples 

 

2.2.5.1. Quantification of DNA Spectrophotometrically 
 

 Since the heterocyclic cycles of nucleotides have the maximum suction of light 

at 260 nm wavelength, the suction degree at this wavelength is a measure of the amount 

of the nucleic acids. According to this, the amount of DNA can be determined by the 

value at 260 nm where 1 OD (optical density) corresponds to 50 µg/ml of double 

stranded DNA and 20 µg/ml of single stranded DNA oligonucleotide. So that, the 

amount of DNA in a nucleic acid solution can be measured with the equation below: 

DNA (µg/ml)= OD at 260 nm × dilution ratio × coefficient (50 for dsDNA) 

 The measurement of absorbance at 280 nm was also important in terms of 

assessing the purity of DNA since the value of 260/280 was informative about the 

purity of nucleic acids. This value corresponds to 1.8 for very pure DNA samples, 

nevertheless the ratio not lower than 1.5 can be tolerated. The presence of phenol or 

proteins in the solution loweres the value and when lower values were obtained, 

purifications were found convenient to be repeated. 

 

2.2.5.2. Quantification of DNA with Molecular Size Markers 
 

 With the aim of having a general idea about the amounts of DNA samples that 

were not needed to be determined very sensitively, molecular size markers can also be 

employed. Though exceptions are present, with most of these DNA size markers the 
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information given about one or two bands emphasizing how much DNA is present in 

this size was exploited to compare the size of this band with the sizes of interest to be 

used in cloning experiments whether as the vector or the insert and the proportional 

relationship between that size of the marker in which DNA amount was measured and 

our sizes of interests was informative for having an idea of the amounts of our DNA 

samples.  

 

2.2.6. Concentration of DNA Samples 

 

2.2.6.1. Concentration of DNA with Ethanol Precipitation 
             

 To concentrate DNA samples, DNA was precipitated by adding 

1/10 volume of 3 M NaAc (pH 5.2) and 2.5 volume of cold 99% (v/v) 

ethanol (at -20°C), followed by incubation at -80 °C for 30 min. Then, 

the mixture was centrifuged for 10 min at 10000 rpm and supernatant 

was discarded. The pellet was air-dried and dissolved in the desired 

volume of dH2O. 

 

2.2.6.2. Concentration of DNA with DNA SpeedVac System 
 

 The previous method for the concentration of DNA with ethanol was replaced 

with DNA SpeedVac System at later stages. 

 

2.2.7. Polymerase Chain Reaction (PCR) 

 

2.2.7.1. Primers 
         

 The sequences of all the primers and oligonucleotides used in the study were 

presented in Appendix B. 
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2.2.7.2. PCR Amplifications 
 

 By using the appropriate primer pairs, target DNA sequences were amplified for 

25-40  cycles (25 cycles for plasmid DNA templates and 40 cycles for genomic DNA 

templates), beginning with a pre-denaturation step at 94 °C for 3 min, followed by 

consisting a 1 min denaturation step at 94 °C, a 1 min annealing at 60 °C (modified as 2 

min annealing at 55 °C for genomic DNA templates), and a 3 min extension at 72 °C. A 

10 min primer extension at 72 °C completed the sequence.  

 PCR reactions were carried out in 50 µl volume of PCR mixture (Appendix A) 

One tenth of the PCR products was loaded in 1% (w/v) agarose gel with 0.5 µg/ml EtBr 

and subjected to electrophoresis for the analysis of the PCR reaction. After 

confirmation, PCR products were purified for later use in the cloning experiments. 

 

2.2.7.3. Colony PCR 
 

 Bacterial cells were employed as templates and one bacterial colony was 

inoculated directly in 50 µl of PCR mixture (Appendix A) with a sterile toothpick. PCR 

reaction conditions were as explained in chapter 2. 2. 7. 2.  

 

2.2.8. Analysis of Proteins  

 

2.2.8.1. Preparation of Cell Lysates for Western Blotting 

 
 Trypsinized cell monolayers were pelleted by centrifugation at 1500 rpm for 2 

min and upon removing of the aqueous solution containing trypsin and serum, the cells 

were washed with ice-cold CMF-PBS and lysed by the addition of 300 µl RIPA buffer 

(Appendix A). Immediately, the protease inhibitor PMSF was added at the 

concentration of 2 mM from a 100 mM/ml stock concentration in isopropanol to prevent 

the degradation of proteins in the lysate. The lysed cells in RIPA-PMSF mix were 

immediately transferred to a 1.5 ml microcentrifuge tube and incubated for 5 min on ice, 

followed by vigorous vortexing and centifugation at maximum speed for 10 min. The 

supernatant was transferred to a fresh tube and stored at -20 °C. 
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2.2.8.2. Seperation of Proteins by SDS Polyacrylamide Gel           

             Electrophoresis 
 

 To enable the discrimination of the searched proteins, the appropriate percents of 

stacking and seperating gels were prepared in a Thermo vertical gel electrophoresis 

according to descriptions of Maniatis et al (1989) Cell lysates were heated at 95 °C for 3 

min in protein loading buffer and then loaded into the gel. The movement of the 

molecules were followed by the blue dye (bromophenol blue) present in the protein 

loading buffer and the current was turned off when the dye was approaching to the 

bottom of the seperating gel. The current kept constant at the beginning was increased 

upon passage of the bands to the seperating gel. 

 

2.2.8.3.  Transferring Proteins from Acrylamide Gels to Nitro-cellulose  

              Membranes 

 
 The run gel was removed and placed in a tray containing transfer buffer (39 mM 

glycine, 48 mM Tris base, 0.037% (w/v) SDS, 20% (v/v) methanol, pH 8.3) Meanwhile, 

all other materials to be used for this transfer purpose were soaked in the transfer buffer 

as well including Scotch-Brite sponge pads, filter papers (cut at the same size of the gel) 

and transfer membrane (cut at the same size of the gel). For convenience, the gel and 

one of the filters combined with it  were carried together not to harm to  the fragile gel 

and then they were sandwiched on a transfer frame stand that has negative electrode 

between sponge pad (above the frame with negative electrode)and transfer membrane 

(in contact with the gel)-filter paper-2 sponge pads and covered with the frame stand of 

positive electrode. Since proteins were negatively charged because of the SDS in 

protein loading buffer, their migrations would be from cathode to anode. The 

construction with 2 frame stands at the top and below were attached with 2 clamps and 

turned vertical to be placed into  the electrophoresis tank  full of ice to prevent the 

harmful effect of heat and sufficient volume of transfer buffer to be in contact with the 

electrodes in the electrophoresis tank. An electric current of 15 V was applied for 1.5 

hours for the transfer of proteins on to the nitro-cellulose filter. 
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2.2.8.4. Detection of Proteins by Western Blotting 

 
 After the transfer of the proteins from to gel to the nitro-cellulose membrane, in 

order to prevent the nonspecific reactions, the potential protein binding sites on the 

membrane were covered with irrelevant proteins with a process called blocking. The 

membrane was incubated in 5% (w/v) non-fat dried milk in PBS for 2 hours at 37 °C 

with constant shaking. Then, the primary antibodies reactive against the target proteins 

were added with dilution rates of 1/100 and 1/400 and incubated for 2 hours with gentle 

agitation. Then, the membrane was washed 3 times with wash solution (1% (v/v) 

Tween 20 in PBS) Since it was strongly recommended to remove phosphate from the 

membrane before the secondary antibody treatment, a final wash with the phosphate-

free wash solution (150 mM NaCl, 50 mM Tris-Cl, pH 7.5) was done. Then, the 

membrane was transferred into phosphate-free blocking solution (5% (w/v) non-fat 

dried milk, 150 mM NaCl, 50 mM Tris-Cl, pH 7.5) containing the secondary antibody 

(Anti-Mouse IgG Alkaline Phosphatase Conjugate)  at 1:30000 concentration and 

incubated for 1 hour at room temperature with gentle agitation. Then, the membrane 

was washed with phosphate-free wash solution by four 10 min incubations with gentle 

agitation. For the detection of target protein bands, chromogenic substrate BCIP/ NBT 

(5-bromo-4-chloro-3-indolylphosphate/ nitro blue tetrazolium) which was converted in 

situ into a dense blue compound by immunolocalized alkaline phosphatase) was added 

on the membrane and waited until the development of the blue colour. 
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CHAPTER 3 
 

 

RESULTS 
 

 

3.1. Episomal DNA Replication in Human Cells and EBV-based   

       Vectors 

 

 In  order to study the expression profiles of recombinant proteins in eukaryotic 

cell lines, the starting point is the introduction of the foreign DNA that is anticipated to 

be expressed into a host cell. Once the DNA has entered the cell,  it can follow many 

routes, but three are most likely (Fig. 3.1). First, it may be destroyed by cellular 

enzymes called as nucleases. Second, the DNA may be remained in the nucleus or 

cytoplasm as an extra-chromosomal element (episome). Lastly, it may integrate into the 

host cell’s chromosome and become a stable and permanent part of the genome. 

 

 

 

 

 

 

 

 

 
Figure. 3.1. Possible routes of foreign DNA entering a mammalian cell 

(Source: Thomas F. Kresina, 2001) 
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 Episomal replication system may be exploited to serve our purpose. If vectors 

that are maintained as multiple copies/cell by episomal replication in the host cell 

nucleus are used, recombinant proteins expressed from these constructs may be 

expected at high levels. 

 Epstein-Barr virus (EBV), a human herpesvirus, is associated with a number of 

human malignant diseases. EBV-immortalized cells harbor the viral genome in multiple 

episomal copies and express a limited number of viral genes, including the genes coding 

for six nuclear antigens (EBNAs) and three membrane antigens (Strominger et al., 

1989). 

 Since the major risks of toxicity with viral vectors, nonviral vectors have been 

developed thanks to the recombinant DNA technology. In this study, we took advantage 

of EBV-based plasmid vectors pMEP4 and pREP9 which possess the EBV origin of 

replication (ori P) and nuclear antigen gene (EBNA-1) required for ori P function. In the 

majority of plasmids, the replication functions are clustered within a region of 1-3 kb 

known as the basic replicon. This was defined originally as the smallest portion of the 

plasmid to replicate (Kollek et al., 1978). EBNA-1 binds to the viral origin of episomal 

replication and is required for maintaining the genome as episomes (Sugden et al., 

1985). This finding is compatible with the analysis that mutations in the gene for 

EBNA-1 prevented extrachromosomal persistence of the plasmid (Levine et al., 1985). 

In this context, it is noteworthy to imply that EBNA-1 and ori P have been conserved 

during the evolution of the close relatives of EBV that infect Old World primates (Klein 

et al., 1987; Pagano et al., 1990; Ying et al., 1996).        

 Cells transfected with EBV-based plasmids (pMEP4 or pREP9) can be selected 

with the suitable selection marker that plasmids carry (hygromycin in the case of 

pMEP4 and G418 (neomycin) in the case of pREP9). Besides this marker difference, 

the two plasmids contain different promoters (metallothionine in the case of pMEP4 and 

RSV promoter in the case of pREP9). Excluding these two distinct features, two 

plasmids have the same backbone, as shown in Fig.3.2 and Fig. 3.3.                   
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Figure 3.2. pMEP4: An EBV-based episomal mammalian expression vector 

(Invitrogen) Comments for pMEP4: A polylinker flanked by 
metallothionine promoter and SV40pA (polyadenylation signal) for the 
cloning and selection of the recombinant protein; a selectable marker 
(hygromycin-resistance gene) flanked by TK promoter and TKpA for 
stable maintanence of the vector; amp/ori: antibiotic resistance gene for the 
selection in bacteria/ E.coli replication origin; oriP and EBNA-1: EBV 
replication origin and EBV  nuclear antigen necessary for episomal 
expression of EBV-based plasmids. 
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Figure 3.3.  pREP9: An EBV-based episomal mammalian expression vector 
(Invitrogen) Comments for pREP9: A polylinker flanked by RSV promoter 
and SV40pA (polyadenylation signal) for the cloning and expression of the 
recombinant protein; a selectable marker (neomycin-resistance gene) 
flanked by TK promoter and TKpA for stable maintanence of  the vector; 
amp/ori: antibiotic resistance gene for the selection in bacteria/ E.coli 
replication origin; oriP and EBNA-1: EBV replication origin and EBV 
nuclear antigen necessary for episomal expression of EBV-based plasmids. 
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3.2. Importance of the IRES in Expression Vectors 

 
 In early studies that describe retroviral vectors containing two genes, 

transcription of the first gene was usually under the control of the retroviral promoter, 

whereas expression of the second gene was controlled by a heterologous promoter. 
Although the majority of these studies showed that expression of both genes was 

detectable, some groups reported that expression of a second gene was absent either due 

to promoter interference, promoter methylation, or other unknown mechanisms 

(Emerman and Temin, 1984, 1986; Xu et al., 1989; Hoeben et al., 1991). With the 

identification of cap-independent translation and the minimal sequence responsible for 

internal ribosomal entry (IRES) sequence elements that are found in poliovirus 

(Pelletier and Sonenberg, 1988) and encephalomyocarditis viruses (Jang et al., 1988, 

1989) viral RNAs, IRES sequences were used for the construction of bicistronic 

retroviral vectors for gene therapy purposes (Adam et al., 1991; Aran et al., 1994; 

Sokolic et al., 1996). 

 By linking the two genes of interest in a single bicistronic transcriptional unit it 

should be possible to maintain both functions for a prolonged period of time (Levine et 

al., 1991; Ghattas et al., 1991; Morgan et al., 1992; Sokolic et al., 1996; Abram et al., 

1997; Di Ianni et al., 1997; Gallardo et al., 1997; Murakami et al., 1997; Sugimoto et 

al., 1997). Considering this fact, the internal ribosome entry site (IRES) from 

encephalomyocarditis virus was placed between the two genes (rev and tat) for their 

efficient simultaneous translation as shown in the later figures. In this way, both genes 

are anticipated to be expressed from a single bicistronic mRNA. 

 

3.2.1. Construction of the Episomal Expression Vector pMEP-IRES 

 

 In order to construct pMEP-IRES episomal expression vector, EBV-based 

episomal expression vector pMEP4 was digested with Bgl II and NotI restriction 

enzymes and the large fragment was purified by agarose gel electrophoresis. The 

plasmid pIRES was also digested with the same restriction enzymes and the resulting 

1754-bp fragment containing CMV enhancer, CMV promoter, IVS and IRES sequences  

was subcloned into the Bgl II and NotI sites of pMEP4 after being purified from the gel. 

Thus, the 879-bp weak metallothionine promoter was replaced by the strong CMV 
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promoter and IRES sequences to yield pMEP-IRES episomal expression vector (Fig. 

3.4) 
 Following transformation of ligated fragments into competent E.coli cells, 5 

colonies were obtained. Plasmid DNAs of these ampicillin-resistant transformants were 

isolated and control digestions were carried out with restriction enzymes XbaI and 

MunI to prove the generation of the recombinant molecule pMEP-IRES. Firstly, 5 

transformants were digested with XbaI and was observed that four digestions yielded 

the two fragments of expected sizes (Fig. 3.5). Then, one of these samples was taken for 

further analysis with MunI restriction enzyme to confirm the cloning (Fig. 3.6). 
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Figure 3.4. Contruction of the episomal expression vector pMEP-IRES 
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Figure 3.5.  Restriction digestion analysis of transformants for pMEP-IRES 
Lane 1. 10 kb DNA Ladder; Lanes 2-6: plasmids tested 

 

 

 

                                             
 

Figure 3.6.  Restriction enzyme analysis of plasmid pMEP-IRES 
Lane 1. pMEP-IRES digested with MunI; Lane 2. control: pMEP4 digested 
with MunI; Lane 3. 10 kb DNA Ladder     
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3.3. Attempted Trials for the Generation of Expression Vectors   

       Carrying HIV-1 ‘rev’ and ‘tat’ cDNA Sequences 

 
 The constructed recombinant molecule pMEP-IRES was used to clone HIV-1 

‘rev’ and ‘tat’ genes. Since the necessity of these two regulatory genes; tat and rev for 

the transactivation of HIV-1 promoter LTR and for the regulation of gene expression 

respectively  was discussed in detail in the introduction part, the strategies developed to 

generate pMEP-IRES-rev, pMEP-IRES-tat, and pMEP-IRES-rev-tat  will be explained 

in this part in terms of the efficiencies of the two methods in the cloning experiments. 

 Since the effect of rev assumed to be stronger, we focused on generating pMEP-

IRES-rev-tat expression vector instead of pMEP-IRES-tat-rev in order to allow rev gene 

transcribed firstly. Though some resources claim the opposite, generally it is accepted 

that IRES-dependent expression of the downstream gene in the bicistronic vector is 

typically between 20% and 50% of the level of the gene located upstream from the 

IRES (Hayakawa et al., 2000). Certainly, pMEP-IRES-tat-rev expression vector could 

have been generated as well for a better comparison in terms of the gene expression 

profiles of these two vectors, however because of time limitations, this step was 

eliminated. 
 Two approaches were developed to accomplish the generation of these 

expression vectors and the first one was cloning by blunt end ligation which then was 

replaced with cloning by site-directed mutagenesis since the orientation of the cloned 

fragments was  not possible to be detected with the first strategy. 

 

3.3.1. Cloning by Blunt End Ligation 

 

3.3.1.1. Attempts to Construct pMEP-IRES-rev Expression Vector 

 
 pCV1 plasmid (NIH AIDS reagent program) was digested with Bsu36I 

restriction enzyme and the ends of the resulting 722-bp length fragment including rev 

cDNA together with some small parts of tat and nef genes was made blunt with T4 

DNA polymerase enzyme. pMEP-IRES expression vector was digested with NheI 

restriction enzyme and the ends of the resulting 11315-bp length linear fragment was 
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also treated with T4 DNA polymerase enzyme. Then, this linearized fragment was used 

as a vector to clone HIV-1 rev gene (Fig. 3.7). 

 

3.3.1.2. Attempts to Construct pMEP-IRES-tat Expression Vector 

 
 The same strategy was used to clone HIV-1 tat cDNA into the expression vector 

pMEP-IRES. pMEP-IRES was digested with NheI and the linearized fragment was used 

to clone tat cDNA after treatment with T4 DNA polymerase for end-filling. This time, 

pCV1 (NIH AIDS reagent program) was digested with SalI and BamHI restriction 

enzymes to release the 356-bp length fragment containing tat cDNA together with some 

small parts of vpr and rev genes. Following T4 DNA polymerase treatment, ligation was 

done followed  by transformation of ligated fragments into the competent E.coli (Fig. 

3.8). 

 Since the clonings was not achieved by this way, the generated recombinant 

molecules were found more convenient to be named as ‘product 1’ ‘product 2’ in the 

model figures 3.7 and 3.8. 

 Though different temperature conditions and variable insert: vector ratios were 

tried, the ligation reactions were not sucsessful. It was observed that in a wide range of 

samples tested, the vector molecule was self-ligated and the treatment of the vector with 

CIAP (Calf Intestinal Alkaline Phosphatase) in order to remove 5’ phosphate groups 

from the vector to prevent self-ligation provided no solution to our problem. Step by 

step, any other conditions were revised to make a better understanding of where the 

problem stems from.  Then, we concentrated on T4 polymerase enzyme since the 

incompatible ends of the vector and insert molecules can not be filled with nucleotides, 

it was impossible to expect these clonings carry out. In order to determine whether there 

was a problem with T4 polymerase enzyme or not, PCR-amplified kanamycin gene was 

cloned into the pBluscript KS+ plasmid followed by treatment of both the vector and 

the insert molecule with T4 DNA polymerase enzyme and lots of colonies were 

obtained on LB agar plates containing both ampicillin resistance gene for the growth of 

pBluscript KS+ and kanamycin resistance gene for the selection of the molecule in 

which kanamycin gene was cloned into the pBluscript KS+ plasmid. Since, pBluscript 

KS+ plasmid does not contain resistance gene for kanamycin, it can not grow on plates 

containing the selectable marker kanamycin. Hence, the colonies grew on plates have to 
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be recombinant molecules. The greatest problem faced was related with supplying 

adequate amount of DNA. Both the restriction enzymes used for cloning and the 

restriction enzymes used in the control digestions yielded with very small length of 

expected fragments which were so difficult to be seperated from other resulting 

fragments in spite of the various manipulations tried. In some cases, the control tests of 

colonies obtained showed that the desired genes was cloned into the pMEP-IRES 

expression vector, however  the orientation of the clones could not be determined . 

Since this is not a positional cloning, we had to control an other important parameter 

while carrying on our attempts to clone the two regulator genes. Because of all these 

reasons, this cloning strategy was abandoned and another strategy was tried. 
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Figure 3.7.  The model for the generation of pMEP-IRES-rev vector by blunt end 
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Figure 3.8. The model for the generation of pMEP-IRES-tat vector by blunt end cloning 
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3.3.2. Cloning by PCR  

 

 The biggest problem faced with the previous strategy was related with not 

obtaining high concentration of DNA molecules to be used in the cloning and the 

inability to demonstrate the desired orientation of the recombinant molecules. 

Therefore, primers carrying the appropriate restriction sites (NheI and NotI) were 

designed in order to amplify rev and tat cDNA sequences then to clone into the pMEP-

IRES expression vector digested with the  same restriction enzyme of amplified 

fragment. In order to facilitate the restriction digestion of amplified DNA fragments and 

thus to raise the ligation efficiency, 8-bp length sequences were placed before the 

restriction sites as this was the case for all primers used in this thesis work. Also, 20-bp 

length 2 oligonucleotides IRES and ires-2 were designed. Since their recognition 

sequences and binding orientations to these sequences were designed in a way to allow 

an easy determination of the orientations of rev and tat cDNA sequences, by taking 

advantage of this strategy, pMEP-IRES-rev, pMEP-IRES-tat and pMEP-IRES-rev-tat 

recombinant molecules were constructed.    

 

3.3.2.1. Construction of pMEP-IRES-rev Expression Vector 

 
 pMEP-IRES episomal expression vector was digested with NheI restriction 

enzyme and the digestion mix containing the 11315-bp length linearized molecule was 

purified directly after the confirmation of the digestion with a small volume of digestion 

mix run on the agarose gel. Then, linearized fragment was treated with CIAP (Calf 

Intestinal Alkaline Phosphatase) and purified once more before it was used as the vector 

in the cloning. HIV-1 rev cDNA sequence was amplified from pCV1 (NIH AIDS 

reagent program) plasmid using the forward primer REV-NHE5 and the reverse primer 

REV-NHE3 both of which have Nhe1 sites. The 379-bp length amplified fragment was 

gel purified and digested with Nhe1 which resulted with 357-bp length fragment. 

Following purification, this fragment was cloned into the pMEP-IRES plasmid to yield 

pMEP-IRES-rev. 

 Two recombinant molecules of the same 11672-bp length may be generated with 

this approach. Since the expression profile of rev was desired in the forward orientation, 

recombinants carrying the undesired orientation of the rev was ignored and cloning 
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experiments were repeated until the determination of the recombinant molecule carrying 

the desired orientation of rev. For convenience, in the figure (Fig. 3.9) showing the 

construction model of pMEP-IRES-rev expression vector, the undesired molecule was 

not shown since it did not serve to our purpose. It is also noteworthy to declare that the 

generation of alternative recombinant molecules were also the case not only for this 

cloning, but also in the generation of pMEP-IRES-tat and pMEP-IRES-rev-tat 

expression vectors where the desired expression profiles of cloned genes were in the 

forward orientation again. So, the statement above is valid for these cloning 

experiments   as well. Therefore, in the figures showing the generation model of these 

expression vectors, the undesired versions of the recombinants were not shown either. 

 The strategy based on the detection of the orientation of rev by taking advantage 

of the oligonucleotide IRES is shown in Fig. 3.10. Since the desired transcriptional 

activity of the rev gene is in the forward direction, as it was shown with arrow, the 

amplification reaction carried out with rev reverse primer REV-NHE3 and the 

oligonucleotide IRES which binds at the nucleotide 724, upstream from the rev, have to 

be resulted with the correct size of 766-bp length and an amplification reaction using 

rev forward primer REV-NHE5 and IRES is not possible. 

 As a result of the transformation of ligated fragments into the competent E.coli  

cells, nine of the plasmid DNAs of obtained colonies were subjected to the PCR 

amplification to directly determine the orientation of the rev gene and three of them 

gave positive result (Fig. 3.11)     

 Then, one of these three plasmids were subjected to the other amplification 

reactions to prove the cloning (Fig. 3.12) The evaluation of the results shows the 

construction of pMEP-IRES-rev expression vector.        
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Figure 3.9. Construction of pMEP-IRES-rev expression vector 
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Figure 3.11.  PCR analysis of 9 plasmids by primers IRES and REV-NHE3 
Lanes: 1. 10 kb DNA Ladder  Lanes 2-10: plasmids tested for 
amplification, last three (no: 7, 8, 9) gave the correct size of 766 bp as it 
was depicted. 
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Figure 3.10. The strategy model used to detect the cloning and the orientation of the 
rev gene in pMEP-IRES-rev expression vector 
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Figure. 3.12. PCR analysis of transformant 7 
Lanes 1. amplification by primers IRES and REV-NHE3; 2. amplification 
by primers REV-NHE5 and REV-NHE3; 3. amplification by primers IRES 
and REV-NHE5; 4. 10 kb DNA Ladder                   

 

 3.3.2.2. Construction of pMEP-IRES-tat Expression Vector     

 

 pMEP-IRES expression vector was digested with NheI restriction enzyme and 

the digestion mix was purified, a following  CIAP (Calf Intestinal Alkaline 

Phosphatase) treatment and a last purification step made the linear 11315-bp lenth 

fragment ready in order to clone the tat cDNA sequences. HIV-1 tat cDNA was 

amplified from pCV1 (NIH AIDS reagent program) plasmid by primers TAT-NHE5 

and TAT-NHE3 both of which were designed to carry NheI site. The 287-bp length 

amplified fragment was gel purified and digested with NheI which resulted with 265-bp 

length fragment. After purified, this fragment was cloned into the pMEP-IRES plasmid 

to generate pMEP-IRES-tat (Fig. 3.13).        

 32 ampicillin-resistant colonies were obtained following the transformation of 

ligated fragments and 6 of them gave positive result for tat amplification. The plasmid 

DNAs of these colonies were isolated and they were subjected to the further analysis to 

determine the orientation of tat.  Restriction digestion of the fragments with MunI yields 

with 3 fragments, what is important is a 1024-bp length fragment is released when tat is 

cloned in the desired orientation, and a 905-bp length fragment is released implying the 

cloning of tat in reversed orientation. 4 of the 6 colonies were positive for this 1024-bp 

fragment. One of them was chosen to determine the orientation of tat with PCR analysis 
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as well not to allow any room for doubt. The previous similar strategy was used to 

determine the orientation of tat, with the difference this time the primers in question 

were TAT-NHE5 and TAT-NHE3, together with the oligonucleotide IRES (Fig. 3.14). 

The amplification reaction by primers TAT-NHE3 and the oligonucleotide IRES which 

binds at the nucleotide 724, upstream from the tat, has to be resulted with the correct 

size of 674-bp length and the amplification reaction by primers TAT-NHE5 and IRES is 

not possible. The generation of pMEP-IRES-tat expression vector was demonstrated 

with these two tests as shown in Fig. 3.15 and Fig. 3.16.    

                                                                                                  

3.3.2.3. Construction of Bicistronic pMEP-IRES-rev-tat Expression   

             Vector 

 
 PCR-amplified HIV-1 tat cDNA ( with primers TAT-NHE5-1 and TAT-NHE3-

1 which of both were designed to carry NotI site) were cloned into the NotI site of the 

constructed pMEP-IRES-rev recombinant molecule to generate pMEP-IRES-rev-tat 

bicistronic expression vector (Fig. 3.17). After the necessary manipulations were carried 

out as in the case of pMEP-IRES-rev and pMEP-IRES-tat generations, 12 colonies were 

obtained following the transformation of ligated fragments into competent cells. These 

ampicillin-resistant colonies were first tested for the amplification and the orientation of 

tat gene( Fig. 3.19). The orientation of tat in pMEP-IRES-rev-tat can be determined by 

the tat forward primer TAT-NHE5-1 and the oligonucleotide ires2 which results with a 

768-bp length amplicon. From the 12 colonies tested, transformant 12 confirmed the 

cloning of tat gene in the forward orientation and it was subjected to the further two 

tests consisting of restriction analysis with MunI (Fig. 3.20) and PCR-based orientation 

detection with the primers for tat and rev cDNA sequences and the two oligonucleotides 

designed for this approach (Fig. 3.21). 

 MunI digestion of the pMEP-IRES-rev-tat molecule is determinative in terms of 

the resulting  361-bp length fragment released if tat gene was cloned in the desired 

orientation and  242-bp length fragment released when tat was in reversed orientation in 

pMEP-IRES-rev-tat vector. The PCR-based orientation determination was also used to 

prove the generation of the correct recombinant molecule. While the primers REV-

NHE3 and IRES determined the orientation of the rev ( 766-bp length amplicon), the 

primers TAT-NHE5-1 and ires2 were used to demonstrate the orientation of tat with an 
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expected 768-bp length amplicon. The amplification reaction carried out by the 

oligonucleotides IRES and ires2 were diagnostic in terms of the estimating the copy 

numbers of the cloned tat and rev genes in pMEP-IRES-rev-tat vector, in which case the 

2206-bp length fragment was a proof of that pMEP-IRES-rev-tat vector was not 

interrupted by dimer formations. A nonspesific band was also observed making us think 

about the potential binding sites of these two oligonucleotides. The last analysis was 

related with the confirmation of overlapping tat and rev genes. If pCV1 plasmid map is 

browsed, a better understanding of the situation can be made. The amplification reaction 

generated by primers REV-NHE5 and TAT-NHE3-1 is not an extraordinary case for 

pMEP-IRES-rev-tat. However, the control amplification by the same primers  in pMEP-

IRES-rev is not normally expected to be carried out since there is no tat gene for the 

binding of the TAT-NHE3-1. If tat and rev genes were located seperately, it was not 

possible for this reaction to carry out. Whereas, the same 121-bp length amplicon was 

obtained confirming the fact that tat and rev genes overlap. 
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Figure 3.13. Construction of pMEP-IRES-tat expression vector 
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Figure 3.14.  The strategy model used to detect the cloning and the orientation of the tat 
gene in pMEP-IRES-tat expression vector 

 

 

 

                                  

Figure 3.15.  Restriction analysis of 6 transformants by enzyme MunI 
Lanes 1, 3, 5, 7, 9, and 11 refer to uncut transformants of 1, 2, 3, 4, 5, 
and 6 respectively. At the right of each of these lanes, MunI digestion 
profiles of 6 transformants result with the 10 kb DNA Ladder profile. 
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Figure 3.16.  PCR analysis of number 3 transformant for the confirmation of the tat 
orientation 
Lanes: 1. 10 kb DNA Ladder; 2. amplification by primers IRES and 
TAT-NHE3; 3. amplification by primers TAT-NHE5 and TAT-NHE3. 
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Figure 3.17. Construction of bicistronic pMEP-IRES-rev-tat expression vector 
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Figure 3.18.  The strategy model used to detect the cloning and the orientation of the tat 

gene in   pMEP-IRES-rev-tat vector                                 
 

 

 

 

                           
 

Figure 3.19.  Analysis of 12 transformants with PCR  
Lane 1: 100 bp DNA Ladder; Lane 2: positive control for tat amplification 
(pCV1); Lanes 3-26: transformants tested for the cloning and the 
orientation of the tat gene, where the lane 25 and lane 26 refer to the 
amplified tat and the orientation of the cloned fragment respectively. 
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Figure 3.20.  Restriction analysis of transformant 12 with MunI digestion 
Lane 1: 100 bp DNA Ladder 
Lane 2: transformant 12 digested with MunI 

      
 
 
 
 

                                 
 

 

 

Figure 3.21.  Confirmation of the generation of pMEP-IRES-rev-tat by PCR-based 
detection 
Lanes: 1. 100 bp DNA Ladder; 2. pMEP-IRES-rev amplified by primers 
REV-NHE3 and IRES; 3. pMEP-IRES-rev amplified by primers REV-
NHE5 and IRES; 4. pMEP-IRES-rev amplified by primers REV-NHE5 
and TAT-NHE3-1; 5. pMEP-IRES-rev-tat amplified by primers REV-
NHE3 and IRES; 6. pMEP-IRES-rev-tat amplified by primers TAT-
NHE5-1 and ires2; 7. pMEP-IRES-rev-tat amplified by primers IRES 
and ires2; 8. pMEP-IRES-rev-tat amplified by primers REV-NHE5 and 
TAT-NHE3-1; 9. 500 bp DNA Ladder                          
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3.4. Construction of An Episomal Plasmid Vector That Contains A   

       Toxic Gene Whose Expression Will Be Dependent Upon HIV-1  

      ‘Rev’ and ‘Tat’ Proteins 

 

 An expression vector that contains the conditional toxic gene under the control 

of the HIV-1 promoter LTR was generated with the purpose of when this plasmid is co-

transfected with expression plasmids containing HIV-1 tat and rev cDNA sequences, 

the presumed expression of this toxic gene may be achieved since LTR needs to be 

transactivated by tat to abandon its transcriptionally silent situation. The mentality 

summarized briefly above led us to construct an episomal vector in which some cis-

acting signals required for the effect of rev were subcloned as well with the expectation 

of increased gene expression. 

 

3.4.1. Construction of pREP-LTR Vector 

 

 The 748-bp length fragment containing the 5’ LTR and splice donor 1 sequences 

from HIV-1 molecular clone pNL4-3 (NIH AIDS reagent program) were PCR-

amplified using 5’ primer LTR5  with a unique XbaI site and 3’ primer LTR3 with a 

unique KpnI restriction site. Following double digestion with these enzymes, the 

excised fragment was cloned into the pREP9 digested with the same enzymes to employ 

a positional cloning. The resulting plasmid was called pREP-LTR (Fig. 3.22). 

 As a result of transformation 12  ampicillin-resistant colonies were obtained and 

the plasmids of these colonies were subjected to the two restriction analysis to confirm 

the cloning. First, these transformants were digested with SacI restriction enzyme and 5 

of them (no: 5, 7, 9, 10, 12) yielded the correct sizes of 7107 bp and 3531 bp (Fig. 

3.23). Then, 3 of these 5 (no: 9, 10, 12) were subjected to the a second restriction 

analysis with Bgl II which in the case of the formation of the recombinant molecule 

yielded 3 fragments of 7844, 2588, and 206-bp lengths (Fig. 3.24). Excluding sample 

numbered 12, the two other yielded 7844 and 2588-bp length fragments, but not 206-bp 

length fragment. However that was a tolerable case considering the differences of 

fragment sizes and their EtBr binding capacities.   
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Figure 3.22. Construction of pREP-LTR vector 
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Figure 3.23.  Restriction analysis of  Ap-resistant colonies by SacI 
 Lane 1: 10 kb DNA Ladder; Lanes 2-13: samples tested 
 

 

 

 

                             
 

Figure 3.24.  Restriction analysis of 3 transformants by Bgl II 
Lanes: 1. 10 kb DNA Ladder; 2. transformant 9 digested with Bgl II; 3. 
tranformant 10 digested with Bgl II; 4. transformant 12 digested with Bgl 
II             
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3.4.2. Construction of pREP-LTR-INS-RRE Vector 
 
 

 Cis-acting INS and RRE sequences were used to render the suicide plasmid 

vector generated dependent upon not only Tat protein but also Rev protein of HIV-1. 

INS (CRS) sequences do not affect transcriptional activity of a gene but rather inhibit 

gene expression posttranscriptionally by preventing the export of the transcripts from 

nucleus to cytoplasm (Maldarelli et al., 1991). RNA containing an INS element can be 

entrapped and spliced in the nucleus in the absence of Rev (Cochrane et al., 1991). This 

barrier is overcome when the RRE is present in cis and the rev gene product is in trans 

(Maldarelli et al., 1991). 

 The construction of pREP-LTR-INS-RRE plasmid vector was generated with 2 

steps, which of first HIV-1 molecular clone pNL4-3 plasmid was digested with MunI 

and of the 3 fragments of different sizes released, 9147-bp length fragment was gel 

isolated and self-ligated to generate pNL4-3-MunI that will be employed as the template 

to amplify HIV-1 INS, RRE and splice acceptor 7 sequences by primers INS5 and 

RRE3 which contain XhoI and BamHI restriction sites respectively. The 2007-bp XhoI-

BamHI PCR product was then subcloned into the same restriction sites of plasmid 

pREP-LTR for the generation of pREP-LTR-INS-RRE vector (Fig. 3.25).  

 Generation of pNL4-3-MunI was confirmed with the yielded 2 fragments of 

5165 and 3982-bp lengths when the recombinant molecule was excised with Eco81l 

(Fig. 3.26) For the generation of pREP-LTR-INS-RRE, of the many colonies obtained 

for the transformation of XhoI-BamHI excised fragments ligated together, 9 of them 

was double digested with BamHI and XhoI restriction enzymes which were so 

diagnostic when employed together since this digestion reaction yielded with the cloned 

insert of correct 2007-bp length (Fig. 3.27). 
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Figure 3.25. Construction of pREP-LTR-INS-RRE vector 
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 Figure 3.26.  Confirmation of pNL4-3-MunI with Eco81l restriction 
 Lane 1: 10 kb DNA Ladder 
 Lanes 2-3: samples tested                                                     

 

                        

 

 

                        
 

Figure 3.27.  Confirmation of the generation of PREP-LTR-INS-RRE with restriction 
analysis 
Lanes: 1. 10 kb DNA Ladder; 2-10: 9 plasmids of Ap-resistant colonies 
digested with BamHI and XhoI 
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3.4.3. Construction of pREP-LTR-INS-RRE-TK Suicide Vector 

 

 HSV-TK (Herpes Simplex Virus, Thymidine Kinase) gene was cloned into the 

plasmid vector pREP-LTR-INS-RRE to construct pREP-LTR-INS-RRE-TK. The 

Herpes simplex virus-1 thymidine kinase, the product of which confers sensitivity to the 

prodrug ganciclovir, remains the prototypic suicide gene (Klatzmann et al., 1999) By 

the generation of this suicide vector, the expression of the toxic gene could be achieved 

when Tat and Rev expressing cells transfected with this vector  were grown in medium  

supported with ganciclovir, which then results with cell death.          

 The construction of this suicide vector was carried out by two steps. First, the 

thymidine kinase gene was obtained from HSV genomic DNA by PCR amplification 

using the TK5 and TK3 primers that contain the KpnI and HindIII restriction sites, 

respectively and the 1141 bp-length KpnI-HindIII excised amplified fragment was 

cloned into the same restriction sites of pREP9 to generate pREP-TK (Fig. 3.28) As the 

second step, the constructed pREP-TK was digested with KpnI and NotI restriction 

enzymes to yield thymidine kinase gene which were cloned into the same restriction 

sites of  plasmid vector pREP-LTR-INS-RRE to construct pREP-LTR-INS-RRE-TK 

suicide vector (Fig. 3.29).  

 The confirmation of the generation of pREP-TK was made by PCR detection for 

the amplification of TK gene. Of the 56 Ap-resistant colonies obtained, 22 colonies 

were tested and 6 of them were positive for TK amplification ensuring the generation of 

pREP-TK ( Fig. 3.30). One of these recombinants were chosen to be employed for the 

generation of  pREP-LTR-INS-RRE-TK. The transformation of KpnI-NotI excised and 

ligated fragments resulted with a pretty number of colonies of which the 22 were first 

subjected to the colony PCR to detect the amplification of TK gene (Fig. 3.31). They 

were all positive for TK amplification and one of them was employed for further 

confirmation analysis with restriction analysis by KpnI and NotI together with PCR 

amplification . The double digestion of the recombinant by KpnI and NotI resulted with 

the correct size of 1144-bp length insert TK (Fig. 3.32). 
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Figure 3.28. Construction of pREP-TK vector 
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Figure 3.29. Construction of pREP-LTR-INS-RRE-TK suicide vector 
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Figure 3.30.  Confirmation of the generation of pREP-TK by PCR 
Lanes above: 1.  0.5-5.0 kb DNA marker; 2-12: colonies (no: 1-11) 
amplified by primers TK5 and TK3 
Lanes below: 1. 0.5-5.0 kb DNA marker; 2-12: colonies (no: 12-22) 
amplified by primers TK5 and TK3 

 

 

 

 

                                                            
 

Figure 3.31.  PCR analysis of Ap-resistant colonies for pREP-LTR-INS-RRE-TK 
Lanes above: 1. 0.5-5.0 kb DNA marker; 2-12: colonies (no: 1-11) 
amplified by TK5 and TK3 
Lanes below: 1. 0.5-5.0 kb DNA marker; 2-12: colonies (no:12-22) 
amplified by TK5 and TK3 
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Figure 3.32.  Confirmation of the construction of pREP-LTR-INS-RRE-TK 
Lanes: 1. 0.5-5.0 kb DNA marker; 2. pREP-LTR-INS-RRE-TK amplified 
by primers TK5 and TK3; 3. pREP-LTR-INS-RRE-TK digested with 
KpnI-NotI; 4. Control: pREP-LTR-INS-RRE digested with KpnI-NotI 
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3.5.  Monitoring  Gene Expression via Reporter Genes 

 
 Two reporter genes (CAT and lacZ) were employed to construct pREP-LTR-

INS-RRE-CAT, pREP-LTR-INS-RRE-CAT-lac and pREP-LTR-INS-RRE-TK-lac 

plasmid vectors. Reporter genes are very important in gene cloning since they guide us 

to monitor the expression profiles of specific sequences with the mostly simple 

histochemical tests. LacZ gene encodes the enzyme beta-galactosidase and the binding 

of this enzyme to its substrate X-gal results with a visible blue color 

(Emerman&Kimpton, 1992). To exploit this case for our purpose, lacZ gene was cloned 

into pREP-LTR-INS-RRE-TK suicide vector. So that, when eukaryotic cells expressing 

Rev and Tat were transfected with this vector and grown in medium supplemented with 

X-gal together with the appropriate antibiotics for selection, the resulting blue color 

could be a diagnostic signal for the gene expression. Deeper cases were also considered 

for future use hence  pREP-LTR-INS-RRE-CAT and pREP-LTR-INS-RRE-CAT-lac 

vectors were constructed. The beta-galactosidase assay provides a powerful way of 

determining  gene expression but in the case of obtaining a  result that does not 

emphasize a specific type of cell death for cells co-transfected with pREP-LTR-INS-

RRE-TK-lac and vectors expressing tat and rev, there may be some possibilities to be 

evaluated. This may be related with the toxin gene itself, if the expression of thymidine 

kinase does not carry out, it makes no sense to anticipate a specific cell death. On the 

other hand, it may sign to some problems regarding our constructs, for instance, if a 

mutation occurred in the promoter LTR sequences, certainly the genes cloned 

downstream of LTR  can not be expected to be expressed. In pREP-LTR-INS-RRE-

CAT vector, CAT replaced the suicide gene TK. Therefore, when transmitted into the 

host organism, gene expression profile of CAT will mimic the expression profile of the 

TK gene since CAT gene will be under the influence of the same control sequences as 

the TK . Therefore, CAT RNA containing the INS sequences will accumulate in the 

nucleus of transfected cells like TK. Since addition of Rev in trans and the RRE in cis is 

anticipated to rescue CAT expression, the relative CAT expression on protein level will 

be a determinative measurement of rev expression. Thus, verifying CAT protein 

expression would be a diagnostic signal to assure that the suicide plasmid vector 

generated is dependent upon not only Tat protein but also Rev protein. 
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LacZ will be expressed under circumstances depending on the action of Rev. In the case 

there is no Rev participation, intron containing RNA is forced to be spliced and the 

excision of the intervening regions results with the occurrence of lacZ mature mRNA 

which is then translated in the cytoplasm to yield lacZ protein. On the other hand, a 

different pathway will be followed when Rev participation is in question. Rev 

interaction with INS and RRE sequences will counteract the splicing pressure forced in 

its absence thus will enable the export of intron containing RNA (herein, TK and INS-

RRE sequences) from the nucleus. Since there is neither IRES for simultaneous 

translation of these two genes as it was the case for the previously constructed 

recombinant molecules in the study nor a heterologous promoter to employ the 

transcription of the second gene, which refers to lacZ in that case, lacZ expression can 

not be anticipated. What happens is that TK transcripts normally entrapped and spliced 

in the nucleus in the absence of Rev can be exported from the nucleus to cytoplasm 

where they will be translated and produce toxic protein (Fig. 3.33). 
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3.5.1. Construction of pREP-LTR-INS-RRE-CAT Plasmid Vector 

             
 The same strategy was employed to construct pREP-LTR-INS-RRE-CAT vector 

as in the case of the construction of pREP-LTR-INS-RRE-TK suicide vector. First, the 

reporter gene CAT (chloramphenicol acetyl transferase) in pCI-neo plasmid was 

amplified by the forward primer CAT-5 and the reverse primer CAT-3 which contain 

restriction sites for KpnI and HindIII respectively. The 685-bp length PCR-amplified 

fragment was double digested with KpnI and HindIII and the resulting 659-bp length 

fragment was cloned into the same restriction sites exist in the multiple cloning site of 

pREP9 to construct  pREP-CAT (Fig. 3.34). pREP-CAT plasmid was employed to yield 

670-bp length CAT fragment  which then subcloned as a KpnI-NotI fragment into 

pREP-LTR-INS-RRE to construct pREP-LTR-INS-RRE-CAT (Fig. 3.35). 

 Upon the transformation of ligated KpnI-HindIII excised fragments from pREP9 

and pCI-neo for the generation of pREP-CAT, 73 Ap-resistant colonies were obtained 

and 11 colonies  were screened for the amplification of CAT gene. The generation of 

pREP-CAT vector was confirmed since one colony (no:2)  gave the size of correct 

amplicon (Fig. 3.36). Upon the transformation employed for the generation of pREP-

LTR-INS-RRE-CAT, many Ap-resistant colonies (approximately 150) obtained and 22 

of them were subjected to the PCR analysis for CAT amplification. Excluding one 

colony (no:7) the colonies were all positive for the correct size of amplified CAT (Fig. 

3.37) No: 1 transformant was chosen for further analysis including the double digestion 

of its plasmid DNA with KpnI and NotI together with PCR analysis repeated once more 

(Fig. 3.38). 
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Figure 3.35. Construction of pREP-LTR-INS-RRE-CAT 
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Figure 3.36.  Confirmation of the generation of pREP-CAT by PCR 
Lanes: 1. 0.5-5.0 kb DNA marker; 2-12: 11 colonies amplified by CAT5 
and CAT3    

 

 

 

 

                                  
 

Figure 3.37.  PCR amplification of the Ap-resistant colonies for pREP-LTR-INS-RRE-
CAT 
Lanes above: 1. 0.5-5.0 kb DNA marker; 2-12: colonies (no: 1-11) tested 
Lanes below: 0.5-5.0 kb DNA marker; 2-12: colonies (no: 12-22) tested 
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Figure 3.38.  Confirmation of the construction of pREP-LTR-INS-RRE-CAT 
Lanes: 1. 0.5-5.0 kb DNA marker; 2. pREP-LTR-INS-RRE-CAT 
amplified by primers CAT5 and CAT3; 3. pREP-LTR-INS-RRE-CAT 
digested with KpnI-NotI; 4. control: pREP-LTR-INS-RRE digested with 
KpnI-NotI 

                                             

                                         

 

 

 

 

 

 

   
        1000 bp 
 
          685 bp 
 
          500 bp 

670 bp 



 85 

3.5.2 Construction of pREP-LTR-INS-RRE-CAT-lac Vector 

 
 The plasmid vector pREP-LTR-INS-RRE-CAT-lac that will allow the 

constitutive expression of lacZ gene was constructed by amplifying lacZ from pcDNA 

3.1 /HisB/lacZ plasmid by primer pair lac5 and lac3 which carry BamHI restriction sites 

at both ends and the resulting excised amplicon of 3195-bp lenth was cloned into the 

BamHI site of pREP-LTR-INS-RRE-CAT (Fig. 3. 39) Since this is not a positional 

cloning, the orientation of the insert was verified by the correct choice of restriction 

enzyme that will allow to the discrimination of the recombinants of whether lacZ gene 

was cloned in the desired or reversed orientation. 

 Upon transformation of ligated BamHI-excised fragments for the generation of 

pREP-LTR-INS-RRE-CAT-lac, 13 colonies were obtained and half of these colonies 

were employed for the amplification of lacZ. Plasmids of 2 colonies in which 

amplification carried out (no: 3 and no: 7) were used for the confirmation tests that were 

managed by both PCR analysis to proove the presence of the insert and restriction 

analysis to analyze the orientation of lacZ gene. With PCR analysis, resulting amplicon 

of correct size demonstrated the generation of the recombinant molecule (Fig. 3. 40). 

The second step needs to be controlled was the orientation of lacZ gene in the resulting 

recombinant molecule and according to the assesment of plasmid maps of possible 2 

recombinants, NheI restriction enzyme was found convenient to be used for this 

purpose. Digestion of the desired recombinant molecule with NheI results with 2 

fragments of 14406-bp and 2063-bp lengths. On the other hand, 2 fragments of 11301-

bp and 5168-bp lengths are generated upon digestion of the recombinant molecule 

where lacZ was cloned in the reversed orientation. So, the clear discrimination between 

2063-bp lenth fragment and 5168-bp lenth fragment is informative in terms of the 

determining the orientation of lacZ gene (Fig. 3.41) 

 The evaluation of the results obtained with both PCR analysis and restriction 

analysis proved the construction of pREP-LTR-INS-RRE-CAT-lac plasmid vector. 
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Figure 3.39. Construction of pREP-LTR-INS-RRE-CAT-lac 
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Figure 3.40.  PCR analysis of Ap-resistant transformants by primers lac5 and lac3 
Lanes: 1. 0.5-5.0 kb DNA marker; 2. positive control: 
pcDNA3.1/HisB/lacZ amplified; 3. transformant 3 amplified; 4. 
transformant 7 amplified; 5. negative control: pREP-LTR-INS-RRE-CAT 
amplified      

 

 

 

                                                 
                                            

Figure 3.41.  Restriction analysis to confirm the orientation of pREP-LTR-INS-RRE-
CAT-lac 
Lanes: 1. 0.5-5.0 kb DNA marker; 2. control: pREP-LTR-INS-RRE-CAT 
digested with NheI; 3. transformant 3 digested with NheI; 4. transformant 
7 digested with NheI 
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3.5.3. Construction of pREP-LTR-INS-RRE-TK-lac Vector 

 
 Firstly, the cloning route followed for the construction of pREP-LTR-INS-RRE-

TK-lac was the same as the construction of pREP-LTR-INS-RRE-CAT-lac vector. 

Using the plasmid pcDNA.3.1/HisB/lacZ as the template, lacZ gene was amplified by 

primers lac5 and lac3 that have BamHI sites at both ends and the excised amplicon was 

cloned into the BamHI site of the suicide vector pREP-LTR-INS-RRE-TK. The 

presence and the orientation of the lacZ was assessed by both PCR analysis and 

restriction analysis again. What we determined was the likelihood of a deletion was in 

question since the amplification reaction for TK gene in pREP-LTR-INS-RRE-TK-lac 

did not result with the correct size of amplicon. In order to search this deletion we 

considered the positions of restriction enzymes’ sites in pREP-LTR-INS-RRE-TK-lac 

and managed some control digestions according to these calculations. The digestions 

that were carried out and the interpretations of the bands seen in Fig. 3. 42 are as below: 

- The double digestion of pREP-LTR-INS-RRE-TK-lac with XbaI and KpnI 

yields 3 fragments of 795-bp, 3262-bp, and 12886-bp lengths. Since these sites 

do not interfere with the open reading frame of TK, only some estimations may 

be made, and according to our estimations the band expected to be 3262-bp 

length was approximately 2800-bp length. 

- The double digestion of pREP-LTR-INS-RRE-TK-lac with XbaI and NheI 

yields 3 fragments of 1934-bp, 2063-bp, and 12946-bp lengths. The situation 

above is valid for the digestions employed with these enzymes as well, the 

restriction sites do not interfere with orf of Tk gene. On the other hand, the 

1934-bp length fragment was estimated as 1500-bp length and when these data 

considered together our opinion of a possible deletion was stronger. 

- SacI digestion of pREP-LTR-INS-RRE-TK-lac yields 4 fragments of 748-bp, 

4782-bp, 7882-bp, and 3531-bp lengths. What could be diagnostic was that one 

of the  SacI sites was at position 1241 and this interferes with the orf which is 

between 798 and 1927 of TK. Therefore, if a deletion occurred, this SacI site 

would have been deleted as well and this will change the lengths of fragments 

yielded. With the deletion of SacI site in the orf of TK, 3 fragments of 5530-bp, 

7882-bp and 3531-bp are yielded. These sites can be seen in Fig. 3.42.  
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- Lastly, pREP-LTR-INS-RRE-TK-lac plasmid vector was digested with AccI 

enzyme and 7 fragments expected to be at lengths of 1092-bp, 719-bp, 4007-bp, 

697-bp, 285-bp, 6616-bp, and 3527-bp could not be seen. AccI was a diagnostic 

enzyme too since one of the AccI sites (at position 1092) interferes with the orf 

of TK and the deletion of this site results with 6 fragments at lengths of 4619-bp, 

719-bp, 4007-bp, 697-bp, 285-bp, and 6616-bp. However, only 3 fragments was 

observed on the gel and this is not an extraordinary situation if the close lengths  

of certain bands are taken into account. Thus, the first band seen on the gel 

refers to 6616-bp length, the second band refers to 4619-bp length and 4007-bp 

length fragments altogether. Finally, the third band on the gel refers to fragments 

of 719-bp and 697-bp lengths. The 285-bp length fragment that would generate a 

very weak signal could not be observed as expected. 

The assesment of all these control digestions emphasized a deletion occurred in 

TK gene after cloning lacZ. Since a possible deletion was out of question in 

CAT gene after cloning of lacZ in pREP-LTR-INS-RRE-Cat-lac plasmid vector, 

it may be attributed to the  interaction between sequences of TK and lacZ genes. 

 Since the construction of pREP-LTR-INS-RRE-TK-lac vector was not possible 

by this route followed a new strategy was developed. 

 In the newly developed strategy, the constructed pREP-LTR-INS-RRE-CAT-lac 

plasmid vector was taken advantage and both  pREP-LTR-INS-RRE-CAT-lac and 

pREP-LTR-INS-RRE-TK suicide vector were digested with XbaI and XhoI restriction 

enzymes. Then, the 1945-bp length small fragment also containing TK gene together 

with LTR and INS-RRE sequences were cloned as a XbaI-XhoI fragment into the 

plasmid vector pREP-LTR-INS-RRE-CAT-lac by replacing the 1471-bp length small 

fragment including CAT. Thus, with this simple strategy replacing CAT with TK by 

leaving all control sequences remain the same as before, pREP-LTR-INS-RRE-TK-lac 

plasmid vector was constructed (Fig. 3.43). 
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Figure 3.42.  Confirmation of the deletion in TK gene in pREP-LTR-INS-RRE-TK-lac 
Lanes: 1. 10 kb DNA Ladder; 2. pREP-LTR-INS-RRE-TK-lac digested 
with XbaI and KpnI; 3. pREP-LTR-INS-RRE-TK-lac digested with XbaI 
and NheI; 4. pREP-LTR-INS-RRE-TK-lac digested with SacI; 5. pREP-
LTR-INS-RRE-TK-lac digested with AccI 
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 After XbaI-XhoI excised fragments were ligated together, a small volume of this 

ligation mixture was transformed into competent E. coli cells and 2 Ap-resistant 

colonies were obtained. These colonies were firstly controlled for the amplification of 

TK gene by primers TK5 and TK3 in order to have an early idea of whether a deletion 

was in question this time or not. Both of the colonies gave the correct length 

corresponding to the amplified TK (Fig. 3.44) Then, the other half of one of these 

colonies (no:2) were employed for plasmid isolation and all the required control tests 

were managed with the plasmid DNA. So that, the construction of pREP-LTR-INS-

RRE-TK-lac plasmid vector was demonstrated (Fig. 3.45). 
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Figure 3.44.  PCR analysis of Ap-resistant colonies for  pREP-LTR-INS-RRE-TK-lac            
Lanes: 1. 10 kb marker; 2. sample 1 amplified by TK5 and TK3; 3. sample 
2 amplified by TK5 and TK3 

 

 

 

 

                       
 

Figure 3.45.  Confirmation of the construction of pREP-LTR-INS-RRE-TK-lac 
Lanes: 1. 10 kb marker; 2. positive control: pREP-LTR-INS-RRE-TK 
amplified by primers TK5 and TK3; 3. pREP-LTR-INS-RRE-TK-lac 
amplified by primers TK5 and TK3; 4. positive control: pcDNA 
3.1/HisB/lacZ amplified by primers lac5 and lac3; 5. pREP-LTR-INS-
RRE-TK-lac amplified by primers lac5 and lac3; 6. pREP-LTR-INS-RRE-
TK-lac digested with XbaI and XhoI 
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3.6. Shuttle Vectors: From Prokaryotic to Eukaryotic Host Cells 

             
 Up to now, all of the studies were conducted in the bacterial host E. coli. Since 

the convenient way for the continuation of required manipulations that prokaryotic cells 

offer, they are highly preferred in the recombinant DNA technology. After the desired 

recombinant molecules were generated, the effect of specific genes or regulatory 

sequences can be investigated upon transfer of these DNA molecules into eukaryotic 

cells. Shuttle vectors thus enable the transfer of DNA molecules between organisms 

even if they are not so close to each other evolutionally. Since the plasmid vectors 

constructed in this study have both replication origins of E.coli and mammalian cells 

enabling the maintenance of DNA in two systems, these constructs could be transferred 

to eukaryotic host cell with the aim of studying the effects and interactions of specific 

sequences cloned. Transmission of DNA into a eukaryotic cell is somehow similar to 

bacterial tranformation with the difference of the term used for this transfer 

(transfection). 

 As eukaryotic cells, HeLa (name origins from the name of the patient which 

these cells were first taken and then distributed to different regions of the world, the 

abbreviation for Henrietta Lacks) cells were employed. The story of HeLa cells was 

tissue from the epidermoid carcinoma of the human cervix was placed  in roller tube 

cultures on February 8, 1951, which then results in a strain of malignant epithelial cells 

described as strain HeLa. After the several passages of these cells from this year on,  the 

stock cultures of HeLa cells were established (George Gey, 1953) In this study, HeLa 

cells were a matter of choice because of the potential advantages such as rapid growth, 

high plating efficiency and transfection efficiency they offer.  

 

3.6.1. Transfection of HeLa Cells with Expression Vectors Carrying   

          HIV-1 Regulatory Genes 

 
  HeLa parental cells were cultured in DMEM supplemented with 10% FBS and 

the confluency of the cells was assessed  with an inverted microscobe and when they 

were approximately 50% confluent, they were transfected with plasmid vectors carrying 

HIV-1 regulatory genes with changing concentrations. Before transfections 
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experiments, DNAs to be used in transfections were further purified.  3 different 

transfections were employed: HeLa cells transfected with pMEP-IRES-tat (13 µg), 

HeLa cells transfected with pMEP-IRES-rev (6.5 µg) and HeLa cells transfected  

pMEP-IRES-rev-tat (1.8 µg). 2 days after transfection, the cells were selected with 250 

µg/ml hygromycin until clones appeared. The untransfected HeLa cells and untranfected 

but exposed to hygromycin pressure HeLa cells served as controls. All of the 

untransfected HeLa cells grown in the presence of hygromycin died in 1-2 days as 

expected. Parental HeLa cells remained the same and they were continued to be 

passaged. The situations of transfected HeLa cells were controlled every 1-2 days and a 

few healthy cells present for each transfected HeLa cell did not remain the same. While 

hygromycin-resistant colonies were generated for Hela cells transfected with pMEP-

IRES-tat in approximately one month period,  the few healthy cells for Hela transfected 

with pMEP-IRES-rev and HeLa transfected with pMEP-IRES-rev-tat could not resist no 

more and did not survive. It is likely that the concentrations of DNAs used in the 

transfection effected the transfection efficiency. Transfections for pMEP-IRES-rev and 

pMEP-IRES-rev-tat were repeated again with DNA concentrations ranging between 10-

15 µg. It is emphasized that the optimum amount of DNA may vary from 10 to 30 µg 

depending on the cell line and the preperation of DNA (Okayama et. al., 1987). In the 

following one month, hyromycin-resistant clones of HeLa cells harboring pMEP-IRES-

rev and pMEP-IRES-rev-tat plasmids were generated. 
 It is important to emphasize that HeLa-rev, HeLa-tat, and HeLa-rev-tat are the 

names given to cell lines in which the expression of the cloned genes were 

demonstrated. However, these names were used in the study to correspond to 

hygromycin-resistant clones of HeLa cells transfected with either pMEP-IRES-rev, 

pMEP-IRES-tat, or pMEP-IRES-rev-tat plasmid vectors, for the sake of simplicity. 

 

3.6.2. Western Blot Analysis of Cell Lysates 

 

 Since hygromycin-resistant clones of HeLa-tat were the ones that were 

generated lastly, they could not be employed for the first Western Blotting analysis. On 

the other hand, two other, HeLa-rev and HeLa-rev-tat cell lines were subjected to the 

Western blotting analysis for the detection of both target proteins rev and tat, which are 

19-kD and 15 kD respectively. Western blotting was established by using monoclonal 
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antibodies for rev (cat no: 7376) and tat (cat no: 1974) (supplied through NIH AIDS 

Research and Reference Reagent Program), and secondary antibody (Anti-Mouse IgG 

Alkaline Phosphatase Conjugate) (Sigma) which was used with its substrate BCIP/NBT. 

Untransfected HeLa cells served as negative control in Western blotting analysis. 

 Although any band was not observed corresponding to 15kD or 19 kD for HeLa 

cell lysates employed for Western blotting analysis, the detection of the band 

corresponding to the molecular mass of rev in HeLa-tat and also the detection of the 

band corresponding to the molecular mass of tat in HeLa-rev were confusing results 

which directed us to repeat blotting but this time by using only one monoclonal 

antibody at the period of the blotting establishment. 

 HeLa, HeLa-rev, HeLa-tat, HeLa-rev-tat cell lysates were employed for Western 

blotting for the detection of 15-kD Tat with the monoclonal antibody for Tat different 

from the previous one (cat no: 4138). 

 Nonspecific bands corresponding to molecular mass of Tat was obtained even 

for untransfected HeLa cells and somehow these bands were observed in the emty lanes 

as well.  

 Though monoclonal antibodies have advantage over polyclonal antibodies in 

terms of the specificity they present since they target only one epitope, it does not every 

time prevent the generation of false positive signals. The interpretations of the results 

obtained with Western blotting were cumbersome since they could be related with the 

cross-reactions among proteins searched and proteins present in HeLa, as well as with 

the deteriorations in the antigenic structures of proteins stemming from either SDS-

PAGE or transfer process. Bacause of these reasons, these results were attributed as 

indeterminate. 

       

3.6.3. Genomic DNA Isolation from Transfected HeLa Cell Lines     

 

 When the complexity of structural and functional relationships among 

macromolecules considered, together with the technical problems stem from the very 

sensitive detection methods for gene expression, it does not make sense to speak 

unfavorably of expression for the searched genes. Therefore, two steps back were 

targeted with the idea of demonstrating the presence of searched genes in cell lines 

presumed to be generated. This was quite important because if the presence of searched 
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genes could be detected in eukaryotic cells, then new techniques could be developed for 

the detection of gene expression whether at RNA or protein level. 

 With the purpose mentioned above, HeLa to serve as negative control, HeLa-

rev, HeLa-tat and  HeLa-rev-tat cell lines were employed for genomic DNA isolation. 

After the confirmation of the presence of genomic DNA in all cell lines, these DNAs 

were used as templates for PCR analysis. Tat amplification was observed only in HeLa-

tat cells. Rev amplification did not carry out in HeLa-rev and HeLa-rev-tat cell lines. It 

seemed that PCR conditions were in need to be optimized for the detection of rev 

amplification (Fig. 3.46). 

                                                                            

                   
 

Figure 3.46.  PCR analysis of genomic DNAs isolated from transfected cell lines for the 
amplification of rev and tat 
Lanes: 1. 10 kb marker DNA; 2. positive control: pCV1 amplified by 
primers REV-NHE5 and REV-NHE3; 3. HeLa-rev amplified by primers 
REV-NHE5 and REV-NHE3; 4. HeLa-tat amplified by primers REV-
NHE5 and REV-NHE3; 5. HeLa-rev-tat amplified by primers REV-NHE5 
and REV-NHE3; 6. negative control: HeLa amplified by primers REV-
NHE5 and REV-NHE3; 7. 10 kb marker DNA; 8. positive control: pCV1 
amplified by primers TAT-NHE5 and TAT-NHE3; 9. HeLa-rev amplified 
by primers TAT-NHE5 and TAT-NHE3; 10. HeLa-tat amplified by 
primers TAT-NHE5 and TAT-NHE3; 11. HeLa-rev-tat amplified by 
primers TAT-NHE5 and TAT-NHE3; 12. negative control: HeLa 
amplified by primers TAT-NHE5 and TAT-NHE3 

                                         

287 bp 

          400 bp 
             300 bp 
          200 bp 
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3.6.4. Total RNA Isolation from HeLa Cell Lines 

 

 HeLa, HeLa-rev, HeLa-tat and HeLa-rev-tat cell lines were employed for RNA 

isolation and the quantity of the RNAs to be used for the RT-PCR reaction was 

standardized to 2.5 µg. G3PDH housekeeping gene was employed in a separate PCR 

cocktail to confirm the conversion of the transcripts into complementary DNA. cDNAs 

of HeLa, HeLa-rev, HeLa-tat and HeLa-rev-tat were screened for the amplification of 

tat and rev genes (Figure 3.47).  

 RNA isolation was carried out for 2 times for HeLa-tat cell line, called as HeLa-

tat1 for the initially isolated RNA and HeLa-tat2 for the one later isolated. 
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Figure 3.47.  Amplification patterns of tat and rev genes from cDNAs of cell lines 

Lanes above: 1. positive control for PCR: pCV1 amplified by primers 
TAT-NHE5 and TAT-NHE3, 2. HeLa-tat1 cDNA amplified by primers 
TAT-NHE5 and TAT-NHE3; 3. HeLa-tat2 cDNA amplified by primers 
TAT-NHE5 and TAT-NHE3; 4. HeLa-rev cDNA amplified by primers 
TAT-NHE5 and TAT-NHE3; 5. HeLa-rev-tat cDNA amplified by primers 
TAT-NHE5 and TAT-NHE3; 6. HeLa cDNA amplified by primers TAT-
NHE5 and TAT-NHE3; 7. 10 kb marker; 8. positive control for PCR: 
pCV1 rev amplified by primers REV-NHE5 and REV-NHE3; 9. HeLa-rev 
cDNA amplified by primers REV-NHE5 and REV-NHE3; 10. HeLa-tat1 
cDNA amplified by primers REV-NHE5 and REV-NHE3; 11.  HeLa-tat2 
cDNA amplified by primers REV-NHE5 and REV-NHE3; 12. HeLa-rev-
tat cDNA amplified by primers REV-NHE5 and REV-NHE3; 13. HeLa 
cDNA amplified by primers REV-NHE5 and REV-NHE3 
Lanes below: 1. 10 kb marker; 2-6: internal controls: 2. HeLa cDNA 
amplified by primers G3PDH5 and G3PDH3; 3. HeLa-rev cDNA 
amplified by primers G3PDH5 and G3PDH3; 4. HeLa-tat1 cDNA 
amplified by primers G3PDH5 and G3PDH3; 5. HeLa-tat2 cDNA 
amplified by primers G3PDH5 and G3PDH3; 6. HeLa-rev-tat cDNA 
amplified by primers G3PDH5 and G3PDH3 

 

 

 

 

                                                             

379 bp 

400 bp 

379 bp 
      287 bp 

  300 bp 

              500 bp 
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CHAPTER 4 

 
DISCUSSION 

 
  In this study, the comparable expression profiles of the toxic gene HSV-1 TK 

on parental HeLa cells and HeLa cells expressing HIV-1 regulatory genes was desired 

to be assessed. However, since the generation of stable cell lines expressing Tat and 

Rev  proteins could not be achieved, the possibility of working with the suicide vector 

pREP-LTR-INS-RRE-TK-lac constructed for this purpose was out of question. What 

could be done was the several optimizations together with some repeated trials, but 

these trials were interrupted under the pressure of time constrations. 

  After hyg-resistant clones of transfected cell lines occurred, the presence of Tat 

and Rev proteins was tested with Western Blotting. As explained in detail in ‘Results’ 

section, the interpretation of the results was far from being accepted as positive. Surely, 

the universality of the genetic code implies to the translation of protein coding 

sequences in heterologous systems. On the other hand, there are numerous factors to be 

considered when the nuclear export of mRNA is in question. With the idea of that the 

translational activity of a gene would be linked into its history in the nucleus and this 

could determine the fate of that gene, the research was concentrated at DNA and RNA 

level as well. 

                                   PCR reactions carried out with genomic DNA templates of hyg-resistant 

transfected cell lines revealed the presence of tat amplicon only in cells transfected with 

pMEP-IRES-tat. Rev amplicon was observed neither in the cells transfected with 

pMEP-IRES-rev nor in the ones transfected with pMEP-IRES-rev-tat. This result brings 

together the question of then how the parental cells managed to cope with the antibiotic 

selection pressure maintained in the medium during all the passages if they did not 

uptake the plasmid vectors. I must confess that this situation is quite open to be 

discussed, on the other hand I may put forward some speculations. �f no hyg-resistant 

clones were generated, this could be explained by the possibility of that DNA which 

entered the cell was a target for nucleases since this is occasionally the fate of foreign 

DNA entering the cell. The transfection procedure itself may sometimes cause to the 

inefficient entry of the lipid-DNA complex into the cell as explained by Düzgüne� et  
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al. since the precise mechanisms by which lipid-DNA complexes interact with the cell 

membrane are unknown. What is known is that the most of DNA is taken up through 

endocytosis. Since fusion of the endocytotic vesicles with lysosomes can lead to the 

degradation of DNA, the foreign DNA must enter the cytoplasm before this fusion 

event for a successful transfection (Düzgüne� et al., 1996). 

  Leaving this possibility aside by considering the generation of hyg-resistant 

cells, according to my idea, this situation may be explained with the nature of the 

plasmids. The plasmid vectors constructed in the study for transfections origin from 

pMEP4 which is an EBV-based plasmid vector. Recombinant DNA plasmids 

containing oriP and a dominant selectable marker gene, such as G418 resistance or 

hygromycin resistance can be maintained in an extrachromosomal form in cells, 

provided that EBNA-1 gene which permits episomal maintenance in cells not 

expressing other EBV-encoded proteins was incorporated into such plasmids (Lupton et 

al., 1985; Yates et al., 1985). There are two EBV genetic elements constituting oriP, 

that are required in cis for the extrachoromosomal maintenance of plasmids: a 30-bp 

sequence repeated 20 times and a 65-bp sequence arranged in a dyad (Lupton et al., 

1985; Reisman et al., 1985). What is interesting is that some tolerable deletions in these 

regions may still give rise to stimulated numbers of drug-resistant colonies, though not 

being capable of extrachromosomal plasmid maintenance (Lupton et al., 1985). The 

same effect may also be observed with EBNA-1 gene when some specific kinds of 

deletions are in question. If the introduced plasmid vector presumed to be maintained 

extrachromosomal does not behave in that way, one may contemplate about then what 

happens. It is a probability that it contacts with the chromosomal DNA. In fact, it was 

demonstrated that oriP could confer mitotic stability in cells containing EBNA-1 and 

cause the artificial plasmid to associate with condensed human chromosomes during 

mitosis (Simpson et al., 1996) and EBNA-1 itself could associate with human 

metaphase chromosomes (Grogan et al., 1983). This may be a mechanism developed by 

the cell to keep plasmids during mitosis in order to prevent their loss to the cytoplasm. 

Certainly, the given information does still not explain the PCR result obtained with 

genomic DNA templates, on the other hand it may be the explanation of drug-resistant 

cells. Any picture can not be drawn explicitly unless the repeated transfection trials are 

made. In the case that though repeated transfections with standardized conditions and 

DNA concentrations, the presence of searched genes will have not been verified, it was 

only then I might put forward my hypothesis that if there is a probability for episomal 
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DNA to be in contact with the chromosomal DNA of the cell, then it may also be in 

contact with the same factors that chromosomal DNA does, such as histones, or 

histone-like proteins. If this interaction is in question especially in the target sequences 

being searched for, this may retain the sequence-specific primers from attaching to their 

target sites. 

 As the later search topic, total cytoplasmic RNAs of hyg-resistant transfected 

cell lines were isolated and subjected to RT-PCR. The only positive result was the 

amplicon corresponding to tat cDNA in cells transfected with pMEP-IRES-tat. This 

result is important in terms of demonstrating that the promoter that directed the 

expression of the first gene in either of the constructs was active. On the other hand, 

since no band was observed corresponding to tat and rev cDNA in cells transfected 

with pMEP-IRES-rev-tat, an approximate comparison between the first gene expression 

and second gene expression which is dependent upon the promoter IRES could not be 

made. 

 The demonstration of the expression of tat at RNA level but not at protein level 

could be related with the lack of splice sites. Splicing is not essential for nuclear export, 

on the other hand it may facilitate the recruitment of mRNAs for translation. According 

to Luo and Reed, mRNA splicing can result not only in the removal of nuclear retention 

factors but also in the selective recruitment of nuclear RNA export factors (Luo and 

Reed, 1999). Presuming that the contradictory result obtained with Western Blotting 

was ignored, the very poor bands observed could be explained with the insufficient 

entry of mRNAs into the cytoplasm. 

 After the experienced handicaps mentioned are overwhelmed in the future, the 

model created will be able to prove its potency strongly. 

 

 



 103 

REFERENCES 

 
An G., Hidaka K., Siminovitch L. 2002. “ Expression of Bacterial �-Galactosidase in 

Animal Cells ”, Molecular and Cellular Biology. Vol. 2, No. 12, p. 1628-1638.     
 
Arslanoglu A. (1999). PhD. Thesis. University of Warwick, UK.   
  
Arslanoglu A. (1995).   MS. Thesis. University of East Anglia , UK 
 
Arya S. K., Guo C., Josephs S.F., Wong-Staal F. 1985. “ Trans-Activator Gene of 

Human T-Lymphotropic Virus Type III (HTLV-III) ”, Science. Vol. 229, p.69-73. 
 
Bank A. and Caruso M. 1997. “ Efficient Retroviral Gene Transfer of a Tat-regulated 

Herpes Simplex Virus Thymidine Kinase Gene for HIV Gene Therapy”, Virus 
Research. Vol. 52, p. 133-143 

 
Barboric M., Peterlin M.B. 2005. “ A New Paradigm in Eukaryotic Biology: HIV Tat 

and the Control of Transcriptional Elongation ”, Primer. Vol. 3, p. 200-203. 
 
Ba�göz N. 2004. “ Antiretroviral Resistance in the Clinical Setting: Prevention and 

Treatment ”, 2. Ulusal AIDS  Sempozyomu ,Foça- �zmir (2-5 December 2004). 
 
 Beltinger C., Uckert W., Debatin K.M. 2000. “ Suicide Gene Therapy for Pediatric 

Tumors ”, Journal of Molecular Medicine. Vol. 78, p. 598-612 
 
Berkhout B., Jeang K.T. 1992. “ Functional Roles For the TATA Promoter and  

Enhancers in Basal and Tat-Induced Expression of the Human Immunodeficiency  
Virus Type 1 Long Terminal Repeat ”, Journal of Virology. Vol. 66, No. 1, p. 139- 
149. 

 
Bowers L., LaPoint K., Anthony L., Pluciennik A., Filutowicz M. 2004. “ Bacterial  

Expression System with Tightly Regulated Gene Expression and Plasmid Copy  
Number ”, Gene. 

 
Brady H.J.M., Miles C.G., Pennigton D.J., Dzierzak E.A. 1994. “ Specific Ablation of  

Human Immunodeficiency Virus Tat-expressing cells by Conditionally Toxic  
Retroviruses ”, Proc. Natl. Acad. Sci. Medical Sciences. Vol. 91, p. 365-369 

 
Caruso M., Bank A. 1997. “ Efficient Retroviral Gene Transfer of a Tat-Regulated  

Herpes Simplex Virus Thymidine Kinase Gene for HIV Gene Therapy ”, Virus  
Research. Vol. 52, p. 133-143. 

 
Caruso M., Klatzmann D. 1991. “ Selective Killing of CD4+ Cells Harboring a Human  

Immunodeficiency Virus-Inducible Suicide Gene Prevails Viral Spread in an  
Infected Cell Population ”, Proc. Natl. Acad. Sci. Vol. 89, p. 182-186. 

 



 104 

Caruso M., Salomon B., Zhang S., Brisson E., Clavel F., Lowy I., Klatzmann D. 1994. “ 
Expression of a Tat-Inducible Herpes Simplex Virus-Thymidine Kinase Gene  
Protects Acyclovir-Treated CD4 Cells from HIV-1 Spread by Conditional Suicide  
and Inhibiton of Reverse Transcription ”, Virology. Vol. 206, p. 495-503. 

 
Chen C. And Okayama H. 1987. “ High-Efficiency Transformation of Mammalian  

Cells by Plasmid DNA ”, Molecular and Cellular Biology. Vol.7, No. 8, p. 2745- 
2752. 

 
Chittenden T., Lupton S., Levine A.J. 1989. “ Functional Limits of oriP, the Epstein- 

Barr Virus Plasmid Origin of Replication ”, Journal of Virology. Vol. 63, No. 7, p.  
3016-3025. 

 
Cochrane A.W., Jones K.S., Beidas S., Dillon P.J., Skalka M.A., Rosen C.A. 1991. “ 

Identification and Characterization of Intragenic Sequences Which Repress Human  
Immunodeficiency Virus Structural Gene Expression ”, Journal of Virology. Vol. 5,  
No. 10, p. 5305-5313 

 
Cohen J.L., Boyer O., Salomon B., Onclerq R., Depetris D., Lejeune L., Bonnet V.D.,  

Bruel S., Charlotte F., Mattei M.G., Klatzmann D. 1998. “ Fertile Homozygous  
Transgenic Mice a Functional Truncated Herpes Simplex Thymidine Kinase �TK  
Gene ”, Transgenic Research. Vol. 7, p. 321-330. 

 
Cullen B.R. 1998. “ Posttranscriptional Regulation by the HIV-1 Rev Protein”,  

Seminars in Virology. Vol. 8, p. 327-334. 
 
Cullen B.R. 2000. “Connections between the Processing and Nuclear Export of  

mRNA:Evidence for an Export License ? ”, PNAS Commentary. Vol. 97, No.1, p.4-
6 

 
Delecluse H.J., Bartnizke S., Hammerschmidt W., Bullerdiek J., Bornkamm G.W. 1992.  

“Episomal and Integrated Copies of Epstein-Barr Virus Coexist in Burkitt  
Lymphoma Cell Lines ”, Journal of Virology. Vol. 67, No. 3, p. 1292-1299. 

 
Delecluse H.J., Hammerschmidt W. 2000. “ The Genetic Approach to the Epstein-Barr  

Virus: from Basic Virology to Gene Therapy ”, Molecular Pathology. Vol. 53, p.  
270-279 

 
Dillon P.J., Lenz J., Rosen C.A. 1991. “ Construction of a Replication-Competent  

Murine Retrovirus Vector Expressing the Human Immunodeficiency Virus Type 1  
Tat Transactivator Protein ”, Journal of Virology. Vol. 65, No. 8, p. 4490-4493 

 
Dobbelstein M. 2003. “ Viruses in Therapy- Royal Road or Dead End ? ”, Virus  

Research. Vol. 92, p. 219-221 
 
Dodon M.D., Mikaelian I., Sergeant A., Gazzolo L. 2000. “ The Herpes Simplex Virus  

1 Us11 protein Cooperates with Suboptimal Amounts of Human Immunodeficiency  
Virus Type 1 (HIV-1) Rev protein to Rescue HIV-1 Production ”, Virology. Vol.  
270, p. 43-53. 



 105 

Drake R.R., McMasters R., Krisa S., Hume D.S., Rechtin M.T., Saylors R.L., Chiang  
Y., Govindarajan R., Munshi C.N. 1997. “ Metabolism and Activities of 3’-azido-2’  
,3’-dideoxythyminidine and 2’,3’-dideyhdro-2’,3’-dideoxythymidine in Herpesvirus  
Thymidine Kinase Transduced T-lymphocytes ”, Antiviral Research. Vol. 35, .177- 
185. 

 
Drozdzik M., Qian C., Xie X., Peng D., Bilbao R., Mazzolini G., Prietro J. 2000. “ 

Combined Gene Therapy with Suicide Gene and Interleukin-12 is more Efficient  
than Therapy with One Gene alone in a Murine Model of Hepatocellular 
Carcinoma”,  Journal of Hepatology. Vol. 32, p. 279-286 

 
Engelhard H.H. 2000. “ Gene Therapy for Brain Tumors : the Fundamentals ”, Surgical  

Neurology. Vol.54, p. 3-9. 
 
Farr A., Roman A. 1991. “ A pitfall of Using a Second Plasmid to Determine  

Transfection Efficiency ”, Nucleic Acids Research. Vol. 20, No. 4, p. 920 
 
Favaro J.P., Borg K.T., Arrigo S.J., Schmidt M.G. 1998. “ Effect of Rev on the  

Intranuclear Localization of HIV-1 Unspliced RNA ”, Virology. Vol. 249, p. 286- 
296. 

 
Felber B.K., Drysdale c.M., Pavlakis G.N. 1990. “ Feedback Regulation of Human  

Immunodeficiency Virus Type 1 Expression by the Rev Protein ”, Journal of  
Virology. Vol. 64, No. 8, p. 3734-3741. 

 
Fernandez, M.P. and Mandel, H. G. 2000. “ Enhancing Quantification of Mammalian  

Cell Transfections with Chloramphenicol Acetyltransferase Reporter Plasmids ”,  
Journal of Biochemical and Biophysical Methods. Vol. 46, p. 107-111. 

 
Garcia-Lema J.G., Heneine W. 2001. “ Resistance of Human Immunodeficiency Virus  

Type 1 to Reverse Transcriptase and protease Inhibitors: Genotypic and phenotypic  
Testing ”, Journal of Clinical Virology. Vol. 21, p. 197-212. 

 
Giacca M. 2005. “ HIV-1 Tat, Apoptosis and the Mitochondria:a tubulin link? ”,  

Retrovirology. p. 2-7. 
 
Gorman C.M., Moffat L.F., Howard B.H. 1982. “ Recombinant Genomes which  

Express Chloramphenicol Acetyltransferase in Mammalian Cells ”, Molecular and  
Cellular Biology. Vol. 2, No. 9, P. 1044-1051. 

 
Guettari N., Loubiére, Brisson E., Klatzmann D. 1997. “ Use of Herpes Simplex Virus  

Thymidine Kinase to Improve the Antiviral Activity of Zidovudine ”, Virology. Vol.  
235, p. 398-405. 

 
Haberkorn U., Khazaie K., Morr I., Altmann A., Müller M., Kaick G.V. 1998. 

“Ganciclovir Uptake in Human Mammary carcinoma Cells Expressing Herpes  
Simplex Virus Thymidine Kinase ”, Nuclear Medicineand Biology. Vol. 25, p. 367- 
373. 

 



 106 

Harrich D., Ulich C., Martinez L.F.G., Gaynor R.B. 1997. “ Tat is Required for  
Efficient HIV-1 Reverse Transcription ”, The EMBO Journal. Vol. 16, No. 6, p.  
1224-1235. 

 
Hassan W., Sanford M., Woo S.L.C., Chen S. 2000. “ Prospects for Herpes-Simplex- 

Virus Thymidine –Kinase and Cytokine Gene Transduction as Immunomodulatory  
Gene Therapy for Prostate Cancer ”, World Journal of Urology. Vol. 18, p. 130-135. 

 
Hauber J., Perkinns A., Heimer E.P., Cullen B.R. 1987. “ Trans-activation of Human  

Immunodeficiency Virus Gene Expression is Mediated by Nuclear Events ”, Proc.  
Natl. Acad. Sci. Biochemistry. Vol. 34, p. 6364-6368. 

 
Havenga M.J.E., Vogels R., Braakman E., Kroos N., Valerio D., Hagenbeek A., van Es  

H.H.G. 1998. “ Second Gene Expression in Bicistronic Constructs using Short  
Synthetic Intercistrons and Viral IRES Sequences ”, Gene. Vol. 222, p. 319-327. 

 
Heinzel S.S., Krysan P.J., Calos M.P., Dubridge R.B. 1988. “ Use of Simian Virus 40  

Replication to Amplify Epstein-Barr Virus Shuttle Vectors in Human Cells ”,  
Journal of Virology. Vol. 62, No. 10, p. 3738-3746. 

 
Hossain M.M., Hwang D.Y., Huang Q., Sasaki Y., Jin J. 2003. “ Developmentally  

Regulated Expression of Calponin Isoforms and the Effect of h2-calponin on Cell  
Proliferation ”, Cell Physiology. Vol. 284, p. C156-C167. 

 
Ianni D.M., Casciari C., Ciurnelli R., Fulvi A., Bagnis C., Sadelain M., Lucheroni F.,  

Mannoni P., Stella C.C., Martelli M.F., Tabilio A. 1997. “Retroviral Transfer of  
Herpes Simplex Virus-Thymidine Kinase and Beta-Galactosidase Genes into U937  
cells with Bicitronic Vector ”, Leukemia Research. Vol. 21, No. 10, p. 951-959. 

 
Kamine J., Subramanian T., Chinnadurai G. 1991. “ Sp1-Dependent Activation of a  

Synthetic Promoter by Human Immunodeficiency Virus Type 1 Tat Protein ”, Proc. 
Natl. Acad. Sci. Biochemistry. Vol. 88, p. 8510-8514. 

 
Karn J., 2001. “ Inhibitors of Transcription and Transactivation as Anti-Human  

Immunodeficiency Virus Agents ”, in Antiviral Therapy, edited by E.D Clercq ( 
ASM Press, Washington,D.C) p.105-128. 

 
Kessler M., Mathews M.B. 1991. “ Tat Transactivation of the Human  

Immunodeficiency Virus Type 1 Promoter is Influenced by Basal promoter Activity  
and the Simian Virus 40 Origin of DNA Replication ”, Proc. Natl. Acad. Sci. Vol.  
88, p. 10018-10022. 

 
Khillan J.S., Deen K.C., Yu S., Sweet R.W., Rosenberg M., Westpal H. 1988. “ Gene  

Transactivation Mediated by the TAT Gene of Human Immunodeficiency Virus in  
Transgenic Mice ”, Nucleic Acids Research. Vol. 16, No. 4, p. 1423-1430. 

 
Kimpton J. And Emerman M. 1992. “ Detection of Replication-Competent and  

Pseudotyped Human Immunodeficiency Virus with a Sensitive Cell Line on the  
Basis of Activation of an Integrated �-Galactosidase Gene ”, Journal of Virology.  
Vol. 66, No. 4, p. 2232-2239. 



 107 

Kmiec E.B. 2001. “ Gene Targeting ”, in An Introduction to Molecular Medicine and  
Gene Therapy, edited by F. K Thomas ( Wiley-Liss, U.S.A) p. 114-116. 

 
Konopka K., Harrison G.S., Felgner P.L., Düzgüne� N. 1997. “ Cationic Liposome- 

Mediated expression of HIV-Regulated Luciferase and Diphtheria Toxin a Genes in  
HeLa Cells Infected with or Expressing HIV ”, Biochimica et Biophysica Acta. Vol.  
1356, p. 185-197. 

 
Kowolik C.M, Yam P., Yu Y., Yee J.K. 2003. “ HIV Vector Production Mediated by  

Rev Protein Transduction ”, Molecular Therapy. Vol. 8, No. 2, p. 324-331. 
 
Lee M.A., Diamond M.E., Yates J.L. 1999. “ Genetic Evidence that EBNA-1 is Needed  

for Efficient, Stable Latent Infection by Epstein-Barr Virus ”, Journal of Virology.  
Vol. 73, No. 4, p. 2974-2982. 

 
Levine , A. J., 1991. Viruses ( New Jersey) p. 137-139. 
 
Liu H.S., Feliciano E.S., Stambrook P.J., 1989. “ Cytochemical Observation of  

Regulated Bacterial �-Galactosidase Gene Expression in Mammalian Cells ”, Proc.  
Natl. Acad. Sci. Cell Biology. Vol. 86, p. 9951-9955. 

 
Maldarelli F., Martin M.A., Strebel K. 1991. “ Identification of Posttranscriptionally  

Active Inhibitory Sequences in Human Immunodeficiency Virus Type 1 RNA:  
Novel Level of Gene Regulation ”, Journal of Virology. Vol. 65, No. 11, p. 5732- 
5743. 

 
Marcello A., Giaretta. 1998. “ Inducible Expression of Herpes Simplex Virus  

Thymidine Kinase from a Bicistronic HIV 1 Vector ” , Resaerch Virology. Vol. 149,  
p. 419-431. 

 
Matsumoto K., Wassarman K.M., Wolffe A.P. 1998. “ Nuclear History of a pre-mRNA  

Determines the Translational Activity of Cytoplasmic mRNA ”, The EMBO 
Journal. Vol. 17, No. 7, p. 2107-2121. 

 
McCoubrie J.E., Kendrick T.S., Minchin R.F. 2004. “ HIV LTR-Dependent Expression  

of Bax Selectively Induces Apoptosis in Tat-Positive Cells ”, Biochemical and  
Biophysical Research Communications. Vol. 325, p. 1459-1464. 

 
McKnight S.L. 1980. “ The Nucleotide Sequence and Transcript Map of the Herpes  

Simplex Virus Thymidine Kinase Gene ”, Nucleic Acid Research. Vol.8, No.24, p.  
5949-5964. 

 
Millow K.H., Greenough T.C., Brettler D.B., Schindler M., Wildum S., Sullivan J.L.,  

Kirchhoff F. 2003. “ Alterations in HIV-1 LTR Promoter Activity During AIDS  
Progression ”, Virology. Vol. 317, p. 109-118. 

 
Miyake K., Illema O., Suzuki N., Matsukura M., Shimada T. 2001. “ Selective Killing  

of Human ımmunodeficiency Virus-Infected Cells by Targeted Gene Transfer and  
Inducible Gene Expression Using a Recombinant Human Immunodeficiency Virus  
Vector ”, Human Gene Therapy. Vol. 12, p. 227-233. 



 108 

Mizuguchi H., Xu Z., Watabe A.I., Uchida E., Hayakawa T. 2000. “ IRES-Dependent  
Second Gene Expression is Significantly Lower than Cap-Dependent First Gene  
Expression in a Bicistronic Vector ”, Molecular Therapy. Vol. 1, No. 4, p.376-382. 

 
Modem S., Badri K.R., Holland T.C., Reddy T.R. 2005. “ Sam68 is Absolutely  

Required for Rev Function and HIV-1 Production ”, Nucleic Acids Research. Vol.  
33, No. 3, p. 873-879. 

 
Muyombwe A., Olivier M., Ouellette M., papadopoulou B. 1997. “ Selective Killing of  

Leishmania Amastigotes Expressing a Thymidine Kinase Suicide Gene ”,  
Experimental Parasitology. Vol. 85, p. 35-42. 

 
Najera I., Krieg M., Karn J. 1999. “ Synergistic Stimulation of HIV-1 Rev-Dependent  

Export of Unspliced mRNA to the Cytoplasm by hnRNP A1 ”, Journal of 
Molecular Biology. Vol. 285, p. 1951-1964. 

 
Parolin C., Taddeo B., Palu G., Sodroski J. 1996. “ Use of cis and trans-Acting Viral  

Regulatory Sequences to Improve Expression of Human Immunodeficiency Virus  
Vectors in Human Lymphocytes ”, Virology. Vol. 222, p. 415-422. 

 
Poeschla E., Corbeau P., Wono-Staal F. 1996. “ Development of HIV Vectors for Anti- 

HIV Gene Therapy ”, Proc. Natl. Acad. Sci. Vol. 93, p. 11395-11399. 
 
Reed-Inderbitzin E. and Maury W. 2003. “ Cellular Specifity of HIV-1 Replication can  

be Controlled by LTR Sequences ”, Virology. Vol. 314, p. 680-695. 
 
Rivas C., Miller A.R.M., Collado M., Lam E., Apperley J. F., Melo J.V. 2001. “ BCR- 

ABL-Expressing Cells Transduced with the HSV- tk Gene Die by Apoptosis upon  
Treatment with Ganciclovir ”, Molecular Therapy. Vol. 3, No. 5, p. 642-652. 

 
Riviére I., Sadelain M. 2002. “ Sturn und Drang over Suicidal Lymphocytes ”,  

Molecular Therapy. Vol. 5, No. 6, p. 655-657. 
 
Sawaya B.E., Thatikunta P., Denisova L., Brady J., Khalili K., Amini S. 1998. 

“Regulation of TNF� and TGF�-1 Gene Transcription by HIV-1 Tat in CNS Cells ”,  
Journal of Neuroimmunology. Vol. 87, p. 33-42. 

 
Scala, G., Qinto I., Ruocco M.R., Mallardo, M., Ambrosino C., Squitieri B., Tassone,  

P., Venuta, S. 1993. “ Epstein-Barr Virus Antigen 2 Transactivates the Long  
Terminal Repeat of Human Immunodeficiency Virus Type 1 ” , Journal of Virology.  
Vol. 67, No. 5, p. 2853-2861. 

 
Schambach A., Wodrich H., Hildinger M., Bohne J., Kräusslich H.G., Baum C. 2000. 

“Context Dependance of Different Modules for Posttranscriptional Enhancement of  
Gene Expression from Retroviral Vectors ”, Molecular Therapy. Vol. 2, No. 5, p.  
435-445. 

 



 109 

Scherer W.F., Syverton J.T., Gey O.G. 1953. “ Viral Multiplication in a Stable Strain of  
Human Malignant Epithelial Cells (Strain HeLa) Derived from an Epidermoid  
Carcinoma of the Cervix ”, The Journal of Experimental Medicine. Vol. 97, p.  695-
710. 

 
Schümperli D.,Howard B.H., Rosenberg M. 1981. “ Efficient Expression of Escherichia  

coli Galactokinase Gene in Mammalian Cells ”, Proc. Natl. Acad. Sci. Biochemistry.  
Vol. 79, p. 257-261. 

 
Schwartz S., Felber B.K., Pavlaskis G.N. 1991. “ Distinct RNA Sequences in the gag  

Region of Human Immunodeficiency Virus Type 1 Decrease RNA stability and  
Inhibit Expression in the Absence of Rev Protein ”, Journal of Virology. Vol. 66,  
No. 1, p. 150-159. 

 
Shimano R., Inubushi R., Oshima Y., Adachi A. 1999. “ Inhibition of HIV/SIV  

Replication by Dominant Negative Gag Mutants ”, Virus Genes. Vol. 18, No. 3, p.  
197-201. 

 
Simpson K. And Huxley C. 1996. “ A shuttle System for Transfer of YACs between  

Yeast and Mammalian Cells ”, Nucleic Acids Research. Vol. 24, No. 23, p. 4693- 
4699. 

 
Soros V., Cochrane A. 2001. “ Alterations in HIV-1 Rev Transport in Response to Cell  

Stress ”, Virology. Vol. 280, p. 199-210 
 
Straathof K.C., Spencer D.M., Sutton R.E., Rooney C.M. 2003. “ Suicide Genes as  

Safety Switches in T Lymphocytes ”, Cytotherapy. Vol. 5, No. 3, p. 227-230 
 
Sudgen B., Phelps M., Domoradzki J. 1979. “ Epstein-Barr Virus DNA is Amplified in  

Transformed Lymphocytes ”, Journal of Virology. Vol.31, No. 3, p. 590-595. 
 
Taylor J.P., Pomerantz R., Bagasra O., Chowdhury M., Rappaport J., Amini S. 1992. 

“TAR-Independent Transactivation by Tat in Cellls Derived from the CNS: a Novel  
Mechanism of HIV-1 Gene Regulation ”, The EMBO Journal. Vol. 11, No. 9, p.  
3395-3403. 

 
Trkola A. 2004. “ HIV-Host Interactions: Vital to the Virus and Key to its Inhibition ”,  

Current Opinion on Microbiology. Vol. 7, p. 407-411. 
 
Uchida H., Maeda Y., Mitsuya H. 1997. “ HIV-1 Protease does not Play a Critical Role  

in the Early Stages of HIV-1 Infection ”, Antiviral Research. Vol. 36, p. 107-113. 
 
Ulich C., harrich D., estes P., Gaynor R.B. 1996. “ Inhibition of Human  

Immunodeficiency Virus Type 1 Replication is Enhanced by a Combination of  
Transdominant Tat and Rev Proteins ”,  Journal of Virology. Vol. 70, No. 7, p. 
4871- 4876. 

 



 110 

Venkatesh L.K., Arens M.Q., Subramanian T., Chinnadurai G. 1990. “ Selective  
Induction of Toxicity to Human Cells Expressing Human Immunodeficiency Virus  
Type 1 Tat by a Conditionally Cytotoxic Adenovirus Vector ”, Proc. Natl. Acad.  
Sci.Biochemistry. Vol. 87, p. 8746-8750. 

 
Venkatesh L.K., Mohammed S., Chinnadurai G. 1989. “ Functional Domains of the  

HIV-1 rev Gene Required for Trans-regulation and Subcellular Localization ”,  
 
Wang Z., Morris G.F., Reed J.C., Kelly G.D., Morris C.B. 1999. “ Activation of Bcl-2  

Promoter-Directed Gene Expression by the Human Immunodeficiency Virus Type-1  
Tat Protein ”, Virology. Vol. 257, p. 502-510. 

 
Wilhelm C.H., Becker G., Wüst B.U., Greulich D., Debus J. 2003. “ Cytosine  

Deaminase Versus Thymidine Kinase : a Comparison of the Antitumor Activity ”,  
Clinical Experimental Medicine. Vol. 3, p. 150-156. 

 
Wu Y., Marsh J.W. 2003. “ Gene Transcription in HIV Infection ”, Microbes and  

Infection. Vol.5, p. 1023-1027. 
 
Zaia J.A. 2002. “Problems and Solutions to Successful Gene-Transfer Based Therapies  

for HIV ”, Clinical and Applied Immunology Reviews. Vol. 3, p.199-221. 
 
Zhang Y., Lu H., LiWang P., Sili U., Templeton N. S. 2003. “ Optimization of gene  

Expression in Nonactivated Circulating Lymphocytes ”, Molecular Therapy. Vol. 8,  
No. 4, p. 629-636. 

 
Zhu Y., Feuer G., Day L.S., Wrzesinski S., Planelles V. 2001. “ Multigene Lentiviral  

Vectors based on Differential Splicing and Translational Control ”, Molecular  
Therrapy. Vol. 4, No. 4, p. 375-382. 

 
 

 



 111 

APPENDIX A 
 

Compositions of Buffers and Stock Solutions 
 
1. LB broth, per liter 

10 g tryptone, 5 g yeast extract, 5 g NaCl, 1 ml 1 N NaOH 

 

2. LB agar, per liter 

When LB broth was saturated with ~ 14-15 g agar, LB agar was obtained. 

 

3. dNTP (10X) 

10 µl of each 100 mM dATP, dCTP, dGTP and dTTP were taken. After they were 

mixed briefly, 460 µl sterile dH2O was added and mixed again. Hence, 2 mM 

concentration was obtained for each of them. 

 

4. 50X TAE Electrophoresis Buffer 

242 g Tris base and 37.2 g Na2EDTA (2H2O) was dissolved in 900 ml deionized water. 

After adding 57.1 ml glacial acetic acid, the volume was adjusted to 1 liter with water. 

 

5. Solutions Used in Alkali-lysis Plasmid Isolation Procedure: 

Solution I: 

- 50 mM glucose 

- 25 mM Tris-HCl pH 8.0 

- 10 mM EDTA pH 8.0 

Storage: 4°C 

 

Solution II: 

- 0.2 N NaOH (stock: 10N, 5N or 1 N) 

- 1% SDS (stock: 10%) 

Storage: RT 

 

Solution III, per 0.1 liter 

- 5 M potassium acetate (KAc) (60 ml) 

- glacial acetic acid (11.5 ml) 
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- H2O (28.5 ml) 

The resulting solution is 3 M with respect to potassium and 5 M with respect to acetate. 

Storage: 4°C 

 

6. Versene Solution (in mM) pH 7.2 

- 0.537 EDTA 

- 136.8 NaCl 

- 2.68 KCl 

- 8.1 Na2HPO4 

- 1.47 KH2PO4 

 

7. CMF-PBS (Calcium-magnesium free-phosphate buffered saline), per liter 

- 0.2 g KCl 

- 0.2 g KH2PO4 

- 8.0 g NaCl 

- 1.15 g Na2HPO4 

 

8. Acrylamide/ bisacrylamide solution 

30% (w/v) acrylamide, 0.8% (w/v) bisacrylamide 

 

9. Ammonium persulfate, 10% 

0.1 g ammonium persulfate was dissolved in 1 ml water. It was discarded after use since 

it was freshly prepared every time. 

 

10. 100 mM CaCl2 solution (for competent cells) 

By dissolving 11.1 g CaCl2 in 100 ml ultra pure H2O, 100 ml 1 M CaCl2 solution was 

obtained. It was filter sterilized and divided to 10 ml aliquots, then stored at -20°C. 

When required for the preperation of competent cells, one aliquot was taken and let to 

be thawn. Then, 90 ml ultra pure dH2O was added and the resulting mix was filter 

sterilized again. So that, freshly prepared 100 mM 100 ml CaCl2 was obtained. 

 

11. EDTA (ethylenediamine tetraacetic acid) (0.5 M) 

186.1 g EDTA was dissolved in 800 ml of deionized water and pH was adjusted to 8.0 

with 10 N NaOH. Volume was brought to 1000 ml with deionized water. 
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12. Ethidium bromide (10 mg/ml) 

0.2 g ethidium bromide (EtBr) was dissolved in 20 ml dH2O. It was mixed well and 

stored at 4°C in dark.  

 

13. PCR mixture (50 µl) 

- Mg free Taq DNA polymerase buffer          5 µl  

- MgCl2 (25 mM)                                           4 µl 

- Sterile dH2O                                            33.5 µl 

- Forward primer (10 picomole/µl)                1 µl 

- Reverse primer (10 picomole/µl)                 1 µl 

- dNTP (2 mM)                                              5 µl 

- Taq DNA polymerase                                0.5 µl (2.5 U) 

 

 

14. Freezing mixture 

90% FBS, 10% DMSO (filter-sterilized) 

 

15. Protein loading buffer (2X) 

- 200 mM DTT* 

- 50 mM Tris-HCL pH 6.8 

- 50% glycerol 

- 4% SDS 

- 0.01% bromophenol blue 

• DTT was added at the stage of sample loading from a 1 M stock solution. 

 

16. Transfer buffer (5X) pH 8.3 

- 195 mM glycine 

- 240 mM Tris base 

- 0.185% SDS 

For 1X working concentration; 100 ml 5X transfer buffer, 100 ml methanol and 300 ml 

dH2O   were mixed to obtain the required 500 ml 1X solution. 

 

17. Tris-glycine electrophoresis buffer (5X) 
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15.1 g Tris base and 94 g glycine were dissolved in 900 ml dH2O. Then, 50 ml 10% 

(w/v) stock solution of SDS was added and the volume was adjusted to 1000 ml with 

dH2O.  

 

18. Blocking solution  

5% non-fat dried milk * in PBS       

• added at the stage of usage 

 

19. Phosphate-free blocking solution 

- 5% (w/v) non-fat dried milk * 

- 150 mM NaCl 

- 50 mM Tris-Cl pH 7.5 

• added at the stage of usage 

 

20. Wash solution (1X) 

1% (v/v) Tween 20 in PBS 

 

21. Phosphate-free wash solution (1X) 

- 150 mM NaCl 

- 50 mM Tris-Cl pH 7.5 

 

22. RIPA buffer 

- 150 mM NaCl 

- 10 mM Tris-HCl pH 7.6 

- 1% Triton X-100 

- 1% Nadeoxycholate 

- 0.1% SDS 

 

23. PMSF (phenylmethylsulfonylfluoride) 

100 mM PMSF was dissolved in isopropanol and filter-sterilized. It was stored at -20°C 

to be used at 2mM working concentration when required. 
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24. Antibiotic stock solutions 

Antibiotic                             Stock solution conc.                    Working concentration 

Ampicillin                             50 mg/ml in dH2O                        50 µg/ml 

Tetracyclin                            5 mg/ml in dH2O                          10 µg/ml        

Hygromycin B                      48 mg/ml in dH2O                         250 µg/ml   

G418                                     50 mg/ml in dH2O                         300 µg/ml 
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APPENDIX B 
 

Primers (Restriction sites are underlined) 

 

 

 

 

 

Primer                                                        Sequence 

TAT-NHE5 5'-CCT TCT CGG CTA GCA TGG AGC CAG TAG ATC CTA G-' 

TAT-NHE3 5'-CCT TCT CGG CTA GCC TAT TCC TTC GGG CCT GTC GG-3' 

TAT-NHE5-1 5'-CCT TCT CGG CGG CCG CAT GGA CCC AGT AGA TCC TAG-3'  

TAT-NHE3-1 5'-CCT TCT CGG CGG CCG CCT ATT CCT TCG GGC CTG TCG-3' 

REV-NHE5 5'-CCT TCT CGG CTA GCA TGG CAG GAA GAA GCG GAG AC-3' 

REV-NHE3 5'-CCT TCT CGG CTA GCC TAT TCT TTA GCT CCT GAC TCC-3' 

IRES 5'-GTT GAC GCA AAT GGG CGG TA-3' 

ires2 5'-ACA CGA ACA CCG GGC GTC TG-3' 

LTR-5 5'-CCT TCT CGT CTA GAT GGA AGG GCT AAT TTG GTC CC-3' 

LTR-3 5'-CCT TCT CGG GTA CCC TCC TTC  TAG CCT CCG CTA G-3' 

INS-5  5'-CCT TCT CGC TCG AGG AGA TGG GTG CGA GAG CGT C-3' 

RRE-3 5'-AGT GCT AAG GAT CCG TTC ACT AAT CG-3' 

TK-5 5'-CCT TCT CGG GTA CCA TGG CTT CGT ACC CCT GCC ATC-3' 

TK-3 5'-CCT TCT CGA AGC TTT CAG TTA GCC TCC CCC ATC TCC-3' 

CAT-5 5'-CCT TCT CGG GTA CCA TGG AGA AAA AAA TCA CTG G-3' 
CAT-3 5'-CCT TCT CGA AGC TTC GCC CCG CCC TGC CAC-3' 

lac5  5'-TTC TCG GGA TCC ACC ATG GGG GGT TCT CAT-3' 

lac3 5'-TTC TCG GGA TCC TGC AGA ATT CGG CTT TAT TA-3' 


