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ABSTRACT 

 

In this study, artificial neural networks (ANN) and fuzzy logic models were 

developed to model relationship among cement mill operational parameters.  The 

response variable was weight percentage of product residue on 32-micrometer sieve (or 

fineness), while the input parameters were revolution percent, falofon percentage, and 

the elevator amperage (amps), which exhibits elevator charge to the separator. 

The process data collected from a local plant, Cimenta� Cement Factory, in 

2004, were used in model construction and testing. First, ANN (Artificial Neural 

Network) model was constructed. A feed forward network type with one input layer 

including 3 input parameters, two hidden layer, and one output layer including residue 

percentage on 32 micrometer sieve as an output parameter was constructed. After 

testing the model, it was detected that the model’s ability to predict the residue on 32-

micrometer sieve (fineness) was successful (Correlation coefficient is 0.92).  

By detailed analysis of values of parameters of ANN model’s contour plots, 

Mamdani type fuzzy rule set in the fuzzy model on MatLAB was created. There were 

three parameters and three levels, and then there were third power of three (27) rules. In 

this study, we constructed mix of Z type, S type and gaussian type membership 

functions of the input parameters and response. By help of fuzzy toolbox of MatLAB, 

the residue percentage on 32-micrometer sieve (fineness) was predicted. Finally, It was 

found that the model had a correlation coefficient of 0.76.  

The utility of the ANN and fuzzy models created in this study was in the 

potential ability of the process engineers to control processing parameters to accomplish 

the desired cement fineness levels. 

In the second part of the study, a quantitative procedure for monitoring and 

evaluating cement milling process performance was described. Some control charts 

such as CUSUM (Cumulative Sum) and EWMA (Exponentially Weighted Moving 

Average) charts were used to monitor the cement fineness by using historical data. As a 

result, it is found that CUSUM and EWMA control charts can be easily used in the 

cement milling process monitoring in order to detect small shifts in 32-micrometer 

fineness, percentage by weight, in shorter sampling time interval. 
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ÖZET 

 

Bu çalı�mada, çimento de�irmeni i�letme parametreleri arasındaki ili�kiyi 

modellemek için yapay sinir �ebekeleri ve bulanık mantık modelleri geli�tirilmi�tir. 

Çıkı� de�i�keni olarak 32 mikrometre ele�in üzerinde kalan ürünün a�ırlıkça yüzdesi 

(incelik) alınırken, giri� parametreleri olarak devir yüzdesi, falofon yüzdesi ve 

elevatörden ayırıcıya giden maddenin miktarını gösteren elevatör akımı alınmı�tır.  

Çimenta� çimento fabrikasından 2004 yılına ait i�letme verisi model kurumu ve test için 

kullanılmı�tır. �lk olarak, Yapay Sinir A�ları modeli kurulmu�tur. Üç giri� parametresini 

içeren bir giri�, iki gizlenmi� ve 32 mikrometre elek üzerinde kalan ürün (a�ırlıkça 

yüzde) çıkı� parametresi olarak içeren bir çıkı� tabakasından olu�an bir ileri besleme 

a�ından olu�turulmu�tur. Model test edildikten sonra modelin 32 mikrometre inceli�i 

tahmin etme yetene�inin yüksek oldu�u tespit edilmi�tir (Düzeltme katsayısı 0,92 

bulunmu�tur.).  

Model üzerinde hassaslık analizi sonucunda kar�ılık kontur grafikleri giri� 

parametreleri kullanılarak olu�turulmu�tur. Yapay Sinir A�ları modelinin kar�ılık 

kontur grafiklerinin parametre de�erleri detaylı incelenmesiyle MatLAB’daki bulanık 

modelde Mamdani tipinde bulanık kural seti olu�turulmu�tur. Üç parametre ve üç 

seviye oldu�u için üç üzeri üç (27) kural vardır. Bu çalı�mada, Z, S ve gauss tipindeki 

üyelik fonksiyonlarının karı�ımı ile olu�turulmu�tur. MatLAB kullanım kutusunun 

yardımı ile 32 mikrometre incelik (a�ırlıkça yüzde) tahmin edilmi�tir. Sonuç olarak, 

modelin düzeltme katsayısı (R) 0,76 bulunmu�tur.  

Bu çalı�mada olu�turulan YSA ve bulanık modeller, i�letme mühendislerine 

istenilen çimento inceli�ine ula�mak için i�letme parametrelerini kontrolünde potansiyel 

yeterlilikte yarar göstermektedir. 

Çalı�mamızın ikinci kısmında, çimento ö�ütüm sürecinin performansını 

de�erlendirmek ve süreci denetlemek için nicel bir izlek tanımlanmı�tır. Tarihsel veri 

kullanılarak, CUSUM (gittikçe artan toplam) ve EWMA (üssel ölçülmü� hareketli 

ortalama) grafikleri gibi kontrol grafikleri çimento inceli�ini denetlemek için 

kullanılmı�tır. Sonuç olarak, CUSUM ve EWMA kontrol grafiklerinin 32 mikrometre 

inceli�indeki, (a�ırlıkça yüzde) küçük sapmaları tespit etmek için çimento ö�ütüm 

sürecinde daha kısa süreli örnek alım zaman aralıklarında kolayca kullanılabilece�i 

bulunmu�tur. 
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CHAPTER 1 

 

INTRODUCTION 

 
Cement is a finely ground inorganic material, which, when mixed with water, 

forms a paste which hardens by means of hydration reactions and which, after 

hardening, retains its strength and stability even under water.  

Quality of cement, mostly, is resembled by mortar compressive strength. 

Chemical structure, fineness and particle size distribution of finished product have a 

strong influence on mortar compressive strength. European and American Standards 

accept fineness, which has considerable effects on cement strength and hydration rate, 

as a vital parameter. As an example, in fine cement, more gypsum is required for proper 

retardation because increasing fineness makes more tricalcium aluminate available for 

early hydration. And, higher early rate of hydration causes higher early rate of heat 

liberation, which may cause cracking in concrete constructions. Finally, grinding feed to 

very fine particles requires more energy, increasing the production cost. On the other 

hand, smaller particle size lets the more area available for water-cement interaction per 

unit volume. The finer particles (up to 8 micrometer) dominate the early strength 

development of the cement (up to 2 days) while the larger particles dominate the 

strength after this time (PCA 1988). Due to these facts, variation of cement fineness 

should be well controlled and monitored during the cement milling process. 

The cement milling process is a complex process that involves many parameters 

affecting the quality parameter of weight percentage of product residue on sieve (or 

fineness) with definite size of holes.  

An analytical model to describe the effects of each of these factors on fineness 

can be very complex. Artificial neural networks (ANN) and fuzzy logic can be used for 

this purpose as a tool for prediction modelling of fineness. Its use for cement tube mill 

was previously studied (Topalov and Kaynak 1996) for preventing mill from plugging. 

In addition, the analysis and optimization of the cement grinding circuits were 

performed with the application of the Bond based methodology as well as Population 

Balance Models (PBM) (Jankovic 2004). In the literature, several control approaches 

have been proposed including linear multivariable control techniques. Applications of 
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ANN (Grognard 2001) and fuzzy logic models (Akyol et al. 2003) were previously used 

for cement strength prediction. However, the use of fuzzy logic and ANN modelling for 

cement fineness prediction has not yet been reported. 

In this study, our objectives are to predict the fineness before any variations in 

process parameters, to decrease the errors arisen from the operators, to increase the 

efficiency and finally decrease the process cost. In order to get these targets, residue on 

32-�m sieve (or fineness) of portland cement is to be predicted by using Tube Mill 

operational parameters: revolution “%” (instant rotational speed x 100 / max rotational 

speed), falofon “%” (instant media and feed charge/max charge), and elevator amperage 

“A”. For this purpose, cement milling process in a local plant was modelled by using 

Artificial Neural Networks and Fuzzy Logic approaches. The data were collected from 

the local plant that uses fineness test as a process control parameter between the months 

of January and December 2004. 

Two combined modelling studies were performed using this data. First, the 

ANN on MatLAB was applied by using operational parameters such as Revolution 

“%”, Falofon “%” and Elevator Amperage “A”. The response surfaces of the ANN 

model were used to construct the Mamdani-type fuzzy rule set in the fuzzy model on 

MatLAB. Finally, the view of rule set and start-up, which were used to predict 32-µm 

fineness of cement, were obtained.  

In order to monitor 32-�m fineness, % wt, of cement, the local plant applies 

basic Individual Control Chart. However, it has been observed that the chart does not 

correspond small shifts. If the high production rate (180 t/h) and effect of fineness on 

the quality of cement mortar are considered, these shifts lead serious problems with the 

cement stocked in the silos with capacity of 10.000 t. Hence, in the second part of our 

study, I-MR (Individual Moving Range) control chart, CUSUM (Cumulative Sum), 

EWMA (Exponentially Weighted Moving Average) and MA (Moving Average) control 

chart were applied in order to detect small shifts in cement fineness, which is one of 

quality parameters of the milling process. The performances of these control charts were 

compared.  

In chapter 2, cement-manufacturing process is described, briefly. Cement 

manufacturing process is composed of four main steps: quarrying and raw materials 

preparation, clinker burning, grinding of cement clinker, and finally, packing and 

dispatch of cement. 
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In chapter 3, the types of portland cement (EN and ASTM) are to be mentioned. 

In addition to this, chemical composition of portland cement is defined. Finally, some 

information about physical properties of portland cement such as fineness and 

compressive strength is given. 

In chapter 4, in order to get clear visual, some brief information about Artificial 

Intelligence Systems is to be given. Network Architectures and Learning Processes are 

discussed in Artificial Neural Networks part. In Fuzzy Logic part, fundamentals of 

Fuzzy Sets and Fuzzy Logic Approach are to be discussed. 

In chapter 5, cement-milling process and parameters affecting on fineness are 

explained. 

In chapter 6, construction of ANN models that were created in the thesis is 

explained. 

In chapter 7, the results of the model created in this study are discussed.  

In chapter 8, statistical monitoring of quality parameter of 32-µm fineness of 

portland cement is explained. 
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CHAPTER 2 

 

CEMENT MANUFACTURING PROCESS 

 

Portland cement is produced by grinding cement clinker in association with 

gypsum (3-5 %) to specified fineness depending on the requirements of the cement 

consumers. Cement clinker is produced on large scale by heating finely ground raw 

materials (Calcareous and Argillaceous materials) at very high temperature up to 1450 
oC in rotary kilns. The materials that can be used in cement industry as raw materials are 

listed in Table 2.1.  

 

Table 2.1. Raw materials used in cement industry. 

 

  CaO 
Source 

Silica-SiO2             
Source 

Alumina-Al2O3 
Source 

  Iron-Fe2O3 

  Source 
   Limestone  Clay           Clay       Clay 

Marble  Shale    Bauxite    Iron Ore 

 Marl  Marl   

    Calcite  Sand   

     Chalk    Quartzite   

 

Calcareous and Argillaceous obtained from the earth are properly proportioned 

in order to get a suitable ratio of lime (CaO), Silica (SiO2), Alumina (Al2O3) and Iron 

(Fe2O3) present in the mixture. As the raw materials are obtained directly from 

limestone and clay mines, minor constituents like Magnesia (MgO), Sodium, 

Potassium, Sulphur, Chlorine compounds etc., may also be present in the raw materials 

up to limited extent which do not adversely affect either the manufacturing process or 

the quality of cement produced. As a major raw material limestone is used for 

manufacture of cement. Due to this fact, a cement unit is necessarily located near the 

cement grade limestone deposit. If it is considered that 25-35 % of raw materials is lost 
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in the atmosphere in the form of gaseous compounds such as carbon dioxide and 

nitrogen oxides, the location of a cement unit near the deposits is seen as a vital aspect 

in cement manufacturing process. Figure B1 represents a typical dry process of cement 

production flow chart. 

 Major unit operations involved in cement manufacturing process include:  

• Quarrying and Raw Materials Preparation.  

•    Clinker burning  

• Grinding of cement clinker  

• Packing and dispatch of cement.  

In the following sections, we will be discussing these unit operations. 

 

2.1. Quarrying and Raw Materials Preparation 
 

Major quantity of limestone is obtained from the captive limestone mines of the 

plant. However, depending upon the proportions of different cement clinker phase 

forming components, additive materials including high grade / low grade limestone can 

be purchased from outside parties in required quantities in order to obtain the desired 

quality of cement grade raw meal.  

Big boulders, which are produced during drilling and blasting methods of 

limestone mining, are crushed in suitable type of crushers. The crushing is carried out 

either in single or double stages by using Primary crusher and Secondary crusher, or in a 

single stage crushing machine depending upon the size of the boulder produced from 

mining. This also depends on the type of grinding mills used for grinding raw materials 

for preparation of finally pulverized raw meal. A jaw hammer crusher is used in 

Çimenta� Cement Company for size reduction of limestone boulders to a suitable feed 

size. Such crusher was installed at the plant site. Limestone produced in the mine is 

transported to crusher site with the help of dumpers. Crushed limestone is then 

transported to plant stockpile with the help of Belt conveyor. 

Crushed limestone is then transported to stacker reclaimer site with the help of 

belt conveyor / rope ways installed at different sites of the plant. Finally, crushed 

limestone is pre-blended with the help of stacker and reclaimer systems. Crushed 

limestone traveling on the belt conveyors is stacked in layers with the help of stacker 

machine. Stacked materials is then cut in slices with the help of a reclaiming machine 
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which mixes layers of stacked limestone to reduce the variation in quality of limestone 

relative to large variations seen in the limestone ore. 

The pre-blended limestone from stack pile is then transported to raw mill 

hoppers. More than one hoppers are used for proportioning of raw mix incase the 

limestone is obtained from several sources or additive materials required to be mixed 

with captive mines of limestone. Presently, raw mill hoppers are provided with 

continuous weighing machines known as weigh feeders in order to produce a suitable 

raw meal proportioned appropriately for production of desired good quality of cement 

clinker. Vertical Roller Mill and Tube Mill Grinding machines are used for production 

of pulverized raw meal at the company.  

 

2.2 . Clinker Burning 

 
Portland cement clinker is produced from a mixture of raw materials containing 

calcium, silicon, aluminum, and iron as the main elements. The mixture is heated in 

kilns that are long rotating steel cylinders on an incline. The kilns may be up to 6 meters 

in diameter and 180 meters in length. Mixture of raw materials enters at the high end of 

the cylinder and slowly moves along the length of the kilns due to the constant rotation 

and inclination. At the low end of the kilns, fuel is injected and burned, thus providing 

the heat necessary to make the materials react. It can take up to 2 hours for the mixture 

to pass through the kiln, depending upon the length of the cylinder.  

When mixed in correct proportions, new minerals with hydraulic properties – the 

so-called clinker phases – are formed upon heating up to the sintering (or clinkerization) 

temperature as high as 1450° C. The main mineral components in clinker are silicates, 

aluminates and ferrites of the element calcium. The main clinker phases are listed in 

Table 2.2 . 
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Table 2.2. Phases of clinker 

 

Tri-Calcium silicate    3 CaO.SiO2   C3S  Alite 
Di-Calcium silicate    2 CaO.SiO2   C2S        Belite 

Tri-Calcium aluminate   3 CaO.Al2O3   C3A Aluminate Phase 

Calcium Alumina ferrite   4 CaO.Al2O3.Fe2O3  C4AF Brownmillerite 

 

The clinker formation process can be divided into four main steps (Figure 2.1): 

• Drying and preheating (20 – 800° C): release of free and chemically bound 

water 

• Calcination (800 – 1350° C): release of CO2: initial reactions with formation of 

clinker minerals and intermediate phases. Conversion of CaCO3 to CaO and 

MgCO3 to MgO. 

• Sintering or clinkerization (1350 – 1550° C): formation of calcium silicates, 

calcium aluminates and liquid phase 

• Kiln internal cooling (1550 – 1200° C): crystallization of calcium aluminate and 

calcium ferrite 

 

 

Figure 2.1. Schematic diagram of rotary kiln. 
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As the mixture moves down the cylinder, it progresses through four stages of 

transformation. Initially, any free water in the powder is lost by evaporation. Next, 

decomposition occurs from the loss of bound water and carbon dioxide. This is called 

calcination. The third stage is called clinkerisation. During this stage, the calcium 

silicates are formed. The final stage is the cooling stage.  

The marble-sized pieces produced by the kiln are referred to as clinker. Clinker 

is actually a mixture of four compounds as illustrated in Table 2.2. The clinker is cooled 

with the help of grill cooler in order to get it to stable phases. 

 

2.3. Grinding of Cement Clinker 

 
In order to achieve the objectives of energy conservation, the clinker produced 

in rotary kiln cooled in cooler is usually stored for few days before it is ground in 

cement grinding mills along with appropriate quantity of gypsum and other additive 

materials for production of finely pulverized cement with desired fineness.  

Fineness and particle size distributions of the finished product have a strong influence 

on the cement quality. 

Ball / Tube mills (in open circuit or closed circuit mode) are generally used for 

clinker grinding in cement plant worldwide.  

Blended cements (or “composite” cements) contain other constituents in 

addition such as granulated blast-furnace slag, natural or industrial puzzolan (for 

example, volcanic tuff or fly ash from thermal power plants), or inert fillers such as 

limestone. 

Mineral additions in blended cements may either be inter-ground with clinker or 

ground separately or mixed with Portland cement.  

The tube mill consists of a steel cylindrical shell with three compartments. The 

first compartment is used for drying of the raw material in order to increase the 

performance of the milling by removing water from the raw material. The following 

compartments include steel balls with different dimensions. In the second compartment, 

raw materials (clinker and additive materials) are pre-milled by the help of big steel 

balls having a radius of 60-90 mm. By using balls of smaller radius, size of pre-milled 

material is reduced down to maintain desired level of fineness of the finished product. A 

dynamic separator is used for differentiate the fine and thick particles coming from the 
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mill exit. The fine particles are sent to the silos as finish product (cement). The 

remaining part (thick particles) is recycled to the mill for re-milling. In Chapter 5, 

Process parameters and standards will be more elaborated.  

 

2.4. Packing and Dispatch of Cement 
 

The pulverized different types of cements are stored in different silos installed 

with different capacities. Depending upon the customer requirements, cement is loaded 

in bulk, or in 50 kg bags that are packed with the help of conventional rotary packaging 

or electronic packaging equipment, and finally loaded onto trucks that are dispatched to 

final destinations.  
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CHAPTER 3 

 

PORTLAND CEMENT 

 

Portland cement is the chief ingredient in cement paste - the binding agent in 

Portland cement concrete (PCC). It is a hydraulic cement that, when combined with 

water, hardens into a solid mass. Interspersed in an aggregate matrix it forms PCC. As a 

material, portland cement has been used for well over 175 years and, from an empirical 

perspective, its behavior is well understood. The patent for portland cement was 

obtained in 1824 by Joseph Aspdin. Chemically, however, portland cement is a complex 

substance whose mechanisms and interactions have yet to be fully defined. The Portland 

Cement Association (PCA) provides the following precise definitions: 

 

Hydraulic cement: Hydraulic binder, ie. a finely ground inorganic material, which, 

when mixed with water, forms a paste which sets and hardens by means of hydration 

reactions and processes and which, after hardening, retains its strength and stability 

even under  water. 

Portland cement: An hydraulic cement composed primarily of hydraulic calcium 

silicates. 

 

3.1. Background 

 
Although the use of cements (both hydraulic and non-hydraulic) goes back many 

thousands of years (to ancient Egyptian times at least), the first occurrence of "portland 

cement" came about in the 19th century. In 1824, Joseph Aspdin, a Leeds mason took 

out a patent on a hydraulic cement that he coined "portland" cement. He named the 

cement because it produced a concrete that resembled the color of the natural limestone 

quarried on the Isle of Portland, a peninsula in the English Channel. Since then, the 

name "portland cement" has stuck and is written in all lower case because it is now 

recognized as a trade name for a type of material and not a specific reference to 

Portland, England. 
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Today, portland cement is the most widely used building material in the world 

with about 1.56 billion tones (1.72 billion tons) produced each year. Annual global 

production of portland cement concrete hovers around 3.8 million cubic meters (5 

billion cubic yards) per year (Cement Association of Canada, 2004).  

 

3.2. Types of Portland Cement 

 
Portland cement is hydraulic cement produced by milling clinker, which 

includes calcium silicates, calcium aluminates with calcium sulphate as an additive. Due 

to the fact that its low cost and widespread availability of its raw material, limestone, 

portland cement one of the materials widely used. In order to meet different physical 

and chemical requirements for specific purposes, such as durability and high-early 

strength, different types of portland cement are manufactured. American Society for 

Testing Materials (ASTM), and European Standards (EN) exhibit some differences. 

 

3.2.1. Portland Cement (American Standard Type) 
 

Eight types of cement are covered in ASTM C 150. These types and brief 

descriptions of their uses are listed in Table 3.1. 

 

Table 3.1. Portland cement types and their uses 

 

Cement type Use 

I General purpose cement, when there are no extenuating 

conditions 

II Aids in providing moderate resistance to sulfate attack 

III When high-early strength is required 

IV When a low heat of hydration is desired  

V When high sulfate resistance is required 

IA A type I cement containing an integral air-entraining agent 

IIA A type II cement containing an integral air-entraining agent 

IIIA A type III cement containing an integral air-entraining agent 
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3.2.2. Portland Cement (European Standard Types) 
 

 EN standards use two types of Portland cement: 

 CEM I: Portland Cement 

 CEM II: Composite-Portland Cement 

The company, Ç�MENTA�, uses CEM I type Portland cement for general purposes. 

 

3.3. Chemical Composition of Portland Cement 
 

Portland cements can be characterized by their chemical composition although 

they rarely are for pavement applications. However, it is a portland cement's chemical 

properties that determine its physical properties and how it cures. Therefore, a basic 

understanding of portland cement chemistry can help one understand how and why it 

behaves as it does. On the basis of quantity, the constituents of portland cement can be 

categorized into: 

• Major constituents 

• Minor constituents 

The composition of portland cements is what distinguishes one type of cement 

from another. The major constituents in portland cement are denoted as tricalcium 

silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A), and tetracalcium 

aluminoferrite (C4AF). The actual components are often complex chemical crystalline 

and amorphous structures, denoted by cement chemists as "elite" (C3S), "belite" (C2S), 

and various forms of aluminates. Tricalcium silicate and dicalcium silicate, 

significantly, contribute to the strength of hydrated cement paste. The roles of 

tricalcium aluminate and tetracalcium aluminoferrite in strength development are 

controversial (Bogue 1955). Tricalcium aluminate contributes to flash setting. However, 

gypsum retards this effect, allowing tricalcium silicate set first. Otherwise a rather 

porous calcium aluminate hydrate would form, providing the remaining cement 

compounds a porous framework for hydration – adversely affecting the strength of the 

cement paste (Taylor, 1964). 

The behavior of each type of cement depends on the content of these 

components. Main Constituents in a typical portland cement is exhibited in Table 3.3. 
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Table 3.2. Main Constituents in a typical portland cement (Mindess et al. 1990). 

 

Chemical Name Chemical Formula Shorthand Notation 

Tricalcium Silicate 3CaO.SiO2 C3S 

Dicalcium Silicate 2CaO.SiO2 C2S 

Tricalcium 

Aluminate 
3CaO.Al2O3 C3A 

Tetracalcium 

Aluminoferrite 
4CaO.Al2O3.Fe2O3 C4AF 

Gypsum CaSO4.H2O CSH2 

 

3.4. Physical Properties of Cements 

 
EN and ASTM standards have specified certain physical requirements for each 

type of cement. These properties include: 

1) Fineness 

2) Setting time 

3) Soundness 

4) Compressive strength 

5) Heat of hydration 

6) Loss of ignition.  

 

3.4.1. Fineness 

 
Fineness is defined depending upon the method of measurement. It may be 

defined as sieve diameter: the width of the minimum square aperture through which 

particle pass, or surface diameter: diameter of sphere having the same surface as the 

surface of particle. Fineness of portland cement has great effects on hydration rate and 

thus the setting time, the rate of strength gain. As an example, the smaller is the particle 

size, the greater the surface area-to-volume ratio. This causes more area available for 

water-cement interaction. The finer particles mainly affect the early strength of the 

cement (2 days) while the larger particles dominate the strength after this time. The 
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effects of greater fineness on strength are generally seen during the first seven or twenty 

eight days (Czernin 1980).  

There are, however, several disadvantages associated with high fineness: 

• In fine cement, more gypsum is required for proper retardation because increased 

fineness makes more tricalcium aluminate available for early hydration. 

• Grinding clinker to a high fineness requires more energy, increasing the production 

cost. 

• A higher early rate of hydration causes a higher early rate of heat liberation. If not 

properly dissipated, this heat may cause cracking – especially in mass concrete 

construction. 

• The reaction of fine cement with alkali-reactive aggregate is stronger. 

Fineness, which has considerable effects on cement strength and hydration rate, 

is accepted as a vital parameter by European and American Standards.  

Fineness can be measured by several methods. Some methods are as follows; 

• Fineness of Portland Cement by the Turbidimeter.  

• Fineness of Hydraulic Cement by the 90-µm  and 32-µm Sieves  

• Fineness of Hydraulic Cement by Air Permeability Apparatus (Blaine) 

The Wagner Turbidimeter and the Blaine air permeability test for measuring 

cement fineness is required by the American Society for Testing Materials (ASTM).  

Another test to determine the fineness is Sieve Analysis. The fineness of cement 

is measured by sieving it on standard sieves. The proportion of cement of which the 

grain sizes are larger than the specified size is thus determined (EN 196-6). The result is 

recorded as percentage (%). According the local plant specifications, 32-�m sieve 

fineness of portland cement ranges from 14 % to 19 % by weight. The sieve equipment, 

which is used in the local plant, is exhibited in Figure B2. 

 

3.4.2. Setting Time 

 
Setting is defined as change of cement paste from a fluid to a rigid state. It 

occurs as a result of the hydration of cement compounds. Cement paste setting time is 

affected by cement fineness, water-cement ratio, chemical content. Setting tests are 

applied to characterize how a cement paste sets.  

Normally, two setting times are defined (Mindess and Young 1981): 



 15 
                                                                                                                 

 

1. Initial set. Occurs when the paste begins to stiffen considerably.  

2. Final set. Occurs when the cement has hardened to the point at which it can 

sustain some load.  

 

3.4.3. Soundness 

 
After setting, if the cement paste undergoes substantial volume changes, 

disruption of the hardened paste could result due to restraints.  When referring to 

Portland cement, "soundness" refers to the ability of a hardened cement paste to retain 

its volume after setting without delayed destructive expansion (PCA 1988). Excessive 

amounts of free lime (CaO) or magnesia (MgO) causes this destructive expansion. Most 

portland cement specifications limit magnesia content and expansion. The typical 

expansion test places a small sample of cement paste into an autoclave (a high pressure 

steam vessel). ASTM C 150, Standard Specification for Portland Cement specifies a 

maximum autoclave expansion of 0.80 percent for all portland cement types. 

 

3.4.4. Compressive Strength 

 
Cement paste strength is typically defined in three ways: compressive, tensile 

and flexural. These strengths can be affected by a number of items including: water-

cement ratio, cement-fine aggregate ratio, type and grading of fine aggregate, manner of 

mixing and molding specimens, curing conditions, size and shape of specimen, moisture 

content at time of test, loading conditions and age (Mindess and Young 1981). Since 

cement gains strength over time, the time at which strength test is to be conducted must 

be specified. In strength tests on cement, the aggregate dimension is eliminated by use 

of standard aggregates.  

Typically times are 2 days (for high early strength cement), 7 days, 28 days (for 

low heat of hydration cement). When considering cement paste strength tests, there are 

two items to consider: 

• Cement mortar strength is not directly related to concrete strength. Cement paste 

strength is typically used as a quality control measure.  

• Strength tests are applied on cement mortars (cement + water + sand). 
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The most common strength test, compressive strength, is carried out on a 50 mm 

cement mortar test specimen. The test specimen is subjected to a compressive load 

(usually from a hydraulic machine) until failure. This loading sequence must take no 

less than 20 seconds and no more than 80 seconds.  

 

3.4.5. Heat of Hydration 

 

Hydration is the process by which portland cement, in the presence of water, 

becomes a bonding agent, evolving heat. In the water-cement paste, the silicates and the 

aluminates form the products of hydration. With time, they produce a firm and hard 

mass. The hydrated cement paste is stable in contact with water. The rate of hydration 

drops with time and, as a result, there can remain a significant amount of unhydrated 

cement even after a long time. 

The heat of hydration is the heat generated when water and portland cement 

react. Hydration begins at the surface of the cement particles. Therefore, the total 

surface area of cement represents the material available for hydration. That is, the early 

rate of hydration depends on the fineness of the cement particles. However, at later 

stages, the effect of surface area diminishes and, consequently, fineness exercise no 

influence on the total heat of hydration. Heat of hydration is also influenced by the 

proportion of C3S and C3A in the cement, water-cement ratio, fineness and curing 

temperature. As each one of these factors is increased, heat of hydration increases. In 

large mass concrete structures such as gravity dams, hydration heat is produced 

significantly faster than it can be dissipated (especially in the centre of large concrete 

masses), which can create high temperatures in the centre of these large concrete masses 

that, in turn, may cause undesirable stresses as the concrete cools to ambient 

temperature. Conversely, the heat of hydration can help maintain favorable curing 

temperatures during winter (PCA 1988). 

 

3.4.6. Loss on Ignition 

 
Loss on ignition is calculated by heating up a cement sample to 900–1000 oC 

until a constant weight is obtained. The weight loss of the sample due to heating is then 

determined. A high loss on ignition can indicate pre-hydration and carbonation, which 
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may be caused by improper and prolonged storage or adulteration during transport or 

transfer. 

 

3.5. Influence of Cement on Concrete Properties 
 

Effects of cement on the most important concrete properties are presented in 

Table 3.3. Cement composition and fineness play a major role in controlling concrete 

properties. Fineness of cement affects the placability, workability, and water content of 

a concrete mixture much like the amount of cement used in concrete does. 

 

Table 3.3. Effects of cements on concrete properties (WEB_1 2004). 

 
Cement Property Cement Effects 

Placeability Cement amount, fineness, setting characteristics 

Strength 
Cement composition (C3S, C2S and C3A), loss on ignition, 

fineness 

Drying Shrinkage SO3 content, cement composition 

Permeability Cement composition, fineness 

Resistance to sulfate C3A content 

Alkali Silica Reactivity Alkali content 

Corrosion of embedded steel Cement Composition (esp. C3A content) 
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CHAPTER 4 

 

ARTIFICAL INTELLIGENCE SYSTEMS 

 

The “artificial intelligence” (A.I), in its broadest sense, encompasses a number 

of technologies that includes, but is not limited to, expert systems, neural networks, 

genetic algorithms, fuzzy logic systems, cellular automata, chaotic systems, and 

anticipatory systems.   

In data (or information) processing, the objective is generally to gain an 

understanding of the phenomena involved and to evaluate relevant parameters 

quantitatively. As an example, it is used in determining the relevant parameters of the 

cement ball mill. This task is accomplished through modeling of the system, either 

experimentally or analytically. Most hybrid systems relate experimental data to systems 

or model. Once, a model of system is obtained, lots kinds of procedure such as 

sensitivity analysis, statistics regression to have a better understanding of the system are 

carried out. 

Neural networks and fuzzy systems represent two distinct methodologies that 

deal with uncertainty. Uncertainties that are important include both those in the model, 

or descriptions of the systems are involved as well as those in the variables. These 

uncertainties usually arise from complexity (e.g. non-linearity). Neural networks 

approach the modeling representation by using precise inputs and outputs, which are 

used to train a generic model which has sufficient degrees of freedom to formulate a 

good approximation of the complex relationship between the inputs and outputs. Neural 

network and fuzzy logic technologies are different, and each has unique capabilities that 

are useful in information processing. Yet, they often can be used to accomplish the 

same results in a different ways. 

 

4.1. Artificial Neural Networks 
 

Neural networks are good at doing what computers traditionally do not do well, 

pattern recognition. They are good for sorting data, classifying information, speech 
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recognition, diagnosis, and predictions of non-linear phenomena. Neural nets are not 

programmed but learn from examples either with or without supervised feedback. 

 

4.1.1. Background 
 

McCulloch and Pitts, in 1943, proved that networks comprised of neurons could 

represent any finite logical expression. In 1949 Hebb defined a method for updating the 

weights in neural networks. Kolmogorov’s Theorem was published in the 1950’s. It 

states that any mapping between two sets of numbers can be exactly done with a three-

layer network. He did not refer to neural networks in his paper, and this was applied 

later. His paper also describes how the neural network is to be constructed. The input 

layer has one neuron for every input. These neurons have a connection to each neuron in 

the hidden layer. The hidden layer has (2n + 1) neurons (n: the number of inputs). The 

hidden layer sums a set of continuous real monotonically increasing functions, like the 

sigmoid function. The output layer has one neuron for every output. Rosenblatt in 1961 

developed the Perception ANN (artificial neural network). Then, Widrow and Hoff 

developed Adaline. 1969 was the year neural networks almost died. A paper published 

by Minsky and Papert showed that the XOR function could not be done with the 

Adeline and other similar networks. The 1970’s brought NEOCOGNItrON for visual 

pattern recognition. Hopfield published PDP (”Parallel Distributed Processing”) in three 

volumes.  

 

4.1.2. Human Brain and ANN 
 

ANNs are indeed self-learning mechanisms which don't require the traditional 

skills of a programmer. Neural networks are composed of simple elements operating in 

parallel. The main processing element is named as neuron. These elements are inspired 

by biological nervous systems. In its most general form, a neural network is a machine 

that is designed to model the way in which the brain performs a particular task or 

function of interest. Figure 4.1 represents the similarities between human neuron and an 

artificial neuron.  
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Figure 4.1. Schematic representations: (a) a human neuron, (b) an artificial neuron. 

    (Source: H. Demuth 2004) 

 

The input signals (pi), which are taken through dendrites, are multiplied by 

weights (wi,j). The weighted values are fed to the nucleus to be summed as a net 

function (u). Then, the result is transferred by a transfer function (f (u)) with an 

activation value (a), to the next neuron through axon. The bias may be simply added to 

the product wp as shown by the summing junction or as shifting the function f to the left 

by an amount b. The bias is much like a weight, except that it has a constant input of 1. 

It is an adjustable (scalar) parameter of the neuron. It is not an input.  

 

 
 
 

(a) 

(b) 

u 
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4.1.3. Mathematical Ways of Describing Neuron 

 
Net function is the summation of weighted values of inputs. It helps describing a 

neuron in mathematical terms. Two net functions, Linear-basis and Radial-basis 

function are very important. Linear-basis function (Eqn. 4.1) is the summation of the 

weighted input values. Radial-basis function (Eqn. 4.2) is the root square of summation 

of square of difference between input and weight. 
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The activation function defines the output of a neuron in terms of the induced 

local field n. There are many transfer or activation functions. Here, we define five basic 

types of activation functions: hard-limit activation function, linear activation function, 

sigmoid activation function and tangent-sigmoidal activation function.  

The Hard-Limit Function (Eqn 4.3) limits the output of the neuron to either 0, if the net 

input argument n is less than 0; or 1, if n is greater than or equal to 0. 
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The Linear Function calculates the output by Eqn.4.4. Linear approximations are 

obtained at the end of neurons, which use this type of activation function. 
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The Sigmoid Function (Eqn.4.5) produces outputs in the interval of (0 to 1). Its function 

is non-decreasing and monotonic. 
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Alternatively, multilayer networks may use the tan-sigmoid activation (Eqn. 4.6); 

 

)(tan)( ii usiguf =                                                     Eqn. 4.6 

 

4.1.4. Network Architectures 

 
Neural networks, usually, are composed of three layers, input, hidden, and 

output. More layers can be added, but usually little is gained from doing so. The 

connections vary by the network type. Some nets have connections from each node in 

one layer to the next, some have backward connections to the previous layer and some 

have connections with in the same layer. Neural networks map sets of inputs to sets of 

outputs. First consider a single layer of neurons. 

 

4.1.4.1. One-Layer of Neurons 

 
A one-layer network with R input elements and S neurons are as follow; 

 

 
 

Figure 4.2. A one-layer network with R input elements and S neurons. 

(Source: H. Demuth 2004) 
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In this network, each element of the input vector p is connected to each neuron 

input through the weight matrix W. The ith neuron has a summer that gathers its 

weighted inputs and bias to form its own scalar output u(i). The various u(i) taken 

together form an S-element net input vector u. Finally, the neuron layer outputs form a 

column vector a.  

 

4.1.4.2. Multiple Layers of Neurons 

 
A network can have several layers. Each layer has a weight matrix W, a bias 

vector b, and an output vector a. You can see the use of this layer notation in the three-

layer network shown in Figure 4.3. 

 

 

 

Figure 4.3. A three-layer network with R input elements and S neurons. 

(Source: H. Demuth 2004) 
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4.1.5. Learning Processes 
 

Learning is a process by which the free parameters of a neural network are 

adapted through a process of stimulation by the environment in which the network is 

embedded. 

We can define a learning rule as a procedure for modifying the weights and 

biases of a network. There are five basic rules (learning algorithm): error-correction 

learning, memory-based learning (Back-propagation, BP), Hebbian learning, 

competitive learning and Boltzmann learning. One of the most widely used learning 

algorithms is Back-propagation (BP) learning. 

Backpropagation was created by generalizing the Widrow-Hoff learning rule to 

multiple-layer networks and non-linear differentiable transfer functions. Input vectors 

and the corresponding target vectors are used to train a network until it can approximate 

a function, associate input vectors with specific output vectors, or classify input vectors 

in an appropriate way as defined by you. Networks with biases, a sigmoid layer, and a 

linear output layer are capable of approximating any function with a finite number of 

discontinuities. Properly trained Backpropagation networks tend to give reasonable 

answers when presented with inputs that they have never seen. Typically, a new input 

leads to an output similar to the correct output for input vectors used in training that are 

similar to the new input being presented. This generalization property makes it possible 

to train a network on a representative set of input/target pairs and get good results 

without training the network on all possible input/output pairs. There are generally four 

steps in the training process: 

• Assemble the training data 

• Create the network object 

• Train the network 

• Simulate the network response to new inputs 

 

4.2. Fuzzy Logic 

 
Fuzzy logic has rapidly become one of the most successful of today's 

technologies for developing sophisticated control systems. The reason for which is very 

simple. Fuzzy logic addresses such applications perfectly, as it resembles human 
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decision making with an ability to generate precise solutions from certain or 

approximate information. It fills an important gap in engineering design methods left 

vacant by purely mathematical approaches (e.g. linear control design), and purely logic-

based approaches (e.g. expert systems) in system design. . In general meaning, Fuzzy 

logic is a super-set of conventional (Boolean) logic that has been extended to handle the 

concept of partial truth- truth values between "completely true" and "completely false". 

 As its name suggests, it is the logic underlying modes of reasoning which are 

approximate rather than exact. The importance of fuzzy logic derives from the fact that 

most modes of human reasoning and especially common sense reasoning are 

approximate in nature. 

To understand the reasons for the growing use of fuzzy logic it is necessary, 

first, to clarify what is meant by fuzzy logic. In a narrow sense, fuzzy logic is a logical 

system, which is an extension of multivalued logic. But in a wider sense, which is in 

predominant use today, fuzzy logic (FL) is almost synonymous with the theory of fuzzy 

sets, a theory that relates to classes of objects with unsharp boundaries in which 

membership is a matter of degree. In this perspective, fuzzy logic in its narrow sense is 

a branch of FL. What is important to recognize is that, even in its narrow sense, the 

agenda of fuzzy logic is very different both in spirit and substance from the agendas of 

traditional multivalued logical systems. 

 

4.2.1. Background 

 
The precision of mathematics owes its success in large part to the efforts of 

Aristotle and the philosophers who preceded him. In their efforts to devise a concise 

theory of logic, and later mathematics, the so-called "Laws of Thought" were posited. 

One of these, the "Law of the Excluded Middle," states that every proposition must 

either be True or False. Even when Parminedes proposed the first version of this law 

(around 400 B.C.) there were strong and immediate objections: for example, Heraclitus 

proposed that things could be simultaneously “True and not True”.  

It was Plato who laid the foundation for what would become fuzzy logic, 

indicating that there was a third region (beyond True and False) where these opposites 

"tumbled about."  
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In the early 1900's, Lukasiewicz described a three-valued logic, along with the 

mathematics to accompany it. The third value he proposed can best be translated as the 

term "possible" and he assigned it a numeric value between True and False. Eventually, 

he proposed an entire notation and axiomatic system from which he hoped to derive 

modern mathematics. Later, he explored four-valued logics, five-valued logics, and then 

declared that in principle there was nothing to prevent the derivation of an infinite-

valued logic. Lukasiewicz felt that three-and-infinite-valued logics were the most 

intriguing, but he ultimately settled on a four-valued logic because it seemed to be the 

most easily adaptable to Aristotlean logic.  

Knuth proposed a three-valued logic similar to Lukasiewicz's, from which he 

speculated that mathematics would become even more elegant than in traditional Šbi-

valued logic. His insight, apparently missed by Lukasiewicz, was to use the integral 

range [-1, 0 +1] rather than [0, 1, 2]. Nonetheless, this alternative failed to gain 

acceptance, and has passed into relative obscurity.  

It was not until relatively recently that the notion of an infinite-valued logic took 

hold. In 1965, Lotfi A. Zadeh published his seminal work "Fuzzy Sets" which described 

the mathematics of fuzzy set theory, and by extension fuzzy logic. This theory proposed 

making the membership function (or the values False and True) operate over the range 

of real numbers [0.0, 1.0]. New operations for the calculus of logic were proposed, and 

showed to be in principle at least a generalization of classic logic. It is this theory which 

we will now discuss.  

The first applications of fuzzy theory were primarily industrial, such as process 

control for cement kilns. However, as the technology was further embraced, fuzzy logic 

was used in more useful applications. Fuzzy logic was also put to work in elevators to 

reduce waiting time. Today, the applications range from consumer products such as 

cameras, camcorders, washing machines, and microwave ovens to industrial process 

control, medical instrumentation, decision-support systems, and portfolio selection. 

 

4.2.2. Fundamentals of Fuzzy Sets 

 
Fuzzy logic comprises of concepts like fuzzy sets, membership functions, basic 

set operations, complement etc. 
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4.2.2.1. Fuzzy set 

 
Professor Lofti Zadeh at the University of California formalized fuzzy Set 

Theory in 1965. What Zadeh proposed is very much a paradigm shift that first gained 

acceptance in the Far East and its successful application has ensured its adoption around 

the world.  

A paradigm is a set of rules and regulations, which defines boundaries and tells 

us what to do to be successful in solving problems within these boundaries. For example 

the use of transistors instead of vacuum tubes is a paradigm shift - likewise the 

development of Fuzzy Set Theory from conventional bivalent set theory is a paradigm 

shift. A fuzzy set is a set without a crisp, clearly defined boundary. It can contain 

elements with only a partial degree of membership between 0 and 1. 

A classical set might be expressed as; 

 
A = {x | x > 6} 
 

A fuzzy set is an extension of a classical set. If X is the universe of discourse and its 

elements are denoted by x, then a fuzzy set A in X is defined as a set of ordered pairs. 

 

A = {x, µA(x) | x X} 
 
µA(x) is called the membership function (or MF) of x in A. The membership function 

maps each element of X to a membership value between 0 and 1. 

For better understand what a fuzzy set is, first consider what is meant by what 

we might call a classical set. A classical set is a container that wholly includes or 

wholly excludes any given element. According classical set, of any subject, one thing 

must be either asserted or denied. For example, the set of degree of room temperature 

unquestionably includes cold, cool, warm and hot. It just as unquestionably excludes 

sun, fly, and so on. 

 

 

 

 

 

 

Eqn. 4.7 

Eqn. 4.8 
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Figure 4.4. (a) Elements in Classical set A, (b) Fuzzy set A (A: Room Temperature, X: 

Universe) 

 

In classical set, there is a sharp boundary. The set excludes the term “hot” out of 

room temperature. However, fuzzy set includes the term “hot” as a matter of degree of 

room temperature. The truth of any statement becomes a matter of degree. 

 

4.2.2.2. Membership function 

 
A membership function (MF) is a curve that defines how each point in the input 

space is mapped to a membership value (or degree of membership) between 0 and 1. 

The input space is sometimes referred to as the universe of discourse (X), a fancy name 

for a simple concept. The curve or line is often given the designation of µ. 

There are many various kinds of membership functions. The simplest 

membership functions are formed using straight lines. Of these, the simplest is the 

triangular membership function. It is nothing more than a collection of three points 

forming a triangle. The trapezoidal membership function, trapmf, has a flat top and 

really is just a truncated triangle curve. These straight-line membership functions have 

the advantage of simplicity. Two membership functions are built on the Gaussian 

distribution curve: a simple Gaussian curve and a two-sided composite of two different 

Gaussian curves. The generalized bell membership function is specified by three 

parameters and has the function name gbellmf. The bell membership function has one 

Foundations of Fuzzy Logic more parameter than the Gaussian membership function, so 

it can approach a non-fuzzy set if the free parameter is tuned. Because of their 
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smoothness and concise notation, Gaussian and bell membership functions are popular 

methods for specifying fuzzy sets. Both of these curves have the advantage of being 

smooth and nonzero at all points. Polynomial based curves account for several of the 

membership functions in the toolbox. Three related membership functions are the Z, S, 

and Pi curves, all named because of their shape. The function zmf is the asymmetrical 

polynomial curve open to the left, smf is the mirror-image function that opens to the 

right, and pimf is zero on both extremes with a rise in the middle. 

 

4.2.2.3. Basic Fuzzy Set Operations 

 
The most important thing to realize about fuzzy logical reasoning is the fact that 

it is a superset of standard Boolean logic. In other words, if we keep the fuzzy values at 

their extremes of 1 (completely true), and 0 (completely false), standard logical 

operations will hold.  

The membership function of the Union of two fuzzy sets A and B with 

membership functions µA and µB and respectively is defined as the maximum of the two 

individual membership functions. This is called the maximum criterion. The Union 

operation in Fuzzy set theory is the equivalent of the OR operation in Boolean algebra. 

Then, basic relations for fuzzy sets are defined. The operator is denoted as: 

 

),max( BABA µµµ =∪  

 

The membership function of the Intersection of two fuzzy sets A and B with 

membership functions µA and µB respectively is defined as the minimum of the two 

individual membership functions. This is called the minimum criterion. The Intersection 

operation in Fuzzy set theory is the equivalent of the AND operation in Boolean 

algebra. 

 

),min( BABA µµµ =∩  

 

The membership function of the Complement of a Fuzzy set A with membership 

function; µA
- is defined as the negation of the specified membership function. This is 

Eqn. 4.9 

Eqn. 4.10 
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called the negation criterion. The Complement operation in Fuzzy set theory is the 

equivalent of the NOT operation in Boolean algebra. 

 

A
A

µµ −=− 1  

 

4.2.3. Fundamentals of Fuzzy Logic 

 
Human beings make decisions based on rules. Although, we may not be aware 

of it, all the decisions we make are all based on computer like if-then statements. If the 

weather is fine, then we may decide to go out. If the forecast says the weather will be 

bad today, but fine tomorrow, then we make a decision not to go today, and postpone it 

till tomorrow. Rules associate ideas and relate one event to another. 

Fuzzy machines, which always tend to mimic the behavior of man, work the same way. 

However, the decision and the means of choosing that decision are replaced by fuzzy 

sets and the rules are replaced by fuzzy rules. Fuzzy rules also operate using a series of 

if-then statements. For instance, if X then A, if y then b, where A and B are all sets of X 

and Y. Fuzzy rules define fuzzy patches, which is the key idea in fuzzy logic.  

A machine is made smarter using a concept designed by Bart Kosko called the 

Fuzzy Approximation Theorem (FAT). The FAT theorem generally states a finite 

number of patches can cover a curve as seen in the Figure 4.5. If the patches are large, 

then the rules are sloppy. If the patches are small then the rules are fine.  

 

 

 

Figure 4.5. Fuzzy Patches 

 

In a fuzzy system this simply means that all our rules can be seen as patches and 

the input and output of the machine can be associated together using these patches. 

Eqn. 4.11 



 31 
                                                                                                                 

 

Graphically, if the rule patches shrink, our fuzzy subset triangles get narrower. 

Naturally, it is math-free system. 

 

4.2.4. Fuzzy systems 

 
To create a fuzzy system, four components are needed. They are fuzzification, fuzzy 

rule base, fuzzy output engine, and defuzzification. A general fuzzy system is exhibited 

in Figure 4.6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Steps of fuzzy logic approach. 

 

4.2.4.1. Fuzzification 

 
Under Fuzzification, the membership functions defined on the input variables 

are applied to their actual values, to determine the degree of truth for each rule premise. 

A membership function (MF) is a curve that defines how each point in the universe of 

discourse is mapped to a value between 0 and 1. Intuitions, inference, rank ordering, 

angular fuzzy sets, neural networks, genetic algorithms, and inductive reasoning can be 

among many ways to assign membership values for functions to fuzzy variables.  
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4.2.4.2. Fuzzy Inference Engine 

 
Fuzzy inference is the actual process of mapping from a given input to an output 

using fuzzy logic. Fuzzy inference engine uses the knowledge of fuzzy rules to learn 

how to transform a set of inputs to corresponding output. There are two kinds of 

inference operator: minimization (min) and product (max). They can be written in terms 

of membership functions as: 

 

µB(y) = MAX [MIN(µA(x), µR(x,y))] x ∈ E1 

 

 µB(y) = MAX [µA(x) . µR(x,y)] x ∈ E1 

 

where Eqn. 4.12 is for min and Eqn. 4.13 is for prod operators. 

 

4.2.4.3. Defuzzification  

 
The input for the defuzzification process is a fuzzy set (the aggregate output 

fuzzy set) and the output is a single number-crispness recovered from fuzziness at last. 

As much as fuzziness helps the rule evaluation during the intermediate steps, the final 

output for each variable is generally a single crisp number. So, given a fuzzy set that 

encompasses a range of output values, we need to return one number, thereby moving 

from a fuzzy set to a crisp output. There are many defuzzification methods (Zadeh): 

bisector of area, centre of area, means of maxima, leftmost maximum and rightmost 

maximum. In this study, we employed the most commonly used centroid method and 

bisector of area. It was thought that there was no considerable change in the modeling 

performance results.  

For a discrete universe of discourse, the defuzzified output is defined as; 
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where u* is defuzzified output value, ui is the output value in the ith subset, and �(ui) is 

the membership value of the output value in the ith subset. For the continuous case, the 

summation terms in Eqn.4.14 are replaced by integrals. 
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CHAPTER 5 

 

CEMENT MILLING PROCESS  

 

5.1. Cement Milling Process 
 

Cement milling process applied in the local plant is a closed circuit system with 

a tube mill and a mechanical air separator (Figure 5.1).  

 

   

 

Figure 5.1. Closed-Circuit Cement Milling process. 

    (Source: CEMBERNAU 1996) 

 

The process is consists of three stages: feeding, grinding, and separating.  
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5.1.1. Feeding 

 

Portland cement is produced by inter-grinding clinker with a few percent of natural or 

industrial gypsum or anhydrite (calcium sulphate) acting as a set regulator. In many European 

countries, the addition of up to 5% of “minor constituents” such as raw meal, limestone or filter 

dust is allowed.  

The clinker, which is transported from the clinker storage, is pre-ground by 

Polycom, which is a pre-grinding system with Roller Press. The ground clinker is 

mixed with additive materials (gypsum and calcareous) in a main belt conveyor after 

weighted by weighting machine.  

 

5.1.2.  Grinding 

 
The mill, which is a tube type mill, has a dimension of 15 m x 5.5 m. It is 

horizontally rotating steel cylinder, where size reduction of the mill feed is performed 

by motion of the grinding media. It consists of three compartments: drying 

compartment, pre-milling compartment and final milling compartment (Figure B.3).  

The capacity of the mill is 220 t/h. The feed charge to the mill varies between 

150 t/h and 220 t/h according the cement type. For portland cement production the feed 

of clinker and additive material is 170 ± 10 t/h. The critical speed of a mill is that speed 

of rotation at which the centrifugal power neutralizes the force of gravity, which 

influence the grinding balls. The rotational speed of the mill varies between 14 and 15 

rpm according ball charge in the mill. The flow of material in the mill is provided by the 

help of vacuum created by a fan.  

In the drying compartment, the fresh feed (clinker, gypsum or calcareous) and 

recycled feed into the tube mill is dried by the help of hot gas coming from the kilns. In 

addition to drying, homogenous mixing of clinker and additive materials is provided by 

steel mixing spoons. 

In the pre-milling compartment, there are steel balls of a radius of 70, 80 and 90 

mm. They reduce the size of the mixed feed particles to be ground more efficiently. To 

provide homogenous milling, there are some shell liners constructed on the inside shell. 

These liners also prevent the different sized balls to move forward to the end of the 

room and mix each other. To prevent passing of oversized particles to the next 
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compartment, there is a sieve diaphragm with double wall. The finer particles pass 

through a sieve diaphragm with slots to the final milling compartment.  

In the final milling compartment, smaller balls of radius of 30, 40, 50 and 60 

mm exist. The smaller voids between the balls provide effective milling of mixed 

material. As in the pre-milling compartment, there are liners constructed on the inside-

shell for homogeneous mixing and certain placement of different sized balls. At the end, 

there is a sieve diaphragm with single wall for effective milling. The finer particles, 

which pass through the slots, are sent to the separator by the help of a bucket-elevator. 

 

5.1.3. Separation 

 
Separation as performed by mechanical air separators is the division of a given 

material stream into two separate streams, using air as the carrying medium. The 

separation is performed by a Polysius Cyclone Air Separator in the plant (Figure B.4). 

The material is introduced laterally into the separator by an air-slide, and it is 

uniformly distributed in the separating chamber by the distribution plate. An externally 

mounted blower produces the air stream, which flows through the material in the 

separating zone classifying the material into course and fine particles by the effect of 

gravity and the air current. The fines particles entrained in the air current are 

participated in the cyclones, which are equipped with air seals. The dust-free air is 

returned to the blower and re-enters the separator through adjustable rings of guide 

vanes. The incoming air flows through the coarse particles as they trickle down over 

series of buffles, thus exerting a secondary separation effect. The fineness of the 

finished product can be regulated over wide range during operation of the separator by 

changing, predominantly, the speed (rotation) of the distributed plates 

 

5.2. Parameters Affecting On Fineness 
 

The cement milling process has many parameters affecting on the fineness. We 

can classify these parameters into three parts: mechanical, chemical-physical parameters 

and operational parameters. 
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5.2.1. Mechanical Parameters 

 
The mechanical parameters are related with the mill and separator dimensions 

and physical characteristics such as length and radius of mill, ball sizes, and radius of 

slots over sieve diaphragm etc. Since there is no change in these parameters during 

operation, we can accept that these parameters are constant. 

 

5.2.2. Chemical-Physical Parameters 

 
These parameters include clinker and additive material contents. Chemical 

content of clinker (C3S, C2S) affects mineralogical structure of clinker; hence, 

grindibility of the clinker. Grindibility has an important role in the cement milling 

process. However, it is difficult to sustain grindibility tests in continuous milling 

system. 

 

5.2.3. Operational Parameters 
 

They are parameters, which are adjusted to get efficient operational conditions 

and better fineness. In the local plant, cement milling process is performed by the help 

of many operational parameters. However, some of parameters are vital to control the 

process. They are falofon, elevator amperage and revolution. All of these factors have 

varying degrees of effect on fineness of the milled product which is either measured as 

weight percentage of product residue on 32-�m sieve or as Blaine (surface area per unit 

of milled product, cm2/g). 

 

5.2.3.1. Revolution Level 

 
The material transported to the separator is divided into two streams: fine and 

course particles. The separation is performed by the control of centrifugal and 

gravitational force balance. By changing the revolution level (%) (Instant rotational 

speed x 100 / max rotational speed), centrifugal force can be controlled; hence, the 

fineness and finished product weight can be adjusted in the separator (Figure 5.1). 
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5.2.3.2. Falofon® Level 

 

Usually, best grinding occurs when the mill is most noisy, indicative of many 

grinding actions taking place within the mill. The falofon level, which is function of 

mill noise, reflects the percentage ratio of instant media and feed charge to max media 

and feed charge (Figure 5.1). Falofon® level is usually measured as a process control 

parameter to monitor mill operation. 

 

5.2.3.3. Elevator Amperage Level 

 
The ground material is transported to the separator by an elevator for being 

divided into a flow of rejected oversized particles, which are returned to the mill inlet to 

be reground, and a flow of fine particles, which forms the final product (Figure 5.1). 

Hence, the amount of material in the elevator to be sent to the separator can be 

measured as a function of the amperage level of the elevator motor.  
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CHAPTER 6 

 

MODEL CONSTRUCTION 

 

Data collected from Çimenta� for a period of one year (2004) were employed in 

this thesis. Two combined modelling studies were performed using this data:  

1) The ANN model with 3 parameters on MatLAB 

2) The fuzzy model on MatLAB 

The response surface of the ANN model was then used for determining the rule 

set of the Fuzzy Model.  Such procedure is used by Tagaki and Hayashi (Tagaki –

Hayashi Method) in 1990. 

 

6.1. Data Collection 
 

The data collected from the local plant that uses 32-�m sieve fineness test for 

process control. The data belong to the period between the months of January and 

December 2004. All the mechanical and operational parameters are controlled and 

observed by online system. The operators observe the process by the help of computers 

and decide the future process trends. 

On the other hand, there is no online control for cement analysis. Cement sample 

is collected by the help of screw-sampling instrument during operation. An operator 

assistant takes cement sample to the laboratory in every hour. 

Sieve analysis is carried out by Alpine Machine® according EN standard (EN 

196-6). The machine consists of from the sieves containing different sized holes. 100 g 

of cement sample is used for the analysis. The fineness of cement is measured by 

sieving it on standard sieves. The proportion of cement of which the grain sizes are 

larger than the specified size is thus determined (EN 196-6). The result is recorded as 

percentage (%) by weight.  
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6.2. Data Reduction 

 
The cement milling operation in the local plant can be performed different types 

of cement (CEM II/A-W 42.5 R, CEM II/A-P-W 42.5 R, CEM II/B-P-W 42.5 R and 

CEM I 42.5 R). Hence, the data of portland cement (CEM I 42.5 R) was chosen after 

elimination of the other cement types’ operational and quality parameters. 

The process mechanical defects (vibration of engine, plate defects, etc.) and 

operational faults (plugging of mill and air system, software false alarms, etc.) create 

gaps in the data. Therefore, these defected data were eliminated before construction of 

the model. 

Furthermore, the process includes many operational parameters (feed flow-rate, 

entrance and existence temperature of the mill, air flow-rate of hot gases, etc.) to control 

the system. Most of them are related each other. For example, the feed rate and void of 

material in the mill can be controlled by falofon; Air flow-rate to the separation unit can 

be also interrelated with revolution of distribution plates. The amount of output material 

from the mill tube to the separator can be also observed by elevator amperage. 

Finally, we got three input parameters (Revolution, Falofon and Elevator 

Amperage) and one output parameter (32-�m fineness, %wt). The 155 data points for 

three inputs and one output parameter used in the modelling are given in Tables A.1. 

The input and output variables descriptive statistics of the data are tabulated in Table 

6.1. 

 

Table 6.1. Statistics of input and output variables used in model construction. 
 

  Code Input variable 

 

Descriptive statistics of the data  

  Min Average Max 

1
~x  Rotational speed (%) 63 65.2 68 

2
~x  Falofon (%) 92 93.8 96 

3
~x  Elevator Amps 66 77.2 99 

y  
Fineness, wt % (32-µm sieve) 

14.0 16.3 18.7 
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6.3. Modelling 
 

6.3.1. ANN Model 
 

In this study, the common three-layer feed-forward type of ANN, as shown in 

Figure 6.1 was considered.  

 

 
 

Figure 6.1. A typical back-propagation ANN model. 

 

In the feed forward network, the data of input parameters are to be normalized 

using before feeding into input layer. Input layer passes them on to the hidden layer 

neurons after multiplying by weight matrix. Then, the weighted input is added up by the 

hidden layer and associated with a bias. The result is passed through a nonlinear 

function. The operation is repeated by output layer. 

The values of weights change between -1 and 1, randomly. The network is first 

trained. Adjusting the weights and biases through some training algorithm minimizes 

the error, which is the difference between the target output and the calculated model 

output at each output neuron. In this study, tangent sigmoidal function (Eqn.6.1) was 

employed as an activation function in the training of the network. 
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The learning of ANNs is accomplished by a backpropagation algorithm where 

information is processed in the forward direction from the input layer to the hidden 

layers and then to the output layer (Fig. 6.1). The objective is to minimize error term 

described by Eqn.7.2 for finding optimal network weights that would generate an output 

vector Y = (y1) as close as possible to target values of output vector T = (t1) without 

compromising prediction accuracy over new data-set.  Error function has the following 

form [10]: 

 
( )�� −=

p m
ii tyE 2  

 
where yi is the component of an ANN output vector Y, ti is the component of a target 

output vector T, m is the number of observations of the output; and p is the number of 

training patterns.   

In this study, the ANN architecture was of feed-forward type composed of four 

layers (Fig. 6.1). There were 3 neurons in the input layer for the 3 input variables. Each 

of the two hidden layers had 10 neurons. In the output layer, one neuron was used for 

the output variable of cement fineness. The last version of the model architecture, which 

gave the best result, was reached after trial of many model variations.  

There were a total of 155 observations collected from the year 2004.  The data 

set was randomly splitted into two parts: the first part was used for training (120 data 

points) and the second part (35 data points) for testing of the model (Table A.2). 

Computer algorithm for the neural network written in MATLAB� was run for 5000 

batches with 1000 iterations at each batch.  At each batch, new network weights and 

biases were calculated.  This was done to allow the search for optimal network that 

minimizes the error associated with testing data. 

 

6.3.2. Fuzzy Logic Model 
 

Creation of the fuzzy model of the milling system is exhibited in Figure 6.2. 

Each membership function for inputs and outputs was created in MatLAB® fuzzy logic 

toolbox. Mamdani rules were defined, and Min method was chosen for fuzzy inference 

engine. In defuzzification part of the model, in order to obtain defuzzified results, COG 

(centroid) method was applied.  

Eqn.6.2 
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Figure 6.2. Fuzzy Model of Portland Cement Milling in Tube-Ball Mill on MatLAB®. 

 

6.3.2.1. Rule Creation by Means of Response Surface Obtained Via 

ANN Model 
 

Fuzzy logic rules are verbal expressions in “IF-THEN” format like IF 

Revolution is low AND elevator A is medium THEN fineness is high. To create rules 

partial sensitivity analysis was performed by feeding input parameters, falofon and 

revolution, at varying levels of elevator amperage into the developed model and 

prediction outputs of cement fineness. The whole range of input parameter, elevator 

amperage, was divided into three parts to have continuous plot for factor effects. In 

order to make partial sensitivity analysis with two parameters (revolution and falofon), 

one parameter, elevator amperage, was held constant at the mean values of level ranges. 

These ranges and means are tabulated in Table 6.2.  

 

Table 6.2. Ranges and Means of Elevator A used in the rule creation. 

 
Elevator Amp.  Ranges Means 

Low 66-72 69 

Medium 72-82 78 

High 82-96 87 
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After running sensitivity analysis on the created ANN model, response contour 

plots were made using the input parameters (Revolution-, Falofon, and Elevator amps) 

and the output (fineness) parameter (Figure 6.3 to Figure 6.5). 

 

 

 

 

 

 

 

 

 

Figure 6.3. The response contour plot of the ANN model at Elevator Amps: 69. 
 

 

 

 

 

 

 

 

 

 
Figure 6.4. The response contour plot of the ANN model at Elevator Amps: 78. 

 

 

 

 

 

 

 

 

 

 
Figure 6.5. The response contour plot of the ANN model at Elevator Amps: 87. 
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In the plots, the region labeled with 15-16 % wt is low for fineness. 16-17 % wt 

is exhibited as medium for fineness. Finally, the region 17-18 % is shown as high for 

fineness. 

For low values (Figure 6.3), and at low revolution (%) as falofon increases, the 

fineness makes a positive curve. The curve reaches its highest value when falofon is 

medium about 94 %. For medium revolution values, increasing falofon level increases 

the fineness.  For high degree of revolution and low degree of falofon, fineness is 

mainly low. Increasing the falofon level increases the fineness % to the medium level 

For medium amperage values (Figure 6.4) and at low revolution level (%) as 

falofon increases, the fineness is predominantly high. For medium revolution values, 

increasing falofon level increases the fineness.  For high degree of revolution and low 

degree of falofon, fineness makes S shape behavior. First, fineness increases as falofon 

increases. At the medium level of falofon, it decreases to low level. Finally, it increases 

to medium level at the high level of falofon. 

  For high amperage values (Figure 6.5) and at low revolution level (%) as falofon 

increases, the fineness is mainly medium. At the highest level of falofon, fineness 

decreases to low degree. For medium revolution values, increasing falofon level 

increases the fineness from low degree to high degree.  For high degree of revolution 

and low degree of falofon, fineness is predominantly low. At high degrees of falofon, it 

reaches medium level. 

By detailed analysis of values of parameters of ANN model’s contour plots, the 

fuzzy rules are created. There is three parameters and three levels, then there will be 33 

(27) rules for the fuzzy model. This 27 fuzzy rule-set is listed in Table 6.3. In this study, 

High level is labeled as “H”; medium level is exhibited as “M”, and finally, low level is 

labeled as “L”. 
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Table 6.3. Mamdani-type fuzzy rule sets (27 rule-set). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

    

(L: Low; M: Medium; H: High) 

 

6.3.2.2. Membership Functions 
 

In this study, four membership functions (Mf’s) were created: three for input 

parameters and one for the output. The numbers of subsets were selected for each mf 

using the range for each parameter (Table 6.1). Fuzzy Mf’s may be formed in 

triangular, trapezoidal or Gaussian sigmoidal geometries. In this study, we constructed 

mix of Z-mf, S-mf and gaussmf membership functions of the input parameters and 

response. This mix of Mf’s was called as Z-S-gaussmf. The membership functions of 

revolution and fineness are exhibited in Figure 6.6.  

 

Input  Parameters  Output Parameter 
Revolution 

% 
Falofon  

% 
Elevator  

A 
32 um 

(% weight) 
L L L M 
L L M H 
L L H M 
L M L H 
L M M H 
L M H H 
L H L H 
L H M H 
L H H H 
M L L L 
M L M L 
M L H M 
M M L M 
M M M M 
M M H H 
M H L M 
M H M H 
M H H H 
H L L L 
H L M L 
H L H M 
H M L L 
H M M M 
H M H M 
H H L M 
H H M M 
H H H M 
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Figure 6.6. (a) Mf for Revolution and (b) Mf for Fineness used for fuzzy modelling. 

 

The membership functions of falofon (%) and Elevator Amperage (A) are shown 

in Figure B.5 and Figure B.6. 

The Mamdani-type rule set that has been created by the help of response surface 

area of ANN model result is coded in MatLAB® fuzzy rule editor. IF-THEN sentences 

and “and” operator are used to construct the rule set. 

 

 

(a) 

(b) 
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6.3.2.3. Testing of the Fuzzy Logic Model 

 
The 35 sets of input data (Table A.2) were fed into the model and as a result, 35 

sets defuzzified output values were obtained from the model. These were predicted 32-

µm cement fineness values, which were then compared with actual 35 sets 32-µm 

cement fineness values. 
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CHAPTER 7 

 

RESULT AND DISCUSSION 

 
In this study, the ANN architecture was of feed-forward type composed of four 

layers (Figure 6.1). 155 observations (Table A.1) collected from the year 2004 were 

collected to construct ANN-Fuzzy model.  The dataset was randomly divided into two 

parts: the first part (120 data points) was used in order to train the model, and the 

second part (35 data points) for testing of the model. Computer algorithm for the neural 

network written in MatLAB� was run for 5000 batches with 1000 iterations at each 

batch. 

At each batch, new network weights and biases were calculated.  This was done 

to allow the search for optimal network that minimizes the error associated with testing 

data. The network having the best R2 was saved.  

In Figure 7.1, comparison of actual and predicted values for 32-µm Fineness, % 

wt, for training of the model is exhibited. 

 

 
 

Figure 7.1. Actual and predicted values for 32-µm Fineness, % wt (Training). 

 

It is observed that the model estimation followed the actual value of the data on 

most of points. Only small deviations from the actual values for 32-µm fineness can be 

seen. 
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Figure 7.2 plots the residuals versus the fitted values for 32-µm fineness, % wt. 

Obviously, most of residuals (more than 80 %) fall within the limits ± 1 and are 

scattered around the mean, “0”, without negative or positive tendency. Also, there is no 

potential outlier in the plot. 

Hata! 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Residuals versus fitted values (Training). 

Hata! 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3. Prediction performance plot (Training). 
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Therefore, the result reflected on prediction performance plot with a correlation 

coefficient of 0.93 (Figure 7.3). 

The trained model was tested by comparing it to actual measured data that 

formed a group of 35 observations (Table A2) from the same year. 

 Although a few model predicted values (15th, 21st and 28th observations) deviate 

from the actual observed values, most of the model values followed the actual observed 

values of fineness (Figure 7.4).  

Hata! 

 

 

 

 

 

 

 

 

 

 

Figure 7.4. Observed and predicted values for 32 µm Fineness, % (Testing). 

 

Except 15th observation, the distribution in the residuals versus fitted values plot 

of testing (Figure 7.5) got narrower than the residuals versus fitted values plot of the 

training part.  
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Hata! 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. Residuals versus Fitted values (Testing). 

 

In Figure 7.6, testing prediction performance of the model is presented. Clearly, 

the model’s ability to predict the 32-µm fineness was good giving an R2=0.85.  

 

Hata! 

 

 

 

 

 

 

 

 

 

 

      Figure 7.6. Prediction performance plot (Testing). 

 

After running sensitivity analysis on the created model, response contour plots 

were made using the input parameters (rotational speed, falofon, and elevator amp.), 

and the output parameter (fineness) at different degrees of Elevator Amperage (Low, 

Medium and High). The figures (Figure 6.3, Figure 6.4, and Figure 6.5) were exhibited 

in Chapter 6. 
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According the operational conditions, 15-16 % wt fineness region was exhibited 

as low. Similarly, 16-17 % wt and 17-18 % is wt fineness region were labeled for 

medium and high values of fineness, respectively. 

In Figure 6.3, it was observed that the fineness make a positive curve at low 

revolution (%) as falofon increases when elevator amperage was kept low degree. 

Frankly, the curve reaches its highest value when falofon is medium about 94 %. 

Furthermore, an increase in the fineness is seen when falofon value is increased at 

medium revolution values. In addition to this, fineness ranges between low values for 

high degree of revolution and low degree of falofon. . Increasing the falofon level 

increases the fineness % to the medium level. 

In Figure 6.4, it was realized that fineness ranges between high values as falofon 

increases at low values of revolution level (%) for medium amperage values. For 

medium revolution values, increasing falofon level increases the fineness. In addition to 

this result, an S-shaped tendency in fineness is seen clearly when revolution is high and 

falofon is low. First, fineness increases as falofon increases. At the medium level of 

falofon, it decreases to low level. Finally, it increases to medium level at the high level 

of falofon. 

In Figure 6.5, it was observed that fineness the fineness is mainly medium as 

falofon increases at low revolution level (%), when elevator amperage is kept at high 

values. The scene changes that fineness decreases to low degree at the highest level of 

falofon. However, increasing falofon level increases the fineness from low degree to 

high degree for medium revolution values. For high degree of revolution and low 

degree of falofon, fineness is predominantly low. At high degrees of falofon, it reaches 

medium level. 

The response surface, which was constructed by the help of the ANN model 

prediction, was then used for determining the rule set of the Fuzzy Model. The 

procedure, which used to construct the Fuzzy model, contains formation of membership 

functions of parameters, creation of Mamdani-type rule set, fuzzy output engine and 

defuzzification. Detailed information about the model construction is given in Chapter 

6. 

Fuzzy Viewer, an output of the Fuzzy Logic Toolbox of MatLAB®, is easy to 

exhibit the fineness value by changing input parameters (Revolution %, Falofon % and 

Elevator A) in the input blank below the scheme. By using the Fuzzy Viewer, user is 

able to view which degrees of parameters are used.  
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 The developed fuzzy logic-based model was applied to predict 35 sets of 32-µm 

Fineness, % wt (Table A.2). The actual 32-µm fineness, % wt, (35 test data) was 

compared with the predicted 32-µm fineness, % wt, in Figure 7.7. 
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Figure 7.7. Observed and predicted values for 32 µm Fineness (% wt). 

 

As seen from Figure 7.7, the predicted 32-µm fineness, % wt, values followed 

the actual 32-µm fineness, % wt, values with small errors, expect a few points. 

 Absolute average percent error (AAPE) of the model was calculated by 

following equation: 

 

� ×
−

= %100
.

..1
finenessobs

finenesspredfinenessobs

N
AAPE                                    Eqn. 7.1. 

 

A brief statistics of the fuzzy logic-based model is exhibited in Table 7.1. 
 

As a result of error calculation of the model, it was realized that the models gave 

a minimum error of 0 % and maximum error of 6.875 %. Finally, AAPE of the model 

was 2.764 %, which showed that the performance of the model was very good. 
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Table 7.1. Statistics of Fuzzy model Errors 

 
Statistics Error 

Min 0 

Max 6.875 

AAPE 2.764 

Std. Dev 2.161 

 

In Figure 7.8, the actual fineness values of the process and predicted fineness of 

the created fuzzy logic-approach model was plotted. 
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        Figure 7.8. Actual Fineness versus predicted fineness values of the Fuzzy Model. 

 

It was realized that the model had an R2=0.76. About 24 % of the total variation 

could not be accounted for. This can be explained by the other cement milling 

parameters such as grindibility of clinker, inlet temperature of the mill inside and 

deformation of the balls.  

 

R2=0.76 
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CHAPTER 8 

 

STATISTICAL MONITORING OF CEMENT FINENESS 

 
Portland cement is produced by burning of a solid mixture of limestone and clay 

in a rotary kiln at a temperature of 1300 to 1500 oC, and grinding of this material with a 

few percent of gypsum (up to 5 %) in a cement mill to a very fine powder. Cement 

milling process is a closed system. The process, basically, consists of three stages: 

feeding, milling and separation. Coarse raw material is ground by a tube mill, and fine 

particles are separated by a separator. Quality of cement, mostly, is resembled by mortar 

compressive strength. Chemical structure, fineness and particle size distribution of 

finished product have a strong influence on mortar compressive strength. Due to this 

reason, cement sample produced in the process is analyzed in every hour. Among these 

parameters, product residue on 32-�m sieve, %wt, (fineness) has greatest importance on 

monitoring of the process. Any shift in this parameter indicates problem on the process 

conditions. 

In order to monitor 32-�m fineness, %wt, of cement, the local plant applies basic 

Individual Control Chart. However, it has been observed that the chart does not 

correspond small shifts. If the high production rate (180 10±  ton / h) is considered, 

these shifts may lead problems with the cement stocked in the silos with capacity of 

10.000 t.  

In this study, in addition to I-MR control chart, CUSUM, EWMA and Moving 

Average (MA) control charts were applied in order to detect small shifts. The 

performances of these control charts are to be compared. As software, MINITAB was 

used to construct statistical monitoring. 

 

8.1. Measurement 

 

The cement milling process is very sensitive that all parameters on the system 

are to be monitored by great care. Each machine in the system is automatically 

controlled and measured. The process operators observe the process by the help of 

computers and decide future process trends. 
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However, there is no online control for cement analysis. An operator assistant 

sends cement sample, which is collected by a sampling instrument near the cement 

silos, in every hour, to the laboratory. Chemical structure, Blaine and 32-�m sieve 

(%wt) and 90-�m sieve (% wt) analyses are applied according to EN standards.  

32-�m (%wt) analysis is carried out by Alpine Machine according EN 196-6 

standard. It consists of from the sieves containing different sized holes. 100 g of cement 

sample is used for sieve analysis. As the machine vacuums the material, the fine 

material passes through the holes. The material that cannot pass through the holes is 

weighted. The weight percent of residue on sieve gives fineness of the cement. 

 

8.2. Data Collection 
 

The data used in statistical monitoring were collected from a local cement plant 

that uses 32-�m sieve analysis for process control. The data are shown in Table 8.1 and 

Table 8.2. Phase I includes the data when the process is in-control. Phase II data is a 

normal process data to be monitored. 

 

Table 8.1. Base Data of 32-�m (%wt) fineness of the Cement Type PC-42.5 (Phase I). 

               

Obs. no Fineness (%wt) Obs. no Fineness (%wt) Obs. no Fineness (%wt) 

1 15.5 11 17.1 21 16.3 

2 17.7 12 16.5 22 16 

3 17.7 13 16.1 23 16.6 

4 15.1 14 20.2 24 16.5 

5 16.7 15 18.1 25 17.1 

6 16.8 16 16.7 26 16 

7 16.4 17 16.1 27 18.7 

8 18.4 18 18.6 28 17.1 

9 17.8 19 16.7 29 15.6 

10 17.5 20 16.4 30 16.1 
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Table 8.2. Monitoring Data of 32-�m fineness of the Cement Type PC-42.5 (Phase II). 

 

Obs. no Fineness (%wt) Obs. no Fineness (%wt) Obs. no Fineness (%wt) 

1 17.4 22 17.6 43 17.5 

2 16.1 23 16.7 44 16.9 

3 17.6 24 17.3 45 16.8 

4 16.6 25 18.4 46 17.4 

5 16.8 26 18 47 17.5 

6 17.4 27 17.4 48 16.9 

7 15.9 28 18.8 49 17.2 

8 16.5 29 16.6 50 17.6 

9 18.5 30 17.5 51 17.9 

10 16 31 17.1 52 18.5 

11 18.3 32 17.2 53 17.6 

12 16.2 33 15.6 54 17.3 

13 16.8 34 18 55 18 

14 16.1 35 16.5 56 18.4 

15 16.1 36 16.9 57 17.7 

16 16.3 37 15 58 17.6 

17 17.3 38 16.1 59 17.8 

18 18 39 18.6 60 18.5 

19 18.3 40 17.5 61 17.7 

20 17.5 41 16.6 62 17.8 

21 15.6 42 18.5 63 17.7 

 

 

8.3. Checking Correlation and Normality of the Process Data 
 

8.3.1. Correlation Check 
 

In this step, we have to check whether there is any correlation (or time 

dependency) in the data.  If any correlation is determined in the data, we have to 

eliminate this correlation to use the standard control charts. Autocorrelation analysis of 
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the data is to be applied so that ant time dependency of the 32-�m (%wt) fineness data 

can be seen. Figure 8.1 exhibits the autocorrelation function of the data.  
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Figure 8.1. Autocorrelation function for 32-�m (%wt) fineness data (Phase I). 

 

Obviously, there is no evidence that there is an autocorrelation in the data, since 

no sample autocorrelation do not exceeds its standard deviation limit. And also, 

corresponding autocorrelation parameter �k is likely zero. Figure 8.2 supports this result 

that there is any tendency (positive or negative) between data at time t and the data at 

time t-1. 
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Figure 8.2. Scatter plot of 32-�m fineness at time t (xt) versus 32-�m fineness                  

one period earlier (xt-1). 

 

8.3.2. Normality Check 
  

In order to determine whether there exists a departure from the normality, 

normal probability plot of the data (phase I) is plotted in 95 % confidence interval 

(Figure 8.3). The mean and standard deviation of the data is estimated by Least Linear 

Square method and found to be 16.936 and 1.092 respectively. To determine goodness 

of fit, Anderson-Darling statistic and Pearson correlation coefficient are calculated. 

The Anderson-Darling statistic is (AD) a measure of how far the plot points fall from 

the fitted line in a probability plot. MINITAB uses an adjusted Anderson-Darling 

statistic, in which points in the tails are weighted more. A smaller Anderson-Darling 

statistic indicates that the distribution fits the data better. In this study, AD is found to 

be 0.997, which is small. 
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Figure 8.3. Normal Probability Plot of the 32-�m fineness data (Phase I). 

 

For Least Squares Estimation, MINITAB calculates a Pearson correlation 

coefficient. If the distribution fits the data well, then the plot points will fall on a straight 

line. The correlation measures the strength of the linear relationship between the X and 

Y variables. The correlation will range between 0 and 1, and higher values indicate a 

better fitting distribution. In this study, the correlation coefficient is found to be 0.966. 

This result is not very good that the data shows some departure from the normality. This 

can be easily seen from the figure that the last point creates this departure. It is to be 

eliminated in the control charts in order to monitor future process data in a clear way. 

 

8.4. Monitoring 32-�m Fineness (%wt) of Cement 
 

In this section, the best control chart type is to be found for 32-�m fineness 

(%wt) monitoring. In cement grinding process, one cement sample is taken every hour 

(n=1); that the sample consists of an individual unit. The Shewhart control charts for 

means and ranges are not usually applicable. In this situation, I-MR, CUSUM and 

EWMA control charts are applied for process monitoring. 
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8.4.1. Establishing Trial Control Limits 
 

Any out of control point is to be identified and eliminated before historical data 

(Phase I) is used for future process data (Phase II). To detect whether any out of control 

point existed in the historical data, I-MR Chart, Figure 8.4, is used. 

As seen from the figure, there is an out of control point (14th observation). The 

point, obviously, exceeds three-sigma limit (UCL) of both graphs. The time of this point 

is found in the charts and it is found that the Polycom®, which is a pre-milling machine 

of the system, had been stopped as a result of vibration in its rollers. This problem 

causes the raw material to be ground insufficiently. 
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Figure 8.4. I-MR Chart for the historical 32-�m (%wt) fineness Data (Phase I). 

 

The point is to be eliminated and a new I-MR chart is constructed for new control limits 

(Figure 8.5). 
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Figure 8.5. I-MR Chart for the Phase I data after elimination of out of control point. 

 

The new I-MR plot indicates no out of control point so we can use new control 

limits and mean in future process data (Phase II). The effect of elimination of out of 

control point can be seen on the Normal probability plot of the data (Figure 8.6). The 

new AD is decreased to 0.804 and Pearson correlation is increased to 0.994. There 

seems no departure from the normality. 

 

8.4.2. Process Capability Analysis for Phase I 
 

In order to justify the results for any risk, process capability analysis is applied 

the data after elimination of the out of control point (Figure 8.7). In the process, upper 

and lower specification limits are 19.5 and 14, respectively. It is seen that the data 

follow a normal distribution and 03.1=≅ pkp CC , which shows that process fall out 

approximately 16.82 % wt. 
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       Figure 8.6. Normal Probability Plot of the Phase I data after elimination of out of   

control point. 
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Figure 8.7. Process capability analysis for eliminated Phase I data. 
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8.5. Statistical monitoring of the future data (Phase II) 
 

In Table 8.2, the future process data is given. To detect if there exists shift in the 

process mean, I-MR chart, CUSUM and EWMA Control charts are constructed. 

 

8.5.1. I-MR Control Chart 
 

The MR chart is applied to the process data by using historical data control 

limits, mean and standard deviation (Figure 8.8). 
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Figure 8.8. I-MR Chart for the Phase II data. 

 

As illustrated in Figure 8.8, points in a row on same side of centerline of I-chart. 

The same points (52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, and 63) are seen on the MR 

chart. Moreover, 4 out of 5 points more than 1 sigma from centerline (on one side of 

CL) of the I-chart. Test fails at 16th observation. Although all the sensitizing rules are 

applied, detecting this shift may be difficult in the process. It may not give any alarm of 

out of control. It is clear that the ability of the I-MR chart to detect small shift is very 

poor. 



 66 
                                                                                                                 

 

8.5.2. CUSUM Control Chart 
 

Since the small shift could not be detected by I-MR chart, CUSUM control 

chart, Figure 8.9, is applied to the process data (Phase II). As target value, 16.8 % wt of 

32-�m fineness is selected. h and k values are taken as 4 and 0.5, respectively. 
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Figure 8.9. CUSUM Chart for the Phase II data. 

 

Obviously, after 52nd observation a small shift (about 1-�) occurs in the data. An 

estimate of new process mean is calculated by Eqn. 8.1. 
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The mean of 32-�m %wt has shifted from 16.82 to 17.56. When the milling 

process is examined, it is realized that there had been an electrical problem on the 

separator engine in that time period. We would need to make an adjustment on the 

separator engine. 

We can also calculate ARLo of the process by Eqn. 8.2. 
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This result is very close to true value of ARLo = 465.  In control condition, an 

out-of-control signal will be generated about every 470 samples, on the average. There 

will be a false alarm about every 470 hours on the average. 

In the process, the mean shift is about 1-�, then 5.05.01* =−=−=∆ kδ  for the 

upper one-sided cusum, 5.15.01* −=−−=−=∆ kδ  for the lower one-sided cusum. 

Then, 
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This means that about 11 points must be plotted before a point indicates an out-

of-control condition. 

The average time to detect this shift is; 

hhARLATS 1176.10176.101 ≈=×=×=  

 

8.5.3. EWMA Control Chart 
 

The exponentially weighted moving-average (EWMA) control chart is also 

applied to the Phase II data to detect 1-� shifts in the mean. As a first trial, to construct 

EWMA control chart, � and L are chosen as 0.4 and 3.05 respectively (Figure 8.10).  

 

6050403020100

18

17

16

15

Sample Number

E
W

M
A

UCL=18.21

Mean=16.82

LCL=15.43

 
 

Figure 8.10. EWMA Chart for the Phase II data (�=0.4 and L=3.05). 

 

As seen from the Figure 10, the CUSUM cannot detect the small shift in this 

case where � and L are 0.4 and 3.05 respectively. In order to improve the sensivity of 

the CUSUM chart, � and L are chosen as 0.2 and 2.962 respectively in the second trial 

(Figure 8.11). 
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Figure 8.11. EWMA Chart for the Phase II data (�=0.2 and L=2.962). 

 

Obviously, the CUSUM chart detected the shift, but still there is problem the 

only one point is out of control condition. To find out whether there exists more out of 

control points, one more trial is to be applied. Figure 8.12 is constructed with the 

values: �=0.05 and L=2.615. 
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Figure 8.12. EWMA Chart for the Phase II data (�=0.05 and L=2.615). 

 

The result is very clear that there seen many point in out of control point. This 

cusum chart is most applicable in the trials. ARLo is 500 for the EWMA control.   In 

control condition, an out-of-control signal will be generated about every 500 samples, 

on the average. There will be a false alarm about every 500 hours on the average. This 

value is higher than CUSUM control ARLo (470). 

Below, ARL values of these EWMA charts are given for 1-� shifts. 

 

Table 8.4. ARL values for the trials. 

Parameters L = 3.054 

�=0.4 

L = 2.962 

�=0.2 

L = 2.615 

�=0.05 

ARL 14.3 10.5 11.4 

 

As seen from the Table 8.4, the first case has highest ARL1 that provides the 

control chart. ARL1 (10.5) of the case where �=0.2 and L=2.962 and ARL1 (11.4) of the 

case where �=0.05 and L=2.615 are very close to each other. This makes the EWMA 

chart with �=0.05 and L=2.615 best for detecting the small shift in the process data. 
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This means that about 12 points must be plotted before a point indicates an out-of-

control condition. 

The average time to detect this shift is; 

4.1114.111 =×=×= hARLATS  

 

8.5.4. Moving Average Control Chart 
 

After applying I-MR, CUSUM and EWMA control charts, Moving average 

control chart is to be used for monitoring the process data. MA (Figure 8.13) is 

constructed by using w (span) as 5. 
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Figure 8.13. MA Chart for the Phase II data. 

 

As I-MR control chart, MA control chart is not effective to detect the 1-� shift in 

the process mean.  
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8.6. Process Capability Analysis for Phase II 
 

Analysis of out-of-control situations needs to be addressed in order to improve 

the stability and capability of the process. Periodic review of the specifications in 

relation to the process capability should be conducted on a regular basis.  

Figure 8.14 shows that the process capability has deteriorated during the 

monitoring period to Cp=0.92 and Cpk=0.71<1, which indicates the potential risk for 

unacceptable 32-�m fineness has increased from approximately 1992 ppm  to 

approximately 17319 ppm. The probability of rejection is 0.88 %, which means the 

environmental risk is much higher than it was during the initial baseline period. 

Corrective measures need to be taken to prevent future non-compliances. 
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Figure 8.14. Process capability analysis for Phase II data. 
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CHAPTER 9 

 

CONCLUSION 

 

In this study, portland cement milling process was to be modelled by using 

cement fineness (32-µm) % wt, which has effect on the hydration rate and thus the 

setting time, the rate of strength gain, as an output and operational parameters such as 

revolution (%), falofon (%) and elevator amperage (A). Two combined modelling 

studies were performed using 2004 Portland cement milling data: ANN and Fuzzy 

logical approach. 

First, the ANN on MatLAB was applied by using operational parameters 

(revolution “%”, falofon “%” and elevator amperage “A”). 120 data points were used to 

train the model. It was found that the training resulted with a high R2=0.86. The 

performance of the training was also seen in the predicted data versus actual data plot 

and residuals versus fitted values plot. This allowed us to reach the optimal network that 

minimizes the error associated with testing data.  

The other 35 data points were used to test the model. It was obvious that the 

model’s ability to predict the 32 µm of fineness was successful (R2=0.85). In spite of 

some negligible points where the predicted values showed some deviation from the 

actual fineness data, the performance of the model was good in the predicted versus 

actual data plot. 

 The response surfaces constructed by ANN model were used to figure out the 

Mamdani-type fuzzy rule set in the fuzzy model on MatLAB. In general, it was 

realized that increasing the revolution level decreased the fineness, while the falofon % 

and elevator amperage were kept constant. Furthermore, increasing falofon level, which 

means that mill feed is increased, increased the fineness level, as the other parameters 

were kept constant. Similarly, increasing the elevator amperage, which means that the 

feed to the separator is increased, increased the fineness level. 

Finally, the view of rule set and start-up, which were used to predict 32-µm 

fineness of cement, were obtained. The predicted 32-µm Fineness % wt data followed 

the actual 32-µm Fineness % wt values with small deviations that the model had a 

minimum error of 0 % and maximum error of 6.875 %. Also, AAPE of the model is 
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2.764 %, which shows the performance of the model was good. In fuzzy modeling, the 

results were not as good compared to ANN. The model had an R2=0.76 which was 

lower than ANN’s. About 24 % of the total variation could not be accounted for.  

Performance of the fuzzy model was therefore lower than the ANN model. The fuzzy 

model, however, is more user friendly, more explicit and easier to construct compared 

to the ANN model in which the process is a black box.  

The extreme values of the targeted fineness, on the other hand, could not be 

obtained from the model. This was to be expected because the model was conservative 

and needed more extreme training data to learn the extremes. This was possibly due to 

other parameters such as C3S, grindability, moisture that could not be measured every 

hour because of time and cost constraints. However, it is obviously seen the utility of 

the ANN and Fuzzy Models created in this study is in the potential ability of the process 

engineers to control processing parameters to accomplish the desired cement fineness 

levels.   

In the second part of the study, a detailed quantitative procedure for monitoring 

and evaluating cement milling process performance was described. For statistical 

monitoring of the process data, an historical data is used. The control limits mean of the 

process and standard deviation were established. It was also observed that the process 

data follow a normal distribution. The capability analysis of the historical data after 

elimination of the out-of-control point supported the results.  

 After establishing trial control limits, control charts (I-MR, CUSUM, EWMA, 

AM) were applied to the process data for detecting any shift. It found that the ability of 

the I-MR control chart and AM control chart to detect small shift is very poor. CUSUM 

control chart showed good performance to detect the small shift. The mean of 32-�m 

fineness, %wt, had been shifted from 16.82 to 17.56. When the milling process was 

examined, it was realized that there had been an electrical problem on the separator 

engine in that time period. In addition to detecting this small shift, it was realized that 

there would be a false alarm about every 470 hours on the average in case of using 

CUSUM control chart. Furthermore, to detect one standard deviation shift, about 11 

points are to be plotted. For constructing EWMA control chart, three trials of 

parameters were applied. Using L=2.615 and �=0.05 gave best result such that EWMA 

control chart detected all shifted points. Moreover, ARL1 value was slightly higher than 

CUSUM control chart though ARLo was higher than CUSUM’s. However, the sampling 
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time is very high to detect the shifts. The optimum sampling time is to be found for high 

quality of the cement. 

As a result, we can easily say that the CUSUM and EWMA can be used in the 

cement milling process monitoring to detect small shifts in the 32-�m fineness, %wt, 

mean in shorter sampling time interval. 
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CHAPTER 10 

 

RECOMMENDATION FOR FUTURE WORK 

 
In this study, fuzzy logic model, which was constructed to model the portland 

cement milling process by operation parameters, had an correlation coefficient of 0.85. 

Remaining part, which could not be explained by the model, contains some factors 

affecting on the cement milling process.  

Grindibility of clinker and grindibility of additive material are the major 

affecting parameter on the milling process as a raw material property. The grindibility 

of the solids (work index) is to be measured by the help of Bond Mill. Also, unknown 

size distribution of the clinker feed is another parameter that results an error in the 

model. These parameters are to be observed in the local plant periodically in order to 

get better control fineness of cement.  

The fuzzy logic model generated in this study can be subjected to sensitivity 

analysis for observation of the effects of processing parameters on the 32-µm fineness 

(% wt) of portland cement. Such a study would provide a visual control tool for 

operators in cement plants. In addition to this, a further study can be done to adapt the 

model to monitor and control the production process in the local plant.  
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Table A.1. Data used in ANN and Fuzzy modelling (Çimenta�). 
 

 OUTPUT    INPUTS   
 

Obs.  No 
Fineness 
(32 µm) 

(%)   
Revolution    

(%) 
Falofon    

(%) 
Elevator Amp.  

(A) 

1 17.2  63 93 96 
2 17.8  64 94 95 
3 14.3  68 94 66 
4 16.2  67 95 73 
5 17.4  63 94 75 
6 14.3  66 92 71 
7 17.1  65 94 70 
8 16.1  65 94 71 
9 15.8  67 92 70 

10 14.7  67 93 95 
11 14.3  66 92 71 
12 17.8  64 94 96 
13 14.8  65 92 71 
14 15.3  63 92 71 
15 15.6  65 93 74 
16 16.5  65 94 88 
17 15.2  67 93 66 
18 16.5  67 96 97 
19 15.2  64 93 72 
20 18  63 95 76 
21 17.5  64 94 94 
22 16.8  67 96 98 
23 16.5  65 94 86 
24 16.2  65 93 73 
25 16.1  64 96 90 
26 14.6  67 94 96 
27 15.9  64 96 91 
28 16.5  67 96 73 
29 16.5  65 93 73 
30 16.4  64 95 88 
31 15.8  68 95 72 
32 15.5  64 92 70 
33 18.5  64 96 84 
34 16.7  65 93 70 
35 17  64 94 69 
36 18  65 94 89 
37 16.5  65 93 73 
38 15.6  63 92 66 
39 17.5  64 93 75 
40 16.8  66 95 71 
41 17.5  63 92 93 
42 16  65 92 66 
43 15.4  68 93 92 
44 17.8  63 93 95 
45 16.1  65 94 71 
46 16.3  65 94 69 
47 16.8   66 94 74 
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Table A.1 (Cont.). Data used in ANN and Fuzzy modelling (Çimenta�). 
 

 OUTPUT    INPUTS   
 

Obs.  No 
Fineness 
(32 µm) 

(%)   
Revolution    

(%) 
Falofon    

(%) 
Elevator Amp.  

(A) 

48 16.4  64 95 88 
49 14.6  67 93 92 
50 15.3  67 93 75 
51 17.5  63 92 73 
52 15.6  68 94 74 
53 16  64 93 75 
54 16.8  63 93 68 
55 17.5  63 95 71 
56 15.1  67 93 67 
57 16.6  66 94 66 
58 16.2  68 94 71 
59 15.4  64 93 68 
60 14.2  67 92 69 
61 15.1  67 95 68 
62 16.5  65 93 73 
63 15.8  68 94 71 
64 17.2  64 94 66 
65 14.4  67 93 93 
66 14  67 93 68 
67 16.2  65 92 91 
68 17.4  65 95 71 
69 16  67 95 96 
70 17.1  63 93 74 
71 14.5  67 94 94 
72 16.5  66 95 72 
73 17.8  64 94 95 
74 15.4  67 93 96 
75 15.5  67 92 90 
76 18.4  63 94 75 
77 16.5  65 94 85 
78 18.2  65 94 88 
79 16.6  65 94 71 
80 16.1  65 94 73 
81 17.1  65 95 82 
82 17.1  63 93 95 
83 16.7  65 94 71 
84 17.5  64 94 96 
85 17.5  65 93 71 
86 16.6  64 95 85 
87 17.5  65 94 72 
88 17.1  63 95 72 
89 16  65 92 66 
90 16.5  65 95 71 
91 16.3  66 94 71 
92 16.5  65 94 86 
93 16.4  65 94 72 
94 17.5   63 95 71 
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Table A.1 (Cont.).  Data used in ANN and Fuzzy modelling (Çimenta�). 
 

 OUTPUT    INPUTS   
 

Obs.  No 
Fineness 
(32 µm) 

(%)   
Revolution    

(%) 
Falofon    

(%) 
Elevator Amp.  

(A) 

95 16  65 93 69 
96 17.6  63 92 73 
97 16.3  66 95 67 
98 15.6  64 96 69 
99 15.3  63 92 67 

100 15.6  64 96 69 
101 15.2  67 92 72 
102 17.1  65 94 70 
103 17.8  65 94 72 
104 14.2  67 92 69 
105 18.4  65 94 68 
106 15.4  67 93 75 
107 16.7  66 94 73 
108 17.3  66 96 68 
109 18.1  64 93 69 
110 15.4  68 94 75 
111 18.3  63 95 75 
112 16.5  65 92 69 
113 18.3  63 94 75 
114 18.3  64 93 72 
115 14.1  67 92 68 
116 14.5  67 94 76 
117 16  67 94 77 
118 17.2  65 95 89 
119 16.5  66 95 72 
120 14.2  68 94 68 
121 18.3  63 95 75 
122 15.3  67 95 66 
123 15.4  68 94 75 
124 16.2  67 95 94 
125 16.6  66 94 66 
126 17.1  63 93 74 
127 17.5  64 94 94 
128 17  64 94 69 
129 14.8  65 92 71 
130 17.5  64 94 96 
131 18  63 95 76 
132 17.3  64 96 72 
133 18.2  65 96 89 
134 15  67 93 67 
135 14.5  65 93 72 
136 17.1  63 93 95 
137 16.4  66 94 67 
138 16.3  66 94 71 
139 16.2  65 93 73 
140 16.8  66 94 74 
141 16.4   65 94 72 
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Table A.1 (Cont.).  Data used in ANN and Fuzzy modelling (Çimenta�). 
 

 OUTPUT    INPUTS   
 

Obs.  No 
Fineness 
(32 µm) 

(%)   
Revolution    

(%) 
Falofon    

(%) 
Elevator Amp.  

(A) 

142 17.5  65 94 72 
143 16.8  67 96 98 
144 17.3  66 96 69 
145 17.2  65 95 70 
146 18  66 96 88 
147 14.1  67 92 68 
148 16  67 92 71 
149 15.4  68 93 92 
150 15.2  67 93 66 
151 16  67 94 77 
152 16.5  66 95 72 
153 15.8  68 95 72 
154 16.2  67 95 73 
155 16.5   67 96 97 
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Table A.2. 35 testing data sets for the testing of ANN and Fuzzy logic-based model. 

 

 OUTPUT    INPUTS   
 

Obs.  No 
Fineness 
(32 µm) 

(%)   
Revolution    

(%) 
Falofon    

(%) 
Elevator Amp.  

(A) 

1 18.3  63 95 75 
2 15.3  67 95 66 
3 15.4  68 94 75 
4 16.2  67 95 94 
5 16.6  66 94 66 
6 17.1  63 93 74 
7 17.5  64 94 94 
8 17  64 94 69 
9 14.8  65 92 71 

10 17.5  64 94 96 
11 18  63 95 76 
12 17.3  64 96 72 
13 18.2  65 96 89 
14 15  67 93 67 
15 14.5  65 93 72 
16 17.1  63 93 95 
17 16.4  66 94 67 
18 16.3  66 94 71 
19 16.2  65 93 73 
20 16.8  66 94 74 
21 16.4  65 94 72 
22 17.5  65 94 72 
23 16.8  67 96 98 
24 17.3  66 96 69 
25 17.2  65 95 70 
26 18  66 96 88 
27 14.1  67 92 68 
28 16  67 92 71 
29 15.4  68 93 92 
30 15.2  67 93 66 
31 16  67 94 77 
32 16.5  66 95 72 
33 15.8  68 95 72 
34 16.2  67 95 73 
35 16.5   67 96 97 
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Figure B.1. Production of Cement by the Dry Process (Source: CEMBERNEU 1996). 
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Figure B.2. Sieve equipment used in the local plant. 
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Figure B.3. The Ball Mill used in the local plant. 
 

 
 

Figure B.4. Polysius Cyclone Air Separator used in the local plant. 
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Figure B.5. Membership function of Falafon. 
 

 

 
 

 
Figure B.6. Membership function of Elevator A. 

 
 


