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ABSTRACT 
 

SYNTHESIS OF MAGNESIUM HYDRIDE AND SODIUM 

BOROHYDRIDE AT LOW TEMPERATURES 

 

 In this study, experimental conditions for production of magnesium hydride and 

sodium borohydride by low temperature grinding are investigated. In the first set of 

experiments, it was attempted to confirm the information presented in the literature that 

magnesium hydride could be produced by heating at 350oC for 24 hours under 10 

atmospheres of pressure. The results obtained in this study indicated that even a higher 

temperature heating at 400oC under 10 bar hydrogen pressure was insufficient for 

magnesium hydride formation.  

 Heating and grinding time were selected as the most effective parameters by 

which a full-factorial experimental design methodology was implemented. Statistical 

analysis results indicated that a combination of grinding and a 50oC heating was most 

effective. Hence, grinding was identified as the most significant factor effect on the 

production of magnesium hydride.  

 Two different mills were used, in this study, and it was found that disc mill was 

more effective than ball mill. Different combinations of dehydrated borax, sodium 

carbonate, magnesium, hydrogen gas, sodium hydride and sodium metaborate were 

tested without success to produce sodium borohydride. In the final set of experiments, 

sodium borohydride could be successfully produced by using trimethyl borate and 

sodium hydride in a disc mill at 50oC under 10 bars hydrogen pressure.   
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ÖZET 
 

DÜ�ÜK SICAKLIKLARDA MAGNEZYUM H�DRÜR VE   

SODYUM BORH�DRÜR SENTEZ� 

 

Dü�ük sıcaklıklarda magnezyum hidrür ve sodyum borhidrür üretebilmek için 

yeni bir metot geli�tirilmeye çalı�ıldı. Dü�ük sıcaklıklarda magnezyum hidrür üretimi 

ile ilgili optimizasyon çalı�maları sonucunda sıcaklık için 50°C, ö�ütme zamanı için 24 

saat ve ö�ütme için 7,5 cm çapında ö�ütücü diskin en uygun ko�ulları sa�ladı�ı 

belirlendi. 

Magnezyum hidrür sentezi için yapılan ön deneylerde 200- 400°C arası sıcaklık 

de�erleri, 8-24 saat arası zaman aralıkları ve 10 bar hidrojen basıncı denendi. 

Literatürde magnezyum hidrür sentezi için gerekli minimum hidrojen basıncının 10 bar 

olması ve laboratuar ko�ullarının en fazla 10 bar hidrojen basıncına izin vermesi 

sebebiyle tüm deneylerde hidrojen basıncı 10 barda sabit tutuldu. Ancak alınan 

sonuçlarda verimlerin çok dü�ük olması nedeniyle ö�ütme faktörünün magnezyum 

hidrür sentezi üzerine etkisi ara�tırıldı ve en etkili ö�ütme ortamının 7,5 cm çapında 

diskle ö�ütme yapan diskli de�irmen oldu�u saptandı. 

Sodyum borhidrürden sentezi için, bilyeli de�irmende ve diskli de�irmende 

yapılan, ba�langıç maddeleri olarak susuz boraks, sodyum karbonat, metalik 

magnezyum, hidrojen gazı ve susuz boraks, sodyum karbonat, sodyum hidrür kullanılan 

iki ayrı deney metodunun XRD analizleri sonucunda sodyum borhidrür saptanamadı. 

Ba�langıç maddesi olarak boraks, sodyum hidroksit, su ve magnezyumun kullanıldı�ı 

deney metodunun birinci a�amasında, elde edilmesi gereken susuz sodyum metaborat, 

uygun verimle elde edildi. Ancak susuz sodyum metaborat, magnezyum ve hidrojen 

gazı basıncı altında gerçekle�tirilen ikinci a�ama sonunda gözlemeyi bekledi�imiz 

magnezyum oksit ve sodyum borhidrürden sadece magnezyum oksit belirlendi.    

Son olarak sodyum hidrür ve trimetil boratın 50°C’da diskli de�irmende 

ö�ütülmesiyle yapılan 8 ve 16 saatlik deneylerin XRD analizleri sonucunda sodyum 

borhidrür sentezlendi�i saptandı.   
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CHAPTER 1 
 

INTRODUCTION 
 

1.1. Hydrogen Storage Systems 
 

1.1.1. Hydrogen Energy 
 

Hydrogen is the ultimate fuel. It is clean, efficient, and yields more energy per 

unit of weight than any other existing fuel. Because hydrogen is a major component of 

water and of hydrocarbons, it is in abundant supply “(Ovshinsky 2003)”. 

 Hydrogen is an energy carrier, an indirect source of energy, not a resource 

itself. In spite of this, hydrogen was at first foredetected as a substitute energy form, in 

particular to substitute coal, natural gas, oil, and any products derived from them. The 

reserves of fossil energy, in particular oil, are limited. This led to the belief that 

hydrogen could soon be used economically as a substitute energy form. The economic 

viability of the energy carrier hydrogen is enhanced by price advantage in transport 

over large distances and the possibility of energy storage. Hydrogen for use as a 

universal energy carrier can be generated by using all possible primary energy sources. 

Coal, nuclear energy including fusion (although still undeveloped), and solar energy 

have been named. 

 In addition to economic reasons for the introduction of new energy sources and 

new energy carriers, ecological reasons are becoming increasingly important, for 

example: 

 The increasing carbon dioxide content of the atmosphere, caused by the use of 

fossil energy sources and other human activities such as destruction of the tropical rain 

forests are predicted to lead to extensive climatic changes, e.g., a slow warming up of 

the atmosphere and the oceans, and melting of pole caps “(Bockris 1980)”. Because of 

the natural fluctuations in the climate this theory has not been proven beyond doubt. In 

particular, little is known about compensation effects. 

 Well-known scientists have been demanding for years (without success) that a 

"low-risk strategy" for the use of fossil resources should be followed “(Bach et al. 

1980)”. The utilization of the energy carriers coal, oil (in the form of gasoline, diesel, 
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kerosene, etc.) and natural gas leads to emissions of sulfur dioxide, nitrogen oxides and 

hydrocarbons. In Europe, this has already led to the destruction of extensive wooded 

areas and to damage of the rest of the forests. The use of hydrogen as an energy carrier 

coupled with suitable utilization techniques could become particularly important for 

environmental protection. 

 Hydrogen competes with the conventional energy carriers hydrocarbons 

(methane, LPG, gasoline, etc.), coal, and electric power. Further energy carriers are 

those recovered from regenerable sources and from refuse: biogas, alcohols, and 

vegetable oils. For the suitability of an energy carrier, the following aspects are 

important: conversion efficiency of the primary energy carrier to the final use, 

availability, ease of storage, safety, and ecological and economic evaluation “(Ullmann 

2002)”. 

 

1.1.2. Hydrides 
 

 The hydrides are a large group of compounds with diverse structures and 

bonding types. They may be divided into four classes according to their bonding 

character: 

  1) Ionic hydrides 

  2) Polymeric covalent hydrides 

  3) Volatile covalent hydrides 

 4) Metallic hydrides. 

 The borders between the classes is not sharp; they merge into each other 

according to the electronegativities of the elements concerned. Arranging the binary 

hydrides as in the periodic table, the ionic hydrides are detected to be formed by the 

strongly electropositive alkali and alkaline earth metals. Beryllium hydride, which is 

partly covalent in character, is an exception. The elements that form polymeric covalent 

hydrides, apart from beryllium, belong to Groups 12 (zinc) and 13 (boron). Boron 

occupies a special position. It forms numerous volatile hydrides with unusual 

structures. The hydrides of Group 13 are electron deficient; saturation is achieved in the 

complex hydride ions such as BH4
– and AlH4

–. The covalent hydrides formed by the 

elements of groups 14 – 17 (carbon – fluorine) are characterized by high volatility. The 

polarity of the element – hydrogen bond changes with increasing electronegativity of 
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the elements. Whereas the hydrides of the metallic elements and of silicon contain 

hydridic (negatively polarized) hydrogen, those of the nonmetals contain acidic 

hydrogen, sometimes strongly so. The latter are not regarded as hydrides in the usual 

sense and are not discussed in the present article. Metallic hydrides are formed by the 

transition metals, the lanthanides, and the actinides. The structures of these hydrides are 

fundamentally similar to those of metals. The compositions of the metallic hydrides can 

vary and are frequently nonstoichiometric. Another class of hydrogen compounds, the 

transition metal hydride complexes, is becoming important. In these molecular 

complexes the hydrogen atoms are covalently linked to a transition metal. 

Economically, the most important hydrides are those of the alkali and alkaline earth 

metals and the complex hydrides of boron and aluminum. These are mostly produced in 

tonnage quantities and have a wide range of applications “(Ullmann 2002)”. 

 

1.1.3.  Metallic Hydrides 
 

Hydrogen reacts with many metallic elements and alloys providing a range of 

metallic hydrides to choose for hydrogen storage. In general, the formation of metallic 

hydrides involves the dissociative chemisorption of H2 onto the metal surface and then 

hydrogen atom diffusion into the crystal lattice. The formation of metallic hydrides is 

typically exothermic and hydrogen desorption from the hydrides can be achieved under 

certain temperature and pressure conditions. Over the years a number of 

alloys/intermetallics have been designed for a variety of applications. For mobile 

applications, the hydride should possess good hydriding/dehydriding properties, 

optimum kinetics at reasonably low temperatures (25- 100°C) and should undergo 

numerous thermal cycles. Metallic hydrides can be broadly classified into three 

categories: classical/interstitial, chemical, and complex light metal hydrides “(Chandra 

et al. 2006)”. 

 

1.1.3.1. Classical / Interstitial Metallic Hydrides 
 

Several intermetallics of AB2, A2B, AB. and AB5 types form hydrides that have 

been used for hydrogen storage; commonly used are AB5 hydrides, where "A" is usually 

a lanthanide element (atomic numbers 57- 71 ), Ca, or mischmetal (rare earth metal 



 4 

mixture), and "B" is Ni, Co, Al, Mn, Fe, Sn, Cu, Ti, etc. The hydrogen is stored 

interstitially in the lattice of the heavy atoms. These classical hydrides are remarkable 

due to the fact that their hydriding properties can be fine-tuned by microalloying "A" or 

"B" with the listed elements. These hydrides are reversible with good kinetics and are 

well suited for stationary applications. Although these classical hydrides have good 

volumetric H, densities (~130 kg H2/m³ for LaNi5H6, 7), for on-board applications they 

suffer from the disadvantage of having low gravimetric density (1- 2 wt.% H2), resulting 

in a large weight penalty “(Chandra et al. 2006)”. 

 

1.1.3.2. Chemical Hydrides  
 

These are commonly known hydrides with high theoretical gravimetric weight 

density, such as methanol-CH3OH (8.9 wt.%), methylcyclohexane-CH3C6H12 (13.2 

wt.%), ammonia-NH3 (15.1 wt.%), ammonia borane-NH3BH3 (6 wt.% H), and other 

organic compounds (capacities do not include system weight). These compounds can be 

used for on-board reforming for generating hydrogen (e.g., steam reforming of CH3OH 

for hydrogen production). The nonreversible nature of these hydrides coupled with 

increased pollution concerns is disadvantageous for vehicular applications “(Chandra et 

al. 2006)”.            

 

1.1.3.3. Complex Light Metallic Hydrides  

 
 Until recently, the light metal aluminohydrides, termed complex hydrides (so-

called alanates). such as MAlH4 and M3AlH6 (M = Na, Li), were not considered for 

hydrogen storage because they were considered to be non-reversible despite their high 

hydrogen content. NaAlH4 could be reversibly dehydrided by the addition of transition-

metal-based catalysts. The development of catalyzed light metal hydride complexes 

including borohydrides (Li, Na)BH4, Li-N based, and magnesium-based 

nanocomposites is the most active area of hydrogen storage research for on-board 

applications “(Chandra et al.  2006)”.  
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1.1.4. Magnesium Hydride 
 

Magnesium and magnesium-based alloys are amongst the most attractive 

materials for hydrogen storage, since their hydrogen capasity exceeds all known 

reversible metal hydrides. Magnesium forms a hydride (MgH2) which provides nominally 

7.6 wt.% of hydrogen. In addition, the enthalpy of hydride formation is large (�H=-75 

kJ/mole) making magnesium also attractive for thermal energy storage. These features, 

combined with the very low cost of magnesium, suggest an excellent potential for 

hydrogen-related applications. However, to date magnesium hydride remains of no 

practical use for hydrogen storage. The main reason is that the reaction for 

hydrogenation/dehydrogenation is very slow and occurs only at very high temperatures. 

In practice both absorption and desorption of hydrogen require a temperature of at least 

350- 400°C and even then only occur over a time scale of hours. The pressure of 

hydrogen gas in equilibrium with magnesium hydride is low (1 bar at about 280°C) and 

therefore thermodynamically the hydride should form readily at room temperature. 

However, this never occurs in practice becaus of kinetic limitations. There are several 

factors that significantly reduce the rate of hydrogenation. One of them is the oxidation of 

magnesium surface and/or formation of magnesium hydroxide. Magnesium oxide forms 

easily on a Mg surface exposed to air. Usually oxide layers on the metal surface are not 

transparent to hydrogen molecules so that an MgO layer prevents hydrogen molecules 

from penetrating into the material “(Manchester and Khatamian 1988)”. To initiate 

hydrogen absorption the oxide layer on magnesium must be perforated or cracked, which 

is the essence of activation. Annealing causes cracking of the oxide layer and as a result 

bare metal surfaces are exposed to hydrogen. Activation usually consist of high-

temperature cycling and most probably takes advantage of the different thermal expansion 

coefficient of magnesium and magnesium oxide at high temperatures. The oxide layer on 

a magnesium surface cracks only if the temperature of annealing exceeds 400ºC. In 

addition, annealing at temperatures higher than 350ºC causes magnesium hydroxide to 

decompose. Thus activation of magnesium consists of several cycles annealing at 400ºC 

in vacuum and in hydrogen, followed by annealing for several hours at 400ºC in vacuum 

“(Liang et al. 1995)”. However even after this procedure, hydride formation required the 

Mg to be exposed to hydrogen at 30 bar and at 400ºC for several hours “(Liang et al 

1995)”. Another reason for the very slow hydrogenation rate of magnesium (even after 
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activation) is the limited dissociation rate of hydrogen molecules on the metal surface 

“(Schlapbach 1992)”. A clean surface of magnesium is not active for the dissociation of 

gaseous hydrogen “(Zaluska et al. 1998)”. 

 The nucleation rate of magnesium hydride is dependent on hydrogen pressure. 

High hydrogen pressure increases hydrogenation rate by increasing the thermodynamic 

driving force of the reaction, but only up to a point. For pressures higher than about 30 

bars, the absorption rate is again reduced. This effect occurs when initial hydrogenation 

is relatively fast and leads to the formation of a “surface shell” of magnesium hydride 

which blocks further hydrogen uptake. At this point hydrogenation is limited by the 

growth of the hydride. Althought in general growth has been found to be faster than 

nucleation, growth limitations are usually responsible for reducing the final hydrogen 

capacity. Studies on hydrogenation kinetics showed that growth is controlled by 

diffusion of hydrogen atoms, which is very slow throughout magnesium hydride. 

Further experiments indicated that the growth is controlled by a slow migration of the 

interface between the hydride and magnesium, in particular by hydrogen diffusion along 

the hydride-metal interface and not throughout the hydride layer. In any case, 

hydrogenation of magnesium is normally almost impossible to complete, even at very 

high temperatures and pressures. It has also been observed that hydrogen uptake 

declines when the hydride nuclei start to coalesce on the magnesium surface to form a 

compact hydride layer and that the hydrogenation reaction diminishes completely when 

the hydride layer exceeds 30- 50 µm. For kinetic reasons the remaining magnesium 

cannot be further hydrogenated “(Zaluska et al. 1998)”.    

 The formation of a hydrogen-absorbing material by mechanical milling under 

hydrogen atmosphere simultaneously produces hydrogen uptake, mechanical 

deformation, defect formation and surface formation. These structural modifications can 

lead to the formation of metastable phases, refinement of the microstructure into the 

nanometer range, extension of solubility limits, development of amorphous phases. 

These effects produce important changes in the hydrogen-absorption and desorption 

properties. In order to understand the structural changes that occur during RMA 

(reactive mechanical alloying), the known phase of the system Mg-H should be 

analyzed first. The temperature-composition diagram of the Mg-H system consist of a 

hcp �-phase (interstitial solid solution) and a �-phase with tetragonal structure and a 

stoichiometric nominal composition of MgH2. When the tetragonal �- MgH2 phase is 

subjected to high compressive stres, it partially transforms into the metastable 
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orthorhombic 	-phase. The transition � 
 	 was also observed at a pressure of 2.5 GPa. 

Both phases coexist up to a pressure of 8 GPa. The metastable 	 phase reverts 

exothermically to the tetragonal �-phase by heating at 350ºC, as measured by DTA 

between 300 and 350ºC. Another metastable MgH2 phase, the hexagonal (pseudocubic) 

�-phase, has been observed after treatment of the �-phase at 2.8 to 8 GPa and 650 to 

800ºC. The thermal study of on a �
�- MgH2 mixture showed an endothermic effect 

between 350 and 400ºC. This effect was attributed either to �
	 or to �
� phase 

transitions “(Gennari el al. 2001)”.  

 

1.1.4.1. Properties of Magnesium Hydride 

 

 Pure magnesium hydride is a white, nonvolatile powder. Although its properties 

are predominantly salt-like, it shows signs of a transition towards the covalent 

polymeric hydride structure of compounds such as beryllium and aluminum hydride. Its 

enthalpy of formation and thermal stability are considerably lower than those of the 

homologous calcium hydride. Magnesium hydride decomposes without melting at 

280 °C. Its reactivity depends on the method of preparation. The product obtained by 

direct synthesis from the elements is stable in air. Nevertheless, if it is prepared by 

pyrolysis of dialkyl magnesium or by reaction of lithium aluminum hydride with 

dimethyl magnesium, the product is very pure and finely divided and ignites 

spontaneously on contact with air “(Ullmann 2002)”. 

 

 

 

Figure 1.1. Solid Phase Form of MgH2 

 

1.1.4.2. Uses of Magnesium Hydride 
 

  Magnesium hydride contains a high proportion of hydrogen (7.65 wt%), which 

can be liberated by heat. The catalytically produced compound displays rapid rates of 

hydrogenation and dehydrogenation and it is therefore of interest as a hydrogen 
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reservoir. The high activity of catalytically produced magnesium hydride also enables it 

to take part in an addition reaction with 1-alkenes to form organomagnesium 

compounds “(Bogdanovic 1984)”. 

 

MgH2 + 2 CH2=CHR  →  Mg(CH2CH2R)2 

  

These dialkyl magnesium compounds have become industrially important in the 

production of very active Ziegler catalysts. The Mg – H2 system can also be used for 

the simultaneous removal and purif ication of pure hydrogen from gas mixtures 

“(Bogdanovic 1986)”. Magnesium hydride is also used as a drying agent for organic 

solvents and gases and in chemical syntheses. 

 

1.1.4.3. Production Methods of Magnesium Hydride 

  

1) Magnesium powders with a purity of 99.95% (Size:<75 µm) are 

hydrogenated at 350°C under 1 MPa (10 Bar). Hydrogenation rate of 60% were formed 

through 24-h hydrogenation “(Li et al. 2002)”. 

 2) MgH2 are prepared by hydrogenation of pure Mg powder (purity:99%) under 

a hydrogen pressure of 7 MPa (70 Bar) at 300°C “(Noritake et al. 2003)”. 

 3) MgH2 formation require the Mg to be expose to hydrogen at 3MPa (30 Bar) 

and at 400°C for several hours “(Liang et al. 1995)”. 

 4) Magnesium metal itself is hydrated with difficulty upon contact with 

hydrogen of 6 MPa (60 Bar) at 400°C “(Imamura et al. 1983)”. 

 5) Magnesium hydride are prepared by reaction ball milling. mechanically 

milling magnesium under hydrogen atmosphere with an initial pressure of ~ 1 MPa (10 

Bar), followed by a long-period hydrogenation at 300°C. The process are repeated for 

three times to achive a hydrogenation ratio of ~80% “(Wu et al. 2006)”. 

 

1.1.5. Borohydrides 
 

Borohydrides are well-known reducing agents. They often have quite specific 

uses in organic and inorganic chemistry, where they may also be the sources of H− other 

than simple reductants. Recently they have attracted more attention as a hydrogen 
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storage medium due to their high hydrogen storage capability. For example, NaBH4 

contains 10.6 wt.% hydrogen which is much more than what most hydrogen storage 

alloys have.  

 

1.1.6. Sodium Borohydride 
 

NaBH4 is a white crystalline substance, completely stable in dry air and is 

nonvolatile. Solid state sodium borohydride, based on metal-hydrogen complexes which 

react with water releasing pure hydrogen. Sodium borohydride, first synthesized and 

identified in 1942. It is one of the most unique speciality inorganic chemical being 

manufactured today.  

 

 
 

Figure1.2. Structure of NaBH4 

 

NaBH4 contains hydrogen which is much more than what most hydrogen storage 

compounds have. Furthermore, the hydrolysis of sodium borohydride is of interest in 

hydrogen generation because half of the generated hydrogen is from the borohydride 

and the other half is from water. NaBH4 can generate 10.8 wt.% of hydrogen based on 

the following hydrolysis reaction. 

 

NaBH4 + 2H2O  
   NaBO2 + 4H2� 

Its hydrogen generation rate, when using some catalysts, is rather high at room 

temperature compared with the hydrogen desorption rate of metal hydrides “(Li et al. 

2003)”.  
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1.1.6.1. Physical and Thermodynamic Properties of Sodium 

Borohydride 
 

Table 1.1. Thermodynamic Properties of Sodium Borohydride  

(source: Wade 1980) 

 

 Function Value 

Free Energy of Formation 

Head of Formation 

Entropy 

Heat Capacity 

Free Energy of Ionization 

�F°298 

�H°298 

S° 

C°p 

�F°298 

-30.1 kcal/mole 

-45.53 kcal/mole 

+24.26 cal/mole 

+20.67 cal/mole 

-5660 cal/mole 

Borohydride Ion, BH4
(aq) 

Free Energy of Formation 

Head of Formation 

Entropy 

Hydrolysis 

BH4
+H°+3H2O(liq)    =  

H3BO3+4H2 (g) 

Oxidation 

BH4
+8OH
 = B(OH) 4
+4H2O+8� 

 

�F°298 

�H°298 

S°298 

 

�F°298 

 

�F°298 

E°298 

 

+28.6 kcal/mole 

+12.4 kcal/mole 

+25.5 cal/mole 

 

-88.8kcal/mole 

 

-228.9 kcal/mole 

+1.24 volts 
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Table 1.2. Selected Physical Properties of Sodium Borohydride  

(source: Wade 1980) 

 

Property______________________________________________________________ 

Formula                                                                 NaBH4 

Molecular Wt                                                         37.84 

Purity                                                                      97+% 

Color                                                                      White 

Crystalline Form (anhydrous)                                Face centered cubic 

                                                                               a=6.15 A.U. 

                             (dihydrate)                                Exists below 36.4°C. 

Melting Point                                                         505°C.    (10 atm. H2) 

Thermal Stability                                                   Decomposes above 400°C. in vacuum    

                                                                               Will not ignite at 300°C. On hot plate 

                                                                               Ignites from free flame in air,                                                                                                                                     

                                                                               burning quietly          

Density                                                                  1.074 g/cc. 

______________________________________________________________________ 

 

1.1.6.2. Solubility of Sodium Borohydride 
 

The solubility of sodium borohydride in water, the most commonly used solvent, 

has been accurately measured at different temperatures. 36.4°C is the equilibrium 

temperature of the two crystal forms NaBH4 and NaBH4.2H2O. Below 36.4°C 

represents the solubility of the dihydrate, and above 36.4°C the solubility of anhydrous 

NaBH4 “(Wade 1980)”. 
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1.1.6.3. Stability of Sodium Borohydride 
 

Sodium borohydride is very stable thermally. It decomposes slowly at 

temperatures above 400 °C in vacuum or under a hydrogen atmosphere. Sodium 

borohydride absorbs water rapidly from moist air to form a dihydrate which 

decomposes slowly forming hydrogen and sodium metaborate. Decomposition in air is 

therefore a function of both temperature and humidity “( Wade 1980)”. 

 

1.1.6.4. Chemical Properties of Sodium Borohydride 
 

1.1.6.4.1. Organic Reductions of Sodium Borohydride 
 

 The first commercial uses for sodium borohydride were for the reduction of 

organic compounds containing carbonyl groups. Classical techniques for accomplishing 

these reductions have been developed. 
 Sodium borohydride attacks the carbon atom which has the largest positive 

charge. Because of this, any substituent which increases the fractional positive charge 

on the carbonyl carbon atom will increase the rate of reduction. If the fractional positive 

charge is decreased by substituents then the rate is slowed down. 

 Sodium borohydride is an attractive reducing agent for organic substrates 

because of its convenience as well as its selectivity and efficiency. The general 

techniques of its use are by now well known to the practitioner of organic synthesis, 

who also knows that modifications are sometimes dictated by the properties ( solubility, 

thermal stability, pH sensitivity ) of the material being reduced “( Wade 1980)”. 

 

1.1.6.4.2.  Reaction of Sodium Borohydride with Water 
 

The reaction of sodium borohydride with water                                                 

NaBH4 + 2H2O 
 NaBO2  + 4H2 is of enormous practical importance. If this hydrolysis 

reaction occurs in competition with the reduction of an organic or inorganic compound, 

borohydride obviously is wasted and its utilization efficiency is lowered. On the other 

hand, sodium borohydride is a remarkably concentrated source of hydrogen. One gram, 



 13 

dissolved in water will release 2.37 liters of molecular hydrogen. Important industrial 

use is made of this property.  
 Factors which control the rate of hydrolysis include concentration of BH
4, 

concentration of NaOH or base (pH) and temperature. The effect of these variables on 

the rate of hydrolysis has been extensively studied.  

The times for complete hydrolysis of sodium borohydride solutions in water at 

25°C which have been buffered at various pH’s are shown in Table 1.3. 

 

Table 1.3. NaBH4 Hydrolysis Time vs pH  

(source: Wade 1980) 

 

                                  pH                                   NaBH4 Completely Hydrolyzed in 

4.0                                                     0.02 sec 

5.0                                                     0.22 sec 

                                   6.0                                                     2.2 sec 

                                   6.25                                                   3.9 sec 

6.5                                                     7.0  sec  

                                   6.75                                                 12.4 sec 

                                   7.0                                                    22.1 sec 

                                   8.0                                                      3.7 min 

                                   9.0                                                    36.8 min   

  10.0                                                   6 hr 8 min 

 

1.1.6.5. Industrial Applications of Sodium Borohydride 
 

1)Pharmaceutical-Fine Chemical 

*Vitamin A (Retinol) 

*Isohumulone 

*Pentazocine 

2)Process Stream Purification  

3)Pollution Control 

*Lead Pollution 

*Mercury Pollution 
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*Silver-Cadmium from Photographic Film Manufacturers 

4)Precious Metal Recovery 

5)Catalyst Preparation 

6)Magnetic Materials for Recording Tapes 

7)Electroless Plating of Metals 

8)Metals Coating of Window Glass 

9)Pulp Brightening 

10)Clay Leaching  

11)Textile Applications–Vat Dye Reductions 

12)Hydrogen Generation 

13)Foamed Plastics 

14)Hydripills 

15)Preparation of Diborane and Derivatives 

 

1.1.6.6. Production Methods of Sodium Borohydride 
 

1) Sodium hydride and methyl borate in correct proportions undergo a rapid 

reaction at 225-275°C to produce sodium borohydride of 90-96% purity and in a yield 

as high as 94%, according to the equation “(Schlesinger et al. 1952)”.  

 

4NaH+B(OCH3)3 
 NaBH4+3NaOCH3 

 

2) Reaction of Sodium Hydride with Sodium trimethoxy borohydride -Reaction 

at 250-270 °C and there maintained for 30 minutes. The crude product is extracted with 

isopropylamine. The product analysed 89% sodium borohydride, and the yield is 78% 

“(Schlesinger et al. 1952)”. 

 

3NaH+NaBH(OCH3)3 
 NaBH4+3NaOCH3 

 

3) Reaction of Sodium Hydride with Sodium Tetramethoxyborohydride –

Experiments and results are quite similar to trimethoxyborohydride. Sodium 

borohydride yield of 66% with 91% purity is obtained “(Schlesinger et al. 1952)”. 
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4NaH+NaB(OCH3)4  
 NaBH4+4NaOCH3 

 

4) The methyl borate may also be replaced by higher esters, such as ethyl and n-

butyl borate “(Schlesinger et al. 1952)”. 

 

4NaH+B(OC2H5)3  
  NaBH4+3NaOC2H5 

 

5)�At higher temperatures (225-275°C) and with sodium, hydrogen and methyl 

borate in the approximate proportions: 

 

4Na+2H2+B(OCH3)3  
 NaBH4+3NaOCH3 

 

Sodium borohydride is formed. The yields are relatively low, %15 “(Schlesinger 

et al. 1952)”.   

 

6)�At higher temperatures (330-350°C), sodium hydride and boric oxide react 

to produce up to 60% yields of sodium borohydride by the following reaction, 

 

4NaH+2B2O3  
 NaBH4+3NaBO2 

 

96% purity sodium borohydride is obtained “(Schlesinger et al. 1952)”. 

 

7) Sodium borohydride can also be synthesized by heating a mixture of 

dehydrated borax, quartz and sodium metal under hydrogen gas to higher temperatures 

of 450-500°C through the following reaction “(Schubert et al. 1963)”. 

 

16Na+8H2+Na2B4O7+7SiO2 
  4NaBH4+7Na2SiO3 

 

8) Besides sodium hydride, calcium hydride has been used to react with NaBO2 

to prepare NaBH4 in the same temperature range “(Goerring et al. 1956)”. 

 

2CaH2+NaBO2 
 NaBH4+2CaO 
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9) Sodium borohydride is synthesized by reacting sodium metaborate (NaBO2) 

with magnesium hydride (MgH2) or magnesium silicide (Mg2Si) by annealing (350-

750°C) under high H2 pressure. As the temperature and the pressure increases, the yield 

increases to have a maximum value (97-98%) at 550°C “(Kojima et al. 2003)”. 

 

NaBO2 + 2MgH2 
  NaBH4 + 2MgO 

NaBO2 + Mg2Si + 2H2 
  NaBH4 + 2MgO + Si 

 

10) Sodium borohydride is prepared through a mechano-chemical reaction at 

room temperature. The mechano-chemical reaction is conducted by ball-milling a 

mixture of magnesium hydride, dehydrated borax and some Na compounds in a 

planetary ball mill at room temperature. MgH2 is used as reducing agent to react with 

dehydrated borax “(Li et al. 2002)”. 

 

8MgH2 + Na2B4O7 + Na2CO3  
  4NaBH4 + 8MgO + CO2 

 

1.2. Ball Milling 

 

Ball Mills are a very efficient tool for grinding many materials into a fine 

powder. To use the Mill, the material to be ground is loaded into the barrel which 

contains grinding media. As the barrel rotates, the material is caught between the 

individual pieces of grinding media which mix and crush the product into a very fine 

powder over a period of several hours. Quite simply, the longer the Ball Mill is run, the 

finer powder will be. Ultimate particle size depends entirely on how hard the material 

you're grinding is, and how long the Ball Mill is run “(WEB_1 2006)”.  

Mechanical milling is an effective technique for the preparation of fine metallic 

and ceramic powders and can also be used to drive a wide range of chemical reactions. 

Milling devices include planetary machines, attritors and vibrational mills; products 

include amorphous, nanocrystalline and quasicrystalline materials, supersaturated solid 

solutions, reduced minerals, high-surface-area catalysts and reactive chemicals “(Takacs 

and Suryanarayana 1996)”. 

 Mechanical Milling is a complex process and hence involves optimization of a 

number of variables to achieve the desired product phase and/or microstructure. Some 
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of the important parameters that have an effect on the final constitution of the powder 

are:  

 • Type of mill, 

 • Milling container, 

 • Milling speed, 

 • Milling time, 

 • Type, size, and size distribution of the grinding medium, 

 • Ball-to-powder weight ratio, 

 • Extent of filling the vial, 

 • Milling atmosphere, 

 • Process control agent, and 

 • Temperature of milling. 

 All these process variables are not completely independent. For example, the 

optimum milling time depends on the type of mill, size of the grinding medium, 

temperature of milling, ball-to-powder ratio “(Suryanarayana 2001)”.  

 

1.2.1. Milling Process Parameters 
 

 Process parameters such as milling temperature, grinding ball diameter, ball-to-

powder weight (charge) ratio, use of a process control agent, and relative proportion of 

the reactants seem to play an important role on the nature and kinetics of the product 

phase obtained by the displacement reactions. For example, a combustion reaction could 

be initiated during the reduction of copper oxide by iron; but the same reaction 

progresses gradually under slightly different milling conditions. Consequently, results 

from different laboratories can be effectively compared only if the exact conditions 

under which the reaction takes place are reported. These conditions need to be 

optimized for the best yield “(Suryanarayana 2001)”. 

 

1.2.2. Temperature Rise during Milling 

 

 The intense mechanical deformation experienced by the powders leads to 

generation of crystal defects and this plus the balance between cold welding and 

fracturing operations among the powder particles is expected to affect the structural 
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changes in the powder. Another important parameter, the temperature experienced by 

the powder during milling, dependent on the kinetic energy of the balls, can also 

determine the nature of the final powder product. If the temperature generated is high, 

the associated higher diffusivity (higher atomic mobility) leads to processes resulting in 

recovery (and recrystallization). In such a case, a stable phase, e.g., an intermetallic, 

would form. On the other hand, if the temperature is low, then defect recovery would be 

less and an amorphous (or a nanocrystalline) phase would form“(Koch 1994)”.  

 The temperature of the powders during milling can be high due to two different 

reasons. Firstly, as mentioned above it is due to the kinetic energy of the grinding 

medium. Secondly, it is possible that exothermic processes occurring during the milling 

process generate heat. But, in practice, when the temperature of the powder or the 

milling container is measured, it is probably due to a combination of these two factors 

“(Koch 1994)”.  

 

1.3. Mechanochemical Synthesis 

 
 Mechanical Milling could be used to induce a wide variety of solid–solid, 

liquid–solid and even solid-gas chemical reactions. 

 The mechanochemical reactions are characterized by a large negative free 

energy change and are therefore thermodynamically feasible at room temperature. The 

occurrence of these reactions at ambient temperatures is thus limited by kinetic 

considerations alone “(McCormick 1995)”. 

 A characteristic feature of all solid-state reactions is that they involve the 

formation of product phase(s) at the interfaces of the reactants. Further growth of the 

product phase involves diffusion of atoms of the reactant phases through the product 

phase, which constitutes a barrier layer preventing further reaction. Thus, these 

reactions require elevated temperatures to proceed at reasonable rates “(McCormick 

1995)”. 

 Depending on the milling conditions, two entirely different reaction kinetics are 

possible:  

 1. The reaction may extend to a very small volume during each collision, 

resulting in a gradual transformation, or 
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 2. If the reaction enthalpy is sufficiently high, a self-propagating combustion 

reaction can be initiated. 

 Mechanical energy can set off chemical changes in many different situations. 

For example, wear of a material involves chemical processes, corrosion is influenced by 

lattice defects created by plastic deformation, etc. We are primarily interested in 

mechanochemical reactions induced by high energy ball milling. The processes taking 

place in a ball mill are very complex. One of our primary goals is to understand their 

mechanism by separating and modelling their individual components “(Takacs 1992)”. 

 An interesting situation is when ball milling induces a self-supporting thermal 

reaction in a highly exothermic system. Investigating the conditions of ignition will be a 

useful tool to learn about the mechanism of mechanochemical reactions in general 

“(Takacs 1992)”.  

 Ball milling can also induce chemical changes in non-metallurgical systems, 

including silicates, minerals, ferrites, ceramics, and organic compounds. The research 

area of mechanochemistry developed to study and utilize these processes. As many 

mechanical alloying processes involve chemical changes, the distinction between 

mechanical alloying and mechanochemistry is often arbitrary “(Takacs 1992)”.  

 

1.4. Mechanism of Amorphization 
 

 The mechanism of amorphization by Mechanical Milling (MM) is not clearly 

understood. The early investigators assumed that the powder particles melted because of 

the very high rate of plastic deformation, and consequent rise in the powder 

temperature. Subsequent quenching of the liquid by heat conduction into the less 

deformed, and hence cooler, interior regions of the particles, resulted in the formation of 

the amorphous phase (like in RSP). However, energy input calculations and temperature 

measurements suggest that the temperature rise is not large enough for the powder 

particles to melt. Additionally, if this mechanism were to be true, the glass-forming 

composition ranges in mechanically alloyed and rapidly solidified alloys should be the 

same; but this is not true as will be shown later. Researchers now believe that 

amorphization during MM is not purely a mechanical process and that a solid-state 

reaction similar to that observed in thin films occurs during MM. During MM, however, 

destabilization of the crystalline phase is thought to occur by the accumulation of 
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structural defects such as vacancies, dislocations, grain boundaries, and anti-phase 

boundaries. The continuous decrease in grain size (and consequent increase in grain 

boundary area) and a lattice expansion would also contribute to the increase in free 

energy of the system. It has been reported that the stored energy during MM can be 

about 50% of the enthalpy of fusion, whereas by cold rolling or wire drawing it is only a 

small fraction of it. These defects raise the free energy of the intermetallic system to a 

level higher than that of the amorphous phase and consequently, it becomes possible for 

the amorphous phase to form. It has been reported that amorphization occurs when the 

strain in the slow diffusing species reaches a maximum. In the case of ordered alloys, 

amorphization was reported to occur when the long-range order parameter is <0.6 with 

a corresponding volume of expansion of about 2% “(Ermakov et al. 1981)”.  

 Irradiation of crystalline materials by energetic particles and electrons has been 

known to cause amorphization when the following criteria are obeyed:  

 • The intermetallic compound has a narrow or zero homogeneity range, 

 • The order–disorder transition temperature of the intermetallic, Tc is higher than 

the melting temperature, Tm, 

 • The two components (elements) are separated by more than two groups in the 

periodic table, 

 • The intermetallic has a complex crystal structure, and 

 • The fraction of A atoms (fA�fB) is �1/3. 

 Intermetallics have also been amorphized by MM when the above criteria were 

generally followed. However, there have been several exceptions to the above empirical 

rules (too many to be ignored). For example, compounds with reasonably wide 

homogeneity ranges have also been amorphized. Further, a number of compounds with 

fA=1/4 have been made amorphous. In view of these observations, it should be realized 

that the above criteria may only be used as guidelines and not that if they are obeyed, 

amorphization will be observed “(Eckert et al. 1992)”.  

 

1.5. Characterization of the Solid Samples 

 
 Characterization of the solid samples was carried out by using X-Ray 

Diffraction, Scanning electron microscopy (SEM). 
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1.5.1. X-Ray Powder Diffraction 
 

X-Ray powder diffraction finds frequent use in material science because sample 

preparation is relatively easy, and the test itself is often rapid and non-destructive. The 

vast majority of engineering materials is crystalline, and evens those which do not yield 

some useful information in diffraction experiments. 

The pattern of powder diffraction peaks can be used to quickly identify 

materials, and changes in peak width or position can be used to determine crystal size, 

and texture “(WEB_2 2006)”. 

 

1.5.2. Scanning Electron Microscopy (SEM) 
 

Scanning electron microscopy is the best known and most widely-used of the 

surface analytical techniques. High resolution images of surface topography, with 

excellent depth of field are produced using a highly-focused, scanning (primary) 

electron beam. The primary electrons enter a surface with an energy of 0.5 - 30 keV, 

and generate many low energy secondary electrons. The intensity of these secondary 

electrons is largely governed by the surface topography of the sample. An image of the 

sample surface can thus be constructed by measuring secondary electron intensity as a 

function of the position of the scanning primary electron beam. High spatial resolution 

is possible because the primary electron beam can be focused to a very small spot (<10 

nm). High sensitivity to topographic features on the outermost surface (<5 nm) is 

achieved when using a primary electron beam with an energy of <1 keV “(WEB_3 

2006)”. 
        In addition to low energy secondary electrons, backscattered electrons and X-rays 

are also generated by primary electron bombardment. The intensity of backscattered 

electrons can be correlated to the atomic number of the element within the sampling 

volume. Hence, some qualitative elemental information can be obtained. The analysis of 

characteristic X-rays emitted from the sample gives more quantitative elemental 

information. Such X-ray analysis can be confined to analytical volumes as small as 1 

cubic micron “(WEB_3 2006)”. 

        SEM, accompanied by X-ray analysis, is considered a relatively rapid, 

inexpensive, and basically non-destructive approach to surface analysis. It is often used 
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to survey surface analytical problems before proceeding to techniques that are more 

surface-sensitive and specialized “(WEB_3 2006)”. 

 

1.6. Aim of This Work  

 

The purpose of this work was to propose a new method for the synthesis of 

sodium borohydride at low temperatures. MgH2 is used as a reducing agent to react with 

dehydrated borax. The sodium borohydride can be processed by the reaction as shown 

in the following equation. 

 

8MgH2+ Na2B4O7 + Na2CO3 
  4NaBH4 + 8MgO + CO2 

 

However, magnesium hydride which is the starting material for this synthesis 

could not be obtained from the market, therefore metallic magnesium and hydrogen gas 

was used as the starting materials. Studies were also concentrated on the production of 

magnesium hydride.  

For this purpose, several experimental procedures were tried, especially through 

milling. Characterization was mostly done by X-Ray powder diffraction.   
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CHAPTER 2 
 

EXPERIMENTAL METHODS 
 

2.1. Instrumentation and Apparatus 
 

A Retsch S1000 series ball mill was used for the experiments. Emko ESM- 4410 

series thermocouple was used to measure and also to control the temperature. As a 

reactor, we have modified our disc mill design. A 320 ml stainless steel grinding bowl 

with a stainless steel lid was built as a reactor. The lid has two valves for gas inlet and 

outlet and the cap was screwed to the main body with six screws so as not to leak 

hydrogen gas. A specially made copper gasket was used to prevent leakage. The 

grinding bowl had grooves outside to fit with specially made resistance for heating. 

 

2.2. XRD, SEM Analysis 

 
 X-Ray powder diffraction (XRD) data were collected on a Philips X’Pert Pro 

diffractometer using CuK� radiation (�=0.154 nm). Samples were prepared by 

compressing in the cassette sample holder without any adhesive substance. 

SEM characterization was carried out using a Philips XL-30s FEG type 

instrument. Prior to analysis, the solid samples were sprinkled onto Al or C tapes which 

are adhesive and supported on metallic disks. Images of the sample surfaces were 

recorded at different magnifications.  

 

2.3. MgH2 Synthesis 
 

Several procedures were tried for MgH2 synthesis: 

Mg + H2 (10 Bar) 
 MgH2 

a. Some experiments were made by heating Mg to various temperatures under 

10 bar H2 pressure. 

b. Some experiments were made by grinding Mg with a grinding disc at 100 rpm 

under 10 bar H2 pressure at room temperatures. 
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c. Some experiments were made by putting Mg under 10 bar H2 Pressure and 

grinding with a grinding disc at 100 rpm while heating. 

 

2.3.1. Optimization of Parameters for MgH2 Synthesis 

 
 In order to obtain accurate and reproducible results, the first part of the study 

was focused on the optimization of parameters for MgH2 synthesis. Synthesis of MgH2 

is influenced by several factors such as the grinding media, temperature, H2 pressure 

and grinding time effect. Variable and effective parameters were optimized.  

 

2.3.1.1. Optimization of Grinding Conditions 
 

 The first parameter optimized was the setting of grinding materials. Since it is 

known that the yield of the MgH2 synthesis is affected by Mg piece dimensions, it is 

important to find optimum grinding media to obtain the available optimum Mg particle 

dimensions. In order to increase the reaction surface, Mg pieces (Merck, 50-150 mesh) 

were put in the Ball Mill and ground for various time intervals with different size balls 

or discs. 

 a. Grinding was performed with the same diameter steel balls. However different 

size balls were used for different grinding to determine the optimum size. (all 2.5, 5, 10 

or 20 mm diameter) 

 b. Grinding was also performed with a mixture of various diameter steel balls.  

 c. Grinding was performed with various size discs. (60 mm or 75 mm diameter 

dics) 

 

2.3.1.2. Effect of H2 Pressure 

 
 Hydride formation requires Mg to be exposed to a hydrogen pressure of at least 

10 bar(Li 2002, Wu 2006). With our set up, we could maintain continuous 10 bar H2 

pressure. Therefore, continuosly 10 Bar H2 pressure was applied to the milling bowl 

either for various time intervals (8 to 24 hours) or for various grinding conditions (while 

grinding or not grinding) or for various temperature conditions (without heating or with 

heating from room temperature to 400ºC). 
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2.3.1.3. Effect of Temperature 

 
 Various heating temperatures from room temperature to 400ºC were tried for 

different time intervals.  

In the literature, it is stated that heating up to 400oC and hydrogen pressures up to 70 

bar gives good yields “(Imamura et al. 1983, Noritake et al. 2003)”. However, our 

experiments for heating up to 400oC and 10 bar hydrogen pressure gave very poor yields. 

Some good literature results up to 10 Bar and 350oC remains as a question mark for us. 

 

2.3.1.4. Effect of Grinding Time 
 

In our experiments various time intervals - from 8 to 24 hours - were tried for 

different temperatures under constant H2 pressure (10 Bars). Only heating and H2 

pressure application was not enough for sufficient MgH2 formation. Grinding especially 

with disc mill at 100 rpm increased the yield with a considerable amount. 

It was rather surprising to see that grinding was more effective than heating for 

MgH2 formation. 

 

2.3.2. First Set of Experiments  
 

Several experiments were tried for MgH2 synthesis by heating Mg under 10 bar 

H2 pressure: 

 

Mg   +   H2 (10 Bar)    
      MgH2 

 

During these experiments, 24 Hours heating at 200°C,  250°C,  300°C,  350°C 

and 400°C under 10 bar H2 pressure was tried without grinding. 

 

2.3.3. Experimental Design for MgH2 Synthesis 

 
  Two main parameters showed to be very effective during the experiments. They 

were 1)Temperature and 2)Grinding time. Hydrogen pressure (10 bar) was kept 
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constant throughout the experiments, so it was not included as a parameter. The limits 

for temperature and grinding time shown below were elected after some preliminary 

experiments.  

Various experiments were carried out to get optimum yield for MgH2 production. 

Experimental Design set up for the experiments are given in table 2.1. below. 

 

Table 2.1. Experimental Design Scheme for MgH2 Experiments 

 

Experiment 

Number 

Temperature Grinding 

Time 

Peak Intensity 

Ratio IMgH2/IMg 

1 1 -1  

2 1 0  

3 1 1  

4 0 -1  

5 0 0  

6 0 1  

7 -1 -1  

8 -1 0  

9 -1 1  

 
The symbols above have the following meanings: 
 
For Temperature;       -1 = 8 Hours           For Grinding Time;      -1 = 25ºC     

                                0 = 16 Hours                                                        0 = 50 ºC          

                                 1 = 24 Hours                                                        1 = 100 ºC 

For Response;  Peak Intensity Ratio =  IMgH2 / IMg 

 

2.4. NaBH4 Synthesis 
 

2.4.1. Experiments with Ball Mill 
 

In the early experiments, a smaller size stainless steel ball mill with 4 cm height, 

and 7 cm diameter dimensions was used. Stainless steel balls with various diameters 

were used for milling. 
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1) MgH2 was not available from the market, so metallic magnesium and H2 gas 

were used as starting materials instead of MgH2. Experiments were carried out with a 

ball mill at 100 rpm. Three time intervals - 8, 16 and 24 hours - were tried at room 

temperature. Ball diameters varied; (1 of 20mm, 3 of 10mm, 7 of 5mm, 3 of 2.5mm). 

 

Na2B4O7 + Na2CO3 + 8Mg + (10Bar)8H2  
  4NaBH4 + 8MgO + CO2 

 

Na2B4O7   = 10.06g 

Na2CO3   = 5.30g 

Mg   = 9.72g 

 

2) NaH was tried instead of H2 gas. Experiments were carried with a ball mill at 

100 rpm. Two time intervals, 8 and 16 hours were tried at room temperature. Ball 

Diameters; (1 of 20mm, 3 of 10mm, 7 of 5mm, 3 of 2.5mm). 

 

Na2B4O7+Na2CO3+16NaH
4NaBH4+8Na2O+CO2 

 

Na2B4O7  =  4.024g 

Na2CO3  =  2.120g 

NaH  =  7.680g 

 

2.4.2. Experiments with Disc Mill 

 
 The preliminary experiments did not give very satisfactory results with stainless 

steel balls, a new stainless steel disc mill with 5 cm height, and 10 cm diameter 

dimensions using a disk for grinding was purchased, and the experiments were carried 

out with this mill. 

 

1) Experiments were carried at 100 rpm with the grinding disc. Three time 

intervals, 8, 16 and 24 hours were tried at room temperature and at 10 bar H2 pressure. 

 

Na2B4O7+Na2CO3+8Mg+(10Bar)8H2 
 4NaBH4+8MgO+CO2 
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Na2B4O7  =  20.12g 

Na2CO3  =  10.60g 

Mg  =  19.44g 

 

2) Experiments were also carried out at two time intervals, 8 and 16 hours at 50 

ºC and at 10 bar H2 pressure. 

 

Na2B4O7+Na2CO3+8Mg+(10Bar)8H2 
 4NaBH4+8MgO+CO2 

 

Na2B4O7  =  20.12g 

Na2CO3  =  10.60g 

Mg  =  19.44g  

 

3) Experiments were carried by using NaH as the starting material. Two time 

intervals, 8 and 16 hours were tried at room temperature.  

 

Na2B4O7 + Na2CO3 + 16NaH  
 4NaBH4 + 8Na2O + CO2 

 

Na2B4O7  =  4.024g 

Na2CO3  =  2.120g 

NaH  =  7.680g 

 

4) Preparation of Anhydrous Sodium Metaborate (NaBO2) as the Starting 

Material  

 Experiments by using anhydrous sodium metaborate (NaBO2) as the starting 

material were also carried out.  The following simple processes were used to prepare the 

anhydrous sodium metaborate (NaBO2): 

 

a.   From “Borax” as the abundant natural resource. 

The process that starts from borax (Na2B4O7.10H2O) requires two parts of NaOH 

to make one part of NaBO2. Na2B4O7.10H2O, NaOH and H2O were put in the disc mill 

and grinded for 6 hours at 100 rpm for the process as given in Eq.(1); 

 

         1/4NaB4O7.10H2O + 1/2NaOH + 5/4H2O  
  NaBO2.4H2O       (1) 



 29 

NaB4O7.10H2O = 19.1 g 

NaOH = 4 g 

H2O = 4.5 g 

 

b. NaBO2.4H2O is simply dried to yield anhydrous sodium metaborate as shown 

in Eq.(2); 

 

           NaBO2.4H2O  
  NaBO2 + 4H2O   (drying 2 hours at 250°C)       (2) 

 

Complete dehydration was accomplished with this process. Anhydrous sodium 

metaborate obtained, was used in the Dynamic Hydriding/Dehydriding Process to 

produce sodium borohydride by the reaction as shown in Eq.(3).  

 

                   NaBO2 + 2Mg + 2H2(10 Bar)  
  NaBH4 + 2MgO    (3) 

 

NaBO2 = 6.6 g 

Mg = 4.8 g  

The reaction was carried out under constant temperature (250°C) and H2 

pressure (10 Bar) conditions for 8 hours. However the results were not satisfactory. 

Only MgO peaks were detected in the spectra but no NaBH4 peaks. 

 

5) Experiments were also carried by using NaH and B(OCH3)3 as starting 

materials. Two time intervals, 8 and 16 hours were tried for 50 ºC at 10 bar H2 pressure. 

 

4NaH + B(OCH3)3 + (10Bar)H2 
 NaBH4 + 3NaOCH3 

 

 NaH= 4.8g 

B(OCH3)3= 5.2g 
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CHAPTER 3 
 

RESULTS and DISCUSSIONS 
 

3.1. MgH2 Synthesis  
 

3.1.1. Optimization of Parameters for MgH2 Synthesis 
 

3.1.1.1. Optimization of Grinding Conditions 

 

 Aim of this study was to get smaller particles so as to obtain more and better 

products and to increase the yield. 

From the experiments carried out, following results were deduced: 

a. Grinding with same diameter steel balls but different size in each lot were 

used for grinding to determine the optimum size (all 2.5 or 5 or 10 or 20 mm diameter): 

This procedure was not succesfull, since Mg pieces were stuck together. 

b. Grinding with different diameter steel balls in the same lot:  

This procedure was succesfull and approximade size Mg pieces were obtained.  

c. Grinding with disc:  

This procedure was more succesfull and approximade size Mg pieces were 

obtained. In Figure 3.1. effects of different grinding procedures are given. 

 

3.1.1.2. Effect of H2 Pressure 
 

Hydride formation requires Mg to be exposed to a hydrogen pressure of at least 

10 bar “(Li et al. 2002, Wu et al. 2006)”. With our set up, we could at most maintain 

continuous 10 bar controlled H2 pressure therefore this pressure was used throughout 

the experiments.  

�
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 (a) 

 (b) 

 (c) 

 

Figure 3.1. SEM back-scattered microimages of Mg at different grinding conditions   

(a): Grinding Mg with same diameter steel balls, (b): Grinding Mg with 

different diameter steel balls, (c): Grinding Mg with disc 
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3.1.1.3. Effect of Temperature 

 

In our primary experiments, only heating under H2 pressure, was not enough for 

sufficient MgH2 formation. Our experiments up to 400oC and 10 bar hydrogen pressure 

gave very poor yields. Effect of temperature in our studies is given in Figure 3.2.  MgH2 

formation starts after 300oC. There is a minor increase in the yield as the temperature is 

increased. More MgH2 formation may be performed at even higher temperatures but 

NaBH4 synthesis at high temperatures is beyond the aim of this study. 

 

 
 

Figure 3.2. The XRD Spectra for MgH2 Synthesis at Different Temperatures  

�=MgH2, �= Mg    

 

3.3.1.4. Effect of Grinding Time 
 

Grinding at room temperature, at 50oC and 100oC were performed for various 

time intervals. 8 hour grinding time was selected as optimum duration after 

experimental design results. Figure. 3.3 shows the results of 50 oC studies.  
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Figure 3.3.  The XRD Spectra at 50 °C for MgH2 Synthesis for Different Time 

Intervals �= MgH2, �= Mg 

 

3.1.2. Experimental Design Results for MgH2 Synthesis 
 

To find the optimum conditions, two important parameters were selected and 

experiments were carried out for 3 levels. Experimental Design Results Scheme for 

MgH2 Experiments are given in Table 3.1. 

 

Table 3.1. Experimental Design Results Scheme for MgH2 Experiments 

 

Experiment 
Number 

Temperature Grinding 
Time 

Peak Intensity 
Ratio IMgH2/IMg 

1 1 1 0.127 

2 1 0 0.078 

3 1 -1 0.025 

4 0 1 0.172 

5 0 0 0.223 

6 0 -1 0.173 

7 -1 1 0.022 

8 -1 0 0.017 

9 -1 -1 0.016 
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For Temperature;         -1 = 8 Hours           For Grinding Time;      -1 = 25ºC     

                                 0 = 16 Hours                                                       0 = 50 ºC          

                                  1 = 24 Hours                                                       1 = 100 ºC 

For Response;  Peak Intensity Ratio IMgH2  / IMg 

 

3.1.2.1. Nonlinear Model 
 

Table 3.2. Experimental Design Nonlinear Model Results Scheme for MgH2 Experiments 

 

Exp. 
Num 

Factor 
0 

Factor 
A 

Factor 
B A2 B2 A*B Response Nonlinear 

� 

Predicted 
Nonlinear 
Response 

Nonlinear 
Residual 

1 1 1 1 1 1 1 0.127 0.2006 0.1129 0.0141 

2 1 1 0 1 0 0 0.078 0.0292 0.0879 -0.0099 

3 1 1 -1 1 1 -1 0.025 0.0178 0.0292 -0.0042 

4 1 0 1 0 1 0 0.172 -0.1418 0.2016 -0.0296 

5 1 0 0 0 0 0 0.223 -0.0168 0.2006 0.0224 

6 1 0 -1 0 1 0 0.173 0.0240 0.1659 0.0071 

7 1 -1 1 1 1 -1 0.022  0.0066 0.0154 

8 1 -1 0 1 0 0 0.017  0.0296 -0.0126 

9 1 -1 -1 1 1 1 0.016  0.0189 -0.0029 

 
Nonlinear Model Equation:  
y=0.2006+0.0292*A - 0.1418*A2+0.0178*B-0.0168*B2+0.024*A*B 

 

Optimum Predicted Response = 0.2016 

Optimum Factor Levels; 

Factor A : Temperature =  0                refers to  50ºC 

Factor B : Grinding Time = 1              refers to 24  Hours 

 

Optimum Nonlinear Response = 0.2086 

Optimum Factor Levels; 

Factor A: Temperature =  0.16                refers to 69ºC 

Factor B: Grinding Time = 0.64             refers to 21 Hours 
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y = 0.959x + 0.0039
R2 = 0.9589
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Figure 3.4. Nonlinear Model Predicted Response-Actual Response Plot 

 

As detected from the comparison of the optimization plots of the linear and 

nonlinear models and also from the comparison of R2 values which is shown in Figure 

3.4.  It can be predicted that the nonlinear model fits our experimental results. 
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Figure 3.5. Nonlinear Model Residual-Experiment Number Plot  
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Figure 3.6. Nonlinear Model 3-D (Peak Intensity-Grinding Time-Temperature)  

Optimization Plot 

 

3.2. NaBH4 Synthesis 
 

3.2.1. Experiments with Ball Mill 
 

1) Metallic magnesium and H2 gas were used as starting materials instead of 

MgH2. Experiments were carried out with a ball mill at 100 rpm. Three time intervals - 

8, 16 and 24 hours - were tried at room temperature.  

 

Na2B4O7+Na2CO3+8Mg+(10Bar)8H2  
  4NaBH4+8MgO+CO2 

 

Na2B4O7, Mg and Na2CO3 peaks were identified in the XRD spectrum of 8 and 

16 hours experiments, as detected in Figure 3.7. However Na2B4O7 and Na2CO3 peaks 

disappeared in the spectrum for 24 hours experiments and NaBH4 peaks are not present. 

We assume that crystalic structures of Na2B4O7 and Na2CO3 are destroyed during 24 

hours milling and they do not appear in the spectrum. 
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Figure 3.7.  The XRD Spectra for Sodium Borohydride Synthesis Using H2 Gas with 

Ball Mill at Room Temperature �= Mg, �=Na2CO3, 0=Na2B4O7 

 

 
 

Figure 3.8.  The XRD Spectra for Sodium Borohydride Synthesis Using NaH with Ball 

Mill at Room Temperature �= NaH, �=Na2CO3, 0=Na2B4O7 
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2) NaH was tried instead of metallic magnesium and H2 gas. Experiments were 

carried with a ball mill at 100 rpm. Two time intervals, 8 and 16 hours were tried at 

room temperature.  

 

Na2B4O7+Na2CO3+16NaH 
 4NaBH4+8Na2O+CO2 

 

Na2CO3, NaH and small Na2B4O7 peaks are detected at XRD spectra of 8 and 16 

hours experiments which is given in Figure 3.8. Both spectra are nearly the same. No 

NaBH4 peaks are observed. 

 

3.2.2. Experiments with Disc Mill 
 

1) Metallic magnesium and H2 gas were used as starting materials instead of 

MgH2. Experiments were carried out with a disc mill at 100 rpm. Three time intervals - 

8, 16 and 24 hours - were tried at room temperature.  

 

Na2B4O7+Na2CO3+8Mg+(10Bar)8H2 
 4NaBH4+8MgO+CO2 

 

Mg and small Na2CO3 peaks were detected but Na2B4O7 peaks disappeared at 

XRD spectrum of 8 and 16 hours experiments which is given in Figure 3.9. However 

Na2CO3 peaks also disappeared at 24 hours experiments’ spectrum. No NaBH4 peaks 

were detected at the XRD spectra.   

 

2) Same experiments were carried with a grinding disc at 100 rpm. Two time 

intervals, 8 and 16 hours were tried for 50 ºC at 10 bar H2 pressure. 

 

Na2B4O7+Na2CO3+8Mg+(10Bar)8H2 
 4NaBH4+8MgO+CO2 

 

Mg and small Na2CO3 peaks were detected in Figure 3.10. at both XRD spectra. 

However Na2B4O7 peaks disappeared. No NaBH4 peaks are observed. 
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Figure 3.9.  The XRD Spectra for Sodium Borohydride Synthesis Using H2 Gas with 

Disc Mill at Room Temperature �= Mg, 0=Na2CO3 

 

        
 

Figure 3.10.  The XRD Spectra for Sodium Borohydride Synthesis Using H2 Gas with 

Disc Mill at 50°C �= Mg, 0=Na2CO3 
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3) NaH was used as a source of H2 gas. Experiments were carried with a grinding 

disc at 100 rpm. Two time intervals, 8 and 16 hours were tried at room temperature.  

 

Na2B4O7 + Na2CO3 + 16NaH  
 4NaBH4 + 8Na2O + CO2 

 

NaH and small Na2CO3 peaks were detected at both XRD spectra which are 

shown in figure 3.11. Na2B4O7 peaks disappeared. No NaBH4 peaks were observed. 

 

 
 

Figure 3.11.  The XRD Spectra for Sodium Borohydride Synthesis Using NaH with 

Disc Mill at Room Temperature �= NaH, �=Na2CO3 

 

4) a) The process that starts from Na2B4O7.10H2O requires two parts of NaOH 

to make one part of NaBO2. NaB4O7.10H2O, NaOH and H2O were put in disc mill and 

grinded 8 hours at 100 rpm. 

 

1/4NaB4O7.10H2O + 1/2NaOH + 5/4H2O  
  NaBO2.4H2O 
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b) NaBO2.4H2O is treated with a simple drying process to yield anhydrous 

sodium metaborate.  

 

NaBO2.4H2O  
  NaBO2 + 4H2O   (drying 2 hours at 250°C) 

 

 
 

Figure 3.12.  The XRD Spectrum for anhydrous sodium metaborate synthesis        

�=NaBO2 

 

Anhydrous sodium metaborate (NaBO2) was synthesised. Red peaks belong the 

anhydrous sodium metaborate in Figure 3.12.  

 

c) The sodium borohydride can be processed by the reaction as shown in 

equation, where the system is kept under constant temperature (250°C) and 10 Bar H2 

pressure conditions at 8 hours. 

 

NaBO2 + 2Mg + 2H2(10 Bar)  
  NaBH4 + 2MgO 

 

Small sodium borate hydroxide (Na2(BO2(OH)) and MgO peaks were detected 

at the XRD spectra as shown in Figure 3.13. But no NaBH4 peaks were detected at the 

XRD spectra as shown in figure 3.13.  

 

 
 

Figure 3.13. The XRD Spectrum for Sodium Borohydride Synthesis                             

�= (Na2(BO2(OH)), 0= MgO 
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5) Experiments were carried using NaH and B(OCH3)3 as starting materials at 50 

ºC and 10 bar H2 pressure with a grinding disc at 100 rpm. Two time intervals, 8 and 16 

hours were tried. 

 

4NaH + B(OCH3)3 + (10Bar)H2 
 NaBH4 + 3NaOCH3 

 

 The spectra are very different as shown in Figure 3.14. NaH, C14H8O2 (alpha-

9,10-Phenanthrenedione) and small NaBH4 peaks appear in both spectra. NaBH4 and 

C14H8O2 peaks are more intense in the spectrum for 16 hours experiment, but NaH 

peaks are almost same as detected in Figure 3.14. The spectrum for 8 hours experiments 

has some excessive peaks. These peaks match with CaO but our samples do not contain 

Ca. CaO is probably an impurity from a previous XRD analysis. C14H8O2 peaks may be 

due to the NaH solution because the chemical is bottled and transported in a mineral oil.  

 

 
 

 Figure 3.14.  The XRD Spectra for Sodium Borohydride Synthesis Using H2 Gas, 

NaH and B(OCH3)3 with Disc Mill at 50 ºC �= NaBH4, �=NaH,                   

0= C14H8O2, *=CaO 
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CHAPTER 4 
 

CONCLUSION 
 

The aim of this study was to develop a new method for the synthesis of sodium 

borohydride at low temperatures.   

The most different part of this study is working at low temperatures and the 

more effective grinding instead of heating. In the literature studies at 50oC was not 

found. 

Studies progressed at in two stages.  

1) Experiments carried out for the production of MgH2. Magnesium hydride 

which is the starting material for the synthesis of NaBH4 could not be obtained from the 

market, therefore our experiments started with the production of MgH2.  

2) Experiments carried out for the production of NaBH4. 

Conclusions for MgH2 production: 

- Only heating and H2 pressure application was not enough for sufficient MgH2 

formation.  

- In the literature, it is stated that heating between 300oC to 400oC and hydrogen 

pressures between 10 to 70 bar “(Liang et al. 1995, Noritake et al. 2003, Wu et al. 

2006)” gives satisfactory yields. Our studies for heating up to 400oC and 10 bar 

hydrogen pressure gave very poor yields. A literature result for 24 hours, 10 Bar and 

350oC study with a yield of %60 “(Li et al. 2002)” is not consistent with our results. The 

only difference between this result and ours is the size of Mg particles. Their Mg 

powder size is stated as (<75 µm) while our starting Mg powder size was between  (50 - 

150 µm). 

- Production of MgH2 is possible at low grinding speeds, low temperatures and 

low H2 pressures. 

- Grinding is very important factor for magnesium hydride synthesis at low 

temperatures.  

- Grinding especially with disc mill at 100 rpm increased the yield with a 

considerable amount.  

- It was rather surprising to see that grinding was more effective than heating for 

MgH2 formation. This effect is displayed in Figure 4.1. 
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Figure 4.1. The XRD Spectra for MgH2 Synthesis at Different Conditions �= MgH2, 

�= Mg 

 

- Most effective grinding is accomplished with a disc mill instead of ball mill. 

We think this is due to the big mass and therefore to the big momentum of the disc.   

- Considerable MgH2 production is possible even at 10 Bar H2 pressures. The 

yield can be increased at higher H2 pressures. 

- Heating and grinding time were selected as the most effective parameters and 

experimental design set up was planned for these parameters. Heating at 50°C and 24 

hour grinding time was found as the optimal experimental conditions. 

Conclusions for NaBH4 production: 

- MgH2 production was accomplished which is used as starting material for the 

production of NaBH4. However it is purification was not completed so it could not be 

used as a starting material. 

- NaBH4 production using Na2B4O7, Na2CO3, Mg and H2 gas as the starting 

materials at room temperature and at 50°C under 10 bar H2 pressure did not give 

satisfactory results.  

- NaBH4 production using Na2B4O7, Na2CO3 and NaH as the starting materials 

at room temperature under 10 bar H2 pressure did not give satisfactory results.  
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- NaBO2 was produced from Na2B4O7.10H2O. This NaBO2 was used as a 

starting material for the production of NaBH4. However NaBH4 could not be obtained. 

- B(OCH3)3 and NaH was reacted in a disc mill at 50ºC under 10 bar H2 

pressure. NaBH4 peaks were observed in the XRD spectrum. Experiments at room 

temperatures and at 100 C were also fulfilled but their XRD spectra were not obtained. 

Further studies will continue in two subjects. 

a) Further studies will be carried to find the optimal conditions for MgH2 

synthesis. Studies will be carried at around 50ºC to 80ºC because our preliminary 

calculations gives 69ºC as the optimal temperature. Our calculations also show the 

optimal grinding time as 21 hours, so the experiments will be carried between 20 to 24 

hours. Longer grinding times, up to 30 hours will also be tried. 

b) Studies on NaBH4 production will continue in our future studies. B(OCH3)3 

and pure NaH will be reacted in a disc mill between room temperature and 100ºC under 

10 bar H2 pressure. 
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ABSTRACT 
 

SYNTHESIS OF MAGNESIUM HYDRIDE AND SODIUM 

BOROHYDRIDE AT LOW TEMPERATURES 

 

 In this study, experimental conditions for production of magnesium hydride and 

sodium borohydride by low temperature grinding are investigated. In the first set of 

experiments, it was attempted to confirm the information presented in the literature that 

magnesium hydride could be produced by heating at 350oC for 24 hours under 10 

atmospheres of pressure. The results obtained in this study indicated that even a higher 

temperature heating at 400oC under 10 bar hydrogen pressure was insufficient for 

magnesium hydride formation.  

 Heating and grinding time were selected as the most effective parameters by 

which a full-factorial experimental design methodology was implemented. Statistical 

analysis results indicated that a combination of grinding and a 50oC heating was most 

effective. Hence, grinding was identified as the most significant factor effect on the 

production of magnesium hydride.  

 Two different mills were used, in this study, and it was found that disc mill was 

more effective than ball mill. Different combinations of dehydrated borax, sodium 

carbonate, magnesium, hydrogen gas, sodium hydride and sodium metaborate were 

tested without success to produce sodium borohydride. In the final set of experiments, 

sodium borohydride could be successfully produced by using trimethyl borate and 

sodium hydride in a disc mill at 50oC under 10 bars hydrogen pressure.   
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ÖZET 
 

DÜ�ÜK SICAKLIKLARDA MAGNEZYUM H�DRÜR VE   

SODYUM BORH�DRÜR SENTEZ� 

 

Dü�ük sıcaklıklarda magnezyum hidrür ve sodyum borhidrür üretebilmek için 

yeni bir metot geli�tirilmeye çalı�ıldı. Dü�ük sıcaklıklarda magnezyum hidrür üretimi 

ile ilgili optimizasyon çalı�maları sonucunda sıcaklık için 50°C, ö�ütme zamanı için 24 

saat ve ö�ütme için 7,5 cm çapında ö�ütücü diskin en uygun ko�ulları sa�ladı�ı 

belirlendi. 

Magnezyum hidrür sentezi için yapılan ön deneylerde 200- 400°C arası sıcaklık 

de�erleri, 8-24 saat arası zaman aralıkları ve 10 bar hidrojen basıncı denendi. 

Literatürde magnezyum hidrür sentezi için gerekli minimum hidrojen basıncının 10 bar 

olması ve laboratuar ko�ullarının en fazla 10 bar hidrojen basıncına izin vermesi 

sebebiyle tüm deneylerde hidrojen basıncı 10 barda sabit tutuldu. Ancak alınan 

sonuçlarda verimlerin çok dü�ük olması nedeniyle ö�ütme faktörünün magnezyum 

hidrür sentezi üzerine etkisi ara�tırıldı ve en etkili ö�ütme ortamının 7,5 cm çapında 

diskle ö�ütme yapan diskli de�irmen oldu�u saptandı. 

Sodyum borhidrürden sentezi için, bilyeli de�irmende ve diskli de�irmende 

yapılan, ba�langıç maddeleri olarak susuz boraks, sodyum karbonat, metalik 

magnezyum, hidrojen gazı ve susuz boraks, sodyum karbonat, sodyum hidrür kullanılan 

iki ayrı deney metodunun XRD analizleri sonucunda sodyum borhidrür saptanamadı. 

Ba�langıç maddesi olarak boraks, sodyum hidroksit, su ve magnezyumun kullanıldı�ı 

deney metodunun birinci a�amasında, elde edilmesi gereken susuz sodyum metaborat, 

uygun verimle elde edildi. Ancak susuz sodyum metaborat, magnezyum ve hidrojen 

gazı basıncı altında gerçekle�tirilen ikinci a�ama sonunda gözlemeyi bekledi�imiz 

magnezyum oksit ve sodyum borhidrürden sadece magnezyum oksit belirlendi.    

Son olarak sodyum hidrür ve trimetil boratın 50°C’da diskli de�irmende 

ö�ütülmesiyle yapılan 8 ve 16 saatlik deneylerin XRD analizleri sonucunda sodyum 

borhidrür sentezlendi�i saptandı.   
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CHAPTER 1 
 

INTRODUCTION 
 

1.1. Hydrogen Storage Systems 
 

1.1.1. Hydrogen Energy 
 

Hydrogen is the ultimate fuel. It is clean, efficient, and yields more energy per 

unit of weight than any other existing fuel. Because hydrogen is a major component of 

water and of hydrocarbons, it is in abundant supply “(Ovshinsky 2003)”. 

 Hydrogen is an energy carrier, an indirect source of energy, not a resource 

itself. In spite of this, hydrogen was at first foredetected as a substitute energy form, in 

particular to substitute coal, natural gas, oil, and any products derived from them. The 

reserves of fossil energy, in particular oil, are limited. This led to the belief that 

hydrogen could soon be used economically as a substitute energy form. The economic 

viability of the energy carrier hydrogen is enhanced by price advantage in transport 

over large distances and the possibility of energy storage. Hydrogen for use as a 

universal energy carrier can be generated by using all possible primary energy sources. 

Coal, nuclear energy including fusion (although still undeveloped), and solar energy 

have been named. 

 In addition to economic reasons for the introduction of new energy sources and 

new energy carriers, ecological reasons are becoming increasingly important, for 

example: 

 The increasing carbon dioxide content of the atmosphere, caused by the use of 

fossil energy sources and other human activities such as destruction of the tropical rain 

forests are predicted to lead to extensive climatic changes, e.g., a slow warming up of 

the atmosphere and the oceans, and melting of pole caps “(Bockris 1980)”. Because of 

the natural fluctuations in the climate this theory has not been proven beyond doubt. In 

particular, little is known about compensation effects. 

 Well-known scientists have been demanding for years (without success) that a 

"low-risk strategy" for the use of fossil resources should be followed “(Bach et al. 

1980)”. The utilization of the energy carriers coal, oil (in the form of gasoline, diesel, 
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kerosene, etc.) and natural gas leads to emissions of sulfur dioxide, nitrogen oxides and 

hydrocarbons. In Europe, this has already led to the destruction of extensive wooded 

areas and to damage of the rest of the forests. The use of hydrogen as an energy carrier 

coupled with suitable utilization techniques could become particularly important for 

environmental protection. 

 Hydrogen competes with the conventional energy carriers hydrocarbons 

(methane, LPG, gasoline, etc.), coal, and electric power. Further energy carriers are 

those recovered from regenerable sources and from refuse: biogas, alcohols, and 

vegetable oils. For the suitability of an energy carrier, the following aspects are 

important: conversion efficiency of the primary energy carrier to the final use, 

availability, ease of storage, safety, and ecological and economic evaluation “(Ullmann 

2002)”. 

 

1.1.2. Hydrides 
 

 The hydrides are a large group of compounds with diverse structures and 

bonding types. They may be divided into four classes according to their bonding 

character: 

  1) Ionic hydrides 

  2) Polymeric covalent hydrides 

  3) Volatile covalent hydrides 

 4) Metallic hydrides. 

 The borders between the classes is not sharp; they merge into each other 

according to the electronegativities of the elements concerned. Arranging the binary 

hydrides as in the periodic table, the ionic hydrides are detected to be formed by the 

strongly electropositive alkali and alkaline earth metals. Beryllium hydride, which is 

partly covalent in character, is an exception. The elements that form polymeric covalent 

hydrides, apart from beryllium, belong to Groups 12 (zinc) and 13 (boron). Boron 

occupies a special position. It forms numerous volatile hydrides with unusual 

structures. The hydrides of Group 13 are electron deficient; saturation is achieved in the 

complex hydride ions such as BH4
– and AlH4

–. The covalent hydrides formed by the 

elements of groups 14 – 17 (carbon – fluorine) are characterized by high volatility. The 

polarity of the element – hydrogen bond changes with increasing electronegativity of 
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the elements. Whereas the hydrides of the metallic elements and of silicon contain 

hydridic (negatively polarized) hydrogen, those of the nonmetals contain acidic 

hydrogen, sometimes strongly so. The latter are not regarded as hydrides in the usual 

sense and are not discussed in the present article. Metallic hydrides are formed by the 

transition metals, the lanthanides, and the actinides. The structures of these hydrides are 

fundamentally similar to those of metals. The compositions of the metallic hydrides can 

vary and are frequently nonstoichiometric. Another class of hydrogen compounds, the 

transition metal hydride complexes, is becoming important. In these molecular 

complexes the hydrogen atoms are covalently linked to a transition metal. 

Economically, the most important hydrides are those of the alkali and alkaline earth 

metals and the complex hydrides of boron and aluminum. These are mostly produced in 

tonnage quantities and have a wide range of applications “(Ullmann 2002)”. 

 

1.1.3.  Metallic Hydrides 
 

Hydrogen reacts with many metallic elements and alloys providing a range of 

metallic hydrides to choose for hydrogen storage. In general, the formation of metallic 

hydrides involves the dissociative chemisorption of H2 onto the metal surface and then 

hydrogen atom diffusion into the crystal lattice. The formation of metallic hydrides is 

typically exothermic and hydrogen desorption from the hydrides can be achieved under 

certain temperature and pressure conditions. Over the years a number of 

alloys/intermetallics have been designed for a variety of applications. For mobile 

applications, the hydride should possess good hydriding/dehydriding properties, 

optimum kinetics at reasonably low temperatures (25- 100°C) and should undergo 

numerous thermal cycles. Metallic hydrides can be broadly classified into three 

categories: classical/interstitial, chemical, and complex light metal hydrides “(Chandra 

et al. 2006)”. 

 

1.1.3.1. Classical / Interstitial Metallic Hydrides 
 

Several intermetallics of AB2, A2B, AB. and AB5 types form hydrides that have 

been used for hydrogen storage; commonly used are AB5 hydrides, where "A" is usually 

a lanthanide element (atomic numbers 57- 71 ), Ca, or mischmetal (rare earth metal 
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mixture), and "B" is Ni, Co, Al, Mn, Fe, Sn, Cu, Ti, etc. The hydrogen is stored 

interstitially in the lattice of the heavy atoms. These classical hydrides are remarkable 

due to the fact that their hydriding properties can be fine-tuned by microalloying "A" or 

"B" with the listed elements. These hydrides are reversible with good kinetics and are 

well suited for stationary applications. Although these classical hydrides have good 

volumetric H, densities (~130 kg H2/m³ for LaNi5H6, 7), for on-board applications they 

suffer from the disadvantage of having low gravimetric density (1- 2 wt.% H2), resulting 

in a large weight penalty “(Chandra et al. 2006)”. 

 

1.1.3.2. Chemical Hydrides  
 

These are commonly known hydrides with high theoretical gravimetric weight 

density, such as methanol-CH3OH (8.9 wt.%), methylcyclohexane-CH3C6H12 (13.2 

wt.%), ammonia-NH3 (15.1 wt.%), ammonia borane-NH3BH3 (6 wt.% H), and other 

organic compounds (capacities do not include system weight). These compounds can be 

used for on-board reforming for generating hydrogen (e.g., steam reforming of CH3OH 

for hydrogen production). The nonreversible nature of these hydrides coupled with 

increased pollution concerns is disadvantageous for vehicular applications “(Chandra et 

al. 2006)”.            

 

1.1.3.3. Complex Light Metallic Hydrides  

 
 Until recently, the light metal aluminohydrides, termed complex hydrides (so-

called alanates). such as MAlH4 and M3AlH6 (M = Na, Li), were not considered for 

hydrogen storage because they were considered to be non-reversible despite their high 

hydrogen content. NaAlH4 could be reversibly dehydrided by the addition of transition-

metal-based catalysts. The development of catalyzed light metal hydride complexes 

including borohydrides (Li, Na)BH4, Li-N based, and magnesium-based 

nanocomposites is the most active area of hydrogen storage research for on-board 

applications “(Chandra et al.  2006)”.  
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1.1.4. Magnesium Hydride 
 

Magnesium and magnesium-based alloys are amongst the most attractive 

materials for hydrogen storage, since their hydrogen capasity exceeds all known 

reversible metal hydrides. Magnesium forms a hydride (MgH2) which provides nominally 

7.6 wt.% of hydrogen. In addition, the enthalpy of hydride formation is large (�H=-75 

kJ/mole) making magnesium also attractive for thermal energy storage. These features, 

combined with the very low cost of magnesium, suggest an excellent potential for 

hydrogen-related applications. However, to date magnesium hydride remains of no 

practical use for hydrogen storage. The main reason is that the reaction for 

hydrogenation/dehydrogenation is very slow and occurs only at very high temperatures. 

In practice both absorption and desorption of hydrogen require a temperature of at least 

350- 400°C and even then only occur over a time scale of hours. The pressure of 

hydrogen gas in equilibrium with magnesium hydride is low (1 bar at about 280°C) and 

therefore thermodynamically the hydride should form readily at room temperature. 

However, this never occurs in practice becaus of kinetic limitations. There are several 

factors that significantly reduce the rate of hydrogenation. One of them is the oxidation of 

magnesium surface and/or formation of magnesium hydroxide. Magnesium oxide forms 

easily on a Mg surface exposed to air. Usually oxide layers on the metal surface are not 

transparent to hydrogen molecules so that an MgO layer prevents hydrogen molecules 

from penetrating into the material “(Manchester and Khatamian 1988)”. To initiate 

hydrogen absorption the oxide layer on magnesium must be perforated or cracked, which 

is the essence of activation. Annealing causes cracking of the oxide layer and as a result 

bare metal surfaces are exposed to hydrogen. Activation usually consist of high-

temperature cycling and most probably takes advantage of the different thermal expansion 

coefficient of magnesium and magnesium oxide at high temperatures. The oxide layer on 

a magnesium surface cracks only if the temperature of annealing exceeds 400ºC. In 

addition, annealing at temperatures higher than 350ºC causes magnesium hydroxide to 

decompose. Thus activation of magnesium consists of several cycles annealing at 400ºC 

in vacuum and in hydrogen, followed by annealing for several hours at 400ºC in vacuum 

“(Liang et al. 1995)”. However even after this procedure, hydride formation required the 

Mg to be exposed to hydrogen at 30 bar and at 400ºC for several hours “(Liang et al 

1995)”. Another reason for the very slow hydrogenation rate of magnesium (even after 
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activation) is the limited dissociation rate of hydrogen molecules on the metal surface 

“(Schlapbach 1992)”. A clean surface of magnesium is not active for the dissociation of 

gaseous hydrogen “(Zaluska et al. 1998)”. 

 The nucleation rate of magnesium hydride is dependent on hydrogen pressure. 

High hydrogen pressure increases hydrogenation rate by increasing the thermodynamic 

driving force of the reaction, but only up to a point. For pressures higher than about 30 

bars, the absorption rate is again reduced. This effect occurs when initial hydrogenation 

is relatively fast and leads to the formation of a “surface shell” of magnesium hydride 

which blocks further hydrogen uptake. At this point hydrogenation is limited by the 

growth of the hydride. Althought in general growth has been found to be faster than 

nucleation, growth limitations are usually responsible for reducing the final hydrogen 

capacity. Studies on hydrogenation kinetics showed that growth is controlled by 

diffusion of hydrogen atoms, which is very slow throughout magnesium hydride. 

Further experiments indicated that the growth is controlled by a slow migration of the 

interface between the hydride and magnesium, in particular by hydrogen diffusion along 

the hydride-metal interface and not throughout the hydride layer. In any case, 

hydrogenation of magnesium is normally almost impossible to complete, even at very 

high temperatures and pressures. It has also been observed that hydrogen uptake 

declines when the hydride nuclei start to coalesce on the magnesium surface to form a 

compact hydride layer and that the hydrogenation reaction diminishes completely when 

the hydride layer exceeds 30- 50 µm. For kinetic reasons the remaining magnesium 

cannot be further hydrogenated “(Zaluska et al. 1998)”.    

 The formation of a hydrogen-absorbing material by mechanical milling under 

hydrogen atmosphere simultaneously produces hydrogen uptake, mechanical 

deformation, defect formation and surface formation. These structural modifications can 

lead to the formation of metastable phases, refinement of the microstructure into the 

nanometer range, extension of solubility limits, development of amorphous phases. 

These effects produce important changes in the hydrogen-absorption and desorption 

properties. In order to understand the structural changes that occur during RMA 

(reactive mechanical alloying), the known phase of the system Mg-H should be 

analyzed first. The temperature-composition diagram of the Mg-H system consist of a 

hcp �-phase (interstitial solid solution) and a �-phase with tetragonal structure and a 

stoichiometric nominal composition of MgH2. When the tetragonal �- MgH2 phase is 

subjected to high compressive stres, it partially transforms into the metastable 
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orthorhombic 	-phase. The transition � 
 	 was also observed at a pressure of 2.5 GPa. 

Both phases coexist up to a pressure of 8 GPa. The metastable 	 phase reverts 

exothermically to the tetragonal �-phase by heating at 350ºC, as measured by DTA 

between 300 and 350ºC. Another metastable MgH2 phase, the hexagonal (pseudocubic) 

�-phase, has been observed after treatment of the �-phase at 2.8 to 8 GPa and 650 to 

800ºC. The thermal study of on a �
�- MgH2 mixture showed an endothermic effect 

between 350 and 400ºC. This effect was attributed either to �
	 or to �
� phase 

transitions “(Gennari el al. 2001)”.  

 

1.1.4.1. Properties of Magnesium Hydride 

 

 Pure magnesium hydride is a white, nonvolatile powder. Although its properties 

are predominantly salt-like, it shows signs of a transition towards the covalent 

polymeric hydride structure of compounds such as beryllium and aluminum hydride. Its 

enthalpy of formation and thermal stability are considerably lower than those of the 

homologous calcium hydride. Magnesium hydride decomposes without melting at 

280 °C. Its reactivity depends on the method of preparation. The product obtained by 

direct synthesis from the elements is stable in air. Nevertheless, if it is prepared by 

pyrolysis of dialkyl magnesium or by reaction of lithium aluminum hydride with 

dimethyl magnesium, the product is very pure and finely divided and ignites 

spontaneously on contact with air “(Ullmann 2002)”. 

 

 

 

Figure 1.1. Solid Phase Form of MgH2 

 

1.1.4.2. Uses of Magnesium Hydride 
 

  Magnesium hydride contains a high proportion of hydrogen (7.65 wt%), which 

can be liberated by heat. The catalytically produced compound displays rapid rates of 

hydrogenation and dehydrogenation and it is therefore of interest as a hydrogen 
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reservoir. The high activity of catalytically produced magnesium hydride also enables it 

to take part in an addition reaction with 1-alkenes to form organomagnesium 

compounds “(Bogdanovic 1984)”. 

 

MgH2 + 2 CH2=CHR  →  Mg(CH2CH2R)2 

  

These dialkyl magnesium compounds have become industrially important in the 

production of very active Ziegler catalysts. The Mg – H2 system can also be used for 

the simultaneous removal and purif ication of pure hydrogen from gas mixtures 

“(Bogdanovic 1986)”. Magnesium hydride is also used as a drying agent for organic 

solvents and gases and in chemical syntheses. 

 

1.1.4.3. Production Methods of Magnesium Hydride 

  

1) Magnesium powders with a purity of 99.95% (Size:<75 µm) are 

hydrogenated at 350°C under 1 MPa (10 Bar). Hydrogenation rate of 60% were formed 

through 24-h hydrogenation “(Li et al. 2002)”. 

 2) MgH2 are prepared by hydrogenation of pure Mg powder (purity:99%) under 

a hydrogen pressure of 7 MPa (70 Bar) at 300°C “(Noritake et al. 2003)”. 

 3) MgH2 formation require the Mg to be expose to hydrogen at 3MPa (30 Bar) 

and at 400°C for several hours “(Liang et al. 1995)”. 

 4) Magnesium metal itself is hydrated with difficulty upon contact with 

hydrogen of 6 MPa (60 Bar) at 400°C “(Imamura et al. 1983)”. 

 5) Magnesium hydride are prepared by reaction ball milling. mechanically 

milling magnesium under hydrogen atmosphere with an initial pressure of ~ 1 MPa (10 

Bar), followed by a long-period hydrogenation at 300°C. The process are repeated for 

three times to achive a hydrogenation ratio of ~80% “(Wu et al. 2006)”. 

 

1.1.5. Borohydrides 
 

Borohydrides are well-known reducing agents. They often have quite specific 

uses in organic and inorganic chemistry, where they may also be the sources of H− other 

than simple reductants. Recently they have attracted more attention as a hydrogen 
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storage medium due to their high hydrogen storage capability. For example, NaBH4 

contains 10.6 wt.% hydrogen which is much more than what most hydrogen storage 

alloys have.  

 

1.1.6. Sodium Borohydride 
 

NaBH4 is a white crystalline substance, completely stable in dry air and is 

nonvolatile. Solid state sodium borohydride, based on metal-hydrogen complexes which 

react with water releasing pure hydrogen. Sodium borohydride, first synthesized and 

identified in 1942. It is one of the most unique speciality inorganic chemical being 

manufactured today.  

 

 
 

Figure1.2. Structure of NaBH4 

 

NaBH4 contains hydrogen which is much more than what most hydrogen storage 

compounds have. Furthermore, the hydrolysis of sodium borohydride is of interest in 

hydrogen generation because half of the generated hydrogen is from the borohydride 

and the other half is from water. NaBH4 can generate 10.8 wt.% of hydrogen based on 

the following hydrolysis reaction. 

 

NaBH4 + 2H2O  
   NaBO2 + 4H2� 

Its hydrogen generation rate, when using some catalysts, is rather high at room 

temperature compared with the hydrogen desorption rate of metal hydrides “(Li et al. 

2003)”.  
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1.1.6.1. Physical and Thermodynamic Properties of Sodium 

Borohydride 
 

Table 1.1. Thermodynamic Properties of Sodium Borohydride  

(source: Wade 1980) 

 

 Function Value 

Free Energy of Formation 

Head of Formation 

Entropy 

Heat Capacity 

Free Energy of Ionization 

�F°298 

�H°298 

S° 

C°p 

�F°298 

-30.1 kcal/mole 

-45.53 kcal/mole 

+24.26 cal/mole 

+20.67 cal/mole 

-5660 cal/mole 

Borohydride Ion, BH4
(aq) 

Free Energy of Formation 

Head of Formation 

Entropy 

Hydrolysis 

BH4
+H°+3H2O(liq)    =  

H3BO3+4H2 (g) 

Oxidation 

BH4
+8OH
 = B(OH) 4
+4H2O+8� 

 

�F°298 

�H°298 

S°298 

 

�F°298 

 

�F°298 

E°298 

 

+28.6 kcal/mole 

+12.4 kcal/mole 

+25.5 cal/mole 

 

-88.8kcal/mole 

 

-228.9 kcal/mole 

+1.24 volts 
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Table 1.2. Selected Physical Properties of Sodium Borohydride  

(source: Wade 1980) 

 

Property______________________________________________________________ 

Formula                                                                 NaBH4 

Molecular Wt                                                         37.84 

Purity                                                                      97+% 

Color                                                                      White 

Crystalline Form (anhydrous)                                Face centered cubic 

                                                                               a=6.15 A.U. 

                             (dihydrate)                                Exists below 36.4°C. 

Melting Point                                                         505°C.    (10 atm. H2) 

Thermal Stability                                                   Decomposes above 400°C. in vacuum    

                                                                               Will not ignite at 300°C. On hot plate 

                                                                               Ignites from free flame in air,                                                                                                                                     

                                                                               burning quietly          

Density                                                                  1.074 g/cc. 

______________________________________________________________________ 

 

1.1.6.2. Solubility of Sodium Borohydride 
 

The solubility of sodium borohydride in water, the most commonly used solvent, 

has been accurately measured at different temperatures. 36.4°C is the equilibrium 

temperature of the two crystal forms NaBH4 and NaBH4.2H2O. Below 36.4°C 

represents the solubility of the dihydrate, and above 36.4°C the solubility of anhydrous 

NaBH4 “(Wade 1980)”. 
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1.1.6.3. Stability of Sodium Borohydride 
 

Sodium borohydride is very stable thermally. It decomposes slowly at 

temperatures above 400 °C in vacuum or under a hydrogen atmosphere. Sodium 

borohydride absorbs water rapidly from moist air to form a dihydrate which 

decomposes slowly forming hydrogen and sodium metaborate. Decomposition in air is 

therefore a function of both temperature and humidity “( Wade 1980)”. 

 

1.1.6.4. Chemical Properties of Sodium Borohydride 
 

1.1.6.4.1. Organic Reductions of Sodium Borohydride 
 

 The first commercial uses for sodium borohydride were for the reduction of 

organic compounds containing carbonyl groups. Classical techniques for accomplishing 

these reductions have been developed. 
 Sodium borohydride attacks the carbon atom which has the largest positive 

charge. Because of this, any substituent which increases the fractional positive charge 

on the carbonyl carbon atom will increase the rate of reduction. If the fractional positive 

charge is decreased by substituents then the rate is slowed down. 

 Sodium borohydride is an attractive reducing agent for organic substrates 

because of its convenience as well as its selectivity and efficiency. The general 

techniques of its use are by now well known to the practitioner of organic synthesis, 

who also knows that modifications are sometimes dictated by the properties ( solubility, 

thermal stability, pH sensitivity ) of the material being reduced “( Wade 1980)”. 

 

1.1.6.4.2.  Reaction of Sodium Borohydride with Water 
 

The reaction of sodium borohydride with water                                                 

NaBH4 + 2H2O 
 NaBO2  + 4H2 is of enormous practical importance. If this hydrolysis 

reaction occurs in competition with the reduction of an organic or inorganic compound, 

borohydride obviously is wasted and its utilization efficiency is lowered. On the other 

hand, sodium borohydride is a remarkably concentrated source of hydrogen. One gram, 
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dissolved in water will release 2.37 liters of molecular hydrogen. Important industrial 

use is made of this property.  
 Factors which control the rate of hydrolysis include concentration of BH
4, 

concentration of NaOH or base (pH) and temperature. The effect of these variables on 

the rate of hydrolysis has been extensively studied.  

The times for complete hydrolysis of sodium borohydride solutions in water at 

25°C which have been buffered at various pH’s are shown in Table 1.3. 

 

Table 1.3. NaBH4 Hydrolysis Time vs pH  

(source: Wade 1980) 

 

                                  pH                                   NaBH4 Completely Hydrolyzed in 

4.0                                                     0.02 sec 

5.0                                                     0.22 sec 

                                   6.0                                                     2.2 sec 

                                   6.25                                                   3.9 sec 

6.5                                                     7.0  sec  

                                   6.75                                                 12.4 sec 

                                   7.0                                                    22.1 sec 

                                   8.0                                                      3.7 min 

                                   9.0                                                    36.8 min   

  10.0                                                   6 hr 8 min 

 

1.1.6.5. Industrial Applications of Sodium Borohydride 
 

1)Pharmaceutical-Fine Chemical 

*Vitamin A (Retinol) 

*Isohumulone 

*Pentazocine 

2)Process Stream Purification  

3)Pollution Control 

*Lead Pollution 

*Mercury Pollution 
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*Silver-Cadmium from Photographic Film Manufacturers 

4)Precious Metal Recovery 

5)Catalyst Preparation 

6)Magnetic Materials for Recording Tapes 

7)Electroless Plating of Metals 

8)Metals Coating of Window Glass 

9)Pulp Brightening 

10)Clay Leaching  

11)Textile Applications–Vat Dye Reductions 

12)Hydrogen Generation 

13)Foamed Plastics 

14)Hydripills 

15)Preparation of Diborane and Derivatives 

 

1.1.6.6. Production Methods of Sodium Borohydride 
 

1) Sodium hydride and methyl borate in correct proportions undergo a rapid 

reaction at 225-275°C to produce sodium borohydride of 90-96% purity and in a yield 

as high as 94%, according to the equation “(Schlesinger et al. 1952)”.  

 

4NaH+B(OCH3)3 
 NaBH4+3NaOCH3 

 

2) Reaction of Sodium Hydride with Sodium trimethoxy borohydride -Reaction 

at 250-270 °C and there maintained for 30 minutes. The crude product is extracted with 

isopropylamine. The product analysed 89% sodium borohydride, and the yield is 78% 

“(Schlesinger et al. 1952)”. 

 

3NaH+NaBH(OCH3)3 
 NaBH4+3NaOCH3 

 

3) Reaction of Sodium Hydride with Sodium Tetramethoxyborohydride –

Experiments and results are quite similar to trimethoxyborohydride. Sodium 

borohydride yield of 66% with 91% purity is obtained “(Schlesinger et al. 1952)”. 
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4NaH+NaB(OCH3)4  
 NaBH4+4NaOCH3 

 

4) The methyl borate may also be replaced by higher esters, such as ethyl and n-

butyl borate “(Schlesinger et al. 1952)”. 

 

4NaH+B(OC2H5)3  
  NaBH4+3NaOC2H5 

 

5)�At higher temperatures (225-275°C) and with sodium, hydrogen and methyl 

borate in the approximate proportions: 

 

4Na+2H2+B(OCH3)3  
 NaBH4+3NaOCH3 

 

Sodium borohydride is formed. The yields are relatively low, %15 “(Schlesinger 

et al. 1952)”.   

 

6)�At higher temperatures (330-350°C), sodium hydride and boric oxide react 

to produce up to 60% yields of sodium borohydride by the following reaction, 

 

4NaH+2B2O3  
 NaBH4+3NaBO2 

 

96% purity sodium borohydride is obtained “(Schlesinger et al. 1952)”. 

 

7) Sodium borohydride can also be synthesized by heating a mixture of 

dehydrated borax, quartz and sodium metal under hydrogen gas to higher temperatures 

of 450-500°C through the following reaction “(Schubert et al. 1963)”. 

 

16Na+8H2+Na2B4O7+7SiO2 
  4NaBH4+7Na2SiO3 

 

8) Besides sodium hydride, calcium hydride has been used to react with NaBO2 

to prepare NaBH4 in the same temperature range “(Goerring et al. 1956)”. 

 

2CaH2+NaBO2 
 NaBH4+2CaO 
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9) Sodium borohydride is synthesized by reacting sodium metaborate (NaBO2) 

with magnesium hydride (MgH2) or magnesium silicide (Mg2Si) by annealing (350-

750°C) under high H2 pressure. As the temperature and the pressure increases, the yield 

increases to have a maximum value (97-98%) at 550°C “(Kojima et al. 2003)”. 

 

NaBO2 + 2MgH2 
  NaBH4 + 2MgO 

NaBO2 + Mg2Si + 2H2 
  NaBH4 + 2MgO + Si 

 

10) Sodium borohydride is prepared through a mechano-chemical reaction at 

room temperature. The mechano-chemical reaction is conducted by ball-milling a 

mixture of magnesium hydride, dehydrated borax and some Na compounds in a 

planetary ball mill at room temperature. MgH2 is used as reducing agent to react with 

dehydrated borax “(Li et al. 2002)”. 

 

8MgH2 + Na2B4O7 + Na2CO3  
  4NaBH4 + 8MgO + CO2 

 

1.2. Ball Milling 

 

Ball Mills are a very efficient tool for grinding many materials into a fine 

powder. To use the Mill, the material to be ground is loaded into the barrel which 

contains grinding media. As the barrel rotates, the material is caught between the 

individual pieces of grinding media which mix and crush the product into a very fine 

powder over a period of several hours. Quite simply, the longer the Ball Mill is run, the 

finer powder will be. Ultimate particle size depends entirely on how hard the material 

you're grinding is, and how long the Ball Mill is run “(WEB_1 2006)”.  

Mechanical milling is an effective technique for the preparation of fine metallic 

and ceramic powders and can also be used to drive a wide range of chemical reactions. 

Milling devices include planetary machines, attritors and vibrational mills; products 

include amorphous, nanocrystalline and quasicrystalline materials, supersaturated solid 

solutions, reduced minerals, high-surface-area catalysts and reactive chemicals “(Takacs 

and Suryanarayana 1996)”. 

 Mechanical Milling is a complex process and hence involves optimization of a 

number of variables to achieve the desired product phase and/or microstructure. Some 
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of the important parameters that have an effect on the final constitution of the powder 

are:  

 • Type of mill, 

 • Milling container, 

 • Milling speed, 

 • Milling time, 

 • Type, size, and size distribution of the grinding medium, 

 • Ball-to-powder weight ratio, 

 • Extent of filling the vial, 

 • Milling atmosphere, 

 • Process control agent, and 

 • Temperature of milling. 

 All these process variables are not completely independent. For example, the 

optimum milling time depends on the type of mill, size of the grinding medium, 

temperature of milling, ball-to-powder ratio “(Suryanarayana 2001)”.  

 

1.2.1. Milling Process Parameters 
 

 Process parameters such as milling temperature, grinding ball diameter, ball-to-

powder weight (charge) ratio, use of a process control agent, and relative proportion of 

the reactants seem to play an important role on the nature and kinetics of the product 

phase obtained by the displacement reactions. For example, a combustion reaction could 

be initiated during the reduction of copper oxide by iron; but the same reaction 

progresses gradually under slightly different milling conditions. Consequently, results 

from different laboratories can be effectively compared only if the exact conditions 

under which the reaction takes place are reported. These conditions need to be 

optimized for the best yield “(Suryanarayana 2001)”. 

 

1.2.2. Temperature Rise during Milling 

 

 The intense mechanical deformation experienced by the powders leads to 

generation of crystal defects and this plus the balance between cold welding and 

fracturing operations among the powder particles is expected to affect the structural 
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changes in the powder. Another important parameter, the temperature experienced by 

the powder during milling, dependent on the kinetic energy of the balls, can also 

determine the nature of the final powder product. If the temperature generated is high, 

the associated higher diffusivity (higher atomic mobility) leads to processes resulting in 

recovery (and recrystallization). In such a case, a stable phase, e.g., an intermetallic, 

would form. On the other hand, if the temperature is low, then defect recovery would be 

less and an amorphous (or a nanocrystalline) phase would form“(Koch 1994)”.  

 The temperature of the powders during milling can be high due to two different 

reasons. Firstly, as mentioned above it is due to the kinetic energy of the grinding 

medium. Secondly, it is possible that exothermic processes occurring during the milling 

process generate heat. But, in practice, when the temperature of the powder or the 

milling container is measured, it is probably due to a combination of these two factors 

“(Koch 1994)”.  

 

1.3. Mechanochemical Synthesis 

 
 Mechanical Milling could be used to induce a wide variety of solid–solid, 

liquid–solid and even solid-gas chemical reactions. 

 The mechanochemical reactions are characterized by a large negative free 

energy change and are therefore thermodynamically feasible at room temperature. The 

occurrence of these reactions at ambient temperatures is thus limited by kinetic 

considerations alone “(McCormick 1995)”. 

 A characteristic feature of all solid-state reactions is that they involve the 

formation of product phase(s) at the interfaces of the reactants. Further growth of the 

product phase involves diffusion of atoms of the reactant phases through the product 

phase, which constitutes a barrier layer preventing further reaction. Thus, these 

reactions require elevated temperatures to proceed at reasonable rates “(McCormick 

1995)”. 

 Depending on the milling conditions, two entirely different reaction kinetics are 

possible:  

 1. The reaction may extend to a very small volume during each collision, 

resulting in a gradual transformation, or 
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 2. If the reaction enthalpy is sufficiently high, a self-propagating combustion 

reaction can be initiated. 

 Mechanical energy can set off chemical changes in many different situations. 

For example, wear of a material involves chemical processes, corrosion is influenced by 

lattice defects created by plastic deformation, etc. We are primarily interested in 

mechanochemical reactions induced by high energy ball milling. The processes taking 

place in a ball mill are very complex. One of our primary goals is to understand their 

mechanism by separating and modelling their individual components “(Takacs 1992)”. 

 An interesting situation is when ball milling induces a self-supporting thermal 

reaction in a highly exothermic system. Investigating the conditions of ignition will be a 

useful tool to learn about the mechanism of mechanochemical reactions in general 

“(Takacs 1992)”.  

 Ball milling can also induce chemical changes in non-metallurgical systems, 

including silicates, minerals, ferrites, ceramics, and organic compounds. The research 

area of mechanochemistry developed to study and utilize these processes. As many 

mechanical alloying processes involve chemical changes, the distinction between 

mechanical alloying and mechanochemistry is often arbitrary “(Takacs 1992)”.  

 

1.4. Mechanism of Amorphization 
 

 The mechanism of amorphization by Mechanical Milling (MM) is not clearly 

understood. The early investigators assumed that the powder particles melted because of 

the very high rate of plastic deformation, and consequent rise in the powder 

temperature. Subsequent quenching of the liquid by heat conduction into the less 

deformed, and hence cooler, interior regions of the particles, resulted in the formation of 

the amorphous phase (like in RSP). However, energy input calculations and temperature 

measurements suggest that the temperature rise is not large enough for the powder 

particles to melt. Additionally, if this mechanism were to be true, the glass-forming 

composition ranges in mechanically alloyed and rapidly solidified alloys should be the 

same; but this is not true as will be shown later. Researchers now believe that 

amorphization during MM is not purely a mechanical process and that a solid-state 

reaction similar to that observed in thin films occurs during MM. During MM, however, 

destabilization of the crystalline phase is thought to occur by the accumulation of 
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structural defects such as vacancies, dislocations, grain boundaries, and anti-phase 

boundaries. The continuous decrease in grain size (and consequent increase in grain 

boundary area) and a lattice expansion would also contribute to the increase in free 

energy of the system. It has been reported that the stored energy during MM can be 

about 50% of the enthalpy of fusion, whereas by cold rolling or wire drawing it is only a 

small fraction of it. These defects raise the free energy of the intermetallic system to a 

level higher than that of the amorphous phase and consequently, it becomes possible for 

the amorphous phase to form. It has been reported that amorphization occurs when the 

strain in the slow diffusing species reaches a maximum. In the case of ordered alloys, 

amorphization was reported to occur when the long-range order parameter is <0.6 with 

a corresponding volume of expansion of about 2% “(Ermakov et al. 1981)”.  

 Irradiation of crystalline materials by energetic particles and electrons has been 

known to cause amorphization when the following criteria are obeyed:  

 • The intermetallic compound has a narrow or zero homogeneity range, 

 • The order–disorder transition temperature of the intermetallic, Tc is higher than 

the melting temperature, Tm, 

 • The two components (elements) are separated by more than two groups in the 

periodic table, 

 • The intermetallic has a complex crystal structure, and 

 • The fraction of A atoms (fA�fB) is �1/3. 

 Intermetallics have also been amorphized by MM when the above criteria were 

generally followed. However, there have been several exceptions to the above empirical 

rules (too many to be ignored). For example, compounds with reasonably wide 

homogeneity ranges have also been amorphized. Further, a number of compounds with 

fA=1/4 have been made amorphous. In view of these observations, it should be realized 

that the above criteria may only be used as guidelines and not that if they are obeyed, 

amorphization will be observed “(Eckert et al. 1992)”.  

 

1.5. Characterization of the Solid Samples 

 
 Characterization of the solid samples was carried out by using X-Ray 

Diffraction, Scanning electron microscopy (SEM). 
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1.5.1. X-Ray Powder Diffraction 
 

X-Ray powder diffraction finds frequent use in material science because sample 

preparation is relatively easy, and the test itself is often rapid and non-destructive. The 

vast majority of engineering materials is crystalline, and evens those which do not yield 

some useful information in diffraction experiments. 

The pattern of powder diffraction peaks can be used to quickly identify 

materials, and changes in peak width or position can be used to determine crystal size, 

and texture “(WEB_2 2006)”. 

 

1.5.2. Scanning Electron Microscopy (SEM) 
 

Scanning electron microscopy is the best known and most widely-used of the 

surface analytical techniques. High resolution images of surface topography, with 

excellent depth of field are produced using a highly-focused, scanning (primary) 

electron beam. The primary electrons enter a surface with an energy of 0.5 - 30 keV, 

and generate many low energy secondary electrons. The intensity of these secondary 

electrons is largely governed by the surface topography of the sample. An image of the 

sample surface can thus be constructed by measuring secondary electron intensity as a 

function of the position of the scanning primary electron beam. High spatial resolution 

is possible because the primary electron beam can be focused to a very small spot (<10 

nm). High sensitivity to topographic features on the outermost surface (<5 nm) is 

achieved when using a primary electron beam with an energy of <1 keV “(WEB_3 

2006)”. 
        In addition to low energy secondary electrons, backscattered electrons and X-rays 

are also generated by primary electron bombardment. The intensity of backscattered 

electrons can be correlated to the atomic number of the element within the sampling 

volume. Hence, some qualitative elemental information can be obtained. The analysis of 

characteristic X-rays emitted from the sample gives more quantitative elemental 

information. Such X-ray analysis can be confined to analytical volumes as small as 1 

cubic micron “(WEB_3 2006)”. 

        SEM, accompanied by X-ray analysis, is considered a relatively rapid, 

inexpensive, and basically non-destructive approach to surface analysis. It is often used 
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to survey surface analytical problems before proceeding to techniques that are more 

surface-sensitive and specialized “(WEB_3 2006)”. 

 

1.6. Aim of This Work  

 

The purpose of this work was to propose a new method for the synthesis of 

sodium borohydride at low temperatures. MgH2 is used as a reducing agent to react with 

dehydrated borax. The sodium borohydride can be processed by the reaction as shown 

in the following equation. 

 

8MgH2+ Na2B4O7 + Na2CO3 
  4NaBH4 + 8MgO + CO2 

 

However, magnesium hydride which is the starting material for this synthesis 

could not be obtained from the market, therefore metallic magnesium and hydrogen gas 

was used as the starting materials. Studies were also concentrated on the production of 

magnesium hydride.  

For this purpose, several experimental procedures were tried, especially through 

milling. Characterization was mostly done by X-Ray powder diffraction.   
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CHAPTER 2 
 

EXPERIMENTAL METHODS 
 

2.1. Instrumentation and Apparatus 
 

A Retsch S1000 series ball mill was used for the experiments. Emko ESM- 4410 

series thermocouple was used to measure and also to control the temperature. As a 

reactor, we have modified our disc mill design. A 320 ml stainless steel grinding bowl 

with a stainless steel lid was built as a reactor. The lid has two valves for gas inlet and 

outlet and the cap was screwed to the main body with six screws so as not to leak 

hydrogen gas. A specially made copper gasket was used to prevent leakage. The 

grinding bowl had grooves outside to fit with specially made resistance for heating. 

 

2.2. XRD, SEM Analysis 

 
 X-Ray powder diffraction (XRD) data were collected on a Philips X’Pert Pro 

diffractometer using CuK� radiation (�=0.154 nm). Samples were prepared by 

compressing in the cassette sample holder without any adhesive substance. 

SEM characterization was carried out using a Philips XL-30s FEG type 

instrument. Prior to analysis, the solid samples were sprinkled onto Al or C tapes which 

are adhesive and supported on metallic disks. Images of the sample surfaces were 

recorded at different magnifications.  

 

2.3. MgH2 Synthesis 
 

Several procedures were tried for MgH2 synthesis: 

Mg + H2 (10 Bar) 
 MgH2 

a. Some experiments were made by heating Mg to various temperatures under 

10 bar H2 pressure. 

b. Some experiments were made by grinding Mg with a grinding disc at 100 rpm 

under 10 bar H2 pressure at room temperatures. 
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c. Some experiments were made by putting Mg under 10 bar H2 Pressure and 

grinding with a grinding disc at 100 rpm while heating. 

 

2.3.1. Optimization of Parameters for MgH2 Synthesis 

 
 In order to obtain accurate and reproducible results, the first part of the study 

was focused on the optimization of parameters for MgH2 synthesis. Synthesis of MgH2 

is influenced by several factors such as the grinding media, temperature, H2 pressure 

and grinding time effect. Variable and effective parameters were optimized.  

 

2.3.1.1. Optimization of Grinding Conditions 
 

 The first parameter optimized was the setting of grinding materials. Since it is 

known that the yield of the MgH2 synthesis is affected by Mg piece dimensions, it is 

important to find optimum grinding media to obtain the available optimum Mg particle 

dimensions. In order to increase the reaction surface, Mg pieces (Merck, 50-150 mesh) 

were put in the Ball Mill and ground for various time intervals with different size balls 

or discs. 

 a. Grinding was performed with the same diameter steel balls. However different 

size balls were used for different grinding to determine the optimum size. (all 2.5, 5, 10 

or 20 mm diameter) 

 b. Grinding was also performed with a mixture of various diameter steel balls.  

 c. Grinding was performed with various size discs. (60 mm or 75 mm diameter 

dics) 

 

2.3.1.2. Effect of H2 Pressure 

 
 Hydride formation requires Mg to be exposed to a hydrogen pressure of at least 

10 bar(Li 2002, Wu 2006). With our set up, we could maintain continuous 10 bar H2 

pressure. Therefore, continuosly 10 Bar H2 pressure was applied to the milling bowl 

either for various time intervals (8 to 24 hours) or for various grinding conditions (while 

grinding or not grinding) or for various temperature conditions (without heating or with 

heating from room temperature to 400ºC). 
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2.3.1.3. Effect of Temperature 

 
 Various heating temperatures from room temperature to 400ºC were tried for 

different time intervals.  

In the literature, it is stated that heating up to 400oC and hydrogen pressures up to 70 

bar gives good yields “(Imamura et al. 1983, Noritake et al. 2003)”. However, our 

experiments for heating up to 400oC and 10 bar hydrogen pressure gave very poor yields. 

Some good literature results up to 10 Bar and 350oC remains as a question mark for us. 

 

2.3.1.4. Effect of Grinding Time 
 

In our experiments various time intervals - from 8 to 24 hours - were tried for 

different temperatures under constant H2 pressure (10 Bars). Only heating and H2 

pressure application was not enough for sufficient MgH2 formation. Grinding especially 

with disc mill at 100 rpm increased the yield with a considerable amount. 

It was rather surprising to see that grinding was more effective than heating for 

MgH2 formation. 

 

2.3.2. First Set of Experiments  
 

Several experiments were tried for MgH2 synthesis by heating Mg under 10 bar 

H2 pressure: 

 

Mg   +   H2 (10 Bar)    
      MgH2 

 

During these experiments, 24 Hours heating at 200°C,  250°C,  300°C,  350°C 

and 400°C under 10 bar H2 pressure was tried without grinding. 

 

2.3.3. Experimental Design for MgH2 Synthesis 

 
  Two main parameters showed to be very effective during the experiments. They 

were 1)Temperature and 2)Grinding time. Hydrogen pressure (10 bar) was kept 
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constant throughout the experiments, so it was not included as a parameter. The limits 

for temperature and grinding time shown below were elected after some preliminary 

experiments.  

Various experiments were carried out to get optimum yield for MgH2 production. 

Experimental Design set up for the experiments are given in table 2.1. below. 

 

Table 2.1. Experimental Design Scheme for MgH2 Experiments 

 

Experiment 

Number 

Temperature Grinding 

Time 

Peak Intensity 

Ratio IMgH2/IMg 

1 1 -1  

2 1 0  

3 1 1  

4 0 -1  

5 0 0  

6 0 1  

7 -1 -1  

8 -1 0  

9 -1 1  

 
The symbols above have the following meanings: 
 
For Temperature;       -1 = 8 Hours           For Grinding Time;      -1 = 25ºC     

                                0 = 16 Hours                                                        0 = 50 ºC          

                                 1 = 24 Hours                                                        1 = 100 ºC 

For Response;  Peak Intensity Ratio =  IMgH2 / IMg 

 

2.4. NaBH4 Synthesis 
 

2.4.1. Experiments with Ball Mill 
 

In the early experiments, a smaller size stainless steel ball mill with 4 cm height, 

and 7 cm diameter dimensions was used. Stainless steel balls with various diameters 

were used for milling. 
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1) MgH2 was not available from the market, so metallic magnesium and H2 gas 

were used as starting materials instead of MgH2. Experiments were carried out with a 

ball mill at 100 rpm. Three time intervals - 8, 16 and 24 hours - were tried at room 

temperature. Ball diameters varied; (1 of 20mm, 3 of 10mm, 7 of 5mm, 3 of 2.5mm). 

 

Na2B4O7 + Na2CO3 + 8Mg + (10Bar)8H2  
  4NaBH4 + 8MgO + CO2 

 

Na2B4O7   = 10.06g 

Na2CO3   = 5.30g 

Mg   = 9.72g 

 

2) NaH was tried instead of H2 gas. Experiments were carried with a ball mill at 

100 rpm. Two time intervals, 8 and 16 hours were tried at room temperature. Ball 

Diameters; (1 of 20mm, 3 of 10mm, 7 of 5mm, 3 of 2.5mm). 

 

Na2B4O7+Na2CO3+16NaH
4NaBH4+8Na2O+CO2 

 

Na2B4O7  =  4.024g 

Na2CO3  =  2.120g 

NaH  =  7.680g 

 

2.4.2. Experiments with Disc Mill 

 
 The preliminary experiments did not give very satisfactory results with stainless 

steel balls, a new stainless steel disc mill with 5 cm height, and 10 cm diameter 

dimensions using a disk for grinding was purchased, and the experiments were carried 

out with this mill. 

 

1) Experiments were carried at 100 rpm with the grinding disc. Three time 

intervals, 8, 16 and 24 hours were tried at room temperature and at 10 bar H2 pressure. 

 

Na2B4O7+Na2CO3+8Mg+(10Bar)8H2 
 4NaBH4+8MgO+CO2 
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Na2B4O7  =  20.12g 

Na2CO3  =  10.60g 

Mg  =  19.44g 

 

2) Experiments were also carried out at two time intervals, 8 and 16 hours at 50 

ºC and at 10 bar H2 pressure. 

 

Na2B4O7+Na2CO3+8Mg+(10Bar)8H2 
 4NaBH4+8MgO+CO2 

 

Na2B4O7  =  20.12g 

Na2CO3  =  10.60g 

Mg  =  19.44g  

 

3) Experiments were carried by using NaH as the starting material. Two time 

intervals, 8 and 16 hours were tried at room temperature.  

 

Na2B4O7 + Na2CO3 + 16NaH  
 4NaBH4 + 8Na2O + CO2 

 

Na2B4O7  =  4.024g 

Na2CO3  =  2.120g 

NaH  =  7.680g 

 

4) Preparation of Anhydrous Sodium Metaborate (NaBO2) as the Starting 

Material  

 Experiments by using anhydrous sodium metaborate (NaBO2) as the starting 

material were also carried out.  The following simple processes were used to prepare the 

anhydrous sodium metaborate (NaBO2): 

 

a.   From “Borax” as the abundant natural resource. 

The process that starts from borax (Na2B4O7.10H2O) requires two parts of NaOH 

to make one part of NaBO2. Na2B4O7.10H2O, NaOH and H2O were put in the disc mill 

and grinded for 6 hours at 100 rpm for the process as given in Eq.(1); 

 

         1/4NaB4O7.10H2O + 1/2NaOH + 5/4H2O  
  NaBO2.4H2O       (1) 
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NaB4O7.10H2O = 19.1 g 

NaOH = 4 g 

H2O = 4.5 g 

 

b. NaBO2.4H2O is simply dried to yield anhydrous sodium metaborate as shown 

in Eq.(2); 

 

           NaBO2.4H2O  
  NaBO2 + 4H2O   (drying 2 hours at 250°C)       (2) 

 

Complete dehydration was accomplished with this process. Anhydrous sodium 

metaborate obtained, was used in the Dynamic Hydriding/Dehydriding Process to 

produce sodium borohydride by the reaction as shown in Eq.(3).  

 

                   NaBO2 + 2Mg + 2H2(10 Bar)  
  NaBH4 + 2MgO    (3) 

 

NaBO2 = 6.6 g 

Mg = 4.8 g  

The reaction was carried out under constant temperature (250°C) and H2 

pressure (10 Bar) conditions for 8 hours. However the results were not satisfactory. 

Only MgO peaks were detected in the spectra but no NaBH4 peaks. 

 

5) Experiments were also carried by using NaH and B(OCH3)3 as starting 

materials. Two time intervals, 8 and 16 hours were tried for 50 ºC at 10 bar H2 pressure. 

 

4NaH + B(OCH3)3 + (10Bar)H2 
 NaBH4 + 3NaOCH3 

 

 NaH= 4.8g 

B(OCH3)3= 5.2g 
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CHAPTER 3 
 

RESULTS and DISCUSSIONS 
 

3.1. MgH2 Synthesis  
 

3.1.1. Optimization of Parameters for MgH2 Synthesis 
 

3.1.1.1. Optimization of Grinding Conditions 

 

 Aim of this study was to get smaller particles so as to obtain more and better 

products and to increase the yield. 

From the experiments carried out, following results were deduced: 

a. Grinding with same diameter steel balls but different size in each lot were 

used for grinding to determine the optimum size (all 2.5 or 5 or 10 or 20 mm diameter): 

This procedure was not succesfull, since Mg pieces were stuck together. 

b. Grinding with different diameter steel balls in the same lot:  

This procedure was succesfull and approximade size Mg pieces were obtained.  

c. Grinding with disc:  

This procedure was more succesfull and approximade size Mg pieces were 

obtained. In Figure 3.1. effects of different grinding procedures are given. 

 

3.1.1.2. Effect of H2 Pressure 
 

Hydride formation requires Mg to be exposed to a hydrogen pressure of at least 

10 bar “(Li et al. 2002, Wu et al. 2006)”. With our set up, we could at most maintain 

continuous 10 bar controlled H2 pressure therefore this pressure was used throughout 

the experiments.  

�
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 (a) 

 (b) 

 (c) 

 

Figure 3.1. SEM back-scattered microimages of Mg at different grinding conditions   

(a): Grinding Mg with same diameter steel balls, (b): Grinding Mg with 

different diameter steel balls, (c): Grinding Mg with disc 
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3.1.1.3. Effect of Temperature 

 

In our primary experiments, only heating under H2 pressure, was not enough for 

sufficient MgH2 formation. Our experiments up to 400oC and 10 bar hydrogen pressure 

gave very poor yields. Effect of temperature in our studies is given in Figure 3.2.  MgH2 

formation starts after 300oC. There is a minor increase in the yield as the temperature is 

increased. More MgH2 formation may be performed at even higher temperatures but 

NaBH4 synthesis at high temperatures is beyond the aim of this study. 

 

 
 

Figure 3.2. The XRD Spectra for MgH2 Synthesis at Different Temperatures  

�=MgH2, �= Mg    

 

3.3.1.4. Effect of Grinding Time 
 

Grinding at room temperature, at 50oC and 100oC were performed for various 

time intervals. 8 hour grinding time was selected as optimum duration after 

experimental design results. Figure. 3.3 shows the results of 50 oC studies.  
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Figure 3.3.  The XRD Spectra at 50 °C for MgH2 Synthesis for Different Time 

Intervals �= MgH2, �= Mg 

 

3.1.2. Experimental Design Results for MgH2 Synthesis 
 

To find the optimum conditions, two important parameters were selected and 

experiments were carried out for 3 levels. Experimental Design Results Scheme for 

MgH2 Experiments are given in Table 3.1. 

 

Table 3.1. Experimental Design Results Scheme for MgH2 Experiments 

 

Experiment 
Number 

Temperature Grinding 
Time 

Peak Intensity 
Ratio IMgH2/IMg 

1 1 1 0.127 

2 1 0 0.078 

3 1 -1 0.025 

4 0 1 0.172 

5 0 0 0.223 

6 0 -1 0.173 

7 -1 1 0.022 

8 -1 0 0.017 

9 -1 -1 0.016 
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For Temperature;         -1 = 8 Hours           For Grinding Time;      -1 = 25ºC     

                                 0 = 16 Hours                                                       0 = 50 ºC          

                                  1 = 24 Hours                                                       1 = 100 ºC 

For Response;  Peak Intensity Ratio IMgH2  / IMg 

 

3.1.2.1. Nonlinear Model 
 

Table 3.2. Experimental Design Nonlinear Model Results Scheme for MgH2 Experiments 

 

Exp. 
Num 

Factor 
0 

Factor 
A 

Factor 
B A2 B2 A*B Response Nonlinear 

� 

Predicted 
Nonlinear 
Response 

Nonlinear 
Residual 

1 1 1 1 1 1 1 0.127 0.2006 0.1129 0.0141 

2 1 1 0 1 0 0 0.078 0.0292 0.0879 -0.0099 

3 1 1 -1 1 1 -1 0.025 0.0178 0.0292 -0.0042 

4 1 0 1 0 1 0 0.172 -0.1418 0.2016 -0.0296 

5 1 0 0 0 0 0 0.223 -0.0168 0.2006 0.0224 

6 1 0 -1 0 1 0 0.173 0.0240 0.1659 0.0071 

7 1 -1 1 1 1 -1 0.022  0.0066 0.0154 

8 1 -1 0 1 0 0 0.017  0.0296 -0.0126 

9 1 -1 -1 1 1 1 0.016  0.0189 -0.0029 

 
Nonlinear Model Equation:  
y=0.2006+0.0292*A - 0.1418*A2+0.0178*B-0.0168*B2+0.024*A*B 

 

Optimum Predicted Response = 0.2016 

Optimum Factor Levels; 

Factor A : Temperature =  0                refers to  50ºC 

Factor B : Grinding Time = 1              refers to 24  Hours 

 

Optimum Nonlinear Response = 0.2086 

Optimum Factor Levels; 

Factor A: Temperature =  0.16                refers to 69ºC 

Factor B: Grinding Time = 0.64             refers to 21 Hours 
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y = 0.959x + 0.0039
R2 = 0.9589
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Figure 3.4. Nonlinear Model Predicted Response-Actual Response Plot 

 

As detected from the comparison of the optimization plots of the linear and 

nonlinear models and also from the comparison of R2 values which is shown in Figure 

3.4.  It can be predicted that the nonlinear model fits our experimental results. 
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Figure 3.5. Nonlinear Model Residual-Experiment Number Plot  
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Figure 3.6. Nonlinear Model 3-D (Peak Intensity-Grinding Time-Temperature)  

Optimization Plot 

 

3.2. NaBH4 Synthesis 
 

3.2.1. Experiments with Ball Mill 
 

1) Metallic magnesium and H2 gas were used as starting materials instead of 

MgH2. Experiments were carried out with a ball mill at 100 rpm. Three time intervals - 

8, 16 and 24 hours - were tried at room temperature.  

 

Na2B4O7+Na2CO3+8Mg+(10Bar)8H2  
  4NaBH4+8MgO+CO2 

 

Na2B4O7, Mg and Na2CO3 peaks were identified in the XRD spectrum of 8 and 

16 hours experiments, as detected in Figure 3.7. However Na2B4O7 and Na2CO3 peaks 

disappeared in the spectrum for 24 hours experiments and NaBH4 peaks are not present. 

We assume that crystalic structures of Na2B4O7 and Na2CO3 are destroyed during 24 

hours milling and they do not appear in the spectrum. 
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Figure 3.7.  The XRD Spectra for Sodium Borohydride Synthesis Using H2 Gas with 

Ball Mill at Room Temperature �= Mg, �=Na2CO3, 0=Na2B4O7 

 

 
 

Figure 3.8.  The XRD Spectra for Sodium Borohydride Synthesis Using NaH with Ball 

Mill at Room Temperature �= NaH, �=Na2CO3, 0=Na2B4O7 
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2) NaH was tried instead of metallic magnesium and H2 gas. Experiments were 

carried with a ball mill at 100 rpm. Two time intervals, 8 and 16 hours were tried at 

room temperature.  

 

Na2B4O7+Na2CO3+16NaH 
 4NaBH4+8Na2O+CO2 

 

Na2CO3, NaH and small Na2B4O7 peaks are detected at XRD spectra of 8 and 16 

hours experiments which is given in Figure 3.8. Both spectra are nearly the same. No 

NaBH4 peaks are observed. 

 

3.2.2. Experiments with Disc Mill 
 

1) Metallic magnesium and H2 gas were used as starting materials instead of 

MgH2. Experiments were carried out with a disc mill at 100 rpm. Three time intervals - 

8, 16 and 24 hours - were tried at room temperature.  

 

Na2B4O7+Na2CO3+8Mg+(10Bar)8H2 
 4NaBH4+8MgO+CO2 

 

Mg and small Na2CO3 peaks were detected but Na2B4O7 peaks disappeared at 

XRD spectrum of 8 and 16 hours experiments which is given in Figure 3.9. However 

Na2CO3 peaks also disappeared at 24 hours experiments’ spectrum. No NaBH4 peaks 

were detected at the XRD spectra.   

 

2) Same experiments were carried with a grinding disc at 100 rpm. Two time 

intervals, 8 and 16 hours were tried for 50 ºC at 10 bar H2 pressure. 

 

Na2B4O7+Na2CO3+8Mg+(10Bar)8H2 
 4NaBH4+8MgO+CO2 

 

Mg and small Na2CO3 peaks were detected in Figure 3.10. at both XRD spectra. 

However Na2B4O7 peaks disappeared. No NaBH4 peaks are observed. 
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Figure 3.9.  The XRD Spectra for Sodium Borohydride Synthesis Using H2 Gas with 

Disc Mill at Room Temperature �= Mg, 0=Na2CO3 

 

        
 

Figure 3.10.  The XRD Spectra for Sodium Borohydride Synthesis Using H2 Gas with 

Disc Mill at 50°C �= Mg, 0=Na2CO3 
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3) NaH was used as a source of H2 gas. Experiments were carried with a grinding 

disc at 100 rpm. Two time intervals, 8 and 16 hours were tried at room temperature.  

 

Na2B4O7 + Na2CO3 + 16NaH  
 4NaBH4 + 8Na2O + CO2 

 

NaH and small Na2CO3 peaks were detected at both XRD spectra which are 

shown in figure 3.11. Na2B4O7 peaks disappeared. No NaBH4 peaks were observed. 

 

 
 

Figure 3.11.  The XRD Spectra for Sodium Borohydride Synthesis Using NaH with 

Disc Mill at Room Temperature �= NaH, �=Na2CO3 

 

4) a) The process that starts from Na2B4O7.10H2O requires two parts of NaOH 

to make one part of NaBO2. NaB4O7.10H2O, NaOH and H2O were put in disc mill and 

grinded 8 hours at 100 rpm. 

 

1/4NaB4O7.10H2O + 1/2NaOH + 5/4H2O  
  NaBO2.4H2O 
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b) NaBO2.4H2O is treated with a simple drying process to yield anhydrous 

sodium metaborate.  

 

NaBO2.4H2O  
  NaBO2 + 4H2O   (drying 2 hours at 250°C) 

 

 
 

Figure 3.12.  The XRD Spectrum for anhydrous sodium metaborate synthesis        

�=NaBO2 

 

Anhydrous sodium metaborate (NaBO2) was synthesised. Red peaks belong the 

anhydrous sodium metaborate in Figure 3.12.  

 

c) The sodium borohydride can be processed by the reaction as shown in 

equation, where the system is kept under constant temperature (250°C) and 10 Bar H2 

pressure conditions at 8 hours. 

 

NaBO2 + 2Mg + 2H2(10 Bar)  
  NaBH4 + 2MgO 

 

Small sodium borate hydroxide (Na2(BO2(OH)) and MgO peaks were detected 

at the XRD spectra as shown in Figure 3.13. But no NaBH4 peaks were detected at the 

XRD spectra as shown in figure 3.13.  

 

 
 

Figure 3.13. The XRD Spectrum for Sodium Borohydride Synthesis                             

�= (Na2(BO2(OH)), 0= MgO 
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5) Experiments were carried using NaH and B(OCH3)3 as starting materials at 50 

ºC and 10 bar H2 pressure with a grinding disc at 100 rpm. Two time intervals, 8 and 16 

hours were tried. 

 

4NaH + B(OCH3)3 + (10Bar)H2 
 NaBH4 + 3NaOCH3 

 

 The spectra are very different as shown in Figure 3.14. NaH, C14H8O2 (alpha-

9,10-Phenanthrenedione) and small NaBH4 peaks appear in both spectra. NaBH4 and 

C14H8O2 peaks are more intense in the spectrum for 16 hours experiment, but NaH 

peaks are almost same as detected in Figure 3.14. The spectrum for 8 hours experiments 

has some excessive peaks. These peaks match with CaO but our samples do not contain 

Ca. CaO is probably an impurity from a previous XRD analysis. C14H8O2 peaks may be 

due to the NaH solution because the chemical is bottled and transported in a mineral oil.  

 

 
 

 Figure 3.14.  The XRD Spectra for Sodium Borohydride Synthesis Using H2 Gas, 

NaH and B(OCH3)3 with Disc Mill at 50 ºC �= NaBH4, �=NaH,                   

0= C14H8O2, *=CaO 
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CHAPTER 4 
 

CONCLUSION 
 

The aim of this study was to develop a new method for the synthesis of sodium 

borohydride at low temperatures.   

The most different part of this study is working at low temperatures and the 

more effective grinding instead of heating. In the literature studies at 50oC was not 

found. 

Studies progressed at in two stages.  

1) Experiments carried out for the production of MgH2. Magnesium hydride 

which is the starting material for the synthesis of NaBH4 could not be obtained from the 

market, therefore our experiments started with the production of MgH2.  

2) Experiments carried out for the production of NaBH4. 

Conclusions for MgH2 production: 

- Only heating and H2 pressure application was not enough for sufficient MgH2 

formation.  

- In the literature, it is stated that heating between 300oC to 400oC and hydrogen 

pressures between 10 to 70 bar “(Liang et al. 1995, Noritake et al. 2003, Wu et al. 

2006)” gives satisfactory yields. Our studies for heating up to 400oC and 10 bar 

hydrogen pressure gave very poor yields. A literature result for 24 hours, 10 Bar and 

350oC study with a yield of %60 “(Li et al. 2002)” is not consistent with our results. The 

only difference between this result and ours is the size of Mg particles. Their Mg 

powder size is stated as (<75 µm) while our starting Mg powder size was between  (50 - 

150 µm). 

- Production of MgH2 is possible at low grinding speeds, low temperatures and 

low H2 pressures. 

- Grinding is very important factor for magnesium hydride synthesis at low 

temperatures.  

- Grinding especially with disc mill at 100 rpm increased the yield with a 

considerable amount.  

- It was rather surprising to see that grinding was more effective than heating for 

MgH2 formation. This effect is displayed in Figure 4.1. 
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Figure 4.1. The XRD Spectra for MgH2 Synthesis at Different Conditions �= MgH2, 

�= Mg 

 

- Most effective grinding is accomplished with a disc mill instead of ball mill. 

We think this is due to the big mass and therefore to the big momentum of the disc.   

- Considerable MgH2 production is possible even at 10 Bar H2 pressures. The 

yield can be increased at higher H2 pressures. 

- Heating and grinding time were selected as the most effective parameters and 

experimental design set up was planned for these parameters. Heating at 50°C and 24 

hour grinding time was found as the optimal experimental conditions. 

Conclusions for NaBH4 production: 

- MgH2 production was accomplished which is used as starting material for the 

production of NaBH4. However it is purification was not completed so it could not be 

used as a starting material. 

- NaBH4 production using Na2B4O7, Na2CO3, Mg and H2 gas as the starting 

materials at room temperature and at 50°C under 10 bar H2 pressure did not give 

satisfactory results.  

- NaBH4 production using Na2B4O7, Na2CO3 and NaH as the starting materials 

at room temperature under 10 bar H2 pressure did not give satisfactory results.  
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- NaBO2 was produced from Na2B4O7.10H2O. This NaBO2 was used as a 

starting material for the production of NaBH4. However NaBH4 could not be obtained. 

- B(OCH3)3 and NaH was reacted in a disc mill at 50ºC under 10 bar H2 

pressure. NaBH4 peaks were observed in the XRD spectrum. Experiments at room 

temperatures and at 100 C were also fulfilled but their XRD spectra were not obtained. 

Further studies will continue in two subjects. 

a) Further studies will be carried to find the optimal conditions for MgH2 

synthesis. Studies will be carried at around 50ºC to 80ºC because our preliminary 

calculations gives 69ºC as the optimal temperature. Our calculations also show the 

optimal grinding time as 21 hours, so the experiments will be carried between 20 to 24 

hours. Longer grinding times, up to 30 hours will also be tried. 

b) Studies on NaBH4 production will continue in our future studies. B(OCH3)3 

and pure NaH will be reacted in a disc mill between room temperature and 100ºC under 

10 bar H2 pressure. 
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