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We approve the thesis of̈Umit KARACA

Date of Signature

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 October 2006
Assist. Prof. SerdarÖZEN
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Head of the Graduate School



ABSTRACT

CONSTANT FALSE ALARM RATE (CFAR) DETECTION BASED

ESTIMATORS WITH APPLICATIONS TO SPARSE WIRELESS

CHANNELS

We provide Constant False Alarm Rate (CFAR) based thresholding methods for

training based channel impulse response (CIR) estimation algorithms for communica-

tion systems which utilize a periodically transmitted training sequence within a continu-

ous stream of information symbols. After obtaining the CIR estimation by using known

methods in the literature, there are estimation errors which causes performance loss at

equalizers. The channel estimation error can be seen as noise on CIR estimations and

CFAR based thresholding methods, which are used in radar systems to decide the pres-

ence of a target, can effectively overcome this problem. CFAR based methods are based

on determining threshold values which are computed by distribution of channel noise.

We provide exact and approximate distribution of channel noise appear at CIR estimate

schemes. We applied Cell Averaging-CFAR (CA-CFAR) and Order Statistic-CFAR (OS-

CFAR) methods on the CIR estimations. The performance of the CFAR estimators are

then compared by their Least Square error in the channel estimates. The Signal to Inter-

ference plus Noise Ratio (SINR) performance of the decision feedback equalizers (DFE),

of which the tap values are calculated based on the CFAR estimators, are also provided.
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ÖZET

SABİT YANLIŞ ALARM ORANI SEZ İMLEME TABANLI KANAL

KESṪIRİM İ VE YOG̃UN OLMAYAN TEK İL KANALLARA

UYGULAMALARI

Bu çalışmada, haberleşme sistemlerinde kullanılan Kanal Dürtü Yanıtı (CIR) ke-

stirimlerinin eşiklemesinde kullanılmak̈uzere, Sabit Yanlış Alarm Oranı (CFAR) sez-

imleme tabanlı metotlar ele alınmıştır. Haberleşme literatüründe bilinen ÿontemlerle

elde edilen kanal d̈urtü yanıtları, kestirim hatası taşımakta, bu durum denkleştiricilerde

performans kaybına neden olmaktadır. Bu kestirim hatası, kanal dürtü yanıtındaki

gürültü olarak dẽgerlendirilebilir. Radar sistemlerinde hedef tespit edilmesinde kullanılan

Sabit Yanlış Alarm Oranı (CFAR) sezimleme tabanlı eşikleme metotları, bahsedilen bu

gürültünün temizlenmesinde kullanılabilir. Sabit Yanlış Alarm Oranı (CFAR) sezim-

leme tabanlı metotlar, kanal gürültüs̈unün istatistiksel dãgılımı yardımıyla hesaplanan

eşik dẽgerlerine dayanmaktadır.

Proje kapsamında, Ḧucre Ortalamalı (CA-CFAR) vėIstatistiksel Sıralamalı (OS-

CFAR) Sabit Yanlış Alarm Oranı sezimleme tabanlı metotlar kullanılarak elde edilen

eşik dẽgerleri, çeşitli kanal kestirimlerine uygulanmıştır. Bahsedilen metotların perfor-

mansları, eşikleme işleminden sonra elde edilen kanal kestirim sinyallerinin En Küçük

Kareler Hataları (NLSE) karşılaştırılarak gösterilmiştir. Ayrıca, Sinyallerin Girişim ve

Gürültüye Oranları (SINR), Karar Geridönüş̈umlü Denkleştiriciler (DFE) kullanılarak

gösterilmiştir.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

In mobile wireless and digital television (DTV) channels multi-path phenomena

is generally attributed to the randomly changing propagation characteristics as well as the

reflection, diffraction and scattering of the transmitted waves from the buildings, large

moving vehicles/airplanes, mountains, ionosphere, sea surface. Many types of impair-

ments are observed on these channels such as Doppler spread, fading, multi-path spread

(or delay spread), nonlinear distortion, frequency offset, phase jitter, thermal and/or im-

pulsive noise, co- and adjacent channel interference. This research focuses mainly on the

effects of multi-path spread and thermal noise. Large delay spread induces significant

inter-symbol interference (ISI) where the received symbols are a function of several ad-

jacent symbols. A large Doppler spread causes rapid variations in the channel impulse

response characteristics, and necessitates a fast converging adaptive algorithm. When the

channel exhibits a deep fade, it results in a very low received signal power. Among vari-

ous remedies to these problems which have been proposed thus far, the diversity reception

and the multi-carrier transmission combined with advanced adaptive signal processing al-

gorithms to estimate and to track the channel variations are considered to be among the

most prominent alternatives. However multi-carrier transmission is out of the scope of

this research.

Multi-path channels are generally modelled in the form offrequency selectivefad-

ing as well asRayleighor Ricianfading. As the receivers employ diversity to combat the

combined effects of multi-path and fading in the form of antenna arrays, as well as polar-

ization diversity, more advanced signal processing is required at the receiver front-end to

estimate and track the channel parameter variations. In order to be able to come up with

better signal processing algorithms first the underlying wireless channel characteristics

must be well understood and proper analytical models must be developed.

As the demand increases for higher data rates and more bandwidth, the effects
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of all aforementioned channel impairments become more severe. Better channel models,

and more advanced algorithms for channel estimation, tracking and equalization are still

on the current agenda of communication system researchers and designers.

1.2. Organization and Contributions of the Thesis

This research has been completed under the following two major constraints:

• We considered that the transmission scheme is fixed and has been standardized

as in ”(ATSC Standard A/53 1995)”; thus we were constrained to work with and

implement algorithms which can only be implemented at the receivers. In other

words we assumed no changes will take place to the existing North American DTV

transmission standard. This eliminates the possibility of transmitter/receiver joint

optimization, or any proposals of improvements to the transmission format.

• Due to having very high data rate, the digital TV system requires algorithms with

relatively low complexity. Highly recursive algorithms or blind algorithms that re-

quire long averaging to get useful estimates is outside the focus of this research.

By the time a blind algorithm converge to a reasonably reliable estimate of the

channel, the channel may change significantly thus making the CIR estimate use-

less. For these reasons we mainly concentrated on training sequence based channel

estimation algorithms.

Total of five chapters follow the Introduction chapter:

• Chapter 2 presents the channel and signal model where the signal model obeys the

American DTV transmission standard ”(ATSC Standard A/53 1995)”. Notation and

main important sets of equations are introduced which will be primarily used in the

sequel of the thesis.

• Chapter 3 first overviews the method of (generalized) least squares, and applies it to

the signal/channel model that has been introduced in Chapter 2. Then the correla-

tion based initial channel estimation is also introduced. Correlation based channel

estimation is considered, since it is readily available in digital receivers forframe

synchronizationpurpose. Then the problems associated with both of these methods

2



will be presented. The most important contribution of Chapter 3 is the development

of a detailed statistical model of thebaseline noisewhich is a by-product of any

type of correlation processing in the receiver. However, as will be shown, this sta-

tistical model is actually a function of the channel impulse response which we are

trying to estimate. For this very reason we then provide an iterative algorithm to

find the generalized least squares channel estimate where the covariance matrix of

the baseline noise is incorporated into the channel estimation scheme. Each itera-

tion also involves a thresholding, which is accomplished by two different methods:

(i) constant false alarm rate (CA-CFAR) based thresholding, and (ii) order statistic

(OS-CFAR) based thresholding.

• Chapter 4 overviews Constant False Alarm Rate (CFAR) based thresholding meth-

ods. Cell Averaging (CA) and Order Statistic (OS) based CFAR methods are intro-

duced by the help of statistic distribution given in Chapter 2.

• In Chapter 5, we provide the derivation for the Decision Feedback Equalizers.

The CIR estimates thresholded by CFAR methods provided in previous chapters

are used for calculating the DFE filter tap values. We then provide the signal-to-

interference-plus-noise (SINR) performance at the DFE output.

3



CHAPTER 2

SIGNAL AND CHANNEL MODEL

2.1. Introduction

For the communications systems utilizing periodically transmitted training se-

quence,least-squares(LS) based channel estimation algorithms or thecorrelationbased

channel estimation algorithms have been the most widely used two alternatives. Both

methods use a stored copy of the known transmitted training sequence at the receiver.

The properties and the length of the training sequence are generally different depending

on the particular communication system’s standard specifications. In addition, a training

sequence could also be utilized in a communication system not only for channel estima-

tion purpose but also for synchronization purpose, to indicate the beginning and/or end

of a transmitted data frame or packet. In the sequel, although the examples following

the derivations of the blended channel estimator will be drawn from the ATSC digital TV

8-VSB system ”(Hillery 2001)”, to the best of our knowledge it could be applied with

minor modifications to any digital communication system with linear modulation which

employs a training sequence.

Overview of the data transmission model in Section 2.2 provides the necessary

background and introduces the notation which will be entirely used in the rest of the

thesis.

2.2. Overview of the Data Transmission Model

We will briefly go over the data transmission model. The base-band transmitted

signal waveform of data rate1/T symbols/sec depicted in Figure 2.1 is represented by

s(t) =
∑

k

Ikq(t− kT ) (2.1)

where{Ik ∈ A ≡ {α1, . . . , αM} ⊂ C1} is the transmitted data sequence, which

is a discreteM -ary sequence taking values on the generally complexM -ary alphabetA,

4



Channel
Estimator

Equalizer

∑
n

Inδ(t−nT )
q(t) c(t)

y(t)

t = nT

y[n]

s(t)
ĥ[n]

În

η(t)

q∗(−t)

Figure 2.1: System block diagram.h(t) is the composite channel including transmit end

receive filters as well as the physical channel.

which also constitutes the two dimensional employed modulation constellation.q(t) is

the transmitter pulse shaping filter of finite support[−Tq/2, Tq/2]. The overall complex

pulse shape will be denoted byp(t) and is given by

p(t) = q(t) ∗ q∗(−t) (2.2)

whereq∗(−t) is the receiver matched filter impulse response. Although it is not

required, for the sake of simplifying the notation, we assume that the span of the transmit

and receive filters,Tq, is integer multiple of the symbol period,T ; that isTq = NqT =

2LqT , Lq ∈ Z+. We also note that for 8-VSB system ”(Hillery 2001)” the transmitter

pulse shape is the Hermitian symmetric root-raised cosine pulse, which impliesq(t) =

q∗(−t). In the sequelq[n] ≡ q(t)|t=nT will be used to denote both the transmit and receive

filters. The physical channel between the transmitter and the receiver is denoted byc(t),

and throughout this paper the concatenation ofp(t) and the channel will be denoted by

h(t, τ), and is defined as

h(t, τ) = q(t) ∗ c(t, τ) ∗ q∗(−t) = p(t) ∗ c(t, τ). (2.3)

The physical channelc(t, τ) is generally described by the impulse response

c(t, τ) =
L∑

k=−K

ck(τ)δ(t− τk) (2.4)

which describes a time-varying channel, and{ck(τ)} ⊂ C1, where−K ≤ k ≤ L,

andt, τ ∈ R, {τk} denote the multipath delays, or the Time-Of-Arrivals (TOA). We will

5



assume that the time-variations of the channel is slow enough thatc(t, τ) = c(t) can

be assumed to be a fixed (static) inter-symbol interference (ISI) channel throughout the

training period; that is we will assume thatck(τ) = ck, which in turn implies

c(t) =
L∑

k=−K

ckδ(t− τk) (2.5)

for 0 ≤ t ≤ NT , whereN is the number of training symbols. In general

ck = c̃ke
−j2πfcτk with c̃k being the amplitude of thek’th multipath, andfc is the car-

rier frequency. It is also inherently assumed thatτk < 0 for −K ≤ k ≤ −1, τ0 = 0,

andτk > 0 for 1 ≤ k ≤ L. The particular choice of the summation indicesK andL,

the number of maximum anti-causal and causal multi-path delays respectively, will be

clarified in the discussion of correlation based channel estimation and onwards. It is im-

portant to clarify that the multi-path delaysτk arenot assumed to be at integer multiples

of the sampling periodT . Indeed it is one of the main contributions of this paper that we

show an accurate and robust way to recover the pulse shape back into the concatenated

channel estimate when the multi-path delays are not exactly at the sampling instants. By

combining Equations (2.3) and (2.5) (and by dropping theτ index) we get

h(t) = p(t) ∗ c(t) =
L∑

k=−K

ckp(t− τk). (2.6)

Since bothp(t) and c(t) are complex valued functions, the overall channel im-

pulse responseh(t) is also complex valued. We can write them in terms of their real and

imaginary parts:

p(t) = pI(t) + jpQ(t), (2.7)

c(t) = cI(t) + jcQ(t), (2.8)

h(t) = hI(t) + jhQ(t). (2.9)

Then

h(t) = p(t) ∗ c(t) = (pI(t) + jpQ(t)) ∗ (cI(t) + jcQ(t))

6



= (pI(t) ∗ cI(t)− pQ(t) ∗ cQ(t))︸ ︷︷ ︸
hI(t)

+j (pI(t) ∗ cQ(t) + pQ(t) ∗ cI(t))︸ ︷︷ ︸
hQ(t)

. (2.10)

By using the notation introduced here the matched filter outputy(t) is given by

y(t) =

(∑

k

Ikδ(t− kT )

)
∗ h(t) + ν(t) (2.11)

where

ν(t) = η(t) ∗ q∗(−t)

denotes the complex (colored) noise process after the pulse matched filter, withη(t) being

a zero-mean white Gaussian noise process with spectral densityσ2
η per real and imaginary

part. Similar to Equations (2.7-2.9)y(t) can be also written in terms of its real and imag-

inary parts:y(t) = yI(t) + jyQ(t). Sampling the matched filter output at the symbol rate

we obtain the discrete-time representation of the overall communication system as

y[n] ≡ y(t)|t=nT =
∑

k

Ikh[n− k] + ν[n]. (2.12)

. . .

Training Sequence

. . . . . . . . .

Data Sequence

aN−1 dN+1a0 a1 dN dN′−1

Figure 2.2: Data frame:N symbols of known training sequence followed byN ′ − N

information symbols.

Referring to Figure 2.2, the transmitted symbols are composed offrames (or pack-

ets) of lengthN ′, where the firstN symbols are the training symbols. Within a frame of

lengthN ′, the symbols are denoted by

Ik =





ak, for 0 ≤ k ≤ N − 1

dk, for N ≤ n ≤ N ′ − 1,
(2.13)

7



where the distinction of firstN symbols is made to indicate that they are the known

training symbols, and it is possible that theak’s belong to a certain subset of the M-ary

constellation alphabetA; that is{ak ∈ Ã ⊂ A ≡ {α1, . . . , αM}}. In fact for the 8-VSB

system the signal alphabet isA ≡ {±1,±3,±5,±7}, while the training sequence can

only take binary values within the set̃A ≡ {−5, +5}.
In the sequel the sampled matched filter output signaly[n] will be used extensively

in vector form, and to help minimize introducing new variables, the notation ofy[n1:n2]

with n2 ≥ n1, will be adopted to indicate the column vector

y[n1:n2] = [y[n1], y[n1 + 1], · · · , y[n2]]
T .

Same notation will also be applied to the noise variablesη[n] andν[n].

Without loss of generality symbol rate sampled, complex valued, composite CIR

h[n] can be written as a finite dimensional vector

h = [h[−Na], h[−Na + 1], · · · , h[−1], h[0], h[1], · · · , h[Nc − 1], h[Nc]]
T (2.14)

whereNa and Nc denote the number of anti-causal and the causal taps of the

channel, respectively, and are given by

Na = round

{
τ−K − TNq

T

}
, andNc = round

{
τL + TNq

T

}
,

andNa +Nc +1 is the total memory of the channel. Based on Equation (2.12) and assum-

ing thatN ≥ Na + Nc + 1, we can write the pulse matched filter output corresponding

only to the known training symbols:

y[Nc] = h[−Na]aNc+Na + · · ·+ h[0]aNc + · · ·+ h[Nc]a0 + ν[Nc]

y[Nc + 1] = h[−Na]aNc+Na+1 + · · ·+ h[0]aNc+1 + · · ·+ h[Nc]a1 + ν[Nc + 1]

...
...

y[N−1−Na] = h[−Na]aN−1+· · ·+h[0]aN−1−Na +· · ·+h[Nc]aN−1−Na−Nc +ν[N−1−Na]

which can be written compactly as

y[Nc:N−Na−1] = Ãh + ν [Nc:N−Na−1] = Ãh + Q̃η[Nc−Lq :N−1−Na+Lq ], (2.15)
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where

Ã = T {
[aNc+Na , · · ·, aN−1]

T , [aNc+Na , · · ·, a0]
}

(2.16)

=




aNc+Na aNc+Na−1 · · · a0

aNc+Na+1 aNc+Na · · · a1

...
...

.. .
...

aN−1 aN−2 · · · aN−1−Na−Nc




, (2.17)

whereÃ is (N −Na−Nc)× (Na +Nc +1) Toeplitz convolution matrix with first

column[aNc+Na , · · · , aN−1]
T and first row[aNc+Na , · · · , a0], and

ν [Nc:N−Na−1] = Q̃η[Nc−Lq :N−1−Na+Lq ] (2.18)

is the colored noise vector at the receiver matched filter output, with

Q̃ =




qT 0 · · · 0

0 qT · · · 0
...

...
. ..

...

0 0 · · · qT




(N−Na−Nc)×(N−Na−Nc+Nq)

(2.19)

andq is the vector containing time-reversed samples of the receiver matched filter

sampled at the symbol rate and is

q = [q[+Lq], · · · , q[0], · · · , q[−Lq]]
T . (2.20)

Note thatq hasNq + 1 = 2Lq + 1 samples.

Similarly the pulse matched filter output which includesall the contributions from

the known training symbols (which includes the adjacent random data as well) can be

written as

y[−Na:N+Nc−1] = (A + D) h + ν [−Na:N+Nc−1] (2.21)

= Ah + Dh + Qη[−Na−Lq :N+Nc−1+Lq ], (2.22)
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where

A = T


[a0, · · · , aN−1, 0, · · · , 0︸ ︷︷ ︸

Na+Nc

]T , [a0, 0, · · · , 0︸ ︷︷ ︸
Na+Nc

]



 (2.23)

is a Toeplitz matrix of dimension(N +Na+Nc)×(Na+Nc+1) with first column

[a0, a1, · · · , aN−1, 0, · · · , 0]T , and first row[a0, 0, · · · , 0], and

D = T


[0, · · · , 0︸ ︷︷ ︸

N

, dN , · · · , dNc+Na+N−1]
T , [0, d−1, · · · , d−Nc−Na ]



 , (2.24)

is a Toeplitz matrix which includes the adjacent unknown symbols only, prior to

and after the training sequence. The data sequence[d−1, · · · , d−Nc−Na ] is the unknown

information symbols transmitted at the end of the frame prior to the current frame being

transmitted.Q is of dimension(N + Na + Nc)× (N + Na + Nc + Nq) and has the same

convolution matrix structure with̃Q as displayed in Equation (2.19), and is given by.

Q =




qT 0 · · · 0

0 qT · · · 0
...

...
. ..

...

0 0 · · · qT




(N+Na+Nc)×(N+Na+Nc+Nq)

(2.25)

andq = [q[+Lq], · · · , q[0], · · · , q[−Lq]]
T .

Equation (2.22) which includesall the contributions from the known training sym-

bols (which includes the adjacent random data as well) can be written explicitly as

y[−Na:N+Nc−1] =




y[−Na]
...

y[Nc − 1]



y[Nc]
...

y[N −Na − 1]





y[N −Na]
...

y[N + Nc − 1]




=




y[−Na]
...

y[Nc − 1]

. . . . . . . . . . . . .↑
y[Nc:N−Na−1]

↓. . . . . . . . . . . . .

y[N −Na]
...

y[N + Nc − 1]




= Qη[−Na−Lq :N+Nc−1+Lq]
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+







a0 0 0 · · · 0

a1 a0 0 · · · 0
...

.. .
. . .

...

aNc+Na−1 aNc+Na−2 · · · a0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aNc+Na

aNc+Na−1 · · · a0

aNc+Na+1 aNc+Na · · · a1

...
...

...

aN−1 aN−2 · · · aN−1−Na−Nc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 aN−1 aN−2 · · · aN−2−Na−Nc

0 0 aN−1 · · · aN−2−Na−Nc

...
...

.. .
. . .

...

0 0 · · · 0 aN−1




︸ ︷︷ ︸
A

+




0 d−1 d−2 · · · d−Na−Nc

0 0 d−1 · · · d−Na−Nc+1

...
...

. ..
.. .

...

0 0 · · · 0 d−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dN 0 0 · · · 0

dN+1 dN 0 · · · 0
...

. ..
.. .

...

dNa+Nc+N−1 · · · dN 0




︸ ︷︷ ︸
D




h (2.26)

where the entries of the vectory[−Na:N+Nc−1] between thedottedlines denote the

matched filter output correspondingonly to the known training symbols which is provided

in Equation (2.15). Note that the corresponding entries of the matrixA between the

dotted lines are exactly the same as the entries of the matrixÃ which is provided in

Equation (2.17), and the corresponding entries of the matrixD between the dotted lines

are all zeros.

We now write the contributions of the unknown symbolsDh in Equation (2.22)

in a different format which will prove to be more useful in the subsequent derivations. We

first defined = Sd̃, or equivalentlyd̃ = ST d, where

d̃ = [d−Nc−Na , · · · , d−1,01×N , dN , · · · , dN+Nc+Na−1]
T (2.27)

d = [d−N−Na , · · · , d−1, dN , · · · , dN+Nc+Na−1]
T (2.28)

S =


 INa+Nc 0(Na+Nc)×N 0(Na+Nc)×(Nc+Na)

0(Na+Nc)×(Na+Nc) 0(Na+Nc)×N INa+Nc




(2(Nc+Na))×(N+2(Na+Nc))

(2.29)

whereS is a selectionmatrix which retains the random data, eliminates theN

zeros in the middle of the vector̃d. We also introduce
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H =




h̄
T

0 · · · 0

0 h̄
T · · · 0

...
...

. ..
...

0 0 · · · h̄
T




(N+Nc+Na)×(N+2(Na+Nc))

(2.30)

h̄ = [h[Nc], · · · , h[1], h[0], h[−1], · · · , h[−Na]]
T = Jh (2.31)

J =




0 · · · 0 1

0 · · · 1 0
...

...
...

1 0 · · · 0




(Na+Nc+1)×(Na+Nc+1)

(2.32)

H = HST (2.33)

whereh̄ is the time reversed version ofh (re-ordering is accomplished by the

permutation matrixJ ), andH is of dimension(N + Na + Nc) × (2(Nc +Na)) with a

“hole” inside which is created by the selection matrixS as defined in Equation (2.29).

Then it is trivial to show that

Dh = Hd̃ = HST d = Hd. (2.34)

Based on the Equations (2.27-2.34) we can rewrite Equation (2.22) as

y[−Na:N+Nc−1] = Ah + Dh + Qη[−Na−Lq :N+Nc−1+Lq ]

= Ah + Hd + Qη[−Na−Lq :N+Nc−1+Lq ], (2.35)
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CHAPTER 3

GENERALIZED LEAST SQUARES BASED CHANNEL

ESTIMATION

3.1. Method of Least Squares

First we briefly overview the method of least squares in general terms that is very

widely used in the statistical inference and estimation theory applications without consid-

ering any specific signal processing or communication system framework.

Consider the linear model

y = Ax + ν (3.1)

wherey is the observation (or response) vector,A is the regression (or design)

matrix, x is the vector of unknown parameters to be estimated, andν is the observation

noise (or measurement error) vector, and are given by

y = [y1, · · · , yn]T , (3.2)

A =




a1,1 a1,2 · · · a1,p

a2,1 a2,2 · · · a2,p

...
...

. . .
...

an,3 an,2 · · · an,p




, (3.3)

x = [x1, · · · , xp]
T , (3.4)

ν = [ν1, · · · , νn]T . (3.5)

It is assumed that all the variables in Equation (3.1) are generally complex valued,

that isy,ν ∈ Cn, x ∈ Cp andA ∈ Cn×p.

Then theordinary least squaressolutionx̂ols can be obtained by minimizing the

objective function
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JOLS(x) = νHν = ‖y −Ax‖2 (3.6)

is given by

x̂ols = (AHA)−1AHy, (3.7)

whenever the matrixA has rankp. The estimator of (3.7) is called thebest linear

unbiased estimate(BLUE) among alllinear unbiased estimators if the noise covariance

matrix isknownto be ”(Seber 1977, Casella and Berger 1990)”

Cov{ν} = Kν ≡ 1

2
E{ννH} = σ2

νI. (3.8)

The estimator of (3.7) is called theminimum variance unbiased estimator

(MVUE) amongall unbiased estimators (not only linear) if the noise isknown to be

Gaussian with zero mean and with covariance matrixKν of (3.8), that isx̂ols is called

MVUE if it is known thatν ∼ N (0, σ2
νI).

However if it is known that the vectorν is correlated, that isKν 6= σ2
νI, then in

order to achieve the BLUE property we must use a modified objective function. SinceKν

is positive definite, there exists ann × n nonsingular matrixV such thatKν = V V H

”(Seber 1977)”. Therefore settingz = V −1y, B = V −1X, andβ = V −1ν, we have

the model

z = Bx + β (3.9)

whereB is n × p of rank p, and Cov{β} = Kβ = I. Then we define the

(generalized) objective function for the model of (3.9) by

JGLS(x) = βHβ = ‖z −Bx‖2

= νHV −HV −1ν = νHK−1
ν ν

= (y −Ax)HK−1
ν (y −Ax). (3.10)
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The least squares estimate that minimizes Equation (3.10) is

x̂gls = (BHB)−1BHz

= (AHK−1
ν A)−1AHK−1

ν y, (3.11)

The estimator of (3.11) is called thebest linear unbiased estimate(BLUE) among

all linear unbiased estimators if the noise covariance matrix isknownto be Cov{ν} =

Kν ≡ 1
2
E{ννH} 6= σ2

νI ”(Seber 1977, Casella and Berger 1990)”. The estimator

of (3.11) is called theminimum variance unbiased estimator(MVUE) amongall unbi-

ased estimators (not only linear) if the noise isknownto be Gaussian with zero mean and

with covariance matrixKν , that isx̂ols is called MVUE if it is known thatν ∼ N (0, Kν).

3.2. Existing Channel Estimation Methods

Based on the model of Equation (2.12) we will briefly review the LS based channel

estimation and correlation based channel estimation algorithms.

3.2.1. Least-Squares Channel Estimation

In order to fully estimate the channel of Equation (2.6) the LS based channel

estimation algorithm assumes that the starting and the ending points of the channel taps

are either known or can be bounded. This assumption plays a critical role in the overall

quality and robustness of the LS estimation procedure, which will be investigated in the

following section.

Recall that symbol rate sampled, complex valued, composite CIRh[n] can be

written as a finite dimensional vector

h = [h[−Na], h[−Na + 1], · · · , h[−1], h[0], h[1], · · · , h[Nc − 1], h[Nc]]
T (3.12)

whereNa and Nc denote the number of anti-causal and the causal taps of the

channel, respectively, andNa + Nc + 1 is the total memory of the channel. Recall also

that the pulse matched filter output correspondingonly to the known training symbols is

given by
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y[Nc:N−Na−1] = Ãh + ν [Nc:N−Na−1] = Ãh + Q̃η[Nc−Lq :N−1−Na+Lq ], (3.13)

where

Ã = T {
[aNc+Na , · · ·, aN−1]

T , [aNc+Na , · · ·, a0]
}

=




aNc+Na aNc+Na−1 · · · a0

aNc+Na+1 aNc+Na · · · a1

...
...

.. .
...

aN−1 aN−2 · · · aN−1−Na−Nc




, (3.14)

whereÃ is (N −Na−Nc)× (Na +Nc +1) Toeplitz convolution matrix with first

column[aNc+Na , · · · , aN−1]
T and first row[aNc+Na , · · · , a0], and

ν [Nc:N−Na−1] = Q̃η[Nc−Lq :N−1−Na+Lq ]

is the colored noise at the receiver matched filter output, with

Q̃ =




qT 0 · · · 0

0 qT · · · 0
...

...
.. .

...

0 0 · · · qT




(N−Na−Nc)×(N−Na−Nc+Nq)

(3.15)

q = [q[+Lq], · · · , q[0], · · · , q[−Lq]]
T . (3.16)

The covariance matrix of the colored noise vectorν [Nc:N−Na−1] =

Qη[Nc−Lq :N−1−Na+Lq ] is denoted byKν , and is given by

Cov{ν} = Kν ≡ 1

2
E{ννH} = σ2

ηQ̃Q̃
H

(3.17)

whereσ2
η is the variance of the noise sequenceη[n].

As long as the matrix̃A is a tall matrix and of full column rank, that is

(i) N ≥ 2(Na + Nc) + 1,

(ii) rank{Ã} = Na + Nc + 1
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then the generalized least squares solution which minimizes the objective function

JGLS(h) = (y[Nc:N−Na−1] − Ãh)H(Kν)
−1(y[Nc:N−Na−1] − Ãh) (3.18)

exists and unique, and is given by

ĥLS = (Ã
H

(σ2
ηQ̃Q̃

H
)−1Ã)−1Ã

H
(σ2

ηQ̃Q̃
H

)−1y[Nc:N−Na−1]

= (Ã
H

(Q̃Q̃
H

)−1Ã)−1Ã
H

(Q̃Q̃
H

)−1y[Nc:N−Na−1]. (3.19)

3.2.2. Correlation Based Channel Estimation

We are assuming that in order to be able to use correlation based channel es-

timation schemes the training sequences must belong to certain classes of sequences,

and thereby possess some certain “nice” correlation properties. One of these classes

of sequences ismaximal length pseudo-noise(PN) sequences. We will denote a PN-

sequence of lengthn asPNn. In general, the periodic autocorrelation of a binary valued

({+A,−A}) PNn sequence is given by

rPNn [m] =





A2n, if m = 0,±n,±2n, · · ·
−A2. otherwise.

(3.20)

However if the PN sequence used is finite and the standard linear correlation is

used, then the auto-correlation values corresponding to the non-zero lags will not constant

and will not be as low as−A2. As a simple illustration consider a sequence composed of

six PN511 appended back to back, that is let

y = [PN511, PN511, PN511, PN511, PN511, PN511]
T . (3.21)

Thenrxy[m], with x = [PN511]
T , will be given as in Figure 3.1.

It is important to note that we will obtain a low correlation value of−A2 for lags

that are not multiples ofL = 511, corresponding to the intermediatePN511 portions of

the long sequencey. However as illustrated in Figure 3.1, for outer most lags we will
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Figure 3.1: Correlation properties of finite PN sequences. Note the “noisy” correlation at

both ends of the correlation values.

not achieve this constant and low correlation value; instead we will have a “noise” like

correlation due to the finiteness of the sequences.

The training sequence used at the transmitter is, a part of the digital TV standard

”(ATSC Standard A/53 1995)”, which is actually

s̃ = [FS4, PN511, PN63,±PN63, PN63]
T ,

of length 704, whereFS4 stands for the frame synchronization symbols of length 4. We

also have reserved frame bits and information bits right before and after the training se-

quencẽs.

As a summary the correlations of the received signal with the stored sequence will

be “noisy” because
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• the PN sequences are finite in length, they won’t achieve their low correlation value

for non-zero lag;

• the span of the cross-correlation includes the known training sequence as well as

the random data symbols and reserved data symbols.

In the sequel we will show how to “clean” the sidelobes of the finite correlation.

However this still leaves the problem of having the cross-correlation span include random

symbols which are located prior to and after the training sequence. In order to remedy

this problem we will introduce “thresholding”.

Cross correlating the stored training sequence with the received sequence, which

is readily available in digital receivers for the primary purpose offrame synchronization

”(Fimoff andÖzen and Nereyanuru and Zoltowski and Hillery 2001)”, yields a raw chan-

nel estimate

ĥu[n] =
1

ra[0]

N−1∑

k=0

a∗ky[k + n], n = −Na, · · · , 0, · · · , Nc (3.22)

wherera[0] =
N−1∑
k=0

‖ak‖2. Equivalently Equation (3.22) can be written as

ĥu =
1

ra[0]
AHy[−Na:N+Nc−1]. (3.23)

Recall that

y[−Na:N+Nc−1] = Ah + Dh + Qη[−Na−Lq :N+Nc−1+Lq ],

= Ah + Hd + Qη[−Na−Lq :N+Nc−1+Lq ]. (3.24)

Substituting Equation (3.24) into (3.23) we get

ĥu =
1

ra[0]
AH

(
Ah + Hd + Qη[−Na−Lq :N+Nc−1+Lq ]

)

=
1

ra[0]
AHAh +

1

ra[0]
AH

(
Hd + Qη[−Na−Lq :N+Nc−1+Lq ]

)
. (3.25)

In order to get rid of the sidelobes of the aperiodic autocorrelation we can simply

invert the normalized autocorrelation matrixRaa of the training symbols, defined by
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Raa =
1

ra[0]
AHA. (3.26)

Then thecleanedchannel estimatêhc is obtained from

ĥc = R−1
aa ĥu

= (AHA)−1AHy[−Na:N+Nc−1]. (3.27)

Substituting Equation (3.23) into (3.27) we get

ĥc = h +
(
AHA

)−1
AH

(
Hd + Qη[−Na−Lq :N+Nc−1+Lq ]

)
. (3.28)

As can be seen from Equation (3.28) the channel estimateĥc has the contributions

due to unknown symbols prior to and after the training sequence, which are elements of

the vectord, as well as the additive channel noise; only the sidelobes due to aperiodic

auto-correlation is removed. The term
(
AHA

)−1
AH

(
Hd + Qη[−Na−Lq :N+Nc−1+Lq ]

)

is calledbaseline noisein the raw channel estimate ”(Fimoff and̈Ozen and Nereyanuru

and Zoltowski and Hillery 2001, Hillery 2002)”.

In order to further reduce the baseline noise we can incorporate the covariance

matrix of the colored noise,Qη[−Na−Lq :N+Nc−1+Lq ], into the least squares equation of

(3.27) yielding theweighted(or generalized) least squares solution

ĥQ =
(
AH(σ2

ηQQH)−1A
)−1

AH(σ2
ηQQH)−1y[−Na:N+Nc−1]

=
(
AH(QQH)−1A

)−1
AH(QQH)−1y[−Na:N+Nc−1] (3.29)

where σ2
ηQQH is the covariance matrix of the colored noise vector

Qη[−Na−Lq :N+Nc−1+Lq ], and σ2
η is the variance of the noise sequenceη[n]. Note

that the matrices,A, Q, that appear in Equation (3.29) are known, and the matrix

(AH(QQH)−1A)−1AH(QQH)−1 can be pre-computed and stored in the digital receiver

to yield the initial channel estimate of̂hQ, in place of thêhc.
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3.3. Covariance Matrix Update Based Iterative Channel Estimation

The received signal model of Equation (2.35), which captures all the output cor-

responding to theN training symbols, is repeated here for convenience:

y[−Na:N+Nc−1] = Ah + Hd + Qη[−Na−Lq :N+Nc−1+Lq ].

We can denote the two terms on the right side of Equation (2.35) by

v = Hd + Qη[−Na−Lq :N+Nc−1+Lq ]. (3.30)

Hence substituting Equation (3.30) into (2.35) we get

y[−Na:N+Nc−1] = Ah + v. (3.31)

As originally observed and documented first by C. Pladdy ”(Pladdy andÖzen

and Nereyanuru and Zoltowski and Fimoff 2002)”, we canincorporate the covariance

matrix of the vectorv into the generalized least squares solution. By noting the statistical

independence of the random vectorsd andη, and also noting that both vectors are zero

mean, the covariance matrix,Kv of v is given by

Cov{v} = Kv ≡ 1

2
E{vvH} =

Ed

2
HHH + σ2

ηQQH , (3.32)

whereEd is the energy of the transmitted information symbols, and equals to21

if the symbols{dk} are chosen from the set{±1,±3,±5,±7}. The generalized least

squares objective function to be minimized is

JLS(y) =
(
y[−Na:N+Nc−1] −Ah

)H
K−1

v

(
y[−Na:N+Nc−1] −Ah

)
. (3.33)

Then the generalized least-squares solution to the model of Equation (3.31) which

minimizes the objective function of (3.33) is given by

ĥK = (AHK−1
v A)−1AHK−1

v y[−Na:N+Nc−1] (3.34)

21



whereKv is given by Equation (3.32). The generalized least-squares channel

estimate of Equation (3.34) is also called theBest Linear Unbiased Estimate(BLUE),

due to fact that it achieves minimum variance among all linear unbiased estimates ”(Seber

1977)”. In our case the covariance matrix of the channel estimate is

Cov{ĥK} ≡ E{(ĥK − h)(ĥK − h)H}
= (AHK−1

v A)−1. (3.35)

When the covariance matrix of (3.35) is compared to any other estimators covari-

ance matrix, the comparison is must be done in the senseZ − Y > 0 iff the matrix

[Z − Y ] is positive definite.

The problem with Equation (3.34) is that the channel estimateĥK is based on the

covariance matrixKv, which is a function of the true channel impulse response vector

h as well as the channel noise varianceσ2
η. In actual applications the BLUE channel

estimate of Equation (3.34) can not be exactly obtained. Hence we need an iterative

technique to calculate least squares estimate of (3.34) where every iteration produce an

updated estimate of the covariance matrix as well as the noise variance.

3.3.1. Further Improvements to the Initial Channel Estimate

As discussed in Section 3 we can use either one of the initial channel estimates

of Equations (3.27) or (3.29), the latter estimate is expected to produce slightly better

channel estimates, where the performance measure is the normalized least-squares error

which is defined by

ENLS =
‖h− ĥ‖2

Na + Nc + 1
. (3.36)

We propose to further reduce the initial least squares estimation error by seeking

an approximation in the form of assuming that the baseband representation of the physical

channelc(t) is a unit Dirac-delta function, that is assume that

c(t) = δ(t) (3.37)

which implies
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h(t) = p(t) ∗ c(t) = p(t). (3.38)

Thus we can assume that our finite length channel impulse response vector can be

(initially) approximated by

h̃ = [0, · · · , 0︸ ︷︷ ︸
Na−Nq

, p[−Nq], · · · , p[−1], p[0], p[1], · · · , p[Nq], 0, · · · , 0︸ ︷︷ ︸
Nc−Nq

]T (3.39)

with the assumptions ofNa ≥ Nq andNc ≥ Nq, that is the tail span of the com-

posite pulse shape is well confined to within the assumed delay spread of[−NaT, NcT ].

Then the approximation of (3.39) can be substituted into Equations (2.30-2.33) to yield an

initial (approximate) channel convolution matrix̃H and is given byH̃ = H̃ST whereH̃
is formed as in Equation (2.30) with̃̄h = Jh̃. We can also assume a reasonable received

Signal-to-Noise (SNR) ratio measured at the input to the matched filter which is given by

SNR =
Ed ‖(c(t) ∗ q(t))|t=nT‖2

σ2
η

(3.40)

=
Ed ‖q‖2

σ2
η

. (3.41)

For instance we can assume an approximateSNR of 20dB yielding an initial noise

variance of

σ̃2
η =

Ed‖q‖2

100
. (3.42)

Then combiningH̃ andσ̃2
η we can pre-calculate the initial approximate covariance

matrix where the covariance matrix of the approximate channel is given by

K̃v(H̃) =
1

2
EdH̃H̃

H
+ σ̃2

ηQQH , (3.43)

which further leads to the initial channel estimate of

ĥK̃ =
(
AH [K̃v(H̃)]−1A

)−1

AH [K̃v(H̃)]−1y[−Na:N+Nc−1] (3.44)
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The equation (3.44) is called the approximate Best Linear Unbiased Estimator of

the channel impulse response and this estimator will be referred to as ”aBLUE” in the

sequel.

3.3.2. Statistical Analysis of Baseline Noise

The initial channel estimate of Equation (3.28) is repeated here for convenience

ĥc = h +
(
AHA

)−1
AH

(
Hd + Qη[−Na−Lq :N+Nc−1+Lq ]

)
,

where the channel estimatêhc has the contributions due to unknown symbols

prior to and after the training sequence, which are elements of the vectord, as well as the

additive channel noise; and the term
(
AHA

)−1
AH

(
Hd + Qη[−Na−Lq :N+Nc−1+Lq ]

)
is

calledbaseline noisein the raw channel estimate ”(Fimoff and̈Ozen and Nereyanuru and

Zoltowski and Hillery 2001, Hillery 2002)”. Indeed we can summarize the baseline noise

expression for the three different estimators of Equations (3.27), (3.29) and (3.44) by

ĥ = h + ξ = h + B
(
Hd + Qη[−Na−Lq :N+Nc−1+Lq ]

)
(3.45)

where the baseline noise vectorξ is defined by

ξ = B
(
Hd + Qη[−Na−Lq :N+Nc−1+Lq ]

)
(3.46)

and the matrixB takes one of the three following different forms depending on

the estimator used:

B =





(
AHA

)−1
AH , for ĥc of Equation (3.27)

(
AH(QQH)−1A

)−1
AH(QQH)−1, for ĥQ of Equation (3.29)(

AH [K̃v(H̃)]−1A
)−1

AH [K̃v(H̃)]−1, for ĥK̃ of Equation (3.44)

(3.47)

Although we can derive the exact probability distribution of the baseline noise

term, we can alternatively make the assumption ofnormality (having Gaussian distribu-

tion) of the channel estimation error. This assumption can be asserted by invoking the
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central limit theorem. We will state the central limit theorem without providing proof,

since its proof can be found in several texts ”( Casella and Berger 1990)”.

Theorem 3.1 (Central Limit Theorem ) Let X1, X2, . . . be a sequence of iid random

variables withE{Xi} = µ and0 ≤ Var{Xi} = σ2 ≤ ∞. DefineX = 1
n

∑n
i=1 Xi. Let

Gn(x) denote the distribution function of
√

n(Xn−µ)/σ. Then for anyx,−∞ ≤ x ≤ ∞,

lim
n→∞

Gn(x) =

x∫

−∞

1√
2π

e−y2/2dy, (3.48)

that is
√

n(Xn−µ)/σ has a limiting standard normal distribution (Gaussian with0 mean

and variance1,N (0, 1)).

Forkth tap of the channel estimate,ĥk, regardless of the estimator form, the chan-

nel estimation error termξk consists of the sum of

• (scaled) linear combination of2(Nc+Na) random data;

• (scaled) linear combination ofN+Na+Nc+2Lq white Gaussian noise samples.

Thus we first invoke the Central Limit Theorem for the vectorHd and assert the

approximation

Hd ∼ N (0,
1

2
EdHHH). (3.49)

The second termQη[−Na−Lq :N+Nc−1+Lq ] is already a Gaussian vector with zero

mean and covariance matrixσ2
ηQQH , that is

Qη[−Na−Lq :N+Nc−1+Lq ] ∼ N (0, σ2
ηQQH). (3.50)

Then noting the independence of the random data symbolsd and the noise vector

η we conclude that the baseline noise vectorξ is has a limiting Gaussian distribution with

zero mean and covariance matrix1

1The distribution in Equation (3.50) is exact; however the distributions of both (3.49) and (3.52) are

approximations
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Cov{ξ} = Kξ = B(
Ed

2
HHH + σ2

ηQQH)BH

= BKvB
H (3.51)

that is

ξ = B(Hd + Qη[−Na−Lq :N+Nc−1+Lq ]) ∼ N (0,B(
Ed

2
HHH + σ2

ηQQH)BH),

∼ N (0,BKvB
H

︸ ︷︷ ︸
Kξ

) (3.52)

whereB takes one of the appropriate forms as displayed in Equation (3.47), and

Kv is given in (3.32).

We conducted a simple experimentation to help visualize the normality of the

baseline noise seen at, randomly selected,418th tap value for̂hc: Ten thousand realiza-

tions of the vectorsd andη[−Na−Lq :N+Nc−1+Lq ] are generated, then the histogram and the

normality-plot of the real and imaginary parts of the418th tap value of the term

(
AHA

)−1
AH

(
Hd + Qη[−Na−Lq :N+Nc−1+Lq ]

)

are plotted in Figures 3.2 and 3.3 respectively. The purpose of a normality, or normal

probability, plot is to graphically assess whether the data could come from a normal dis-

tribution. If the data are normal the plot will be linear. Other distribution types will

introduce curvature in the plot.

It is also important to analyze the marginal distributions of the baseline noise

as well as the distribution of the norm of the individual components of the baseline

noise vector2. That is we are interested in finding the probability distributions of

|ξk| and |ξk|2 where subscriptk denotes thekth element of the baseline noise vector

ξ = [ξ1, . . . , ξNa+Nc+1]
T . Based on (3.52) we can show thatξk has a Gaussian marginal

distribution with zero mean and variance ”( Casella and Berger 1990)”

σ2
ξk
≡ 1

2
E{ξkξ

∗
k} = 1T

k BKvB
H1k (3.53)

2The probability distribution function of the norm, and square of the norm, of individual components of

the baseline noise vectorξ will be useful later when we derive the constant false alarm rate (CFAR) based

threshold.
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Figure 3.2: Ten thousand realizations of the vectorsd andη[−Na−Lq :N+Nc−1+Lq ] are gen-

erated; then the histogram of the real and imaginary parts of the418th tap value of the

term
(
AHA

)−1
AH

(
Hd + Qη[−Na−Lq :N+Nc−1+Lq ]

)
are plotted.

that is

ξk = 1T
k B(Hd + Qη[−Na−Lq :N+Nc−1+Lq ]) ∼ N (0,1T

k BKvB
H1k︸ ︷︷ ︸

σ2
ξk

), (3.54)

whereB takes one of the appropriate forms as displayed in Equation (3.47), and

1k = [0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0]T is the vector of zeros of appropriate dimension with a 1 at the

kth position.

Now we state an important fact about the probability distributions of the norm

and square-norm of the complex Gaussian random variables. The detailed discussion

regarding their proofs and further properties can be found in ”(Stüber 1996)”.
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Figure 3.3: Ten thousand realizations of the vectorsd andη[−Na−Lq :N+Nc−1+Lq ] are gen-

erated; then the normality plot of the real and imaginary parts of the418th tap value of

the term
(
AHA

)−1
AH

(
Hd + Qη[−Na−Lq :N+Nc−1+Lq ]

)
are plotted. The blue straight

line corresponds to case where the samples are drawn from the exact normal distribution.

Lemma 3.1 Let ξ = [ξ1, . . . , ξNa+Nc+1]
T be a complex valued random vector, with sta-

tistically dependent real and imaginary partsξr andξq. Given that

ξ ∼ N (0,BKvB
H

︸ ︷︷ ︸
Kξ

) (3.55)

then the random vectorS =
∑k

i=1 ξiξ
H
i is said to be Wishart distributed on k

degrees of freedom ”(Krzanowski 2000)”, i.e.

S ∼ Wk(Kξ, 1) (3.56)

Lemma 3.2 Let ξ = [ξ1, . . . , ξNa+Nc+1]
T be a complex valued random vector, with sta-

tistically dependent real and imaginary partsξr andξq. Given that
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ξ ∼ N (0,BKvB
H

︸ ︷︷ ︸
Kξ

) (3.57)

then the random vectorZ =
∑k

i=1(
ξ
σi

)2 is distributed according to the chi-square

distribution on k degrees of freedom ”(Hojbjerre and Sorensen and Eriksen and Andersen

1995)”, i.e.,

Z ∼ χ2
k (3.58)

The random vectorZ given in Lemma 3.2 can be written as, (fork = 1)

Z = (
ξ

σξ

)2 =
1

(σξ)2
ξξH . (3.59)

Applying Lemma 3.1 to Equation (3.59) we conclude that,W1(Kξ, 1) distribution

is just (σξ)
2 times theχ2

k distribution, so that theχ2
k distribution is a special case of

the Wishart distribution ”(Krzanowski 2000, Hojbjerre and Sorensen and Eriksen and

Andersen 1995)”.

If u = zHξ is any linear transformation ofξ, wherez is nonzero vector, thanu

also has a normal distribution with zero mean and covariance matrixzHKξz,

u ∼ N (0,zHKξz). (3.60)

It is also important to analyze the distribution ofzHSz, where

S = ξξH =




ξ1ξ
∗
1 ξ1ξ

∗
2 · · · ξ1ξ

∗
Nc+Na+1

ξ2ξ
∗
1 ξ2ξ

∗
2 · · · ξ2ξ

∗
Nc+Na+1

...
...

. ..
...

ξNc+Na+1ξ
∗
1 ξ1ξ

∗
2 · · · ξNc+Na+1ξ

∗
Nc+Na+1




, (3.61)

zHSz = zH(ξξH)z = (zHξ)(ξHz) = uuH = |u|2 (3.62)

Applying Lemma 3.1 touuH , we see that
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zHSz ∼ W1(z
HKξz, 1). (3.63)

SinceW1(Kξ, 1) distribution is just(σξ)
2 = zHKξz times theχ2

1 distribution,

zHSz has also

zHSz ∼ (zHKξz)χ2
1. (3.64)

Consider the casez = 1k, where1k = [0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0]T is the vector of

zeros of appropriate dimension with a 1 at thekth position. Then

zHSz = 1H
k S1k = skk = ξkξ

∗
k = |ξk|2. (3.65)

Also

zHKξz = 1T
k BKvB

H1k = σ2
ξk

. (3.66)

Finally, taking Equation (3.65) and Equation (3.66) in Equation (3.64), the distri-

bution of|ξk|2 is

|ξk|2 ∼ (σ2
ξk

)χ2
1, (3.67)

and|ξk|2 has a probability density function given by

p|ξk|2(r) =
1

σ2
ξk

√
2πr

exp(− r

2σ2
ξk

). (3.68)

3.3.3. Approximations of Distribution

We can alternatively derive the probability density function of the channel estima-

tion error under the assumption that the real and imaginary parts of the channel noiseξ are

independent, in order to obtain a simpler thresholding rule in our further investigations.
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Lemma 3.3 Let ξ = ξr + jξq be a complex valued random variable, with statistically

independent real and imaginary partsξr and ξq. Given thatξ is Gaussian with0 mean

and varianceσ2
ξ = σ2

ξr
= σ2

ξq
= 1

2
E{ξξ∗}, then the random variableR = |ξ| = √

ξ2
r + ξ2

q

is said to be Rayleigh distributed, and its density, denoted bypR(r), is given by

pR(r) =





r
σ2

ξ
e
− r

2σ2
ξ , r ≥ 0

0, r < 0.
(3.69)

Similarly the random variable defined byZ = R2 = |ξ|2 = ξ2
r +ξ2

q is exponentially

distributed, and its density is given by

pZ(z) =





1
2σ2

ξ
e
− z

2σ2
ξ , r ≥ 0

0, r < 0.
(3.70)

Applying Lemma 3.3 to (3.54) we immediately conclude that|ξk| is a Rayleigh

random variable with parameter2σ2
ξk

, and |ξk|2 is an exponentially distributed random

variable with parameter2σ2
ξk

, and their density functions are

p|ξk|(r) =





r
σ2

ξk

e
− r

2σ2
ξk , r ≥ 0

0, r < 0.
(3.71)

p|ξk|2(r) =





1
2σ2

ξk

e
− r

2σ2
ξk , r ≥ 0

0, r < 0.
(3.72)

respectively, whereσ2
ξk

is defined by Equation (3.53). Note that

E{|ξk|2} =

∫ ∞

0

r2p|ξk|(r)dr =

∫ ∞

0

rp|ξk|2(r)dr = 2σ2
ξk

.

3.3.4. Iterative Algorithm to Calculate the Channel Estimate

The BLUE channel estimate is repeated here for convenience:

ĥK = (AHK−1
v A)−1AHK−1

v y[−Na:N+Nc−1] (3.73)

whereKv is the covariance matrix given by
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Kv ≡ 1

2
E{vvH} =

Ed

2
HHH + σ2

ηQQH . (3.74)

The problem with Equation (3.73) is that the channel estimateĥK is based on the

covariance matrixKv, which is a function of the true channel impulse response vector

h that we are trying to estimate, as well as the channel noise varianceσ2
η. In actual

applications the BLUE channel estimate of Equation (3.73) can not be exactly obtained.

Hence we need an iterative technique to calculate least squares estimate of (3.73) where

every iteration produce an updated estimate of the covariance matrix as well as the noise

variance. Thus an onlyapproximateBLUE estimate is possible.

Iterative algorithm to calculate the channel estimate, and noise variance is pro-

vided in Algorithm 1. In the very first step we can use any one of the three equations

(3.27), (3.29), or (3.44) for an initial CIR estimate. However Equation (3.27) gives the

highest normalized LS Error, and Equation (3.44) yields the lowest initial normalized LS

error, hence Equation (3.44) is the most desirable of the three alternatives.

Once an initial channel estimate is obtained the channel noise variance can be

obtained by

σ̂2
η =

1

2Eq(N −Na −Nc)
|ŷ[Nc:N−Na] − y[Nc:N−Na]|2 (3.80)

which is based on the observation vectory[Nc:N−Na] of Equation (2.15), where

Eq = |q|2 andŷ[Nc:N−Na] = Ãĥ. No subscript is used for̂h to indicate that any channel

estimate can be used at that stage to estimate the noise variance. Then an estimate of the

covariance matrix of (3.74) can be obtained immediately since all the quantities involved

in (3.74) are either known or has been estimated3. Then the covariance matrix estimate

is used in Equation (3.73) to yield a better estimate of the channel. Then this process

is iterated until a pre-specified number of iterations is reached, or a stopping criterion

is achieved. A stopping criterion might be defined based on checking the norm of the

3Ed andQ are known;H andσ2
η are estimated.H is a function of the channel estimatêh, and is

constructed by following Equations (2.30-2.33), and the initial channel estimateĥ to constructH can

come from (3.27), (3.29), or (3.44).
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Algorithm 1 Iterative Algorithm to obtain a CIR estimate via Generalized Least-Squares

[1] Get an initial CIR estimate using one of (3.27) or (3.29) or (3.44), and denote it byĥ[0];

[2] Threshold the initial CIR estimate.

[3] Based ony[Nc:N−Na] of Equation (2.15), estimate the noise variance by

σ̂2
η[0] =

1
2Eq(N −Na −Nc)

|ŷ[Nc:N−Na] − y[Nc:N−Na]|2 (3.75)

whereEq = |q|2 andŷ[Nc:N−Na] = Ãĥ
(0)
th ;

[4]

for k = 1, . . . , Niter do

[4-a] Calculate the inverse of the (estimated) covariance matrix

K̂
−1

v [k] =
[Ed

2
H(ĥ(th)[k − 1])HH(ĥ(th)[k − 1]) + σ̂2

η[k − 1]QQH

]−1

; (3.76)

[4-b] Calculate

ĥK [k] = (AHK̂
−1

v [k]A)−1AHK̂
−1

v [k]y[−Na:N+Nc−1]; (3.77)

[4-c] Calculate (CFAR)ε[n+Na][k] for −Na ≤ n ≤ Nc according to Equation (4.20), and set

ĥ
(k)
(th)[n] =





0, if ‖ĥ(k)
K [n]‖ < ε[n+Na][k]

ĥ
(k)
K [n], otherwise,

(3.78)

for −Na ≤ n ≤ Nc.

[4-d] Estimate the noise variance by

σ̂2
η[k] =

1
2Eq(N −Na −Nc)

‖ŷ(k)
[Nc:N−Na] − y[Nc:N−Na]‖2 (3.79)

whereŷ
(k)
[Nc:N−Na] = Ãĥth[k].

end for

difference between the channel estimates obtained in the current iteration and the previous

iteration.

There is one crucial detail that has not been discussed until this point. Right after

obtaining a channel estimate, prior to using that channel estimate for noise variance,σ2
η,

calculation and prior to building the channel convolution matrixH, the baseline noise has

to be cleaned from the channel estimate. This cleaning can be achieved via thresholding.

Previously we have used a fixed thresholding algorithm ”(Özen and Zoltowski 2002)” in

the form of
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setĥ(th)
k =





0, if ‖ĥk‖2 < ε

ĥk, otherwise,
(3.81)

for all k, to get rid of the baseline noise. We have observed that there can be

significant performance loss if a fixed thresholding in the form of (3.81) is applied at every

iteration. This performance loss is inevitable due to getting rid of significant amount of

pulse tails embedded in the channel impulse response while getting rid of the baseline

noise. To overcome this problem we propose two different thresholding schemes. The

first one is called constant false alarm4 rate (CFAR) based thresholding, and it is based on

determining a thresholding bound based on the statistical distribution of the baseline noise

which is already derived in Section(3.3.2). The second method is called the protection

window based thresholding.

3.3.5. Other Approaches Background (Matching Pursuit)

There are some alternative channel estimation algorithms proposed as well as LS

and a-BLUE methods. Matching Pursuit algorithm can be used for estimation of channels

with large delay spread ”(Cotter and Rao 2002)”.

Recall the notation of multipath communication system again

y[−Na:N+Nc−1] = Ah + v. (3.82)

where

A = T


[a0, · · · , aN−1, 0, · · · , 0︸ ︷︷ ︸

Na+Nc

]T , [a0, 0, · · · , 0︸ ︷︷ ︸
Na+Nc

]





=




a0 0 · · · 0

a1 a0 · · · 0
...

...
.. .

...

aN−1 aN−2 · · · a0

0 aN−1 · · · a1

...
...

.. .
...

0 0 · · · aN−1




(3.83)

4In statistical inference literature false alarm (rate) is referred to as the Type I error (probability).
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In the MP algorithm ”(Cotter and Rao 2000)”, we first find the column in the

matrix A = [a1,a2, · · · ,aN ], which is best aligned with the signal vectorb0 =

y[−Na:N+Nc−1] and this is denotedak1. Then the projection ofb0 alongak1 direction

is removed fromb0 and a new vector is obtained, called the residual, which is denoted by

b1.

Now the column inA, ak2, which is best aligned withb1 is found and a new

residual,b2, is formed.

In thepth iteration of the MP algorithm,the vector formA most closely aligned

with the residualbp−1 is chosen according to

kp = arg max
l
‖P al

bp−1‖ (3.84)

whereP al
is the projection matrix onto the space spanned byal

P al
=

alal
H

‖al‖2
(3.85)

The new residual vector is then computed as

bp = bp−1 − P akp
bp−1 (3.86)

and the tap value at positionkp is

ĥkp =
aH

kp
bp−1

‖al‖2
(3.87)

The iteration is repeated until a specified number of taps or the residual becomes

sufficiently small i.e.‖bp‖ < ε.
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CHAPTER 4

CONSTANT FALSE ALARM RATE (CFAR) BASED

THRESHOLDING

4.1. Introduction

In radar systems, a constant false alarm rate (CFAR) detection is used to decide the

presence of a target from a radar resolution cell ”(Levanon 1988)”. The purpose of CFAR

design is maximization of detection probability while maintaining a desired false alarm

rate. A CFAR detector should provide detection thresholds that are relatively immune to

background noise and clutter variation with a CFAR. In parametric CFAR schemes, the

most essential distinction of all CFAR algorithms is that the methods to form the average

value representing the varying strength of clutter are different. The most widely used

CFAR techniques are

• Cell averaging (CA) CFAR,

• Order Statistics (OS) CFAR.

Finn and Johnson ”(Finn and Johnson 1968)” first proposed the Cell-Averaging

(CA) method. The adaptive method can play an effective part in many noise and clutter

environments, and provide nearly the best ability of signal detection while preserving

the enough constant false alarm rate. But in the existing interfering targets situation, the

detection performance of CA decreases. Rohling ”(Rohling 1983)” presented the Order-

Statistic (OS) CFAR detector; OS-CFAR possesses good ability to counter the multiple

targets.

As an example, the CA-CFAR technique is outlined schematically in Figure 4.1.

The returns from a given pulse are detected in a square-law detector, and a sample is taken

from each channel tap. The channel tap under test is central tap. Its immediate neighbors

are excluded from averaging process, because of fear of spillover from the channel tap

under test. In the basic CA-CFAR the inputs from the M neighboring taps are averaged,
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resulting an estimate of background noise(interference).the threshold is obtained by mul-

tiplying the estimated average by scaling factorα. This method works well when the

background interference is statistically homogenous over range or Doppler, or both.

4.2. Using CFAR Techniques for Channel Estimation

The CFAR methods can be used to increase the estimation performance of channel

impulse response.

Recall that thekth tap of the channel estimate vector can be expressed in the form

ĥk = hk + ξk = hk + 1T
k B

(
Hd + Qη[−Na−Lq :N+Nc−1+Lq ]

)

︸ ︷︷ ︸
ξk

. (4.1)

As has been presented thekth component of the channel estimation error vector

ξk has a Gaussian distribution with zero mean and variance

σ2
ξk

= 1T
k B(

1

2
EdHHH + σ2

ηQQH)BH1k = 1T
k BKvB

H1k (4.2)

whereB takes one of the appropriate forms as displayed in Equation (3.47), and

the random variable|ξk|2 is exponentially distributed with parameter2σ2
ξk

.

The problem of deciding whether thekth tap estimatêhk is a zero tap or not can be

formulated as a simple hypothesis testing problem. That is we can consider the following

two hypotheses:

H0 : ĥk = ξk, (4.3)

H1 : ĥk = hk + ξk; (4.4)

where underH0 the hypothesis is that thekth channel tap is actually zero and we

are observing only baseline noise, and underH1 the hypothesis is that the channel tap

is non-zero, and we are observing (non-zero) channel tap plus the baseline noise. From

the earlier developments the probability distribution of thekth channel tap under null

hypothesisH0 is given by
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H0 : ĥk ∼ N (0, σ2
ξk

), (4.5)

H1 : ĥk ∼ N (hk, σ
2
ξk

). (4.6)

After defining (4.5) and (4.6) we can come up with different decision rules on

how to threshold the channel estimateĥ, however we choose to pursue the constant false

alarm rate (CFAR) based thresholding. False alarm probability based decision rule is

chosen so that the resulting threshold rule does not require any a priori knowledge of

the distribution of the hypothesisH1, it is solely based onH0. False alarm rate is the

probability of choosingH1 whenH0 is true.

Our decision rule will be in the form of

setĥ(th)
k =





0, if |ĥk|2 < εk

ĥk, otherwise.
(4.7)

whereĥ
(th)
k denotes the thresholdedk’th tap of the channel impulse response.

Based on the rule of (4.7) the false alarm rate, denoted bypFA is given by

pFA = Pr{|ĥk|2 ≥ εk|H0 is true}

=

∞∫

εk

1

σ2
ξk

√
2πr

exp(− r

2σ2
ξk

)dr

(4.8)

By making change of variablet = r
2σ2

ξk

,

pFA =
1√
πσ2

ξk

∞∫

εk
2σ2

ξk

exp(−t)√
t

dt

(4.9)

By makingx =
√

t change of variable we get

pFA =
2√
πσ2

ξk

∞∫

√
εk

2σ2
ξk

exp(−x2)dx
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(4.10)

Recall the complementary error function,erfc(x), ”(Abramowitz and Stegun

1988)”

erfc(z) =
2√
π

∞∫

z

exp(−t2)dt, (4.11)

then thepFA can be written as

pFA =
1

σξk

erfc(

√
εk

2σ2
ξk

). (4.12)

For the given level of false alarm probabilitypFA the threshold levelεk is given

by

εk = 2σ2
ξk

[erfc−1(σξk
pFA)]2 (4.13)

whereσ2
ξk

is given by (4.2).

Although we end up with an expression for the threshold of Equation (4.23), which

should be applied to the channel estimate as in (4.7), we still have the problem of not

knowing the true covariance matrixB(1
2
EdHHH + σ2

ηQQH)BH and thekth diagonal

element which we have denoted byσ2
ξk

. We can only have an estimatêσ2
ξk

available to be

used in Equation (4.23). Thus it is natural to see some performance loss due to using the

estimateσ̂2
ξk

in place of the true variance as will be shown in the simulations. Indeed the

thresholding step is going to be incorporated into the iterations of the channel estimation

with covariance matrix updated at every iteration. Once the covariance matrix is updated

at every iteration we would have a new, and presumably better, thresholdεk since we will

get a better estimatêσ2
ξk

at every iteration.

Note that the step[4-b] of the Algorithm is the main step to compute the channel

estimate, and is repeated here for convenience (the square bracketed index[n] denote the

iteration step):

ĥK [n] =
(
AHK̂

−1

v [n]A
)−1

AHK̂
−1

v [n]y[−Na:N+Nc−1], (4.14)

where
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K̂
−1

v [n] =

[Ed

2
H(ĥ(th)[n− 1])HH(ĥ(th)[n− 1] + σ̂2

η[n− 1]QQH

]−1

(4.15)

is the inverse of the estimated covariance matrix ofv, andH(ĥ(th)[n− 1]) is the

convolution matrix (with a “hole” inside) constructed as in Equations (2.30-2.33) from

ĥ(th)[n − 1] which is the thresholded CIR vector estimated at the previous iteration. The

baseline noise for the main channel estimation step of Equation (4.14) is

ξ = B(Hd + Qη[−Na−Lq :N+Nc−1+Lq ]), (4.16)

where

B = (AHK̂
−1

v [n]A)−1AHK̂
−1

v [n]. (4.17)

Thus the covariance matrix of the baseline noise at then’th iteration step, denoted

by Kξ[n], is given by

Kξ[n] = B(
Ed

2
HHH + σ2

ηQQH)BH

= (AHK̂
−1

v [n]A)−1AHK̂
−1

v [n]KvK̂
−1

v [n]A(AHK̂
−1

v [n]A)−1. (4.18)

Since we can only use an estimate of the true covariance matrixKv (in the middle

of Equation (4.18) ), after the simplifications we get

K̂ξ[n] = (AHK̂
−1

v [n]A)−1, (4.19)

which is an estimate of the true covariance matrix ofξ of Equation (4.16) if we

could have used the true covariance matrixKv in Equation (4.14) to begin with. Then

the CFAR based threshold is given

εk = 2σ̂ξk

2[erfc−1(σ̂ξk
pFA)]2 (4.20)

whereσ̂2
ξk

is given by

σ̂2
ξk

= 1T
k K̂ξ[n]1k = 1T

k (AHK̂
−1

v [n]A)−11k. (4.21)
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4.2.1. Approximations and Further Simplifications

Recall that thekth tap of the channel estimate vector can be expressed in the form

of Equation (4.1). In section (3.3.3), it has been shown that the norm and the norm-square

of the channel estimation errorξk has been shown to obey Equations (3.71) and (3.72)

under the assumption the real and imaginary parts ofξk are uncorrelated. Although this

assumption is not true, this section shows how the threshold computation of (4.20) can be

simplified.

Based on the rule of (4.7) the false alarm rate, denoted bypFA is given by

pFA = Pr{|ĥk|2 ≥ εk|H0 is true}

=

∞∫

εk

1

2σ2
ξk

exp(− r

2σ2
ξk

)dr

pFA = exp(− εk

2σ2
ξk

). (4.22)

For the given level of false alarm probabilitypFA the threshold levelεk is given

by

εk = −2σ2
ξk

ln(pfa) (4.23)

whereσ2
ξk

is given by (4.2).

4.3. Cell Averaging (CA) CFAR Based Detection

In cell-averaging (CA) CFAR system the threshold adjustment for a specific com-

ponent of channel estimation error (baseline noise) is based on the average detected in-

put from its neighboring taps during the same pulse ”(Barboy and Lomes and Perkalski

1986)”. Thus we can use CA technique as a simple ”sliding-window” type estimator for

the variance of the channel estimation error,σ̂2
ξk

.

y =
M∑

k=1

|ĥ|2 (4.24)
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Figure 4.1: Cell-Averaging CFAR

Zt = yα/M (4.25)

Note that Equation (4.24) gives us an estimate of the channel estimation error

noise variance with the channel taps included in the summation. We can further improve

this estimate by iterating cell averaging once (or possibly more) by first subtracting the

thresholded channel estimateĥ
(th)
k from the initial channel estimate to get an estimate of

the channel estimate error vector and then use the cell averaging procedure to this noise

vector. First define

ξ̂k = ĥk − ĥ
(th)
k . (4.26)

We are proposing to use the CA technique to this improved estimated noise of

Equation (4.26). Thus our CA algorithm is in the form of Algorithm (2).

The CA-CFAR technique is outlined schematically in Figure 4.1. The returns

from a given pulse are detected in a square-law detector, and a sample is taken from
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Algorithm 2 Cell Averaging CFAR Algorithm applied to any initial CIR estimate

[1] Get an initial CIR estimate using one of (3.27) or (3.29) or (3.44), and denote it byĥest;

the length of̂hest is Na + Nc + 1 whereNa andNc denote the number of anti-causal and the

causal taps of the channel.

[2]

for k = Na, . . . , Nc do

[2-a] Estimate the noise variance ofkth tap by

σ̂2
ξk

=
1

2M

k+M∑

s=k−M

|ĥ(s)
est|2 (4.27)

whereM denotes window size.

[2-b] Calculated the threshold by

εk = 2σ̂2
ξk

[erfc−1(σ̂ξk
pFA)]2 (4.28)

[2-c] Thresholdkth tap ofĥest by using Equation (4.28) and set

ĥ
(k)
th =





0, if |ĥ(k)
est|2 < εk

ĥ
(k)
est, otherwise,

(4.29)

end for

[3] Calculate

ξ̂k = ĥest − ĥth. (4.30)

[4]

for k = 1, . . . , Niter do

[4-a] Estimate the noise variance by

σ̂2
ξk

=
1

2M

k+M∑

s=k−M

|ξ̂(s)
k |2 (4.31)

[4-b] Calculated the threshold by

εk = 2σ̂2
ξk

[erfc−1(σ̂ξk
pFA)]2 (4.32)

[4-c] Thresholdkth tap ofĥest by using Equation (4.32).

end for
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each channel tap. The channel tap under test is central tap. Its immediate neighbors are

excluded from averaging process, because of fear of spillover from the channel tap under

test. In the basic CA-CFAR the inputs from the M neighboring taps are averaged, resulting

an estimate of background noise(interference). The threshold is obtained by multiplying

the estimated average by scaling factorα.

There are also modifications conventional CA-CFAR in the literature ”(Hansen

and Sawyers 1980)” and ”(Smith and Varshney 2000)”. One of these is Greater-Of CA-

CFAR (CAGO-CFAR). Only difference in this approach is the way of estimating the noise

variance in[2− a] and[4− a] in Algorithm (2).

σ̂2
ξk

=
1

2M
max(

k∑

s=k−M

|ξ̂(s)
k |2,

k+M∑

s=k

|ξ̂(s)
k |2) (4.33)

According to this modification, theg(x) in Figure 4.1, for CAGO-CFAR method,

will be

g(x) = max(SUMlag(x), SUMlead(x)) (4.34)

The Performance of CA-CFAR and CAGO-CFAR methods are compared in Fig-

ure 4.2.

4.4. Order Statistic (OS) CFAR Based Detection

In order to prove that order statistics is indeed a CFAR technique, we must first

find the PDF of the threshold random variable (r.v.) and then average the probability of

detection over all possible threshold values in a non-signal situation.

M is the total number of reference taps now ranked according to their input level

h1 ≤ h2 ≤ · · · ≤ hK ≤ · · · ≤ hM (4.35)

K is the rank of the sample which is selected to determine the thresholdε

ε = αhK (4.36)
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Figure 4.2: Normalized Least Square Error (NLSE) of CA-CFAR and CAGO-CFAR for

different window size

The probability of a noise sample crossing the thresholdεK is

P (h ≥ εK | εK) =

∫ ∞

εK

pK(r)dr (4.37)

Whenh is a r.v. with PDFp(h) and a distribution functionP (h), then theKth

ranked sample (out of a total of M samples) has a PDF as follows:

pK(r) = K

(
M

K

)
[P (r)]K−1[1− P (r)]M−Kp(r) (4.38)

The random variable|ξk|2 has a probability density function given by
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p|ξk|2(r) =
1

σ2
ξk

√
2πr

exp(− r

2σ2
ξk

) (4.39)

and a probability distribution function given by

P|ξk|2(r) =

∫ z

0

p‖ξk‖2(r)dr =
1

σξk

erf(

√
r

2σ2
ξk

) (4.40)

Using Equation (4.39) and Equation (4.40) in Equation (4.38), we get the PDF of

the ranked sample

pK(r) = K

(
M

K

)
[

1

σξk

erf(

√
r

2σ2
ξk

)]K−1[1− 1

σξk

erf(

√
r

2σ2
ξk

)]M−K e
− r

2σ2
ξk√

2πrσ2
ξk

(4.41)

Since it is difficult to find a closed form solution forpFA by using Equation (4.41),

we can alternatively use the approximate distribution of|ξk|2 given in the Section (3.3.3).

In the Section (3.3.3), we have shown that the random variable|ξk|2 is exponen-

tially distributed with parameter2σ2
ξk

p|ξk|2(r) =





1
2σ2

ξk

e
− r

2σ2
ξk , r ≥ 0

0, r < 0.
(4.42)

and

P|ξk|2(r) =

∫ z

0

p|ξk|2(r)dr = 1− e
− r

2σ2
ξk . (4.43)

Using Equation (4.42) and Equation (4.43) in Equation (4.38), we get the PDF of

the ranked sample

pK(r) = K

(
M

K

)
r

2σ2
ξk

[1− e
− r

2σ2
ξk ]K−1[e

− r

2σ2
ξk ]M−K 1

2σ2
ξk

e
− r

2σ2
ξk . (4.44)

The probability of false alarm (pFA) will be

pFA =

∫ ∞

0

e
−α r

2σ2
ξK pK(r)dr. (4.45)
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By putting Equation (4.44) aspK(r) andu = e
− r

2σ2
ξk , pFA take the form

pFA = K

(
M

K

) ∫ 1

0

uα+M−K(1− u)K−1du (4.46)

The integral found in Equation (4.46) can also be written by help ofBeta function

”(Abramowitz and Stegun 1988)”.

The Beta function, also called theEuler integral of the first kind, is a special

function defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt (4.47)

for <(x),<(y) > 0.

Beta function has many other forms, including:

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
(4.48)

whereΓ is theGamma function. By using Equation (4.47) and Equation (4.48),

pFA can be written as

pFA = K

(
M

K

)
B((α + M −K + 1), K)

= K

(
M

K

)
Γ(α + M −K)Γ(K)

Γ(α + M + 1)
(4.49)

TheGamma function reduces to the factorial for a positive integer argument,

Γ(x + 1) = (x)! (4.50)

wherex is real integer.

Then for integer values ofα, pFA in Equation (4.49) becomes,

pFA = K

(
M

K

)
(α + M −K)!(K − 1)!

(α + M)!
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=
M(M − 1)...(M −K + 1)

(M + α)(M + α− 1)...(M + α−K + 1)
. (4.51)

Forα = 1,

pFA =
(M −K + 1)

(M + 1)
∼= (M −K)

M
. (4.52)

Forα = 2,

pFA =
(M −K + 2)(M −K + 1)

(M + 2)(M + 1)
∼= (M −K)2

M2
. (4.53)

Forα = 3,

pFA =
(M −K + 3)(M −K + 2)(M −K + 1)

(M + 3)(M + 2)(M + 1)
∼= (M −K)3

M3
. (4.54)

Finally, for anyα,

pFA
∼= (M −K)α

Mα
= (1− K

M
)α, (4.55)

therefore

(pFA)1/α = 1− K

M
(4.56)

and

K = M [1− (pFA)1/α]. (4.57)

We have compared the performance of approximated K value given in Equa-

tion (4.57) with the exact values obtained from Equation (4.49), and the comparison is

tabulated in Table (4.1). It is clear that there is small difference at selected K value for

givenα andpFA. Hence we will use Equation (4.57) to obtainK for any selectedα and

pFA. We also provide relationship betweenα-K for differentpFA values in Figure (4.3).
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pFA = 1e− 4 pFA = 1e− 5 pFA = 1e− 6

α Kideal Kapp Kideal Kapp Kideal Kapp

α = 1 433 430 463 460 482 479

α = 2 311 308 353 350 387 383

α = 3 238 234 278 274 312 308

α = 4 192 188 228 224 260 256

α = 5 161 157 193 188 222 217

α = 6 139 135 168 163 194 188

α = 7 122 118 148 143 172 166

α = 8 109 105 133 128 155 149

α = 9 98 94 120 115 141 135

α = 10 90 86 110 105 129 123

α = 15 63 59 78 72 92 86

α = 20 49 45 61 55 72 66

α = 25 40 36 50 45 59 53

α = 30 34 30 43 37 51 45

α = 35 30 26 37 32 46 38

α = 40 27 23 33 28 40 34

α = 45 24 20 30 25 36 30

α = 50 22 18 28 23 33 27

α = 100 13 9 16 11 20 13

α = 200 8 4 10 5 12 7

α = 300 6 3 8 4 10 4

α = 400 5 2 7 3 8 3

α = 500 5 2 6 2 7 2

Table 4.1:K values computed from Equation (4.49)
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4.5. Simulations

We provide CIR estimations of Least Squares, aBLUE, MP and aBLUE with

CFAR (CA and OS based) thresholded. These estimations use 9 channels given at Ap-

pendix A. At each of Figures 4.4-4.12; Part(a) shows the real part of CIR for Channel at

25 dB SNR; Part (b) shows LS Estimate of real part of CIR for Channel based on Equa-

tion (3.28). Part (c) shows aBLUE Estimate real part of Channel based on Equation (3.44).

Part (d) shows MP Estimate of real part of CIR for Channel 12 based on Equation (3.87).

Part (e) shows aBLUE Estimate of real part of CIR for Channel thresholded by CA-CFAR

method based on window of 60 tap. Part (f) shows aBLUE Estimate of real part of CIR

for Channel thresholded by OS-CFAR method where K=255,α=20 andpFA=1e-6.
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Figure 4.4: CIR estimations for Channel 1
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Figure 4.5: CIR estimations for Channel 2
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Figure 4.6: CIR estimations for Channel 3
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Figure 4.7: CIR estimations for Channel 3-plus
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Figure 4.8: CIR estimations for Channel 4
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Figure 4.9: CIR estimations for Channel 5
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Figure 4.10: CIR estimations for Channel 6
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Figure 4.11: CIR estimations for Channel 7
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Figure 4.12: CIR estimations for Channel 8
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Figure 4.13: NLSE values of CIR estimates versus SNR(dB) for Channel 1
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Figure 4.14: NLSE values of CIR estimates versus SNR(dB) for Channel 2
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Figure 4.15: NLSE values of CIR estimates versus SNR(dB)for Channel 3
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Figure 4.16: NLSE values of CIR estimates versus SNR(dB) for Channel 3-plus
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Figure 4.17: NLSE values of CIR estimates versus SNR(dB) for Channel 4
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Figure 4.18: NLSE values of CIR estimates versus SNR(dB) for Channel 5
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Figure 4.19: NLSE values of CIR estimates versus SNR(dB) for Channel 6
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Figure 4.20: NLSE values of CIR estimates versus SNR(dB) for Channel 7
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Figure 4.21: NLSE values of CIR estimates versus SNR(dB) for Channel 8
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CHAPTER 5

CHANNEL ESTIMATE-BASED DECISION

FEEDBACK EQUALIZERS

The derivations of the Decision Feedback Equalizer (DFE) equations are based

on the recent work by Zoltowski et al ”(Zoltowski and Hillery andÖzen and Fimoff

2002)”. The notation used in this chapter is slightly different from the rest of the thesis,

and is better suited for the development of the DFE equations. Based on the minimum

mean squared error (MMSE) criterion at the slicer input, the optimum feed-forward and

feedback taps in a DFE are directly computable from an estimate of the channel1.

The equalizer structures we consider in this chapter are illustrated in Figure 5.1.

The equalizer is assumed to haveNF + 1 feedforward taps andNB feedback taps. As-

semblingNF + 1 consecutive samples ofy[k] into a vectory yields

y[k] = Hs[k] + Qη[k], (5.1)

where η[k] = [ η[k + Lq] . . . η[k − Lq −NF ] ]T , s[k] =

[ I[k + Na] . . . I[k −Nc −NF ] ]T ,

H =




hT 0 · · · 0

0 hT · · · 0
...

...
. ..

...

0 0 · · · hT




(NF+1)×(NF+Nc+Na+1)

(5.2)

Q =




qT 0 · · · 0

0 qT · · · 0
...

...
.. .

...

0 0 · · · qT




(NF+1)×(NF+Nq)

(5.3)

1This chapter has been presented in part at the Thirty-Sixth Asilomar Conference on Signals, Systems,

ad Computers, Monterey, CA, November, 2002
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Figure 5.1: Part (a) shows the real equalizer where both the feed-forward and feed-back

are real valued; Part (b) shows the (half)-complex equalizer where the feed-forward taps

are complex valued

whereq is the finite length representation of the receiver matched filter with length

Nq = 2Lq + 1:

q = [ q[−Lq], . . . , q[−1], q[0], q[1], . . . , q[Lq] ]
T . (5.4)

The symbol estimatêI[k − δ] is given by

Î[k − δ] = Re{gF
Hy[k]}+ gB

T IB[k − δ − 1], (5.5)

whereδ is the cursor location (defined below), and

gF = [ gF [0], . . . , gF [NF ] ]T ,

gB = [ gB[1], . . . , gB[NB] ]T ,

sB[k] = [ I[k], . . . , I[k + 1−NB] ]T ,
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and the superscriptH denotes conjugate transpose. In this analysis we assume that all

decisions are correct. If we adopt the convention that the subscriptsR andI indicate the

real and imaginary parts of quantities, then

Î[k − δ] = gFR
T yR[k] + gFI

T yI [k] + gB
T sB[k − δ − 1]

= gFC
T yC [k] + gB

T sB[k − δ − 1], (5.6)

wheregFC =
[
gFR

T gFI
T

]T
andyC [k] =

[
yR

T [k] yI
T [k]

]T
. We may now

write

yC [k] = HCs[k] + QCηC [k], (5.7)

where HC =
[
HR

T HI
T

]T
, QC =


 QR −QI

QI QR


, and ηC [k] =

[
ηR

T [k] ηI
T [k]

]T
.

In the decision feedback equalizer, we use the cursor to define exactly which sym-

bol is being estimated. To motivate the cursor definition, we use the real equalizer and

consider a channel containing a single path with real gain at delay zero. In this case,hR[k]

is a delta function atk = 0 and the sampleyR[k] corresponds to the symbolI[k] (since

yR[k] = I[k] + νR[k]). Then the feedforward term in the symbol estimate is

gF
T yR[k] =

NF∑
n=0

gF [n]yR[k − n]

=

NF∑
n=0

gF [n] (I[k−n]+νR[k−n]) , (5.8)

where we recall thatgF is real for this discussion. That is, the feedforward term in

the equalizer output only depends on the symbolsI[k], I[k−1], . . . , I[k−NF ]. When there

is multipath interference, the feedforward term will depend on symbols covering a wider

time-span, but since we may encounter a channel where the multipath is negligible, we

may only considerI[k], I[k− 1], . . . , I[k−NF ] as candidates for the symbol to estimate.

Therefore, we estimate the symbolI[k − δ], where0 ≤ δ ≤ NF , and call this symbol

the cursor. Since there is a one-to-one correspondence between the candidate symbols

and the taps in the feedforward section, we often identify the cursor by the corresponding
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feedforward tap. This definition of the cursor is consistent with standard DFE theory and

practice.

We now find the equalizer by minimizing the mean-square error (MSE), where

MSE = E{(I[k − δ]− Î[k − δ])2}
= Es − 2gFC

T rsyC
+ 2gFC

T RyCsB
gB

+gFC
T RyCyC

gFC + EsgB
T gB (5.9)

with Es = E{(I[k])2}, rsyC
= E{I[k− δ]yC [k]}, RyCsB

= E{yC [k]IB
T [k− δ−

1]}, andRyCyC
= E{yC [k]yT

C [k]}. Here we have made use of the expressionsRsBsB
=

E{sB[k]sB
T [k]} = EsINB

andrssB
= E{I[k − δ]sB[k]} = 0. Minimization of this

expression yields

gFC =

(
RyCyC

− 1

Es

RyCsB
RyCsB

T

)−1

rsyC
(5.10)

gB = − 1

Es

RyCsB

T gFC , (5.11)

where

rsyC
= EsHC1δ+Na (5.12)

RyCyC
= EsHCHC

T + N0QCQC
T (5.13)

RyCsB
= EsHC∆δ. (5.14)

The vector1δ+Na contains all zeros except for a one in elementδ + Na + 1. The

matrix∆δ is defined by

∆δ =




0(Na+δ+1)×NB

INB

0(NF +Nc−δ−NB)×NB


 (5.15)

when0 ≤ δ ≤ Nc + NF −NB and

∆δ =
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
0(Na+δ+1)×(NF+Nc−δ) 0(Na+δ+1)×(δ+NB−NF−Nc)

INF+Nc−δ 0(NF+Nc−δ)×(δ+NB−NF−Nc)


 (5.16)

whenNc + NF −NB < δ ≤ Nc + NF − 1. HereIn is the identity matrix of size

n× n.

The derivation of the real equalizer is similar with the result that

gF =

(
RyRyR

− 1

Es

RyRsB
RyRsB

T

)−1

rsyR
(5.17)

gB = − 1

Es

RyRsB

T gFR, (5.18)

where

rsyR
= EsHR1δ+Na (5.19)

RyRyR
= EsHRHR

T + N0

(
QRQR

T + QIQI
T
)

= EsHRHR
T + N0INF +1 (5.20)

RyRsB
= EsHR∆δ. (5.21)

5.1. Simulations

We compare the accuracy of the channel estimatesĥBLS and quantify their effec-

tiveness by considering their use in the equalization of sparse channels. We considered a

DFE with real valued taps, and with 256 feed-forward taps and 448 feedback taps. The

cursor tap is placed at the 221st tap on the feed-forward filter.

We considered an 8-VSB ”(ATSC Standard A/53 1995)” receiver with a single

antenna. 8-VSB system has a complex raised cosine pulse shape ”(ATSC Standard A/53

1995)”. The CIRs we considered are given in Appendix B, Tables B. The phase angles of

individual paths for all the channels are taken to be

arg{ck} = exp(−j2πfcτk), k = 1, · · · , 6 (5.22)

wherefc = 50
Tsym

andTsym = 92.9nsec.
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Based on each of channel estimates the optimal real valued DFE filter coefficients

are obtained, and the equalization performance withouterror propagationis compared.

The DFE output without error propagation (slicer input) signal-to-interference-plus-noise-

ratio denoted bySINRDFE, is the metric used for comparison of equalizers obtained from

the channel estimates. The output of the equalizer is given by

Î[k] = c̃[0] ∗ I[k] +
∑

∀n,n6=0

c̃[n] ∗ I[k − n] + v[k] (5.23)

where the first term in Equation (5.23) is the desired symbol with a multiplicative

constant, and̃c[k] is the effective channel at the output of the equalizer.c̃[0] = 1 only

when the estimate is unbiased. The second term (the summation) in Equation (5.23) is

the residual ISI and the last term (v[k]) is noise (colored). The residual channel impulse

response after feed forward filter is shown in Figure (5.2). Figure (5.3) shows the residual

channel impulse response after feed-back filter is applied to residual channel impulse

response of Figure (5.2).

SINRDFE is then defined as the variance of the desired term divided by the vari-

ance of everything else. Since the symbols and noise are uncorrelated, this turns out to

be

SINRDFE =
Esc̃[0]2

Es

∑
∀n,n 6=0

c̃[n]2 + E{v[k]2} . (5.24)

TheSINRDFE values for each channel estimate is provided for 18 to 28dB Signal-

to-Noise-Ratio (SNR) values measured at the input to the receive pulse matched filter, and

it is calculated by

SNR = Es ‖(c(t) ∗ q(t))|t=nT‖2 /N0, (5.25)

whereEs = 21 is the symbol energy for 8-VSB system, andN0 is the channel

noise variance.

Figures 5.4-5.12 illustrate theSINRDFE versus SNR for Channels 1–8, and for

ideal CIR based DFE, for the approximated BLUE estimateĥaBLUE , the approximated

BLUE estimate after CA-CFAR applied̂hCA−CFAR and the approximated BLUE estimate

after OS-CFAR applied̂hOS−CFAR
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Figure 5.2: Residual Channel after Feed-Forward Filter
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Figure 5.3: Residual Channel after Feed-Back Filter
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Figure 5.4:SINRDFE versus SNR for Channel 1 for various channel estimates.
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Figure 5.5:SINRDFE versus SNR for Channel 2 for various channel estimates.
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Figure 5.6:SINRDFE versus SNR for Channel 3 for various channel estimates.
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Figure 5.7:SINRDFE versus SNR for Channel 3-plus for various channel estimates.
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Figure 5.8:SINRDFE versus SNR for Channel 4 for various channel estimates.
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Figure 5.9:SINRDFE versus SNR for Channel 5 for various channel estimates.
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Figure 5.10:SINRDFE versus SNR for Channel 6 for various channel estimates.
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Figure 5.11:SINRDFE versus SNR for Channel 7 for various channel estimates.
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Figure 5.12:SINRDFE versus SNR for Channel 8 for various channel estimates.
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APPENDIX A

8-VSB PULSE SHAPE

In this section we review the pulse shapes used by the 8-VSB digital TV systems

”( Hillery 2001)”. The 8-VSB DTV transmitter uses a transmit pulse shaping filter with

complex root-raised cosine response. The transmit filter is denoted byq(t). The receiver

usesq∗(−t) as the receive filter, which actually is the optimal matched filter for AWGN

channel.

HereT denotes the symbol period, andFsym = 1/T is the symbol rate. Let

Fs =
Fsym

2
=

1

2T
. (A.1)

Theroll-off factor, which is also known as theexcess bandwidth, for 8-VSB stan-

dard isβ = 0.115.

1.1. Complex Root-Raised Cosine Pulse

Thecomplex root raised cosine pulseq(t) has the Fourier transform:

Q(F ) =
√

P (F )

= QI(F )− jQQ(F )

=





1 β
2
Fs ≤ F ≤ (1− β

2
)Fs

cos
(

π
2βFs

[
F − (1− β

2
)Fs

])
(1− β

2
)Fs ≤ F ≤ (1 + β

2
)Fs

cos
(

π
2βFs

[
F − β

2
Fs

]) −β
2
Fs ≤ F ≤ β

2
Fs

(A.2)

The in-phase and quadrature components are:

QI(F ) =





1
2

β
2 Fs ≤ |F | ≤ (1− β

2 )Fs

1√
2
cos

(
π

2βFs
F

)
|F | ≤ β

2 Fs

1
2 cos

(
π

2βFs

[
|F | − (1− β

2 )Fs

])
(1− β

2 )Fs ≤ |F | ≤ (1 + β
2 )Fs

(A.3)
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QQ(F ) =




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2j cos
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2 )Fs

1√
2
j sin

(
π

2βFs
F

)
−β
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−1
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2j cos

(
π
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F + (1− β

2 )Fs

])
−(1 + β

2 )Fs ≤ F ≤ −(1− β
2 )Fs

(A.4)

The time domain signal is:

q(t) = ejπFstpRRC(t) (A.5)

where

pRRC(t) =
Fs

1− (4βFst)
2

[
(1− β)

sin (π(1− β)Fst)

π(1− β)Fst
+

4β

π
cos (π(1 + β)Fst)

]
(A.6)

Defining the real and imaginary parts ofq(t) by qI(t) andqQ(t), it is straightfor-

ward to show that

qI(t) = qI(−t), (A.7)

qQ(t) = −qQ(−t), (A.8)

which implies

q(t) = q∗(−t). (A.9)

Equation (A.9) means that the pulse shapeq(t) is Hermitian symmetric. Due to

this symmetry property, the receive filter is the same as the transmit filter.

1.2. Complex Raised Cosine Pulse

The convolution of the transmit and receive filters is denoted byp(t) and is the

composite pulse shape which is given by

p(t) = q(t) ∗ q∗(−t) = q(t) ∗ q(t). (A.10)
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The second part of the equality of Equation (A.10) follows from Equation(A.9).

Thecomplex raised cosine pulsep(t) has the Fourier transform:

P (F ) = PI(F )− jPQ(F )

=


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1 β
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(A.11)

The in-phase and quadrature components are:

PI(F ) =
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The time domain signal is:

p(t) = ejπFstpRC(t) (A.14)

where

pRC(t) = Fs
sin(πFst)

πFst

cos(πβFst)

1− (2βFst)
2 , (A.15)

is the raised cosine pulse.
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APPENDIX B

TEST CHANNELS

We have provided 9 channel impulse responses to test channel estimation algo-

rithms as well as the DFE performance. The following Table B lists the channel delays

(TOAs){τk} in symbol periods (T ), and the relative gains{|ck|}.
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Taps Channel 1 Channel 2 Channel 3

k {τk} {|ck|} {τk} {|ck|} {τk} {|ck|}
−2
−1 −0.957839182 0.7263
0 0 1 0 1 0 1
1 1.6143357 0.2045 3.2286714 0.2512 3.55153854 0.6457
2 23.89216836 0.1548 37.667833 0.631 15.25009125 0.9848
3 32.8248259 0.179 47.3538472 0.4467 24.03207745 0.7456
4 63.06671468 0.2078 102.241261 0.1778 29.16566498] 0.8616
5 63.82007134 0.1509 136.6804226 0.0794
6
7

Taps Channel 4 Channel 5 Channel 6

k {τk} {|ck|} {τk} {|ck|} {τk} {|ck|}
−2
−1
0 0 1 0 1 ∗ exp(j ∗ pi) 0 1
1 5.16587424 0.65575 10.762238 1 15.541 0.46388
2 22.27783266 0.75697 21.524476 1 28.39 0.54405
3 31.2104902 0.87482 246.66 0.22324
4 61.45237898 1.01565
5 62.20573564 0.7379
6
7

Taps Channel 7 Channel 8 Channel 3-plus

k {τk} {|ck|} {τk} {|ck|} {τk} {|ck|}
−2
−1 −0.957839182 0.7263
0 0 1 0 1 0 1
1 1.6143357 0.2045 32.8248259 0.1 3.55153854 0.6457
2 23.89216836 0.15 15.25009125 0.9848
3 32.8248259 0.1 24.03207745 0.7456
4 63.06671468 0.2078 29.16566498 0.8616
5 63.82007134 0.1509 221.2345 0.315
6 332.981 0.349
7

Table B.1: Simulated 9 Channel Impulse Responses. The channel delays (TOAs){τk} in
symbol periods (T ), and the relative gains{|ck|}
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