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ABSTRACT

CONSTANT FALSE ALARM RATE (CFAR) DETECTION BASED
ESTIMATORS WITH APPLICATIONS TO SPARSE WIRELESS
CHANNELS

We provide Constant False Alarm Rate (CFAR) based thresholding methods for
training based channel impulse response (CIR) estimation algorithms for communica-
tion systems which utilize a periodically transmitted training sequence within a continu-
ous stream of information symbols. After obtaining the CIR estimation by using known
methods in the literature, there are estimation errors which causes performance loss at
equalizers. The channel estimation error can be seen as noise on CIR estimations and
CFAR based thresholding methods, which are used in radar systems to decide the pres-
ence of a target, can effectively overcome this problem. CFAR based methods are based
on determining threshold values which are computed by distribution of channel noise.
We provide exact and approximate distribution of channel noise appear at CIR estimate
schemes. We applied Cell Averaging-CFAR (CA-CFAR) and Order Statistic-CFAR (OS-
CFAR) methods on the CIR estimations. The performance of the CFAR estimators are
then compared by their Least Square error in the channel estimates. The Signal to Inter-
ference plus Noise Ratio (SINR) performance of the decision feedback equalizers (DFE),

of which the tap values are calculated based on the CFAR estimators, are also provided.



OZET

SABIT YANLIS ALARM ORANI SEZ IMLEME TABANLI KANAL
KESTIRIMI VE YOGUN OLMAYAN TEK IL KANALLARA
UYGULAMALARI

Bu calismada, haberlesme sistemlerinde kullanilan KagaiiDraniti (CIR) ke-
stirimlerinin esiklemesinde kullaniimailizere, Sabit Yanlis Alarm Orani (CFAR) sez-
imleme tabanl metotlar ele alinmistir. Haberlesme litetatde bilinen ypntemlerle
elde edilen kanal it yanitlari, kestirim hatasi tagsimakta, bu durum denklestiricilerde
performans kaybina neden olmaktadir. Bu kestirim hatasi, kaindll ¢anitindaki
gurtltt olarak d@erlendirilebilir. Radar sistemlerinde hedef tespit edilmesinde kullanilan
Sabit Yanlis Alarm Orani (CFAR) sezimleme tabanl esikleme metotlari, bahsedilen bu
guraltinin temizlenmesinde kullanilabilir. Sabit Yanlis Alarm Orani (CFAR) sezim-
leme tabanli metotlar, kanaligiltusinin istatistiksel dgilimi yardimiyla hesaplanan
esik déjerlerine dayanmaktadir.

Proje kapsaminda, iitre Ortalamali (CA-CFAR) vistatistiksel Siralamali (OS-
CFAR) Sabit Yanlhs Alarm Orani sezimleme tabanli metotlar kullanilarak elde edilen
esik d@erleri, cesitli kanal kestirimlerine uygulanmistir. Bahsedilen metotlarin perfor-
manslari, esikleme isleminden sonra elde edilen kanal kestirim sinyallerininliginkK
Kareler Hatalar1 (NLSE) karsilastirilaralogterilmistir. Ayrica, Sinyallerin Girisim ve
Gurultuye Oranlarn (SINR), Karar Geriohiugimli Denklestiriciler (DFE) kullanilarak

gosterilmistir.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

In mobile wireless and digital television (DTV) channels multi-path phenomena
is generally attributed to the randomly changing propagation characteristics as well as the
reflection, diffraction and scattering of the transmitted waves from the buildings, large
moving vehicles/airplanes, mountains, ionosphere, sea surface. Many types of impair-
ments are observed on these channels such as Doppler spread, fading, multi-path spread
(or delay spread), nonlinear distortion, frequency offset, phase jitter, thermal and/or im-
pulsive noise, co- and adjacent channel interference. This research focuses mainly on the
effects of multi-path spread and thermal noise. Large delay spread induces significant
inter-symbol interference (ISI) where the received symbols are a function of several ad-
jacent symbols. A large Doppler spread causes rapid variations in the channel impulse
response characteristics, and necessitates a fast converging adaptive algorithm. When the
channel exhibits a deep fade, it results in a very low received signal power. Among vari-
ous remedies to these problems which have been proposed thus far, the diversity reception
and the multi-carrier transmission combined with advanced adaptive signal processing al-
gorithms to estimate and to track the channel variations are considered to be among the
most prominent alternatives. However multi-carrier transmission is out of the scope of
this research.

Multi-path channels are generally modelled in the fornrequency selectiviad-
ing as well aRRayleighor Ricianfading. As the receivers employ diversity to combat the
combined effects of multi-path and fading in the form of antenna arrays, as well as polar-
ization diversity, more advanced signal processing is required at the receiver front-end to
estimate and track the channel parameter variations. In order to be able to come up with
better signal processing algorithms first the underlying wireless channel characteristics
must be well understood and proper analytical models must be developed.

As the demand increases for higher data rates and more bandwidth, the effects



of all aforementioned channel impairments become more severe. Better channel models,
and more advanced algorithms for channel estimation, tracking and equalization are still

on the current agenda of communication system researchers and designers.

1.2. Organization and Contributions of the Thesis

This research has been completed under the following two major constraints:

e We considered that the transmission scheme is fixed and has been standardized
as in "(ATSC Standard A/53 1995)”; thus we were constrained to work with and
implement algorithms which can only be implemented at the receivers. In other
words we assumed no changes will take place to the existing North American DTV
transmission standard. This eliminates the possibility of transmitter/receiver joint

optimization, or any proposals of improvements to the transmission format.

e Due to having very high data rate, the digital TV system requires algorithms with
relatively low complexity. Highly recursive algorithms or blind algorithms that re-
quire long averaging to get useful estimates is outside the focus of this research.
By the time a blind algorithm converge to a reasonably reliable estimate of the
channel, the channel may change significantly thus making the CIR estimate use-
less. For these reasons we mainly concentrated on training sequence based channel

estimation algorithms.
Total of five chapters follow the Introduction chapter:

e Chapter 2 presents the channel and signal model where the signal model obeys the
American DTV transmission standard "(ATSC Standard A/53 1995)”. Notation and
main important sets of equations are introduced which will be primarily used in the

sequel of the thesis.

e Chapter 3 first overviews the method of (generalized) least squares, and applies it to
the signal/channel model that has been introduced in Chapter 2. Then the correla-
tion based initial channel estimation is also introduced. Correlation based channel
estimation is considered, since it is readily available in digital receiversdare

synchronizatiorpurpose. Then the problems associated with both of these methods



will be presented. The most important contribution of Chapter 3 is the development
of a detailed statistical model of thmseline noisavhich is a by-product of any

type of correlation processing in the receiver. However, as will be shown, this sta-
tistical model is actually a function of the channel impulse response which we are
trying to estimate. For this very reason we then provide an iterative algorithm to
find the generalized least squares channel estimate where the covariance matrix of
the baseline noise is incorporated into the channel estimation scheme. Each itera-
tion also involves a thresholding, which is accomplished by two different methods:
(i) constant false alarm rate (CA-CFAR) based thresholding, and (ii) order statistic
(OS-CFAR) based thresholding.

Chapter 4 overviews Constant False Alarm Rate (CFAR) based thresholding meth-
ods. Cell Averaging (CA) and Order Statistic (OS) based CFAR methods are intro-
duced by the help of statistic distribution given in Chapter 2.

In Chapter 5, we provide the derivation for the Decision Feedback Equalizers.
The CIR estimates thresholded by CFAR methods provided in previous chapters
are used for calculating the DFE filter tap values. We then provide the signal-to-

interference-plus-noise (SINR) performance at the DFE output.



CHAPTER 2

SIGNAL AND CHANNEL MODEL

2.1. Introduction

For the communications systems utilizing periodically transmitted training se-
guenceleast-square$LS) based channel estimation algorithms or¢berelationbased
channel estimation algorithms have been the most widely used two alternatives. Both
methods use a stored copy of the known transmitted training sequence at the receiver.
The properties and the length of the training sequence are generally different depending
on the particular communication system’s standard specifications. In addition, a training
sequence could also be utilized in a communication system not only for channel estima-
tion purpose but also for synchronization purpose, to indicate the beginning and/or end
of a transmitted data frame or packet. In the sequel, although the examples following
the derivations of the blended channel estimator will be drawn from the ATSC digital TV
8-VSB system "(Hillery 2001)”, to the best of our knowledge it could be applied with
minor modifications to any digital communication system with linear modulation which
employs a training sequence.

Overview of the data transmission model in Section 2.2 provides the necessary
background and introduces the notation which will be entirely used in the rest of the

thesis.

2.2. Overview of the Data Transmission Model

We will briefly go over the data transmission model. The base-band transmitted

signal waveform of data rate/T’ symbols/sec depicted in Figure 2.1 is represented by

s(t) = Y Iuq(t — kT) (2.1)

where{Il; € A = {ay,...,ay} C C'} is the transmitted data sequence, which

is a discretel/-ary sequence taking values on the generally compleary alphabet4,
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Figure 2.1: System block diagram(t) is the composite channel including transmit end

receive filters as well as the physical channel.

which also constitutes the two dimensional employed modulation constellationis
the transmitter pulse shaping filter of finite suppeft;,/2, 7,/2]. The overall complex

pulse shape will be denoted byt) and is given by

p(t) = q(t)*xq"(=1) (2.2)

whereq*(—t) is the receiver matched filter impulse response. Although it is not
required, for the sake of simplifying the notation, we assume that the span of the transmit
and receive filters],, is integer multiple of the symbol period;; that is7, = N,T =
2L,T, L, € Z*. We also note that for 8-VSB system "(Hillery 2001)” the transmitter
pulse shape is the Hermitian symmetric root-raised cosine pulse, which imfplies-
q*(—t). Inthe sequed[n] = ¢(t)|,—.r Will be used to denote both the transmit and receive
filters. The physical channel between the transmitter and the receiver is denatgd, by
and throughout this paper the concatenatiop(of and the channel will be denoted by

h(t,7), and is defined as

h(t,7) = q(t)xc(t,7)*q"(—t) = p(t) * c(t, 7). (2.3)

The physical channelt, 7) is generally described by the impulse response

L

c(t,7) = Z ce(T)0(t — 1) (2.4)

k=—K
which describes a time-varying channel, dag(7)} c C', where-K <k < L,
andt, T € R, {r;} denote the multipath delays, or the Time-Of-Arrivals (TOA). We will



assume that the time-variations of the channel is slow enough:that) = ¢(¢) can
be assumed to be a fixed (static) inter-symbol interference (ISI) channel throughout the

training period; that is we will assume that7) = ¢, which in turn implies

L

c(t) = > bt —7) (2.5)

k=—K

for 0 < t < NT, whereN is the number of training symbols. In general
cr = Epe 72 with &, being the amplitude of thé’'th multipath, andf. is the car-
rier frequency. It is also inherently assumed that< 0 for —K < k < —1, 5 = 0,
andr, > 0for1 < k < L. The particular choice of the summation indidé€sand L,
the number of maximum anti-causal and causal multi-path delays respectively, will be
clarified in the discussion of correlation based channel estimation and onwards. It is im-
portant to clarify that the multi-path delays arenot assumed to be at integer multiples
of the sampling period’. Indeed it is one of the main contributions of this paper that we
show an accurate and robust way to recover the pulse shape back into the concatenated
channel estimate when the multi-path delays are not exactly at the sampling instants. By

combining Equations (2.3) and (2.5) (and by droppingtiedex) we get

L

ht) = p(t)*c(t) =Y aplt —7). (2.6)

k=—K
Since bothp(t) andc(t) are complex valued functions, the overall channel im-
pulse responsk(t) is also complex valued. We can write them in terms of their real and

imaginary parts:

p(t) = pr(t) +jipg(t), (2.7)
c(t) = ci(t) +jeo(t), (2.8)
h(t) = hi(t) + jho(t). (2.9)

Then

h(t) = p(t)*c(t) = (pr(t) + dpo(t)) * (cr(t) + jeo(t))



= (pr(t) x cr(t) = po(t) * co(t)) +J (p1(t) * co(t) + po(t) * c(t)) . (2.10)

. J N /

hi(t) hat)

By using the notation introduced here the matched filter oufftis given by

y(t) = (Z Io(t — kT)) « h(t) + v(t) (2.11)

where
v(t) =n(t) xq" (1)
denotes the complex (colored) noise process after the pulse matched filteyavieing
a zero-mean white Gaussian noise process with spectral deﬁ\sp'ar real and imaginary
part. Similar to Equations (2.7-2.9)t) can be also written in terms of its real and imag-
inary parts:y(t) = y;(t) + jyo(t). Sampling the matched filter output at the symbol rate

we obtain the discrete-time representation of the overall communication system as

yinl = y(Olimnr = Y Iuh[n — k] + vin]. (2.12)

T T
| | |

I an—1| dv 1dn+i I I 1dn/_1
| | | | | |

[<——"Training Sequence—=j}<—— Data Sequence —

Figure 2.2: Data frameN symbols of known training sequence followed by — N

T T
| |
aopg | ap |
I I

information symbols.

Referring to Figure 2.2, the transmitted symbols are composkdrots (or pack-
ets) of length\V’, where the firstV symbols are the training symbols. Within a frame of

length N’, the symbols are denoted by

ap, for0<k<N -1
I, = (2.13)
dp, forN <n<N' -1,



where the distinction of firskV symbols is made to indicate that they are the known
training symbols, and it is possible that thgs belong to a certain subset of the M-ary
constellation alphabed; that is{a, € A ¢ A = {o4,...,ax}}. In fact for the 8-VSB
system the signal alphabet$ = {+1,+3, £5,4+7}, while the training sequence can
only take binary values within the sgt= {—5, +51.

In the sequel the sampled matched filter output sighdlwill be used extensively
in vector form, and to help minimize introducing new variables, the notatiog,of, ,,

with ny > nq, will be adopted to indicate the column vector

y[nlzng} = [y[nl]vy[nl + 1]7 T 7y[n2]]T'

Same notation will also be applied to the noise variable$andv|n|.
Without loss of generality symbol rate sampled, complex valued, composite CIR

h[n] can be written as a finite dimensional vector

h = [h[=Ny],h[—=N, +1],--- ,h[—1],[0],h[1],--- , R[N, — 1], R[N.]]* (2.14)

where N, and N, denote the number of anti-causal and the causal taps of the

channel, respectively, and are given by

1 — T'N, TN,
N, = round{%} , andN, = round{%} ,

andN,+ N.+ 1 is the total memory of the channel. Based on Equation (2.12) and assum-
ing thatvV > N, + N. + 1, we can write the pulse matched filter output corresponding

onlyto the known training symbols:

y[N.] = h|=N,an.n, +---+ h[0lan, + -+ h[N.]ag + v[N,]
y[Ne+1] = h[=NaJan.in,41+ -+ h0lan, 41 + - + h[NJay + V[N, + 1]
y[N—l —Na] = h[—Na]CLN_1+' . '+h[0]aN—1—Na+' . '—f—h[NC]CLN_l_Na_NC—l-V[N—1—Na}

which can be written compactly as

YNiN-N,—1] = Ah t V[NaN-No—1] = Ah + Qn[NC—Lq:N—l—Na—f—Lq]a (2.15)



where

A =T {[aNC+Na, ey anal” AN, s ao]} (2.16)
ANtNg  ANANg-1 " Qg
ANANAL  ANA4N, s aq
= C"': at c‘.'l‘ a . . : (217)
i aN- aN-2 **° AN-1-N,—N, i

whereA is (N — N, — N,) x (N, + N. + 1) Toeplitz convolution matrix with first

columnfan,in,, - ,an_1]7 and firstrowjay. v, - ,aol, and

V[NiN—No—1] = Qn[NC_Lq:N_l_NaJqu] (2.18)

is the colored noise vector at the receiver matched filter output, with

q’ 0 0
B 0 q" --- 0
Q = L _ (2.19)
0 0 --- ¢qF
L 4 (N= Ny =Ne) X (N=-No=NeA+N,)

andgq is the vector containing time-reversed samples of the receiver matched filter

sampled at the symbol rate and is

qa = [q[+Lg), - ,q0],-- ,q[—Lg)]". (2.20)

Note thatg hasN, + 1 = 2L, + 1 samples.
Similarly the pulse matched filter output which incluagisthe contributions from
the known training symbols (which includes the adjacent random data as well) can be

written as

YiNgN+N—1] = (A+D)h+vin,nin- (2.21)
= Ah+ Dh+Qn_N, [, NtN—14L,]> (2.22)



where

A=T [ao,---,aN_l,O,---,OT,[ag,O,---,O (2.23)
Ng+N¢ No+Nc

is a Toeplitz matrix of dimensioWV + N, + N.) x (N, + N.+ 1) with first column

lag, a1, ,ay_1,0,---,0]T, and first row[ay, 0, - - - , 0], and
D=T 07 U 707 dN7 U 7ch+Na+N—1]T7 [07 d—17 e 7d—Nc— a] ) (224)
N

is a Toeplitz matrix which includes the adjacent unknown symbols only, prior to
and after the training sequence. The data sequehge - - ,d y,n,] IS the unknown
information symbols transmitted at the end of the frame prior to the current frame being
transmitted Q is of dimensionN N + N, + N.) x (N + N, + N.+ N,) and has the same

convolution matrix structure witig) as displayed in Equation (2.19), and is given by.

g’ 0 0
Q- | T 7 (2.25)
0 0 --- g%
i J (NHN AN X (NN NN
andq = [Q[+Lq]> o 7q[0]7 e 7Q[_Lq]]T'

Equation (2.22) which includesl the contributions from the known training sym-
bols (which includes the adjacent random data as well) can be written explicitly as

_ . —N,
JLN.] y[—Na]
N.—1
JIN, 1] yl ]
AR B R R e
Y[-Ny:N+N,—1] = : | Ywvenv-N.—1 | T QNN —Ly: N+ N1+ L]
y[N — Ny — 1] ...... ’l’ ......
y[N — N y[N — N
| YINENe—1] y[N + N, —1]

10



[ a 0o 0 - o ][ o 4 ds - dyn, |
aq ap 0 tee 0 0 0 ¢1 R CLNterH
ANAN,—1 ONAN,—2 *** Qo 0 0 o - 0 d_q
TSR FERTERRNS SR N SRRRRES G STRPERP Gl
a a “ .. a 0 O .« .. 0
n NetNatl  ANAN, 1 + h (2.26)
AN an-2 L ONA-NaNe | | 0 . O 0 1
0 an-1 aN-2 AN—2-N,—N. dn 0 0 0
0 0 anN—1 AN—2-N,—N. dn+1  dy O 0
0 0 - 0 an-1 | EBNANAN-1 o dy 0 |
A D

where the entries of the vectgf_y, .y, n,_1) between thelottedlines denote the
matched filter output correspondinglyto the known training symbols which is provided
in Equation (2.15). Note that the corresponding entries of the matrixetween the
dotted lines are exactly the same as the entries of the mdtrixhich is provided in
Equation (2.17), and the corresponding entries of the médrixetween the dotted lines
are all zeros.

We now write the contributions of the unknown symbdéd in Equation (2.22)
in a different format which will prove to be more useful in the subsequent derivations. We

first defined = Sd, or equivalentlyd = S”d, where

J - [d—Nc—Naa"' 7d_1701><N,dN,"' ,dN+NC+Na_1]T (227)

d = [dN-n, d1,dy, dNiNine-1]" (2.28)

g _ In,+n. O(Nyt No)x N O(Nu+-No)x (Net-Na) (2.29)
(Nt Ny (NatNe) O(Nat N x N In,+n.

(2(NctNa)) X (NH2(Nat+Ne))
where S is a selectionmatrix which retains the random data, eliminates e

zeros in the middle of the vectat. We also introduce
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h- 0 0
0 }_LT o 0
H - | - . (2.30)
o o --- AT
| 4 (NANcANG) x (N42(NatNe))
heo= [BNJ. B[ R[O) A1, B[N = Th (2.31)
0 0 1
O --- 1 0
J _ S . (2.32)
1 0 --- 0
L J (NANAL) X (Nt N A1)
H — HST (2.33)

whereh is the time reversed version &f (re-ordering is accomplished by the
permutation matrixJ), and H is of dimension(N + N, + N.) x (2(N.+ N,)) with a
“hole” inside which is created by the selection matfixas defined in Equation (2.29).

Then it is trivial to show that

Dh =Hd ="HS"d = Hd. (2.34)
Based on the Equations (2.27-2.34) we can rewrite Equation (2.22) as

YnaNiN—1] = Ah+Dh+Qn_y, 1 NiN—1+L,]
= Ah+ Hd+Qn_N, [ NtN.~1+L,]: (2.35)
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CHAPTER 3

GENERALIZED LEAST SQUARES BASED CHANNEL
ESTIMATION

3.1. Method of Least Squares

First we briefly overview the method of least squares in general terms that is very
widely used in the statistical inference and estimation theory applications without consid-
ering any specific signal processing or communication system framework.

Consider the linear model

y = Ax+v (3.1

wherey is the observation (or response) vectdr,is the regression (or design)
matrix, « is the vector of unknown parameters to be estimated raisthe observation

noise (or measurement error) vector, and are given by

Yy = [yh e 7yn]T7 (32)
@11 Q12 - Aip

R e (3.3)
CLn,?) an,Q e an,p

x = [r1, - ,a:p]T, (3.4)

v = [y, - ,Vn]T. (3.5)

It is assumed that all the variables in Equation (3.1) are generally complex valued,
thatisy,v € C*,x € C? andA € C™*?,

Then theordinary least squaresolution,;; can be obtained by minimizing the

objective function

13



Jors(x) = viy = lly — A:I3||2 (3.6)

is given by

o = (ATA)TATy, (3.7)

whenever the matrixd has rankp. The estimator of (3.7) is called thest linear
unbiased estimatBLUE) among alllinear unbiased estimators if the noise covariance

matrix isknownto be "(Seber 1977, Casella and Berger 1990)”

Coviv} — K, = %E{WH} .y (3.8)

The estimator of (3.7) is called theinimum variance unbiased estimator
(MVUE) amongall unbiased estimators (not only linear) if the noisekmownto be
Gaussian with zero mean and with covariance makfix of (3.8), that isz,,, is called
MVUE if it is known thaty ~ N (0,621).

However if it is known that the vectar is correlated, that i€, # 021, then in
order to achieve the BLUE property we must use a modified objective function. RKipce
is positive definite, there exists anx n nonsingular matrixy” such thatkl, = VvV
"(Seber 1977)". Therefore setting= V 'y, B = V'X, andB = V'v, we have

the model

z = Bx+p (3.9)

where B is n x p of rank p, and Co{3} = Kz = I. Then we define the

(generalized) objective function for the model of (3.9) by

Jors(®) = B"B =z - Bz|?
= VIV IVl =K Y

= (y—Ax)"K,'(y — Ax). (3.10)
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The least squares estimate that minimizes Equation (3.10) is

é\:gls - (BHB)_IBH'Z
= (A"K'A)TATK Yy, (3.11)

The estimator of (3.11) is called thest linear unbiased estimaBLUE) among
all linear unbiased estimators if the noise covariance matrikniswnto be Co{r} =
K, = %E{I/I/H} # o2I "(Seber 1977, Casella and Berger 1990)". The estimator
of (3.11) is called theminimum variance unbiased estima{®VUE) amongall unbi-
ased estimators (not only linear) if the nois&imwnto be Gaussian with zero mean and

with covariance matrix ,, that is;, is called MVUE if it is known thav ~ NV (0, K ).

3.2. Existing Channel Estimation Methods

Based on the model of Equation (2.12) we will briefly review the LS based channel

estimation and correlation based channel estimation algorithms.

3.2.1. Least-Squares Channel Estimation

In order to fully estimate the channel of Equation (2.6) the LS based channel
estimation algorithm assumes that the starting and the ending points of the channel taps
are either known or can be bounded. This assumption plays a critical role in the overall
guality and robustness of the LS estimation procedure, which will be investigated in the
following section.

Recall that symbol rate sampled, complex valued, composite fJlRcan be

written as a finite dimensional vector

h = [h[=N,],h[—=N, +1],---,h[—1],R[0],h[1],--- , R[N, — 1], R[N.]]* (3.12)

where N, and N, denote the number of anti-causal and the causal taps of the
channel, respectively, amdl, + N, + 1 is the total memory of the channel. Recall also
that the pulse matched filter output correspondinty to the known training symbols is

given by
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YINeN-N,—1] = Ah + VIN:N—-N,—1] = Ah + Q"[chLq:NflfNaJqu}a (3.13)

where

A T
A =T {[GNC+NG, coanal’ (AN, ao]}
ANAN,; OANAN,-1 °°° Qo
ANANgH  ANAN, s a;
= o o _ , (3.14)
aAN-1 aAN-—2 *r AN—1-N,—N,

whereA is (N — N, — N,) x (N, + N.+ 1) Toeplitz convolution matrix with first

columnian,in,, - ,an_1]7 and firstrowjay. v, - , aol, @and

VIN.:N-No—1] = Qn[Nc—Lq:N—l—Na—‘qu}

is the colored noise at the receiver matched filter output, with

g’ 0 0
- 0 q* 0
Q = _ (3.15)
0 0 --- ¢
L 4 (N=Ny—N¢)x (N=N4—N+N,)
q = lq[+Lg],-- ,q0],- - q[—Lg)]". (3.16)

The covariance matrix of the colored noise vectofiy .yn, 1 =

QNN L, N-1-NotL] is denoted by, and is given by

Coviv) = K, = %E{VI/H} —02QQ" (3.17)

whereo; is the variance of the noise sequenge].

As long as the matri¥ is a tall matrix and of full column rank, that is
(i) N >2(N,+ N,) + 1,

(i) rank{A} = N, + N. + 1
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then the generalized least squares solution which minimizes the objective function

Jars(h) = (y[NC:NfNafl] - Ah)H<KV)_1(y[NC:N7Na71} - Ah) (3.18)

exists and unique, and is given by

hps = (AH(UZQQH)_1A>_1AH(02Q~QH)_1?J[NC:N—Na—1]
= (AH(QQH)AA)AAH(QQHYly[NC:N—N(,,—ly (3.19)

3.2.2. Correlation Based Channel Estimation

We are assuming that in order to be able to use correlation based channel es-
timation schemes the training sequences must belong to certain classes of sequences,
and thereby possess some certain “nice” correlation properties. One of these classes
of sequences ismaximal length pseudo-noig®N) sequences. We will denote a PN-
sequence of length asPN,,. In general, the periodic autocorrelation of a binary valued

({+A, —A}) PN, sequence is given by

- A’n, ifm=0,%n,£2n, -- (3.20)
’f‘p]\[n m = .
— A2, otherwise.

However if the PN sequence used is finite and the standard linear correlation is
used, then the auto-correlation values corresponding to the non-zero lags will not constant
and will not be as low as- A%. As a simple illustration consider a sequence composed of

six P N5;; appended back to back, that is let

y= [PN511,PN511,PN511>PN5117PN5117PN511]T- (3-21)

Thenr,, [m], with x = [PN511]7, will be given as in Figure 3.1.
It is important to note that we will obtain a low correlation value-ofi? for lags
that are not multiples of. = 511, corresponding to the intermediat&Vs,; portions of

the long sequencg. However as illustrated in Figure 3.1, for outer most lags we will
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% 10° Autocorrelation of PN—'~11 sequence with six PN:H sequences appended back to back
i T T - T —— T T T

i i i i i i i
0 500 1000 1300 2000 2500 3000 3500

Figure 3.1: Correlation properties of finite PN sequences. Note the “noisy” correlation at

both ends of the correlation values.

not achieve this constant and low correlation value; instead we will have a “noise” like
correlation due to the finiteness of the sequences.

The training sequence used at the transmitter is, a part of the digital TV standard
"(ATSC Standard A/53 1995)”, which is actually

S = [F'Sy, PNs11, PNg3, =P Ng3, PNgs)”,

of length 704, wherd’S, stands for the frame synchronization symbols of length 4. We
also have reserved frame bits and information bits right before and after the training se-
quences.

As a summary the correlations of the received signal with the stored sequence will

be “noisy” because

18



e the PN sequences are finite in length, they won’t achieve their low correlation value

for non-zero lag;

e the span of the cross-correlation includes the known training sequence as well as

the random data symbols and reserved data symbols.

In the sequel we will show how to “clean” the sidelobes of the finite correlation.
However this still leaves the problem of having the cross-correlation span include random
symbols which are located prior to and after the training sequence. In order to remedy
this problem we will introduce “thresholding”.

Cross correlating the stored training sequence with the received sequence, which
is readily available in digital receivers for the primary purposé&afme synchronization
"(Fimoff and Ozen and Nereyanuru and Zoltowski and Hillery 2001)”, yields a raw chan-

nel estimate

N—

[y

1
74[0]

ﬁu[n] = ayylk +n], n=—Ng, -+ ,0,--- N, (3.22)

k=0
Nil - - -
wherer,[0] = Y |lax||*. Equivalently Equation (3.22) can be written as
k=0
1 H

h, = ra[O]A Y[-Ny:N+N.—1]- (3.23)

Recall that

YiNaNiN—1] = Ah+Dh+Qn_y, 1 .NiN.—11L];

= Ah+ Hd+Qn_N, [, NtN-1+L)-

al

(3.24)
Substituting Equation (3.24) into (3.23) we get

1

=0 A" (Ah + Hd + Q"[—Na—Lq:N+Nc—1+Lq]>
1

1
= AP AR
ral0) T

>
S
I

A" (Hd+Qn_y, pvin-1e1)) - (3.25)

In order to get rid of the sidelobes of the aperiodic autocorrelation we can simply

invert the normalized autocorrelation matifi,, of the training symbols, defined by
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R, = L qtig (3.26)
7a[0]

Then thecleanedchannel estimaté.. is obtained from

>
Q
|

R, h,
= (AHA)_IAHy[—Na:N-',-NC—l}' (3.27)

Substituting Equation (3.23) into (3.27) we get

h. = h+(A7A)7" AY (Hd + Qn[,Nqu:N+NC,1+Lq}> . (3.28)

As can be seen from Equation (3.28) the channel estifates the contributions
due to unknown symbols prior to and after the training sequence, which are elements of
the vectord, as well as the additive channel noise; only the sidelobes due to aperiodic
auto-correlation is removed. The ter(rxzﬁHA)_1 A (Hd - Q"[fzerq:Nwﬁqu])
is calledbaseline noisén the raw channel estimate "(Fimoff af@@zen and Nereyanuru
and Zoltowski and Hillery 2001, Hillery 2002)".

In order to further reduce the baseline noise we can incorporate the covariance
matrix of the colored noiseQn_y,_. .nin.-1+1, INtO the least squares equation of

(3.27) yielding thenveighted(or generalizedlleast squares solution

~

ho = (A7(02QQ") 1 A) " AT (02QQ") 'y _n.vin.—1
= (A"(QQ™) ' A) " AT(QQ™) 'y _y.vin.—1 (3.29)

where U%QQH is the covariance matrix of the colored noise vector
QN_N,-1,N+N.-1+1, @nd o is the variance of the noise sequeng]. Note
that the matrices A, Q, that appear in Equation (3.29) are known, and the matrix
(AT (QQ")'A) AT (QQ™)! can be pre-computed and stored in the digital receiver

to yield the initial channel estimate &f,, in place of theh..
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3.3. Covariance Matrix Update Based Iterative Channel Estimation

The received signal model of Equation (2.35), which captures all the output cor-

responding to theV training symbols, is repeated here for convenience:

YinaNiN—1] = Ah+Hd+Qn_y, 1 .NiN-1+L,)-

We can denote the two terms on the right side of Equation (2.35) by

v = Hd+Qn_N,_ 1, NtN.-1+L,) (3.30)

Hence substituting Equation (3.30) into (2.35) we get

Y NoNiN.—1] = Ah+v. (3.31)

As originally observed and documented first by C. Pladdy "(Pladdy @nen
and Nereyanuru and Zoltowski and Fimoff 2002)”, we ¢acorporate the covariance
matrix of the vectow into the generalized least squares solution. By noting the statistical
independence of the random vectarandr, and also noting that both vectors are zero

mean, the covariance matrik ,, of v is given by

1
Cov{jv} = K, = 5E{m;H} = %HHH +02QQ", (3.32)

where&, is the energy of the transmitted information symbols, and equéal$ to
if the symbols{d,} are chosen from the sét-1, +3, +£5,+7}. The generalized least

squares objective function to be minimized is

Jos(¥) = (Ypnenin.—1 — Ah)H K,' (Y _n,nin.—1 — Ah).  (3.33)

Then the generalized least-squares solution to the model of Equation (3.31) which

minimizes the objective function of (3.33) is given by

ﬁK = (AHK;1A)flAHK:;ly[—Na:NJrNc—l] (3.34)
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where K ,, is given by Equation (3.32). The generalized least-squares channel
estimate of Equation (3.34) is also called Best Linear Unbiased Estima{8LUE),
due to fact that it achieves minimum variance among all linear unbiased estimates "(Seber

1977)". In our case the covariance matrix of the channel estimate is

Covfhx} = E{(hx —h)(hx —h)"}
= (A"K;'A)L (3.35)

When the covariance matrix of (3.35) is compared to any other estimators covari-
ance matrix, the comparison is must be done in the seéhseY > 0 iff the matrix
[Z — Y| is positive definite.

The problem with Equation (3.34) is that the channel estirhatés based on the
covariance matrix< ,,, which is a function of the true channel impulse response vector
h as well as the channel noise variangg In actual applications the BLUE channel
estimate of Equation (3.34) can not be exactly obtained. Hence we need an iterative
technique to calculate least squares estimate of (3.34) where every iteration produce an

updated estimate of the covariance matrix as well as the noise variance.

3.3.1. Further Improvements to the Initial Channel Estimate

As discussed in Section 3 we can use either one of the initial channel estimates
of Equations (3.27) or (3.29), the latter estimate is expected to produce slightly better
channel estimates, where the performance measure is the normalized least-squares error

which is defined by

|h — Al
= == 3.36
Envs N, + N, +1 (3.36)

We propose to further reduce the initial least squares estimation error by seeking
an approximation in the form of assuming that the baseband representation of the physical

channek(t) is a unit Dirac-delta function, that is assume that

ct) = 6(t) (3.37)

which implies
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h(t) = p(t) = c(t) = p(t). (3.38)

Thus we can assume that our finite length channel impulse response vector can be

(initially) approximated by

h = 07"' ,O,p[—Nq],"' ,p[—l},p[@],p[l],--- vp[Nq]707"' aOT (3-39)

Na—N,g Ne—N,
with the assumptions oV, > N, andN, > N,, that is the tail span of the com-

posite pulse shape is well confined to within the assumed delay spréadvei’, N.T.

Then the approximation of (3.39) can be substituted into Equations (2.30-2.33) to yield an

initial (approximate) channel convolution matdZ and is given byH = H.S” whereH

is formed as in Equation (2.30) wifla = Jh. We can also assume a reasonable received

Signal-to-Noise §NR) ratio measured at the input to the matched filter which is given by

N 1 (6 R ) .40

2
_ & H;IH ' (3.41)
U??

For instance we can assume an approxirfatB of 20dB yielding an initial noise

variance of

&allal?
2 d
= . 3.42
K 100 ( )

o

Then combiningd and&,?, we can pre-calculate the initial approximate covariance

matrix where the covariance matrix of the approximate channel is given by

- 1 - -
K. (H) = §5dHHH+&f,QQH, (3.43)

which further leads to the initial channel estimate of

hi = (AH[Kv(ﬁ)]_1A>1AH[Kv(H)]_1y[Na:N+Nc1J (3.44)
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The equation (3.44) is called the approximate Best Linear Unbiased Estimator of
the channel impulse response and this estimator will be referred to as "aBLUE” in the

sequel.

3.3.2. Statistical Analysis of Baseline Noise

The initial channel estimate of Equation (3.28) is repeated here for convenience

h. = h+ (AHA)_1 Al (Hd + Q”?[_Na—Lq:N+Nc—1+Lq]> )

where the channel estimafe. has the contributions due to unknown symbols
prior to and after the training sequence, which are elements of the vkaemwell as the
. . —1 .
additive channel noise; and the tef” A) ~ A" (Hd + Qn[_Na_Lq:N+NC_1+Lq]> is
calledbaseline noisén the raw channel estimate "(Fimoff ad@ken and Nereyanuru and
Zoltowski and Hillery 2001, Hillery 2002)". Indeed we can summarize the baseline noise

expression for the three different estimators of Equations (3.27), (3.29) and (3.44) by

~

h = h+é=h+B <Hd + Qn[_Na_Lq:NWC_HLq}) (3.45)

where the baseline noise vectrs defined by

& = B (Hd + Q’r’[—Na—Lq:N-i-NC—l—i-Lq]) (3.46)

and the matrixB takes one of the three following different forms depending on

the estimator used:

(A7) Al for k. of Equation (3.27)
B = (AH(QQH)—lA)f1 AT(QQ")"',  for hg of Equation (3.2(3.47)
N -1 .. .
(AH[KD(H)]—1A> A"[K ,(H)]™', for by of Equation (3.44)

Although we can derive the exact probability distribution of the baseline noise
term, we can alternatively make the assumptiomaimality (having Gaussian distribu-

tion) of the channel estimation error. This assumption can be asserted by invoking the
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central limit theorem. We will state the central limit theorem without providing proof,

since its proof can be found in several texts "( Casella and Berger 1990)".

Theorem 3.1 Central Limit Theorem') Let X, X, ... be a sequence of iid random
variables WithE{X;} = pand0 < Var{X;} = 0? < cc. DefineX = 13" X, Let
G,,(x) denote the distribution function @fn(X,,—u)/o. Then for any:, —oco < z < o0,

r1
lim G,(z) = / —— eV 2y, (3.48)
n—00 V2T

thatis\/n(X, — ) /o has a limiting standard normal distribution (Gaussian witmean
and variancel, N/ (0, 1)).

For kth tap of the channel estimate,, regardless of the estimator form, the chan-

nel estimation error terrgy, consists of the sum of

e (scaled) linear combination @ N.+ N,) random data;

e (scaled) linear combination df +N,+ N.+2L, white Gaussian noise samples.

Thus we first invoke the Central Limit Theorem for the veckdd and assert the

approximation

Hd ~ N(0, %SdHHH). (3.49)

The second tern@mn_y, ;. .n+n.-141, 1S @lready a Gaussian vector with zero

mean and covariance matmngQH , that is

Q”[—Naqu:N+chl+Lq] ~ N(OaUZQQH)- (3.50)

Then noting the independence of the random data synabafsl the noise vector
1 we conclude that the baseline noise ve& @ has a limiting Gaussian distribution with

zero mean and covariance matrix

1The distribution in Equation (3.50) is exact; however the distributions of both (3.49) and (3.52) are

approximations
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Covi¢} = K. = B(%HHH +0.QQ™") B

= BK,B” (3.51)
that is
£
€ =BHd+Qu_y, 1niv101,) ~ NOB(GHH" +05QQ")B"),
~ N(0, BK,B") (3.52)
K
13

where B takes one of the appropriate forms as displayed in Equation (3.47), and
K, is givenin (3.32).

We conducted a simple experimentation to help visualize the normality of the
baseline noise seen at, randomly selectédth tap value forh,: Ten thousand realiza-
tions of the vectord andn_y,_..n+n~.—1+1, @r€ generated, then the histogram and the

normality-plot of the real and imaginary parts of thisth tap value of the term

(A" A) —an (Hd + Qn[—Na—Lq:N+NC—1+Lq]>

are plotted in Figures 3.2 and 3.3 respectively. The purpose of a normality, or normal
probability, plot is to graphically assess whether the data could come from a normal dis-
tribution. If the data are normal the plot will be linear. Other distribution types will
introduce curvature in the plot.

It is also important to analyze the marginal distributions of the baseline noise
as well as the distribution of the norm of the individual components of the baseline
noise vector. That is we are interested in finding the probability distributions of
|&| and |&,|* where subscript denotes theith element of the baseline noise vector
€=1[&4,...,&v,n.01)". Based on (3.52) we can show tlfathas a Gaussian marginal

distribution with zero mean and variance ”( Casella and Berger 1990)”

1 *
op = §E{§k§k} =1/BK,B"1, (3.53)

2The probability distribution function of the norm, and square of the norm, of individual components of
the baseline noise vectgrwill be useful later when we derive the constant false alarm rate (CFAR) based
threshold.
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Histogram of the Real Part of the Channel Estimation Noise for 418th Tap
1000 T T T T T T

800

600 |-

400 -

200

1200 Histogram of the Imaginary Part of the Channel Estimation Noise for 418th Tap
T T T T T T

1000

800

600 |-

400

200

0.6 0.8

Figure 3.2: Ten thousand realizations of the vectbesdn_y, ;. .nin.—141,] @r€ gen-
erated; then the histogram of the real and imaginary parts of t&in tap value of the
term (AHA)_1 A (Hd + Qﬂ{fNaqu:waqu]) are plotted.

that is

sz = ]-gB(Hd + Qn[—Na—Lq:N+NC—1+Lq]) ~ N(07 1£BK'UBH11€)7 (354)
—_————

2
T,

where B takes one of the appropriate forms as displayed in Equation (3.47), and

1, =1[0,...,0,1,0,...,0]7 is the vector of zeros of appropriate dimension with a 1 at the

k—1
kth position.

Now we state an important fact about the probability distributions of the norm
and square-norm of the complex Gaussian random variables. The detailed discussion

regarding their proofs and further properties can be found irut{&t 1996)”.
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Normal Probability Plot of Real Part of the Channel Estimation Noise at 418th Tap
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Normal Probability Plot of Imaginary Part of the Channel Estimation Noise at 418th Tap
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Figure 3.3: Ten thousand realizations of the vectbesdn_y, ;. .nin.-141,] @r€ gen-
erated; then the normality plot of the real and imaginary parts ofttiéh tap value of
the term(AHA)f1 A" (Hd + Qn[—N(,,—Lq:N—&—NC—l—i-Lq]) are plotted. The blue straight

line corresponds to case where the samples are drawn from the exact normal distribution.

Lemma3.lLeté = [&,...,&n, n.11)F be a complex valued random vector, with sta-

tistically dependent real and imaginary pagsand¢,. Given that

H
3 NmiﬂiB) (3.55)
3

then the random vectaf = Zf;l ¢,£" is said to be Wishart distributed on k

degrees of freedom "(Krzanowski 2000)”, i.e.

S ~ Wi(Ke 1) (3.56)

Lemma3.2 Let¢ = [&,...,&n, n.11)" be a complex valued random vector, with sta-

tistically dependent real and imaginary pagsand¢,. Given that
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H
3 Af«L13§;J3 ) (3.57)
3

then the random vectdt = Zle(a%)? is distributed according to the chi-square
distribution on k degrees of freedom ”"(Hojbjerre and Sorensen and Eriksen and Andersen

1995)", i.e.,

Z ~ 2 (3.58)

The random vectoZ given in Lemma 3.2 can be written as, (for= 1)

e, (3.59)

Applying Lemma 3.1 to Equation (3.59) we conclude th&t, K, 1) distribution
is just (o¢)? times thex; distribution, so that the:? distribution is a special case of
the Wishart distribution ”(Krzanowski 2000, Hojbjerre and Sorensen and Eriksen and
Andersen 1995)”.

If uw = z¢ is any linear transformation &, wherez is nonzero vector, than

also has a normal distribution with zero mean and covariance mstt  z,

u~ N0, 2" K¢2). (3.60)

It is also important to analyze the distributionof Sz, where

glgik flfg o £1€7VC+NE+1
S — gell — 52.51‘ 52.55 : fZ'S?VcJ.rNa+1 7 (3.61)
| ENeNa 16D §182  ENeNa 18N AN, 11 |
218z = 2"(e¢")z = (2"€)(€"2) = wu" = Ju|” (3.62)

Applying Lemma 3.1 ta.u?, we see that
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278z ~ Wi (2" K¢z, 1). (3.63)

SinceW, (K¢, 1) distribution is just(o¢)? = 2" K.z times they? distribution,

21 Sz has also

298z ~ (2MK:2)xi. (3.64)

Consider the case = 1, wherel, = [0,...,0,1,0,...,0]" is the vector of

k—1
zeros of appropriate dimension with a 1 at thk position. Then
2782 =1181; = s1 = &&= |G (3.65)

Also

z"K¢.z=1,BK,B"1; =0} . (3.66)

Finally, taking Equation (3.65) and Equation (3.66) in Equation (3.64), the distri-

bution of |£;|? is

[el* ~ (oE )1, (3.67)

and|&,|? has a probability density function given by

r

1
r)= ———exp(——). 3.68

3.3.3. Approximations of Distribution

We can alternatively derive the probability density function of the channel estima-
tion error under the assumption that the real and imaginary parts of the channed apese

independent, in order to obtain a simpler thresholding rule in our further investigations.
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Lemma 3.3 Let¢ = &, + j&, be a complex valued random variable, with statistically
independent real and imaginary pargs and¢,. Given that¢ is Gaussian witl) mean
and variancer} = ¢ = 0f = sE{¢¢*}, thenthe random variablg = |¢] = /&2 + &2

is said to be Rayleigh distributed, and its density, denoteggty), is given by

252
e e r>0
e

pr(r) = (3.69)

0, r <0.

Similarly the random variable defined by= R*> = || = £ +¢7 is exponentially

distributed, and its density is given by

#e ¥ >0
pZ(Z) = 3
0, r <0.

(3.70)

Applying Lemma 3.3 to (3.54) we immediately conclude t[gat is a Rayleigh
random variable with parametérrgk, and |¢,|? is an exponentially distributed random

variable with parametelagk, and their density functions are

Pel(r) = § " (3.71)
0, r<0
> ~3
20'12 e 20% , T Z 0
Pl (r) = & (3.72)
0, r <0.

\

respectively, wheregk is defined by Equation (3.53). Note that

E{j6?}) = / Ppie (r)dr = / rpi e (r)dr = 202

3.3.4. Iterative Algorithm to Calculate the Channel Estimate

The BLUE channel estimate is repeated here for convenience:

A

hix = (AHKQ—)IA)_1AHK1_;1y[7Na:N+chl] (3.73)
whereK ,, is the covariance matrix given by
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1
K, = 5E{furuH} = %HHH+U§QQH. (3.74)

The problem with Equation (3.73) is that the channel estirhatés based on the
covariance matrixk ,,, which is a function of the true channel impulse response vector
h that we are trying to estimate, as well as the channel noise variffpcdan actual
applications the BLUE channel estimate of Equation (3.73) can not be exactly obtained.
Hence we need an iterative technique to calculate least squares estimate of (3.73) where
every iteration produce an updated estimate of the covariance matrix as well as the noise
variance. Thus an onlgpproximateBLUE estimate is possible.

Iterative algorithm to calculate the channel estimate, and noise variance is pro-
vided in Algorithm 1. In the very first step we can use any one of the three equations
(3.27), (3.29), or (3.44) for an initial CIR estimate. However Equation (3.27) gives the
highest normalized LS Error, and Equation (3.44) yields the lowest initial normalized LS

error, hence Equation (3.44) is the most desirable of the three alternatives.

Once an initial channel estimate is obtained the channel noise variance can be

obtained by

-~ 1

T = 26,(N — N, — N.) [Fvev-n) ~ Ypan-nel

(3.80)

which is based on the observation vectgk,.y_y, 0of Equation (2.15), where
& = |g|* andgy..y_y, = Ah. No subscript is used fdk to indicate that any channel
estimate can be used at that stage to estimate the noise variance. Then an estimate of the
covariance matrix of (3.74) can be obtained immediately since all the quantities involved
in (3.74) are either known or has been estimatéthen the covariance matrix estimate
is used in Equation (3.73) to yield a better estimate of the channel. Then this process
is iterated until a pre-specified number of iterations is reached, or a stopping criterion

is achieved. A stopping criterion might be defined based on checking the norm of the

3¢, and Q are known;H and a,% are estimated.H is a function of the channel estimake and is
constructed by following Equations (2.30-2.33), and the initial channel estifnateconstructH can

come from (3.27), (3.29), or (3.44).
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Algorithm 1 Iterative Algorithm to obtain a CIR estimate via Generalized Least-Squares
[1] Get an initial CIR estimate using one of (3.27) or (3.29) or (3.44), and denotefzi@(lj)y

[2] Threshold the initial CIR estimate.

[3] Based oryy,.n—n,] Of Equation (2.15), estimate the noise variance by

— 1 R 9
o%y[0] = 26,(N — N, — N,) ’y[NC:N—Na] - y[NU:N—Na}’ (3.75)
2 . _ 73:.00),
where&; = [g|* andgy,.n_n,] = Ahyy ;
[4]
for k=1,..., Nier do
[4-a] Calculate the inverse of the (estimated) covariance matrix
—~1 g ~ ~ — -1
K, [k = |5 H(hwlk = 1)H" (hgylk —1]) + 0%k - 11QQ" | 5(3.76)
[4-b] Calculate
A —~—1 —~—1
hic[k] = (A" K, [K]A) T ATEK, (kY| n,.vin.-1; (3.77)

[4-c] Calculate (CFAR}(,, 1 v, [k] for —N, < n < N, according to Equation (4.20), and set

) 0, i AW < epnrna K]
Ryl =3 K el (3.78)
hy’[n], otherwise,
for - N, <n < N,.
[4-d] Estimate the noise variance by
-5 1
2 _ - () _ 2
g n[k] - ng(N _ Na o Nc) Hy[NC;NfNa] y[NC:N—Na} H (379)
Whereg[(f\})c:N_Na} = Ahy,[k].
end for

difference between the channel estimates obtained in the current iteration and the previous
iteration.

There is one crucial detail that has not been discussed until this point. Right after
obtaining a channel estimate, prior to using that channel estimate for noise varj%nce,
calculation and prior to building the channel convolution matfixthe baseline noise has
to be cleaned from the channel estimate. This cleaning can be achieved via thresholding.
Previously we have used a fixed thresholding algorith®z&n and Zoltowski 2002)” in

the form of

33



seth!™ = AO’ 11 < < (3.81)
hi, otherwise,

for all k, to get rid of the baseline noise. We have observed that there can be
significant performance loss if a fixed thresholding in the form of (3.81) is applied at every
iteration. This performance loss is inevitable due to getting rid of significant amount of
pulse tails embedded in the channel impulse response while getting rid of the baseline
noise. To overcome this problem we propose two different thresholding schemes. The
first one is called constant false aldrmate (CFAR) based thresholding, and it is based on
determining a thresholding bound based on the statistical distribution of the baseline noise
which is already derived in Section(3.3.2). The second method is called the protection

window based thresholding.

3.3.5. Other Approaches Background (Matching Pursuit)

There are some alternative channel estimation algorithms proposed as well as LS
and a-BLUE methods. Matching Pursuit algorithm can be used for estimation of channels
with large delay spread "(Cotter and Rao 2002)”.

Recall the notation of multipath communication system again

Y-N.NiN—1] = Ah+o. (3.82)

where

A=T CL(), CL,aN-— 17 ) a’OJ ) 7

Na+Np Na+Nc
ao 0 .0
al 0/0 “ee O
= | any ans - ag (3.83)
0 aN-1 -
0 0 - ang

“In statistical inference literature false alarm (rate) is referred to as the Type | error (probability).
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In the MP algorithm ”(Cotter and Rao 2000)”, we first find the column in the
matrix A = [ay,as,---,ay], Which is best aligned with the signal vectby =
Y_n,:N+N,—1] @nd this is denotedy,. Then the projection ob, alongay, direction
is removed fronby and a new vector is obtained, called the residual, which is denoted by
by.

Now the column inA, a;,, which is best aligned witlb, is found and a new
residual b,, is formed.

In the pth iteration of the MP algorithm,the vector fors most closely aligned

with the residuab,_, is chosen according to
ky = arg max || Po,bp— | (3.84)

whereP,, is the projection matrix onto the space spanneaby

H
a;a;
g =-—= 3.85
e (589)
The new residual vector is then computed as
bp =bp_1— Py, bp1 (3.86)
and the tap value at positidn is
. al’b,_
hu, = —2 2 (3.87)
]

The iteration is repeated until a specified number of taps or the residual becomes

sufficiently small i.e ||b,| < e.
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CHAPTER 4

CONSTANT FALSE ALARM RATE (CFAR) BASED
THRESHOLDING

4.1. Introduction

In radar systems, a constant false alarm rate (CFAR) detection is used to decide the
presence of a target from a radar resolution cell ”(Levanon 1988)”". The purpose of CFAR
design is maximization of detection probability while maintaining a desired false alarm
rate. A CFAR detector should provide detection thresholds that are relatively immune to
background noise and clutter variation with a CFAR. In parametric CFAR schemes, the
most essential distinction of all CFAR algorithms is that the methods to form the average
value representing the varying strength of clutter are different. The most widely used

CFAR techniques are

e Cell averaging (CA) CFAR,

e Order Statistics (OS) CFAR.

Finn and Johnson "(Finn and Johnson 1968)” first proposed the Cell-Averaging
(CA) method. The adaptive method can play an effective part in many noise and clutter
environments, and provide nearly the best ability of signal detection while preserving
the enough constant false alarm rate. But in the existing interfering targets situation, the
detection performance of CA decreases. Rohling "(Rohling 1983)” presented the Order-
Statistic (OS) CFAR detector; OS-CFAR possesses good ability to counter the multiple
targets.

As an example, the CA-CFAR technique is outlined schematically in Figure 4.1.
The returns from a given pulse are detected in a square-law detector, and a sample is taken
from each channel tap. The channel tap under test is central tap. Its immediate neighbors
are excluded from averaging process, because of fear of spillover from the channel tap

under test. In the basic CA-CFAR the inputs from the M neighboring taps are averaged,
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resulting an estimate of background noise(interference).the threshold is obtained by mul-
tiplying the estimated average by scaling factor This method works well when the

background interference is statistically homogenous over range or Doppler, or both.

4.2. Using CFAR Techniques for Channel Estimation

The CFAR methods can be used to increase the estimation performance of channel
impulse response.

Recall that thesth tap of the channel estimate vector can be expressed in the form

hi = hi+& =hi+1{B <Hd + Qn[—Na—Lq:N—f—NC—H-Lq}) : (4.1)

g

&k

As has been presented théh component of the channel estimation error vector

&, has a Gaussian distribution with zero mean and variance

1
of, = I B(;&HH" +0,QQ")B"1, = 1/ BK,B"1, (4.2)

where B takes one of the appropriate forms as displayed in Equation (3.47), and
the random variablg, | is exponentially distributed with parametar; .

The problem of deciding whether ttih tap estimaté;, is a zero tap or not can be
formulated as a simple hypothesis testing problem. That is we can consider the following

two hypotheses:

Hy : hy=¢, (4.3)
Hy o hyo=he + & (4.4)

where undef, the hypothesis is that thagh channel tap is actually zero and we
are observing only baseline noise, and unferthe hypothesis is that the channel tap
is non-zero, and we are observing (non-zero) channel tap plus the baseline noise. From
the earlier developments the probability distribution of #ie channel tap under null

hypothesis, is given by
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Hy @ hy ~N(0,02), (4.5)
H1 : }Alk NN(hk7U§k). (46)

After defining (4.5) and (4.6) we can come up with different decision rules on
how to threshold the channel estimatehowever we choose to pursue the constant false
alarm rate (CFAR) based thresholding. False alarm probability based decision rule is
chosen so that the resulting threshold rule does not require any a priori knowledge of
the distribution of the hypothesid, it is solely based orf,. False alarm rate is the
probability of choosingd; whenHj is true.

Our decision rule will be in the form of

0, if ‘hklz < €k

seth{™ = 4.7)

hy, otherwise.

Wherel},(fh) denotes the thresholdécth tap of the channel impulse response.

Based on the rule of (4.7) the false alarm rate, denotea-hyis given by

pra = Pr{|h.|* > x| Hy is true}
= ———exp(—=——-)dr
/ oF N 2mr o 20§k>
€k
(4.8)
By making change of variable= -,
§k
1 7 exp(—t)
DPra = dt
\/ ﬂ-o'gk 5715 \/g
2051@
(4.9)

By makingz = v/t change of variable we get
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(4.10)

Recall the complementary error functioey; fc(z), "(Abramowitz and Stegun
1988)”

erfe(z) = %/exp(—tQ)dt, (4.11)

then thepr4 can be written as

1 €
pra = —erfe( —’;) (4.12)
T T

For the given level of false alarm probability- 4 the threshold levet, is given

by
£ = 202k lerfe Hoe, pra)l? (4.13)

whereo; is given by (4.2).

Although we end up with an expression for the threshold of Equation (4.23), which
should be applied to the channel estimate as in (4.7), we still have the problem of not
knowing the true covariance matri® (;6,HH" + 02QQ™)B* and thekth diagonal
element which we have denoted &% . We can only have an estimafégk available to be
used in Equation (4.23). Thus it is natural to see some performance loss due to using the
estimate;%k in place of the true variance as will be shown in the simulations. Indeed the
thresholding step is going to be incorporated into the iterations of the channel estimation
with covariance matrix updated at every iteration. Once the covariance matrix is updated
at every iteration we would have a new, and presumably better, threshsiladce we will
get a better estimat@gk at every iteration.

Note that the stepd-b] of the Algorithm is the main step to compute the channel
estimate, and is repeated here for convenience (the square bracketeghjranote the

iteration step):

~ —~—1

—1 -1
hiln] = (A"K, [A)  A"K, by xven 1 (4.14)

where
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-1
K, [n] = %H(ﬁ(th) n— 1) H" (hgn — 1]+ 02, [n —11QQ"|  (4.15)

is the inverse of the estimated covariance matrix Gdnd H (b [n — 1)) is the

convolution matrix (with a “hole” inside) constructed as in Equations (2.30-2.33) from

A~

hr [n — 1] which is the thresholded CIR vector estimated at the previous iteration. The

baseline noise for the main channel estimation step of Equation (4.14) is

§ = BHA+QN_yN,_1,NtN-1+L,]); (4.16)

where

B = (A"K, [n]A)'A"K, [n]. (4.17)

Thus the covariance matrix of the baseline noise atttieiteration step, denoted

by K¢[n], is given by

K¢n] = B(%HHHJraf,QQH)BH
— (ATK, [nA)'ATK, KK, [nAATK, [n]A)". (4.18)

Since we can only use an estimate of the true covariance nityin the middle

of Equation (4.18) ), after the simplifications we get

Kn = (A"K, [nA)", (4.19)

which is an estimate of the true covariance matrix¢ aff Equation (4.16) if we
could have used the true covariance mafik, in Equation (4.14) to begin with. Then
the CFAR based threshold is given

e = 2@2[erfc_1(5§\kpp,4)]2 (4.20)

WherEO/‘\ng is given by

o2, = 1U'Knl, = 17(ATK, [n]A)'1,. (4.21)
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4.2.1. Approximations and Further Simplifications

Recall that thé:th tap of the channel estimate vector can be expressed in the form
of Equation (4.1). In section (3.3.3), it has been shown that the norm and the norm-square
of the channel estimation errgr has been shown to obey Equations (3.71) and (3.72)
under the assumption the real and imaginary parts @fre uncorrelated. Although this
assumption is not true, this section shows how the threshold computation of (4.20) can be
simplified.

Based on the rule of (4.7) the false alarm rate, denoteg-hyis given by

pra = Pr{|h|? > | Hy is true}
T 1 r
= ——erp(—=—)dr
Ek/%fk 20¢,
€k
_ _ _ 4.22
pra = exp(=5 ) (4.22)

&k

For the given level of false alarm probability- 4, the threshold levet,, is given

by

Ep = —2U§kln(pfa) (4.23)

whereo; is given by (4.2).

4.3. Cell Averaging (CA) CFAR Based Detection

In cell-averaging (CA) CFAR system the threshold adjustment for a specific com-
ponent of channel estimation error (baseline noise) is based on the average detected in-
put from its neighboring taps during the same pulse "(Barboy and Lomes and Perkalski
1986)". Thus we can use CA technique as a simple "sliding-window” type estimator for

the variance of the channel estimation er@@k.
M
y=>Y_I|h] (4.24)
k=1
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Figure 4.1: Cell-Averaging CFAR

Zy = ya/M (4.25)

Note that Equation (4.24) gives us an estimate of the channel estimation error
noise variance with the channel taps included in the summation. We can further improve
this estimate by iterating cell averaging once (or possibly more) by first subtracting the
thresholded channel estimd&ﬁh) from the initial channel estimate to get an estimate of
the channel estimate error vector and then use the cell averaging procedure to this noise

vector. First define

& = hp — ™. (4.26)

We are proposing to use the CA technique to this improved estimated noise of
Equation (4.26). Thus our CA algorithm is in the form of Algorithm (2).
The CA-CFAR technique is outlined schematically in Figure 4.1. The returns

from a given pulse are detected in a square-law detector, and a sample is taken from

42



Algorithm 2 Cell Averaging CFAR Algorithm applied to any initial CIR estimate
[1] Get an initial CIR estimate using one of (3.27) or (3.29) or (3.44), and denotefit py

the length ofh.; is N, + N, + 1 whereN, and N, denote the number of anti-causal and the
causal taps of the channel.

[2]

for k = Ng,..., N.do

[2-a] Estimate the noise variance if* tap by

k+M

—~ 1 .
0% = N Z ) (4.27)
s=k—M
whereM denotes window size.
[2-b] Calculated the threshold by
S 2025k[erfc_1(35kaA)]2 (4.28)

[2-c] Thresholdk,;, tap ofh.s; by using Equation (4.28) and set

) 0, if A2 <¢
My =3 heail” < (4.29)
hgsz, otherwise,
end for
[3] Calculate
£ = hest — hup. (4.30)
[4]
for k=1,..., Njer do
[4-a] Estimate the noise variance by
. | kM :
_ 5)|2
0%, = o S;M Byl (4.31)
[4-b] Calculated the threshold by
er = 202, [erfcil(ffgkaA)P (4.32)

[4-c] Thresholdk,, tap Of Fress by using Equation (4.32).

end for
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each channel tap. The channel tap under test is central tap. Its immediate neighbors are
excluded from averaging process, because of fear of spillover from the channel tap under
test. In the basic CA-CFAR the inputs from the M neighboring taps are averaged, resulting
an estimate of background noise(interference). The threshold is obtained by multiplying
the estimated average by scaling facior

There are also modifications conventional CA-CFAR in the literature "(Hansen
and Sawyers 1980)” and "(Smith and Varshney 2000)". One of these is Greater-Of CA-
CFAR (CAGO-CFAR). Only difference in this approach is the way of estimating the noise

variance in2 — a] and[4 — a] in Algorithm (2).

k k+M

5 1 s s
0% = gypmax( Y GV IEP) (4.33)
s=k

s=k—M
According to this modification, the(x) in Figure 4.1, for CAGO-CFAR method,

will be

g(x) = max(SUMuq(x), SUMeqq(x)) (4.34)
The Performance of CA-CFAR and CAGO-CFAR methods are compared in Fig-
ure 4.2.

4.4. Order Statistic (OS) CFAR Based Detection

In order to prove that order statistics is indeed a CFAR technique, we must first
find the PDF of the threshold random variable (r.v.) and then average the probability of
detection over all possible threshold values in a non-signal situation.

M is the total number of reference taps now ranked according to their input level

hy <hy <---<hg<---<hy (4.35)

K is the rank of the sample which is selected to determine the threshold

e = ahg (4.36)
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Figure 4.2: Normalized Least Square Error (NLSE) of CA-CFAR and CAGO-CFAR for

different window size

The probability of a noise sample crossing the threshglds

Pz el o) = [ putr)ar (4.37)

€K

Whenh is a r.v. with PDFp(h) and a distribution functiorP(h), then theK,

ranked sample (out of a total of M samples) has a PDF as follows:

) = 1 (G0 ) IPT= POPptr) (.39

The random variabl&;|? has a probability density function given by
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1 T
exp(— 4.39

p|€k|2(r) = 2
O¢,

and a probability distribution function given by

Py 2(r) :/o Pee)2(r)dr = U%@Tf(,/%) (4.40)

Using Equation (4.39) and Equation (4.40) in Equation (4.38), we get the PDF of

the ranked sample

T

2
2
dgk

M\, 1 T k1 1 T 1 M—Kk €
= — [ — e [ — —— (441
PK (T) K (K) [Ufk €Tf( 2o_§2k )] [1 0%, GTf( 20_2k )] \/%ng ( )
Since it is difficult to find a closed form solution fpf. 4 by using Equation (4.41),

we can alternatively use the approximate distributioffgf given in the Section (3.3.3).
In the Section (3.3.3), we have shown that the random varigpfeis exponen-

tially distributed with parameteto,

T (4.42)

Pl 2(r) = £

and

T

z _ 02
P‘§k|2(/’n) = /0 p|§k\2(7")d7“ =1—e &,

Using Equation (4.42) and Equation (4.43) in Equation (4.38), we get the PDF of

(4.43)

the ranked sample

T

M\ r EEye n s R B v B
pK(T)=K<K>E[1—e e TR e TR e
k k

The probability of false alarmpg,) will be
PrA = / e_a@p;((r)dr. (4.45)
0
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T
20

By putting Equation (4.44) gsx (r) andu = e & , pra take the form

M 1
Pra = K(K)/ u MR (1 — ) (4.46)
0

The integral found in Equation (4.46) can also be written by helpet& function
"(Abramowitz and Stegun 1988)".
The Beta function, also called theeuler integral of the first kind, is a special

function defined by

B(z,y) = /Oltx_l(l—t)y_ldt (4.47)

for R(z), R(y) > 0.

Beta function has many other forms, including:

B(z,y) = % (4.48)

whereTI" is theGamma function. By using Equation (4.47) and Equation (4.48),

pra Can be written as

pra = K(%)B((a+M—K+ 1), K)

B M\T(a+ M — K)I'(K)
B K(K) T(a+ M+1)

(4.49)

The Gamma function reduces to the factorial for a positive integer argument,

Tz+1) = (2) (4.50)

wherez is real integer.

Then for integer values af, prs in Equation (4.49) becomes,

pra = K(M) (0 + M~ K)I(K — 1)

K (ao+ M)!
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M(M —1)..(M — K +1)

M+a)(M+a—-1).(M+a—-K+1)

Fora =1,
(M-K+1) , (M-K)
PFa = .
(M +1) M
Fora =2,
B (M —K+2)(M—-K+1) ~ (M — K)?
bra = M+2)M~+1) M2
Fora = 3,

(M —K+3)(M—-K+2)(M—-K+1)

1%

(M - K)°

PFra

Finally, for anyq,

(M — K)~ K
~ VT T (1= e
Pra Ma ( M) )
therefore
K
(ppa)/e = 1-— i
and

K = M[1—(pra)Ye].

We have compared the performance of approximated K value given in Equa-

(M +3)(M +2)(M+1) M3

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

tion (4.57) with the exact values obtained from Equation (4.49), and the comparison is
tabulated in Table (4.1). It is clear that there is small difference at selected K value for
givena andpr4. Hence we will use Equation (4.57) to obtdinfor any selectedv and

pra. We also provide relationship betweerK for different pr4 values in Figure (4.3).
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pra=1le—4 || pra=1le—5 | pra=1e—6
« Kideal Kapp Kideal Kapp Kideal Kapp
a=1 433 | 430 || 463 | 460 482 | 479
a=2 311 | 308 353 | 350 387 | 383
a=3 238 | 234 278 | 274 312 | 308
a=4 192 | 188 228 | 224 260 | 256
a=5 161 | 157 193 | 188 222 | 217
a=6 139 | 135 168 | 163 194 | 188
a=7T 122 | 118 148 | 143 172 | 166
a=38 109 | 105 133 | 128 155 | 149
a=9 98 94 120 | 115 141 | 135
a =10 90 86 110 | 105 129 | 123
a=15 63 59 78 72 92 86
a =20 49 45 61 55 72 66
a =25 40 36 50 45 59 53
a =30 34 30 43 37 51 45
a=3H 30 26 37 32 46 38
a =40 27 23 33 28 40 34
a =45 24 20 30 25 36 30
a =50 22 18 28 23 33 27
a =100 13 9 16 11 20 13
a = 200 8 4 10 5 12 7
a = 300 6 3 8 4 10 4
a =400 5 2 7 3 8 3
a = 500 5 2 6 2 7 2

Table 4.1:K values computed from Equation (4.49)
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K, the rank of the symbol

The rank of the CIR tap (K) for different Pfa values as a function of a (M=512)
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a
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Figure 4.3: K versus alpha
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4.5. Simulations

We provide CIR estimations of Least Squares, aBLUE, MP and aBLUE with
CFAR (CA and OS based) thresholded. These estimations use 9 channels given at Ap-
pendix A. At each of Figures 4.4-4.12; Part(a) shows the real part of CIR for Channel at
25 dB SNR; Part (b) shows LS Estimate of real part of CIR for Channel based on Equa-
tion (3.28). Part (c) shows aBLUE Estimate real part of Channel based on Equation (3.44).
Part (d) shows MP Estimate of real part of CIR for Channel 12 based on Equation (3.87).
Part (e) shows aBLUE Estimate of real part of CIR for Channel thresholded by CA-CFAR
method based on window of 60 tap. Part (f) shows aBLUE Estimate of real part of CIR
for Channel thresholded by OS-CFAR method where K=2520 andpr,=1e-6.
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Figure 4.4: CIR estimations for Channel 1
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Figure 4.5: CIR estimations for Channel 2
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Figure 4.6: CIR estimations for Channel 3
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Figure 4.7: CIR estimations for Channel 3-plus
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Figure 4.8: CIR estimations for Channel 4
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Figure 4.9: CIR estimations for Channel 5
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Figure 4.10: CIR estimations for Channel 6
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Figure 4.11: CIR estimations for Channel 7
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Figure 4.12: CIR estimations for Channel 8
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Figure 4.13: NLSE values of CIR estimates versus SNR(dB) for Channel 1
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Figure 4.18: NLSE values of CIR estimates versus SNR(dB) for Channel 5
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Figure 4.19: NLSE values of CIR estimates versus SNR(dB) for Channel 6
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Figure 4.20: NLSE values of CIR estimates versus SNR(dB) for Channel 7
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CHAPTER 5

CHANNEL ESTIMATE-BASED DECISION
FEEDBACK EQUALIZERS

The derivations of the Decision Feedback Equalizer (DFE) equations are based
on the recent work by Zoltowski et al "(Zoltowski and Hillery af¥en and Fimoff
2002)". The notation used in this chapter is slightly different from the rest of the thesis,
and is better suited for the development of the DFE equations. Based on the minimum
mean squared error (MMSE) criterion at the slicer input, the optimum feed-forward and
feedback taps in a DFE are directly computable from an estimate of the channel

The equalizer structures we consider in this chapter are illustrated in Figure 5.1.
The equalizer is assumed to haVe + 1 feedforward taps and/ feedback taps. As-

semblingNr + 1 consecutive samples gfk] into a vectory yields

y[k] = Hs[k] + Qnl[k], (5.1)

where  n[k] = (nlk+Lg) ... nlk—Ly— Ng]|",  s[k] _
[I[k+ N,] ... Ilk— N, — Ng|]",

R 0 - 0
0 A" - 0
H =1 . . . (5.2)
o 0 --- hT
L 4 (NpH) X (Np+Ne+Not1)
g’ 0 0
0 qT o 0
Q =\ . _ (5.3)
L 4 (NpH) X (Npt+Ng)

1This chapter has been presented in part at the Thirty-Sixth Asilomar Conference on Signals, Systems,

ad Computers, Monterey, CA, November, 2002
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Figure 5.1: Part (a) shows the real equalizer where both the feed-forward and feed-back
are real valued; Part (b) shows the (half)-complex equalizer where the feed-forward taps

are complex valued

whereq is the finite length representation of the receiver matched filter with length

N, =2L,+ 1:
q=1[q[—Lg,--.,q[—1],q[0],q[1],...,q[L] ]T. (5.4)
The symbol estimaté[: — ] is given by
Ik = 8] = Re{gp"ylk]} + g5 Tnlk — 6 - 1], (5.5)

whered is the cursor location (defined below), and

gr = [gF[O]v s :gF[NFHTa
g5 = gsll],....98[Ns]]",
splk] = [I[K],..., I[k+1— Ng]|",
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and the superscripf denotes conjugate transpose. In this analysis we assume that all
decisions are correct. If we adopt the convention that the subsétiptsl [ indicate the

real and imaginary parts of quantities, then

j[k - 5] = gFRTyR[k] + gFITyI[k] + gBTSB[k -0 1]
= gpo Yolkl + 95" splk — 6 — 1], (5.6)

wheregpc = [grr" QFIT]T andyclk] = [yg"[A] ?JIT[k'HT- We may now

write

yclk] = Heslk] + Qemclk], (5.7)
where He = [Hi' H/"]', Q. = Qn G , and nglk] =
Q; Qg

(T[] n, T[] ]

In the decision feedback equalizer, we use the cursor to define exactly which sym-
bol is being estimated. To motivate the cursor definition, we use the real equalizer and
consider a channel containing a single path with real gain at delay zero. In thidgése,
is a delta function at = 0 and the samplgz|k] corresponds to the symbélk] (since

yrlk] = I[k] + vg[k]). Then the feedforward term in the symbol estimate is

0:Tyalk] = S gelnlynlb — nl
=S bl (b=l +vall—n), (5:8)

where we recall thag - is real for this discussion. That is, the feedforward term in
the equalizer output only depends on the symb@i§ I[k—1],. .., I[k—Ng|. When there
is multipath interference, the feedforward term will depend on symbols covering a wider
time-span, but since we may encounter a channel where the multipath is negligible, we
may only conside¥ k], I[k — 1],. .., I[k — Nr| as candidates for the symbol to estimate.
Therefore, we estimate the symhigk — §], where0 < ¢ < N, and call this symbol
the cursor. Since there is a one-to-one correspondence between the candidate symbols

and the taps in the feedforward section, we often identify the cursor by the corresponding

72



feedforward tap. This definition of the cursor is consistent with standard DFE theory and
practice.

We now find the equalizer by minimizing the mean-square error (MSE), where

MSE = E{(I[k - 0] — I[k —d])*}
= & — 2Q.F‘CT"asyc + 29FCTRyCSBgB
+9rc’ Ryoye9ro + €:95" 95 (5.9)
with & = E{(I[k])*}, 7syo = E{I[k = ]yc[k]}, Rycsp = B{yc k] I5" [k — 06—
11}, andR, ., = E{y.[k]lyi[k]}. Here we have made use of the expressiBys;, =
E{splk]spT[k]} = &N, andr,, = E{I[k — §]sp[k]} = 0. Minimization of this

expression yields

1

1 _
gFC - (Rycyo - S_RstBRstBT) lrsyc (5.10)
1

g = _E_RycsBTgFCa (511)

where
Toye = CsHclsn, (5.12)
Ry = 8SI_IC’I{CT + NOQcQCT (5.13)
R,., e HcA; (5.14)

The vectorls, y, contains all zeros except for a one in elem&nt N, + 1. The

matrix A; is defined by

O(N,+6+1)xNp
Ad = IN

B

(5.15)

O(Np4N.—6-Np)xNp

when0 < § < N.+ Nr — N and

As =
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OWets+1) x WptNe-d) OVt 1) x G+N 5-Np—No) (5.16)

Iy, in-s O (N N —5) (N =N =)

whenN,. + Np — Ng < d < N.+ Nr — 1. Herel,, is the identity matrix of size

The derivation of the real equalizer is similar with the result that

1 -1
gr = (RyRyR - 8_ YRSB RyRSBT> Tsyr (517)
1
9p — _S_RyRSBTgFR7 (5.18)
where

Tsyp = SSHR]-(H-NQ (519)

Ry, = SSHRHRT + No (QRQRT + Q[Q[T)
= &HRrHR" + Noly, 11 (5.20)
RyRsB SSHRA(;' (521)

5.1. Simulations

We compare the accuracy of the channel estimajgs; and quantify their effec-
tiveness by considering their use in the equalization of sparse channels. We considered a
DFE with real valued taps, and with 256 feed-forward taps and 448 feedback taps. The
cursor tap is placed at the 221st tap on the feed-forward filter.

We considered an 8-VSB "(ATSC Standard A/53 1995)” receiver with a single
antenna. 8-VSB system has a complex raised cosine pulse shape "(ATSC Standard A/53
1995)". The CIRs we considered are given in Appendix B, Tables B. The phase angles of

individual paths for all the channels are taken to be

arg{cry} = exp(—j2nforg), k=1,---,6 (5.22)

wheref, = 22 andT},,, = 92.9nsec.
sym
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Based on each of channel estimates the optimal real valued DFE filter coefficients
are obtained, and the equalization performance witleoutr propagationis compared.
The DFE output without error propagation (slicer input) signal-to-interference-plus-noise-
ratio denoted byINRprg, is the metric used for comparison of equalizers obtained from

the channel estimates. The output of the equalizer is given by

I[k] = e[0) = I[k] + ) é[n]* I[k — n] + v[k] (5.23)

Vn,ns£0

where the first term in Equation (5.23) is the desired symbol with a multiplicative
constant, and|k] is the effective channel at the output of the equalizéb] = 1 only
when the estimate is unbiased. The second term (the summation) in Equation (5.23) is
the residual ISI and the last term[£]) is noise (colored). The residual channel impulse
response after feed forward filter is shown in Figure (5.2). Figure (5.3) shows the residual
channel impulse response after feed-back filter is applied to residual channel impulse
response of Figure (5.2).

SINRprg Is then defined as the variance of the desired term divided by the vari-
ance of everything else. Since the symbols and noise are uncorrelated, this turns out to
be

E,c|0]?

B Zﬂé[nP + E{v[k?}

SINRprp (5.24)

TheSINRprg values for each channel estimate is provided for 18 to 28dB Signal-
to-Noise-Ratio (SNR) values measured at the input to the receive pulse matched filter, and

it is calculated by

where E, = 21 is the symbol energy for 8-VSB system, ang is the channel
noise variance.

Figures 5.4-5.12 illustrate thieINRprg versus SNR for Channels 1-8, and for
ideal CIR based DFE, for the approximated BLUE estintatg; » , the approximated
BLUE estimate after CA-CFAR applie?ch,CFAR and the approximated BLUE estimate
after OS-CFAR appliedos_crar
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Figure 5.2: Residual Channel after Feed-Forward Filter



Residual Channle after Feed-Back Filter
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Figure 5.3: Residual Channel after Feed-Back Filter
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Figure 5.4:SINRprg, Versus SNR for Channel 1 for various channel estimates.
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Figure 5.5:SINRprg, Versus SNR for Channel 2 for various channel estimates.
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Figure 5.6:SINRprg, Versus SNR for Channel 3 for various channel estimates.

80



28 I
-6~ Ideal Channel

+- OS-CFAR
—*- CA-CFAR
—x- aBLUE

26

SINR___ (dB)

t ! ! !
18 20 22 24 26 28 30
SNR (dB)

Figure 5.7:SINRprg, versus SNR for Channel 3-plus for various channel estimates.
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Figure 5.8:SINRprg, Versus SNR for Channel 4 for various channel estimates.
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Figure 5.9:SINRprg, Versus SNR for Channel 5 for various channel estimates.
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Figure 5.10:;SINRprg versus SNR for Channel 6 for various channel estimates.
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Figure 5.11:SINRprg versus SNR for Channel 7 for various channel estimates.
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Figure 5.12:SINRprg versus SNR for Channel 8 for various channel estimates.
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APPENDIX A

8-VSB PULSE SHAPE

In this section we review the pulse shapes used by the 8-VSB digital TV systems
"( Hillery 2001)". The 8-VSB DTV transmitter uses a transmit pulse shaping filter with
complex root-raised cosine response. The transmit filter is denote@ byThe receiver
usesg*(—t) as the receive filter, which actually is the optimal matched filter for AWGN
channel.

HereT denotes the symbol period, afy,,, = 1/7 is the symbol rate. Let

Foym 1

F, = -
2 2T

(A.1)

Theroll-off factor, which is also known as thexcess bandwiditior 8-VSB stan-

dardisg = 0.115.

1.1. Complex Root-Raised Cosine Pulse

Thecomplex root raised cosine pulgé&) has the Fourier transform:

QF) = VP(F)
= Qi(F) — jQq(F)
1 SE<F<(1-9F
= { cos (wLF [F—(1- g)ps}) (1-9HF <F<(1+F (A2
cos (o3 [F ~ §F]) _8p, <F<BF,

The in-phase and quadrature components are:

3 SR IFI (- DF
Qu(F) = § dycos (57 F) F| < 4F, (A.3)

S
1 T ||IF|-(1-3F 1-9r <|Fl<(1+8F
5¢08 (g [[Fl—(1=5)Fs|) (1—-5)Fs <[F][<(1+35)F
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2J Cos (QEF [F (1- %)Fs]) (1-5)F <F<(145)F,
3J SF,<F<(1-9PF,
Qo(F) = | Ljsin (55 F) R, <F<ZFR (A4)
—3J ~(1-8)F, <F<-8F,
Ljcos (o [F+(1-9E]) ~1+HR<F<-(1-HF

The time domain signal is:

q(t) = ™" 'prpc(t) (A.5)
where
B F sin (7m(1 — B)Fst) 48
pRRC(t) = W (1 - ﬂ) 71'(1 — ﬁ)Fst + ? COS (7T(1 + ﬁ)Fst) (A6)

Defining the real and imaginary partsgf) by ¢;(t) andgq(¢), it is straightfor-

ward to show that

a(t) = a(=1), (A.7)

w(t) = —qq(-1), (A.8)
which implies

q(t) = q"(—1). (A.9)

Equation (A.9) means that the pulse shapg is Hermitian symmetric. Due to

this symmetry property, the receive filter is the same as the transmit filter.

1.2. Complex Raised Cosine Pulse

The convolution of the transmit and receive filters is denoteg(by and is the

composite pulse shape which is given by

p(t) = qt)*q"(—t) = q(t) * q(t). (A.10)
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The second part of the equality of Equation (A.10) follows from Equation(A.9).

Thecomplex raised cosine pulgét) has the Fourier transform:

P(F) = Pi(F)—jPo(F)

1 bR, <F<(1-9F,
= {05 [1 + cos (57;5 [F (- gmm (1-2)F, < F < (1+ 9)F(A11)
0.5 1+ sin (7 F)| 9, <F<UF,

0.5 0<|F|<(1-9)F,
Pi(F) = (A.12)
0.25 [14cos (55 |IFI - (1= 9)E|)| (1= DFE <IFI<(+HF
)
0.25j [1+cos (5 [F-(1-DE])] (1-HR<F<a+HFR
0.55 bR, <F<(1-9F,
Po(F) = ¢ 0.5sin (55 F) SR <F<iR, (A13)
—0.5 ~(1-§)F, < F<-5F,
0255 [1+cos (g [F+(1-DR])] ~0+DHR<F<-(1-§F
The time domain signal is:
p(t) = ™ 'pro(t) (A.14)

where

sin(mFst) cos(mf(Ft)
TFit 1 — (28Ft)”

pro(t) = Fi (A.15)

is the raised cosine pulse.
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APPENDIX B

TEST CHANNELS

We have provided 9 channel impulse responses to test channel estimation algo-
rithms as well as the DFE performance. The following Table B lists the channel delays
(TOAS) {7} in symbol periodsT), and the relative gain§cy|}.
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Taps Channel 1 Channel 2 Channel 3
k {m} {Jexl} {m} {Jexl} {m} {Jexl}
-2
-1 —0.957839182 | 0.7263
0 0 1 0 1 0 1
1 1.6143357 | 0.2045 3.2286714 0.2512 3.55153854 0.6457
2 || 23.89216836 | 0.1548 37.667833 0.631 15.25009125 | 0.9848
3 || 32.8248259 0.179 47.3538472 0.4467 24.03207745 | 0.7456
4 || 63.06671468 | 0.2078 102.241261 0.1778 29.16566498] | 0.8616
5 || 63.82007134 | 0.1509 || 136.6804226 0.0794
6
7
Taps Channel 4 Channel 5 Channel 6
k {7} {lex[} {7} {lexl} {7} {lex !}
—2
—1
0 0 1 0 1« exp(j * pi) 0 1
1 5.16587424 | 0.65575 10.762238 1 15.541 0.46388
2 || 22.27783266 | 0.75697 21.524476 1 28.39 0.54405
3 31.2104902 | 0.87482 246.66 0.22324
4 1| 61.45237898 | 1.01565
5 || 62.20573564 | 0.7379
6
7
Taps Channel 7 Channel 8 Channel 3-plus
k {7} {lexl} {7} {lexl} {7} {lex}
-2
-1 —0.957839182 | 0.7263
0 0 1 0 1 0 1
1 1.6143357 | 0.2045 32.8248259 0.1 3.55153854 0.6457
2 || 23.89216836 0.15 15.25009125 | 0.9848
3 || 32.8248259 0.1 24.03207745 | 0.7456
4 || 63.06671468 | 0.2078 29.16566498 | 0.8616
5 || 63.82007134 | 0.1509 221.2345 0.315
6 332.981 0.349
7

Table B.1: Simulated 9 Channel Impulse Responses. The channel delays ({[£)AB)
symbol periodsT), and the relative gain§c;|}
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