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ABSTRACT 
 

CHARACTERIZATION OF ULTRA HIGH MOLECULAR WEIGHT 

POLYETHYLENE (UHMWPE) MODIFIED BY METAL-GAS HYBRID 

ION IMPLANTATION TECHNIQUE 

 

The aim of this work was the characterization of the surface modified Ultra High 

Molecular Weight Polyethylene (UHMWPE) in order to understand the effect of ion 

implantation technique on the properties of this material. The samples were Ag and 

Ag+N hybrid ion implanted by using MEVVA (Metal Vapour Vacuum Arc) ion 

implantation technique with a fluence of 10 17 ions/cm2, extraction voltage of  30 kV.  

Untreated and surface treated samples were investigated by Stopping and Range 

of Ions into Matters (SRIM), Rutherford Back Scattered Analysis (RBS), Attenuated 

Total Reflection - Fourier Transform Infrared (ATR/FT-IR) Spectroscopy, Raman 

Spectroscopy, Optical Absorption Photospectroscopy (OAP), Thermo Gravimetry 

Analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD) 

Analysis, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), 

Optical Microscopy (OM), Micro-hardness and Contact Angle Measurement.  

The results of RBS analysis show that Ag ions were detected up to 32 +15 nm 

after Ag implantation, and 42 +15 nm after Ag+N implantation.,  underneath the 

surface. ATR- FTIR chemical characterization analyses results indicated that the effect 

of implantation on UHMWPE surfaces caused dehydrogenation of polymer with an 

increase of C=C bond formation which results in enriching the crosslinking carbon 

atoms on the surface. Optical Absorption Photospectroscopy and Raman spectrum 

suggests that the chemical structure of UHMWPE has changed after implantation.  

The characterization results showed that the ion bombardment induced an 

increase in the % crystallinity, onset and termination degradation temperatures of 

UHMWPE obtained by thermal analyses, an increase in hardness, and surface 

wettability and a decrease in roughness of the polymer.  The surface topography results 

can be attributed to the implantation inducing surface roughness decreasing due to the 

better wettability properties of surfaces obtained after implantation.   

In conclusion, this study has shown that ion implantation represents a powerful 

tool on modifying key properties on UHMWPE surfaces. 



 v 

ÖZET 
 

METAL GAZ H�BR�T �YON �MPLANTASYON TEKN���YLE 

MOD�F�YE ED�LM�� YÜKSEK ATOM�K KÜTLEL� POL�ET�LEN�N 

KARAKTER�ZASYONU 

 

Bu çalı�ma MEVVA iyon kayna�ı ile üretilmi� metal gaz hibrit iyon 

implantasyonu yöntemiyle Yüksek Atomik Kütleli Polietilen malzemenin özelliklerinin 

iyile�tirilmesine yönelik yapılan i�lem öncesi ve sonrası malzemenin karakterizasyon 

çalı�masının sonuçlarını incelemektedir. Yüksek Atomik Kütleli Polietilen  üzerine, Ag 

ve Ag+N iyonlarıyla MEVVA tekni�i kullanılarak hibrit iyon implantasyon yapılmı�tır. 

�yonlar, 30kV voltajla hızlandırılmı�tır ve 1017 ion/cm2 akıyla gönderilmi�tir.  

�mplantasyon yapılmı� malzemelerde iyon konsantrasyonu da�ılımı, SRIM ve 

Geri Saçılma Spektrometresi (RBS) yöntemleriyle analiz edilmi�tir. ��lem görmü� ve 

görmemi� numuneler, Fourier Dönü�ümlü Kızılötesi (FT-IR) Spektroskopi, Raman 

Spektroskopi, Optik Fotospektroskopi (OAP), Termal Gravimetrik Analiz (TGA), 

Diferansiyel Taramalı Kalorimetri (DSC), X-I�ını Kırılması Analizi (XRD), Atomik 

Güç Mikroskobu (AFM), Taramalı Elektron Mikroskobu (SEM), Optik Mikroskop 

(OM), Shore-D cihazı ve Gonyometre cihazlarıyla karakterize edilmi�tir.  

RBS analizinin sonuçları, Ag iyonlarının, Ag implante edilmi� örnekte,  

yüzeyden 32 +15 nm., Ag+N implante edilmi� örnekte ise  yüzeyden 42 +15 nm. 

derinlikte oldu�unu göstermektedir. ATR-FTIR analiz sonuçları, Yüksek Atomik 

Kütleli Polietilen yüzeyinde implantasyon sonucu dehidrojenasyon olu�tu�unu ve 

karbon atomları arasında gerçekle�en çapraz ba�lanmalar neticesinde C=C ba� 

olu�umunun arttı�ını göstermektedir.  OAP ve Raman  spektrum sonuçları, kimyasal 

yapının implantasyon sonrası de�i�ti�ine i�aret etmektedir.   

Termal karakterizasyon ı�ı�ında, kristallik yüzdesi, bozunmanın ba�lama & 

sonlanma noktaları ve sertlik ölçümleri ı�ı�ında, sertlik de�erlerinde artı� 

gözlenmektedir. Yüzey topografisi incelemesi sonucu, implantasyon sonrası 

pürüzsüzlü�ün arttı�ı ve buna ba�lı olarak ıslaklık de�erlerinin geli�ti�i gözlenmektedir.   

Sonuç olarak çalı�ma, Ag ve Ag+N hibrit iyon implantasyonunun, Yüksek 

Atomik Kütleli Polietilen malzemeye ba�arıyla uygulanabilece�ini ve elde edilen 

sonucun anahtar özellikler üzerinde etkili oldu�unu göstermektedir. 
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CHAPTER 1 
 

INTRODUCTION 
 

Implanted biomedical prosthetic devices are intended to perform safely, reliably 

and effectively in the human body for long periods of time. Stability under the 

imposition of repetitive loading in a hostile environment places unique demands on the 

materials, designs and manufacturing methods used to create the implant. Materials 

used for orthopedic devices should have good biocompatibility, adequate mechanical 

properties, and sufficient wear and corrosion resistance, and they should be 

manufacturable at a reasonable cost (Black 1998). 

UHMWPE has been commonly used for total hip joint replacement because of 

its superior properties such as ductility, impact load dumping and biocompatibility 

(Web_1, 2006). However, the wear of UHMWPE and wear debris generated at the 

surface is now recognized as the major cause of loosening and failure of the total joint 

replacement (Black 1998, Web_1 2006, Kurtz 2004). Many techniques have been 

applied to the modification of polymers which is necessary to enhance their surface 

properties for biomedical applications. 

In literature, conventional ion beam implantation has been successfully applied 

to the modification of polymers for improving their surface properties such as wear 

resistance, mechanical properties and biocompatibility (Dangsheng et al. 2006, Bertoti 

et al. 2006, Sze et al. 2006, Kostov et al 2004., Valenza et. al. 2004, Shirong et. al. 

2003, Shi et. al. 2001, Chen et. al. 2001, Chen et. al. 2000, Allen et. al. 1996).  

Co-implantation of gas and reactive metal ions have been used to improve the 

surface hardness of structural materials such as steel or aluminum alloys (Brown et. al 

1998, Oks et. al 1997) despite of the metal-gas co-implantation has not been studied in 

implantation of polymers before.  

Only a few attempts were published on the ion implantation stating enhancement 

of the mechanical and tribological properties of polymers (Dong et. al. 2000, Dong 

2004, Shi et. al. 2001, Kondyurin et. al. 2002, Kostov et. al. 2004, Marcondes et. al. 

2004). In spite of these, comprehensive studies of the dependence of the properties on 

the treatment parameters are still lacking. Also, there are only a very few studies on the 
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compositional and structural changes involved (Kondyurin et. al. 2002, Kostov et. al. 

2004, Marcondes et. al. 2004).  

The studies in the literature showed that N ion implantation into polymers 

improved the wear resistance (Bertóti et al. 2006, Allen et. al. 1996, Chen et al. 2001, 

Liu et al. 1996, Dong et. al. 2000) and Silver is known to have excellent antibacterial 

activity (Davenas et. al. 2002, Feng et. al. 1998). Therefore, considering all this, in this 

work, Ag and Ag + N hybrid ion implantation of UHMWPE surfaces using metal-gas 

co-implantation technique were performed. The effect of implantation on the chemical, 

structural, thermal and surface properties were investigated.  

Chapter 2. presents general information about artificial hip joints and UHMWPE 

in prostheses applications. In Chapter 3., the principles of ion implantation and ion 

implantation techniques were discussed. In Chapter 4. and Chapter 5., the experimental 

of this study, materials and methods, followed by the results and discussions are given. 

Finally, Chapter 6. presents an overview of the work highlighting the final results.  
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CHAPTER 2 
 

ARTIFICIAL HIP JOINTS 
 

2.1. Anatomy of the Hip Joints 
 

The prosthesis for total hip replacement consists of a femoral component and an 

acetabular component. As shown in Fig. 2.1. the femoral stem is divided into head, neck, 

and shaft. The hip joint is located where the thigh bone (femur) meets the pelvic bone. It is a 

“ball and socket” joint. The upper end of the femur is formed into a round ball (the “head” 

of the femur). A cavity in the pelvic bone forms the socket (acetabulum). The ball is 

normally held in the socket by very powerful ligaments that form a complete sleeve around 

the joint (the joint capsule). The head of the femur is covered with a layer of smooth 

cartilage, which is a fairly soft, white substance about 1/8 inch thick. The socket is also 

lined with cartilage (also about 1/8 inch thick). The cartilage cushions the joint, and allows 

the bones to move on each other with very little friction. An x-ray of the hip joint usually 

shows a “space” between the ball and the socket because the cartilage does not show up on 

x-rays. In the normal hip, this “joint space” is approximately 1/4 inch wide and fairly even 

in outline (Black 1998, Kurtz 2004). 

 

 
 

Figure 2.1. An example of a radiograph from a short-term implant.  

(Source: Web_1, 2006) 
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The prostheses can be monolithic when they consist of one part or modular 

when they consist of two or more parts and require assembly during surgery. Monolithic 

components are often less expensive and less prone to corrosion or disassembly. 

However, modular components allow customizing of the implant intra-operatively and 

during future revision surgeries, for example, modifying the length of an extremity by 

using a different femoral neck length after the stem has been cemented in place or 

exchanging a worn polyethylene bearing surface for a new one without removing the 

metallic part of the prosthesis from the bone. In modular implants the femoral head is 

fitted to the femoral neck with a Morse taper, which allows changes in head material 

and diameter and neck length. Figure 2.2 illustrates the most frequently used 

combinations of material in total hip replacement. (Web_1 2006, Kurtz 2004). 

 

 
 

Figure 2.2. Possible Combinations of the Materials Used in Total Hip Replacement  

(Source: Web_1, 2006). 

 

It is possible to combine the best mechanical properties of all the materials 

described and good engineering design needed in order to produce an implant with the 

optimum chance of long term clinical survival. Figure 2.3 is an example of such a 

'hybrid' implant.  
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Figure 2.3. Components of artificial hip joints  

(Source: Kurtz, 2004) 

 

In Figure 2.3, the femoral component is made of a cobalt chromium, with a 

ceramic femoral head, hydroxyapatite coating and a nitrided surface finish, which 

hardens the surface of the stem and helps prevent scratching and the release of metal 

wear debris (Kurtz 2004). However, there is one more parameter, which plays an 

important role in implant design i.e., is cost. Material scientists are constantly faced 

with the challenge of producing optimum material properties at minimum cost. In this 

respect, UHMWPE is one of the general materials used for hip replacement. Its main 

disadvantage is its wear resistance when used as a concave acetabular cup in a total hip 

replacement (Black 1998, Web_1 2006, Kurtz 2004). 

 

2.2. Ultra High Molecular Weight Polyethylene 
 

Ultra-high molecular weight polyethylene (UHMWPE) is a type of polymer 

classified as a linear homopolymer. Polyethylene is a polymer formed from ethylene 

(C2H4), monomer which is a gas having a molecular weight of 28. As shown in Figure 

2.4 the generic chemical formula for polyethylene is -(C2H4)n--, where n is the degree of 

polymerization (Kurtz 2004, Callister 2003).  
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                     (a.)                                            (b.)  

 

Figure 2.4. A schematic of the chemical structures for ethylene (a.) and  

Polyethylene (b.) (Source: Kurtz 2004) 

 

For an ultra-high molecular weight polyethylene, the molecular chain can 

consist of as many as 200,000 ethylene repeat units. Put another way, the molecular 

chain of UHMWPE contains up to 400,000 carbon atoms (Kurtz 2004). 

There are several kinds of polyethylene (LDPE, LLDPE, HDPE, UHMWPE) 

which are synthesized with different molecular weights and chain architectures. LDPE 

and LLDPE refer to Low Density Polyethylene and Linear Low Density Polyethylene, 

respectively. These polyethylenes generally have branched and linear chain 

architectures, respectively, each with a molecular weight of typically less than 50,000 

g/mol (Kurtz 2004). 

High Density Polyethylene (HDPE) is a linear polymer with a molecular weight 

of up to 200,000 g/mol. UHMWPE, in comparison, has a viscosity average molecular 

weight of 6,000,000 g/mol. In fact, the molecular weight is so "ultra-high" that it cannot 

be measured directly by conventional means and must instead be inferred by its intrinsic 

viscosity (Kurtz 2004). Table 2.1 summarizes the physical and mechanical properties of 

HDPE and UHMWPE. As shown in the Table 2.1, UHMWPE has a higher ultimate 

strength and impact strength than HDPE. 
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Table 2.1.  Typical average physical properties of high density polyethylene (HDPE), 

ultra-high molecular weight polyethylene (UHMWPE) (Kurtz 2004). 

 

Property HDPE UHMWPE 

Molecular Weight (106 g/mole) 0.05-0.25 2-6 

Melting Temperature (°C) 130-137 125-138 

Poisson's Ratio 0.40 0.46 

Specific Gravity 0.952-0.965 0.932-0.945 

Tensile Modulus of Elasticity* (GPa) 0.4-4.0 0.8-1.6 

Tensile Yield Strength* (MPa) 26-33 21-28 

Tensile Ultimate Strength* (MPa) 22-31 39-48 

Tensile Ultimate Elongation* (%) 10-1200 350-525 

Impact Strength, Izod* (J/m of notch; 
3.175 mm thick specimen) 21-214 >1070 (No Break) 

Degree of Crystallinity (%) 60-80 39-75 

*Testing conducted at 23°C. 
 

At a conceptual level, polyethylene consists only of carbon and hydrogen. Three 

steps have to be done to produce UHMWPE implant material. First, the UHMWPE is 

synthesized from ethylene gas. Second, the polymer, UHMWPE, in the form of resin 

powder, needs to be consolidated into a sheet, rod, or near-net shaped implant. Finally, 

in most instances, the UHMWPE implant needs to be machined into its final shape. A 

small subset of implants are consolidated into their final form directly, in a process 

known as direct compression molding, without need of additional machining (Kurtz 

2004). 

Each of these three principal steps produces a subtle alteration of the properties of 

UHMWPE. In some cases, such as machining, the change in the material may only 

occur in the topography and appearance of the surface. On the other hand, changes in 

the polymerization can impact the physical and mechanical properties of the entire 

implant (Kurtz 2004). 

In the production of a highly crosslinked UHMWPE, the material is subjected to 

a thermal treatment step to reduce the level of free radicals via further crosslinking 

reactions (McKellop et. al. 1999). At higher temperatures the polymer molecules have 
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increased mobility, thereby increasing the probability of free radicals on adjacent chains 

reacting to form crosslinks. For the thermal treatment to be effective at eliminating all 

free radicals, it must be conducted at 150°C, above the melt temperature of the material. 

Heating above the melting temperature destroys the crystalline regions of the material 

thus making the free radicals that were in the crystals available for crosslinking. The 

disadvantage of melting is the reduction crystal size and in material yield and the 

ultimate strength that ensues. A compromise solution is to heat the material to just 

below the melting temperature. This solution preserves the original crystal structure, 

retains mechanical properties, and makes more free radicals available for crosslinking 

than would be available without thermal treatment while still retaining some free 

radicals in the crystal domains. When thermal treatment is conducted below the melt 

transition of 135°C, it is referred to as “annealing,” and above the melt transition, it is 

called “remelting.” Typically, annealing is carried out at 130°C and does not eliminate 

all free radicals, although the number is substantially reduced by the elevated 

temperature(Kurtz 2004).  

Keith at. al suggest that the residual free radicals muct be stabilized after 

implantation prefarably by melting and not annealing. They observed that implanted 

and annealed explants showed embrittlement, oxidation and increase in crystallinity but 

implanted and melted UHMWPE explants showed no oxidation, no increase in 

crystallinity and no embrittlement (Keith et. al 2005). On the other hand, Wang et. al 

reported that either implanted and melted or implanted and annealed UHMWPE 

material have demonstrated greatly reduced wear however, melted ones have reduces 

fatigue strength while annealed ones may oxidize when exposed to the oxygen (Wang 

et. al 2006). Nonetheless, they suggest that sequential implantation and annealing of 

UHMWPE materials have equivalent crosslinking levels, have fatigue and mechanical 

strength and have an oxidation resistance (Wang et. al 2006).  

There are two main uses for them in total hip replacement. When the acetabular 

component is monolithic, it is made of ultra-high-molecular-weight polyethylene 

(UHMWPE); when it is modular, it consists of a metallic shell and an UHMWPE insert 

(Web_1 2006, Kurtz 2004) 
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2.3 . Wear  
 

The hip joint is a ball-and-socket joint, which derives its stability from congruity 

of the implants, pelvic muscles, and capsule. The prosthetic hip components are 

optimized to provide a wide range of motion without impingement of the neck of the 

prosthesis on the rim of the acetabular cup to prevent dislocation. The design 

characteristics must enable implants to support loads that may reach more than 8 times 

body weight (Black 1998, Web_1 2006). Proper femoral neck length and correct 

restoration of the center of motion and femoral offset decrease the bending stress on the 

prosthesis-bone inter- face. High stress concentration or stress shielding may result in 

bone resorption around the implant. For example, if the femoral stem is designed with 

sharp corners (diamond-shaped in a cross- section), the bone in contact with the corners 

of the implant may necrose and resorb (Black 1998, Web_1 2006). 

Load bearing and motion of the prosthesis produce wear debris from the 

articulating surface and from the interfaces where there is micromotion. The principal 

source of wear under normal conditions is the UHMWPE-bearing surface in the cup. 

Several hundred thousands of particles are generated with each step, and a large 

proportion of these particles are smaller then one micron (Kurtz 2004). Cells from the 

immune system of the host are able to identify the polyethylene particles as foreign and 

initiate a complex inflammatory response. This response may lead to rapid focal bone 

loss (osteolysis), bone resorption, loosening, and/or fracture of the bone. Numerous 

efforts are underway to modify the material properties of UHMWPE, to harden and 

improve the surface finish of the femoral head, and to develop other bearing couples, for 

example, ceramic-to-ceramic and metal-to-metal (Black 1998, Web_1 2006, Kurtz 

2004, Callister, 2003) 

Wear of UHMWPE is currently recognized as the primary culprit responsible for 

aseptic loosening and late revision of hip replacements. Researchers have estimated that 

for each day of patient activity, around a hundred million microscopic UHMWPE wear 

particles are released into the tissues surrounding the hip joint. This particulate wear 

debris can initiate a cascade of adverse tissue response leading to osteolysis (bone 

death) and ultimately aseptic loosening of the components (Kurtz 2004). In Figure 2.5, 

radiograph shows an example of an osteolytic lesion in the pelvis. 
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Figure 2.5.  Example of an osteolytic lesion in the pelvis, located superior to the metal-

backed acetabular component (provided courtesy of Av Edidin, Ph.D., 

Drexel University) (Source: Kurtz 2004). 

 

Based on a review of the literature, Dumbleton et al. (Dumbleton 1978, 

Dumbleton 1980) suggest that radiographic wear rates of less than 0.05 mm/y are below 

an "osteolysis threshold," below which patients are not expected to be at risk of 

developing osteolysis. Osteolysis, in turn, may be associated with the need for revision, 

depending upon the location (i.e., in the pelvis or femur) and rate of progression 

(Dumbleton 1978, Dumbleton 1980, Muratoglu 2002, Willert 1990, Willert 1977, 

Goldring 1986, Jasty 1986, Dumbleton et. al 2002)  

The researchers suggest that an improvement in surface finish of the femoral 

head may have contributed to the apparent improvement clinical wear performance 

(Muratoglu 2002, Willert 1990, Willert 1977, Goldring 1986, Jasty 1986, Dumbleton et. 

al 2002) .  
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The crosslinking produced by a single dose of gamma radiation (even in air) has 

the beneficial result of increasing the resistance to adhesive/abrasive wear. According to 

wear testing by Wang et al. using a contemporary multidirectional hip simulator, 

changing from 0 to 2.5 Mrads of irradiation (in air) drops the wear rate from 140 to 90 

mm3/million cycles (using 32 mm diameter heads), corresponding to a reduction of 

about 36% (Wang, 1997).  

In Table 2.2 Lewis did a comparison between uncrosslinked and croslinked 

UHMWPE in terms of physical properties. In general, it is known that crosslinking 

leads to a decrease in UHMWPE's wear rate. For each of the other six key properties, a 

‘mean of the means’ value for UHMWPE tabulated and it is seen that crosslinking 

causes a depreciation in each of the properties examined, with the drop appearing to be 

dramatic for ultimate tensile strength and tensile elongation at fracture (Lewis G. 2001). 

 

Table 2.2.  Typical average physical properties of uncrosslinked and crosslinked 

UHMWPE (Lewis 2001)  

 

Property Uncrosslinked 

UHMWPE 

Crosslinked 

UHMWPE 

Degree of Crystallinity (%) 53,6 + 6.2 45,3 + 5,3 

Melting Temperature (°C) 139,0 + 3,3 135,8 + 5,6 

Yield Strength (Mpa) 25,6 + 3,3 21,1 + 2,5 

Ultimate Tensile Strength (Mpa) 48,7 + 7,5 29,3 + 7,7 

Tensile Modulus of Elasticity (Mpa) 915 + 423 860 + 206 

Tensile Elongation at Fracture (%) 317 + 140 212 + 61 

 

UHMWPE is significantly more abrasion- and wear-resistant than HDPE (Kurtz 

2004). The wear resistance of UHMWPE is imparted by its molecular weight, which 

ranges today, on average, between 2 and 6 million. In wear testing of UHMWPE and 

HDPE (molecular weight 200,000) using a contemporary multidirectional hip simulator, 

differences in the molecular weight of the polyethylene can affect the wear rate by a 

factor of 4 (Edidin 2000). The wear data in Figure 2.6 for UHMWPE and HDPE was 

collected using a contemporary, multidirectional hip simulator (Edidin 2000).  
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Figure 2.6 Wear data for UHMWPE and HDPE  

(Source: Edidin, 2000) 

 

On the other hand, frictional resistance during twisting of the joint would be 

reduced by a smaller femoral head (Web_1, 2006). The concern was that the friction 

imparted to the joint during normal walking could lead to loosening of the cup from the 

acetabulum. This theory was judged to be valid because the joint surfaces were not 

intended to be lubricated hydrodynamically. In a hydrodynamic bearing, having a large 

femoral head would be an asset, because the surface sliding speeds would be greater, 

facilitating the development of a fluid film to separate the articulating surfaces. In an 

artificial joint, in which the surfaces would always be in contact, in this respect, 

reducing the frictional resistance of the joint was a major concern (Web_1, 2006). 

In Figure 2.7, three interim implant designs, preserved in the collection at 

Wrightington Hospital, are shown (Kurtz 2004). The components were retrieved at 

revision surgery and are severely worn. The wear is most evident in the sectioned 25.3-

mm diameter acetabular component. The femoral components, on the other hand, 

appear pristine. The femoral heads are polished to a mirror finish. 
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Figure 2.7. Three interim implant designs  

(Source: Kurtz, 2004) 

 

In summary, the following three factors reported by Kurtz (2004) ; either alone or in 

combination, are so important that could explain the differences in wear rates: 

1. Radiation-induced crosslinking 

2. Molecular weight of the UHMWPE and  

3. Surface finish of the femoral head. 

The surface finish of the heads, suggested by Griffith (Griffith 1978), is a 

possible, but unlikely reason for the change in clinical wear rates. A wide range in 

surface roughness values were observed in Isaac's analysis of retrieved Charnley cups, 

with no association to the clinical wear rate (Isaac 1996, Isaac 1992). Similarly, the 

retrieval work of Hall et al. (Hall 1997) also showed no significant relationship between 

surface roughness of the femoral head and clinical wear rate in a group of retrieved 

metal-backed acetabular components that were implanted without cement. Thus, in light 

of recently published studies, the roughness of the femoral head seems an unlikely 

explanation for the change in wear behavior . 
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CHAPTER 3 
 

ION IMPLANTATION OF POLYMERS 
 

3.1. Principle of Technique 
 

There are several new techniques that are being explored towards the surface 

modification of polymers, which is necessary to enhance their surface properties for 

biomedical applications. Ion implantation is an effective surface modification technique 

which uses energetic ions to alter the outermost surfaces of polymers without affecting 

their bulk properties (Chu 2002, BDM Federal Inc 1996, Anders 2000). 

Technique of ion implantation was developed during the early 1960s as a 

method to introduce precise quantities of electrically active or dopant ions into 

semiconductor materials of micro-electronic devices. It is now the standart 

semiconductor processing technique for providing these dopants (BDM Federal Inc 

1996, Anders 2000). 

The primary thrust in the attempts to commercialize ion implantation 

technologies has been to modify surface properties such as wear and corrosion by 

implanting appropriate alloying elements. Metal implants in contrast to semiconductor 

implants require high fluences to effect the desired property changes. Furthermore the 

process has been in competition with the other surface modification and coating 

techniques such as electroplating, CVD, PVD and thermal spraying. Most of the other 

techniques have thicker treatment depths and have been established in industrial 

practice. Consequently, penetration of the commercial market in medical industry has 

not been as successful as ion implantation studies in semiconductors (BDM Federal Inc 

1996, Anders 2000). 

Many researches has demonstrated that properties such as hardness, wear 

resistance, coefficient of friction, fatigue strength, film adhesion and corrosion 

resistance can be significantly improved by ion implantation technique (Chu 2002, 

Dangsheng et al. 2006, Bertoti et al. 2006, Sze et al. 2006, Kostov et al 2004., Valenza 

et. al. 2004, Shirong et. al. 2003, Shi et. Al 2001, Chen et al. 2001, Chen et. al. 2000, 

Allen et. Al 1996). Dangsheng et. al. also reported that wettability of the alloy surfaces 

were increased significantly after implantation (Dangsheng et al. 2006).  
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Even though ion implantation is relatively complex in terms of the equipment 

required, it is a relatively simple process. By removing electrons from atoms in a 

vacuum, a combination of positively charged ions and negatively charged electrons, 

called a plasma is formed. Electric fields affect the plasma constituents. Positive 

electrodes attract the negatively charged electrons and repel the positively charged ions; 

negative electrodes attract the ions and repel the electrons (Anders 2000). Ion 

implantation consists of basically two steps (BDM Federal Inc. 1996, Anders 2000): 

1. Form a plasma of the desired material, and either 

2. Extract the positive ions from the plasma and accelerate them toward the 

target or find a means of making the surface to be implanted as the negative electrode of 

a high voltage system.  

The system to form the plasma is called the ion source; the system to move the 

ions to the target is called the delivery system. The combination of the ion source and 

the delivery system is called the accelerator (BDM Federal Inc. 1996, Anders 2000). 

To better understand ion implantation, one can consider an analog with what 

happens when a concrete wall is shot with bullets from a machine gun. In this process 

the front surface of the wall is filled with bullets in the region close to the surface to a 

depth dependent on the mass and velocity of the bullets. In the same way the surface of 

a material struck by an ion beam will contain ions, be they gaseous or metal from the 

ion beam. Unlike the bullet analogy, though implanted ions can combine chemically 

with the surface material. Additionally, whereas the wall is weakened by the bullet 

damage, the damage caused by ion implantation has actually been found to enhance the 

properties by creating dislocations that suppress crack formation. This dislocation 

network has been found to contribute to increased hardness and wear resistance 

(Rodriquez et.al., 2005). 

Typical energies used for industrial ion implantation surface treatment are 

between 10.000 eV and 200.000 eV and typical depth of ion penetration is a fraction of 

a micron. In Figure 3.1, ion bombardment effects on the surface are shown. Ion 

implantation is a ballistic treatment. Depending on the bombardment energy, the 

dominant effect on the surface can be very different (Rodriquez et. al. 2005). In Figure 

3.1, ion bombardment effects on the surface of a material due to the different energies 

has shown. 
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Figure 3.1. Ion bombardment effects on the surface  

(Source: Rodriquez et. al. 2005) 

 

The interactions of the energetic ions with the material modify the surface, providing it 

with significantly different properties such as wear resistance, hardness, wettability, 

than the remainder of the material. Specific property changes depend on the selected ion 

beam treatment parameters, for instance the particular ion species, energy, and total 

number of ions that impact the surface (Rodriquez et. al. 2005) 

The largest current of ion implantation of polymers for commercial applications 

is in the medical field (Chu, 2002). Because quality of life issues are uniquely 

paramount in this application area it is characterized by a willingness to pay a premium 

for high quality products and services. It is a high value and payoff application area that 

can afford the cost of ion implantation.  

The ion implanted medical components provide a number of benefits. Among 

the benefits are (Anders 2000): 

• Improved wear resistance and surface hardness 

• Reduction in particle debris from wear 

• Creation of a low friction surface 

• Enhanced bone cement adhesion 

Coatings  
100 eV  

1.000 eV  

100.000 eV  

Sputtering  

Ion Implantation  
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• Improved corrosion resistance 

• Preservation of bulk material properties 

• Biocompatibility 

Examples of the ion implanted devices include hip replacements, knee joints, 

shoulder implants, spinal screws and dental implants.  

 

3.2. Ion Implantation Methods 
 

There are three methods commonly used for ion implantation. They differ in the 

way in which they either form the plasma or make the surface to be implanted the 

negative electrode. The three methods are mass analyzed ion implantation (MAII), 

direct ion implantation (DII) and plasma source ion implantation (PSII). All three 

methods are performed in a high vacuum chamber. They are isolated by the vacuum 

chamber from the outside environment. (BDM Federal Inc 1996, Anders 2000). These 

three methods are further discussed below:  

 

3.2.1. Mass Analyzed Ion Implantation (MAII) 

 

MAII is the technique that is used in semiconductor processing. A typical MAII 

system is shown in Figure 3.2 . In MAII, the plasma that is formed in the ion source is 

not pure, it contains materials that one does not wish to implant. Thus, these 

contaminants must be separated from the plasma. To perform this separation, the 

plasma source is placed at a high voltage and the part to be implanted is placed at a 

ground. This produces a situation where the target is at a negative potential with respect 

to the plasma source. A negative electrode then extracts the ions from the source. The 

ions are then accelerated by a high voltage source to the target (BDM Federal Inc. 

1996). 
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Figure 3.2. Schematic of mass analyzed ion implantation system  

(Source: BDM Federal Inc, 1996). 

 

Between the ion source and the target is a large magnet, with magnetic field 

perpendicular to the direction of ion motion. Ions passing through this magnetic field 

are bent by the magnetic field. The amount of bending depends on the ion material 

being implanted and the strength of the magnet. Heavy ions bend less than light ions. 

By proper selection of the magnetic field, the desired ions can be steered to the target, 

while the undesirable ions can be expelled from the system (BDM Federal Inc. 1996). 

The need for the magnets to separate the desired ions from the undesired ions 

makes mass analyzed ion implantation very expensive, especially for applications where 

existing simple processes produce similar or better results. The magnet is costly to build 

and consumes a very large amount of energy. In addition, the spread of the ions, or the 

ion beam must be small in order to be properly bent to the target, but the number of ions 

cannot be very high because self-repulsion (remember that all of the ions have a positive 

charge) will cause the beam to diffuse. For the formation of metal ions, mass analyzed 

ion implantation can also present a toxicity problem. To obtain high currents of metal 

ions, a plasma source is usually used that forms the plasma by initiating an electric 

discharge in chlorine or other toxic gas (BDM Federal Inc. 1996). 

The great advantage of MAII system is that they can be used to generate an ion 

beam of every element in the periodic table. Moreover, the ion beams that are 

generated, because of the bending magnet, are extremely pure. MAII is used extensively 

in the electronics industry to dope semiconductors precisely because such purity is very 

important. For other ion implantation applications, though, such as metal finishing 
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applications, mass analyzed systems are less useful because of their high costs, limited 

throughput and toxicity concerns (BDM Federal Inc. 1996). 

 

3.2.2. Direct Ion Implantation (DII) 
 

DII eliminates the need for the current limiting magnet found in MAII by using 

an ion source that produces a plasma and ion beam of the just desired material. A 

typical DII system is shown in Figure 3.3. In DII, the plasma is formed in the ion source 

and the ions are extracted at high energies in a wide beam, passing through a valve 

directly into the end station, where they ion implant parts within the target area (BDM 

Federal Inc. 1996).  

 

 
 

Figure 3.3. Schematic of direct ion implantation system  

(Source: BDM Federal Inc.1996). 

 

In such a case, the beam current can be high (10-50 mA), costs are greatly 

reduced, and relatively high throughput processing is possible. For uniform 

implantation of workpieces with curved or multiple surfaces, though, either the beam 

has to be rastered across the surface of the piece or the workpiece must be handled with 

a rotating or tilting platen or some other manipulator. As will be discussed below, the 

primary ion species used for direct ion implantation of metals are nitrogen gas and 

metal vapor (BDM Federal Inc. 1996). 
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3.2.3. Plasma Source Ion Implantation (PSII) 

 
A final variation of the ion implantation process is the simplest in concept: make 

the material to be implanted the negative electrode. Figure 3.4 depicts a typical PSII 

system. In PSII (some times referred as plasma ion immersion), the plasma source 

floods the chamber of the end station with plasma. Ions are extracted from the plasma 

and directed to the surface of the part being ion implanted by biasing the part to very 

high negative voltages using a pulsed, negative high voltage power supply. Because of 

the bias, the ions impinge virtually at nearly 90 degrees to all of the external surfaces, 

the optimum ion implantation angle (BDM Federal Inc. 1996) 

 

 
 

Figure 3.4.  Schematic of plasma source ion implantation system 

(Source: BDM Federal Inc. 1996) 

 

While PSII is the simplest in concept, it is perhaps the most difficult in practice 

of the three ion implantation methods. To make this process work, the negative bias 

voltage imparted to the part to be implanted must be pulsed with a very short pulse 

length. Otherwise, an arc will form between the part to be implanted and the chamber 

walls or other grounded electrodes, damaging or destroying the parts. A second problem 

is regulating the amount of plasma that hits the surfaces of the part and regulating where 

it goes. Ion beams are easy to measure and direct; plasmas are not (BDM Federal Inc. 

1996) 
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PSII also lacks the versatility of MAII or DII. It cannot treat insulators without 

additional equipment, adding to the system complexity. It is virtually limited to gas ions 

(BDM Federal Inc. 1996). 

There are safety problems that must be dealt with in PSII as well. Specifically, 

the parts being implanted using PSII will emit high energy electrons when they are hit 

by the high energy ions. In MAII and DII, the emitting electrons have very little energy 

and do not cause a problem. In PSII these electrons are provided a significant amount of 

energy from the negative bias voltage. They have enough energy to produce X-Rays 

when they strike the chamber walls. Thus, PSII chamber walls must be shielded with 

lead (BDM Federal Inc. 1996). 

 

3.3. Ion Implantation Species 
 

Nitrogen gas ions and selected metal ions are generally used for ion implantation 

of metallic materials. The direct ion implantation method is the preferred method to 

implant both types of ion species (Anders 2000). The characteristics of these two 

technologies are discussed below: 

 

3.3.1. Nitrogen Ion Implantation 
 

  Nitrogen Ion Implantation for surface modification of metals was pioneered in 

the United Kingdom (UK) by Harwell Laboratory in the early 1970s. Nitrogen was 

chosen because the intense nitrogen beams are easily produced. The technology of high 

intensity nitrogen ion beams was perfected in the course of nuclear fusion programs. 

Since the development of the nitrogen ion implantation process by Harwell, numerous 

companies have tried to market the technique for surface modification of metals. 

However, the technique has not been widely accepted despite of numerous successful 

demonstrations (BDM Federal Inc. 1996, Anders 2000). 

In a typical direct nitrogen ion implanter nitrogen gas is fed into the ion source, 

where electrons emitted from a hot filament to ionize the nitrogen atoms and molecules, 

forming a plasma. Nitrogen ions are then accelerated through a voltage drop, typically 

about 100 keV. The accelerated beam of nitrogen ions is directed at the surface of the 
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part to be implanted in the vacuum chamber. This is the same process described in 

Direct Ion Implantation Part (BDM Federal Inc. 1996, Anders 2000). 

The studies related to Nitrogen ion implantation show increases in wear and 

fatigue resistance, lubricity, and in some cases, corrosion resistance of metal surfaces 

(Budzynski et. al. 2006, Cheng et. al. 2006, Yang et. al. 2006, Ozturk et. al. 2005) . In 

addition, nitrogen ion implantation has been found to increase the wear life of parts 

treated with hard chromium (hexavalent chromium) electroplate by between 5 and 10 

times. Thus, nitrogen ion implantation has the added environmental benefit of reducing 

the need to perform the hard chromium electroplating process by extending the life of 

the electroplated coating (Kwon et. al. 2006, Ferber et. al. 1991, Fischer et. al. 1991). 

Many researchers also have studied N ion implantation on polymers, and again 

found that wear resistance was improved (Bertóti et al. 2006, Allen et. al. 1996, Chen et 

al. 2001, Liu et al. 1996, Dong et. al. 2000). Dong et al. (Dong et al. 2000) and Kim et. 

al. (Kim et. al. 2006) reported that improvement in surface wettability after 

implantation.  

Valenza et al. (Valenza et. al 2004), Sze et. al. (Sze et. al. 2006) and Sheeja et al. 

(Sheeja et. al. 2005) also reported that improvement in hardness and friction with the N 

ion implantation on UHMWPE. 

 

3.3.2. Metal Ion Implantation  
 

Metal Vapor ion implantation is a recent development among the ion 

implantation techniques. The technological development that led to the development of 

this process was the invention of the metal vapor vacuum arc (MEVVA) ion source at 

Lawrence Berkeley Laboratory ISM technologies in San Diego (BDM Federal Inc 

1996). Figurthe first Vacuum Arc Ion Source based metal ion implantation facility was 

built with TUBITAK support in Izmir by Öztarhan et. al. (Öztarhan et. al 2004). In 

Figures 3.6 and 3.7, MEVVA Source and its components are shown.  

Similar to the source used in Nitrogen ion implantation, the MEVVA source 

bombards a workpiece’s surface with accelerated ions. In the case of the MEVVA 

source, though, metal vapor ions are used instead of Nitrogen gas ions. Chromium, 

nickel, platinium and titanium are metal elements that have been implanted using this 

process (Oks 1997). 
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Figure 3.5 MEVVA Ion Source  

(Source: Web_2, 2006) 

 

One should again note that the normal pollution problems associated with these 

metals are alleviated because the entire implantation process takes place in a sealed 

vacuum chamber isolated from the outside environment. The plasma in a MEVVA ion 

source is generated by a cathodic or vacuum arc. The arc produces a very small (1 

micron in diameter) cathode spot on the surface of an ion-forming metal that is co-

located in the source and acts to create a broad beam of ionized metal vapor that is 

directed toward the target workpiece (BDM Federal Inc 1996, Oks 1997, Öztarhan 

2005). 
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Figure 3.6. MEVVA source and its components  

(Source: Web_2, 2006) 

 

 
 

Figure 3.7. MEVVA ion source disassembled  

(Source: Web_2, 2006) 
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The MEVVA source makes use of the principle of vacuum arc discharge 

between the cathode and the anode to create a dense plasma from which an intense 

beam of metal ions of the cathode material is extracted (Oks et. al. 1997, Öztarhan et. al. 

2005).  

Energies of the ions can be calculated via time of flight method. The time of flight 

(TOF) method for measuring particle mass-to-charge ratio is done as follows. An ion of 

known electrical charge and unknown mass enters a mass spectrometer and is accelerated 

by an electrical field of known strength. This acceleration results in any given ion having 

the same kinetic energy as any other ion given that they all have the same charge. The 

velocity of the ion will depend, however, on the mass-to-charge ratio.The time that it 

subsequently takes for the particle to reach a detector at a known distance is measured. 

This time will depend on the mass-to-charge ratio of the particle (heavier particles reach 

lower speeds). From this time and the known experimental parameters one can find the 

mass-to-charge ratio of the particle. This method of analysis is a powerful tool for finding 

the mass-to-charge ratio of charged particles, atoms and molecules (Gushenets et. al 

2006). For example, the ion implantion system in Izmir used successfully the TOF 

equipment developed by Oks et al. (Gushenets et. al 2006). 

A broad beam of high peak beam current of the order of about one ampere and a 

mean beam current of tens of milli-amperes can be obtained. Due to its high-current and 

broad-beam capabilities, the MEVVA ion source is employed to solve the throughput 

problem arising from the high implantation dose. The flexibility is achieved by using 

vacuum arc ion sources. Most metallic elements or combinations of metallic elements of 

the periodic table can be implanted and simultaneous implantation of gas and metal ions 

is possible (Oks et. al.1997, Öztarhan et. al. 2005). 

Metal ion implantation of polymers have studied by ISM Technologies 

Corporation in San Diego, CA worked with Oak Ridge National Laboratory (ORNL). 

They found that the implantation of polymers with low doses of chromium and titanium 

leads to very large increases in surface hardness. Metal ion implantation can also be 

used to reduce or eliminate hydrogen embrittlement. Platinum implanted into surfaces 

serves as a catalyst which accelerates the recombination of hydrogen atoms into 

molecules so that they do not diffuse into the surface. Other implanted materials can 

form barriers to hydrogen as well. ISM has investigated the use of metal ion 

implantation as a pre treatment for chromium plating which would reduce the effects of 

hydrogen embrittlement. Metal ion implantation has an advantage over conventional ion 
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implantation because there is no gas loading problem. At currents of 1-2 A., there is a 

big problem with pumping out gas in conventional ion implantation systems. The same 

principle allows independent control of the pressure of deposition. The mixing of 

reactive gases is also much easier (BDM Federal Inc 1996) 

In literature, Wu et al studied the implantation of PET with MEVVA source. 

They implanted W ions on PET surface and they observed that the changes occurred in 

the structure, wear resistance and electrical properties of PET after W ion implantation. 

(Wu 2003). Co-implantation of gas and reactive metal ions have been used to increase 

the surface hardness of structural materials such as steel or aluminum alloys. Zirconia 

and alumina, for instance, have been produced by co-implantation of Zr+O and Al+O 

respectively. Brown et. al (Brown et. al. 1998) and Oks et al. (Oks et. al 1997) studied 

metal gas co-implantation with Pt+N, Ti+N, Al+O and Zr+O and they observed 

significant improvement in wear, hardness and friction parameters. Davenas et. al 

studied silver implanted polyethylene at 10, 15 and 50 keV and they observed that C=C 

bond formation and dehdrogenation on the surface. They also observed that 

graphitization on the surface layer after implantaion of Ag. (Davenas et. al 2002).  

 

3.4. Ion Implantation of UHMWPE 
 

Generally, the ion implantation of polyethylene with ionizing radiations induces 

de-hydrogenation and carbon enrichment. The ion bombardment, modifies strongly the 

polymer chains especially along the ion track. The resulting polymer shows a surface 

layer rich of cross-linked ‘graphite-like’ structure with special properties especially 

effective on wear mechanisms (Kurtz 2004). 

Ion implantation chemistry of UHMWPE is shown in detail in Figure 3.8 

Several mechanisms can be occurred during ion implantation like chain scission, 

crosslinking, radical formation, ionization and double bond formation (Kurtz 2004). 
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Figure 3.8. Ion implantation effects on UHMWPE  

(Source: Qureshi et. al., 2005)  

 

The mechanism behind this improvement is, ion implantation produce free 

radicals (unpaired electrons) in the polyethylene, which in secondary chemical reactions 

leads to a combination of crosslinking and chain scission. Crosslinking is beneficial for 

reducing wear. Chain scission produces a decrease in molecular weight, with 

concomitant reduction of wear resistance and mechanical properties. When ion 

implantation is conducted in the presence of oxygen, scission predominates over 

crosslinking. However, when conducted in an inert environment, such as nitrogen, 

crosslinking predominates over scission. Regardless of whether implantation is 

conducted in air or in an inert environment, some of the free radicals will remain 

entrapped within the crystalline phase of the UHMWPE. Over time, these entrapped 

free radicals can migrate to the surface of crystals. These free radicals react with 

available oxygen causing further time-dependent chemical degradation (Wang et. al. 

2006) 

In the literature, it was reported that increased crosslinking improves the wear 

performance of UHMWPE compared to conventional material. However, the presence 

of the crosslinks adversely affects uniaxial ductility, and the uniaxial failure strain of 
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UHMWPE decreases linearly with increasing implantation dose (Lewis 2001). During 

implantation, the loss of ductility depends on the crystalline microstructure of the 

UHMWPE, because crosslinking occurs primarily in the amorphous phase, where the 

molecular chains are in sufficient proximity such that a covalent bond can be created 

between adjacent polymer molecules by the applied energy (Wang 2006). Unimplanted 

UHMWPE typically has a crystallinity in the region of 50%, so the other 50% of the 

material is amorphous that could be crosslinked during irradiation. If the temperature of 

the UHMWPE changes during the crosslinking process, this can influence the 

distribution of crosslinking in the polymer and, hence, influence its ability to 

accommodate large strains prior to failure (Kurtz 2004). 

In recent literature, plasma based ion implantation of nitrogen on UHMWPE 

was performed by Bertoti et. al. (Bertoti et. al. 2006). They applied 27.13 MHz RF 

energized low pressure N2 plasma with 15–30 kV pulses and fluences up to 5 · 1017 

ions/cm2. Surface compositional and structural alterations and nanomechanical property 

changes were investigated by XPS, Raman and by nano-indentation and nano-scratch 

techniques. The implanted N amounted up to 13–20 at.% (N/C = 0.18–0.30), while a 

significant amount of oxygen could also be detected on the surface. Three types of 

chemical states of the incorporated nitrogen were detected, related to linear sp2 C=N–C 

and to planar and non-planar sp3 type C–N bonds. The applied PBII treatment led to 

severe dehydrogenation of the polyethylene resulting in conversion of the surface into a 

nitrogen-containing DLC type structure. Up to four-fold increase of the hardness at 50–

100 nm depth was measured compared to the untreated samples. They found that the 

scratch volume, characterising the wear resistance, decreased also significantly down to 

25–35% of the original value (Bertoti et. al. 2006). Kostov et. al. also studied non-line-

of-sight plasma immersion ion implantation (PIII) technique for the surface 

modification of UHMWPE sample, immersed in nitrogen plasma, were pulsed through 

a metallic grid at repetition rate of 100 Hz with negative high-voltage pulse of 15 kV 

magnitude and 10 �s duration (Kostov et.al. 2004). They analyzed the surface structural 

changes by laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and 

optical microscopy. From the Raman spectra, it is observed that the chain structure of 

UHMWPE has been damaged due to ion bombardment and a layer of dehydrogenated 

amorphous carbon was formed. The ratio of sp3/sp2 bonded carbon in the modified layer 

was obtained by suitable fitting of the XPS C 1s energy peak, using a four-curve fitting 

procedure, which recognizes a portion of C–O and C=O surface bonding. The XPS 
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results for N 1s peak showed that the implanted nitrogen ions form chemical bonds with 

the polymer instead of forming precipitates by self-clustering (Kostov et.al. 2004).  

Sze and Tay studied on the improvement of the nano-hardness and tribological 

properties of ultra-high molecular weight polyethylene (UHMWPE) using a filtered 

cathodic arc source with substrate pulse biasing (Sze and Tay 2006). The filtered 

cathodic arc source generated highly ionized carbon plasma and ions were accelerated 

towards the substrate by the negative substrate pulse voltage. Graphitization, nano-

hardness and wear rate of the modified surfaces were systematically studied as a 

function of pulse voltage (from − 3 kV to − 12 kV) and implantation time (from 1 min 

to 20 min). Graphitization of the modified surfaces was observed using Raman and X-

ray photoelectron spectroscopes. They reported that heavy structural damages occured 

on the surface of the UHMWPE at increasing pulse voltages. The nano-hardness of the 

UHMWPE surfaces, measured at an applied load of 100 �N, was increased from 0.35 

GPa to 1.6 GPa when implanted with carbon at a pulse voltage of − 10 kV for an 

implantation time of 12 min (ion dose about 1.73 × 1017 atoms/cm2). This process of 

graphitization was observed using Raman spectroscopy. Although it was difficult to 

quantify the C–C bonds using XPS, they observed the existence of C–O and C=O bonds 

which was attributed to oxidation when exposed to the environment. In their study, it 

was finally concluded that highly ionized carbon plasma helped the polymer surface 

react readily with carbon ions to form a graphite-like structure, which improved the 

nano-hardness and tribological properties of UHMWPE (Sze and Tay 2006). 

Valenza et. al. also studied tribological properties of ion implanted UHMWPE 

surfaces (Valenza et. al. 2004). They studied surface modification of ultra high 

molecular weight polyethylene (UHMWPE) induced by ion implantation of different 

ions ( H, He, Ar, Xe) at 300 keV energy. The irradiated surfaces were investigated by 

Raman spectroscopy, infrared absorption and micro-hardness analysis, scanning 

electron microscopy. It was reported that pin on disc measurements valuated the wear of 

the UHMWPE against a stainless steel probe; wear resistance increases of about 76% 

after the ion implantation. They also found that after ion implantation micro hardness 

values increased in the irradiated layers due to the high carbon surface concentration 

and cross-linking effects in the polymeric chains (Valenza et. al. 2004).  

Davenas et. al. investigated the efficacy of ion beam techniques to reduce 

bacterial adhesion or to induce bactericidal activity of different polymer materials: PVC, 

silicone rubber, poly(urethane) and poly(ethylene). It was reported that reduction of the 
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implantation energy to 10 keV led to activity enhancement resulting from the easier 

accessibility of surface colloids evidenced by AFM microscopy (Davenas et. al. 2002). 

Their study emphasized the specific processes induced by the formation of  silver nano-

particles at low energy implantation, which differs basically from Ion Beam Assisted 

Deposition (IBAD technique) leading to the formation of a continuous silver coating. It 

was reported that two types of effects associated 1. to the intrinsic modifications of the 

polymer and 2. to the implanted silver ions. At low irradiation fluences, limited changes 

of the polymer were detected (IR) through the formation of unsaturated bonds of the 

transvinylene and carbonyl types. However, the molecular structure disappeared for 

fluences larger than 5×1015 Ag+ cm−2, whereas evidence for the formation of an 

amorphous carbon layer is provided (Raman spectroscopy). As the irradiation energy 

was lowered to 10 keV, the analysis of the UV edge showed that this carbon layer 

became more diamond-like. As expected from the known antifouling properties of 

diamond films, they found a reduction of the bacterial adhesion on the surface. It was 

also seen that the formation of metallic silver particles appearing at fluences larger than 

1016 Ag+ cm−2 was evidenced by different analytical techniques. Increased antibacterial 

effect resulting from colloidal silver has been evidenced. They recommended that 

studies at implantation energies below 10 keV, would then be of main interest for 

further improvements of the bactericidal activity (Davenas et. al. 2002).  
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CHAPTER 4 
 

EXPERIMENTAL 
 

4.1. Material and Method 
 

4.1.1. Material 
 

Samples with medical grade GUR 1020 - Type 1 - Ultra High Molecular Weight 

Polyethylene (UHMWPE) provided by Hipokrat Co. with a density of  945 kg/m3 were 

used. 2 disk shaped samples with a diameter of 30mm and thickness of 4mm were 

polished down to about surface roughness of  124,05 (nm) Ra.  

 

4.1.2. Method 
 

Samples were implanted at Russian Academy of Sciences Institute of High 

Current Electronics (IHCE), Siberian Branch, in gas and vacuum discharges with Ag 

and Ag+N ions by using MEVVA ion implanter with a fluence of 1017 ion/cm2, 

extraction voltage of 30 kV and pulse rate of 1Hz. Target temperatures were less than 

100 0C and expected energies about 60 keV. In Figure 4.1, ion source and ion 

implantation system used at the Institute of High Current Electronics, Tomsk is shown. 

 

  

 

Figure 4.1.  Ion Source and Ion Implantation System used in Institute of High Current 

Electronics, Tomsk (Source: Web_3 2006) 
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The ion source depends for its operation on two forms of arc discharge with a 

common hollow anode initiated simultaneously or one after another (Web_3 2006). 

A constricted discharge between cathode 1 and hollow anode 2 serves to generate gas 

ions and initiate a vacuum arc (with the discharge operating time being 20s.). Metal ions 

are generated in the cathode spots of the vacuum arc initiated between electrode 2 and 

electrode 3. The ions are extracted from the plasma surface stabilized by fine-mesh 

metal grid 4. The ions are accelerated to a required energy by a dc accelerating voltage 

applied at the gap between hollow anode 2 and electrode 5. The latter consists of two 

grids made of metal wires and showing a high geometrical transparency. The 

accelerated ion beam is taken by a collector on which specimens or machine parts are 

placed. To cut off the secondary electrons knocked out from the collector by the ions, a 

negative potential of no less than 15 kV is applied to one of the grids of electrode 6. 

Insulator 7 is filled with transformer oil. The source is cooled with water circulating 

through a radiator. The source is capable to produce ion beams of any gases (except 

oxygen) and metals (Web_3 2006). Specifications of the ion source are given below 

(Web_3 2006). 

 

Table 4.1 Specifications of Ion Source  

(Source: Web_3 2006) 

 

- Accelerating voltage 20-80 kV 

- Vacuum arc current 

- Constricted arc current 

50-150 A 

30-60 A 

- Metal ion beam current 

- Gas ion beam current 

0.1-0.5 A 

0.1-0.25 A 

- Operating pulse repetition rates 12.5, 17, 25, 50 Hz 

- Current pulse duration 400 µs 

- Delay of vacuum arc initiation from constricted arc initiation 0-400 µs 

- Ion beam cross-sectional area 250 cm2 

- Vacuum arc operation time with-out changing the cathode 30 h 

- Constricted arc operation time without changing the cathodes 100 h 

- Source power supply voltage 3x380 V 

- Excess pressure of compressed gas in the source 2-10 atm 
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4.2. Characterization and Properties 
 

4.2.1. Ion Penetration Depth Analysis 
 

In order to determine ion penetration depth and ion ranges in the UHMWPE 

target, Stopping and Range of Ions into Matters (SRIM) simulation program was used 

for the theoretical prediction of the ion penetration. Rutherford Back Scattering (RBS) 

technique was used for the experimental determination of implanted ions penetration . 

Next sections explain in detail these two techniques.  

 

4.2.1.1. Stopping and Range of Ions into Matters (SRIM) 
 

Depth of the ions is theoretically calculated with SRIM program. SRIM is a 

group of programs which calculate the stopping and range of ions (up to 2 GeV/amu) 

into matter using a quantum mechanical treatment of ion-atom collisions (assuming a 

moving atom as an "ion", and all target atoms as "atoms"). This calculation is made 

very efficient by the use of statistical algorithms which allow the ion to make jumps 

between calculated collisions and then averaging the collision results over the 

intervening gap. During the collisions, the ion and atom have a screened Coulomb 

collision, including exchange and correlation interactions between the overlapping 

electron shells. The ion has long range interactions creating electron excitations and 

plasmons within the target. These are described by including a description of the target's 

collective electronic structure and interatomic bond structure when the calculation is 

setup (tables of nominal values are supplied). The charge state of the ion within the 

target is described using the concept of effective charge, which includes a velocity 

dependent charge state and long range screening due to the collective electron sea of the 

target (Ziegler et. al. 1985). 

 

4.2.1.2. Rutherford Back Scattering Analysis (RBS) 

 

Knowledge on the thickness, composition, and interfaces of thin films and 

multilayers, in many systems, is fundamental for the understanding and optimization of 
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their properties. One of the techniques often applied to such studies is Rutherford 

backscattering (RBS) Analysis (Barradas 2001).  

The thickness of the Ag and Ag+N layers is deduced from RBS measurements. 

RBS analysis was done with 2.1 MeV He ions incident at 30° and detection angle at 

170°. Depth distributions of Ag were calculated using the RUMP code (Doolittle 1985) 

with the initial values given in Figure 4.2.  

 

 
 

Figure 4.2. RUMP simulation data that we used for Ag and Ag+N implanted samples 

 

Equations 4.1 and 4.2 were used for the determination of the thickness (th) of 

the Ag layers . The RUMP layer thickness (th RUMP ) is based on the assumption of 1cm2 

of UHMWPE containing 1015 atoms . 

  

ρ  = mass density (g / cm3,) 

 A = atomic mass (g / mole) 

AvogadroN A =  number 

  n = Density (atom/cm3 ) 

th = Real thickness 

th RUMP = Thickness which is obtained by RUMP simulation 

 

A
N

n Aρ=    (4.1) 

 

th(cm) = th RUMP (atom/cm2) / n (atom/cm3)  (4.2) 
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4.2.2. Chemical Characterization 
 

In order to determine the damage products and structural changes in UHMWPE, 

additional analytical techniques were employed on the implanted samples. The samples 

were analyzed with optical absorption photospectrometry (OAP), for the ultraviolet–

visible region, Fourier transform infrared (FTIR) and Raman spectrometry. 

 

4.2.2.1. Optical Absorption Photospectroscopy (OAP) 
 

The samples were analyzed with optical absorption photospectrometry (OAP), 

for the ultraviolet–visible region. Optical characterization of samples before and after 

each treatment was carried out with a dual-beam spectrophotometer (Spectral 

Instruments). The obtained optical spectra have 1-nm resolution covering the 

wavelength range of 500–3500 nm. 

 

4.2.2.2. Attenuated Total Reflectance /�Fourier Transform Infra Red 

(ATR / FT-IR) Spectroscopy  

 

 ATR/FTIR spectrometry can provide valuable information related to the 

chemical structure. ATR/FTIR spectrometry can also be used to identify unique features 

on the thin layers after chemical surface modification. (Colthup et. al. 1990) 

ATR- FTIR analysis was used to see if any new chemical bonds was formed 2 

microns deep at the surface. Thermo Nicolet Nexus 670 model FTIR with Smart 

DuraSampllR 3 Bounce diamond HATR (3 reflection diamond ATR) and OMNIC 

software were used. Scans were done in the range of 500 - 4000 cm-1 wave number 

region.  

 

4.2.2.3. Raman Spectrocopy 

  
Raman spectroscopy is a technique to study vibrational, rotational and other low 

frequency modes in a system. It relies on inelastic scattering, or Raman scattering of 

monochromatic light, usually from a laser in the visible, near infrared or near ultraviolet 

range. Phonons or other excitations in the system are absorbed or emitted by the laser 
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light, resulting in the energy of the laser photons being shifted up or down. The shift in 

energy gives information about the phonon modes in the system. Raman spectroscopy is 

commonly used for vibrational information which is very spesific for the chemical 

bonds in molecules. It therefore provides a fingerprint by which the molecule can be 

identified (Colthup et. al. 1990). 

Raman spectra were acquired using a LabRam spectrophotometer, using a He–

Ne laser with � = 632 nm which was focused on the sample surface by an Olympus BX-

40 microscope using a 100× objective lens. The scattered light was collected, in 

backscattering geometry, by the same microscope. The results are compared with 

identical untreated UHMWPE sample.  

 

4.2.3. Thermal Analysis 
 

Thermal analyses of untreated, Ag and Ag+N hybrid ion implanted UHMWPE 

samples were conducted with DSC and TGA. % Crystallinity results are compared with 

XRD. 

 

4.2.3.1.  Thermo Gravimetric Analysis (TGA) and Differential 

Scanning Calorimetry (DSC) 
 

Differential Scanning Calorimetry (DSC) is a thermal analysis technique which 

is used to measure the temperatures and heat flows associated with the phase transitions 

in materials as a function of time and temperature. Such measurements provide 

qualitative and quantitative information about physical and chemical changes that 

involve endothermic and exothermic processes, or changes in heat capacity (Web_4, 

2006) 

Thermo gravimetric Analysis (TGA) measures changes in weight of a polymeric 

sample with increasing temperature. Moisture content and presence of volatile species 

can be determined with this technique. Computer controlled graphics can calculate 

weight percent losses (Web_4, 2006)  

Thermal analysis of untreated, Ag and Ag+N hybrid ion implanted UHMWPE 

samples were conducted by using Shimadzu Differential Scanning Calorimeter (DSC, 

50) and Shimadzu Thermal Gravimetric Analyzer (TGA, 51). The process were carried 
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out at temperatures between 20°C to 500 °C for DSC analyses, and 20 °C – 510°C for 

TGA analyses, at heating intervals of 10 °C/min. The analyses were performed in a dry 

nitrogen atmosphere. The total heat of melting �Hm (the area under the endotherm) was 

determined and, knowing the total heat of fusion of 100% crystalline UHMWPE 

(�H°m = 291 J/g), the percentage crystallinity was calculated according to the Equation 

4.3 :  

 

 Xc % = 100 ( �Hm / �H°m )   (4.3) 

 

4.2.3.2. X-Ray Diffraction (XRD) Analysis 
 

XRD measurements were carried out on a Philips Powder Diffraction instrument 

and the data were taken using Philips X’Pert software. Cu K� radiation with wavelength 

0.154 nm was used. The crystallinity is calculated by separating intensities due to 

amorphous and crystalline phase on diffraction phase. Computer aided curve resolving 

technique is used to separate crystalline and amorphous phases of diffracted graph. 

After separation, the total area of the diffracted pattern is divided into the crystalline and 

(Ac) amorphous components (Aa). Percentage of crystallinity Xc % in Equation 4.4, is 

measured as ratio of crystalline area to total area (Gupta et. al 1997).  

Ac = Area of crystalline phase 

Aa = Area of amorphous phase 

% Xc = Percentage of crystallinity 

 

 % Xc = [Ac / (Ac+ Aa)]× 100   (4.4) 

 

4.2.4. Surface Properties and Morphology 
  

In order to determine the changes in surface properties, microstructure, surface 

topography and micro hardness, SEM, OM, AFM and micro hardness tester, have been 

used. Contact angle measurements were performed to examine the surface wettability 

after implantaion of UHMWPE surfaces. 
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4.2.4.1. Scanning Electron Microscopy (SEM) 
 

Scanning electron microscopy was carried out with a Philips XL-305 FEG – 

SEM in order to investigate the surface morphology of the pure and ion irradiated (Ag 

and Ag + N ) UHMWPE samples. Before the analysis, samples were coated with Gold 

because UHMWPE is tranparent to the electron beam used by the SEM. There are two 

detectors in the SEM chamber which create a signal from electrons bouncing of the 

gold-coated samples. These are used to make up an image of the UHMWPE surfaces. If 

the sample is not finely covered with an electron-opaque substance like gold, the 

electron beam would travel right through the surface, creating no image and probably 

destroying the sample. The results of Ag and Ag+N implanted samples were compared 

with respect to the reference sample, untreated UHMWPE.  
 

4.2.4.2 Optical Microscopy (OM) 
 

Optical Microscopy (Olympus Bx40) was employed to examine the surfaces of 

unimplanted, Ag and Ag + N implanted specimens. The results are compared with 

respect to the reference sample, untreated UHMWPE.  
 

4.2.4.3. Hardness 
 

The durometer hardness test was used to measure the relative hardness of this 

material. The test method is based on the penetration of a specified indenter forced into 

the material under specified conditions. Polymeric hardness tests of the samples were 

performed on a Shore-D Durometer (Zwick/Roell (HPE)). The samples were tested 

under 50 N. force. Each test was repeated four times.  
 

4.2.4.4. Wettability 
 

The effect of lubricants on the polymer surface was investigated by 

measurement of the contact angle. The contact angle of distilled water and Simulated 

body fluid (SBF) on the untreated and implanted UHMWPE surfaces was measured 

with a Kruss-G10 goniometer. The mean contact angle of untreated and treated 

UHMWPE samples was obtained from five different measurements for each UHMWPE 

sample. 
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Simulated body fluid (SBF) solution was prepared by dissolving the chemical 

reagents of NaCl, KCl, CaCl2, MgCl2, Na2HPO4, NaHCO3, Na2SO4, MgCl2·6H2O and 

Na2HPO4·12H2O in distilled water. Table 4.2 gives the ion concentrations of SBF 

solution, which is close to those in human blood plasma (Feng et. al 1998). 

 

Table 4.2 Ion concentrations of Simulated Body Fluid (SBF) solution 

 

Na + K + Ca 2+ Mg 2+ Cl - HCO 3 - HPO4
2 - SO4 2 - 

142.0 5.0 2.5 1.5 103.0 27.0 1.0 0.5 

 

4.2.4.5. Atomic Force Microscopy (AFM) 
 

Atomic force microscopy (AFM) was used to investigate the surface roughness 

and surface morphology of untreated and Ag implanted UHMWPE. A Digital 

Instrument- MultiMode SPM apparatus was used to determine the surface roughness of 

untreated and Ag implanted UHMWPE . Scan size 5x5 µm. scan rate 1.001 Hz. and 

data scale 300 nm. were applied through silicon nitride tip for scanning the sample 

surfaces. The roughness values of untreated and Ag implanted UHMWPE were 

determined using a computer software of the AFM . Two parameters such as the mean 

square root of roughness (Rms) and the average roughness (Ra) are calculated. Rms 

represents the roughness for the square root of the arithmetic mean of the square of the 

absolute deviation from the average height and Ra represents the roughness for the 

arithmetic mean of the absolute deviation from the average height.  
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CHAPTER 5 
 

RESULTS AND DISCUSSION 
 

5.1. Ion Penetration Depth Analysis 
 

5.1.1. Stopping and Range of Ions into Matters (SRIM) 
 

As a result of SRIM Analysis, the range of Ag implantation on UHMWPE at 60 

keV is about 43 nm. About %12 of the bombardment energy lost through inelastic 

collisions and lead to ionization of the polymer chains. The ion range is about 431 0A 

with a straggling of 79 Aº. 

The range of N implantation on UHMWPE at 60 keV is about 130 nm. A %50.5 

of the bombardment energy is lost through inelastic collisions and lead to ionization of 

the polymer chains. Remaining part of the energy in both cases are lost through elastic 

mechanism leading to chain breakdowns. The ion range is about 1307 Aº with a 

straggling of 323 Aº. A typical SRIM simulation results are reported in Figure 5.1 

which shows the depth analysis, ionization and ion ranges of the samples, respectively. 
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(a.)      (b.) 

  

(c.)      (d.) 

  

(e.) (f.) 

 

Figure 5.1. Depth analysis(a,b), ionization (c,d) and ion range(e,f) graphs of Ag (a,c,e) 

and N (b,d,f) into UHMWPE sample with 60 keV energy (SRIM) 
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5.1.2. Rutherford Back Scattering (RBS) Analysis 

 

Rutherford back-scattering technique (RBS) is an analytical tool that uses elastic 

scattering of 0.1-3 MeV charged particles to analyze the surface and the outer few 

micrometers of solids. RBS system consists of an accelerator and scattering chamber 

with sample manipulators and particle detectors. The number of backscattered ions is 

proportional to the square of the atomic number of the target element. A model based on 

the actual scattering cross section and the stopping power is used to generate a 

theoretical spectra which is then adjusted until a fit is obtained to the experimental data 

(Tesmer et. al 1995) . 

From the RBS graph, silver (Ag) concentration on the sample surfaces was 

determined . Figures 5.3 and 5.4 show the RBS Spectrum of Ag and Ag+N ion 

implantion of the samples, respectively. Black line denotes RBS graph and red line 

denotes RUMP simulation. Due to the RUMP simulation results, it was found that Ag 

ions can be detected up to 32 +15 nm underneath the surface, and after Ag+N 

implantation, Ag ions can be detected up to 42 +15 nm underneath the surface. Those 

values are in good agreement with the SRIM simulation results. 

In Figure 5.2 and Figure 5.3, both spectrums show an O peak which is believed 

to be due to the oxidation reaction and the other small peaks are thought to be probably 

due to the contamination of the vacuum gas. Turos et. al and Rizzatti et. al reported that 

oxidation behaviour of UHWMPE after irradiation. Oxygen uptake takes place once the 

ion bombarded polymer sample was exposed to the air and upon aging the continuous 

oxygen uptake was observed (Turos et. Al. 2006, Rizzatti et. Al. 2000). Rizzatti 

reported that oxygen concentration does not exceed the initial level for as implanted 

samples and it extends only to the greater depth as a function of the storage time. After 

two years storage the oxidized layer extends over the whole modified depth that is about 

the incident ion range. Due to this, O peak that we observed probably a result of 

oxidation. 

Braun have reported before, on the profitable influence of surface contamination 

from diffusion pump oil on tribiological properties (Braun 1988). In RBS spectrum we 

have some small peaks those might be occurred due to the vacuum environment (pump 

oil or vacuum gas).  
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Figure 5.2 RBS spectrum of Ag implanted UHMWPE 

 

 
 

Figure 5.3 RBS spectrum of Ag + N implanted UHMWPE 
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5.2. Chemical Characterization 
 

5.2.1. Optical Absorption Photospectroscopy (OAP) 
 

It was found by visual observation that the surface color of the ion implanted 

samples had changed from shining ivory-white to silvery yellow. In Figure 5.4 we can 

see the color changes before and after ion implantation. 

This color modification is caused probably by two separate processes involving 

thermal effect and dehydrogenation (Kostov et. al. 2004). As highly energetic ions pass 

trough the UHMWPE surface during implantation processing, some of their energy is 

dissipated onto the treated surface as heat. Meanwhile, the removal of hydrogen atoms 

from the polymer chains as a result of the ion bombardment facilitates formation of 

conjugated double bonds to which surface color is sensitive.  

 

 
   

Figure 5.4.  UHMWPE samples before and after implantation. (a.) untreated sample 

(b.) Ag implanted sample and (c.) Ag+N implanted sample 

 

From the Optical Absorption Photospectrum in Fig.5.5, it can be seen that Ag 

and Ag+N ion implantation of UHMWPE lead to significant modification of its 

luminescence. The light emission in the near UV region practically disappears and a 

wide luminescence band develops at 500 nm. This band is the most intense for the Ag 

ion implanted samples. 

(a.) 
 

(b.) 
 

(c.) 
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Figure 5.5.  Optical Absorption Photospectroscopy (UV-VIS) of untreated, Ag and 

Ag+N Implanted UHMWPE  

 

Figure 5.5. exhibits an increase in optical absorption followed by a shift of the 

optical absorption threshold in both Ag and Ag+N implanted samples. Rizatti et al has 

observed the same behaviour with the ion bombarded poly (paraphenylene sulphide) 

films and these effects associated with a decrease in the optical gap (Eg) which can be 

related to a structural rearrangement of aromatic rings, possibly, generating a 

continuous network of conjugated cyclic structures (Rizzatti et. al. 1995).  

The optical absorption results confirmed the degradation of polymer surface and 

formation an amorphous carbon layer, which becomes more diamond-like. Davenas et 

al. also attributed to this to the formation of silver colloidal particles at the surface 

(Davenas et. al. 2002) 

  

5.2.2. Attenuated Total Reflectance /� Fourier Transform Infra Red 

(ATR / FT-IR) Spectroscopy  

 

The characteristic absorption bands for the CH2 bonds appear in the 2900–2840, 

1460–1370 and 740–720 cm−1 regions (Evelyn at. al. 1998, Davenas et. al. 1989). The 

transmission ATR analysis of the untreated and Ag and Ag+N implanted samples 
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confirms the C–H band breaking since the C–H stretching (at 2847 cm−1) band bending 

peaks of the pure UHMWPE sample disappears after Ag and Ag+N implantation. 

(Davenas et. al 1989, Colthup et. al. 1990, Chappa et. al. 2006, Bracco et. al. 2005). 

Table 5.1 reports that wavenumber (cm−1) and vibrational modes of Ag and Ag+N 

implanted UHMWPE samples. 

 

Table 5.1.  Wavenumber (cm−1) and vibrational modes of Ag and Ag+N implanted 

UHMWPE 

 

Absorption (Wavenumber in cm−1) Group 

610-660 Cis CH wagging 

719 C-H rocking  

965 Trans CH wagging 

1164 C-O-C stretching 

1297 C-O stretching  

1367 OH Deformation 

1462 C-H bending  

1594-1630 C=C stretching 

1650 C=N 

1738 C=O stretching  

2847 C-H stretching  

3300-3500 OH stretching  
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Figure 5.6 ATR / FTIR spectra of Ag implanted UHMWPE in 500-4000 cm -1 region 
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Figure 5.7 ATR / FTIR spectra of Ag implanted UHMWPE in 900-1800 cm-1 region 
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Figure 5.8 ATR / FTIR spectra of Ag+N implanted UHMWPE in 500-4000 cm -1 region  
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Figure 5.9 ATR / FTIR spectra of Ag+N implanted UHMWPE in 900-1800 cm-1 region 
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As can be seen in Figure 5.7 and 5.9 after implantation, the increase in the 

absorption bands in the 1594 and 1738,4 cm−1 regions (Table 5.1), due to the 

implantation, has been attributed to the creation of unsaturated C=C bonds and a 

beginning of polymer oxidation (Premnath et. al. 1999, Bracco et. al. 2006). One of the 

main products of the radiation-induced chemical changes is the C=C formation, and its 

stretching vibration is clearly observed in the spectra by an absorbance peak at 1594-

1630 cm−1. The presence of this peak suggests that after Ag and Ag+N implantation, the 

polymer surface becomes poor of hydrogen and rich of cross-linked carbon atoms. 

Furthermore, some carbonyl formation due to oxidative degradation is observed at 

around 1720 cm−1. 

Geometric isomerism (also known as cis/trans isomerism) is a form of 

stereoisomerism (Colthup et. al. 1990). Isomers are molecules that have the same 

molecular formula, but have a different arrangement of the atoms in space. That 

excludes any different arrangements which are simply due to the molecule rotating as a 

whole, or rotating about particular bonds. In stereoisomerism, the atoms making up the 

isomers are joined up in the same order, but still manage to have a different spatial 

arrangement. Geometric isomerism is one form of stereoisomerism (Colthup et. al. 

1990). The trans-CH wagging absorption band appears around 965 cm−1 on the spectra 

of Ag and Ag+N implanted UHMWPE. The trans-CH wagging vibration of the olefins 

is relatively insensitive to mass or mesomeric effects but shows sensitivity to the 

inductive power of the group (Evelyn et. al 1998). Cis-CH wagging located on 610-66 

cm-1 are also present for both samples. Paticulary C-H characteristic peaks decrease 

with the implantion. In both the wag vibrations, the motions of the hydrogens are 

partially balanced by countermotions of the substituents. This makes the substituents 

more mechanically involved in the vibrations. By this way, these vibrations become 

more variable in frequency. Because of the rotational isomerism the wag band 

broadened. This means that both kinds of groups will be excited at the same time, but 

with various phase relationships (Evelyn et. al 1998).  

In Figures, 5.8 and 5.9 at 1650 cm−1 absorptions there is significant increasing 

because of the Amine groups in the Ag+N implanted samples . Amine peaks appears 

not only in Ag+N Implanted samples spectra, but also in Ag Implanted ones because of 

the N2 gas which was used to vent the implantation chamber.  

The formation of the peak at the 3500 cm−1 region signifies the formation of NH 

and OH bonds at the higher end. 
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5.2.3. Raman Spectroscopy 
 

As shown in Figures 5.10. 5.11 and 5.12, Raman spectrum of the pure (non–

irradiated) UHMWPE sample exhibits the polyethylene's sharp characteristic peaks at 

1060, 1127, 1293, 1440, 2722, 2846 and 2882 cm−1. The bands at 1060 and 1127 cm-1 

are related to the stretching vibration of C-C atoms. Bands at 1293 and 1440 are –CH2 

phase twisting, and -CH2-deformation stretching, respectively (Chen et. al. 2003). The 

peaks at 2846 and 2882 cm-1 in Figure 5.12 can be attributed to the symmetric and 

asymmetric CH2 stretchings. The band at 2772 is usually ascribed as the one 

corresponding to oxygen contamination of the surface (--CH==O) (Chen et. al. 2003).  
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Figure 5.10. Raman spectra of untreated, Ag and Ag+N implanted UHMWPE in 500 -

3000 cm -1 region 
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Figure 5.11.  Raman Spectra of untreated, Ag and Ag+N implanted UHMWPE in 1000 -

1500 cm -1 region 
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Figure 5.12.  Raman Spectra of untreated, Ag and Ag+N implanted UHMWPE in 2550-

2950 cm -1 region  
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After implantation, it is found that the effect of photoluminescence on the 

Raman spectrum enhances, which could be ascribed to an increase of defects in the 

polyethylene crystal caused by the implantation of the energetic particles. From the 

baseline corrected Raman spectra shown in Fig 5.13 and 5.14, it is observed that the 

relative intensities of the bands at 1060, 1127, 1293 and 1440 cm−1 are all decreased as 

a result of the treatment. This fact suggests that the chemical structure of UHMWPE has 

changed after implantation. Kostov et al. explored that surface modification of 

UHMWPE by using the non-line-of-sight plasma immersion ion implantation (PIII) 

technique. The polymer specimens were immersed in nitrogen plasma and they were 

analyzed by laser Raman spectroscopy. From the Raman spectra they observed that the 

chain structure of UHMWPE has been damaged due to ion bombardment as we found 

and a layer of hydrogenated amorphous carbon is formed. They combine these results 

with XPS and conclude that the implanted nitrogen ions form chemical bonds with the 

polymer instead of forming precipitates by self-clustering (Kostov et. al. 2003).  

Especially, the decrease of relative intensity of the peak at 1293 cm−1 indicates 

that the polymer chain is broken (Chen et. al. 2001) and its length becomes much 

smaller than chain length of unimplanted polymer. 

As seen in Figure 5.12, the reduction of the relative intensities of the bands at 

2846 and 2882 cm−1 were seen after implantation. The level of decrease was highest for 

Ag+N implanted sample compared to Ag implanted sample. This can also be explained 

by the lower penetration depth of Ag on Ag implanted sample than Ag+N implanted 

sample. These results were also confirmed with the RBS analysis.  

The decrease in band intensities also indicates that the hydrogen content in the 

surface decreases after implantation (Chen et. al. 2001). In other words, the implanted 

sample surface becomes depleted in hydrogen content.  
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Figure 5.13.  Baseline corrected Raman Spectra of untreated, Ag implanted UHMWPE 

in 1000-1800 cm -1 region. 
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Figure 5.14. Baseline corrected Raman Spectra of untreated, Ag+N implanted 

UHMWPE in 1000-1800 cm -1 region. 
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After removing for clarity the UHMWPE characteristic peaks, a broad peak with 

two shoulders at approximately 1360 and 1560 cm−1 can be observed in the Raman 

spectrum shown in Fig. 5.13 and 5.14. These two bands are fitted with two Gaussian 

functions and can be attributed to the D and G band of hydrogenated amorphous carbon, 

respectively. The two regions of interest in the Raman microprobe analysis are at 1595 

cm-1 (G-line) and at 1350 cm-1 (D-line). The G-line is attributed to graphite structure 

formation in the material and the D-line is attributed to amorphous structure or 

"disorder" in the material (Evelyn et. al. 1998) 

From the fitting, the position and full width at half maximum (FWHM) of the G 

and D peaks as well as the ratio of the D to G peak area—I(D)/I(G), were determined. 

Although, sp3/sp2 ratios in the hydrogenated carbon films cannot be derived directly 

from the Raman spectra, some quantitative information still can be extracted because 

the position of G and D lines, G peak's FWHM and the peak integral intensity ratio 

I(D)/I(G) are correlated with the sp3/sp2 bonding ratio (Robertson et. al 2002). The 

Raman spectrum of Ag+N implanted UHMWPE in Figure 5.15 exhibits characteristics 

typical for the diamond-like carbon (DLC), including a disorder peak (D peak) at 1365 

cm−1, and a graphite-like peak (G peak) at 1560 cm−1 with a I(D)/I(G) ratio of about 

0.65. These observations indicate formation of DLC layer on the UHMWPE surface as 

a result of ion implantation process. Davenas et. al suggest that as the irradiation energy 

is lowered to 10 keV., the analysis of UV edge shows that this carbon layer becomes 

more diamond-like (Davenas et. al.2002). 

The properties of carbon coatings strongly depend on their microstructure, 

which is commonly considered as an amorphous mixture of sp2 and sp3 hybridized 

carbon atoms. The DLC characteristics can vary from those similar to graphite to those 

closely approaching the features of natural diamond. So the ratio of sp3/sp2 carbon 

atoms is one of the most important factors governing the quality of the DLC films. In 

general, the higher this ratio is, the closer the DLC properties approach those of 

diamond (Robertson et. al 2002).  

A graphite-like structure shows better mechanical properties and better 

biocompatibility (Valenza et. al. 2004). Davenas et. al. examined that increased 

antibacterial effect resulting from colloidal silver and DLC structure on the surface layer 

especially when lowering the implantation energy (Davenas et. al. 2002). In addition to 

graphitization, several researchers (Guzman et. al. 2002, San et. al. 2002, Chen et. al 

2000, Lee et. al. 1994) have suggested that cross-linking of polymer chains, by the 
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reaction of free radicals with ions, also strengthens the surface properties through the 

formation of a three-dimensional connected network. 

 

5.3. Thermal Characterization 
 

5.3.1. Thermo Gravimetric Analysis (TGA)  
  

Figure 5.15 shows TGA results of pure and implanted UHMWPE samples. It 

can be seen that onset degradation for pure UHMWPE is around 251.68 ºC. The onset 

degradation temperature shifted after irradiation of the samples . For Ag implanted 

samples thermograms shifts to 312.69 ºC, while for Ag + N implanted samples to 

267.26 ºC. The termination of degradation temperatures also increased to higher values 

after Ag and Ag+N ion implantation. As seen in Figure 5.16, the same trend was 

observed with termination degradation point. The termination of degradation value is 

445.65 for pure UHMWPE, but this value shifted to 488.77 and 497.13 for Ag 

implanted and Ag + N implanted samples, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15. TGA analysis of untreated, Ag and Ag+N implanted UHMWPE. 
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5.3.2. Diferential Scanning Calorimetry (DSC) 
 

Figure 5.16 shows the DSC curves of the pure and implanted UHMWPE 

samples. The DSC trace for UHMWPE shows two key features. The first feature of the 

DSC curve is the peak melting temperature (Tm), which was obtained to be 141°C, and 

corresponds to the point at which the majority of the crystalline regions have melted 

(Kurtz 2004). 

The melt temperature reflects the thickness of the crystals, as well as their 

perfection. Thicker and more perfect polyethylene crystals will tend to melt at a higher 

temperature than smaller crystals (Kurtz 2004). 

 In addition, the area underneath the melting peak is proportional to the 

crystallinity of the UHMWPE. DSC provides a measure of the total heat energy per unit 

mass (also referred to as the change in enthalpy, delta H) required to melt the crystalline 

regions within the sample. By comparing the change in enthalpy of a UHMWPE sample 

to that of a perfect 100% crystal, one can calculate the degree of crystallinity of the 

UHMWPE (Kurtz 2004, Blundell et. al.1981, Gray et. al.1970). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. DSC analysis of untreated, Ag and Ag+N implanted UHMWPE. 
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As seen in Figure 5.16, DSC thermograms for untreated and ion implanted 

UHMWPE exhibited one distinct peak and in addition, a small overlapping shoulder 

region which can be observed between 200-300 C region. The shoulder represents �Cp 

value and this value is obviously different for each sample which indicates that 

polymeric chain is modified after treatment and resultant materials are different from 

pure sample. The total heat of melting (fusion) �H value is slightly increasing after 

implantation. Due to this, % crytallinity values increased after Ag and Ag+N 

implantation. In Figure 5.16, it is obvious that after implantation % crystallinity has 

increased slightly,while melting point (Tm) values slightly changes. This can be 

explained by chain scission on implanted UHMWPE samples, which leads to a 

reduction in the molecular weight of the material. This allows the chains to rearrange to 

form crystalline regions and %crystallinity increasing while Tm decreasing after 

implantation. Al-Ma’adeed et. al and Aydinli and Tincer were observed similar trend in 

%crystallinity after irradiation of UHMWPE. ( Al-Ma’adeed et. al 2005, Aydinli and 

Tincer 2001) 

Thermal properties of the samples before and after implation were tabulated in 

Table 5.2. As a result, DSC measurements have shown that polymer modification was 

observed by implantation of UHMWPE samples. 

 

Table 5.2. Thermal data of untreated Ag and Ag+N implanted UHMWPE samples 

 

UHMWPE -����Hf (fusion)J/g Tm (C°) 
����Cp 

J/gK. 

% Crystallinity 

����Hf / 291J/g 

Untreated -115,07 J/g 141 0.51 39.5 

Ag Implanted -116,52 J/g 137 0.37 40 

Ag+N Implanted -119,67 J/g 140 0.43 41.1 

 

In literature a few researchers studied %crystallinity of UHMWPE. For 

example, Torrisi et. al. studied thin polyethylene films, irradiated in air with 5 meV. 

electron beams. To the contrary of our results, they observed that significant increasing 

in melting point (Tm) for an electron dose 3.2 MGy, moreover their data indicated a 

slow decrease in the polymer crystallinity and in the melting enthalpy (Torrisi et. al. 

2005). On the other hand, Al-Ma’adeed et. al studied the effect of shelf aging, for up to 
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one year in air, on the properties of gamma-irradiated ultra-high molecular weight 

polyethylene. This study showed that crystallinity is increased with radiation dose and 

with aging ( Al-Ma’adeed et. al. 2005). Aydinli and Tincer also studied the effect of 

irradiation on pure UHMWPE and they found that crystallinity increased and this 

caused higher enthalpy of crystallization (Aydinli and Tincer 2001)  

 

5.3.3. X-Ray Diffraction (XRD) Analysis 
 

Crystallinity changes can be observed from XRD results in Figure 5.17. We 

calculate the %crstallinity with XRD as the ratio of total integral intensities of 

crystalline peaks (Ic) to the integral intensities of amorphous and crystalline peaks 

(Ia + Ic) (Gupta et. al. 1997). 

After implantation, it was found that % crystallinity in the UHMWPE increased from 

30% to 40%. Table 5.3 gives the % crystallinity results obtained from XRD measurements.  

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17. XRD pattern of untreated, Ag and Ag+N implanted UHMWPE. 
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The XRD and DSC analysis reveal an increase in the main diffraction peak area and in 

the endothermic peak area, respectively, confirming a gradual increasing in the 

crystallinity after Ag and Ag+N implantation, respectively. Costa et. al and Joo et al. 

also observed this result (Costa et. al 2001, Joo et. al. 2000).  

 

Table 5.3.  % Crystallinty of untreated Ag and Ag+N implanted UHMWPE samples 

calculated by XRD  

 

UHMWPE % Crystallinity 

Untreated 30.5 

Ag Impl. 40.2 

Ag+N Impl. 40.3 

 

Evidently, either Ag or Ag+N ion implantation of UHMWPE led to increase in 

% crystallinity compared to untreated sample. As reported previously by a few 

researchers (Al’Maaded et al 2005, Bracco et. al. 2005), this reason might be due to the 

oxidation after ion implantation. After ion implantation, because of the higher oxygen 

permeability, oxygen can enter the polymer material more readily, thereby causing 

greater oxidation in the presence of irradiation induced free radicals. Oxygen will react 

with free radicals in the polymer causing further chain scission. As a consequence, the 

crystallinity of UHMWPE increases as the scission of tie molecules led to reduced 

molecular weight, which in turn permits polymer chain in non-crystalline regions of the 

polymer to fold and crystallize, as well as to allow increasing perfection of existing 

folded-chain crystallites.  

 

5.4. Surface Properties and Morphology 

 

5.4.1.  Scanning Electron Microscopy (SEM) and Optical Microscopy 

(OM) 

 

Surface properties of pure UHMWPE and Ag and Ag+N implanted UHMWPE 

samples were investigated by SEM. Optical Microscope (OM) analysis was also used in 

combination with SEM Analysis. Figure 5.18-a,b,c shows the SEM micrographs and 
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Figure 5.18 (d,e,f) shows the Optical Microscope micrographs of the sample surfaces. 

The optical microscopy pictures of the samples showed that (Fig 5.18 – d,e,f), ion 

distribution on Ag implanted surfaces (5.18.e) was more homogenous in comparison to 

the Ag+N implanted surface (5.18. d). 

 SEM micrographs in Figure 5.18 (a,b,c) were obtained randomly with several 

measurements. Results repsesent the surface morphology before and after implantation. 

Under a very high magnification, nano-crack arrays were found (Fig. 5.19 a,b,c). Shi et. 

al have observed some microcracks on UHMWPE surface and attributed stress-induced 

preferential orientation of the crystalline lamellae in the UHMWPE led to the origin of 

ripples containing micro-cracks (Shi et. al. 2000). As seen in Figure 5.18, the cracks on 

the pure UMMWPE surface are easily visible and can be about 100 nm. long and 10 

nm. wide. However, at the same magnifications, after implantation of UHMWPE, the 

cracks are much more smaller and significantly disappears. Especially on Ag implanted 

samples, cracks are almost disappeared. 
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(a.)  (d.) 

  
(b.) (e.) 

  
(c.)       (f.) 

 

Figure 5.18.  SEM (x200000 magnification) and OM Micrographs (x100 magnification) 

of the Untreated (a,d) Ag+N implanted (b,e) and Ag implanted (c,f) 

UHMWPE samples.  
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5.4.2. Hardness  
 

 Table 5.4 shows the relative shore hardness values for pure UHMWPE and Ag 

and Ag+N implanted UHMWPE samples measured four times. An increase in 

microhardness values with respect to pure UHMWPE has been measured after 

implantation. Particularly, the hardness value of Ag implanted sample is almost % 13 

higher and Ag+N implanted one % 8 higher with respect to untreated UHMWPE .  

 Shirong Ge et al. ound an increase in the hardness measurements after N 

implantation with respect to the pure UHMWPE. Valenza et.al also showed that after 

Xe ion implantion to UHMWPE, an increase of the surface microhardness with respect 

to pure UHMWPE was measured, particularly in the sample implanted at 3x1015 Xe+ 

/cm2, the microhardness was about 30 % higher with respect to that of pristine 

UHMWPE sample (Valenza et. al. 2004). 

 
Table 5.4.  Shore-D hardness values of untreated. Ag implanted and Ag+N implanted 

UHMWPE. 

 

Untreated 

UHMWPE (Shore D) 

Ag implanted 

UHMWPE (Shore D) 

Ag+N implanted 

UHMWPE (Shore D) 

58,2  65,9 62,8 

58,6 67,1 64,2 

58,7 66,2 63,2 

58,5 66,4 63,4 

Average= 58,5 average= 66,4 average= 63,4 

 

From the FT-IR and Raman Spectroscopy measurements, we found that after 

implantation crosslinking and high carbon concentration occur on the surface of 

UHMWPE, therefore we expect an increase in the hardness values after implantation on 

the surface. Many researchers also reported that an increase in hardness is due to the 

crosslink formation on the surface (Robertson 2002, Liu et. al. 1996, San et. al. 2001, 

Rao et. al. 1995) and network structure in molecular chains (Allen et. al. 1996).  

An increase in hardness is due to the increase in crystallinity and the breakage of 

the long chains of the polymer, increasing brittleness and weakening the material 
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(Robertson 2002). The increase in hardness occurs because the precipitates restrict the 

motion of dislocations near the surface.  

The observed improvements in the hardness and morphologic properties can be 

attributed to graphitization on the surfaces of the samples induced by ion bombardment. 

A graphite-like structure shows better mechanical properties and better biocompatibility 

(Valenza et. al. 2004). In addition to graphitization, many researchers (Guzman et. al 

2002, San et. al. 2002, Chen et. al. 2000, Lee et. al. 1994) have suggested that cross-

linking of polymer chains, by the reaction of free radicals with ions, also strengthens the 

surface properties through the formation of a three-dimensional connected network. 

 

5.4.3. Wettability 
 

Generally, polymers are hydrophobic, and conversion of these polymers from 

being hydrophobic to hydrophilic usually improves the adhesion strength, 

biocompatibility, and other pertinent properties. Formation of oxygen functionalities by 

ion implantation is one of the most useful and effective processes of surface 

modification (Kurtz 2004).  

The improved wettability of UHMWPE contributes specifically to lower friction 

than the other materials articulated against UHMWPE under physiologic loading and 

lubrication conditions. It is also proved that the improved wettability on the implanted 

UHMWPE surface increases its blood compatibility on the friction area. Surface 

wettability was measured before and after implantation of the UHMWPE samples using 

both water and simulated body fluid (SBF) as wetting liquids in the experiments. The 

mean contact angles of the samples measured on both unimplanted (pure) and 

UHMWPE and Ag and Ag+ N implanted UHMWPE surfaces are shown in Table 5.5. 

 

Table 5.5.  Mean Contact Angle Values of untreated, Ag implanted and Ag+N 

implanted UHMWPE. 

 

Contact Angle (°) 
Untreated 

UHMWPE 

Ag Implanted 

UHMWPE 

Ag+N Implanted 

UHMWPE 

Water 56.2 ° 44.8 ° 32 ° 

SBF 49.4 ° 34 ° 24.6 ° 
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The water wetting and SBF wetting surface measurements indicated that the 

wetting angle decrease with the implantation, from about 56.2 o for pure UHMWPE to 

the value of 44.8 o for Ag implanted and 32 o for Ag+N implanted sample, respectively 

when the water is used as wetting liquid. The results implies that the wettability of 

UHMWPE is improved as a result of either Ag or Ag+N implantation treatment. 

Among the implanted samples, Ag+N implanted sample shows the best wetting ability. 

According to Table 5.5, the results also suggest that SBF wetting ability is better than 

water.  

Several researches reported that ion implantation increases the wettability of 

polymers (Lewis 2001, Shirong et. al. 2003, Bracco et. al. 2006). For example Shirong 

et al. (Shirong et. al. 2003) reported that wettability improvement with N implantation. 

Torrisi et.al have found that with Xe implantation of UHMWPE surface, the wettability 

of the surface was improved, but they reported that bovine serum album wetting ability 

is lower with respect to water (Torrisi et. al 2006) .  

 

5.4.4. Atomic Force Microscopy (AFM) 
 

Figure 5.19 shows the surface topography of pure and implanted UHMWPE 

samples. As seen from the figure, the surface roughness of the UHMWPE surface 

decreases from 121.35 Ra (nm.) for pure polymer to 62.632 Ra (nm), 106.94 Ra (nm) 

for Ag and Ag+ N implantes samples, respectively. This shows that Ag and Ag+N 

implantation improves surface smoothness . It was reported that rough surfaces caused 

more wear debris (Lewis 2001, Gispert et. al 2006), therefore it is expected to have less 

wear debris after implantation of UHMWPE surfaces. The surface wettability results are 

in good agreement with the surface rougness results obtained by AFM. Better 

wettability was obtained by a decrease in surface roughness of the UHMWPE after 

implantation. Particularly Ag implanted sample shows smoother surfaces with respected 

to Ag+ N implanted one. The wettability or adhesion is also an important aspect to 

quarantee the wear resistance improvement. The wear mechanism is mainly related to 

the polymer structure and particularly with the crystallinity % and cross-linking. If the 

polymer has a higher crystallinity or crosslinked, the macromolecular chains are locked, 

their orientation are responsible for wear debris and inhibits the wear debris. With the 

result of DSC and XRD analysis, we observed increasing in % crystallinity after Ag and 
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Ag+N implantation and therefore it is expected to have better wear resistance after 

implantation of UHMWPE.  

 

Table 5.6.  Roughness data of untreated, Ag implanted and Ag+N implanted UHMWPE 

obtained from AFM measurements. 

 

Untreated 

UHMWPE 

Ag Implanted 

UHMWPE 

Ag+N Implanted 

UHMWPE 

Rms(nm) Ra(nm) Rms(nm) Ra (nm) Rms (nm) Ra (nm) 

Surface 

Roughness 

159.11 124.05 38.46 30.20 94.50 74.70 

 



 66 

 
(a.) 

 
(b.) 

 
(c.) 

 

Figure 5.19  3D AFM micrographs of untreated (a.), Ag implanted (b.) and Ag+N 

implanted (c.) UHMWPE. 
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CHAPTER 6 
 

CONCLUSION AND FUTURE STUDIES 
 

In summary, usually there are two ways in modifying the structure, composition 

and properties of surface of materials when using energetic ions irradiation. One is the 

introduction of ions species (doping or chemical effect), the other is irradiation-induced 

defect (radiation or defect effect). In this work, Ag and Ag + N hybrid ion implantation 

of UHMWPE surfaces using metal-gas co-implantation technique were performed. The 

effect of implantation on the chemical, structural, thermal and surface properties of 

UHMWPE were investigated.  

The radiation effect originates from the momentum transfer to the target (nuclear 

stopping) and the exciting the electric system of the target (electric stopping) when 

energetic ions pass through a polymeric material. RBS analysis shows that, Ag ions can 

be detected up to 32 +15 nm underneath the surface after Ag implantation, and 42 +15 

nm underneath the surface after Ag+N implantation. Those values are in 

correspondence with SRIM analysis. 

The optical absorption photospectroscopy exhibit an increase in optical 

absorption followed by a shift of the optical absorption threshold in both Ag and Ag+N 

implanted samples. From the ATR/ FTIR, it was found that cis- & trans- geometric 

isomerism occured and C-H bond concentration decreased after Ag and Ag+N 

implantation, which is believed to be caused by crosslink formation on the surface. C�N 

band was also observed after Ag+N implantion of the sample.  

Raman spectra suggests that the chemical structure of UHMWPE has changed 

after implantation. Especially, the decrease of relative intensity of the peak at 1293 cm−1 

indicates that the polymer chain is broken and its length becomes much smaller than the 

chain length of the unimplanted polymer. The irradiation processes mainly induce bond 

breakage or chain-scission by displacing atoms from polymer chain, producing recoil 

atoms and molecular scission products. 

Free radicals formation leads to the subsequent surface and subsurface oxidative 

degradation of the virgin component. Surface oxidative degradation results from the 

interaction of oxygen from the atmosphere with the long-lived free radicals. Subsurface 

oxidative degradation is a consequence of the reaction of these radicals and the oxygen 
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that has diffused into and dissolved in the polymer. Free radicals are able to recombine 

rather than react with oxygen, leading to increased cross-linking. It is stated that this 

increased cross-linking tends to lead to a higher molecular weight because the chain is 

longer, thus there is a greater probability that a carbon atom will produce a secondary 

branch to begin another chain. Ion implantation states that increased cross-linking tends 

to an increase in wear resistance and will enhance other mechanical properties. 

In TGA and DSC analyses, the results can be attributed to the ion bombardment 

inducing % crystallinity increase after implantation . It is also seen that Tm, 	Cp and 

	Hm values are changed. The crystallinity results obtained by XRD are in good 

agreement with the DSC results.  

The enhancement of radiation effect also leads to the formation of more active 

chemical bonds that connect with each other and the degree of cross-linking increases. 

Further increasing the fluence the randomly three-dimensional hydrogenated carbon 

network is formed finally. The increase of the degree of cross-linking and final 

formation of hydrogenated amorphous carbon network should be responsible for the 

increase of hardness and wettability. The effects of the mechanism can be clearly 

observed from the SEM and AFM results. Roughness is decreased after both Ag and 

Ag+N implantations, respectively. 

In conclusion, after Ag and Ag+N ion implantation of UHMWPE we observe 

that, breaking off bonds and formation of free radicals on the surface. The processes of 

cross-linking are favored by the free radical presence. It is also observed that increase in 

crystallinity and thermal stability. Due to this structural modification, crack formation 

reduced on the surface. Thefore, the hardness of the surface increased which caused an 

improvement in wettability and roughness on the surface. Hardness and roughness were 

improved better after Ag implantation, while better wettability was observed after 

Ag+N implantation.  

For future studies, considering biomedical application, antibacterial tests could 

be performed. It is clear from the preceding discussion that significant improvement of 

wear resistance of UHMWPE is expected. From this point, near future studies should be 

on wear and mechanical properties of the material. However, it should be indicated that 

the present wear test results may not immediately be applicable to total joint 

replacements since the test configuration (pin-on-disc), type of motion (unidirectional) 

and lubricant (water) employed in the present study differ from those in human joints. 

However, some investigators have indicated that the simple tests can give a reasonable 
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simulation of contact conditions, and can serve as a first resort for screening surface 

treatment parameters. With a view to providing firm technological database for 

prolonging the lifetime of total joint replacement prostheses via surface engineering of 

the articulating surfaces, long-term simulator tests with bovine serum and protein 

containing fluid are planned.  
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