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ABSTRACT 
 

AN EVALUATION METHODOLOGY FOR ASSESSING ARTIFICIAL 

LIGHTING QUALITY IN ARCHITECTURE: THE CASE OF APIKAM 

 

The aim of this dissertation is to design a qualitative evaluation methodology for 

artificial lighting. There is a problem in the general characteristics of lighting industry, 

deriving from its technical vocabulary which is mainly based on quantitative 

parameters, values, and systems which in some ways are neglecting the main ingredient 

of architecture: the user. 

 The evaluation methodology that is subject of this dissertation was considered as 

a qualitative approach to lighting quality. The study benefited from the knowledge of 

environmental psychology, concerning the effect of lighting on behaviors and tried to 

integrate it to the process of assessing lighting quality. The methodology depends on 

data collection by various means such as surveys, measurements, and computer 

simulations.  

To test the qualitative evaluation methodology, a case study was designed in the 

exhibition hall of the Ahmet Piri�tina City Archive and Museum (APIKAM) in �zmir. 

The evaluation methodology was successfully operated and made a detailed evaluation 

possible on the two lighting systems in the exhibition hall of APIKAM.  Both lighting 

systems failed in functional aspects, because of the high intensity of light they produce, 

the emission of UV and IR wavelengths, and glare problems. They are simply not 

appropriate for the selected environment, where   organic – based materials are 

exhibited. Recessed fluorescent lighting system failed in physiological aspects as it 

triggers less arousal than halogen spotlighting system. Both lighting systems have failed 

in attention scale under psychological aspects, because none of them supply continuity 

in the order of visual clues that match with the sequential order of the exhibition. For 

aesthetic and environmental judgments, the results of the survey showed that halogen 

lighting system was the preferred one by the subjects. For the sub-part of feelings, 

recessed fluorescent lighting systems failed, because it influenced generally negative 

feelings, while positive feelings are generally influenced by halogen spotlighting 

system.   
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ÖZET 
 

M�MARLIKTA YAPAY AYDINLATMA N�TEL���N� BEL�RLEMEK 

�Ç�N B�R DE�ERLEND�RME YÖNTEM�: APIKAM ÖRNE�� 

 

Bu tezin amacı yapay aydınlatma kalitesini belirlemeye yönelik niteliksel bir 

de�erlendirme metodolojisi geli�tirmektir. Aydınlatma endüstrisinin temel problemi 

niceliksel parametreler ve sistemler üzerinde yükselen teknik yapısıyla mimarlı�ın 

temel bile�enlerinden biri olan insan faktörünü gözardı eden bir kurguya sahip 

olmasıdır.  

De�erlendirme metodolojisi, aydınlatma aracılı�ı ile olu�an mekansal dinamikler 

üzerinde etkisi oldu�u dü�ünülen tüm de�i�kenleri gözeten niteliksel bir yakla�ım 

olarak gözetilmi�tir. Aydınlatmanın davranı� üzerindeki etkilerini de gözeten bu çalı�ma 

bilgi alanı olarak çevre psikolojisinden yararlanmı� ve  bu davranı�sal etkileri 

aydınlatma kalitesinin belirlenme sürecine dahil etmeyi amaçlamı�tır. Veri toplamak 

amacıyla anketlerden, manuel ölçümlerden ve bilgisayar simulasyonlarından 

yararlanılmı�tır.  

De�erlendirme metodolojisini test etmek amacıyla, �zmir Ahmet Piri�tina Kent 

Ar�ivi ve Müzesi (APIKAM) sergi salonunda bir çalı�ma alanı olu�turulmu�tur. 

Geli�tirilen metodoloji, APIKAM sergi salonunda mevcut iki aydınlatma sistemine 

ili�kin olarak detaylı bir de�erlendirmeyi mümkün kılmı�tır. Her iki aydınlatma sistemi 

de, ürettikleri ı�ı�ın yüksek yo�unlukta olması, UV ve IR dalgaboylarını ı�ımaları, ve de 

yarattıkları kama�ma problemleri nedeniyle fonksiyonel de�erlendirmeler özelinde 

ba�arısız olmu�tur. Her iki sistem de organik kökenli malzemelerin sergilendi�i bir 

ortamın aydınlatılması için uygun de�ildir. Fizyolojik de�erlendirmede, florasan sistem, 

halojen sisteme oranla daha az uyarıcı etkiye sahip oldu�u için ba�arısız olmu�tur. 

Psikolojik de�erlendirmede, her iki aydınlatma sistemi de dikkat ölçe�i özelinde, mekan 

hiyerar�isi ile çakı�an bir görsel izlek olu�turamadıkları için ba�arısız olmu�lardır. 

Anket sonuçları, estetik ve mekansal yargılar ölçe�inde, tercih edilen aydınlatmanın 

halojen sistem oldu�unu göstermektedir. Duygusal tepkiler özelinde, florasan 

aydınlatma sistemi, genel olarak olumsuz duygulanımları tetikledi�i için ba�arısız 

olmu�tur. 
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CHAPTER 1 
 

INTRODUCTION 
 

Artificial lighting has been one of the important basics of architecture, since it 

provides possibility to all kinds of activities especially at night, when the natural source 

of illumination –the sun- is not available.  The invention of electricity at the end of the 

nineteenth century initiated a new era for architecture, where electric lighting became a 

crucial component for spatial quality. As Mies van der Rohe stated, the history of 

architecture is the history of man’s struggle for light (Trauthwein 2003). Light plays a 

central role in the design of a visual environment. The architecture, users, and objects 

are all made visible by the lighting. However, light is no longer just an essential element 

that is needed when it is dark. Moreover it is an effective instrument influencing our 

perception of architecture, consequently our appreciation of spatial quality.  

Architecture is a multi-layered profession interrelated with varying disciplines 

such as art, engineering, psychology, sociology, philosophy, etc. Each of these varying 

disciplines has its own unique terminology, regulations, and ways of manipulating 

problems. When “quality” is at stake; all these varying disciplines would define and 

judge from different perspectives. Thus “spatial quality” should be assumed as a 

summary of all these perspectives.  

 

1.1. Definition of the Problem 
 

During the twentieth century electric lighting became the subject of a profession 

with its own enormous terminology and conventions. The most important innovation 

was the appearance of lighting engineering in the light of the idea that artificial lighting 

was a technical theme. This evolution was the natural result of a belief that lighting 

comprised a science and solving lighting problems needed a technical and scientific 

formation. There is nothing unusual or wrong about this belief. Actually it may be seen 

as a necessity for this profession to be able to improve in the world of technology and 

rationality, where specialization is fundamental. Thus the new profession soon 

established its own sphere of terminology which was mostly defined by engineers and 

technical specialists. Architects and lighting engineers established a collaboration from 
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the start and together determined the night-time look of cities. This co-operation, 

however, did not last long, since lighting engineering soon became the one and only 

profession with its large supporting technical background and technical vocabulary that 

enabled deciding the night-time look of cities (Jones 1983). 

The problem here lies in the general characteristics of this technical vocabulary 

which is mainly based on quantitative parameters, values, and systems which in some 

ways neglect the main ingredient of architecture: the user. 

The other problem is the light engineers’ understanding and treatment of quality 

which perhaps unconsciously separates “lighting quality” and “spatial quality” from 

each other. This judgment could be seen as too harsh, but then, what could be the 

explanation for the absence of the major peculiarities of “spatial quality” in the 

definition of good lighting criteria? The British Lighting Council (1962) defines good 

lighting as follows: 

 

…What then, is good lighting? It is not just good lamps, or good fittings, or 
plenty of light, or lack of glare, or suitable color or a workmanlike installation, or 
lighting well maintained. It isn’t either daylighting or electric lighting. It is all these 
things put together in such a way that people can get on with it safely, quickly, 
certainly, and easily; and all at a reasonable cost in relation to other essential costs. 

 

It is remarkable that all mentioned criteria are related to visual ability, safety, 

and economics. It is important to recognize that the focus of lighting researchers has 

been the optimization of visual performance. Their investigations concern the 

characteristics of lighting and tasks that make details easy to see and that would enable 

safety in spaces. Non-visual aspects of the lighting-space relationship, such as 

motivation, subjective impressions of the illumination, behavioral outcomes, and 

physiological effects have been clearly of secondary interest.  

According to lighting engineering good lighting is related to the supplied visual 

abilities, illuminance levels, and uniform distribution of light. Throughout the twentieth 

century several models had been developed to measure and predict lighting quality, 

such as Visibility Level Model (VL), Equivalent Sphere Illuminance (ESI), Visual 

Comfort Probability (VCP), and Relative Visual Performance (RVP). Most of these 

models are still in use today and mostly deal with the issue of visual abilities and 

disabilities in space. There are some other models which are concerned with economics 

and energy consumption. 
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Supplying visual ability and achieving required illuminance levels do not 

necessarily ensure good lighting quality. The quality as well as the quantity of 

illuminance is important in producing a comfortable, productive, aesthetically pleasing 

lighted environment and achieving “quality” in lighting needs to take users into 

consideration with all the requirements without limiting it to visual ability alone. Today, 

our most comfortable, pleasant spaces are those in which designers and users have 

retained control over the lighting: spaces such as museums, cinemas, and restaurants, in 

which objects of interest are correctly emphasized by the luminous environment. The 

lighting in private homes is generally satisfactory and pleasant for the same reason, 

because it has usually been designed and adjusted by the users to suit their specific 

needs for visual information, not to achieve some mandatory prescribed amount of light. 

Various researches have demonstrated that light has a profound impact on 

people, which should be studied under varying criteria such as spatial aesthetics, 

psychology, physiology, etc.  While fulfilling the visual needs, lighting engineering 

does not pay much attention to physiological and psychological comfort and spatial 

aesthetics. 

Light is a visual phenomenon which can affect motivation and performance 

levels. Light also affects our biological clocks in the following manner: It is well known 

that circadian rhythms, such as sleeping or waking cycles, are influenced by light.  

Many business travelers use melatonin tablets to help them maintain their work 

efficiency and performance when they travel to locations in different time zones. What 

many people do not realize is that simply increasing their exposure to light could also 

help them naturally alter their melatonin levels (Steelcase 1999).  

Lighting on the other hand has a strong psychological effect on people. It has 

many emotional qualities that can considerably change people's moods. Light influences 

our well-being, the aesthetic effect and the mood of a room or area. Phototropism is 

another psychological effect of light. Since lighting is always a part of our physical 

environment, it is not much to say that we are constantly manipulated by lighting.  

Lighting quality should be redefined as the degree to which a lighting 

installation fulfils all the requirements of user needs, which have been summed up 

under three main headings as physiological, functional, and psychological in this 

dissertation. Moreover, good lighting should also consider spatial aesthetics, economics, 

and energy consumption. Technical know-how is sine-qua-non for lighting. However, 

concepts of lighting quality could be enhanced in order to serve spatial quality 
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determined as in architecture. It is certain that lighting is a science and will remain so. 

However, being so much related to architecture and being so much active in the creation 

of spaces, it is believed that the lighting industry should be open to some further 

concepts from other disciplines such as architecture, art, and psychology.  

 

1.2. Background 
 

I believe in an emotional architecture. It is very important for humankind that 
architecture should move by its beauty: if there are many equally valid technical 
solutions to a problem, the one which offers the user a message of beauty and emotion, 
that one is architecture.  

 

Luis Barragan (Ambasz 1976) 

 

Lighting can be used to modify spaces in many different ways. It can reveal or 

conceal surfaces, heighten or diminish spaces. The theatrical lighting designer and the 

artist have often exploited lighting in this way, and there is much that the architect and 

lighting engineer can learn from them (Hopkinson 1969). 

According to Millet (1996) our experience of light is connected to specific 

places where light contributes to the identification of genius loci, the peculiar character 

of a place as it is impressed upon our minds. She also adds that ideally, light not only 

fulfills its function of providing illumination for visual activities but does so in a way 

that enriches our experience. 

It is useful to discuss the lighting problem from another aspect, which is beyond 

the purely “lighting function” which will depend upon the physiological needs of those 

using the space. It is the architectural function relating lighting needs to all other design 

considerations that must form part of the architectural compromise (Philips 1989). 

Lam (1992) discusses the quality problem in lighting as follows: “A 

comfortable, pleasing, relevant environment is as important as visual performance 

determined by the conditions of good lighting” . Quality, rather than quantity, is the key 

to good lighting. A small improvement in the quality of the luminous environment 

produces better visual performance than a large increase in intensity. Lam (1992) adds 

that lacking an understanding of the basic principles involved, the technicians who now 

control our luminous environments have reduced the criteria for illumination to simple 

numbers, which are basically unrelated to vision, perception, comfort, or pleasure.  
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Lechner (1990) demonstrates that lighting is considered only as a problem in 

quantity and not as a problem of quality which must be integrated with architecture. 

Ignoring quality has always been at the expense of visual performance. The change in 

the atmosphere of a space denotes a qualitative chance in which quantity of light is of 

only secondary importance (Von Meiss 1990). 

The appropriate quantity of light contributes to the achievement of good quality, 

but is not its sole determinant. Other dimensions, including illuminance uniformity, 

luminance distributions, spectral power distribution, and glare are potential contributors 

to overall lighting quality (Miller 1994). What is “appropriate” depends on the setting, 

activities, aesthetics, and other user needs in the space. Furthermore, the characteristics 

of the people who will use or experience the space also influence whether or not the 

lighting installation will achieve good quality (Boyce 1981).  

Flynn et al. (1992) noted that lighting, in addition to providing task visibility, 

also influences motivation, orientation, mood, social interaction and well-being. 

A large number of research projects that compare the effects on health, well-

being and alertness as a result of people working under different lighting conditions 

have been carried out. The results show that good lighting indeed has important 

beneficial effects, not only visually but also biologically. Bommel and Beld (2003) 

stated that, on the basis of research on the biological effects of lighting, it is evident that 

the rules governing the design of good and healthy lighting installations are, to a certain 

degree, different from the conventionally held rules. Not only the light cast on the visual 

task, but also light that enters the eye determines the overall quality of lighting.  

The standard design process, fostered by the Illuminating Engineering Society 

(IES), is obviously unsuited to produce a high-quality fit between needs and luminous 

environment, nor was it ever intended to produce such a fit (Lam 1992). A lighting 

concept should be derived from the set of programmed activities and biological needs, 

so that the definition of the luminous environment will complement and reinforce the 

general architectural concepts; then - only then – should details and hardware be 

selected to execute the concept (Lam 1992). Lam continues to argue that this is the 

diametric opposite of the typical “engineered” approach, which starts with the selection 

of light fixtures and then, taking them as givens, places them in patterns to achieve 

predetermined illumination levels. Veitch and Newsham (1996) have argued about 

lighting quality as follows:  
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The failure to reach agreement about lighting quality has been seriously 
impeded by the failure to recognize the question as one part of the larger attempt to 
determine the nature of environmental quality, provided to support human activity. The 
outcomes that benefit from good lighting quality are behavioral outcomes. Behavioral 
scientists have been remiss in not looking to the lighting literature for a different 
perspective. Lighting researchers have been remiss in not following the behavioral 
literature, and in particular its standards for research design, methods, statistical 
analysis, and reporting. In consequence, we know less about lighting quality than we 
should after more than a century of lighting practice and ninety years of its professional 
organizations. 

 

1.3. Objectives 
 

In this dissertation light is examined as a creative design tool not only with its 

ability to supply visual communication in space, but also in terms of its contributions to 

space and spatial dynamics in various degrees and its effects on users on both 

physiological and psychological scales. The aim of this dissertation is to design a 

qualitative evaluation methodology for artificial lighting, which will help criticize and 

judge the quality of a pre-installed artificial lighting system by forming criteria related 

to visual and non-visual effects of light. The secondary intention is to carry out the main 

concepts and the in-between parts of lighting and space relationship and to fill the gaps 

in illumination techniques under the guidance of spatial quality concepts. 

 

1.4. Methodology 
 

The evaluation methodology that is subject of this dissertation is considered as a 

qualitative approach to lighting quality as it tries to deal with all the variables which are 

thought to be effective in spatial dynamics created through lighting. Beyond lights’ 

main (and mostly known) ability of setting up the required conditions in terms of 

seeing; its effects on the appearance and perception of the architectural body and 

architectural components; and its effects on users both in physiological and 

psychological scales have been taken into account. Lighting study so far has produced a 

large body of knowledge concerning the visual effects of light and created several 

models as well as regulations for controlling light for that purpose, with little attention 

to other consequences such as the architectural space itself, and behavioral outcomes. 

This study may be seen as a way of integrating the non-visual effects of light in the 

process of ascertaining lighting quality, without neglecting the visual parameters instead 

of feeding from them. In this framework, this study will attribute to the analysis of 
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artificial lighting quality without reaching one unique numerical data, instead, an 

evaluation where numerical and non-numerical variables have been together interpreted. 

With an intention to cover all possible features in the lighting-space-user relationship, 

the evaluation methodology is structured as a combination of various aspects, as 

physiological, functional, and psychological respectively. Each of them works like a 

plug that includes several variables inspected under various lighting conditions such as 

illuminance (amount of light), luminance distribution, glare, lighting systems, and color.  

The evaluation methodology is subject to change in accordance with the architectural 

function, as each function has its own unique requirements in terms of lighting. As the 

structure of the evaluation methodology is formed of separate plugs, it is possible to add 

different aspects or remove some of them according to the intended function of space. 

This distinctive feature renders the constructed methodology valid for varying 

architectural functions upon little modification. Unlike the quantitative models 

developed by light engineers, in this qualitative approach, each part results in separate 

outcomes. These outcomes under three variables together form an answer for the quality 

of lighting in a space with detailed recommendations.  Thus, without trying to reach a 

single magical number, all numerical and non-numerical factors were together evaluated 

to assess the quality of lighting.  

Prior research about lighting from varying disciplines such as architecture, 

engineering, and environmental psychology were examined in order to reach the criteria 

in terms of architectural aesthetics, physiological, and psychological needs.  

The main structure of the evaluation methodology is inspired from a study, done 

by Durmisevic and Sarıyıldız in 2001 in Delft University of Technology, which is a 

model for quality assessment of underground spaces-public transport stations. The main 

idea of that study was to deal with all the variables which were thought to be effective 

in terms of quality. Durmisevic and Sarıyıldız (2001) designed a conceptual framework 

(Figure 1.1); based on the idea that architecture integrates both function and form. 

According to them, through function and form, the psychological aspects are 

interwoven by having an influence on the experience of space in a given context. Only 

when both are together they give to each other a meaning and a quality. Under three 

main aspects as functional (Qf), psychological (Qp), and structural (Qs); 23 variables 

were examined in detail for quality assessment. The level of quality was determined as 

the sum of these three aspects (�Q) (Figure 1.2). Thus, it is important that the design 

has an appropriate response for each variable.  
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Functional aspects comprise the functional requirements for an underground 

station, internal connections of the spaces and efficiency of movement. Psychological 

aspects are all aspects that are related to the user’s experience of a space beginning with 

public safety on one side and comfort on the other. Structural aspects include the overall 

quality of the construction including its flexibility and possibility to change. In other 

words, the main technical requirement of a structure is sustainability.  

This work of Durmisevic and Sarıyıldız has influenced this dissertations’ 

methodology in a particular way, which is the idea of dealing with every variable that is 

thought to be effective in spatial quality. A conceptual framework was formed, which is 

peculiar to lighting-user-space relationship. Then each variable under the conceptual 

framework were inspected under various lighting conditions. This topic will be 

explained in detail in Chapter 3.  

 

 

 
 
 
 
 
 
 
 

Figure 1.1. Conceptual Framework in Detail 
(Source: Durmisevic  and Sarıyıldız 2001) 
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Figure 1.2. Determinants of Spatial Quality  
(Source: Durmisevic  and Sarıyıldız 2001) 

 

1.4.1. Case Study 
  

To test the qualitative evaluation methodology, a case study was designed in the 

exhibition hall of the Ahmet Piri�tina City Archive and Museum (APIKAM) in �zmir, 

which was a fire station before the renovation done by the Municipality of �zmir 

between the years 2002 and 2004. The building is now used for cultural and educational 

purposes as the City Archive and Museum.  

The main reason for choosing this space was that it is illuminated only by means 

of artificial light, which is made possible by two different lighting systems. The first 

one is a ceiling recessed fluorescent box system with a transparent methacrylate flat 

diffuser. Each box includes four fluorescent tubes with 5400 lm light output. 40 boxes 

with 216000 lm in total are used to illuminate the space. The second lighting system is a 

halogen spotlighting system which is mounted on tracks on the ceiling with four 

different suspension heights as 40, 60, 80, and 160 centimeters respectively. Each spot 

has 1279 lm light output at a 10.0° light angle. 217 spots with 277543 lm in total are 

used to illuminate the space. The two different lighting systems are not operated at the 

same time. There is not a distinct order known for the selection between them. Although 

the question was put, no satisfactory answer was obtained. It looks like it is a random 

choice mostly related to economical parameters, because the more preferred lighting 

system is the recessed fluorescent box system which is five times cheaper to operate. 

The lighting systems are assembled by an individual who owns a lighting store in 

Manisa. He mentioned that, his main aim when designing the lighting systems was to 

have a direct light on each task surface and create a dramatic effect in the exhibition. He 

added that the fluorescent lighting system was not his choice. He claimed that the 

Functional Aspects 

Pyschological Aspects 

Structural Aspects 

QUALITY MEASUREMENT 
 

Qf 
 

Qp 
p 

Qs 

�Q 
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fluorescent lighting system was demanded by the employer for supplying basic task 

lighting (visual access, safety) at times when no visitors are present in the exhibition. 

The exhibition is mostly visited by students from high schools and universities, 

so the average user age range is between 15 and 30. Visits are made generally in groups 

under the supervision of an official guide, with a lecture about the history of �zmir. The 

exhibition includes three parts consisting of the headings; History of �zmir (3000 B.C. - 

1933 A.C), City and Trade (1838-1933), and City and Fires. There is no real statistics 

available for the amount of visitors for this exhibition. The official guide claimed that 

the amount of visitors is up to the seasons. The added that in fall, winter, and spring, 

when the schools are open, they welcome group visitors at least two days in a week in 

general. He mentioned an approximate number of 150 visitors per week for high season. 

In summer the exhibition welcomes a small amount of individual visits.  

The exhibition hall is rectangular in shape and formed by three rectangles 

attached to each other side by side without any auxiliary spaces in the places of 

transition (Figure 1.3). It has an area of 436.93 square meters. 

 

 
Figure 1.3. Plan of the Exhibition Hall in APIKAM 

 

The walls in the exhibition are smoothly plastered and colored with a water-

based very light matte yellow paint which has a reflectance factor of 0,70. The 

suspended ceiling is matte white and has a reflectance factor of 0,78. The shiny granite 

floor receive direct light from both of the lighting systems and has a reflectance factor 

of 0,68.  The task surfaces are of laminated wood in matte white and have a reflectance 

factor of 0,65. 
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1.4.2. Survey 
 

A survey was carried out to assess user evaluations related to the two lighting 

systems of the exhibition hall in APIKAM. The survey included five sections which 

deal with different dimensions of the lighting-user-space relationship, as personal 

information, lighting and task, aesthetic and environmental judgments, feelings, and 

perceptual preferences. 

The first section includes four questions related to sex, age, job, and visual 

disabilities. The second section includes four questions too which ask subjects to critic 

their visual abilities within the space according to lighting systems. The third section 

includes eleven questions to help subjects judge the lighting systems within aesthetical 

and environmental scales.  

The fourth section is a P.A.D. scale seeking for emotional outcomes related to 

lighting with fourteen pairs of adjectives. P.A.D. is a three dimensional temperament 

model developed by Mehrabian (1976). The latter theorized that one can describe any 

emotion with these three dimensions: pleasure-displeasure (P), arousal-nonarousal (A), 

and dominance-submissiveness (D). “P” signifies that one experiences more pleasure 

than displeasure.  It relates positively to extraversion, affiliation, nurturance, empathy, 

and achievement, and negatively to neuroticism, hostility, and depression. “A” signifies 

that one responds strongly to unusual, complex, or changing situations.  It relates to 

emotionality, neuroticism, sensitivity, introversion, schizophrenia, heart disease, eating 

disorders, etc. “D” signifies that one feels in control over his/her life.  It relates 

positively to extraversion, assertiveness, competitiveness, affiliation, social skills, and 

nurturance, and negatively to neuroticism, tension, anxiety, introversion, conformity, 

and depression. 

The fifth section includes two questions for assessing perceptual preferences and 

attention levels according to the lighting systems. 

Each subject filled the survey twice, once for the ceiling recessed fluorescent 

lighting system and once for the halogen spotlighting system. Before filling the surveys 

they were explained clearly what to do and were asked freely to visit the exhibition for 

five minutes under each lighting system. Most of the questions included a likert scale 

from 1 to 5. Subjects checked a number which was closer to their opinion. 67 subjects 

participated in a time span of three days. The amount of subjects covers the two thirds 
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of the amount of visitors for three days. The general profile of the subjects in terms of 

age, sex, job, and visual disabilities is given in Table 1.1. 

The data collected through surveys is evaluated with the software named 

“Analyze It for Excel” which includes Anova, Manova, Chi Square, and other tools to 

obtain the correlations among different variables. The collected data is exposed to four 

different tests with the help of this software. The first test is a categorical summary 

which finds the mean and standard deviation of the selections. The second test is the t-

test with a hypothesis that Ceiling Mounted Fluorescent Lighting System � Halogen 

Spotlighting System. It checks whether there is a distinct variance between the two 

lighting systems related to the selected parameter or not. The third and fourth tests seek 

the variance related to sexual preferences and age differences respectively.  

 

Table 1.1. General characteristics of subjects participated in survey 
 

Female 38 Sex 

Male 29 

20-30 39 

30-35 17 

35-40 8 

Age 

40-50 3 

Student 39 

Public Officer 8 

Officer 13 

Job 

Freelance 7 

Longsighted 14 

Shortsighted  4 

Visual Disabilities 
[corrected] 

Astigmatic 5 
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1.4.3. Photometric Calculations 
 

All photometric calculations which cover the structural and spatial components 

and furnishing are made through the lighting software Dialux (Version 4.2.0.5) in very 

accurate mode. Dialux is an open-source program for calculation and visualization of 

indoor and outdoor lighting systems. The main advantage of the program is its accuracy 

in calculation and its ability to work with almost all widely known lighting 

manufacturers through software plugs, which means that it is possible to make 

calculations concerning almost any lighting systems of any brand. The user interface of 

the software is shown in Figure 1.4 and Figure 1.5. 

The calculations of Dialux are compared with the results obtained through an 

exposure meter manually (Gossen Variosix F2). An exposure meter is a device used 

generally by photographers to measure light intensity. However the measurements of 

this device are shown as film exposure and F-stop setting rather than in luxes. The 

exposure indicator of an exposure meter is in seconds, to be more precise in fractions of 

a second. That means when an exposure meter shows 125, it actually indicates 1/125 of 

a second. F-stop value indicates the amount of light allowed through the lens by the iris 

opening. A third indicator is the Ev value, which is obtained by summing up the 

reference numbers of the exposure and the F-stop (RNt and RNf). As lighting 

calculations require measurements in lux, the EV values obtained by exposure meter 

need to be converted to lux through the following formula: 

 

Ilux=2.5 x 2(RNt+RNf)=2.5 x 2EV 

 

The measurements are made on the floor and on task surfaces for both lighting 

systems. Eleven points on floor and four points on four different task surfaces at a 

height of eighty centimeters are used for manual measurements. The amount of the 

calculation surfaces derives from the variety of the horizontal illuminance levels 

supplied by the lighting systems, which means all photometric results for bright, semi-

bright, and dark surfaces are included in the comparison process. After the comparison a 

difference of only 2 lm was detected on floor measurements. As this is a negligible 

amount of deviation, no calibration was made manually. 
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Figure 1.4. User interface of Dialux 4.2.0.5 (plan view) 
 

 

 
 

Figure 1.5. User interface of Dialux 4.2.0.5 (3D view) 
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In the following chapter the quality concepts will be discussed with ideas from 

different disciplines, such as lighting engineering, urban design, and architecture.  The 

third chapter will explain the detailed structure of the evaluation methodology for 

artificial lighting quality. Fourth chapter concerns with the field study of APIKAM. 

Last chapter includes the results of the field study, general conclusions, and 

recommendations for further research.  
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CHAPTER 2 
 

A REVIEW OF QUALITY CONCEPTS IN LIGHTING 
 

Discussions about quality are complicated because of its intangible nature. One 

cannot measure quality in the same way one measures length or weight. There are 

varying approaches to measure quality in various disciplines. The importance here lies 

in developing criteria which are suitable to cover all the requirements or necessities of 

the relevant function. The term “quality” deals with the essential or distinctive 

characteristics or properties of something by judging it according to how much closer it 

stands to a grade of excellence or perfection. Hence mentioning quality is implicitly 

tantamount to a mention of a bunch of criteria of perfection. This state of perfection 

varies in relation to the function, context, and the requirements and needs of the user.  

There are many different definitions available to describe quality with an aim of 

developing strategies to measure it. For example Fox (1993) defines quality as the 

processes and activities that need to be carried out to enable the manufacture of a 

product that fully meets customer requirements. It is possible to encounter numerous 

arguments similar to Fox’s. Three of these definitions are noteworthy because of their 

detailed structure and because they led to a system called “Total Quality Management” 

used in varying disciplines to improve the quality of the end-product. Actually they are 

more than a definition as they are acting as a management philosophy or a theory of 

organization and social process (White and Wolf 1995).  

These three different definitions of quality were developed by W. Edward 

Deming, Joseph M. Juran, and Philip Crosby at the beginning of the second half of the 

twentieth century. Deming1 suggested that the goal of firms should be constantly to 

improve their services and products for the customers. Juran2 defined quality as fitness 

for use or the ability of a service or product to satisfy a customers needs (Choi and 

                                                 
1 Deming describes quality departing from some concepts such as uniformity, dependability and 
preferentiality. He suggests 14 points for quality management, which could be constituted as the basis for 
transformation of the American industry. Deming (1986) mentioned that these 14 points could be applied 
anywhere, to small organizations as well as to large ones, to the service industry as well as to 
manufacturing..  

 
2 Juran (1964) says that techniques in controlling quality are far more developed than the ideas for 
managing the quality. He defines quality departing from two main points (Günaydın 2003): 
Customer satisfaction 
Elimination of defects 
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Eboch 1997). Crosby3 defined quality in connection with the concept of “zero defect” . 

Except Crosby’s all the definitions are substantially connected to customer needs in 

several ways. It is therefore vital to understand “customer needs” in order to be able to 

develop strategies to fulfill them for reaching excellence and thus good quality for 

certain functions.  

Within this framework of identifying “customer needs” or “user needs” the task 

of lighting seems to be a difficult one. It constitutes a theme of two varying disciplines 

such as engineering and architecture which have generally opposite perspectives in 

finding solutions for a specific problem. It is necessary to take a look at their respective 

ways of manipulating the quality issue in lighting to find out the deficiencies before 

setting up the required criteria. In the following section the development of artificial 

engineering and its ways of manipulating quality will be discussed. 

  

2.1. The Development of Artificial Lighting in the Twentieth Century. 

Lighting Engineering and Its Quality Definitions 
 

After the invention of the light bulb by Thomas Edison in 1879, a new era for 

architecture had begun. Architecture gained a new character through the rising use of 

artificial light. Architects were excited about the new technology and they were willing 

to learn and use the capabilities of lighting techniques in their works. Soon artificial 

light became one of the important mediums for architecture with its expanding market, 

which made many things possible for a city at night. 

Around the time when artificial light -based on electricity- was born and became 

a widely used tool for architecture for several purposes; modernism was becoming 

popular standing on a strong background leaning back to 1750s. Artificial light and its 

abilities for architecture, especially the one, that supplemented visual ability at night, 

were highly overlapping with modern philosophy and the spirit of the time (Zeitgeist). 

Modern doctrine come to stand for an illuminated world. That is quite explicit in Paul 

Scheerbarts (1914) manifesto “Glass Architecture” . Scheerbart was suggesting an 
                                                 
3 According to Crosby (1980): 
• Quality means conformance, not elegance 
• There is no such thing as a quality problem 
• There is no such thing as the economics of quality; it is always cheaper to do the job right the first 

time. 
• The only performance measurement is the cost of quality 
• The only performance standard is Zero Defects. 
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architecture of glass, which let the light of the sun penetrate deep into the interior space. 

There was also an informal forum, such as the “Crystal Chain” that believed in an 

architecture revealed by light (Thomsen 1994). Comprising important names such as 

Hans Schroun, Bruno Taut, Walter Gropius, Wenzel August Hablik and Paul Gösch; 

this forum was highly effective in introducing the new understanding of modernism 

about light and its effects in architecture.  

The twenties witnessed important innovations in the lighting industry. First of 

all, artificial lighting became cheaper with the accelerated technology. New and 

powerful lamps and electromechanical systems were developed. The newly discovered 

capabilities of light, such as advertising and orientation, were the motivating factors for 

the lighting field for carrying its industry a step ahead each day (Rub 1986). Besides all 

of these innovations in the lighting field in the twenties, a new profession called lighting 

engineering appeared and established its own world of terminology, which was mostly 

defined by engineers and technical specialists.  

Some attempts in the lighting field concerning public security were made in 

these years, such as the lighting of the streets and boulevards in big cities. These 

attempts are important for showing the general attitude of lighting engineers for 

determining their priorities to illuminate the city. Diggs (1933) pointed out that after 

San Francisco had increased lighting on Bay Shore Boulevard in 1933, the nighttime 

accident rate dropped by 40 percent in the first six months. Carr (1973) reported that 

after Gary, Indiana, upgraded its entire street lighting system, the number of reported 

criminal assaults declined by more than 70 percent.  

Street lighting parameters were first established in 1914 by the National Electric 

Light Association and the Association of Edison Illuminating Companies in the United 

States. The primary purpose of lighting was to illuminate (Harrison et al. 1930). 

Another purpose of lighting was an orientation in order to serve for advertising needs 

(Rub 1986). In 1925, the Illuminating Engineering Society (IES), which is still the 

principal forum for setting lighting standards, set the scientific principals for street and 

highway lighting (Tien 1979). These standards derived from two main requirements as 

follows: 

• To supply visual ability for basic activities at night 

• To supply security in public areas 
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These were the first standardization attempts for lighting design and during the 

twentieth century they became more complex as the field grew larger. The main 

development in this approach at the end of the century is the fragmented characteristic 

of it. Lighting engineering today handles a city or a building complex in sub-categories 

deriving from the functional criteria, such as roads, walkways, trading areas, business 

areas, dwelling areas; or living rooms, bedrooms, study rooms, etc. It is possible to refer 

to a handbook for each varying functional area of a city or part of a building which 

suggests quantitative solutions for lighting problems. Table 2.1 shows the recommended 

light levels for varying functions.   

Generally in the lighting engineering community, good lighting means a visual 

environment that enables peoples to see, to move safely and to perform visual tasks 

efficiently, accurately and without causing certain disabilities such as visual fatigue and 

glare. Although mentioning some quantitative aspects such as luminance distribution 

and color rendering; lighting engineering has a tendency to overcome the quality issue 

in a quantitative way through set of regulations.  

Today each lighting problem reaches a solution through lighting master plans, 

prepared mostly by lighting engineers who respect the IES’s regulations. The lighting or 

electrical engineer is given the responsibility for the lighting, and follows generally the 

lumen method for illuminating interior and exterior (Lam 1992). Kay (1996: pp. 71-72) 

discusses the steps in the lumen method as follows: 

 

From IES Handbook, from government codes, or from the client’s 
specifications, determine the required average level of horizontal footcandles for the 
project. A single level may be specified for the entire building, or various levels may be 
established for different types of space: office, classroom, corridor, etc. Select a lighting 
fixture or fixtures suitable for mounting in the preselected ceiling system, which uses 
the most economical lamps available and has the highest fixture efficiency in terms of 
producing illumination on the horizontal plane at desk level. The shape of the fixture 
relative to that of the room is usually considered to be a secondary importance, if it is 
considered at all. Some consideration is given to quality of the lighting system by 
limiting direct glare, generally however, low-brightness fixtures will not be selected, if 
they cost more per footcandle delivered on the work plane. Calculate the number of 
fixtures required to achieve the average illumination level or level determined in step 1. 
Find a layout for the required number of fixtures which distributes the light uniformly 
over the room as measured at the work plane. 
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Table 2.1. Recommended Lighting Levels 
(Source: WEB_1 2002) 

 
Task Area Lighting Level [fc] 

Corridors/Stairways/Restrooms 10-20 

Storage Rooms 10-50 

Conference Rooms 20-50 

General Offices 50-100 

Drafting/Accounting 100-200 

Areas with VDTs 75 

Classrooms 50-75 

Cafeterias 50 

Gymnasiums 30-50 

Merchandising 30-150 

Manufacturing Assembly 50-500 

Parking Areas (uncovered) 1-2 

 

The Campus of the University of Iowa implemented a lighting master plan in 

1996. Three main goals were described in the Campus Lighting Master Plan Strategy 

Book (1999): 

• To provide sufficient levels of illumination at building entrances and along 

routes between campus buildings, parking lots, bike racks, bus stops, campus entrances, 

and isolated areas so that the pedestrians, drivers, bicyclists, and other users can travel 

safely at night. 

• To balance energy efficiency and cost issues with other goals. 

• To minimize the nuisance effects of light pollution. 

 

Here, all goals are noteworthy as being entirely connected to quantitative basics 

as lighting levels, and cost issues.   

Julian (1995) claims that the concept of quality in the field of lighting can be 

generally thought of as determined by three major aspects. In order of importance these 

are: 

• Safeguard the safety of people in the interior.  

• Facilitate the performance of visual tasks.  

• Aid the creation of an appropriate visual environment. 
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According to Kampf (2005) successful lighting design is one which saves energy, 

saves money, improves visual comfort, decreases maintenance, and reduces waste. He adds 

that in order to reach good lighting solutions one should consider the budget, light levels, 

light sources, lighting controls, color rendering index, and color temperature.   

Lighting engineering, as being the one and only authority in illumination 

decisions, also affected other disciplines in terms of lighting in theory and practice, such 

as urban design. This is remarkable because urban design has roots in the social 

sciences more than in engineering and thus bears a qualitative approach to research. 

Although there are some exceptions such as the ideas of Lynch (1960), who introduced 

the concepts of “variety in illumination” , “warmth achieved through illumination” , and 

“spatial mood created by illumination” urban design preferred to import the quantitative 

lighting vocabulary from lighting engineering. Urban designer Boduro�lu (2001), for 

example, points out that lighting should consider some basic criteria such as: 

• Providing security. 

• Providing easy access. 

• Providing orientation. 

• Providing minimum requirements for night-time activities such as sports, etc. 

 

2.1.1.  Models in Lighting Engineering Used to Define Quality of Lighting 
 

As Boyce (1981) pointed out there have been two approaches to lighting 

research; practical study and the laboratory study. The laboratory studies have had 

greater effect on lighting practice because of their role in the establishment of lighting 

standards and codes. Field studies generally led to misinterpretations in the relationship 

between illumination and task performance. The best known study is the Hawthorne 

Experiment (1924-32), which demonstrates the difficulty in conducting field studies. 

The aim of these studies was to clarify the relationship between productivity and 

lighting as one of the environmental factors. The main conclusion was that there was no 

real connection between environmental factors and productivity, since productivity had 

been increased under all varying lighting installations. Later in the seventies, these 

studies were proved untrustable, because of the awareness of the participants that they 

were subject to a research. This phenomenon took its place in the literature of 

psychology as “Hawthorne Effect” .   
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Lighting engineering, especially in the last quarter of the twentieth century, 

attempted to develop some models in order to fill the gaps in their definitions of quality. 

Some, such as Visibility Level (VL), Comfort Satisfaction and Performance Index 

(CSP), Relative Visual Performance (RVP), Equivalent Sphere Illuminance (ESI), were 

primarily indices of quantity, rather than quality. Others, notably Visual Comfort 

Probability (VCP), addressed quality but in a limited way (Veitch and Newsham 1996). 

 

2.1.1.1. Visibility Level Model (Blackwell, 1959) 
 

In an attempt to assess the level of visibility that an individual has for a specified 

target, Blackwell believed that a comparison was necessary between a predetermined 

standard and that of the individual perceiving the specified target (Torrez 2003). 

According to Blackwell, the visual difficulty of any task can be express as a single 

quantity, which he called visibility level (VL). In Blackwell’s model each task was to be 

compared to a reference task to determine its visibility in terms of revealed contrast.4 

The reference task is the detection of a luminous disc, which is viewed for 0.2 seconds. 

Observers were initially required to view a uniform screen with a standardized level of 

illumination. At this point, the luminous disc was presented at the center of the screen in 

pulses of 0.2 sec and the observer was allowed to adjust the physical contrast of the disc 

until they perceive it as barely visible (Torrez 2003).  

The standard curve used in the visibility model was constructed from a 

population of 20-30-year-olds with normal or corrected-to-normal vision, and the 

reference illumination is diffuse white light with color temperature of 2850 K. Visibility 

level was calculated as the ratio of the threshold contrast of the task to the threshold 

contrast of the standard luminous disc, which was determined using a special device, the 

visibility meter (Levy 1978).5  

                                                 
4 According to Blackwell (1959), visual difficulty of any task can be express as a single quantity, which 
he described as Visibility Level (VL). VL=equivalent contrast/threshold contrast.  
 
5 In calculating visibility level (VL), the researcher places the target (reading material or other task 
material) in to the visibility meter and sets the background luminance for the level under which the task is 
normally performed (C(Lt)). The observer then adjusts a knob that controls a mechanism to cast a veiling 
luminance (Lv) over the task until it is just barely visible. The target is then removed and the disk is 
presented. Under the same veiling luminance which is set before, the observer now changes the 
background luminance until the disk I just barely visible to give the equivalent contrast C(eq) . Visibility 
level is calculated using theformula: VL=C(eq)/C(Lt) 
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The model proposed by Blackwell was soon recognized for its insufficiency in 

forming response to a variety of tasks (Brass, 1982). The VL represents visibility under 

very special conditions that do not exist outside a visibility meter. The light was 

unpolarized, diffuse, of a particular color temperature, and produced with uniform 

luminance at all parts of the task (Veitch and Newsham, 1996). Additionally, the model 

of visibility level was judged for its lack of realism where under the controlled 

conditions it applied to only perceptible points of light, but did not encompass the 

complex, practical tasks that are involved in how and what we see (Brass 1982).  

 

2.1.1.2. Equivalent Sphere Illuminance (ESI) 
 

Sphere illumination is a standard reference condition with which the actual 

illumination can be compared. In sphere illumination the task receives light from a 

uniformly illuminated hemisphere. Since the task is illuminated from all directions, no 

veiling reflections can occur (Lechner 1991). Sphere illumination is such an 

exceedingly valuable concept not because it represents the best possible lighting, but 

because it is a very good reproducible standard with which any actual lighting system 

can be compared (Lechner 1991). 

ESI was developed in the seventies and the goal was to develop a way to specify 

both quantity and quality using a single value to describe the lighting requirement for a 

given task. Generally ESI is the measure of visibility that takes both illuminance and 

contrast into account. This is useful in determining the effectiveness of controlling 

veiling reflections. The steps below describe, in general terms, how ESI can be 

measured in rooms (Egan 1983).  

 

Step 1 (Figure 2.1):  

Under a hemispherical source, measure brightness of task Lt and background 

Lb. Contrast C is related to task and background brightness as follows: 

C= (Lt-Lb)/Lb 
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Figure 2.1. Measurement of ESI - Step 1 

(Source: Egan M. D 1983) 
 

Step 2 (Figure 2.2):  

Under actual lighting conditions, again measure brightness of task and 

background to establish contrast.  

 

 
Figure 2.2. Measurement of ESI - Step 2  

(Source: Egan M. D 1983) 
 

Step 3: 

The contrast rendition factor (CRF) is the ratio of contrasts found by steps 1 and 

2. The ESI for a position in a room is determined by the CRF, the location, distribution, 

and the size of light sources; the room dimensions and reflectances; and the light 

distribution characteristics of the fixtures. 

ESI footcandles can tell us how effective the illuminance in a room is. An actual 

lighting system that supplied an illumination of 250 footcandles might be no better than 

an equivalent spherical illumination of 50 ESI footcandles (Lechner 1991). That means 

that the quality of the actual system is so poor that 200 out 250 footcandles are 

noneffective for the task. 

As a derived value, ESI had several drawbacks (Boyce, 1978). Although it was 

based upon visibility data, these data did not represent the visual tasks people typically 
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perform. People generally look at objects with features from which the visual system 

constructs meaning (i.e., faces or letters), rather than luminous discs which do not carry 

any information. The calculation process depends on an assumption that all viewing is 

static and on-axis, whereas the human eye obtains much information from the periphery 

of the visual field, and often views moving objects (Boyce, 1978). Another problem, 

seldom mentioned in the literature, is the limited range of reference tasks for which 

CRF curves were developed. As a matter of fact, in ESI, CRF is specific to a given task, 

which is writing on paper with pencil. Further, CRF data for widespread applications to 

other kinds of tasks was never available. 

 

2.1.1.3. Visual Comfort Probability (VCP) 

 
While VL and ESI systems were based principally on visual performance, visual 

comfort probability (VCP) was developed to address discomfort glare. VCP is the 

probability that an observer will consider a given visual environment comfortable for 

performing a task. It can also be considered the percentage of observers who consider a 

visual environment comfortable in those conditions. A VCP rating of 75, for example, 

indicates that 75% of the observers in the poorest location would not be bothered by 

direct glare. A VCP of 70 percent is considered acceptable by IES Standards. The 

experimental work predicts discomfort glare ratings (DGR) from luminous conditions: 

source luminance, luminances in the field of view, the visual size of the glare source, 

and the location of the glare source in the field of view.6 

Neither ESI nor VCP alone were developed as a complete specification of 

lighting quality: ESI addressed quantity and veiling reflections from a visibility 

standpoint, and VCP addressed discomfort glare. Herst and Ngai (1978) suggested that 

the two values could be combined to yield a value they called a Lighting Quality Index 

(LQI). The LQI was to be calculated on the basis of VCP and ESI maps of a space: LQI 

                                                 
6 The method has been developed by Guth (1963) with this following formula: 
Glare Sensation (M) = 0.5* Ls* Q / P* F 0.44 
Ls is the luminance of the glare source (cd/m2), 
P is an index of its position with respect to the line of sight, 
F is the average luminance of the entire field of view including the glare source (cd/m2), 
Q is a function of the solid angle �s that subtends the source in the observer’s eye: 
Q = 20.4 �s + 1.52 �s 0.2 – 0.075 
To obtain the glare level for a number of glare sources in an installation the glare sensation values are 
summed using the following equation to obtain a value for the DGR. (DGR = (	M) n -0.0914).  
N is the number of glare sources in the visual field. 
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is the percentage of the space meeting the minimum criteria for both VCP and ESI. 

Although this approach was intuitively attractive to some, it never gained a wide 

following, probably because of the problems inherent in the ESI system (Veitch and 

Newsham 1996). 

 

2.1.1.4. Comfort, Satisfaction, and Performance (CSP) Index 
 

The CSP Index was developed by Bean and Bell (1992) to predict the 

probability that office workers will be satisfied with the visual environment provided 

for them. It is conceptually similar to the VCP system. However, its development 

followed a different path.  

In this model, comfort index is based on glare index; satisfaction is predicted 

from cylindrical and horizontal illuminance. Performance is derived from horizontal and 

cylindrical illuminance, illuminance uniformity, and color rendering. All of them are 

equal in calculating the CSP index. Figure 2.3 shows the derivation of CSP.  

 

 

  

Figure 2.3. Derivation of CSP Index  

(Source: Bean and Bell 1992) 

GI > 14, C = 10 - 0.3(GI - 14)  
Gl < 14, C = 10  
 
GI = Glare Index 

Satisfaction Index  
 
Ec / Eh < 2/3, S = 15 Ec / Eh  
Ec / Eh > 2/3, S = 10 
 
Ec = cylindrical illuminance 
Eh = horizontal illuminance 

 

Q = 3 CSP / (C+S+P) 
CSP = (Ggen(100 - %VDT) + Qvdt(%VDT)) /100 
  
%VDT = % time spent doing work on VDT 

 

Performance Index (General) 
  
P = 0.727Ke[1+(Kc+Ku+Kr)/80]  
If P > 10, then P = 10  
 
Eh < 800, Ke=0.0125Eh  
Eh > 800,  Ke=10 
 
Ec/Eh < 2/3, Kc = 15Ec/Eh  
Ec/Eh > 2/3, Kc = 10 
 
Ku = 10 Emin / Eave 
 
Emin = minimum working area illuminance  
Eave = average working area illuminance 
 
CRI < 9O, Kr = 0.111 CRI  
CRI > 9O, Kr = 10 
 
CRI = colour rendering index 

 

Performance Index (VDT) 
  
P = 0.75Kevd.Kdr[1+(Ku+Kr)/60]  
If P > 10, then P = 10 
 
Eh < 500, Kevd = Eh/50  
Eh > 500, Kevd = 5000/Eh 
  
DR at Rl = 0.75 < 0.5, K = 20DR 
DR at Rl = 0.75 > 0.5. K =10 
 
DR = direct ratio 
 
Ku = 10 Emin / Eave 
 
CRI < 30, Kr = 0.111 CRI  
CRI > 30, Kr = 10 
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2.1.1.5. Relative Visual Performance Model (RVP) 
 

RVP is the percentage that an individual can perform for a given task with a 

particular lighting system. For a task of a particular size and type to be done by certain 

age individuals, both the background luminance and task contrast are taken into 

account. Two lighting systems can be compared by calculating the RVP for each with 

the same task and age of individual specified. The lighting system with the higher RVP 

percentage would provide better quality lighting for the given task.  

RVP was developed by M. Rea and M. Ouelette, and mainly aimed at 

overcoming deficiencies in previous models such as Visibility Level of Blackwell. RVP 

describes visual performance in terms of target contrast, size, and adaptation luminance 

and includes modifiers for viewers of varying ages between 20 and 65 years (Veitch and 

Newsham 1996). Figure 2.4 is a graphic representation of RVP model. 

 

 
Figure 2.4. Graphic representation of the RVP Model  

(Source: Rea and Ouellette 1991) 
 

 

In this model observers are presented with two lists of five digit numbers that 

are arranged alongside the columns in a room. Then they are asked to identify any 

differences between the adjacent pairs and after recognition, they should mark their 

answers in response sheets.  The contrast and background luminance of the test sheet 
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was adjusted throughout the procedure, but the target size remained constant (Torrez 

2003). In this study, the main element of mathematical measure for the development of 

the successive model was the speed and accuracy of recognition and detection. The 

model also included the issue of age. The neurological problems that occur with age 

were analyzed and considered in the creation of this model.  

 

2.2.  A Qualitative Way in Defining Quality in Lighting from the 

Architectural Point of View 
 

The difference between positivist sciences and non-positivist sciences is in the 

methodology they use in research. Lighting engineering, as a positivist science, prefers 

a quantitative research methodology under a belief that anything could be measured, 

understood, and generalized about, while neglecting interpretation of non-numerical 

data, such as experience, feelings, and spatial dynamics with their relation to lighting 

properties.  

The simplest way to define qualitative research is to propose that it is a type of 

research which includes interpreting non-numerical data. According to Gay and 

Airasian (1996), the underlying belief of qualitative research is that meaning is situated 

in a particular perspective or context, and, since different people and groups have 

different perspectives and contexts, there are many different meanings in the world, 

none of which is necessarily more valid or true than another. Chappell (WEB_2 2005) 

adds that a qualitative researcher, therefore, believes that the world cannot be pinned 

down to objective meanings, but that all variables must be taken into account when 

conducting research. Table 2.2 shows the differences between quantitative and 

qualitative research.  

While the quantitative aspects of light are very well known (it has been the 

major determinant factor for lighting design), the qualitative aspects are not very well 

defined nor known. Besides supplying well defined visual abilities, lighting must also 

cover architectural requirements and create appropriate spatial dynamics in respect to 

human psychology. Lighting occurs and always should be integrated in an architectural 

context. High-quality lighting is responsive to the architectural form, composition, and 

style. The integration with the architecture conveys meaning and contributes to the 

observer's understanding of the space. It is light that first enables spatial perception. 
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Above and beyond this, our perception of architecture can also be influenced by light, 

as it expands and highlights rooms, creates links and distinguishes one area from 

another. Light can alter the appearance of a room or area without physically changing it. 

Light directs our view, influences perception and draws our attention to specific details. 

Light can be used to divide rooms in order to emphasize areas or establish continuity 

between the interior and exterior. Light distribution and illuminance have a decisive 

influence on how architecture is perceived. 

Architectural space is born from the relationship between objects or boundaries 

and from planes which do not themselves have the character of object, but which define 

limits (Von Meiss 1990). Space would be a limitless void without some sense of 

enclosure or visual reference that communicates a sense of place (Michel, 1996). A 

composite set of boundaries at any place comprises the spatial envelope, a working 

mechanism for the design, analysis, and lighting of architectural space and this spatial 

envelope carries the dominant areas of stimuli for visual perception, and thereby 

establishes the major surface planes forming the physical limits of space as seen by 

human vision (Michel 1996). 

Architectural space exists by the illumination of objects and enclosing surfaces. 

Von Meiss (1990) comments that architectural design could be considered the art of 

placing and controlling light sources in space. Light has a reciprocal relation with form, 

structure, and other basic components of space. Light illustrates form and structure, and  

 

Table 2.2. Differences Between Quantitative and Qualitative Research 
(Source: WEB_2 2005) 

 

Characteristic Quantitative Research Qualitative Research 

Approach deductive inductive 

Purpose theory testing, prediction, establishing 
facts, hypothesis testing 

describing multiple realities, developing 
deep understanding, capturing everyday 
life 

Research Focus isolates variables, uses large samples, 
is often anonymous to participants, 
uses tests and formal instruments 

examines full context, interacts with 
participants, collects data face-to-face 
from participants 

Research Plan developed before study is initiated, 
structured, formal proposal 

Begins with an initial idea that evolves as 
researcher learns more about participants 
and setting, flexible, tentative proposal 

Data Analysis mainly statistical, quantitative mainly interpretive, descriptive 
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these spatial components define its physical limits and quality in space. Architecture 

depends on light. As light reveals the forms of architecture and the places made by it, it 

simultaneously reveals the meaning and the intentions that are released through the 

process of conceiving, designing, and building (Millet 1996). 

Light and architecture have a mutual relationship which is hard to define and 

which is only possible to understand by experiencing the effects of light on spatial 

creations. Some headings below may help to form an insight into the peculiarities of 

light in architecture:  

 

• The interaction of light and structure 

• Light as a stressing element on structure 

• Light as a concealing element on structure 

• Relating spaces through light 

• Connecting spaces through light 

• Separating spaces through light 

• Differentiating spaces through light 

• Light as a means of direction 

• Light that creates a focus in space 

• Light that encourages movement 

• Light and its effects on form 

• Light and its effects on texture 

• Light and its effects on spatial mood 

• Light and its effects on perception 

 

These peculiarities of light which are essential in creating the sense of place in 

architecture may be increased in number.  As Cullen (1986) says, light determines how 

we perceive our environment. And if carefully studied and successfully applied, lighting 

can play an integral role in creating architecture (Theodore and Bradshaw 1994). 

There is a remarkable difference between architecture and other disciplines such 

as lighting engineering in defining the term “quality” . As Kay (1996) discusses, 

engineers say that one of the factors that affects quality in lighting is the uniform 

distribution of it. However, it is not, from the architectural point of view. Von Meiss 

(1990) mentions “light-space” , which is an imaginary space created when a portion of 
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space is well lit while the rest is left in semi- or total darkness. The limits are imaginary 

but perfectly perceptible. He adds that the light-space is very useful in architectural 

design since it makes it possible to present scenes as in the theatre, circus or museum; 

also enables the person who is in the illuminated area to isolate himself and concentrate 

better. Its in the interior of Pantheon in Rome, where it is not possible to observe a 

uniform illumination. Sunlight penetrating from the oculus above and moving according 

to the movement of the sun, creates a spotlight effect and illuminates the sculptures 

placed in the circular wall of the Pantheon (Figure 2.5). According to Gordon (1987) 

non-uniform lighting helps to establish the relative strength of visual symbols, and 

therefore the organization of brightness patterns is a fundamental consideration in 

defining visual space (Figure 2.6 and Figure 2.7).  

 

 
 

Figure 2.5. Pantheon, Rome  
(Source: WEB_3 2006) 
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Figure 2.6.  Unlike the walls, the object in the middle of space receives uniform illumination which 

makes it appear dull and uninteresting. (Source: Erco 1999) 
 

 
 

Figure 2.7. With the help of two spotlights the same object became a focal point in the space. 
(Source: Erco 1999) 

 

In the illuminated world of architecture, shadows also seem to be forgotten. 

Arnheim (1977) says that shadow is light’s counterpart and reflects on the three 

dimensional form of the body. If the lighting is uniform, coming from all sides, the 

object becomes flatter (Von Meiss 1990). 

Lighting quality from the architectural point of view is defined not only by 

quantitative parameters such as the amount of light, or light’s ability to set up required 

conditions for seeing; but also with its ability to add new dimensions to the life and 

experience in space. Next chapter will form a frame to assess quality of lighting 

considering several variables which are effective in spatial dynamics created through 

lighting as discussed in this chapter.  
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CHAPTER 3 
 

THE STRUCTURE OF THE EVALUATION 

METHODOLOGY FOR ARTIFICIAL LIGHTING 

QUALITY 
 

  Based on a qualitative research tradition described before, and the existing 

literature on lighting quality, a conceptual framework was designed. It is proposed that 

lighting quality could be defined when the luminous environment supports the 

following requirements of the people who will use the space. One also could add further 

aspects to this list by considering different needs: 

 

• Visual performance and safety;  

• Task performance;  

• Behavioral effects other than vision (attention, spatial hierarchy, phototropism) 

• Mood state (pleasure, happiness, alertness, satisfaction, dominancy);  

• Human physiology and health;  

• Aesthetic judgments; 

• Others. 

 

Lighting quality, according to these parameters, is not directly measurable, but is 

a state created by the interplay of the lit environment and the person in that 

environment. Good lighting quality exists when a lighting system:  

 

• Creates good conditions for seeing and safety;  

• Supports task performance; 

• Sets appropriate conditions for behavioral outcomes; 

• Supports appropriate mood state in space;  

• Provides good conditions for human physiology and health;  

• Contributes to the aesthetical quality of the space; 

• Others. 
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Deriving from these propositions three groups of aspects could be formed which 

together constitute a base for determining lighting quality (Figure 3.1). These are: 

 

• Functional Aspects 

• Physiological Aspects 

• Psychological Aspects 

 

 

       

 

      

 

 
 
 
 

Figure 3.1. Three Aspects of Lighting Quality 
 

3.1. Functional Aspects 
 

As is widely known, in the lighting field each function such as office, classroom, 

living room, restaurant, museum, etc. requires different lighting solutions. Functional 

aspects are mostly concerned with visibility, thus safety; and with task performance in 

relation to the amount of light, lighting systems or lamp types chosen. Functional 

aspects check whether they are appropriate to the desired function or not.  Functional 

aspects (Figure 3.2) include as well the color temperature of light in relation to varying 

lamb types chosen for varying spatial functions. The distribution of light throughout the 

space also effects visibility and task performance.  

 

 

 

 

 

 
 

 
Lighting Quality 
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Psychological Aspects 
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Figure 3.2. Determinants of Functional Aspects 

 

3.1.1. Visibility, Safety and Task Performance 
 

Illuminance: Illuminance is the technical term for the quantity of visible 

radiation incident on a surface, mostly known as “light levels” (Gligor 2003). 

Illuminance is measured in lux, or lumen per square meter (lm/m2). The illuminance and 

its distribution on the task areas and the surrounding area bear a major impact on how 

quickly, safely and comfortably a person perceives and carries out the visual task.  

There is a general consensus between lighting researchers and the American and 

European standards in illumination levels recommendations. Both of the standards 

recommend values of 300 lx to 500 lx for the desktop illuminance for a reading task. 

Also, the visual preferences of users will change in time depending on season or will be 

different for different genders. Laurentine et al. (2000) found that if 300 lx are usually a 

minimum value for an office task in the summer time (the lighting on the desk and 

lighting environment were rated as “unpleasant” but the tasks were performed 

correctly), the preferred artificial light level is much higher in winter time, the 

difference between warm and cool season rising to almost 300 lx. O’Donell et al. (1999) 

found that in subtropical regions the need for lighting is higher, by a rate of 500-700 lx. 

According to the European standards minimum lighting values shall not be less 

than 200 lx in areas where continuous work is carried out. In normal conditions 

approximately 20 lx of horizontal illuminance is required just to detect features of the 

human face (WEB_4 2005). 

 Despite the results of Hawthorne Experiments, there is a general tendency in the 

lighting field for more light. This owes to a belief that more light leads to better work.  

However, the decision should be made according to the varying requirements of varying 
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contexts.  According to Gligor (2003) the illuminance should be increased when 

unusually low contrasts are present in the task, visual work is critical, errors are costly 

to rectify, accuracy or higher productivity is of great importance, the visual capacity of 

the worker is bellow normal. He adds that the required maintained illuminance may be 

decreased when the details are of an unusually large size or high contrast and the task is 

undertaken for an unusually short time.  

There are numerous scientific works that seek the relation between illuminance 

and task performance, but they have reached inconsistent results. Hughes and McNelis 

(1978) reported that an increase in illuminance from 500 to 1500 lx caused an average 9 

percent increase in the productivity of office workers during a difficult paper-based 

task. Baron et al. (1992) however, found that lower illuminance levels (150 lx) tended to 

improve performance on a complex word categorization task as compared to high levels 

(1500 lx). Nelson et al. (1983) found that performance on a difficult task was best under 

80 lx, worst under 160 lx, and intermediate under 320 lx. There were no illuminance 

effects on reading or spatial relations tasks. Smith and Rea (1982) found no effect of 

illuminance levels on reading comprehension over a wide range (9.2 to 4540 lx). Nelson 

(et al. 1984) found no effect of illuminance levels of 100 and 300 lx on creative writing 

performance. Kaye (1988) compared task performance under 500 and 1200 lx and 

found no effects on visual search tasks. Looking at these results it is possible to say that 

there is no clear connection between illuminance and performance. This variable should 

be discussed for each context separately, with respect to user preferences. 

 

Luminance Distribution: Luminance (also called luminosity) is a photometric 

measure of the density of luminous intensity in a given direction. It describes the 

amount of light that passes through or is emitted from a particular area. The unit for 

luminance is candela per square meter (cd/m2). Luminance is often used to characterize 

emission or reflection from surfaces. The luminance indicates how much luminous 

power will be perceived by an eye looking at the surface from a particular viewpoint. 

Luminance is an indicator of how bright the surface will appear. To create variance in 

luminance distribution means to create a pattern of very light, light, semi-light, and dark 

areas within a space. The desired point should be that this pattern allows occupants to 

see what they want and creates the desired atmosphere. 

The luminance distribution in the field of view controls the adaptation level of the 

eyes, which affects task visibility. According to Gligor (2003) a well-balanced adaptation is 
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needed to increase visual acuity (sharpness of vision), contrast sensitivity (discrimination of 

relatively small luminance differences), efficiency of the ocular functions (such as 

accommodation, convergence, pupillary contraction, eye movements, etc.). 

Diverse luminance distribution in the field of view (task surface, e.g. a work 

desk, a painting on the wall) also affects visual comfort and should be avoided. Too 

high luminances can give rise to glare; too high luminance contrasts will cause fatigue 

due to continuous re-adaptation of the eyes; too low luminances and too low luminance 

contrasts result in a dull and non-stimulating working environment (IESNA 2000).  

The illuminance of immediate surrounding areas shall be related to the 

illuminance of the task area and should provide a well-balanced luminance distribution 

in the field of view. Rapid spatial changes in illuminances around the task area may lead 

to visual stress and discomfort (Gligor 2003). Sounders (1969) found that illuminance 

ratios lower than 0.7 caused a substantial increase in dissatisfaction. Luminance ratios 

of 1:1 are considered optimal in North America, with 3:1 (task brighter than 

surrounding area) being acceptable (Rea 1993). Both IESNA and CIE propose only that 

luminance ratios higher than 10:1 are needed to achieve dramatic effects, such as to 

highlight an architectural feature or to add interest to the space. However, Veitch and 

Newsham (2000) found that the degree of desirable luminance variation might be 

greater than current recommendations. In their study, participants were exposed to 

luminance ratios from 11:1 through 68:1. The study concluded in an upper limit of ratio 

of 20:1, which satisfies all the subjects’ visual requirements for the relevant task. 

 

Glare: Glare is the visual sensation produced by bright areas within the field of 

view and may be experienced either as disability glare or discomfort glare. When the 

background illuminance is low relatively to the source, objects near the source become 

invisible or it gets difficult to see them. This type of glare is known as disability glare. 

In some cases the illuminated field is brighter than one can adapt to, such as the sunlight 

reflected by snow. This type of glare is called discomfort glare. In simple terms 

discomfort glare is glare which causes discomfort, without leading to a decrease in 

vision. In contrast, disability glare may not cause any discomfort but leads to some or 

total loss in vision. Glare may also be caused by reflections on surfaces usually known 

as veiling luminance or reflected glare. Veiling reflection is usually caused by locating a 

luminaire directly above or slightly in front of a work station. Repositioning of the 

luminaire or task, or using special polarized lenses will solve that problem. 
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It is possible to eliminate glare by increasing the angle between the source and 

the line of sight. Figure 3.3 and Figure 3.4 show this angular separation between target 

and glare source. The perception of glare is different from person to person. In generally 

women and are more glare sensitive than men and older people are more glare sensitive 

than younger people (Figure 3.5) (Laurentine et al. 2000).  

 

 
 
Figure 3.3.  Relationship between equivalent veiling luminance and angular separation between line of 

sight and glare source. (Source: WEB_5 2005) 
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Figure 3.4.  Relationship between maximum luminance of glare source and angular separation between 

line of sight and glare source (Source: WEB_5 2005) 
 

 
 

Figure 3.5. Age and sensitivity to brightness 
(Source: WEB_5 2005) 

 

Several attempts have been made to develop predictive models, such as 

Visibility Level Model (VL), and Visual Comfort Probability (VCP), which will help to 

form some regulations for eliminating glare problems. 



 40 

Visual display terminals (VDT), such as computer monitors in an office or 

plasma screens in a contemporary art museum present special problems for lighting 

design in terms of glare. Unlike conventional tasks such as a horizontal desk in a 

library, VDT is a self-luminous, vertical task. Lighting, which is suitable for a 

conventional horizontal task, becomes a veiling luminance on a VDT. Careful selection 

and placement of luminaries is required to avoid the reflected luminaire images on the 

screen, which reduce visibility and cause discomfort.  

 

Lighting Systems and Color: We experience our surroundings not just as 

brightness and darkness, light and shadow, but also in color. Color appearance is the 

color temperature7 of a certain color of light (or wavelength) in Kelvin (K). Color 

Rendition Index (CRI) is a measure of how well a source renders colors compared to a 

natural light source. The higher the color temperature of a light source, the more blue it 

has in its spectral distribution. Discussions of lighting and color typically fall into two 

categories as the color appearance of the light source itself and the color appearance of 

various objects when they are illuminated by the light source 

Lamps have good color rendition if, when illuminating a comprehensive range 

of colors they produce the least possible change in color effect in comparison to a 

standardized light source of similar color temperature (Ganslandt 1995). Thus every 

statement about the quality of color rendition refers to a particular color temperature and 

an equally valid color rendition value for all color temperatures does not exist. The 

color rendition of a light source depends on the construction of the specific lamp 

spectrum, whereas the quality of color rendition depends on the greatest possible 

continuity of the emitted spectrum. For color temperature the distribution of light output 

in the spectrum is decisive. If the light emitted is in the long wave, in red area of light, 

the result is a warm white light source, while the short wave end of the spectrum the 

color temperature is cooler. With incandescent lamps, this distribution is directly 

                                                 
7 The light color of a lamp is expressed in terms of color temperature Tc measured in degrees Kelvin (K). 
The Kelvin temperature scale begins at absolute zero (0 Kelvin 
 -273°C). Color temperature is used to 
denote the color of a light source by comparison with the color of a standardized “black body radiator”. A 
black body radiator is an “idealized” solid body, e.g. made of platinum, which absorbs all the light that 
hits it and thus has a reflective radiance of zero. When a black body is slowly heated, it passes through 
graduations of color from dark red, red, orange, yellow, white to light blue. The higher the temperature is, 
the whiter the color. The temperature in K at which a black body radiator is the same color as the light 
source being measured is known as the correlated color temperature of that light source. An incandescent 
lamp with its warm white light, for example, has a correlated color temperature of 2800 K, a neutral white 
fluorescent lamp 4000 K and a daylight fluorescent lamp 6000 K (Fraser and Banks 2004). 
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dependent on the filament temperature, which explains the term “color temperature” . 

With discharge and fluorescent lamps, on the other hand, light temperature depends on 

the filling and coatings used. Figure 3.6 and Figure 3.7 show the spectral power 

distribution for daylight and for a fluorescent light source respectively. Daylight 

provides the highest level of color rendering across the spectrum. In fluorescent light 

source all wavelengths (the full spectrum) are again present but only certain 

wavelengths (the spikes) are strongly present. The spikes indicate which parts of the 

color spectrum will be emphasized in the rendering of color for objects illuminated by 

this light source. It produces a light that is perceived as “warmer” than daylight. Its 

ability to render color across the spectrum is not bad, but certainly much worse than 

daylight. 

 

 
Figure 3.6. Spectral power distribution graph for daylight.  

(Source: WEB_6 2006) 
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Figure 3.7. Spectral power distribution for a fluorescent lamp. 
(Source: WEB_6 2006) 

 

For reasons of standardization, the light colors of lamps are divided into three 

groups as daylight white (DW), neutral white (NW), and warm white (WW). Warm 

white lamps emphasize red and yellow hues, while blue and green are emphasized by 

daylight white light. The quality of the color rendition, on the other hand, determines 

whether for example the color of a fabric selected in daylight white fluorescent lighting 

will look the same in the open air. Color rendition is measured by the Color Rendition 

Index (CRI). A CRI value above 80 is considered of good quality. Figure 3.8 shows the 

color temperature of varying lamps. The CRI for each source is shown in the 

parentheses at the right.  
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Figure 3.8. Color Temperature of Light Sources. 

(Source: WEB_7 2004) 
 

Shaw (1995) states that careful consideration should be made to select the most 

appropriate light sources available to the designer. He adds that requirements for highly 

accurate color rendition generally point to tungsten halogen and fluorescent light 

sources. Others such as high pressure sodium, metal halide, and high intensity discharge 

(HID), must be preferred where color rendition is not of primary importance.  
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3.2. Physiological Aspects 
 

In this part the effects of lighting on human physiology are explored. These 

effects are analyzed in three main titles with varying determinants relevant to light and 

lighting conditions, as shown in Figure 3.9. 

 

 

 

 

 

 

 

 
 

Figure 3.9.  Determinants of Physiological Aspects 
 

The physiological effects of light have been well known since ancient times, and 

have benefited as a tool for treatment of some diseases.  Light therapy is still popular 

today with its important contributions to health after the discovery of the photoreceptor 

cells in the eye, which clarifies how light mediates and controls some biochemical 

processes in the human body. According to Bommel and Beld (2003), a new era has 

been launched by the scientific findings that are related to the control of the biological 

clock and to the regulation of some important hormones through regular light-dark 

rhythms. 

 

3.2.1. Health, Arousal and Stress 
 

Arousal is the state of physical and mental activation. Arousal theory, developed 

by Eysenck (1990) claims that there is an optimal level of arousal, and performance gets 

worse as one becomes aroused more or less than this optimal level. At very low and 

very high levels of arousal, performance is low, but at a more optimal mid-level of 

arousal, performance is maximized. 

Stress is the name for a set of physiological and hormonal changes that arise as a 

response to unpleasant events. These unpleasant events could include environmental 

conditions such as direct glare, or noise. 

Illuminance (Light Levels)  
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Photobiology is a branch of biological science which studies the interactions of 

light with all living organisms. The reason making photobiology of interest in this 

research is the knowledge it offers related to the effects other than vision that occur 

when radiation is absorbed by the photoreceptors in the human eye.  

Due to the relationship between what is perceived by the human eye and the 

nervous system, light is believed to have powerful influence on human biorhythms. Hill 

(1992) says that light has direct effect on the regulation of circadian rhythms. These 

rhythms depend on the night and day cycle, the lunar cycle, and the seasonal cycle are 

strong enough to affect human physiology and capabilities. The importance of lighting 

and the circadian rhythm can be best shown through the example of shift workers. 

Today it is a well-known fact that reversed sleep has some negative effects such as 

fatigue and bad arousal during work. It includes higher risks in a long period of time, 

such as cardiovascular disease, gastrointestinal ailments and social problems (WEB_8 

2004). Shift workers have a mismatch between sleep and work, they work when their 

body needs sleep. In other words, they do something in night the cycle, which should be 

done in the day cycle. Researchers showed that bright light exposure could improve 

arousal and cognitive performance. Light exposure suppresses melatonin secretion 

(Figure 3.10) and melatonin induces sleep (Boyce et al. 1997). Bommel and Beld (2003: 

p. 9) discuss the effects of light on hormones as follows: 

 

The hormones cortisol (“stress hormone”) and melatonin (“sleep hormone”) play 
an important role in controlling alertness and sleep. Cortisol, amongst others, increases 
blood sugar to give the body energy and enhances the immune system. However, when 
cortisol levels are too high over a too-long period, the system becomes exhausted and 
inefficient. Cortisol levels increase in the morning and prepare the body for the coming 
day’s activity. They remain at a sufficiently high level over the course of the bright day, 
falling finally to a minimum at midnight. The level of the sleep hormone melatonin drops 
in the morning, reducing sleepiness. It normally rises again when it becomes dark, 
permitting healthy sleep (also because cortisol is then at its minimum level). For good 
health, it is of importance that these rhythms are not disrupted too much. In case of a 
disruption of the rhythm, bright light in the morning helps restoring the normal rhythm. 
In a natural setting, light, especially morning light, synchronises the internal body clock 
to the earth’s 24-hour light-dark rotational cycle. The deharmonisation in the absence of 
the “normal” light-dark rhythm would result in a wrong rhythm of alertness and 
sleepiness, ultimately leading to alertness during the dark hours and sleepiness during the 
bright hours. 
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Figure 3.10.  Typical daily rhythms of body temperature, melatonin, cortisol, and alertness in humans for 

a natural 24-hour light/dark cycle. (Source: Bommel and Beld 2003) 
 

 

Illuminance: When arousal theory is applied to lighting, it may be readily 

claimed that higher illuminance levels stimulate greater arousal and if the arousal level 

is appropriate for the task, it results in improved performance. However, if the arousal 

level is too high, performance would be expected to decline.  

Biner (1991) showed that an increase in illuminance from 32 lx to 1743 lx 

increases general arousal in a workstation. Hughes and McNelis (1978) reported that an 

increase in illuminance from 500 to 1500 lx caused an average 9 percent increase in the 

productivity of secretarial office workers doing a difficult paper-based task.  Gifford, 

Hine and Veitch (1997) found that there is no significant difference in task performance 

between low (average 70 lx) and medium (average 486 lx) illumination levels; however 

task performance differs 25 percent  between low and high (average 1962 lx) 

illumination levels. Costa (1993) found that night nurses who were exposed to short 

doses of high light exposure at work showed some signs of better adjustment to the 

schedule than those without low light exposure. Boyce (1997) found an illumination of 

2800 lx triggers more arousal than 250 lx (Figure 3.11). A decline in arousal over the 

night occurs for both levels, but the high level always results in a significantly increased 

arousal level and thus better alertness and mood Another experiment in an office 

building in Florida showed that circadian lighting helps to keep employees awake and 

alert (Kelly 2003).  

Delay and Richardson (1981) found that individual differences, such as sex, 

affect the arousal levels in accordance with illumination levels. Increasing illuminance 

(0,33 lx to 170 lx) has a greater effect on performance in men than women. 
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Figure 3.11. Alertness levels according to time passed after midnight. 
(Source: Boyce 1997) 

 

Glare: Very high luminances in the field of view or very high non-uniform 

luminance distributions can cause discomfort. Although the exact mechanism is 

unknown, today it is widely accepted that glare sources could constitute stressors 

(Berman et al. 1994). Glare sources can cause headaches (Veitch and Gifford 1996) by 

forcing the muscles in the eye, making them work harder than usual.  Bright lights are 

more likely to trigger migraine headaches when they are of a “flickering” quality, and a 

slow flicker is usually more irritating than a more rapid one (WEB_9 2006). On certain 

places where VDTs are used, special attention must be paid to avoid glare and veiling 

reflections for physiological comfort.  

 

Lighting Systems and Color: Deriving from their physical characteristics, 

some lamp types have negative effect on arousal and stress levels, , such as fluorescent 

light sources. Fluorescent lamps have long been associated with complaints of visual 

discomfort and headache (Stone, 1992). Known causes of this stress-related effect 

include flicker rate and spectral power distribution (Wilkins 1993). Wilkins (1990: p. 

105) describes flicker as follows: 
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Some of the commonly-used phosphors that emit long-wavelength light continue 
to do so for some time after the gas discharge, whereas phosphors with greater emission 
at shorter wavelengths persist for a shorter time. The longer persisting phosphors 
introduce a phase lag with the result that the light alternates in color as well as intensity. 
The degree of flicker depends on the lamp type as well as the ballast type; electronic 
ballasts reduce chromatic as well as luminous modulation. 

  

Kuller and Laike (1998) found that in fluorescent lighting, using electronic 

ballasts, which have a frequency of 30 Hz, instead magnetic ballasts of 50 Hz, solves 

the flicker problem, and thus improves productivity. 

It is a well-known fact that color of light itself has an emotional meaning, and is 

therefore important for the general atmosphere of a space. Today research shows that the 

spectrum has an important biological meaning, too. Brainard (2002) claims that the 

sensitivity of the novel photoreceptor cell in the eye varies in terms of melatonin 

suppression for different wavelengths of light, thus for different colors of light.  

 

 
 
Figure 3.12. Spectral biological action curve (based on melatonin suppression), in blue, and the visual 

eye sensitivity curve, in red. (Source: Brainard 2002) 
 

As shown in Figure 3.12 the bluish, cool light has biologically larger effect than 

red colored warmer light. The bluish morning light for example has biologically an 

activating (alerting) effect, while the red sky in the early evening has a relaxing effect. 

In an architectural environment, both activating and relaxing impressions are required. 

The color and level of the artificial lighting together may help to create these 

impressions.  
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3.3. Psychological Aspects 
 

This part focuses on the psychological effects of lighting. These effects are 

analyzed in three main titles with varying determinants relevant to light and lighting 

conditions as shown in Figure 3.13. 

 

 

 

 

 

 

 

 

Figure 3.13. Determinants of Psychological Aspects 
 

According to Wagner (1985), the quality of luminous environment can influence 

both comfort and well-being, which are psychological in nature and also behavioral. 

Boyce (1981) proposed that lighting quality exists when the luminous conditions 

support the behavioral needs of an individual in space. This definition could easily be 

expanded to include architectural considerations and individual well-being. The quality 

of the lighting in any installation is determined in the balance of these dimensions.  

The aim of this part is to bring the scientific evidence to light concerning the 

psychological mechanisms that produce behavioral effects in response to luminous 

conditions. The goal is to describe the knowledge about these effects which are 

considered as an important dimension in explaining lighting quality. This part is 

organized under three main parts which are believed to underline the relationship 

between lighting and behaviors: Attention, Environmental Judgments, and Feeling and 

Preferences. This set may be expanded, but they together constitute a principal in 

approach to lighting. They are chosen because of the frequency of their use in 

explanations of lighting design choices. When one understands why certain luminous 

conditions produce certain behavioral outcomes, then one will be able to re-create those 

conditions and those outcomes. 
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3.3.1. Attention 
 

According to Lam (1992), attention and the feeling of orientation is a need for 

human beings. Continuous visual information is required for all physical activities, such 

as walking, running, and working. In a space one searches for clues that give orientation 

for experiencing the inner atmosphere. When these clues are absent or distorted, the 

effect can be very disturbing.  

 

Illuminance, Luminance Distribution: The main theory -which is widely 

accepted and rather beneficial- is that the light output could be increased to direct the 

viewer’s attention to particular elements in the environment. For example, theatrical 

lighting design uses spotlights to direct the audience’s attention to the important 

characters on stage. The aim is to make a target obvious by contrast against the 

background. Luminance distributions are used to generate attention response. In general 

high-brightness lighting that produces sharp contrasts and sharply defined outlines is 

more powerful than softly graded lighting. 

Hopkinson and Longmore (1959) reported that attention on a vertical visual task 

was best when the task was locally lit, than when it was lit from general illumination 

alone. A small light source in high-brightness below the task attracted more glances, 

whereas a larger, low-brightness source appeared to be less attractive. Another research 

showed the increase in performance related to attention. Taylor et al. (1975) reported 

that adults were more successful in arithmetic calculations under non-uniform lighting 

with incandescent desk lamps (the task became the point of attention), than when the 

office was lit with uniform fluorescent lighting. 

The effect which is called “human phototropism” also encourages movement. It 

is a widely accepted fact and one of the important effects of light benefited from in the 

creation of spatial organizations, although there is only one study to support this 

assertion, which is completed by Taylor and Sucov (1974). In their study they reached 

two conclusions: (1) For equivalent hallways 67% of the people will go to the right. (2) 

People tend to choose the brighter path.  
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3.3.2. Aesthetic and Environmental Judgments 
 

Aesthetic judgments concern the interpretation and categorization of what we 

see; they are not only emotional reactions. The first task is to determine the dimensions 

through which we make aesthetic judgments, and the second is to determine how our 

aesthetic judgments relate to other responses such as feelings and preferences. 

Behavioral sciences developed some tools and methodologies to measure aesthetic 

judgments, such as Semantic Differential Rating Scales, Factor Analysis, 

Multidimensional Scaling, and various observation and mapping methods. Nowadays it 

is also possible to apply these methodologies on computer simulations.  

Flynn (et al. 1992) argues that visual consciousness did not seem to be 

completely explainable with simple notion of an optical image imposed on the retina of 

the eye and photographically interpreted by the brain. Instead, he says, one finds 

indications that there is considerable selectivity in the process of visual experience- a 

search for meaningful information. He suggests that light could be discussed as a 

vehicle that facilitates the selective process and alters the information in the visual field. 

He further suggests that lighting design should be evaluated in part for its role in 

adequately establishing clues that facilitate or alter the user’s understanding of his 

environment and activities around him.  

In lighting design the work should convey a meaning. As in every kind of 

design, the end-product should neither lack something necessary nor include something 

unnecessary. As Waldram (1954) said, lighting designers must be warned against 

“doodling with light” . By saying this he was referring to the meaningless use of 

spotlighting outside of the architectural context.  

Kaplan (1987) claimed that as humans need to make sense of what they see and 

to become involved in it. In his information-processing model he suggested four 

dimensions of appraisal, which are coherence, legibility, mystery, and complexity. The 

first two relate to the presence of information, and the latter two concern the need to be 

an active interpreter of the information.  

 

Illuminance, Luminance Distribution and Lighting Systems: The first and 

most influential work in this subject is Flynn’s work in 1973, where he applied 

sophisticated psychological techniques to lighting research. His aim was to find out how 
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lighting affects user impressions. He obtained ratings on 34 semantic differential scales 

in response to six lighting configurations. A factor analysis grouped the scales into five 

categories, which are evaluative, perceptual clarity, spatial complexity, spaciousness, 

and formality. Conclusions were that an overhead diffusing light system may affect the 

impression of perceptual clarity but this has little effect on evaluative impressions such 

as pleasantness or friendliness. Overhead downlighting tends to give more positive 

evaluative impressions than overhead diffuse. Also the downlighting tends towards a 

more spacious impression.  

His conclusions have been included in IESNA Lighting Handbook (1981) with 

little modification. For example, relaxation is said to be supported by non-uniformity, 

particularly non-uniform wall lighting. Perceptual clarity is said to be supported by 

higher horizontal illuminance in a central location. Spaciousness is said to be supported 

by uniform lighting and bright walls.  

Judgments that a space appears interesting or pleasant are associated with non-

uniform luminance distributions in the field of view. VDT operators preferred having a 

spot light to highlight a painting on the wall beyond the VDT screen, over the same wall 

with uniform illumination (Yearout and Konz 1989). 

Inui and Miyata (1973) reported that the sense of spaciousness increases with an 

increase in horizontal illumination (from 50 lx to 750 lx). He used a scale model, where 

the walls could be moved and the size of the windows could be adjusted. An artificial 

sky was used with a set of variable luminaries.  

Stone et al. (1980) tried to decipher variability according to illuminance 

differences. Subjects were asked to evaluate seven lecture theaters. Each person used a 

15 point scale to judge the space as “totally similar” or “totally dissimilar” , comparing 

the quality of light in the current lecture theater to the once previously viewed. Three 

principles of dimensions of variability are as follows: 90% of the variance is accounted 

for the illuminance at the position of the lecturers head. 49% is accounted for the 

horizontal illuminance at the eye level of the sitting subjects. 

Manav and Yener (1998) found that wall washing enhanced the impression of 

clarity and order, cove lighting enhanced spaciousness, and uplighting made the same 

space relaxing, private and pleasant. In Fleischer et al. s (2001) work, subjects rated 

their work environment as more pleasing and cheerful at higher levels of illuminance. In 

the research indirect lighting was preferred more than direct lighting, even with daylight 

colored lamps. 
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Color: Psychological research on color has been primarily directed at color in 

pigment, with limited attention to the effect of colored light. According to Fleischer et 

al. s (2001) work, warm white colored lighting installations are more pleasing than 

daylight colored lighting installations. Benya (1988) mentioned that blue-poor light 

sources impair focusing (because the eye mostly relies upon signals from the retina’s 

cone cells in response to blue wavelengths) and make objects seem blurry. Low color 

temperature environments therefore appear soft-edged and unclear, while high color 

temperature environments appear cold and sharp. He also recommends a list for lighting 

designers, who wants to affect the mood in space through the use of colored light: 

• Higher color temperatures are more tense and active; lower color temperatures 

are more relaxed and slow. 

• To stimulate a feeling of warmth and coziness use lower color temperature 

sources. 

• For a feeling of coolness or sharpness, use higher color temperature sources. 

• To stimulate a feeling of uneasiness, use a poor CRI source. Sodium sources, 

for example, will appear stark and alarming. 

 

3.3.3. Feelings and Preferences 
 

People experience particular feelings or moods in all environments. Architects, 

designers and critics have always used the language of feeling to describe spaces. 

Rooms have been called “dreamlike” , “cold” , “tense” , “warm” , “cozy” , and been 

described in other subjective ways. These moods are the general result of humans’ 

psychological response to architecture and undoubtedly light plays a great role in 

shaping them when it interacts with space. 

Aesthetic judgments concern the appearance of space. Preferences include an 

emotional character and give answers to how the space makes the viewer feel. Today it 

is a well-known fact that environmental conditions that create a state of positive 

emotional response lead to better performance, greater effort and greater willingness to 

help others (Baron 1994). 

This shortly framed theme has an intuitive character. In order to handle this 

knowledge, empirical demonstrations are needed. The first task is to find out which 
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luminous conditions are preferred, and the second task is to check whether these 

preferred conditions lead to desired behavioral outcomes. 

 

Illuminance: Preferences for illuminance levels are generally higher than the 

recommended levels, although preferences vary widely between individuals, settings, 

and tasks. Nelson et al. (1983)  found that  an increasing illuminance level from 100 to 

320 lx, which was still lower than the male participants’ preferred level for office work, 

decreased men’s ratings on mood measures (concentration, activation), but increased 

women’s scores on these measures. 

Tregenza et al. (1974) stated that visual difficulty of the task, age of the subject 

and characteristics of the surfaces illuminated were the factors that effect illuminance 

selection. Begemann et al. (1995) reported that two male participants whose illuminance 

preferences were observed over a year showed difference in the preferred level, one 

with a very low level and one with a high level. Leslie and Hartleb (1990) found that 

female subjects prefer lower illumination levels than male subjects.  

 Boyce et al. (2001) concluded that the illuminance provided by a lighting 

installation is the major factor in determining whether that lighting installation will be 

liked or not. Kimmel and Blasdel (1973) found that student ratings of library lighting 

installations showed a preference of 425 lx, which was lower than they expected. Horst 

et al. (1988) found that ratings of the ease of working, desire to work under the lighting 

condition, and comfort, increased from 10 to 200 lx illuminance, and then remained 

stable. Increasing illuminance for these control room tasks from 200 up to 800 lx did 

not alter these subjective ratings. 

 Looking at the scientific results above, it is clear that there is an enormous 

individual variety in illuminance preferences.  

 

Luminance Distribution: It is clear from many studies that vertical surfaces are 

key to satisfaction. People prefer brighter walls to dark ones. Rowlands et al. (1985) 

indicated that there was strong correlation between subjective ratings of satisfaction and 

the lighting on the work plane, the lighting on the walls, and the average luminance of 

the whole view. Non-uniform distributions from task/ambient combinations can 

contribute to the creation of environments that one would describe as comfortable, 

particularly for VDT work (Inui et al. 1989). 
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Collins (1990) found that work station brightness was a stronger determinant in 

comparison to task illuminance when determining satisfaction. Evaluation of subjective 

response to the brightness of the work station was obtained through the use of a seven 

point semantic scale of bright to dim. Results showed that occupants made their 

judgments on room luminance rather than illuminance. Subjects preferred direct 

furniture-mounted fluorescent luminaries, which causes high brightness and low task 

illuminance, rather than indirect furniture-mounted fluorescent luminaries, which causes 

a more uniform atmosphere with low brightness and high task illuminance. 

Collins et al. (1990) concluded that the low ratings given by office occupants to 

the combination of indirect furniture-mounted fluorescent luminaries with undershelf 

task lamps was related to the high task illuminance and low peripheral brightness of the 

workstation. When the same systems furniture was lit with a direct system, vertical 

luminances were higher and so was satisfaction. 

Kinkeldey et al. (1990) stated that brightness differences were the most 

important aspect for the user in assessing the lighting quality. His study concluded in a 

recommendation of more brightness than 1:10 between the working place and the room 

itself. Loe et al. (1991) found that people prefered to have some non-uniformity of 

brightness patterns, with a ratio of not less than 15. The general value for the preferred 

subjective brightness is 100 cd/m2.  

Ooyen et al. (1986) studied preferences for various luminance distributions at a 

fixed task illuminance of 750 lx by varying the reflectance of room surfaces. They 

concluded that wall luminance is the principal contributor to the experience of the room. 

An increase in wall luminance will make the room feel more stimulating and make 

concentrating on the task easier. Another conclusion was that as the wall luminance 

increases, a lower desktop illuminance is preferred.  

Mc Kennan and Parry (1984) found that non-uniform distributions were more 

acceptable. All the installations both localized (directed from the ceiling to the desk) 

and local (task lamps) lighting were rated satisfactory, even when they were lower than 

the recommended levels. 

Hawkes et al. (1979) found that 8 configurations with diffuse light sources were 

all rated as uninteresting; 10 configurations with one or more focused source were rated 

as interesting. Loe (et al. 1982) determined that non-uniform wall lighting was preferred 

for viewing paintings in a gallery. 
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Lighting Systems and Color: Hawkes et al. (1979) found that the least 

preferred lighting scheme in offices is one with regular receding luminaries. Kaneko 

and Tagahashi (1973) stated that recessed fluorescent luminaries with clear prismatic 

panels or with plastic louver were not preferable because of their tendency to make the 

interior gloomy.  

Flynn (1977) found that wall lighting added to overhead downlighting were 

preferable over peripheral overhead lighting in all his three categories of impression, 

which are evaluative, visual clarity, and spaciousness. Overhead downlighting alone 

produce a better impression of visual clarity than peripheral systems.  

Hedge et al. (1995) managed a study of suspended lensed-indirect and parabolic 

louvered lighting systems. The results showed that office workers preferred the lensed-

indirect systems. 

Evans (2000) stated that the functional use of color is designed around the use of 

a variety of colors in order to keep human responses continually active and to avoid 

severe visual adaptation or emotional monotony. 

Knez (1997) reported that there is a slight difference in color preferences 

between men and women. In his study he used two lighting system with varying CRI 

and illuminance. According to the positive mood results, for females the most optimal 

lighting combination in preserving that mood over a period of 80 minutes of intellectual 

work was the 300 lx at CRI 95 lighting. For males, on the other hand, the 300 lx by CRI 

55 and 1500 lx by CRI 95 lightings accounted for a similar effect.  

Tulmann (2000) searched the effects of colored light on consumers’ preferences. 

In his experiment he used two storefront displays in a shopping mall, one with general 

ambient lighting closer to the daylight spectrum, one with dynamic full-spectrum digital 

lighting. The colored storefront display has received attention 40 percent more than the 

one with white light and the traffic in the store increased 20.7 percent relatively to the 

same time period a year earlier.  

Knez (1995) found that warm (more reddish) lighting has a positive effect on 

mood, while cool lighting (more bluish) has a negative effect on mood in younger 

participants. In older participants the reverse effect was observed. This implies that 

coloring quality of indoor lighting has different emotional meanings for younger and 

older people.  

In the light of this detailed knowledge, an evaluation methodology is designed to 

assess lighting quality. As seen in Figure 3.14 each of three aspects work as a plug, 
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which make the evaluation methodology flexible for varying architectural functions. It 

is possible to remove or add new aspects or criteria according to the relevant function. It 

is important to make a pre-evaluation study where the lighting needs were discussed 

concerning architectural function.  
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Figure 3. 14. Diagram of the Evaluation Methodology for Artificial Lighting Quality 
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CHAPTER 4 
 

CASE STUDY 
 

It is necessary to make a research concerning the architectural function of the 

case prior to evaluation because each function has its own unique lighting requirements 

as mentioned before. Due to the special requirements of the function, the proposed 

evaluation methodology may change through addition or removal of certain criteria. 

Following part will focus on detailed lighting requirements of museums and art galleries 

in terms of artificial lighting, since the case of this dissertation is a permanent gallery 

for educational purposes. 

 

4.1.  The Requirements of Museums and Art Galleries in Terms of 

Artificial Lighting 
 

In the history of lighting, museums and art galleries have been the forerunners of 

advanced solutions. Museum architecture developed during the nineteenth century. 

Since then architecture and art have changed a lot, but the basic lighting problem has 

remained the same, perhaps having become even more severe than before because of the 

wide use of glass surfaces. Since this dissertation focuses only on electric lighting 

natural lighting and its effects on various objects will not be discussed.  

Museum and art galleries are areas in which objects of art (with historical value, 

or for educational purposes) are displayed to the public. They vary in size, shape, and 

texture, also in the manner or position in which they can be shown best. In the 

nineteenth century gas lighting was used (Figure 4.1) to illuminate those pieces of art, 

which had severe disadvantages both in quality and quantity. Today the vast industry of 

illumination provides lots of possibilities in lighting if it is used carefully. Lighting 

requirements of museums and art galleries could simply be divided into two subgroups, 

such as: 

• Quantitative requirements 

• Qualitative requirements 
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4.1.1. Quantitative Requirements 
 

Lighting in museums and galleries has a double-sided character, which requires 

solutions for opposing requirements. Art Objects in museums and galleries must be 

preserved and, at the same time, be available for display. Pigments tend to deteriorate 

with illumination, but illumination is necessary to see the art works (Scuello et al. 

2003). Although we could not do without light in museums and art galleries, it is 

important to remember that light is an environmental factor that contributes to the 

deterioration of our valued collections (Figure 4.2). All common light sources, such as 

the sun, light bulbs and fluorescent tubes, also give out other forms of radiation to 

varying degrees. The most significant of these are ultraviolet8 and infrared9 radiation. 

Ultraviolet radiation is potentially the most damaging form of energy present in 

museums, and art galleries. So when lighting an area where important or valuable works 

are housed, it is essential to take precautions to minimize the potential damage.  

Although light is not fully responsible for most of the damage, there is a clear 

relationship between exposure to light and the amount of deterioration in museum 

collections. Deterioration caused by light can be divided into two main types: thermal 

and photochemical.10 While thermal effects are attributed to the infrared content of the 

                                                 
8 Ultraviolet (UV) light is electromagnetic radiation with a wavelength shorter than that of visible light, 
but longer than soft X-rays. The name means "beyond violet" (from Latin ultra, "beyond"), violet being 
the color of the shortest wavelengths of visible light. Some of the UV wavelengths are colloquially called 
black light, as it is invisible to the human eye (WEB_10 2006). 
 
9 Infrared (IR) radiation is electromagnetic radiation of a wavelength longer than that of visible light, but 
shorter than that of radio waves. The name means "below red" (from the Latin infra, "below"), red being 
the color of visible light of longest wavelength. Infrared radiation spans three orders of magnitude and 
has wavelengths between approximately 750 nm and 1 mm (Wikipedia 2005). Infrared radiation is less 
energetic than ultraviolet radiation and visible light. It heats materials and can cause them to expand, 
leading to mechanical stresses; and can also cause chemical changes to progress more rapidly. As a result, 
infrared radiation can increase the destructive effects of visible light and ultraviolet radiation. Once 
started, photochemical reactions can continue even after the exposure to light or ultraviolet radiation has 
stopped. This means the deterioration of objects does not stop when the objects are placed in the dark 
(Heritage Collection Council 1998). 
 
10 When light and ultraviolet radiation fall on an object, they deliver bundles of energy to that object. As 
a result, various chemical reactions can take place, depending on the amount of energy delivered. These 
reactions are called photochemical reactions. In some cases it is very easy to see the effects of these 
reactions: try leaving a piece of newsprint in the sun for a few hours and examine the results. The paper 
becomes discolored—yellowed. However, most changes caused by photochemical reactions are not as 
quick as this nor as obvious; so it is difficult to know they are occurring. Nevertheless their effects can be 
devastating and ongoing by causing extreme and irreversible damage to many materials, most notably 
organic materials that derive from plants and animals. In a museum, gallery or library, these will include 
furniture, textiles, prints, books, drawings, manuscripts, wallpaper, dyes and inks, feathers and fur.  
(Gabosh 1994) 
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light source, photochemical effects are attributed to the ultraviolet content of the light. 

Local heating caused by this infrared radiation results in a change in relative humidity 

in the immediate region of the illuminated object, which can cause movement, warping 

and splitting in moisture-absorbing materials such as wood and some types of glass 

(CIBSE 1994).  More important is the photochemical damage, which causes color 

change and physical deterioration.11 

 

 
 

Figure 4.1. Detail of a gas pipe, showing the burners on both sides.  
(Source: Swinney 1999) 

 

                                                                                                                                               
 
11 Pavlogeorgatos G. (2003) points out the deterioration process related to lighting as follows: 
It is well known that the deterioration process of materials requires energy. Light is the most powerful 
source of energy in museums. Thus, (natural and artificial) illumination in museums can: 
• accelerate the deterioration and corruption of several materials, because it acts as a catalyst to their 

oxidization; 
• subsidize and raise the fragility level of cellulose fibres (wood, paper); 
• discolor, fade or blacken the paper; 
• fading and/or alter the dye/painting colors and materials of works of art; 
• corrode significantly every natural fabric; 
• deteriorate exhibits in Natural History Museums; and 
• increase the surface temperature of exhibits. 
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Figure 4.2.  The pigments on the edge of this watercolor have not faded because they have been 

protected by the mount. (Source: Heritage Collection Council 1998) 
 

Some objects are insensitive to light while others are so easily damaged that a 

very short exposure will produce a change in appearance. This sensitivity depends on 

the chemical composition. As a general rule, inorganic materials such as glass, ceramic, 

stone, and metals are less sensitive to photochemical deterioration than organic 

materials such as dyes, pigments, textile, wood, and paper.   Photochemical change is 

irreversible. Thus lighting must be considered a high priority issue in museums and art 

galleries. 

In selecting light sources it is vital to know that visible light is often 

accompanied by these ultraviolet and infrared radiations. There are many types of 

artificial light sources. Each has advantages and disadvantages. Incandescent lamps, in 

spot or floodlights, have a low ultraviolet output, but emit infrared radiation in the form 

of heat. Therefore, if they are close to items or placed in a closed case, they can cause 

damage by raising the temperature of the objects because of the high intensity.  If we 

want to lower the intensity of light falling on an object we can simply move it further 

away from the light source. For example, if the brightness or intensity of light falling on 

an object is measured at 100 lx when the object is one meter away from the light source, 

we can decrease that intensity to 25 lx by moving the object to a distance of two meters 

from the light source. 
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Fluorescent light tubes are cold, but many emit higher than acceptable levels of 

ultraviolet radiation (Heritage Collection Council 1998). However, fluorescent tubes are 

generally preferred, because they are more effective in cost and are longer-lasting than 

incandescent bulbs. If fluorescent or halogen lights are used, low ultraviolet-emitting 

fluorescent tubes should be preferred, and/or some sort of ultraviolet-absorbing filter 

should be used to remove the ultraviolet radiation. This filter can be used on the lamps 

or on display cases and frames. They are available in forms of films, acrylic sheets, and 

lacquers  

Tungsten metal halide bulbs, which are more efficient than ordinary 

incandescent bulbs, also give out higher than acceptable levels of ultraviolet. So they 

need to be filtered in order to avoid any potential damage. 

Illumination standards in museums and galleries have been established to 

control the amount of damage caused by light. While all wavelengths of light can cause 

some damage, the shorter wavelengths are more damaging (Scuello et al. 2003).  

Illuminance ratios in museums are becoming lower as a tendency in the world, 

since high illumination means more problems in the way of preservation. There are 

varying standards of illuminance for museums and art galleries, formed by varying 

authorities in the world, such as the IES (Illuminating Engineering Society), JIS (Japan 

Illumination Standards), and ICOM (International Council of Museums). These 

standards considering varying materials are indicated in Table 4.1, Table 4.2, Table 4.3, 

Table 4.4. 

As seen in the tables, for sensitive materials such as textiles and watercolors the 

brightness of the light should not be greater than 50 lx and the exposure in one year 

should not be greater than 150 kilolux-hours. In addition to this the ultraviolet content 

of the light should not be greater than 75 µW/lm12, and preferably 30 µW/lm (CIBSE 

1994). For moderately sensitive materials such as oil paintings and furniture the 

brightness of light should be between 75-200 lx and the exposure in one year should be 

between 180-600 kilolux hours. 

 

 
                                                 
12 µW/lm (Microwatts per lumen) is the unit which indicates the amount of UV energy in the light 
coming from a light source. Microwatts are a measure of energy; lumens measure the quantity of light 
from a particular light source. This measurement is constant for a light source and does not alter if the 
readings are taken at a greater distance from the source. If one needs to lower the UV content of the light, 
one can use absorbing filters on light sources, or can install lights that give out only small amounts of UV 
radiation. (Light and Ultraviolet Radiation 2005) 
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Table 4.1. Maximum Illuminance Recommended (lx)  
(Source: International Lighting Review 1977) 

 

 

Object ICOM IES 

Metal 

Stone 

Glass and ceramics 

Stained glass 

Jewellery  

Enamel 

 

not restricted 

but rarely necessary to exceed 300 

(colour temperature 4000-6500K) 

 

unlimited 

but subject to display 

and radiant heat 

considerations in 

practice 

Oil and tempera painting 

Natural leather  

Horn 

Bone 

Ivory 

Wood and lacquer 

 

 

150-180 in service 

(Color-temperature ca. 4000K) 

 

 

150 

Textiles,  

Costumes 

Water colors 

Tapestries 

Prints and Drawings 

Stamps 

Manuscripts 

Miniatures 

Gouaches 

Dyed leather 

 

 

 

 

50 

(less if possible) 

(Color temperature ca. 2900K)  

 

 

 

 

50 
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Table 4.2. Recommended Illuminance and Illuminance-Hours per Year  
(Source: IESNA 1987) 

 

Item  Illuminance 

(lx)  

Total exposure 

limits per year 

(lx-hour) 13 

(lx x hr x day) 

Displays of non-sensitive materials  200-300-500 No limit 

High 

susceptible 

displayer 

materials 

Silk  

Art on paper,  

Antique documents, Lace 

Fugitive dyes 

 

 

50 

 

 

120,000 

(50 x 8 x 300) 

 

 

 

 

Displays 

of 

sensitive 

materials  
Moderately 

susceptible 

displayer 

materials 

Oil Paintings 

Cotton 

Wool 

Other textiles where the dye is stable  

Certain wood finishes  

Leather 

 

 

75 

 

 

180,000 

(75 x 8 x 300) 

Lobby, general gallery areas, corridors 100-150-200 No limit 

Restoration or conservation shop and laboratories 500-750-1000 No limit 

 

 

                                                 
13 Lux-hour is the unit which indicates the exposure to light over a period of time. Take the example of 
an historical costume on permanent display in a museum. The museum is open 5 days a week for 5 hours 
a day all year round and while the museum is open, the costume receives light to an intensity of 200 lx. In 
a year -the costume is exposed to: 5 x 5 x 52 x 200 lux-hours = 260000 lux-hours or 260 kilolux-hours 
This could be brought to within the levels recommended in the guidelines by adjusting the intensity of 
light falling on the costume and/or reducing the display time. For example, if the intensity of light was 
lowered to 50 lx and the costume was on display for only 6 months of the year, the total annual exposure 
would be significantly altered: 5 x 5 x 26 x 50 lux-hours = 32500 lux-hours or 32.5 kilolux-hours 
(Heritage Collection Council 1998) 
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Table 4.3. JIS Illuminance Standards 
(Source: WEB_11 2003) 

 

Illuminance (lx)  Museum  

750-1000-1500 Sculpture (stone, metal)  

Molding object 

Model  

300-500-750 Sculpture (plaster, tree, paper)  

Oil painting 

Laboratory 

Investigation room 

Stand 

Entrance hall  

150-250-300 Pictures (with glass) 

Japanese painting 

Rest room 

Small meeting room 

Classroom  

75-100-150 Gallery 

Dining room  

Tea room 

Passage 

Stairs  

30-50-75 Receipt warehouse  

 

Table 4.4. CIE Illuminance Standards 
(Source: WEB_5, 2003) 

erial Examples of materials Limiting Limiting annual 

Material 

Classification 

Examples of materials Limiting 

illuminance 

Limiting 

annual exposure 

Insensitive  metal, stone, glass, ceramic no limit no limit 

Low sensitivity canvases, frescoes, wood, leather 200 lx 600 000 lxh/a 

Medium sensitivity watercolor, pastel, various papers 50 lx 150 000 lxh/a 

High sensitivity silk, newspaper, sensitive pigments 50 lx 15 000 lxh/a 
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In museums and art galleries there are three ways for materials to be put on view 

depending on their type, nature and size: 

• Hanging on a wall or a surface within the exhibition (Oil paintings, 

watercolors, print-outs, etc.) 

• Putting in a display case (jewelry, ceramics, pottery, glass, textiles, etc.) 

• Leaving as free-standing objects (Sculptures, furniture, skeletons, etc.) 

 

All these materials give different responses to light. Thus each of them needs to 

be illuminated according to different techniques concerning conservation and also 

visibility. Major considerations will be the maximum amount of light permitted, the 

ultraviolet content of light, and the placement of light sources.  

 

 
 

Figure 4.3. Wall lighting using linear luminaries 
(Source: Ganslandt and Hoffmann 1992)  

 

 
 

Figure 4.4. Individual Lighting 
(Source: Ganslandt and Hoffmann 1992)  

 

There are two possible approaches to lighting for materials hung on surfaces. 

One is to light the display wall with a relatively even distribution of light, which will be 

usually provided by a linear system of lighting (Figure 4.3). The second approach is to 

highlight each painting or a group of paintings (Figure 4.4). First approach is 
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particularly used for large paintings and wall paintings. If the second approach is 

preferred, it is necessary to aim the spotlighting from such a position that reflected 

images of the lamp do not occur in directions of view and cause glare. When 

illuminating paintings using spotlights, the luminaries should be arranged so that the 

angle of incidence of the light is approximately 30° (Figure 4.5), the so-called “museum 

angle.” This produces maximum vertical lighting and avoids reflected glare that may 

disturb the observer (Ganslandt and Hoffmann1992). This angle handles reflected glare, 

illuminance and frame shadows optimally. Figure 4.6 shows the different lighting 

solutions considering glare. 

 

 
 

Figure 4.5. The optimum angle of incidence for the illumination of paintings is 30°. 
(Source: Ganslandt and Hoffmann 1992) 

 

 
 
Figure 4.6.  Lighting solutions for vertical visual tasks free of reflected glare (from left to right): if the 

reflective surface is arranged transversely, the luminaires can be mounted in front of the 
excluded ceiling zone. If the reflective surface is arranged vertically, then next to the 
excluded ceiling zone (centre). If the entire wall surface is reflective, the luminaires must be 
mounted within the excluded zone; the cut-off angles must be planned such that the observer 
is not disturbed by reflected light. (Source: Ganslandt and Hoffmann 1992) 
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In many museums, especially those where archaeological, ethnological or 

scientific information is presented, the exhibits are primarily displayed in showcases. 

This is for protecting exhibits from possible damage by visitors and bad environmental 

conditions while providing increased security. When developing the lighting design 

concept, priority must be given to the showcases. The first task of the lighting is to 

illuminate the exhibits in accordance with their particular qualities. It is possible to 

illuminate the showcases both internally (Figure 4.7) and externally (Figure 4.8).  

 

 
 
Figure 4.7.  Internal illumination for showcases. Left: Accent lighting inside the showcase is provided 

by recessed low-voltage directional spotlights. The luminaries are equipped with covered 
reflector lamps to avoid danger to the exhibits. Middle: Showcase lighting using spotlights. 
The showcase is shielded by a filter attachment and an anti-dazzle screen. The upper section 
of the showcase can be ventilated separately. Right: Wide-beam lighting of the showcase 
using a washlight for compact fluorescent lamps or halogen lamps. (Source: Ganslandt and 
Hoffmann 1992) 

 

 
 

Figure 4.8. External illumination of showcases. Spotlights are mounted on a suspended light structure. 
(Source: Ganslandt and Hoffmann 1992) 

 

Depending on the type of materials that are to be illuminated, choice of lamp, 

filtering and illuminance control must be investigated carefully for not to damage the 

exhibit. The damage caused by visible light, ultraviolet and infrared radiation, 
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overheating in showcases due to convection is also an aspect to be considered. In the 

case of sensitive exhibits it may be necessary to install integral luminaries in a separate 

compartment of the showcase. The lighting equipment should ideally be isolated from 

the display area of the case in a compartment with separate access so that the lighting 

can be maintained and lamps replaced without disturbing the exhibits (CIBSE 1994).  

When lighting showcases it is especially important to avoid reflected glare on 

horizontal and vertical glass surfaces. Careful attention must be paid to the positioning 

and direction of luminaries when illuminating the showcase from the outside. One of 

the most difficult problems to overcome is the unwanted light reflections on the external 

surface of the showcases. These can cause irritation, distraction, and in some cases 

obliterate the view of the exhibit. The main reason is the electric lighting equipment 

mounted in the “forbidden zones” (Figure 4.9). 

 

 
 
Figure 4.9.  Identifying the “forbidden zones” for horizontal reflecting surfaces. No lamp luminances 

should be reproduced on the reflecting surfaces from these areas of the ceiling. It is 
acceptable to position luminaries in these areas, provided they are directed or shielded so as 
not to produce glare effects. (Source: Ganslandt and Hoffmann 1992) 

 

Transparent materials, such as glassware, can be illuminated by a system 

integrated into the base of the showcase. Generally halogen and fluorescent lamps are 

used. Fiber optic systems can also be considered if thermal load due to lamps inside the 

cases are high, or if the showcase dimensions do not allow the installation of 
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conventional luminaries. In addition to integral showcase lighting separate ambient 

lighting is invariably required. Depending on the required atmosphere and the 

illuminance laid down in curatorial stipulations, ambient lighting may range from a 

lighting level just above the level of the showcase lighting down to orientation light 

produced by spill light from the showcases (Ganslandt, 1995). Lighting strategies vary 

according to the size, position, and the material of the showcase. Shaw (1994) discusses 

showcase lighting as follows: 

 

With a display case all the preceding points are condensed into a very small 
space and it is therefore important to discuss case lighting with the exhibition designers 
early on in a project to ensure that there will be enough space for the lighting. There can 
be no general rule as to what is the correct solution as this will depend on the nature of 
the objects to be displayed and their positions within the case. What can be said is that the 
box full of fluorescent tubes at the top of the case is rarely satisfactory. Low voltage 
dichroic lamps can be used to great effect from within a top box providing they are freely 
positionable, however undimmed direct light from even a 20W dichroic lamp will exceed 
most conservation levels. The trick is to use careful focusing to spill light onto delicate 
objects rather than light them directly as this allows you to minimize dimming and so 
retain a good color temperature. When it comes to larger or undercut three dimensional 
objects top box lighting on its own is very limited and in these situations it is often 
necessary to introduce light within the case from other angles. Putting any light source in 
the same airtight space as the exhibit is unacceptable due to the inevitable heat rise within 
the case. This is where Fiber Optics are at their most useful as it is possible to position 
the fiber ends inside the case without risking heat build up or unacceptable Ultraviolet 
and lighting levels (Figure 4.10). Fiber Optics can also be effectively used within the top 
box of a display case, alongside low voltage lamps, where there are particularly light 
sensitive objects such as paper or textiles. 
 

Free-standing objects such as sculptures and furniture have a wide variance in 

material thus careful decisions should be made concerning conservation categories. 

While inorganic material like stone and metal are insensitive, organic materials are 

highly sensitive to light. The important thing is that the lighting should render the form 

and texture of the object (Figure 4.11). Sculptures generally require directed light to 

reveal the three-dimensional quality and surface structure. They are usually illuminated 

by spotlights or recessed directional spotlights. 
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Figure 4.10.  Showcase lighting using a fibre optic system. One central light source supplies a number of 

light heads. Integral lighting of this kind can be installed in the smallest of spaces.           
(Source: Ganslandt and Hoffmann 1992) 

 

 
Figure 4.11. The lighting should render the form and the texture of the sculpture. 

(Source: Fördergemeinschaft Gutes Licht 2002) 
 

If the exhibition is housed by a historical building then a set of constraints will 

be available in terms of lighting to preserve the architectural and historical value of the 

building. The major constraint will be the limited options available for providing an 

electrical supply to lighting equipment such as wiring. The wiring should be as invisible 

as possible. One of the other constraints is that it may not be permitted to mount the 

lighting equipment on any surface of the building. On these occasions floor-standing 

luminaries (Figure 4.12Figure 4.12) should be preferred or a solution with minimum 

touch should be developed (Figure 4.13). The process of designing lighting for a 

museum or gallery in a historical building may sometimes require taking advice from 

authorities on historical buildings.  
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Figure 4.12. Floor-standing luminaries. 

(Source: Ganslandt and Hoffmann 1992) 

 

 
Figure 4.13.  Hagia Sophia, Istanbul. The halogen uplights are mounted onto a rail with as minimum 

connection detail on walls as possible. 
 

4.1.2. Qualitative Requirements 
 

As mentioned before, “lighting quality” in this dissertation is described as a 

phenomenon which accompanies spatial quality with its peculiarities far more than 

vision. In order to develop successfully lit environments, one need to consider the third 

factor alongside architecture and light, which is perceptual psychology. Light is 

not/should not be just a physical quantity that provided sufficient illumination. It is a 

decisive factor in human perception. The ability of lighting is not only to make things 

and spaces around us visible, but also to determine the priority and the way individual 

objects in our visual environment are seen. 

With Kelly in the fifties the issue of quantity is replaced by different qualities of 

light, a series of functions that lighting had to serve the needs of the perceiver. Kelly 
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developed a basic description of the various functions of light as a medium for 

conveying information. He described the first and basic form of light as ambient light. 

This is the light that provides for the general illumination of our environment. It 

guarantees that the surrounding space, objects and persons in it, are visible. This form of 

overall, uniform lighting ensures that we can orient ourselves and carry out general 

tasks.  

To achieve differentiation, a second form of lighting is required which Kelly 

described as focal glow. This is the first instance where light becomes an active 

participant in conveying information. One important aspect that is taken into account 

here is the fact that our attention is automatically drawn towards brightly lit areas. It is 

therefore possible to arrange the mass of information contained in an environment via 

the appropriate distribution of brightness. This also applies to orientation within space  

– e.g. the ability to distinguish quickly between a main entrance and a side entrance – 

and for the accentuation of objects, as we find in product displays or the emphasizing of 

the most valuable sculpture in a collection (Marsteller 1987). 

Light is necessary in museums and art galleries not only for viewing exhibitions, 

and safety but also to provide a comfortable, pleasing, and informative viewing 

environment for people. Lighting must be designed to help create an attractive general 

appearance in space and also the feeling of well-being of the visitor. 

Research in varying disciplines has showed that, well-being in terms of lighting 

is mostly related to the distribution of light in the space, color rendition, color 

temperature, visual access, and ability to control light. If the case is a museum or an 

exhibition hall, letting visitors control lighting may not be possible because of the 

requirements of conservation. Moreover museum is a public space, and one’s subjective 

decisions may interfere with the subjective decisions of others. However, it is possible 

to determine general lighting preferences of people by means of questionnaires and 

other data collection methods which are available. 

Correct distribution of light and shadow makes for clearer perception of three-

dimensional objects and thus helps us get our bearings in a room (Fördergemeinschaft 

2002). Without shadow we see objects only as two-dimensional images. Direction of 

light is important to permit 3D projection and to give objects depth. A bright room with 

nothing but diffuse lighting and no shadows makes for a monotonous impression and 

causes lack of orientation, poor definition of objects and difficulty in estimating 

distances which makes people feel uncomfortable. However, harsh shadows should be 
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used carefully because on the contrary, they could render objects unrecognizable and 

sometimes even could be unsafe in certain locations such as stairs. Figure 4.14 shows 

the effect of shadows in perceiving three dimensional objects. 

 

 
 
Figure 4.14.  Perception of three-dimensional forms and surface structures under different light-shadow 

conditions. Left: Directed light produces pronounced shadows and strong shaping effects. 
Forms and surface structures are accentuated, while details can be concealed by the 
shadows. Middle: Lighting that consists of both diffuse and directed lighting produces 
soft shadows. Forms and surface structures can be recognized clearly. There are no 
disturbing shadows. Right: Diffuse lighting produces negligible shadowing. Shapes and 
surface structures are poorly recognizable. (Source: Ganslandt and Hoffmann 1992) 

 

Museums and art galleries could often include requirements for more dramatic style 

lighting which sometimes require theatrical lighting techniques and equipment to provide 

particular points of emphasis, or dynamic moving effects to enhance the spatial experience 

(Shaw 1994). In the theatre, the question of illuminance levels and uniform lighting is of 

minor importance. The aim of stage lighting is not to render the stage or any of the technical 

equipment it contains visible. Besides, it aims at altering the perception of the audience with 

changing scenes and moods. Stage lighting goes much further in its intentions than 

architectural lighting does by creating illusions, whereas architectural lighting is concerned 

with rendering real structures visible. Nevertheless stage lighting serves as an example for 

architectural lighting. It identifies methods of producing differentiated lighting effects and 

the instruments required to create these particular effects. 

Another important difference between diffuse and concentrated light is the 

characteristic related to the accurate and pleasant viewing of color. Diffuse light tends to 

“desaturate” colors and imparts dullness to them (Kaufmann 1966) (Figure 4.15). 

Directional light strongly renders saturation in colors. Paintings, such as Osman Hamdi’s, 

which have rich surface textures and colors, would be perceived inaccurately under such 

diffuse or uniform way of lighting.  According to Taylor (1993) the difference between 

diffuse and concentrated light shows up markedly on paintings having more than one coat 

or varnish. He continues that both concentrated and diffuse light together are desirable for 

full appreciation of the surface characteristics of art works. 
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Figure 4.15. The diffuse lighting system in Istanbul Modern desaturates colors of art objects. 
 

In some cases the differentiation between building and display lighting is not always 

clearly designed as where the reflected light from the display lighting provides the building 

lighting. It is important for the designer to consider both elements of the lighting to ensure 

that the electrically-lit gallery space appears pleasant and attractive in addition to providing 

appropriate lighting for the exhibits (CIBSE 1994). Depending on the architectural 

character of the gallery and on how exhibits are to be displayed and lit, the building lighting 

may constitute some form of concealed or indirect lighting which balances the light pattern 

to ensure an appropriate light contrast between the exhibits and the gallery space (CIBSE 

1994). The aim of the lighting in such spaces should be to provide a pattern of light where 

the exhibits are the brightest part of the field of view. Without a visual contrast between the 

exhibit and background lighting, a gallery could appear dull. 

Typically, the contrast between the illuminance on the exhibits and general 

lighting of the gallery is 3:1. If the illuminance on the exhibits is significantly greater 

than the levels on the background, viewing exhibits becomes difficult. This is because 

of the level of illuminance on the exhibit will be much brighter than the level of visual 

adaptation of the viewer. However where more visually dramatic effect is required, and 

a high level of visibility is not important, the brightness ratio can be greater than 3:1, 

such as 10:1 or 15:1.  
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The purpose of gallery lighting is to present the exhibits in such a way that they 

may be studied and enjoyed. In most cases this means providing a lighting system that 

enables fine detail to be examined and reveals the form, color, and texture of the object. 

In some cases, the overall appearance of the display may be more important than the 

visibility of the individual exhibits, where “effects” lighting may be required. So, before 

installation, the general lighting requirements of the display must be discussed carefully. 

Each exhibition requires unique solutions, thus lighting in a gallery cannot be fixed and 

stable, unless it is a permanent-exhibit gallery. 

Color rendition is another important criterion for museums. It affects the 

percentage of appearance of the object with its real color. Lamp types with high color 

renditions, such as tungsten halogen, fluorescent, and metal halide, must be preferred 

when illuminating museums. Light sources with a CRI above 90 are considered to be 

very good, while those with below 80 are not appropriate for museum and gallery 

lighting installations. As color temperature, except the JIS Standards the typical lighting 

is 3000-4000 K at 200-300 lx. A recent experiment by Scuello (2003) found that the 

general preference of the observers in lighting of the museums is 3600 K at 200 lx.  

However there could be some cases that color rendition should bear less 

importance than the general visual characteristics of the exhibition. Furthermore colored 

light could be used dramatically as an effective and enriching tool for service spaces in 

museum and art galleries. Designers must be aware of the properties of color in terms of 

psychophysical methodologies. Mattiello (2004: p. 190) discusses color and its 

contributions to lighting as follows: 

  

In the field of lighting research it has mostly aimed to solve aspects of 
visibility and comfort, while in the field of color attempts have been made to solve the 
needs of design, style and fashion, but have not always been based on verifiable data 
and/or criteria. This has led some to believe that “everything is possible”, while others 
take the view that it is a “topic for specialists”. However, both views are misguided. 
Thanks to the labor of qualified architects and designers, and with the evidence of their 
work all around us, no doubt remains today as to the importance of their research. In 
particular, psychophysical methodology applied to the analysis of individual or multiple 
variables, has allowed certain criteria to be established and basic aspects to be resolved 
both in the field of color and in lighting, and although few persons are interested in 
color and light per se, the importance of these investigations in solving basic aspects 
which contribute to human comfort is today widely recognized. Therefore, it appears 
that these investigations have a prosperous future ahead of them in helping us to 
understand and improve fundamental aspects of life such as health, the economy, 
security and even  emotion and feeling. 
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Another important requirement of museums and art galleries in terms of lighting 

is to design a flexible system. Even permanent exhibitions go through changes in 

amount of material and the way they are displayed. For art galleries a new exhibition 

means a requirement for a new lighting system. Conventionally this can be provided by 

track systems. It is not the only solution, however. For example, in the Collective 

Gallery in Edinburgh, lighting designer Kevan Shaw designed a steel ceiling where 

spotlights with magnetic bases provide the lighting with ultimate positioning flexibility.  

 

4.2. Evaluation of the Data 
 

This part undertakes an analysis of the two lighting systems and their effects on 

spatial dynamics under the guidance of the pre-given evaluation methodology which 

includes the three basic sections of the functional, physiological, and psychological 

aspects. In the light of the pre-research concerning the requirements of lighting in 

museums and art galleries several changes were made in the evaluation methodology as 

seen in Figure 4.16. 

 

4.2.1. Functional Aspects 
 

The objects that are subject to the exhibit are poster printouts with informative 

texts. All posters have thin transparent plastic coating which helps reduce thermal 

effects. However, it does not supply any protection from photochemical damage which 

means change in color. According to the standards formed by varying authorities, the 

level of illuminance for organic materials such as papers, and prints should not exceed 

50 lx. It is necessary to mention that lamps used in the halogen spotlighting system have 

a cold-light reflector, which reduces the heat approximately %66, and a UV filter, 

which stops the UV emission produced by the lamp. Fluorescent bulbs on the other 

hand do not produce any heat, and they are of low ultraviolet-emitting type. In order to 

calculate the task surface illuminations in the exhibition hall in APIKAM four 

calculation surfaces (CS) were utilized in Dialux. The amount of the calculation 

surfaces derives from the variety of the horizontal illuminance levels supplied by the 

lighting systems, which means all photometric results for bright, semi-bright, and dark 
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Figure 4.16. Diagram of the Evaluation Methodology for Artificial Lighting Quality of APIKAM 
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surfaces are included in the evaluation process. Figure 4.17 shows the placement of 

calculation surfaces for recessed fluorescent lighting system and Table 4.5 lists their 

general photometric properties. 

 

 
Figure 4.17. Placement of calculation surfaces both lighting systems in the exhibition 

  

Table 4.5. Calculation surface list for recessed fluorescent lighting system 
 

 
No Designation Grid Eav [lx] Emin [lx] Emax [lx] u0 Emin/Emax 

1 Calculation Surface 1 16x16 251 241 293 0.96 0.82 

2 Calculation Surface 2 8x8 100 88 113 0.88 0.78 

3 Calculation Surface 3 32x32 180 153 234 0.85 0.65 

4 Calculation Surface 4 16x16 153 141 169 0.92 0.83 

 

CS1 is placed to the brightest location, CS2 is placed to the darkest location, 

CS3 and CS4 are placed to semi-bright locations in the exhibition.  
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Figure 4.18. Photometric results for CS1 (lx) (Recessed Fluorescent) 
 

As seen in  
Figure 4.18 shown in Figure 4.18, the level of illumination on the surface is 

between 241 and 251 lx, which is higher than the recommended level. There is no 

variety in brightness on task surface as shown in grayscale image.  

Figure 4.19 shows the results for CS2. The level of illumination is 88 lx at minimum and 113 lx at 
maximum, which are again higher than acceptable levels in terms of conservation. The variations in 

brightness are disturbing because they vertically create zones without providing a constant level at the 
level of eyesight. However, there is no risk for glare since the difference is only 37 lx at maximum.  

Figure 4.2020 shows the results for CS3. The amount of illumination on the 

surface is between 153 and 234 lx. This surface too is subject to vertical brightness 

differences of negligible amount on the level of eyesight. 

Figure 4.21 shows the results for CS4. The level of illumination is 141 lx at 

minimum and 169 lx at maximum. The average illumination is 153 lx. All four 

calculation surfaces are brighter than the acceptable level which is 50 lx.  
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Figure 4.19. Photometric results for CS2 (lx) (Recessed Fluorescent) 
 

 
 

Figure 4.20. Photometric results for CS3 (lx) (Recessed Fluorescent) 
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Figure 4.21. Photometric results for CS4 (lx) (Recessed Fluorescent) 

 

Table 4.6. Calculation surface list for recessed halogen spotlighting system 
 

No Designation Grid Eav [lx] Emin [lx] Emax [lx] u0 Emin/Emax 

1 Calculation Surface 1 32x32 640 512 882 0.80 0.58 

2 Calculation Surface 2 32x32 315 243 413 0.77 0.59 

3 Calculation Surface 3 32x32 436 345 543 0.79 0.64 

4 Calculation Surface 4 32x32 527 449 638 0.85 0.70 

 

Table 4.6 lists the general photometric properties of the calculation surfaces for 

halogen spotlighting system. CS1 and CS4 are placed to the brightest locations in the 

exhibition. CS2 is placed to the darkest location and CS3 is placed to a semi-bright 

location in the exhibition. Figure 4.22 shows the photometric results for CS1. The level 

of illumination is 512 lx at minimum and 882 lx at maximum. The variations in 

brightness at the level of eyesight would definitely create glare because of the sharp 

transitions from 621 lx to 882 lx. The same disturbing effect occurs in the CS3 and CS4 

too, as shown in Figure 4.24 and Figure 4.25. 

Figure 4.23 show the photometric results for CS2. Illumination range is between 

243 and 413 lx with an average illumination of 315 lx which is the lowest illumination 

supplied by the halogen spotlighting system. Surface in the level of eyesight is again 

subject to glare, with sharp brightness differences as shown in the grayscale 

visualization. 

 The amount of light on all four calculations surfaces are higher than the 

recommended level. 
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Figure 4.22. Photometric results for CS1 (lx) (Halogen Spotlighting) 
 

 
 

Figure 4.23. Photometric results for CS2 (lx) (Halogen Spotlighting) 
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Figure 4.24. Photometric results for CS3 (lx) (Halogen Spotlighting) 
 

 
 

Figure 4.25. Photometric results for CS4 (lx) (Halogen Spotlighting) 
 

 Another problem in the exhibition is the reflected glare from the floor, which 

occurs under both lighting systems. The floor is covered by granite tiles with a very 

high level of reflectance which is almost 70 %. This causes for almost all locations in 

the exhibition a reflected image of the light source on the floor (Figure 4.26 and Figure 

4.27), which distracts the attention from the task surfaces and exposes the users to 

bright lights of sources. 
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Figure 4.26. Reflected glare from floor under recessed fluorescent lighting 
 

 
 

Figure 4.27. Reflected glare from floor under halogen spotlighting 
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Vertical task surfaces are subject to reflected glare, too. Glare occurs mostly on 

posters which are dark in color. On certain angles these posters act like mirrors where 

viewers can easily see the image of light sources and themselves (Figure 4.28 and 

Figure 4.29).  

 

 
 

Figure 4.28. Reflected glare on vertical panels under recessed fluorescent lighting 
 

 
 
Figure 4.29.  Reflected glare on vertical panels under halogen spotlighting. Both the light sources and the 

standing person are reflected on the surface.  
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Recessed fluorescent lighting system is fixed and does not offer the ability for 

repositioning. Even when a permanent exhibition is at stake, the exhibition can go 

through some changes in time and there would be a need for change in the arrangement 

of lighting. The halogen spotlighting system provides flexibility with tracks, thus could 

be adapted to any possible spatial variation.  

 

4.2.2. Physiological Aspects 
 

The lighting systems in the exhibition differ in their effects on the level of 

arousal. As discussed before, high level of illumination triggers arousal. The 

illumination supplied by the recessed fluorescent lighting system varies between 88 lx 

and 420 lx and the average illumination is 211 lx within the space, whereas the 

illumination supplied by halogen spotlighting system is between 243 lx and 1185 lx. 

Although the neutral white fluorescent light source with 4000 K triggers more arousal 

than the reddish warm halogen light source with 2900 K, the amount of light here plays 

the main role. Below are the results of the two questions from the survey in the feelings 

section which deals with arousal levels.     

 

Q6. I feel aroused-unaroused under this lighting arrangement. 

 

Table 4.7.  Mean and SD for aroused-unaroused 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 4.0 0.79 

Halogen Spotlighting 67 1.6 0.66 

 

Table 4.7 shows that the mean for recessed fluorescent system is 4.0 which 

means slightly unaroused, and 1.6 for halogen spotlighting which means aroused. The 

standard deviations are 0.79 and 0.66. Table 4.8 shows the t-test results with the 

hypothesis of “recessed fluorescent lighting � halogen spotlighting” .  
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Table 4.8. T-Test for aroused-unaroused 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 4.0 0.8 0.10 

Halogen Spotlighting 67 1.5 0.6 0.08 

Difference 67 2.5 1.1 0.14 

Difference between means 2.5    

95% CI 2.2 to 2.8   

t statistic 17.81    

2-tailed p <0.0001    

 

The hypothesis is true, because the p value is smaller than 0.01. The halogen 

spotlighting system creates more arousal than recessed fluorescent lighting system. 

Table 4.9 shows the variance for fluorescent system according to age. As age increases 

level of unarousal increases, too.  

 

Table 4.9. Variance for Age (aroused-unaroused) 
 

Lighting n Mean SD 

Fluorescent by Age - B 20-30 39 3.9 0.84 

Fluorescent by Age - B 30-35 17 4.0 0.71 

Fluorescent by Age - B 35-40 8 4.3 0.71 

Fluorescent by Age - B 40-50 3 5.0 - 

Halogen  by Age - B 20-30 39 1.6 0.64 

Halogen  by Age - B 30-35 17 1.5 0.72 

Halogen  by Age - B 35-40 8 1.4 0.74 

Halogen  by Age - B 40-50 3 2.0 - 
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Q8. I feel sleepy-wideawake under this lighting arrangement. 

 

Table 4.10. Mean and SD for sleepy-wideawake 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 1.8 0.97 

Halogen Spotlighting 67 4.0 0.87 

 

Table 4.10 shows that the mean for recessed fluorescent system is 1.8 which 

means slightly sleepy, and 4.0 for halogen spotlighting which means slightly 

wideawake. The standard deviations are 0.97 and 0.87. Table 4.11 shows the t-test 

results with the hypothesis of “recessed fluorescent lighting � halogen spotlighting” . 

  

Table 4.11. T-test for sleepy-wideawake 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 1.8 1.0 0.12 

Halogen Spotlighting 67 4.0 0.9 0.11 

Difference 67 -2.2 1.4 0.17 

Difference between means -2.2    

95% CI -2.5 to -1.8   

t statistic -12.97    

2-tailed p <0.0001    

 

The hypothesis is true, because the p value is smaller than 0.01. The halogen 

spotlighting system creates more arousal than recessed fluorescent lighting system. 

As mentioned in the functional evaluation, certain locations in the exhibition are 

subject to glare especially under halogen spotlighting. It is widely known that glare acts 

as a stressor and causes severe health problems such as headache and fatigue. However, 

visitors are not exposed to glare as much as they get physiologically affected, because it 

is an exhibition, a temporary space for a quick visit. 

Fluorescent light sources are generally also known as flicker sources. The 

ballasts of fluorescent light sources need to be checked regularly every six months by a 

specialist and replaced if they cause flicker.  
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4.2.3. Psychological Aspects 
 

4.2.3.1. Attention 
 

The posters in the exhibition in APIKAM have a hierarchical order. In other 

words, there is a sequential categorization for the posters, so each poster has a distinct 

place in the order for viewing. For group visitors an official guide who works for 

APIKAM supervises through the whole exhibition. However, others who visit the 

exhibition by themselves must find their own way. This part investigates whether the 

lighting conditions within the space help or guide them correctly or not and whether the 

lighting conditions give them a feeling of orientation or not. 

The visiting order for the poster is shown in Figure 4.30. As mentioned before in 

Chapter 3, as brightness increases in a specific direction, people tend to walk to that 

direction. With this assumption one expects a gradual increase in brightness down from 

point 1 to 3, then to the right from point 3 to 7, then again to the right point 8 which in 

the cubical in the middle of the exhibition. Another gradual increase must be provided 

from point 9 to 10 and finally the brightest area must be the point 11 in the adjacent 

rectangle.   

 

 
 

Figure 4.30. Visiting order for the exhibition hall in APIKAM 
 

If we take a look at the photometric results for ceiling recessed fluorescent box 

system (Figure 4.31 and Figure 4.32), we see that there is an increase in the average 

horizontal illuminance from 180 lx to 360 lx between points 1 and 2. 
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Figure 4.31. Horizontal illumination levels for recessed fluorescent in isolines (lx) 
 

 
 

Figure 4.32. Horizontal illumination levels for recessed fluorescent in value chart (lx) 
 

The average horizontal illuminance drops again to 180 lx at point 3 and stays 

stable at 180 lx till point 7. Again it increases to 360 lx at point 8 and drops to 180 at 

point 9 and 10. The adjacent rectangle has an average illuminance level of 180 lx and 

240 lx at the point of entrance. The continuity is interrupted between points 2 and 3 then 

between 8 and 9. 

The photometric results for halogen spotlighting systems are quite different (Figure 

4.33 and Figure 4.34). The level of horizontal illuminance at point 1 is 480 lx in average 

and it increases to 662 lx at point 2. It drops to an average of 480 lx at points 3 and 4. We 

notice an increase to 720 lx at point 5 and then a decrease to 480 lx at points 6 and 7. Point 

8 has an average illuminance of 600 lx and it drops to 480 lx at point 9 and 10. At Point 11 
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the horizontal illuminance is at 240 lx. Again in halogen spotlighting system the continuity 

interrupted between points 2 and 3, 6 and 7, then 10 and 11.  

 

 
 

Figure 4.33. Horizontal illumination levels for halogen spotlighting in isolines (lx) 
 
 

 
 

Figure 4.34. Horizontal illumination levels for halogen spotlighting in value chart (lx) 
 

One of the two questions of the fifth section in the survey was asking the 

subjects to stand on two pre-given points as shown “sp1” and “sp2” on Figure 4.35 and 

to decide to take one of the many directions listed on the map. For sp1 under fluorescent 

lighting system, 29 of the subjects decided to take d1; 25 of them decided to take d2 and 

the rest checked the “it doesn’t matter” option. For sp2 under fluorescent lighting 

system no one decided to take d1, 35 of them decided to take d2, 21 of them decided to 

take d3, and for the rest it did not matter. These results are consistent with the 
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photometric results and show people’s tendency in following light. Both lighting 

systems need to be improved at certain locations in terms of the brightness pattern 

which directly affects the attention cycle within the exhibition. 

 

 
 

Figure 4.35. Perceptual preferences and attention study in survey 

 

4.2.3.2. Aesthetic and Environmental Judgments 
 

The third section of the survey was related to aesthetical and environmental 

judgments. Subjects’ evaluations concerning the effects of two lighting systems on the 

general appearance of the space were revealed. The results for the selected four 

questions are as follows: 

 
Q1. Perception of the form of the gallery under this lighting arrangement is 

strong-weak 

 
Table 4.12. Mean and SD for perception of form (strong-weak) 

 
Lighting n Mean SD 

Resecced Fluorescent Lighting 67 3.2 1.01 

Halogen Spotlighting 67 1.7 0.73 

 

 Table 4.12 shows that the mean for recessed fluorescent system is 3.2 which 

means neutral and 1.7 for halogen spotlighting which means slightly strong. Table 4.13 
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shows the results of the t-test which was run to ascertain whether there is a significant 

difference for these parameters between the two lighting systems. The hypothesis is 

“recessed fluorescent lighting � halogen spotlighting” . 

 

Table 4.13. T-test for perception of form (strong-weak) 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting  67 3.2 1.0 0.12 

Halogen Spotlighting  67 1.7 0.7 0.09 

Difference  67 1.5 1.2 0.14 

Difference between means  1.5    

95% CI  1.2 to 1.8   

t statistic  10.63    

2-tailed p  <0.0001    

 

The p value at the end of table verifies that the hypothesis is true as being 

smaller than 0.01.  

 

Q2. Perception of the structural elements under this lighting arrangement is 

strong-weak 

 

Table 4.14. Mean and SD for perception of structural elements (strong-weak) 
 

Lighting n Mean SD 

Resecced Fluorescent Lighting 67 2.8 1.11 

Halogen Spotlighting 67 2.3 1.16 

 

Table 4.14 shows that the mean for recessed fluorescent system is 2.8 which 

means neutral and 2.3 for halogen spotlighting which means slightly strong. Table 4.15  

shows the results of the t-test with the hypothesis of “recessed fluorescent lighting � 

halogen spotlighting” . 
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Table 4.15. T-test for perception of structural elements (strong-weak) 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting  67 2.8 1.1 0.14 

Halogen Spotlighting  67 2.3 1.2 0.14 

Difference  67 0.5 1.4 0.17 

Difference between means  0.5    

95% CI  0.2 to 0.9   

t statistic  2.91    

2-tailed p  0.0050    

 

 The p value shows that the hypothesis is not true. 

 
Q3. Perception of details [materials of architectural components and furnishing 

and their characteristics such as texture and color] of the gallery under this lighting 

arrangement is strong-weak 

 

Table 4.16. Mean and SD for the Perception of details 
 

Lighting n Mean SD 

Resecced Fluorescent Lighting 67 2.6 1.19 

Halogen Spotlighting 67 2.3 1.15 

 

Table 4.16 shows that the mean for recessed fluorescent system is 2.6 which 

means neutral and 2.3 for halogen spotlighting which means slightly strong. Table 4.17 

shows the results of the t-test with the hypothesis of “recessed fluorescent lighting � 

halogen spotlighting” . 
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Table 4.17. T-test for perception of details 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting  67 2.6 1.2 0.15 

Halogen Spotlighting  67 2.3 1.2 0.14 

Difference  67 0.3 1.2 0.15 

Difference between means  0.3    

95% CI  0.1 to 0.6   

t statistic  2.34    

2-tailed p  0.0223    

 

The p value shows that the hypothesis is not true. 

 
Q4. The gallery under this lighting arrangement appears as cozy-cold  

        

Table 4.18. Mean and SD for cozy-cold 
 

Lighting n Mean SD 

Resecced Fluorescent Lighting 67 3.8 0.83 

Halogen Spotlighting 67 1.4 0.60 

 

Table 4.18 shows that the mean for recessed fluorescent system is 3.8 which 

means slightly cold and 1.4 for halogen spotlighting which means slightly cozy. Table 

4.19 shows the results of the t-test which was run to ascertain whether there is a 

significant difference for these parameters between the two lighting systems. The 

hypothesis is “recessed fluorescent lighting � halogen spotlighting” . 
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Table 4.19. T-test for cozy-cold 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting  67 3.8 0.8 0.10 

Halogen Spotlighting  67 1.4 0.6 0.07 

Difference  67 2.5 1.1 0.14 

Difference between means  2.5    

95% CI  2.2 to 2.7   

t statistic  17.59    

2-tailed p  <0.0001    

 

The p value at the end of table verifies that the hypothesis is true as being 

smaller than 0.01. These results are consistent with the color temperatures of the bulbs 

used for the two lighting systems. The color temperatures are 4000 K and 2900 K for 

fluorescent and halogen bulbs respectively. As mentioned before in Chapter 3, light 

sources with a lower color temperature stimulate a feeling of warmth and coziness.  

 

Q5. The gallery under this lighting arrangement appears as interesting-dull 

 
Table 4.20. Mean and SD for interesting-dull 

 
Lighting n Mean SD 

Recessed Fluorescent Lighting 67 3.8 0.81 

Halogen Spotlighting 67 1.4 0.54 

 

Table 4.20 shows that the mean for recessed fluorescent system is 3.8 which 

means slightly dull and 1.4 for halogen spotlighting which means slightly interesting. 

The standard deviations are 0.81 and 0.54. Table 4.21 shows the t-test results with the 

hypothesis of “recessed fluorescent lighting � halogen spotlighting” . 
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Table 4.21. T-test for interesting-dull 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 3.8 0.8 0.10 

Halogen Spotlighting 67 1.4 0.5 0.07 

Difference 67 2.4 1.0 0.13 

Difference between means 2.4    

95% CI 2.2 to 2.7   

t statistic 18.91    

2-tailed p <0.0001    

 

The p value at the end of table verifies that the hypothesis is true as being 

smaller than 0.01.  

 

Q6. The gallery under this lighting arrangement appears as inviting-repulsive 

 

Table 4.22. Mean and SD for inviting-repulsive 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 3.8 0.87 

Halogen Spotlighting 67 1.4 0.61 

 

Table 4.22 shows that the mean for recessed fluorescent system is 3.8 which 

means slightly repulsive and 1.4 for halogen spotlighting which means slightly inviting. 

The standard deviations are 0.87 and 0.61. Table 4.23 shows the t-test results with the 

hypothesis of “recessed fluorescent lighting � halogen spotlighting” . 
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Table 4.23. T-test for inviting-repulsive 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 3.8 0.9 0.11 

Halogen Spotlighting 67 1.4 0.6 0.07 

Difference 67 2.3 1.1 0.14 

Difference between means 2.3    

95% CI 2.1 to 2.6   

t statistic 16.70    

2-tailed p <0.0001    

 

 

The p value at the end of table verifies that the hypothesis is true as being 

smaller than 0.01.  

 

Q7. I like the gallery under this lighting arrangement 

 

Table 4.24. Mean and SD for “I like the gallery” 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 3.8 0.80 

Halogen Spotlighting 67 1.3 0.44 

 

Table 4.24 shows that the mean for recessed fluorescent system is 3.8 which 

means slightly no and 1.3 for halogen spotlighting which means yes. The standard 

deviations are 0.80 and 0.44. Table 4.25 shows the t-test results with the hypothesis of 

“recessed fluorescent lighting � halogen spotlighting” . 
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Table 4.25. T-test for “I like the gallery” 
 

Lighting n Mean SD SE 

Recessed 
Fluorescent 
Lighting 

67 3.8 0.8 0.10 

Halogen 
Spotlighting 

67 1.3 0.4 0.05 

Difference 67 2.5 0.9 0.11 

Difference between 
means 

2.5    

95% CI 2.3 to 2.7   

t statistic 22.13    

2-tailed p <0.0001    

 

The p value at the end of the table verifies that the hypothesis is true as being 

smaller than 0.01.  

User evaluations show that halogen spotlighting is the preferred one in terms of 

aesthetic and environmental judgments. For all the four questions in survey halogen 

spotlighting system received more positive response than the recessed fluorescent 

lighting system. 

 

4.1.3.3. Feelings and Preferences 
 

A P.A.D. scale with fourteen pairs of adjectives is used to measure emotional 

outcomes. Four pairs of them are used to control subjects in terms of whether they are 

consistent in their answers or not. The results are as follows: 

 

Q1. I feel happy-unhappy under this lighting arrangement. 

 

Table 4.26. Mean and SD for happy-unhappy 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 3.3 0.86 

Halogen Spotlighting 67 1.7 0.70 
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Table 4.26 shows that the mean for recessed fluorescent system is 3.3 which 

means neutral; in other words, it bears no effect on happiness; and 1.7 for halogen 

spotlighting which means slightly happy. The standard deviations are 0.86 and 0.70. 

Table 4.27 shows the t-test results with the hypothesis of “recessed fluorescent lighting 

� halogen spotlighting” . 

     

Table 4.27. T-test for happy-unhappy 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 3.3 0.9 0.10 

Halogen Spotlighting 67 1.7 0.7 0.09 

Difference 67 1.6 1.1 0.13 

Difference between means 1.6    

95% CI 1.4 to 1.9   

t statistic 12.47    

2-tailed p <0.0001    

 

The p value at the end of table verifies that the hypothesis is true as being 

smaller than 0.01.  

 

Q2. I feel annoyed-pleased under this lighting arrangement. 

 

Table 4.28. Mean and SD for annoyed-pleased 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 2.9 0.61 

Halogen Spotlighting 67 4.5 0.61 

 

Table 4.28 shows that the mean for recessed fluorescent system is 2.9 which 

means neutral; in other words, lighting has no effect on these feelings; and 4.5 for 

halogen spotlighting which means extremely pleased. The standard deviations are 0.61 

for both lighting system. Table 4.29 shows the t-test results with the hypothesis of 

“recessed fluorescent lighting � halogen spotlighting” . 
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Table 4.29. T-test for annoyed-pleased 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 2.9 0.6 0.07 

Halogen Spotlighting 67 4.5 0.6 0.07 

Difference 67 -1.6 0.9 0.11 

Difference between means -1.6    

95% CI -1.9 to -1.4   

t statistic -15.53    

2-tailed p <0.0001    

 

The p value at the end of table verifies that the hypothesis is true as being 

smaller than 0.01. 

 

Q3. I feel relaxed-tense under this lighting arrangement. 

 

Table 4.30. Mean and SD for relaxed-tense 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 3.2 0.97 

Halogen Spotlighting 67 1.6 0.76 

 

Table 4.30 shows that the mean for recessed fluorescent system is 3.2 which 

means neutral; in other words, lighting has no effect on these feelings; and 1.6 for 

halogen spotlighting which means slightly relaxed. The standard deviations are 0.97 and 

0.76. Table 4.31 shows the t-test results with the hypothesis of “recessed fluorescent 

lighting � halogen spotlighting” .  
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Table 4.31. T-test for relaxed-tense 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 3.2 1.0 0.12 

Halogen Spotlighting 67 1.6 0.7 0.09 

Difference 67 1.7 1.2 0.14 

Difference between means 1.6    

95% CI 1.3 to 1.9   

t statistic 11.06    

2-tailed p <0.0001    

  

The hypothesis is true. Table 4.32 shows the variance in feelings according to 

age. Subjects between ages 40-50 rated their feelings as slightly tense under fluorescent 

lighting while others rated as neutral. 

 

Table 4.32. Variance related to age (relaxed-tense) 
 

Lighting n Mean SD 

Fluorescent by Age - B 20-30 39 3.1 0.86 

Fluorescent by Age - B 30-35 17 3.4 1.06 

Fluorescent by Age - B 35-40 8 3.4 1.19 

Fluorescent by Age - B 40-50 3 4.0 1.00 

Halogen by Age - B 20-30 39 1.5 0.64 

Halogen  by Age - B 30-35 17 1.5 0.51 

Halogen  by Age - B 35-40 8 1.9 1.13 

Halogen  by Age - B 40-50 3 2.7 1.53 
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Q4. I feel autonomous-guided under this lighting arrangement.  

(Compare with the results of Q7 and Q11) 

 

Table 4.33. Mean and SD for autonomous-guided 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 2.0 0.91 

Halogen Spotlighting 67 1.8 0.74 

 

Table 4.33 shows that the mean for recessed fluorescent system is 2.0 which 

means slightly autonomous, and 1.8 for halogen spotlighting which again means slightly 

autonomous. The standard deviations are 0.91 and 0.74. Table 4.34 shows the t-test 

results with the hypothesis of “recessed fluorescent lighting � halogen spotlighting” .  

 

Table 4.34. T-test for autonomous-guided 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 2.0 0.9 0.11 

Halogen Spotlighting 67 1.8 0.7 0.09 

Difference 67 0.1 1.0 0.13 

Difference between means 0.1    

95% CI -0.1 to 0.4   

t statistic 1.07    

2-tailed p 0.2889    

 

The hypothesis is not true as the p value is bigger than 0.01. There is clear 

distinction between two lighting systems for this feeling. 

 



 106 

Q5. I feel hopeful-despairing under this lighting arrangement. 

 

Table 4.35. Mean and SD for hopeful-despairing 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 3.0 0.75 

Halogen Spotlighting 67 2.6 0.70 

 

Table 4.35 shows that the mean for recessed fluorescent system is 3.0 which 

means neutral, and 2.6 for halogen spotlighting which means neutral again. The 

standard deviations are 0.75 and 0.70. Table 4.36 shows the t-test results with the 

hypothesis of “recessed fluorescent lighting � halogen spotlighting” .  

 

Table 4.36.  T-test for hopeful-despairing 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 3.0 0.7 0.09 

Halogen Spotlighting 67 2.6 0.7 0.09 

Difference 67 0.4 0.9 0.11 

Difference between means 0.4    

95% CI 0.2 to 0.7   

t statistic 3.97    

2-tailed p 0.0002    

  

The hypothesis is not true; both lighting systems do not have a particular effect 

for these feelings.  

 

Q6. I feel aroused-unaroused under this lighting arrangement.(For results see 

page 88)  
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Q7. I feel dominant-submissive under this lighting arrangement. 

(Compare with the results of Q4 and Q11) 

 

Table 4.37. Mean and SD for dominant-submissive 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 66 3.4 0.86 

Halogen Spotlighting 67 2.5 1.06 

 

Table 4.37 shows that the mean for recessed fluorescent system is 3.4 which is 

between neutral and slightly submissive, and 2.5 for halogen spotlighting which is 

between neutral and slightly dominant. The standard deviations are 0.86 and 1.06. Table 

4.38 shows the t-test results with the hypothesis of “recessed fluorescent lighting � 

halogen spotlighting” . The n value is 66 in the tables since one subject did not mark 

anything for fluorescent lighting.   

 

Table 4.38. T-test for dominant-submissive 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 66 3.4 0.9 0.11 

Halogen Spotlighting 66 2.5 1.1 0.13 

Difference 66 0.8 1.5 0.19 

Difference between means 0.8    

95% CI 0.5 to 1.2   

t statistic 4.53    

2-tailed p <0.0001    

 

The hypothesis is true, because the p value is smaller than 0.01. This analysis 

shows that halogen spotlighting has a slightly more effect than recessed fluorescent 

lighting on the feeling of dominancy.  
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Table 4.39. Variance related to sex (dominant-submissive) 
 

Lighting n Mean SD 

Fluorescent by Sex - F 29 3.1 0.82 

Fluorescent by Sex - M 37 3.6 0.83 

Halogen by Sex - F 29 2.6 1.15 

Halogen by Sex - M 38 2.4 1.01 

 

Table 4.39 shows the variance in feelings related to sexual differences. Male 

subjects feel more submissive than female subjects under recessed fluorescent lighting 

system.  

 

Table 4.40.  Variance related to age (dominant-submissive) 
 

Lighting n Mean SD 

Fluorescent by Age - B 20-30 38 3.4 0.71 

Fluorescent by Age - B 30-35 17 3.5 1.07 

Fluorescent by Age - B 35-40 8 3.5 1.07 

Fluorescent by Age - B 40-50 3 2.7 0.58 

Halogen  by Age - B 20-30 39 2.6 1.07 

Halogen  by Age - B 30-35 17 2.3 0.85 

Halogen  by Age - B 35-40 8 2.0 0.76 

Halogen  by Age - B 40-50 3 4.3 1.15 

 

Table 4.40 shows the variance in feelings related to age. Subjects aged between 

20 and 30 rated their feelings as neutral under the halogen spotlighting, while subjects 

between 30 and 40 feel more dominant. The significant variance comes from subjects 

aged between 40 and 50 with a rating of 4.3, which means slightly submissive. 

 

Q8. I feel sleepy-wideawake under this lighting arrangement. (For results see 

page 90) 
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Q9. I feel talkative-shy under this lighting arrangement. 

 

Table 4.41. Mean and SD for talkative-shy 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 3.0 0.82 

Halogen Spotlighting 67 1.8 0.84 

 

Table 4.41 shows that the mean for recessed fluorescent system is 3.0 which 

means that lighting has no effect on these feelings, and 1.8 for halogen spotlighting 

which means slightly talkative. The standard deviations are 0.82 and 0.84. Table 4.42 

shows the t-test results with the hypothesis of “recessed fluorescent lighting � halogen 

spotlighting” .  

 

Table 4.42. T-test for talkative-shy 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 3.0 0.8 0.10 

Halogen Spotlighting 67 1.8 0.8 0.10 

Difference 67 1.2 1.2 0.15 

Difference between means 1.2    

95% CI 0.9 to 1.5   

t statistic 7.85    

2-tailed p <0.0001    

 

The hypothesis is true, because the p value is smaller than 0.01. 
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Q10. I feel excited-calm under this lighting arrangement. 

 

Table 4.43. Mean and SD for excited-calm 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 3.9 0.95 

Halogen Spotlighting 67 1.9 0.74 

 

Table 4.43 shows that the mean for recessed fluorescent system is 3.9 which 

means slightly calm and 1.9 for halogen spotlighting which means slightly excited. The 

standard deviations are 0.95 and 0.74. Table 4.44 shows the t-test results with the 

hypothesis of “recessed fluorescent lighting � halogen spotlighting” .  

 

Table 4.44. T-test for excited-calm 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 3.9 1.0 0.12 

Halogen Spotlighting 67 1.9 0.7 0.09 

Difference 67 2.0 1.4 0.17 

Difference between means 2.0    

95% CI 1.7 to 2.4   

t statistic 12.17    

2-tailed p <0.0001    

 

The hypothesis is true, since the p value is smaller than 0.01. 

 

Q11. I feel controlling-controlled under this lighting arrangement. 

 (Compare with the results of Q4 and Q7) 

 

Table 4.45. Mean and SD for controlling-controlled 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 2.7 0.83 

Halogen Spotlighting 67 2.6 0.76 
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Table 4.45 shows that the mean for recessed fluorescent system is 2.7 which 

stands between neutral and controlling, and 2.6 for halogen spotlighting which again 

stands between neutral and controlling. The standard deviations are 0.83 and 0.76. 

Table 4.46 shows the t-test results with the hypothesis of “recessed fluorescent lighting 

� halogen spotlighting” .  

 

Table 4.46. T-test for controlling-controlled 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 2.7 0.8 0.10 

Halogen Spotlighting 67 2.6 0.8 0.09 

Difference 67 0.2 1.2 0.15 

Difference between means 0.2    

95% CI -0.1 to 0.5   

t statistic 1.10    

2-tailed p 0.2770    

 

The hypothesis is not true as the p value is bigger than 0.01. There is clear 

distinction between two lighting systems for this feeling. 

 

Q12. I feel satisfied-unsatisfied under this lighting arrangement. 

 

Table 4.47. Mean and SD for satisfied-unsatisfied 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 3.9 0.99 

Halogen Spotlighting 67 1.7 0.74 

 

Table 4.47 shows that the mean for recessed fluorescent system is 3.9 which 

means slightly unsatisfied, and 1.7 for halogen spotlighting which means slightly 

satisfied. The standard deviations are 0.99 and 0.74. Table 4.48 shows the t-test results 

with the hypothesis of “recessed fluorescent lighting � halogen spotlighting” .  
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Table 4.48. T-test for satisfied-unsatisfied 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 3.9 1.0 0.12 

Halogen Spotlighting 67 1.7 0.7 0.09 

Difference 67 2.1 1.3 0.16 

Difference between means 2.1    

95% CI 1.8 to 2.5   

t statistic 13.72    

2-tailed p <0.0001    

 

The hypothesis is true, since the p value is smaller than 0.01. Table 4.49 shows 

the variance in feelings according to age. Subjects aged between 35 and 40 feel neutral 

under recessed fluorescent lighting system, while the rest feel slightly and extremely 

unsatisfied.  

 

Table 4. 49. Variance related to age (satisfied-unsatisfied) 
 

Lighting n Mean SD 

Fluorescent by Age - B 20-30 39 3.8 1.04 

Fluorescent by Age - B 30-35 17 4.1 0.83 

Fluorescent by Age - B 35-40 8 3.1 0.83 

Fluorescent by Age - B 40-50 3 4.7 0.58 

Halogen  by Age - B 20-30 39 1.7 0.66 

Halogen  by Age - B 30-35 17 2.0 0.94 

Halogen  by Age - B 35-40 8 1.4 0.52 

Halogen  by Age - B 40-50 3 1.3 0.58 
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Q13. I feel stable-depressed under this lighting arrangement. 

 

Table 4.50. Mean and SD for stable-depressed 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 3.5 1.09 

Halogen Spotlighting 67 1.9 0.74 

 

Table 4.50 shows that the mean for recessed fluorescent system is 3.5 which 

stands between neutral and slightly depressed, and 1.9 for halogen spotlighting which 

means slightly stable. The standard deviations are 1.09 and 0.74. Table 4.51 shows the 

t-test results with the hypothesis of “recessed fluorescent lighting � halogen 

spotlighting” .  

 

Table 4.51. T-test for stable-depressed 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 3.5 1.1 0.13 

Halogen Spotlighting 67 1.9 0.7 0.09 

Difference 67 1.6 1.3 0.15 

Difference between means 1.6    

95% CI 1.3 to 1.9   

t statistic 10.52    

2-tailed p <0.0001    

 

The hypothesis is true, since the p value is smaller than 0.01. 
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Q14. I feel important-unimportant under this lighting arrangement. 

 

Table 4.52. Mean and SD for important-unimportant 
 

Lighting n Mean SD 

Recessed Fluorescent Lighting 67 2.0 0.98 

Halogen Spotlighting 67 1.7 0.72 

 

Table 4.52 shows that the mean for recessed fluorescent system is 2.0 which 

means slightly important, and 1.7 for halogen spotlighting which again means slightly 

important. The standard deviations are 0.98 and 0.72. Table 4.53 shows the t-test results 

with the hypothesis of “recessed fluorescent lighting � halogen spotlighting” .  

 

Table 4.53. T-test for important-unimportant 
 

Lighting n Mean SD SE 

Recessed Fluorescent Lighting 67 2.0 1.0 0.12 

Halogen Spotlighting 67 1.7 0.7 0.09 

Difference 67 0.3 1.3 0.16 

Difference between means 0.3    

95% CI -0.1 to 0.6   

t statistic 1.60    

2-tailed p 0.1135    

 

The hypothesis is not true as the p value is bigger than 0.01.  

 

4.1.4. Imperfections 
 

Although environmental psychology do possess several studies which reveals 

the effects of lighting on human psychology and certain behaviors, it does not offer a 

variety in terms of architectural function. Most of the studies deal with office 

environments and try to expose the psychological impacts of lighting in reference to 

performance. There are a few works which were realized in other environments, such as 

libraries, hospitals, and factories, again with a tendency to increase performance.   It is 
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not possible to meet any study of that kind which is realized where labor performance is 

of secondary importance, such as museums, art galleries, cafeterias, and others. This 

caused to prepare, perform, and evaluate all related measurement studies for the case, 

such as the survey, which prolonged the data collection process for this evaluation 

methodology. This creates a disadvantage in terms of time-management. The 

researchers of environmental psychology should expand their preferences in terms of 

spatial function and form a base of knowledge which would be beneficial for related 

studies.      

The evaluation methodology reached at satisfying results for most of the criteria 

under functional, physiological, and psychological aspects and enabled a detailed 

judgment about quality of lighting in APIKAM.  However it was insufficient to measure 

the effects of lighting on the perception of structural elements, materials, and their 

characteristics such as texture and color. The third part in the survey was dealing with 

the aesthetic and environmental judgments by means of eleven questions. Only and the 

last four questions that measure the direct influence of space on users were reached at 

satisfying results. Four other questions were related to the general appearance of 

lighting on spatial components, such as wall, ceiling, and floor, reached to consistent 

results too. However these four questions were asked only to test subject’s reliability, 

because the answers for these four questions were already acquired by the photometric 

calculations. The first three questions were testing the effects of lighting on the 

perception of spatial components. Excluding the first question which was related to the 

perception of form, no satisfying results were acquired for the two questions in this 

section. 

 The survey was not successful in measuring the users’ emotional responses in 

the case of the feeling of dominancy. Three questions concerning this feeling concluded 

at conflicting results. 

 Figure 4.36 and Figure 4.37 show the general problems of the lighting systems 
in APIKAM . 
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Figure 4.36. General problems under recessed fluorescent lighting system: 1. The general level of 
illumination is high for the exhibition of organic-based materials. A dimmer system could 
be installed to reduce the amount of light. 2. The lighting system is fixed and does not 
allow repositioning according to the changing lighting needs. 3. Task surfaces are subject to 
glare related to the positions of light sources. No solution is possible, since the lighting 
system is fixed. 4.  The granite floor with a high reflectance factor creates glare. Another 
material with a low reflectance factor such as vinyl or wood should be selected. 5. The 
distribution of light creates three separate uniformly lit areas which lead to an uninteresting 
and dull environment. Differentiation should be achieved through a dimmer system by 
changing the amount of light on certain places besides task surfaces. 

 

 

Figure 4.37. General problems under halogen spotlighting system: 1. The general level of illumination is 
too high for the exhibition of organic-based materials. A dimmer system could be installed 
to reduce the amount of light. 2. Task surfaces are subject to glare related to the harsh 
brightness differences on the surface. Brightness differences must ne minimized. Variety 
should be achieved on certain locations other than task surfaces. 3. Task surfaces are 
subject to glare related to the positions of light sources. The tracks allow the lighting 
system to be repositioned. 4.  The granite floor with a high reflectance factor creates glare. 
Another material with a low reflectance factor such as vinyl or wood should be selected.  
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CHAPTER 5 
 

CONCLUSIONS 
 

The evaluation methodology for artificial lighting quality was successfully 

operated on APIKAM and several results were acquired, which will help in interpreting 

and judging the quality of lighting supplied by two different lighting systems. The 

success and failure of the lighting systems were revealed according to the three aspects 

in the evaluation process, as functional, physiological, and psychological. This kind of 

an evaluation helped in determining what the deficiencies are in terms of lighting and 

what problems these deficiencies lead to both in terms of environmental conditions and 

experience within the space. 

Functional aspects are concerned with visibility, thus safety; and task 

performance in relation to the amount of light, lighting systems or lamp types chosen, 

and check whether they are appropriate to the desired function or not. According to the 

regulations the amount of light must not exceed 50 lx, where organic-based materials 

such as paper prints are exhibited. Besides, the IR emissions should be controlled and 

UV emissions should be stopped to avoid the heating effect and photochemical 

reactions.  

In the exhibition hall APIKAM the task surfaces are the vertical panels and there 

is a large variety in the amount of light they receive especially under halogen 

spotlighting systems. In order to make the evaluations easier, four calculation surfaces 

are utilized to measure the amount of light on the surfaces. The surfaces are placed on 

the brightest, darkest, and semi-bright locations within the exhibition. For recessed 

fluorescent lighting system, the amount of light on the surfaces varies between 88 lx and 

293 lx, which are higher than the recommended level. Since it is too expensive to 

change the whole lighting system, a dimmer system could be installed which gives the 

ability to reduce the amount of light in the exhibition. This system should offer the 

ability of controlling each single fluorescent box so that it would be possible to equalize 

the intensity for each task surface to the recommended level. This will also generate the 

ability to create variety in the amount of light outside the task surfaces in the exhibition, 

such as walls, ceiling, and floor to achieve non-uniformity. Fluorescent light sources do 

not produce any heat. However, they emit too much radiation within the ultraviolet 
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spectrum. Although the ones used in the exhibition are of low UV emitting type, they 

nevertheless produce some UV emission which could be dangerous for the exhibited 

materials. A UV shield coating could be applied on the methacrylate flat diffuser for 

each box.  

 The situation is much worse for the halogen spotlighting system in terms of light 

intensity. The amount of light varies between 243 lx and 882 lx, which are far higher 

than the recommended level. The cold-light reflector of the sources reduces the heat by 

66 % but at this intensity it will not be enough. The amount of light must be lowered 

with a dimmer system which is proposed for recessed fluorescent systems, too. The UV 

shield in the halogen bulbs stops the UV emission, so no further protection such as a 

UV coating is necessary.  

Because of the high intensities especially in the halogen spotlighting system, 

some disturbing effects such as glare occur in the exhibition. Most of the task surface is 

subject to sharp transitions in terms of brightness. For example, the CS1 is subject to a 

transition from 621 lx to 880 lx at a height of 165 cm under halogen spotlighting 

system. Brightness pattern, or the non-uniform distribution of light is something 

valuable, but special attention must be paid that these varieties do not intersect on the 

task surfaces. Other surfaces such as walls, ceiling, floor, and some volumetric parts of 

the space could be utilized for that purpose. This problem also derives from the 

selection of the halogen bulb which has a beam angle of 10 degrees, which is more 

suitable for illuminating three dimensional objects.  Since this angle is too narrow, 

bright circles occur on the task surfaces and this tires the eye of viewer because it is 

hard to adapt to the bright and dark contrast at this small scale.  

Another problem is the reflected glare or veiling reflections that occur on the 

task surfaces for both lighting systems. Most of the task surface acts like a mirror and 

reflects the images of light sources and even the image of the viewer on dark colored 

posters. This problem is also expressed in the survey. 42 subjects reported that they 

noticed the reflection of themselves and light sources under both lighting systems on 

several vertical task surfaces. 

The reason is the wrong placement of the light sources without constituting the 

optimum angle of incidence, which is 30 degrees for vertical tasks in museums. 

Halogen spotlighting system is mounted on tracks and therefore provides the ability to 

relocate the sources, but the recessed fluorescent lighting system is fixed and 

repositioning means to change the whole suspended ceiling above the exhibition. 
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Another solution might be to relocate the vertical task surfaces according to the 

fluorescent lighting system and try to minimize the spots where veiling reflections occur 

and then cover all task surfaces with antireflective coatings of highest quality and then 

relocate the halogen spotlighting system with respect to the new plan scheme of the 

exhibition.  

The reflected glare is also available on the floor. The exhibition is covered with 

granite tiles which have a reflectance of 68 %. The floor is like a reflective pool on a 

sunny day and it is possible to see the whole pattern of light sources on the floor for 

both lighting systems. On most of the exhibition the floor is the main source for 

disturbing glare and it distracts the attention from the exhibition, whereas all attention 

should be directed on task surfaces. As a solution the floor could be covered with an 

alternative material, such as vinyl or wood, which has low degree of reflectance.  

 Both lighting systems failed in functional aspects for several reasons as 

explained above. 

 Physiological aspects are concerned with the effects of light on human 

physiology. The physiological effects besides arousal are directly related to the length 

of the period of one’s exposal to light. On the other hand, there may be some 

employees, including museum security guards and others who are exposed to lighting 

conditions for longer periods of time. Besides, some museums are also open at night for 

certain days of the week, which as a result make shift-work a parameter of consideration 

in terms of lighting design. This particular exhibition hall generally welcomes short 

visits which are not enough to become physiologically affected. The exhibition hall of 

APIKAM is open only during the work hours and there are no employees in the 

exhibition hall, who are on duty whole day, so the health issue in regard to human 

physiology could be neglected for this particular case. Physiological aspects are 

considered only in terms of arousal in this exhibition hall. 

 As based on Eysenck’s theory (1990) and other scientific works such as Biner’s 

(1991) and Boyce’s (1997), arousal levels are related to the amount of light and more 

light triggers more arousal. However, it is also important to point out that the arousal 

level should be on an optimal level to result in good performance. Like low arousal 

levels, very high arousal levels bear negative effect on performance related to a task. 

The other factor is the color of light, as cooler light of high color temperature triggers 

more arousal than warmer light of low color temperature. 
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 In the exhibition hall of APIKAM the arousal level is higher under the halogen 

spotlighting system. The illumination supplied by the recessed fluorescent lighting 

system varies between 88 lx and 420 lx and the average illumination is 211 lx within the 

space, whereas the illumination supplied by halogen spotlighting system is between 243 

lx and 1185 lx at an average of 402 lx. Although the neutral white fluorescent light 

source with 4000 K triggers more arousal than the reddish warm halogen light source 

with 2900 K, the amount of light here plays the main role.  

The results of survey verify this situation, too. The preferences for the two 

adjective pairs in the survey as “aroused-unaroused” and “sleepy-wideawake” were 

pointed out that halogen spotlighting systems triggers more arousal than recessed 

fluorescent lighting system. For the first adjective pair, the mean for recessed 

fluorescent lighting is 4 and the mean for halogen spotlighting system is 1.6. A p-value 

which is smaller than 0.001 shows that halogen spotlighting is the one that creates 

arousal within the space. For the pair “sleepy-wideawake” the mean for recessed 

fluorescent system is 1.8 and the mean for halogen spotlighting is 4. The t-test yielded 

result at a p-value smaller than 0.001 and verified the validity of the hypothesis which 

was “recessed fluorescent lighting � halogen spotlighting” . Another interesting result 

for the arousal levels was that the decline of the arousal level related to the increase of 

age. The means were 3.9, 4.0, 4.3, and 5.0 respectively for the four age groups of 20-30, 

30-35, 35-40, and 40-50.    

Recessed fluorescent lighting system failed in physiological aspects as it triggers 

less arousal than halogen spotlighting system. In order to heighten the arousal level for 

fluorescent lighting system, the amount of light needs to increase, which comprises a 

mismatch with the need for preservation. However, the illumination level could be 

increased on certain locations without increasing the level on vertical task surfaces with 

the help of a dimmer system.  

 Psychological aspects are concerned with the psychological effect of light 

described under three main parts as attention, aesthetic and environmental judgments, 

and feelings.  

Both lighting systems have failed in attention scale, because none of them 

supply continuity in the order of visual clues that match with the sequential order of the 

exhibition. The present brightness patterns supplied by lighting systems misguide the 

users in the exhibition in terms of attention cycle.  
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There is a considerable difference between the two lighting systems in their 

interactions with the architectural space. Recessed fluorescent lighting system supplies a 

uniform distribution of luminance on the task areas and a uniform horizontal 

illumination in the middle of space. There is significant drop in the horizontal 

illumination on both sides near the long walls for the large hall and near the short walls 

in the adjacent small hall, deriving from the location of the light sources. While the 

average horizontal illumination is at 360 lx in the middle of space, it drops to 270 lx and 

to 180 lx on both sides. This is misleading in terms of perceptual conditions as some 

parts of the space are perceived weaker than the rest, although it is not an intended 

situation. As mentioned before, non-uniform distribution of light is necessary with its 

contribution to space in terms of perceptual psychology, however not in this particular 

way. In this exhibition the recessed fluorescent lighting system creates three uniformly 

illuminated areas; gradually decreases in the amount of illumination, thus the level of 

perception decreases too, for the area where the illumination level is at minimum. The 

problem is that the lesser perceived area holds the larger percentage of the task area. In 

fact, the amount of light on darker areas is enough to see the posters and read the 

informative texts. However, those locations are not a point of interest anymore under 

this arrangement of light sources.  

The illumination supplied by halogen spotlighting is much more satisfying in 

terms of environmental conditions. The lighting has a non-uniform character between 

240 lx and 720 lx in average, and almost all of the vertical task surfaces are strongly 

perceived by the users in the exhibition. Moreover, the architectural information is 

strongly transmitted to the visitors.  

The results of the survey show that subjects rated halogen spotlighting system as 

it creates a cozy, interesting, and inviting environment, and that they like the gallery 

more under halogen spotlighting system while they rated recessed fluorescent lighting 

system as it creates a cold, dull, and repulsive environment. 

Results for feelings are more complex. Subjects rated that they feel happy, 

pleased, relaxed, aroused, talkative, excited, satisfied, and stable under halogen 

spotlighting system, while they feel sleepy, calm, and unsatisfied under recessed 

fluorescent lighting system.  

 Positive feelings are generally influenced by halogen spotlighting system. 

However, this does not mean that all negative feelings are influenced by recessed 

fluorescent lighting systems. The adjective pairs of happy-unhappy, annoyed-pleased, 
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hopeful-despairing, relaxed-tense, talkative-shy, and stable-depressed are rated as 

neutral under recessed fluorescent lighting system, which means this lighting system 

has neither a positive effect nor a negative effect for these pairs of feelings, while some 

of these feelings are positively influenced under halogen spotlighting system.   

 According to the results there is no clear distinction between the two lighting 

systems for the feeling pair of important-unimportant. Subjects feel important under 

both lighting systems. Some subjects reported during the survey that they felt important 

by being involved in this study. The results may have been affected by this feeling.  

For the three scales which measure the dominancy the results were confusing. 

The results of the scales autonomous-guided and controlling-controlled showed that 

lighting systems have no effect on this feeling; they both rated near 3, which means 

neutral. However, the results of the scale of dominant-submissive points out halogen 

spotlighting system as stimulating dominancy on the subjects. The inconsistency 

between the results is unacceptable. That is why the results for all of these adjective 

pairs will not be counted.  

Subjects aged between 40 and 50 feel tense under recessed fluorescent lighting 

system, while the rest have not been affected in the same way. For the scale of arousal-

unarousal it is interesting to see that as age increases unarousal level increases too, 

under recessed fluorescent lighting system. The reason might be the declining visual 

abilities as age increases, but then what could be the reason of them feeling more 

aroused under halogen spotlighting system? 

Both lighting systems have no influence on the feeling pair of hopeful-

despairing. This pair is rated as 3 under recessed fluorescent system and 2.6 under 

halogen spotlighting system.  

 For the pair of satisfied-unsatisfied, subjects rated fluorescent system as slightly 

unsatisfied with a general mean of 3.9. However, the mean of the subjects between the 

ages 35-40 is 3.1, which implies that they feel neither satisfied nor unsatisfied under 

fluorescent lighting. This preference of the said age group caused the general mean to 

drop.  
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5.1. Concluding Remarks and Recommendations for Further Research 
 

The task for lighting researchers in various disciplines has been to determine 

what luminous conditions (e.g., illuminance, luminance, uniformity, luminance 

distribution, spectral power distribution, etc.) provide good lighting quality. This topic 

is too complex, because those conditions surely will not be universally valid, for 

lighting needs will be influenced by settings, tasks, and individual differences. And this 

complexity leads to pessimism about the likelihood of understanding lighting quality.  It 

is true that the probability that one could develop a tool or measurement system that will 

combine photometric values into a single number, into a value that explains everything 

that the designer or engineer needs to know about lighting quality, is very low.  

What this dissertation tries to point out is the necessity for quality research in 

lighting to be shifted to a base of interpretation where all relevant factors of quality are 

studied, and discussed; instead a base of mandatory prescriptions. That is why the writer 

of this dissertation has benefited from a qualitative research understanding, and the tools 

of behavioral sciences in data collection and evaluation.   

Behavioral research can be defined as the study of how people behave or feel 

under different environmental conditions. It does possess the tools, descriptive studies, 

models, and theories, which are important for architects who want to influence certain 

behaviors by changing the peculiarities of the built environment. As lighting quality 

consist in the harmony between human activity and luminous conditions in a particular 

setting, to assess lighting quality requires accurate measurement of the relevant human 

activities, as well as accurately specified, and appropriate lighting conditions. 

Researches on lighting quality so far has failed because of researchers approach to 

lighting only from a technical background. In the case of lighting quality, multiple 

measures is needed because every lighting installation serves for multiple purposes, 

such as to satisfying requirements for visibility, task performance, social interaction, 

mood, safety and health, and aesthetics. 

At this point it would be reasonable to inquire whether these tools and data 

evaluation methodologies of psychology would be appropriately adapted to the 

architectural context or not. Psychologists study on humans’ interaction with the 

environment since the second half of the 20th century. Barker and Wrighl (1955) 

developed the theory that social settings influence human behavior and they founded a 
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research station in Kansas. These studies formed a new channel in psychology, which is 

environmental psychology, and through participations from other disciplines, such as 

sociology, anthropology, and history it lead today to a vast knowledge,  which is a 

massive source to benefit from. There are a lot of studies in environmental psychology, 

which deals with the effects of architectural context on behaviors. Environmental 

psychologists believe that environment influences behavior at different levels (Delong 

2005). Immediate behavior is a function of the setting in which it occurs. They 

investigate how architectural styles reflect the needs and preferences of people and how 

different designs shape behavior. There are also some studies that deal with 

architectural lighting and its effects on human psychology which has been cited in this 

dissertation before. Environmental psychology developed several tools for measuring 

the effects of the environment (setting, architectural space) on behaviors. PAD, 

developed by Mehrabian is one of them, which is used for data collection in this 

dissertation.   

This evaluation methodology could be improved as it will be able to determine 

lighting quality for spaces where daylight is also present alongside artificial lighting. 

The parameters related to the architectural components could be revised and enhanced 

in order to get consistent results in explaining the effects of lighting on form, structure, 

material, texture, etc. Some inconsistent results in the psychological and physiological 

aspects have opened up new questions and topics to study, such as the impact of 

lighting on the feeling of dominancy, and the impact of lighting on arousal in relation to 

lamb characteristics and age differences.     

Lighting researchers in the past had a narrow perspective, considering the 

luminous environment only as a provider of visual abilities. This study has 

demonstrated that quality in lighting is the sum of multiple factors besides vision, and 

quality is achieved only if the lighting conditions fulfill all of these multiple factors. 
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APPENDIX A 

 

PHOTOMETRIC RESULTS FOR 

RECESSED FLUORESCENT LIGHTING SYSTEM 
 

 
 



 136 

 
 



 137 

 
 



 138 

 
 



 139 

 
 



 140 

 
 



 141 

 
 



 142 

 
 



 143 

 
 



 144 

 
 



 145 

 
 



 146 

 
 



 147 

 
 



 148 

 
 



 149 

 
 



 150 

 
 



 151 

 
 



 152 

 
 



 153 

 
 



 154 

 
 



 155 

 
 



 156 

 
 



 157 

 
 



 158 

 
 



 159 

 
 



 160 

 
 



 161 

 
 



 162 

 
 



 163 

 
 



 164 

 
 



 165 

 
 



 166 

 
 

 



 167 

 
 



 168 

 
 



 169 

 



 170 

 
 



 171 

 



 172 

 
 



 173 

 
 



 174 

 
 



 175 

 
 



 176 

 
 



 177 

 
 



 178 

 
 



 179 

 
 



 180 

 
 



 181 

 
 



 182 

 
 



 183 

 
 



 184 

 
 



 185 

 
 



 186 

 
 



 187 

 
 



 188 

 
 



 189 

 
 



 190 

 
 



 191 

 



 192 

 
 



 193 

 



 194 

 
 



 195 

 
 



 196 

 
 



 197 

 
 



 198 

 
 

 

 



 199 

APPENDIX B 

 

PHOTOMETRIC RESULTS FOR 

HALOGEN SPOTLIGHTING SYSTEM 
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APPENDIX C 

 

SURVEY 
 
 
1. Personal Information: 
 
 
1 .1. Sex:    female  �         

male  � 
 

 
1.2. Age    ......... years old 
     
1.3. Job    ........................ 
     
1.4. Do you wear glasses or lenses yes �  
     no � 
   

if yes:   longsighted � 
           shortsighted � 
    astigmatic � 
       
 
 
 
 
Please do not fill below this line 
 
 
1.6. The temperature in space : ............C 
 
1.7. The temperature outside  : ............C 
 
1.8. Time    : ............ 
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2. Lighting and Task: 
 
Please answer the questions below, only after you have visited all parts of the 
gallery.  
For the questions with a scale, make a circle in the appropriate row on your 
answer sheet with a number close to your opinion. 
 
 

extremely slightly neutral slightly extremely 
1 2 3 4 5 

 
 
2.1. Perception of the images in the print-outs under this lighting arrangement is 

 
strong              1   2   3   4   5   weak 
 
 

2.2. The ability to concentrate and interact with the exhibition under this lighting 
arrangement is 

 
strong  1   2   3   4   5   weak 
 
 

2.3. The informative texts are readable under this lighting arrangement 
 
yes �   no � 
 
 

2.4. Have you seen any reflected images on the vertical planes of exhibition? If yes, 
please specify the exact location on the map. 

 
yes �  no � 
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3. Aesthetic and Environmental Judgments: 
 
Please make a circle in the appropriate row with a number close to your opinion. 
 
 

extremely slightly neutral slightly extremely 
1 2 3 4 5 

 
 
3.1. Perception of the form of the gallery under this lighting arrangement is 
 

strong    1   2   3   4   5   weak 
 

 
3.2.Perception of the structural elements under this lighting arrangement is  

 
strong    1   2   3   4   5   weak 
 
 

3.3. Perception of details [materials of architectural components and furnishing and 
their characteristics such as texture and color] of the gallery under this lighting 
arrangement is 

 
strong    1   2   3   4   5   weak 
 
 

3.4. The general illumination in the gallery is 
 

too dark   1   2   3   4   5     too bright 
 
 

3.5. The illumination on the ceiling is 
 

too dark 1   2   3   4   5   too bright 
 
 

3.6. The illumination on the walls are 
 

too dark 1   2   3   4   5   too bright 
 

 
3.7. The general illumination in the gallery is 
 

uniform 1   2   3   4   5   not uniform 
 

 
3.8. The gallery under this lighting arrangement appears as 
 

inviting 1   2   3   4   5   repulsive 
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3.9. The gallery under this ligting arrangement appears as 
 

cozy  1   2   3   4   5   cold 
 
 

3.10. The gallery under this lighting arrangement appears as 
 

interesting 1   2   3   4   5   dull 
 

 
3.11. I like the gallery under this lighting arrangement 
 

yes  1   2   3   4   5   no 
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4. Feelings: 
 
Take about two minutes to really get into the mood of the situation created by the 
interior lighting; then rate your feelings in the situation with the adjective pairs 
below. Some of the pairs might seem unusual, but you’ll probably feel more one 
way than the other. So, for each pair, make a circle in the appropriate row with a 
number close to the adjective which you believe to describe your feelings better. 
The more appropriate that adjective seems, the more closer the circle you fill in.  
 
 

extremely slightly neutral slightly extremely 
1 2 3 4 5 

 
 
I feel …………. under this lighting arrangement 
 

Happy   1   2   3   4   5   Unhappy 
 
Annoyed  1   2   3   4   5   Pleased 
 
Relaxed  1   2   3   4   5   Tense 
 
Autonomous  1   2   3   4   5   Guided 
 
Hopeful  1   2   3   4   5   Despairing 
 
Aroused  1   2   3   4   5   Unaroused 
 
Dominant  1   2   3   4   5   Submissive 
 
Sleepy   1   2   3   4   5   Wide-awake 
 
Talkative  1   2   3   4   5   Shy 
 
Excited  1   2   3   4   5   Calm 
 
Controlling  1   2   3   4   5   Controlled 
 
Satisfied  1   2   3   4   5   Unsatisfied 
 

  Stable   1   2   3   4   5   Depressed 
 
  Important  1   2   3   4   5  Unimportant 
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5. Perceptual Preferences: 
 
 
5.1. Do you think this lighting arrangement creates any hierarchical order (lit, semi-lit, 

and dark) in the gallery? Do you think that there is variance in the degree that a part 
of the space (structural elements, ceiling, walls, etc.) or part of the exhibition is 
perceived better than another? Please specify. 

 
Lit  : ........................................................................................................ 
 
Semi-lit : ........................................................................................................ 
 
Dark   : ........................................................................................................ 
 

 
5.3. Please stand on the points displayed with SP on the map and decide which direction 

to take       without concerning the exhibit just the lighting itself. Which direction is 
it? 

 
For SP1: 
 
d1  d2  does not matter 
 
For SP2 
 
d1  d2  d3  does not matter 
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