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ABSTRACT 
 

EFFECTS OF DELETING MITOCHONDRIAL  

ANTIOXIDANT GENES ON AGING 

 

Reactive oxygen species (ROS) damage biomolecules, accelerate aging, and 

shorten life span, whereas antioxidant enzymes mitigate these effects. Because 

mitochondria are a primary site of ROS generation and also a primary target of ROS 

attack, they have become a major focus area of aging studies. Here, we employed yeast 

genetics to identify mitochondrial antioxidant genes that are important for replicative 

life span. We found that among the known mitochondrial antioxidant genes (TTR1, 

CCP1, SOD1, GLO4, TRR2, TRX3, CCS1, SOD2, GRX5, PRX1), deletion SOD1 (Cu, 

Zn superoxide dismutase), SOD2 (Manganese-containing superoxide dismutase), and 

CCS1 (Copper chaperone), shortened the life span enormously under normal conditions. 

The life span decreased 40% for �sod1 mutant, 72% for �sod2 mutant, and 50% for 

�ccs1 mutant. When a respiratory carbon source was used in addition to �sod1, �sod2 

and �ccs1, deletion of CCP1 (cytocrome c peroxidase) also lead to a decrease in life 

span which decreased% 79 for �sod1 mutant, 87 %  for �sod2 mutant, 51 % for �ccs1 

and65 % for �ccp1 mutant. Deletion of the other genes had little or no effect on life 

span for both conditions. To further investigate the role of these antioxidant genes 

molecular damages on lipids, proteins, and DNA were detected in mutants. The results 

showed that level of lipid peroxidation was usually lower when cells were grown under 

normal conditions. If cells were grown in respiratory substrate glycerol, deletion of 

CCS1, SOD2, GRX2, CCP1, TRR2 and PRX1 genes increased cellular lipid peroxidation 

levels by 87%, 73%, 65, 48%, 30% and 16% respectively. Protein carbonylation levels 

were 34% higher for �ccp1 and 87% higher for �grx2 mutants compared to WT cells 

when the cells were grown under normal conditions. However, it increased 65% for 

�ccs1, 61% for �prx1, 57% for �glo4, 55% for �ccp1, 49% for �sod1, 37% for �sod2, 

33% for �grx2, 18% for �trx3, 17% for �grx5 and 7% for �trr2 when the cells were 

grown in the presence of glycerol. Q-PCR assay showed that deletion of CCS1 and 

PRX1 lead to DNA damages in mitochondrial DNA. Our overall results showed that 

some of the antioxidant mitochondrial mutants lived shorter and accumulated extensive 

molecular damages in the presence of respiratory carbon source.  
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ÖZET 
 

M�TOKONDR�YAL ANT�OKS�DANT GENLER�N KAYBININ 

YA�LANMA ÜZER�NE ETK�LER� 

 

Reaktif oksijen türleri (ROS) biyomoleküllerde hasar olu�turarak ya�lanmanın 

hızlanması ve ya�am süresinin kısalmasına sebep olurken antioksidan enzimler bu 

etkilerin tersini olu�turur. Mitokondriler ROS’ların birincil üretim yerleri olmaları ve 

reaktif oksijen türlerinden en çok etkilenmeleri sebebiyle ya�lanma çalı�malarında 

önemlidirler. Çalı�mada, replikatif ya�am süresinde etkili mitokondrial antioksidan 

genlerin tanımlanması için maya geneti�i kullanılmı�tır. Çalı�mamızda mitokondrial 

antioksidan genler (TTR1, CCP1, SOD1, GLO4, TRR2, TRX3, CCS1, SOD2, GRX5, 

PRX1) arasından, SOD1 (Cu, Zn superoksit dismutaz), SOD2 (Mn superoksit dismutaz) 

ve CCS1 (Bakır �aperonin) mutasyonları ya�am sürelerini dü�ürmü� olup bu dü�me 

�sod1 için 40%, �sod2 için 72% ve �ccs1 için 50% olarak bulunmu�tur. Bunun 

yanında solunumla metabolize edilen karbon kayna�ı (gliserol) kullanıldı�ında �sod1, 

�sod2 ve �ccs1’ nin yanında CCP1 mutasyonunun da ya�am süresinde kısalmaya sebep 

oldu�u bulunmu� olup mutantların ya�am sürelerindeli kısalma �sod1 için 79%, �sod2 

için 87% , �ccs1 için 51% ve �ccp1 için 65% olarak bulundu. Her iki ortam ko�ulunda 

da bazı gen mutasyonlarının ya�lanma üzerine çok az veya hiç etkisinin olmadı�ı 

bulundu. Mitokondrial antioxidant genlerin oksidatif stres üzerindeki rollerinin daha iyi 

anla�ılabilmesi için lipid, protein ve DNA’daki hasar oranları belirlendi. Normal 

�artlarda mutantların WT hücrelere göre daha az lipid peroksitlerini içerdikleri bulundu. 

Hücrelerin gliserol içeren besiyerinde büyütülmesiyle lipid peroksitlerinin seviyesi 

CCS1, SOD2, GRX2, CCP1, TRR2 ve PRX1 mutantları için sırasıyla 87%, 73%, 65, 

48%, 30% ve 16% fazla bulundu. Protein karbonilasyonu ölçümlerinde normal 

besiyerinde büyütülen hücrelerden WT hücrelere kıyasla, �ccp1 mutanlarında 34% ve 

�grx2 mutantlarında 87% yüksek protein karbonil miktarı tespit edildi. Gliserol 

besiyerinde ise protein karbonil seviyesinin tüm mutanlar için arttı�ı gözlendi. Q-PCR 

denemesi sonucunda �ccs1 ve �prx1 için mitokondrial DNA’da hasarının arttı�ı 

bulundu. Tüm sonuçlar ı�ı�ında, bazı antioksidan gen mutantlarının daha kısa ya�adı�ı 

ve solunumla metabolize edilebilen karbon  kayna�ı varlı�ında a�ırı miktarda moleküler 

hasar birikimi oldu�u bulundu.  
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CHAPTER 1 
 

INTRODUCTION 
 

1.1. Oxidative Stress 
 

Oxidative stress can be defined as the imbalance between defence mechanisms 

which decrease the level of free radicals, and repair and turnover processes that repair or 

remove oxidatively damaged macromolecules. If there is any deficiency on both or 

either of these processes can cause increased levels of free radicals and damaged 

macromolecules. Disesase such as type II diabetes, atherosclerosis, chronic 

inflammatory processes, and ischemia/reperfusion injury are directly related with 

oxidative stress (Orrenius et al. 2007). In such diseases, the cells can produce excessive 

amount of free radicals such as reactive oxygen species (ROS) that can not be tolerated 

by defence mechanism of the organism. Lifestyle and environment are important events 

to control our health. From diet to sport activities they all affect the levels of ROS 

production. Unfortunately, abnormally high level of oxidative stress that could increase 

their probability of early incidence of decline in optimum body functions can be 

occured for many people during a normal day life-style conditions. Smoking or being in 

a place where people smoke (Carnevali et al. 2003), pollution (Kelly and Sandström 

2004) pesticides taken by diatery sources can easly increase the levels of oxidative 

stress. 

Despite efforts to control the cellular formation of superoxide, there are 

examples in which free radicals are generated during enzymatic aerobic metabolism. 

First reports showed that, superoxide was produced during the oxidation of purines by 

xanthine oxidase (McCord et al, 1968). In the next years , other enzymes, including 

nitric oxide synthase (Pou et al. 1992), have been found to generate free radicals as a 

result of oxidative metabolism. At physiological pH, superoxide rapidly dismutates to 

hydrogen peroxide. Therefore, in the presence of redox active metal ions, hydroxyl 

radical can be produced via the metal ion catalyzed Haber-Weiss reaction. The Haber-

Weiss cycle consists of the following two reactions: 
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1. H2O2 + OH. 	 H2O + O2
− + H+ 

2. H2O2 + O2
− 	 O2 + OH− + OH. 

 

The second reaction achieved notoriety as a possible source of hydroxyl radicals. 

However, it has a negligible rate constant. It is believed that iron (III) complexes can 

catalyse this reaction: First, Fe (III) is reduced by superoxide, followed by oxidation by 

dihydrogen peroxide. Another reaction that catalizes free radical formation is known as 

fenton reaction:  

 

Fe2+ + H2O2 	 Fe3+ + OH. + OH− 

 

Fenton reaction is the iron-salt-dependent decomposition of dihydrogen 

peroxide, generating the highly reactive hydroxyl radical, possibly via an oxoiron (IV) 

intermediate. Addition of a reducing agent, such as ascorbate, leads to a cycle which 

decreases the damage to biological molecules. 

Reactive oxygen species are an important class of free radicals which are 

produced endogenously. Most commonly known ROS are superoxide (O2 -) anion, 

hydrogen peroxide (H2O2), and hydroxyl (OH . ) and peroxyl (ROO . ) radicals (Sikka et 

al. 2002). ROS can be derived from numerous sources in vivo. Autooxidation, 

photochemical and enzymatic reactions, and both endogenous compounds and various 

xenobiotics can be considered under these source. There are several numbers of 

enzymes shown to be capable of generating ROS which include the cytochromes P450, 

various oxidases, peroxidases, lipoxygenases and dehydrogenases. Xenobiotics are 

another important group for generation that can be particularly important in determining 

the extent of ROS generated by these enzymes. For example, various quinones can 

undergo redox cycling, generating large amounts of ROS without themselves being 

degraded. In addition, NADPH oxidase is well known to generate ROS as part of its 

antibacterial function in phagocytic cells. However, this enzyme also appears to be 

present on numerous other cells and may have important signal transduction activities 

(Kehrer 2000). 

Mitochondria can be considered as the most important source for ROS 

production. To understand the mitochondrial reletionship with ROS production and 

aging, it is necessary to have an overview of the mitochondrion and its role in the life of 

biological organisms. 
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Mitochondria are organelles (“little organs”) found in virtually all eukaryotic 

cells. There are two membranes which are inner and outer mebranes and two spaces 

which are intermebrane space and matrix within mitochondria. Outer membrane is 

highly permeable which contains porins than allow free diffusion of molecules smaller 

than 1000 daltons. Inner membrane formed by several folds which called as cristea. 70 

% of iner membrane consist of proteins that shows the importance of inner membrane 

on mitochondrial functions. In addition cardiolipins are the mitochondria specific lipids 

which are localized through inner membrane (Cooper and Hausman 2003). 

The number of mitochondria may change from cell to cell as the amount of 

required energy. The major function of mitochondria is energy production. 90 % of 

enegy which is stored in ATP is produced by mitochondria (Drew et al. 2003). There 

are two metabolic pathways which are the tricarboxylic acid (TCA) cycle and electron 

transport chain (ETC) to produce ATP (Lesnefsky and Hoppel 2006). 

An important characteristic is that mitochondria have their own DNA which 

encodes 12 proteins in yeast and 13 proteins in human cells (Andreoli et al. 2004). 

Beside the ROS production by ETC, mitochondrial DNA (mtDNA) has a crucial role on 

aging because of its sensitivity to free radical attack and functions. mtDNA is a circular 

double-stranded molecule lying in matrix that is avarage 16 kb long for humans 80 kb 

long for yeast and more than 200 kb long for plants.The number of mt DNA copies 

changes from cell to cell in diffirent situations (Cooper and Hausman 2004). It encodes 

two rRNAs, 22 tRNAs and 13 polypeptides. Seven subunits of complex I (NADH 

dehydrogenase), three subunits of complex IV (cytochrome c oxidase), two subunits of 

complex V (ATP synthase) and cytochrome b (a subunit of complexIII) are encoded by 

mitochondrial genome (Alexeyev et al. 2004).  

 It is know that 90% of total cellular ROS is produced within the mitochondria 

(Balaban et al. 2005). Most of the ROS produced by mitochondria is called as 

superoxide radical which is highly reactive and can convert into other radicals as well. 

Superoxide radicals are produced during normal respiratory process by ETC. Normally 

ETC uses oxygen to produce ATP by using the proton gradient between mitochondrial 

spaces followed by electron flow. From Complex I to V there are five different 

comlexes required for adoquate flow of electrons and ATP production (Orrenius et al. 

2007). 

Mitochondrial ROS production occurs mainly on a non-heme iron protein that 

transfers electrons to oxygen. This occurs primarily at Complex I (NADH-coenzyme Q) 
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and, to a lesser extent, following the autoxidation of coenzyme Q from the Complex II 

(succinate-coenzyme Q) and/or Complex III (coenzyme QH2-cytochrome c reductases) 

sites. Once again, the precise contribution of each site to total mitochondrial ROS 

production is probably determined by local conditions including chemical or physical 

damage to the mitochondria, oxygen availability and the presence of xenobiotics 

(Kehrer 2000). Today it is know that %2-3 of total oxygen consumed by ETC is 

converted into ROS. Phagocytic cells damage invading microorganisms by special 

degenerative products such as reactive oxygen species such as superoxide, hydrogen 

peroxide, hypohalous acid, and hydroxyl radical (Rosen et al. 1995). Peroxisomes 

breakdown fatty acid molecules in beta-oxidation reactions. As by products of these 

reactions, hydrogenperoxide ions are generated which can escape and damage 

macromolecules (Harman  et al. 1956). Cytocrome P450 is an important enzyme aganist 

toxic chemicals. However during the reactions catalized by cytocrome P 450, oxidant 

molecules can be formed as a by product (Ahmed et al. 1995). 

Mitochondrial ROS production rate can change by the type of available carbon 

source. If the available carbon source is glucose, yeast cells prefer glycolysis reactions 

to produce ATP which give 2 ATP yield per mole of glucose. Pyruvate molecules which 

are the end products are converted into ethanol during fermentation. During substrate 

level ATP production, NADH is not sent electron transport chain. Instead it is used by 

alcohol dehydrogenase to reduce acetaldehyde, which is formed by decarboxylation of 

pruvate by pyruvate decarboxylase, to ethanol. During logaritmic growth phase in the 

presence of glucose, yeast cells utilize glycolysis (fermentation) to derive energy. When 

all glucose molecules are used up, cells start to convert ethanol back to pyruvate to 

channel it throught Krebs cycle to derive more energy. Respiratory substrates such as 

erhanol, glycerol or lactic acid can be used to produce energy only through Krabs cycle. 

Thus, respiratory substrates are used to distinguish respiration competible cells from 

noncompetible ones. They are also used when cells are forced to utilize their 

mitochondria to derive energy. If glycerol is used as carbon souce, respiration reactions 

occur in which pyruvate does not used to form ethanol. Instead of that, pyruvate is 

converted to acetyl CoA which is used by TCA to form ATP, NADH and FADH. 

NADH and FADH are used by ETC in mitochondria to produce ATP during free 

radicals are formed. ROS production can cause important damages on lipids, proteins 

and DNA. It can be infered that usage of glycerol as carbon source is increase the risk 

of molecular damages. 



 
 

5 

1.2. Oxidative Damage to Biomolecules 
 

1.2.1. Damages on Lipids 
 

Phospholipids which contain polyunsaturated fatty acids residues are extremely 

sensitive to oxidation. Fenton reaction is one of the most potent inducer of lipid 

peroxidation, as it causes peroxide formation (Karbownik and Lewiski 2002). The 

major effect of lipid peroxidation is changes of membran charctaristics which causes 

functional declines of them following important age related diseases such as Alzeimer’s 

disease (Wagner et al. 1994). Generally lipid peroxidation affects membranes causing 

decrease on fluidity and increase on permeability (Kelly et al. 1998). Biochemistry of 

lipid peroxidation comprise three important cycles which are initiation where activation 

of O2 occurs, propagation where lipid hydroperoxides are generated and termination 

which occurs if peroxy radicals cross-link to form conjugated products which are not 

radical anymore (Wagner et al. 1994). Lipid peroxides are unstable, and decompose to 

generate other molecules such as malonaldehyde (MDA) and 4-hydroxyalkenals. Beside 

these two molecules, some other molecules such as octane, heptane, athene and ethylene 

can be formed. Measurement of malonaldehyde and 4-hydroxyalkenals has been used as 

an indicator of lipid peroxidation. This indicators can be detected via 

spectrophotometric or fluorometric assays (Jo and Ahn 1998). Repair of oxidized lipids 

is generally carried out by enzymatic activity. Two important repair systems are known 

which are the sequential action of phospholipase A2 (PLA2) with glutathione peroxidase 

and phospholipid hydroperoxide glutathione peroxidase (GPx) (Kelly et al. 1998). In 

phospholipase A2 system, PLA hydrolyse the phospholipid hydroperoxides to the 

hydroperoxy fatty acids which are substates of GPX. The product which is reduced 

hydroxy groups terminates lipid peroxidation (Sevanian et al. 1983). Phospholipid 

hydroperoxide glutathione peroxidase system comprise direct reaction of phospholipid 

hydroperoxide glutathione peroxidase with the esterified phospholipid hydroperoxides 

which terminates lipid peroxidation (Ursini et al. 1985). 
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1.2.2. Damages on Proteins 
 

Proteins are one of the major targets of oxidative modification. Oxidation of 

sulfhydryl groups, oxidative adducts on amino acid residues close to metal-binding 

sites, reactions with aldehydes, protein cross-linking reactions, and fragmentation 

reactions are known the results of protein oxidation (Orrenius et al. 2007). The direct 

oxidation of amino acids, particularly in lysine, arginine, proline, and threonine 

residues, promotes the formation protein carbonyls. Formation of a protein carbonyl can 

dramatically alter the tertiary structure of a protein, leading to functional decrease or 

lost. Maintaining protein pool is an important event after oxidation. After oxidation 

proteins can be repaired or degraded. Protein repair mechanisms comprise modification 

of a few amino acid residues. However, special removal systems exist in all cellular 

compartments for degrading oxidized proteins. Degradation of oxidized protein is 

carried out by proteasomal system in which enzmatic proteolysis occurs (Friguet 2002). 

Beside oxidation of certain amino acids to form protein carbonyls, protein methionine 

residues can be oxidized to methionine sulfoxide residues when exposed to increased 

intercellular levels of free radicals. methionine sulfoxides can be repaired by protein 

methionine-S-sulfoxide reductase (PrMSR) and protein methionine-R-sulfoxide 

reductase which are responsible for re-reducing oxidized methionine residues in the 

presence of reduced thioredoxin (Ferguson and Burke 1992).Eventhought methionine 

sulfoxides can be repaired there exists a further oxidation product of methionine, 

methionine sulfone,which can not be repaired (Poppek and Grune 2005). 

 

1.2.3. Damages on DNA 
 

Oxidative damage on DNA is the most frequently and dangerous type. Any 

damage on DNA affects the function of related protein which is traslated from the 

mRNA transcripted from oxidized locus. Especially hydroxyl radical reacts with DNA 

causing oxidation of bases leading double bound formation, abstraction of an H atom 

from the methyl group of thymine and each of the C-H bonds of 2’-deoxyribose (David 

et al. 2002) and fragmentation (Kelly et al. 1998). DNA is the knowledge of the cells 

and saving DNA from adverse effects has a crictual importance for population to 

maintain their species.Today it is known as several cellular mechanisms which have 
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been evoluted to defense DNA from oxidative attack or repair its oxidative damage 

(Kelly et al. 1998). Base-excision and nucleotide-excision repair are the most important 

repair mechanisms for oxidatively damaged bases (Jaruga and Dizdaroglu 1996). DNA 

glycosylase cuts off the mismatched or damaged base forming an apurinic/apyrimidinic 

(AP) deoxyribose. AP deoxyribose is relased by tandem reactions of AP lyase and AP 

endonuclease which cleaves 3` and 5` to the AP site, respectively. Then the gap is filled 

and linked by a new intact base (Sancar 1996). Nucleotide excision repair (NER) 

system is another important mechanism that repair oxidatively damaged DNA by 

removing oxidized lesion of DNA. In deed NER is the most important and complicated 

repair process, comprising more than 30-40 genes encoding protein for this system 

(Lockett et al. 2005). 

 

1.3. Antioxidant Systems 
 

Eventhough the dangerous effects of ROS on lipids, proteins and DNA that 

cause functional abnormalities, biological organisms developped antioxidant systems 

againest them. They can be either non-enzymatic or enzymatic. Vitamin C and 

glutathione (GSH) are most important components of important non enzymatic defence 

mechanisms which have highly important fuctions on depleting reactive oxygen species. 

(Kankofer et al. 2004). Both Vitamin C and glutathione are water soluble molecules and 

their important funtions comprise aquous media where as a lipid soluble vitamin termed 

as vitamine E has important fuctions to defence organisms aganist oxidants in 

hydrophobic interiour of membranes (Reiter 1994). Beside non-enzymatic defence 

mechanism there are several enzymes catalyse the reaction to get rid of oxidant 

molecules. Superoxide dismutase (SOD) is one of them and may be the most important 

one which have different types of isoforms such as Mn SOD (SOD2), Cu-Zn SOD 

(SOD1). It catalyses the reaction that converts superoxide radical into hydrogen 

peroxide. At the downstream process of the reaction there are some other enzymes 

differs from cell to cell or from organelle to organelle. Catalase is the most important 

one for downstream reaction which converts hydrogen peroxide into water and 

molecular oxygen. Thioredoxin systmem is an enzymatic defence mechanism that they 

repair several oxidized proteins by oxidation of their –SH residues. Peroxides are also 

eliminated by glutathione peroxidases which have two isoforms classified as selenium 
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dependent and selenium independet ones (Valko et al. 2006). Mitochondria as the 

primary source of ROS and the major organelle which is affected from ROS, contain 

specialized antioxidant enzymes agains ROS attack. 

 

1.3.1. Mitochondrial Antioxidant Enzymes 
 

1.3.1.1. Superoxide Dismutases (SOD1 and SOD2) 
 

There are different types of superoxide dismutases in different fractions of 

eukaryotic organisms. Cu, Zn superoxide dismutase (SOD1) and Mn superoxide 

dismutase (SOD2) are two important dismutases in yeast which are localized in 

mitochondrial intermembane space and matrix respectively. SOD1 is also localized in 

cytosol as well (Sturtz et al. 2001). The major function of superoxide dismutases is 

cleavage of superoxide ions to peroxide ions to reduce the dangerous effects of 

superoxide ions to a less dangerous form.  

 

 
 

There are several researches on superoxide dismutases, only a few studies on 

proteins which are required for modulation of SODs on life span and oxidative stress. 

Copper chaperone (CCS1) and cytochrome c peroxidase (CCP1) are examples of them. 

 

1.3.1.2. Copper Chaperone (CCS1) 
 

Copper chaperone is an metallochaperone which incoperate cytosolic copper to 

SOD1. It is shown that CCS1 is an essential protein for SOD1 activation in 

mitochondrial intermembrane space (Schmidt et al. 1999). In other words CCS1 is a key 

protein for scaving superoxide ions in mitochondrial intermembrane space. So far there 

is no study to show the effect of deleting CCS1 on lifespan. Major of the previous 

studies are focused on the protein structure and interaction of CCS1 with SOD1. 
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1.3.1.3. Cytochrome c Peroxidase (CCP1) 
 

Cytochrome c peroxidase is another important protein for mitochondrial 

antioxidant defense. The function of CCP1 is to convert of H2O2 to water. CCP1 is 

localized in intermembrane space as SOD1 but CCP1 proteins can be isolated from 

matrix as well. It is because the first step of maturation of CCP1 begins in 

mitochondrial matrix (Doum et al. 1982). It is shown that aerobic conditions are 

required for CCP1 activation while the yeast cells are grown in anaerobic conditions 

(Kawaguchi et al. 1962). It is also shown that CCP1 conveys Pos9 which is a 

transcription activator for oxidative stress response genes (Charizanis et al. 1999). 

Previously, the effect of deleting CCP1 gene on yeast life span has not determined. 

 

1.3.1.4. Glyoxylase-II (GLO4) 
 

Glyoxylase-II is an enzyme of glyoxylase system. Indeed mitochondrial 

glyoxylase characterisation II is considered as GLO4 because there is another 

glyoxylase II enzyme which is localized in cytosol and termed as GLO2. The major 

function of GLO4 is the hydrolysis of S-D-lactoylglutathione into glutathione and D-

lactateas. In the litreture there are few numbers of researchs on GLO4 and they are 

mainly focused on identification and characterisation of the enzyme (Bito et al. 1997).. 

This study is the first study that shows the effects of deleting GLO4 gene on aging and 

oxidative stress  

 

1.3.1.5. Mitochondrial Thioredoxin System (TRR2 and TRX3) 
 

Mitochondrial thioredoxin system is an important regulator of redox state which 

is related with several cellular functions. The system consist of thioredoxins and 

thioredoxin reductases. Thioredoxins are small protein molecules which are responsible 

to reduce specific oxidized molecules. Thioredoxin contains in its oxidized form 

(thioredoxin-S2) a single-redox-active disulfide, formed from the two half-cystine 

residues of the protein. In the presence of NADPH and a specific thioredoxin reductase 

this disulfide is opened and the reduced form of thioredoxin (thioredoxin-(SH)2) is 

formed . Thioredoxin-(SH)2functions as hydrogen donor in ribonucleotide reduction and 
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other reductive processes. In mitochondria TRX3 acts as thioredoxin and TRR2 acts as 

thioredoxin reductase..  

In the promoter regions of both TRX3 and TRR2, AP-1 sites are localized which 

is binding site of Yap1 which confers these proteins are expressed when cells exposed 

to oxidative stress (Pedrajas et al. 1999). 

 

1.3.1.6. Mitochondrial Glutaredoxins (GRX2 and GRX5) 
 

Glutaredoxins are known as thiol disulfide oxidoreductases and important to 

maintaine redox state of proteins. Two groups of glulatedoxins are GRX1 and GRX2 

which contain cysteine pair at their active site and GRX3, GRX4, and GRX5 which 

contain single cysteine residue at their active sites. GRX2 and GRX5 are localized in 

mitochondria. Where as GRX2 have both glutathione-dependent disulfide 

oxidoreductase activity in maintaining redox state of target proteins and glutathione 

peroxidase activity, (Collinson et al. 2002), GRX5 is a hydroperoxide and superoxide-

radical responsive glutathione-dependent oxidoreductaseand involved in the 

synthesis/assembly of iron-sulfur centers of respiratory complexes (Manzaneque et al. 

2002).  

 

1.3.1.7. Peroxiredoxin (PRX1) 
 

Peroxiredoxins are classified under peroxidases. There are two groups of 

peroxiredoxins which are 1-Cys peroxiredoxin and 2-Cys peroxiredoxin. Mitochondrial 

peroxiredoxin is 1-Cys peroxiredoxin class enzyme (Pedrajas et al. 2000). Eventhough 

there is a wide range of this class of enzyme, there is only limited information about 

them but it is showed that prx1 protein is an antioxidant enzyme for scavenging ROS 

generated from respiration (Wong et al. 2004). 

 

1.4. Aging 
 

Aging is thought as the decrease in functions to under a threshold levels which 

follows death. Studies of model organisms such as Drosophila, Caenorhabditis elegans, 

and Saccharomyces cerevisiae have revealed that many multifactorial biological events 
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which cause aging are highly conserved. For years scienctist are focused on to increase 

human lifespan. The researches on aging which comprise molecular basis started more 

than one century ago. Wear and Tear Theory which was proposed by Dr. August 

Weismann in 1891 is one of the oldest theories to describe aging process. After that by 

means of the development of current molecular techniques several theories have been 

proposed such as Cross-Linkage Theory proposed by Johan Bjorksten in 1942 

(Bjorksten 1967). The Free Radical Theory proposed by Dr. Harman in 1956 (Harman, 

1956), Hayflick Limit Theory proposed by Dr. Hayflick and Dr. Moorehead in 1962 

(Effros 2004) and Mitochondrial Theory proposed by Dr. Harman in 1972 (Harman, 

1972). 

Electrons surround atoms in pairs and if an atom loses an electron, unpaired 

electron causes the atom to act as a free radical. As previously mentioned free radicals 

are highly reactive and dangerous for all biological macromolecules. The accumulation 

of free radicals in the cell causes destruction of cellular components. According to the 

free radical theory of aging, cells produce free radicals continuously, and constant free 

radical damage eventually causes death of the cell. When death or damaged cells reach 

a number under a threshold level in an organism, the organism ages (Harman 1956). 

The mitochondrial theory of aging was first proposed by Denham Harman, who 

proposed free radical theory, in 1972 (Harman 1972). In 1980 this theory was further 

developed by Jaime Miquel (Miquel et al. 1980). The mitochondrial theory of aging 

enlarge free radical theory of aging by comprising mitochondrial components and 

fucntions which affects lifespan of organisms.  

Among all other organisms Saccharomyces cerevisiae (yeast) is an invaluable 

model system with which to explore the molecular basis of aging. The fact that 

Saccharomyces cerevisiae is an eukaryotic cell with a short life cycle, containing a 

relatively small and well defined genome, expressing numerious genes with human 

ontologs, that can be rapidly and easily manipulated using established genetic 

techniques make this organism so important for aging researches. It is a unicellular 

eukaryotic cell and between yeast and human cells there are many conserved basic facts 

about molecular processes and metabolism In yeast, two different forms of aging 

processes are presently being studied which are replicative life span and chronological 

lifespan. Chronological lifespan is defined as the ability of stationary cultures to 

maintain viability over time. This aging process simply is the process of deterioration 

and loss of viability of cells during stationary phase. And replicative lifespan is defined 
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as the number of times an individual cell divides until it dies. Division of yeast cells 

occur by budding which is an asymmetric cell division process, the age of a mother cell 

can simply be determined by counting the number of bud scars on its surface. Basic 

differentiation of the cellular phsyology and shape can be listed like; increasing bud scar 

number, increasing cell size granulation, wrinkling of the cell surface and increased 

generation time can cause ceasing division of yeast cells (Maskell et al. 2003). Whereas 

for human cells telomer lenght is found an important factor to determine replicative 

lifespan defined as Hayflict Limit, yeast cells do not suffer from telomer shortening 

(D’mello and Jazwinski, 1991) Average and maximum life spans are fixed for each 

yeast strain which makes yeast aging had a strong genetic component. By means of 

differential hybridization screens 14 genes are differentially expressed over the course 

of the yeast life span (Sinclair et al. 1998). Beside changing expression pattern, nuclear 

fragmentation is another event that an important marker for aging. Especially 

extrachromosomal rDNA circles are increased during aging. Homologous 

recombination between repeat sequences in the yeast rDNA region results in the 

formation of extrachromosomal rDNA circles (ERCs). It is found that ERCs are 

accumulate to overwhelming numbers in aging mother cells. ERCs are formed by the 

excision of rDNA locus which is locolized in nucleolus. In young cells, only half will be 

transcriptionally active at any time due to the silencing action of the Sir2 protein. Sir2 

protein exhibits NAD-dependent deacetylase activity. Genetic studies have linked aging 

in this organism to sir (silent information regulator) genes, which mediate genomic 

silencing at telomeres, mating type loci, and ERC. Sir2 protein determines lifespan by 

creating silenced rDNA chromatin, thereby repressing recombination and the 

generationof toxic ERCs (Lin et al. 2000). Recent studies showed that sir2 mediated 

increase on lifespan is related with another factor which increase life span and called as 

calory restriction. It is proposed that life span can be extendend by limiting glucose. 

Calory restriction increase respiration which cause a decrease on NADH levels in the 

cells. Decreasing NADH levels leads increasing NAD+/NADH ratio which activates 

Sir2 (Guarente 2005).  

There are different factors that can affect replicative life span beside genetic 

factors. Mitochondrial effects are the most importants amoung them. Both the pathways 

that controled by mitochondria and free radical formation form mitochondria via 

respiratory mechanisms increase the importance of mitochondria on aging researches. 

There are two important features of mitochondria make these organelles so important 
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for aging researches. The first one is the electron transport chain which produce 

superoxide radical by %2-3 during normal ATP production patway which uses electron 

flow that causes a H+ gradient to produce ATP. Formed superoxide radicals can 

damages all mitochondrial biomolecules comprising mtDNA, proteins and lipids, 

directly or indirectly by their secondary products. Produced radicals can escape into 

cytocol and nucleus as well and can cause more dangerous damages to whole cellular 

components. The second feature that makes mitochondria so important about aging 

process is the structure and repair system of mitochondrial DNA (mtDNA). Complexes 

of ETC are localized throught inner membrane of mitochondria. Thus superoxide 

radical produced from ETC are directly released into mitochondrial matrix. As the mt 

DNA is locolized in matrix space, it makes mitochondrial DNA prone for ROS attack 

(Mandavilli et al. 2002). As previously mentioned all the genes which encodes mRNA, 

rRNA or tRNA from mt DNA are essential for ETC subunits. Any mutation may affect 

the function of ETC which increase the portions of produced superoxide radical. In 

addition the deficiency of histons and introns that may save mitochondria is another 

event that makes mitochondria so sensitive to ROS attack. Repair system is also not 

good enough to overcome increased levels of radicals. It is known that mitochondria 

can repair their DNA by base excision repair (Stuart et al. 2004). However they lack any 

enzymatic machinery for the removal of bulky lesion from their DNA which makes it 

impossible to repair their DNA if the damages are strong (Mandavilli et al. 2002). It is 

also known that eventhough the activity of mitochondrial base excision repair system 

may increase during aging, the level of activity unable to prevent production of lession 

in mtDNA (Jaruga and Dizdaroglu 1996). 

 

1.5. Aims 
 

The major scope of this work is to determine mitochondrial antioxidant genes 

that are important for cellular aging. To do so, growth curves, aging and molecular 

damage profiles of mutants were analysed.  
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CHAPTER 2 
 

MATERIALS AND METHODS 
 

2.1 Materials 
 

A detailed list of commonly used media, buffers, solutions, and their 

compositions are presented in Appendix A. 

 

2.2. Metods 
 

2.2.1. Yeast Strains 
 

Wild-type (BY4741) and isogenic ten different deletion mutants (�ccp1, �sod1, 

�glo4, �trr2, �trx3, �ccs1, �grx2, �sod2, �grx5, �prx1) of Saccharomyces cerevisiae 

were examined. The strains used for the experiment listed in Table 2.1. 

 

Table 2.1. Strains and their genotypes 
 

Strain Genotype 

WT(BY4741) MATa, his3, leu3, met15, ura3 

�ccp1 MATa, his3, leu2, met15, ura3, �ccp1:KANR 

�sod1  MATa, his3, leu2, met15, ura3, �sod1:KANR 

�glo4  MATa, his3, leu2, met15, ura3, �glo4:KANR 

�trr2  MATa, his3, leu2, met15, ura3, �trr2:KANR 

�trx3  MATa, his3, leu2, met15, ura3, �trx3:KANR 

�ccs1  MATa, his3, leu2, met15, ura3, �ccs1:KANR 

�grx2  MATa, his3, leu2, met15, ura3, �grx2:KANR 

�sod2 MATa, his3, leu2, met15, ura3, �sod2:KANR 

�grx5 MATa, his3, leu2, met15, ura3, �grx5:KANR 

�prx1  MATa, his3, leu2, met15, ura3, �prx1:KANR 
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2.2.2. Identification of Mitochondrial Antioxidant Genes 
 

Identification of mitochondrial antioxidant genes were carried out by using an 

internet based software which is called Mitochondrial Proteome Database (Andreoli et 

al., 2004). 

 

2.2.3.Yeast Aging Assay  
 

Yeast strains were grown on desired media for 2 days before analysis. Cells 

were inoculated onto agar plates as a single line. For each strain, avarage 30 individual 

cells selected and removed from yeast colonies by using a micromanuplator. When new 

cells formed by these individuals, 20 new daughter cells were collected and lined up by 

a micromanipulator on agar plates. These 20 cells were termed as starter mothers. New 

buds (daughters) from these virgin cells were removed and discarded as they formed by 

controling the plates by 90 minutes intervals. During night plates were stored at 4oC 

This process continued until cells ceased dividing. Life span was determined as the total 

number of daughter cells that each mother cell generated. 

 

2.2.4. Yeast Growth Curve Assay 
 

Yeast cells were inoculated in liquid media. Overnight cultures were diluted to 

OD600 0,05 in fresh media and cell growth was determined by OD600. For 2 hours 

intervals OD600 values were measured by spectrofotometer for each strain until cells 

reached stationary phase.  

 

2.2.5. Determination of Lipid Peroxidation and Protein Carbonylation 
 

2.2.5.1. Cellular Extraction 
 

Yeast strains were grown in 250 ml of desired media. After 6 h incubation at 30 
oC cells were precipitated by centrifugation and washed once . 4 ml yeast lysis buffer 

added into all cell pellets. 1 ml of glassbeats and 500 µl of 100 mM PMSF was added 
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into suspention Each tube was vortexed for 5 minutes and centrifugated at 3000 rpm for 

3 minutes. Supernetants were stored at -80 oC. 

 

2.2.5.2. Determination of Lipid Peroxidation 
 

50 µl of samples of cellular extracts were taken into microcentrifuge tubes and 

added 1 µl of TBA reagent (0.25 M HCl, 15% [wt/vol] trichloroacetic acid, 0.375% 

[wt/vol] TBA). Samples were heated for 15 minutes in a boiling water bath. After 

cooling, samples were centrifuged at 16,000 g for 1 min in order to remove cell debris. 

Absorbances of the samples were taken at 535 nm. Concentrations were calculated by 

the formula obrained from standart curve which is obtained by the absorbance 

measurement of 0; 2,5; 5; 10 µM 1,1,4,4 tetraethoxypropane at 535. After normalization 

of the results relative lipid peroxide levels put into graphes for each strain. 

 

2.2.5.3. Determination of Protein Carbonylation 
 

For each strain 200 ml cell extracts were taken two microcentrifuge tubes , one 

was marked as "test" and the other as "control". 800 µl of 10 mM (DNPH) prepared in 

2,5 M HCl was added to the test sample and 800 µl of 2,5 M HCl alone was added to 

the control sample. The tubes incubated in the dark at room temperature for 1 hour. The 

tubes were shaken between 15 minutes intervals. 1 ml of 20% TCA (w/v) was added 

into each tubes and the mixture kept in ice for 10 minutes. The tubes were then 

centrifuged at 16.000 g for 25 minutes to obtain the protein pellet. The supernatant was 

carefully aspirated and discarded. This was followed by a second wash with 10 % TCA 

as described above. Finally the precipitates were washed three times with 800 µl of 

ethanol:ethyl acetate (1:1, v/v) to remove unreacted DNPH and lipid remnants. The 

final protein pellet was dissolved in 400 µl of 6 M guanidine hydrochloride and 

incubated at 37°C for 10 minutes. The insoluble materials were removed by 

centrifugation. Each sample was read against the control sample (treated with 2.5 M 

HCl). The carbonyl content was calculated from peak absorption at 370nm using an 

absorption coefficient (e) of 22,000 M- 1 Cm- 1.After normalization of the results 

relative carbonyl contents put into graphes for each strain. 
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2.2.5.4. Normalization of Lipid Peroxidation and Protein 

Carbonylation Measurements 
 

The normalization was carried out by the protein content of the extracts. was 

carried out by Bradford Assay. 50 µl of protein was added in 200 µl of Bradford 

reagent. After 5 minutes abrorbances were measured as 595 nm.Protein concentrations 

were calculated by the formula obtained from standart curve which was obtained by the 

Bradford Assay in which absorbance at 595 nm measured for 2, 4, 8, 12, 15, 20 µg/ml 

BSA. Protein concentrations were divided to lowest protein concentration to find 

normalization coeficients. Both lipid and protein concentration results divided to 

corresponding coeficients.  

 

2.2.6. Determination of Respiration Compotent Cells 
 

Cells were inoculated into 10 ml of YPD incubated at 30 oC until the cells 

reached growth phase. 500 µl of each sample centrifuged at 16.000 g for 5 seconds. The 

pellets were washed with TBS buffer twice. Washed pellets were resuspended in 500 µl 

of TBS buffer. 50 µl of 1µM Mitotracker Red Dye was added into each tube. The tubes 

incubated for 45 minutes at 30 oC in dark. The cells were washed three times with TBS 

buffer. Pellets were resuspended in 500 µl of TBS buffer and sonicated for 3 seconds. 

The level of resprirating compotent cells was measured by measuring the staining 

efficiency by means of FACS array. 

 

2.2.7. Determination of DNA Damages 
 

2.2.7.1 Detection of Gene Specific DNA Mutations 
 

2.2.7.1.1. DNA Extraction 
 

Yeast strains were grown in both 10 ml of YPG until they reached to exponantial 

growth phase. The cell suspensions were spined down for 5 minutes at 4000 rpm and 

resuspended in 1 ml sterile distilled water. The cells were trasfered to microcentrifuge 

tubes. They were spined down at 16000g for 5 minutes. 200 µl yeast lysis buffer 
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containing 1 µM DTT , 200µl phenol:chloroform:isoamyl alcohol (25:24:1), and 0,5 ml 

of acid washed glass beads were added respectively. The samples vortexed for 5 

minutes and 200 µl TE buffer added. Tubes were centrifuged for 5 minutes and aqueous 

phases were transfered to new tubes. 1 ml of 100% EtOH added, and tubes were mixed 

by inversion. Tubes spined for 1 minuted at 16000 g and supernetant were aspirated. 

The pellets were resuspended in 400 µl TE buffer containing 4 µl RNase A, and tubes 

were incubated for 1 hour at 37 oC to dissolve the pellets. 10 µM of 4M ammonium 

acetate and 1mL 100% EtOH were added into tubes. Samples were centrifuged for 1 

minutes at 16000 g and supernetants were discarded. The pellets were washed with 70% 

EtOH and resuspended in 50 µl of TE buffer. DNA concentrations were determined by 

a flourometer. 

 

2.2.7.1.2. PCR Protocol 
 

For 25 ml of PCR reaction 600 µl master mix were prepared. Master mix 

consisted of 60 µl PCR buffer, 30 µl dNTP, 12 µl DMSO, 6 µl primers, 2µl Accutaq 

enzyme and 423 µl water. Each reaction recieved equal emount of template DNA and 

master mix. 

By using the appropriate primer pairs (Torres et al. 2000), target DNA sequences 

COX1 gene were amplified for 30 cycles, beginning with a pre-denaturation step at 98 

°C for 30 seconds, followed by a 15 sec. denaturation step at 94 °C, a 20 sec annealing 

at 66 °C, and a 12 min extension at 68 °C. At the end 3 min primer extension at 68 °C 

completed the sequence. 

10 µl of PCR each products were loaded onto 1% TAE agarose gel which were 

prepared with 1% agarose (w/v) and 0,5 µg/ml EtBr by mixing with 4 ml of loading dye. 

 

2.2.7.2. Determination of Spontaneous Mutation Rates of Mutants 
 

Cells were grown in 2 ml of YPD for 24 h at 30 oC and washed with sterile 

distilled water. Cells were diluted in 20 ml water and cell numbers were determined by 

counting under a scope. Certain number of each cells were plated onto each YNB-

Arg+Can plate. Cells were incubated at 30 oC for 4 days and colony numbers were 

counted. Samples were analysed twice for each cells. 
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CHAPTER 3 
 

RESULTS AND DISCUSSION 
 

3.1. Identification of Mitochondrial Antioxidant Genes 
 

We first listed the mitochondrial antioxidant proteins using Mitop2 program 

which analyses the mitochondrial targeting sequences on genes and combine the results 

with certain experimental data to localize the proteins with high accuracy (Andreoli et 

al., 2004). As shown in Table 3.1. ten different proteins were found to be antioxidant 

and residing in mitochondria 

 

Table 3.1.  List of mitochondrial antioxitant genes, gene products and subcellular 
localization 

 
ORF 

(gene) 
Gene Product 

Subcellular 

Localization 

SOD2 Mn superoxide dismutase mitochondrial matrix 

GRX5 glutaredoxin mitochondrial matrix 

PRX1 peroxiredoxin mitochondrion 

TRX3 thioredoxin mitochondrion 

CCP1 cytochrome c peroxidase 
mitochondrial  

intermebrane space 

SOD1 Cu, Zn superoxide dismutase 
cytosol, mitochondrial 

intermembrane space 

GLO4 glyoxylase-II mitochondrial matrix 

TRR2 thioredoxin reductase mitochondrion 

GRX2 glutaredoxin cytosol, mitochondrion 

CCS1 copper chaperone 
cytosol, mitochondrial 

inner membrane 
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3.2. Growth Rates of Mutants 
 

To investigate whether these genes are important in cell growth, deletion 

mutants were grown in glucose media (YPD)  and in glycerol media (YPG), and growth 

rate was determined by OD600 measurements. As shown in Figure 3.1., most of the 

mutants did not show significant growth retardation compared to wild-type cells, 

whereas cells lacking GRX5, SOD1 and CCS1 genes grew slightly slower under normal 

conditions. 
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Figure 3.1. Growth rates in glucose media (YPD)  .Overnight cultures were diluted to 

0.05 OD600 in liquid and shaked at 30�C for the indicated time. Growth rate 
was monitored by OD600 measurements. 

 

Similar to YPD growth profiles, none of the mutants showed significant growth 

retardation compared to wild-type cells in the presence of glycerol. Apart from the 

results which were obtained from growth in YPD medium, cells lacking PRX1, GRX5, 

SOD1, CCP1, SOD2 and GRX2 genes showed slight retardation on growth in glycerol 

as shown in Figure 3.2. 
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Figure 3.2. Growth in glycerol media (YPG). Overnight cultures were diluted to 0.05 

OD600 in liquid and shaked at 30�C for the indicated time. Growth rate was 
monitored by OD600 measurements 

 

When challenged with 1 mM of H2O2, mutants lacking GRX5, SOD2, SOD1, 

CCS1, PRX1, TRR2 and GRX2 genes showed growth defects suggesting that these 

mutants are sensitive to oxidative stress as shown in Figure 3.3. Interestingly these 

results are similar to those of obtained from YPG growth curves. In glucose media yeast 

cells derive ATP from gylcolysis which does not require mitochondria. In contrast, in 

glycerol media energy production from glycerol occurs via respiration in which ETC is 

used. Thus, it is expected to see an increase in the level of oxidative stress in mutant 

cells when they use glycerol.  
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Figure 3.3. Growth in glucose media (YPD)  with 1mM H2O2. Overnight cultures were 

diluted to 0.05 OD600 in liquid, H2O2 was added into aliqouts to final 
concentration 1mM and shaked at 30�C for the indicated time. Growth rate 
was monitored by OD600 measurements. 

 

When challenged with 1 mM of H2O2 gylcerol media mutants lacking, CCP1, 

GLO4, SOD2, SOD1, CCS1,TRX3 , TRR2 and GRX2 genes showed lower growth rate 

compared to WT cells as shown in Figure 3.4. Results are consistent with those of cells 

grown in YPD + 1mM H2O2. 
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Figure 3.4. Growth in glycerol media (YPG) with 1mM H2O2. Overnight cultures were 

diluted to 0.05 OD600 in liquid, H2O2 was added into aliqouts to final 
concentration 1mM and shaked at 30�C for the indicated time. Growth rate 
was monitored by OD600 measurements 

 

3.3. Aging Profiles of Mutants 
 

To see the effect of deleting these genes on the life span, replicative aging 

profile of each mutant was determined. Deletion of SOD1, SOD2 and CCS1 genes 

caused a major drop in both average and maximum life spans as shown in Table 3.2. 

and Figure 3.5. The life span decrease was % 40 for �sod1 mutant, % 72 for �sod2 

mutant and % 50 for �ccs1 mutant. Absence of GRX2, GLO4 and PRX1 genes also 

shortened the average life span (10 %), but the extend of decrease was not as significant 

as deleting SOD1 and SOD2 or CCS1 genes. Surprisingly, deletion of the other 

mitochondrial antioxidant genes did not lead to a decrease in the life span. Previous 

studies by others established the role of SOD1 and SOD2 in aging. Our results are 

consistent with the previous findings regarding �sod1 and �sod2 mutants.  
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Table 3.2. Maximum and average life spans of WT and mutant cells which grown in 
glucose media (YPD)   
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Figure 3.5. Replicative life span analysis of WT and mutant cells which grown in 
glucose media (YPD)   

 

In the presence of glycerol deletion of SOD1, SOD2, CCS1, CCP1 genes caused 

a major drop in both average and maximum life spans as shown in Table 3.3. and Figure 

3.6. The life span decrease was 79 % for �sod1 mutant, 87 % for �sod2 mutant, 51 % 

for �ccs1 and 65 % for �ccp1 mutants. Absence of PRX1, TRR2 and GRX5 genes also 

shortened the average life span by 8 %, 10 % and 16 % respectively, but the extent of 

decrease was not as significant as deleting CCP1, SOD1 and SOD2 or CCS1 genes. 
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Surprisingly, deletion of the GLO4, TRX3 and GRX2 genes did not lead to a change in 

the life span of cells. 

 

Table 3.3. Maximum and average life spans of WT and mutant cells which grown in 
glycerol media (YPG) 
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Figure 3.6. Replicative life span analysis of WT and mutant cells which grown in 
glycerol media (YPG) 
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3.4. Detection of Molecular Damages in Mutants 
 

3.4.1. Lipid Peroxidation Levels 
 

Lipid molecules can be oxidized by free radicals to form lipid peroxides. In this 

study MDA levels, which is related with lipid peroxidation levels, were measured to 

determine mitochondrial and cellular lipid peroxidation level.  

Level of MDA was usually lower in mutant cells under normal conditions. Previous 

studies for ∆sod1 and ∆sod2 mutants showed similar results (Pereira et al. 2003). The 

decrease in MDA levels as a result of single mutations can be explained by the 

interaction of the genes of interest with other pathways to induce oxidative stress 

tolerance genes. Deletion of single mitochondrial antioxidant gene may cause an 

increase on oxidative state which triggers other genes that responsible to regulate 

oxidative state. It is known that some mitochondrial antioxidant proteins such as SOD1, 

TRX3, TRR2 can activate oxidative stress response pathway by conveying different 

transcription activators such as Yap1 and Skn7. Absence of one of these genes can also 

affect the expression of other mitochondrial antioxidant genes which may increase the 

cellular defense and repair mechanisms.  

As shown in Figure 3.8. when cells grown in glycerol, deletion of CCS1, SOD2, 

GRX2, CCP1, TRR2 and PRX1 increase cellular MDA levels 87 %; 73 %; 65 %; 48 %; 

30 % and 16 % respectively. Mutants that show higher MDA levels, grow slower in 

YPG + H2O2, that deletion of CCS1, SOD2, GRX2, CCP1, TRR2 and PRX1 genes cause 

the cells to become more sensitive to lipid peroxidation. 

It is known that increase in lipid peroxidation levels is an impotant event during 

aging. Especially, recent studies demonstrate that lipid peroxidation in brain is an early 

event in Alzheimer’s disease (Petursdottir et al. 2007). In another research it was found 

that  SOD1 is not necessary for normal motor neuron development and function but it is 

required under physiologically stressful conditions following injury (Reaume et al. 

1996). In our research lipid peroxidation levels were detected without additional stress 

conditions and the results are consistent with the proposition above. Growth curve 

assays also support the idea because H2O2 pretreated ∆sod1 mutants showed growth 

retardation compared to wild-type cells. Further analysis that shows lipid peroxidation 

levels for the mutants that pretreated with H2O2 is need to be carried out to support this 
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idea. Deletion of CCS1 gene caused elivated levels of lipid peroxidation compared to 

WT cells and ∆sod1 mutants. This result supports the idea about prooxidation event. It 

is known that CCS1 is need to be expressed for SOD1 activation. We can speculate that 

∆ccs1 mutants may act like double gene mutants for CCS1 and SOD1 genes. Thus 

inactivation of these two genes may increase the rate of lipid peroxidation. Previous 

studies showed that relationship between SOD activity and life span is not easy to 

understand. It is known that increased expression of SODs cause increased lipid 

peroxidation. Studies on bacteria and transgenic animals showed that high levels of 

SOD actually lead to increased lipid peroxidation and hypersensitivity to oxidative 

stress (Kowald and Klipp 2004). Eventhough the similarity between the results of lipid 

peroxidation experiments and aging assays when cells were grown in glycerol media, 

available data is not enough to propose a relationship between aging and lipid 

peroxidation. For ∆ccs1,  ∆sod2, and ∆ccp1 it was shown that there was a decrease on 

lifespan and increase on lipid peroxidation levels when they cells were grown in 

glycerol media. Differently, eventhough there was a considerable increase on lipid 

peroxidation in  ∆trr2, ∆grx2 and ∆prx1 mutants, there wasn’t anyeffect on life span.  

Thus, decrease on lifespan  because of deletion of antioxidant genes can not be 

evaulated  just only with the increase of lipid peroxidation. We can speculate that there 

may be other effects which decrease lifespan of ∆ccs1, ∆sod1,  ∆sod2, and ∆ccp1. 
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Figure 3.7. Cellular relative lipid peroxidation levels for WT and mutant cells which 
were grown in glucose media (YPD) 
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Figure 3.8. Cellular relative lipid peroxidation levels for WT and mutant cells which 

were grown in glycerol media (YPG) 
 

3.4.2. Protein Carbonylation Levels 
 

As shown in Figure 3.9., �ccp1 and �grx2 mutants showed 34 % and 87 % higher 

carbonylation levels compared to WT cells. In another research similar results were 

obtained for mitochondrial protein carbonylation levels in �sod1 and �sod2 mutants, 

previously (O’Brien et al. 2004 ).  

Like those of lipid peroxidation, the mutants show higher level of protein carbonylation 

compared to WT cells when they are grown in glycerol media instead of glucose media. 

The results showed that all of the single mutations cause an increase on cellular protein 

carbonylation. The increases were 65 % for �ccs1, 61 % for �prx1, 57 % for �glo4, 55 

% for �ccp1, 49 % for �sod1, 37 % for �sod2, 33 % for �grx2, 18 % for �trx3, 17 % 

for �grx5 and 7 % for �trr2 as shown in Figure 3.10. 

When cells were grown in glucose media, carbonylation results were similar to those of 

MDA measurements when cells grown in glucose media. For both ∆grx2 mutants were 

more sensitive to molecular damages. Grx2 is the major thiol system for the protection 
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of proteins against H2O2 induced carbonylation. It is also known that Grx2 accounts for 

most of the glutaredoxin activity during exponential growth (Luikenhuis et al. 1998). 

This means deletion of GRX2 may cause the loss of major glutaredoxin activity which is 

especially important for protection of proteins againist oxidation. �ccp1 mutants also 

showed higher levels of protein carbonylation. So that we can speculate that as both of 

GRX2 and CCP1 show peroxidase activity, loss of peroxidase activity increase 

molecular damages on lipid and especially proteins. 

When cells were grown in glycerol media all of the mutants showed elivated levels of 

carbonylation compared to WT cells. Deletion of CCS1 showed the highest 

carbonylation level compared to other mutants and WT cells  which is similar to results 

of lipid peroxidation levels. This result support the idea that ∆ccs1 mutation may effect 

the cells like double gene mutantion for CCS1 and SOD1 genes. 

Beside of ∆ccs1, ∆sod1,  ∆sod2, and ∆ccp1 mutants, other mutants, of which lifespan 

did not changed compared to WT cells, showed increased levels of protein 

carbonylation. Studies have shown that protein carbonylation increases with the age and 

in some cases such as age related disease like Parkinson’s disease, Alzheimer’s disease, 

carbonylation has been linked to age-dependent wear and tear of specific enzymes, such 

as aconitase and the nucleotide translocator ANT (Nyström 2005). In addition, some 

mutations showed that specific carbonylation patterns which means carbonylation of 

specific proteins can be expected for different mutants. ∆grx5 mutants showed that at 

least one band appeared to be specifically oxidized which was not oxidized for other 

GRX  mutants (Manzaneque et al. 1999). In deed, what caused the specific protein 

carbontlation is not known. Thus we can speculate that there may be specific 

carbonylation  patterns that causes decrease on lifespans of ∆ccs1, ∆sod1,  ∆sod2, and 

∆ccp1 mutants. Western Blot analysis need to be carried out for all mutants to identify 

the specific protein carbonylation idea. 
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Figure 3.9. Cellular relative protein carbonylation levels for WT and mutant cells which 
were grown in glucose media (YPD) 
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Figure 3.10. Cellular relative protein carbonylation levels for WT and mutant cells 

which were grown in glycerol media (YPG) 
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3.4.3. Determination of Respiration Compotent Cells 
 

As a by product of respiration, superoxide radicals are formed which is followed 

by an increase on conseqiuent free radical formation. Cells lacking mitochondrial 

antioxidant genes may have impaired mitochondrial functions. 
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Figure 3.11. Relative levels of respiration compotent cells in glucose media (YPD) 
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Figure 3.12. Relative levels of respiration compotent cells in glycerol media (YPG) 
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We wanted to know whether mutant cells have actively respiring mitochondria. 

To distinguish respiratory compotents cells from noncompotent cells, samples were 

stained with Mitotracker Red, which becomes flourescent upon oxidation by electron 

transport chain. Then cells were analysed by FACS array system to asses the ratio of 

respiratory compotent cells. In the presence of glucose flourescence intensity (Figure 

3.11.) was low for most of the cells including WT, but �prx1, �sod2, �ccs1, �sod1, and 

�ccp1mutants gave higher level of signals which may reflect the oxidation potentials of 

these mutants. Deletion of SOD1 increase level of respiration compotent cells 13,20 

fold, deletion of the SOD2 increase respiration compotent cells 10,71 fold, deletion of 

the CCP1 increase respiration compotent cells 7,24 fold, deletion of the CCS1 increase 

respiration compotent cells 4,10 fold and deletion of the PRX1 increase respiration 

compotent cells 3,52 fold. Figure 3.12. shows the level of respiration compotent cells 

when the cells were grown in glycerol media. Level of respiration compotent cells were 

increased 110 % for �prx1, 106 % for �grx5, 104 % for �ccp1, 73 % for �trr2, 42 % 

for �sod1, 42 % for �ccs1, 37 % for �sod2, 33 % for �trx3 and 30 % for �glo4, and 

decreased 5 % for �grx2 when compared to WT cells. These data confirms that glycerol 

activates respiration rate in yeast. It also shows that deletion of antioxidant genes 

increases the oxidation potantial of the cells. 

 

3.4.4. DNA Damage 
 

In this study two different approaches were carried out to figure out the level of 

DNA damage in mutants. The first one is Quantitive PCR amplification method in 

which COX1 gene used as template. By comparing the intensity of the bands of PCR 

amplification products between different mutants and WT cells any strand break or 

damages that prevent amplification of template, which corresponds to damage on DNA, 

can be detected. Amplification of COX1 gene and flanking sequences (6,9 kb) covers 

1/10 of total mitochondrial genome and it is a good measure of assessing mtDNA 

damages. 

Q-PCR results showed that deletion of CCS1 and PRX1 totally prevents 

amplification of COX1 gene which indicates that deletion of these two genes increase 

the sensitivity of mitochondrial DNA compared to WT and other mutant cells. In 
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addition �trx3,  mutants showed sensitivity on mtDNA for which amplification levels 

reduced to 25 %, 41 %, 58 % respectively, as shown in 3.13. and 3.14. 

 

 
 
Figure 3.13.  Q-PCR analysis of a 6,9 kb fragment of mitochondrial DNA including 

COX1 gene. Cells were grown in glycerol media (YPG) 
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Figure 3.14. Density analysis for Q-PCR gel electrophoresis for the cells that grown in 

glycerol media (YPG) 
 

It is possible that cells experiencing oxidative stress may have higher oxidative 

stress. Thus, we analyzed spontaneous mutation rates or genomic instability of mutants. 
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CAN1 gene encodes a plasma membrane arginine permease. Cells take up arginine via 

arginine permease and canavanine competitively inhibits arginine uptake. Resistance to 

canavanine is associated with loss of arginine permease function. High-level resistance 

to canavanine occurs exclusively because of mutation at CAN1 locus. Because 

canavinine is a competitive inhibitor, arginine must be excluded from media for the 

experiments. Normally if the selective media is supplied with canavanin it 

competietively inhibits arginine and stops translation. Cells can not grow if CAN1 gene 

activity is normal. We aimed to show random mutations by monitoring the CAN1 

activity by supplying the media with canavanin. Mutations in CAN1 gene let cells grow 

in the presence of canavanin. Figure 3.15 shows the results of the cells which were 

grown in the presence of canavanin. 
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Figure 3.15. Relative colony numbers for WT and mutant cells which were grown in 

YNB supplied with canavanin. 
 

While we were expecting to see CAN1 inhibition due to expected higher 

mutation rate in �ccs1, �sod1, �sod2 mutants, only �glo4 mutants yielded higher 

spontaneous rates among all mutants. This experiments was repeated twice and similar 

results were observed. Thus, mutants except �glo4 have lower level of spontaneous 

mutation rate. 

This phenomoneon may be explained by that absence of antioxidant genes may 

situmulate the expression of other antioxidant genes which protect cells from 

deleterious effects of ROS. 
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CHAPTER 4 
 

CONCLUSION 
 

The aim of this study was to show the effect of deleting mitochondrial 

antioxidant genes on aging. For this purpose we first identified the antioxidant genes 

and found ten different genes which are all expressed from genomic DNA and function 

in mitochondria. The life span profiles showed that the deletion of SOD1, SOD2, CCS1 

decreased life span in both glucose and glycerol media. In addition deletion of CCP1 

gene which encodes cytocrome c peroxidase decreased life span just only in YPG. We 

also carried out experiments to determine molecular damages in lipids, proteins and 

DNA for the mutants and wild type cells to find if there is any relation between the 

decrease of life span and increase of damages on macromolecules. In agreement with 

the free radical theory of aging, some of the mitochondrial antioxidant gene mutants 

lived shorter, but they did not accumulate extensive molecular damages. It is known that 

deletion of antioxidant genes can activate antioxidant systems through the activation of 

certain transcription factors (Allen and Tresini 2000). We speculate that, in our single 

mutants absence of each  antioxidant gene may have shanged the redox status of cells 

and lead to an induction of other antioxidant enzymes to protect the cells. Thus we did 

not detect consistent and extensive molecular damages in macromolecules. Experiments 

with multiple mutants lacking antioxidant and redox transcriptional factors may be 

required to evaluate the effects of each mitochondrial antioxidant gene deletion on 

molecular oxidation levels. 
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APPENDIX A 
 

1. Media 

 

a. Glucose (YPD) medium, per liter 

1% yeast extract, 2% peptone, 2% glucose (Media sterilized by autoclaving at 

121 oC for 15’) 

 

b. Glucose (YPD) agar medium, per liter 

1% yeast extract, 2% peptone, 2% glucose, 2% agar (Media sterilized by 

autoclaving at 121 oC for 15’) 

 

c. Glucose (YPD) medium with H2O2, per liter 

1% yeast extract, 2% peptone, 2% glucose, (Media sterilized by autoclaving at 

121 oC for 15’) 1 mM H2O2 (added just before inoculation) 

 

d. Glycerol (YPG) medium, per liter 

1% yeast extract, 2% peptone, 3% glycerol (v/v) (Media sterilized by 

autoclaving at 121 oC for 15’) 

 

e. Glycerol (YPG) agar medium, per liter 

1% yeast extract, 2% peptone, 3% glycerol(v/v), 2% agar (Media sterilized by 

autoclaving at 121 oC for 15’) 

 

f. Glycerol (YPG) medium with H2O2, per liter 

1% yeast extract, 2% peptone, 3% glycerol (v/v), (Media sterilized by 

autoclaving at 121 oC for 15’) 1 mM H2O2 (added just before inoculation) 

 

g. Supplemented Minimal Medium(YNB-Arg+Can), per liter 

6,79g/L YNB with ammonium sulfate, 2% glucose, 2 ml methionine (1 g/100 

ml), 3 ml leucine (1 g/100 ml), 10 ml uracil (0,2 g/100 ml), 2 ml histidine(1g/100 ml), 

2% agar (Media sterilized by autoclaving at 121 oC for 15’), 3 ml of 20 mg/ml 

canavanine sulfate 
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2. 0,5 M EDTA per liter 

 

186,1 g EDTA added into 800 ml water.pH adjusted to 8.0 with NaOH. Solution 

sterilized by autoclaving at 121 oC for 15 minutes. 

 

3. Yeast Lysis Buffer 

 

4 ml Triton -100, 20 ml 10% SDS, 4 ml 5M NaCl, 400 µl 0,5 EDTA, 2 ml 1M 

Tris (pH 8) 0,5 ml 400mM DTT were added into 169,1 ml distilled water. 

 

4. PMSF (phenylmethylsulfonylfluoride) 

 

100 mM PMSF was dissolved in isopropanol and filter-sterilized. It was stored 

at -20°C to be used at 1mM working concentration when required. 

 

5. TBA reagent  

 

0,25 M HCl, 15% [wt/vol] trichloroacetic acid, 0.375% [wt/vol] TBA 

 

6. Bradford reagent 

 

10 mg Coomassie Brilliant Blue G-250 was dissolved in 5 ml 95% ethanol and 

10 ml 85% (w/v) phosphoric acid added.Solution diluted to 100 ml when the dye has 

completely dissolved, and filter through Whatman #1 paper just before use. 

 

7. 1X TE buffer  

 

10 mM Tris HCl(pH 8.0), 1mM EDTA 

 

8. 50XTAE Buffer 

 

242 g Tris base and 37.2 g Na2EDTA (2H2O) was dissolved in 900 ml 

deionized water. After adding 57.1 ml glacial acetic acid, the volume was adjusted to 1 

liter with water. 
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9. Primers 

 

6,9-kb mitochondrial fragment in COX1 gene: 

Sense  : 5’-GTG CGT ATA TTT CGT TGA TGC GT-3’ 

Antisense: 5’-GTC ACC ACC TCC TGC TAC TTC AA-3’ 


