
DYNAMICAL SYSTEMS ON TIME SCALES

A Thesis Submitted to
the Graduate School of Engineering and Sciences of
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Head of the Graduate School



ACKNOWLEDGEMENTS

I would like to thank and express my deepest gratitude to Assoc. Prof. Dr.
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ABSTRACT

DYNAMICAL SYSTEMS ON TIME SCALES

In this thesis, we have studied dynamical systems on time scales. Firstly, we give basic

definitions and theorems about the time scales and dynamical systems. We present

Floquet theory and stability criterion on periodic discrete Hamiltonian systems. We

introduce the Hilger complex plane and exponential function on time scales. This

exponential function is shown to satisfy an initial value problem involving a first order

linear dynamic equation. Uniqueness and existence theorems are presented. And then

we give stability criterion, Lyapunov transformations and a unified Floquet theory for

periodic time scales. We try to collect studies (Bohner and Peterson 2001), (Dacunha

2005), (Ahlbrandt and Ridenhour 2003) about Dynamical Systems On Time Scales .
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ÖZET

ZAMAN SKALALARINDA D İNAM İK SİSTEMLER

Bu tezde Zaman Skalalarında Dinamik Sistemleri çalıştık.Öncelikle, zaman skalasında

ve dinamik sistemlerde temel tanım ve teoremleri verdik. Periyodik diskrit Hamil-

ton sistemlerindeki Floquet teoremini ve kararlılık kriterini sunduk. Zaman skalasında

Hilger komplex d̈uzlemini veüstel fonksiyonu tanıttık. Büustel fonksiyonun, birinci

mertebe lineer dinamik denklem içeren başlangıç değer problemini săgladı̆gı gösterildi.

Varlık ve teklik teoremleri sunuldu. Sonrasında periyodik zaman skalaları için Lyapunov

dönüş̈umleri, kararlılık kriteri ve Floquet teoremi verildi. Zaman Skalalarında Dinamik

Sistemlerle ilgili olarak (Bohner and Peterson 2001), (Dacunha 2005), (Ahlbrandt and

Ridenhour 2003) çalışmalarını derlemeye çalıştık.

v



TABLE OF CONTENTS

CHAPTER 1 . TIME SCALES . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Differention . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4. Hilger’s Complex Plane . . . . . . . . . . . . . . . . . . . . 6

1.5. The Time Scale Exponential Function . . . . . . . . . . . . . 8

CHAPTER 2 . DYNAMICAL SYSTEMS . . . . . . . . . . . . . . . . . . . . . 11

2.1. The Constant Coefficient Matrix . . . . . . . . . . . . . . . . 12

2.2. Structure ofn-Dimensional Nonhomogeneous

Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3. Stability of Time Solutions: Lyapunov Stability . . . . . . . . 14

2.4. Equations With Periodic Coefficients and

Floquet Theory . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5. Discrete Dynamical Systems . . . . . . . . . . . . . . . . . .18

2.5.1. Linear Difference Equations . . . . . . . . . . . . . . . . 19

2.6. Initial Value Problems for Linear Systems . . . . . . . . . . .19

2.7. Stability of Linear Systems . . . . . . . . . . . . . . . . . . . 21

2.8. Discrete Hamiltonian Systems . . . . . . . . . . . . . . . . .22

2.9. Discrete Hamiltonian Systems with Periodic Coefficients . .22

2.9.1. Floquet Theory . . . . . . . . . . . . . . . . . . . . . . . 24

CHAPTER 3 . DYNAMICAL SYSTEMS ON TIME SCALES . . . . . . . . . . 29

3.1. Structure of Dynamical Systems on Time Scales . . . . . . .29

3.2. The Lyapunov Transformation and Stability . . . . . . . . . .36

3.3. Floquet Theory On Time Scales . . . . . . . . . . . . . . . .43

CHAPTER 4 . CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . 50

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vi



CHAPTER 1

TIME SCALES

1.1. Basic Definitions

A time scale is an arbitrary nonempty closed subset of the real numbers. It is

denoted by the symbolT. It was first introduced by Stefan Hilger in his Ph.D thesis in

1988 in order to unifed continuous and discrete analysis.

Definition 1. Let T be a time scale. Fort ∈ T we define the forward jump operator

σ : T → T by

σ(t) := inf{s ∈ T : s > t}

while the backward jump operatorρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}.

If σ(t) > t, we say thatt is right-scattered, while ifρ(t) < twe say thatt is left-scattered.

Points that are both right-scattered and left-scattered are isolated. Also, ift < sup T and

σ(t) = t, thent is called right-dense, and ift > inf T and ρ(t) = t, thent is called

left-dense. Points that are both right-dense and left-dense at the same time are called

dense. Finally, the graininess functionµ : T → [0,∞) is defined by

µ(t) := σ(t)− t.

We need below the setTk is derived from the time scaleT as follows : If T has a left

scattered maximumm, thenTk = T− {m}. Otherwise,Tk = T. In summary

Tk =

 T \ (ρ(sup T), sup T] if sup T <∞

T if sup T = ∞

Finally, if f : T → R is a function, then we define the functionfσ : T → R by

fσ(t) := f(σ(t)) for all t ∈ T.

Example 2. Let us briefly consider the two examplesT = R andT = Z.
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(i) If T = R, then we have for anyt ∈ R

σ(t) = inf{s ∈ R : s > t} = inf(t,∞) = t

and similarlyρ(t) = t. Hence every pointt ∈ R is dense. The graininess function

µ turns out to be

µ(t) = 0 for all t ∈ T;

(ii) If T = Z, then we have for anyt ∈ Z

σ(t) = inf{s ∈ Z : s > t} = inf{t+ 1, t+ 2, ...} = t+ 1

and similarlyρ(t) = t − 1. Hence every pointt ∈ Z is isolated. The graininess

functionµ is the case is

µ(t) = 1 for all t ∈ T.

Now we consider a functionf : T → R and define delta derivative of f at a point

t ∈ Tk.

1.2. Differention

Definition 3. Assumef : T → R is a function and lett ∈ Tk. Then we define delta

derivativef∆(t) to be the number with the property that given anyε > 0, there is a

neighborhoodU of t (i.e,U = (t− δ, t+ δ) ∩ T for someδ > 0 ) such that

|(f(σ(t))− f(s))− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s| for all s ∈ U.

We callf∆(t) the delta derivative off at t.

Theorem 4. Assumef : T → R is a function and lett ∈ Tk. Then we have the following

properties.

(i) If f is differentiable att, thenf is continuous att;

(ii) If f is continuous att andt is right-scattered, thenf is differentiable att with

f∆(t) =
f(σ(t))− f(t)

µ(t)
;
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(iii) If t is right-dense, thenf is differentiable att iff the limit

lim
s→t

f(t)− f(s)

t− s

exist as a finite number, in this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s
;

(iv) If f is differentiable att, thenf(σ(t)) = f(t) + µ(t)f∆(t).

Example 5. We consider the two casesT = R andT = Z.

(i) If T = R then Theorem 4 (iii) yields thatf : R → R is delta differentiable att ∈ R

iff

f ′(t) = lim
s→t

f(t)− f(s)

t− s

exists, i.e, ifff is differentiable (in the ordinary sense) att. In this case we then

have

f∆(t) = lim
s→t

f(t)− f(s)

t− s
= f ′(t)

by Theorem 4 (iii);

(ii) If T = Z, then Theorem 4 (ii) yields thatf : Z → R is delta differentiable att ∈ Z

with

f∆(t) =
f(σ(t))− f(t)

µ(t)
=
f(t+ 1)− f(t)

1
= f(t+ 1)− f(t) = ∆f(t)

where∆ is the usual forward difference operator defined by the last equation above.

Theorem 6. Assumef, g : T → R are differentiable att ∈ Tk. Then :

(i) The sumf + g : T → R is differentiable att with

(f + g)∆(t) = f∆(t) + g∆(t);

(ii) For any constantα ∈ R, functionαf : T → R is differentiable att with

(αf)∆(t) = αf∆(t);

(iii) The productfg : T → R is differentiable att with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t));

3



(iv) If f(t)f(σ(t)) 6= 0, then
1

f
is differentiable att with

(
1

f

)∆

(t) = − f∆(t)

f(t)f(σ(t))
;

(v) If g(t)g(σ(t)) 6= 0, then
f

g
is differentiable att and

(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.

We now define functions that are integrable an arbitrary time scalesT.

1.3. Integration

Definition 7. A functionf : T → R is called regulated provided its right-sided limits exist

(finite) at all right-dense points inT and its left-sided limits exist (finite) at all left-dense

points inT.

Definition 8. A function f : T → R is called right-dense continuous (denote

rd-continuous) provided it is continuous at right-dense points inT and its left-sided limits

exist (finite) at left-dense points inT. The set of rd-continuous functionsf : T → R will

be denoted by

Crd = Crd(T) = Crd(T,R).

It follows naturally that the set of functionsf : T → R whose first n delta deriva-

tives exist and are rd-continuous onT is denoted by

Cn
rd = Cn

rd(T) = Cn
rd(T,R).

Definition 9. The functionsf : T → R is called piecewise right-dense continuous

(denoted prd-continuous) provided it is piecewise continuous at right-dense points inT

and its left-sided limits exist (finite) at left-dense points inT. The set of prd-continuous

functionsf : T → R will be denoted by

Cprd = Cprd(T) = Cprd(T,R).

It follows naturally that the set of functionsf : T → R whose first n delta

derivatives exist and rd-continuous onT is denoted

Cn
prd = Cn

prd(T) = Cn
prd(T,R).
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Some results concerning rd-continuous and regulated functions are contained in

the following theorem.

Theorem 10. For a functionf : T → R;

(i) If f is continuous, thenf is rd-continuous,

(ii) If f is rd-continuous, thenf is regulated,

(iii) The forward jump operatorσ is rd-continuous,

(iv) If f is regulated or rd-continuous, then so isfσ,

(v) Assumef is continuous. Ifg : T → R is regulated or rd-continuous, thenf ◦g is also

regulated or rd-continuous, respectively.

Definition 11. A continuous functionf : T → R is pre-differentiable with (region of

differention)D, providedD ⊂ Tk,Tk\D is countable and contains no right-scattered

elements ofT, andf is differentiable at eacht ∈ D.

Theorem 12. Let f be regulated. Then there exists a functionF which is

pre-differentiable with region of differentionD such that

F∆(t) = f(t)

holds for allt ∈ D.

Definition 13. Assumef : T → R is a regulated function. Any functionF as in Theorem

12 is called a pre-antiderivative off .

We define the indefinite integral of a regulated functionf by∫
f(t)∆t = F (t) + C

whereC is an arbitrary constant andF is a pre-antiderivative off .

We define the Cauchy integral by∫ s

r

f(t)∆t = F (s)− F (r) for all r, s ∈ T.

A functionF : T → R is called an anti-derivative off : T → R provided

F∆(t) = f(t) holds for all t ∈ Tk.

5



1.4. Hilger’s Complex Plane

Definition 14. For h > 0, we define the Hilger complex numbers, the Hilger real axis,

the Hilger alternating axis, and the Hilger imaginary circle as

Ch := {z ∈ C : z 6= −1

h
}

Rh := {z ∈ R : z > −1

h
}

Ah := {z ∈ R : z < −1

h
}

Ih := {z ∈ C : |z +
1

h
| = 1

h
}

respectively. Forh = 0, letC0 := C,R0 := R, A0 := ∅, andI0 := iR.

Let z ∈ Ch. The Hilger real part ofz is defined by

Reh(z) :=
|zh+ 1| − 1

h

and the Hilger imaginary part ofz is defined by

Imh(z) :=
Arg(zh+ 1)

h

whereArg(z) denotes the principal argument ofz (−π < Arg(z) ≤ π).

Definition 15. Let −π
h
< ω ≤ π

h
. We define the Hilger purely imaginary numberı̊ω as

ı̊ω =
eiωh − 1

h

Theorem 16. For z ∈ Ch we have

z = Rehz ⊕ ı̊Imhz.
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Proof. Let z ∈ Ch. Then

Rehz ⊕ ı̊Imhz =
|zh+ 1| − 1

h
⊕ ı̊

Arg(zh+ 1)

h

=
|zh+ 1| − 1

h

+
exp(iArg(zh+ 1))− 1

h
+
|zh+ 1| − 1

h

exp(iArg(zh+ 1))− 1

h
h

=
1

h
{|zh+ 1| − 1 + exp(iArg(zh+ 1))− 1

+ [|zh+ 1| − 1][exp(iArg(zh+ 1))− 1]}

=
1

h
|zh+ 1|exp(iArg(zh+ 1))− 1

=
(zh+ 1)− 1

h

= z

Definition 17. The functionp : T → R is regressive if

1 + µ(t)p(t) 6= 0 t ∈ Tk.

From this point, all regressive and rd-continuous functionsp : T → R will be

denoted as

R = R(T) = R(T,R).

Circle plus addition⊕ is defined by

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t), for all t ∈ Tk, p, q ∈ R.

Theorem 18. (R(T,R),⊕) is an Abelian group.

The set of all positively regressive elements ofR defined by

R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0, for all t ∈ Tk}

is a subgroup ofR.

Definition 19. The function	p is defined by

(	p) = − p(t)

1 + µ(t)p(t)
for all t ∈ Tk, p ∈ R.

It follows that ifp, q ∈ R, then	p,	q, p⊕ q, p	 q ∈ R.

7



1.5. The Time Scale Exponential Function

We use a cylinder transformation, defined below, to define a generalized time scale

exponential function for an arbitrary time scaleT.

Definition 20. For h > 0. LetZh be the strip

Zh = {z ∈ C :
−π
h

< Im(z) ≤ π

h
}

and forh = 0, letZ0 := C.

Definition 21. For h > 0 the cylinder transformationξh : Ch → Zh is defined by

ξh(z) =
1

h
Log(1 + hz)

where Log is the principle logarithm function. Whenh = 0, we defineξ0(z) = z for all

z ∈ C. The inverse cylinder transformationξ−1
h : Zh → Ch is

ξ−1
h (z) =

ezh − 1

h
.

By using this cylinder transformation we now construct the generalized

exponential function.

Definition 22. If p ∈ R, we define the generalized time scale exponential function by

ep(t, s) = exp(

∫ t

s

ξµ(τ)(p(τ))∆τ), for all s, t ∈ T.

Example 23. Consider the time scale

T = N2
0 = {n2 : n ∈ N0}.

We haveσ(n2) = (n+ 1)2 for n ∈ N0 and

µ(n2) = σ(n2)− n2 = (n+ 1)2 − n2 = 2n+ 1.

Henceσ(t) = (
√
t+ 1)2 andµ(t) = 1 + 2

√
t for t ∈ T.

For this time scale, we claim that

e1(t, 0) = 2
√

t(
√
t)! for t ∈ T.
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Let y be defined by the this equation. It is clear thaty(0) = 1 and fort ∈ T.

y(σ(t)) = 2
√

σ(t)(
√
σ(t))!

= 21+
√

t(1 +
√
t)!

= 2.2
√

t(1 +
√
t)(
√
t)!

= 2(1 +
√
t)y(t)

= (1 + µ(t))y(t)

= y(t) + µ(t)y(t)

so that

y∆(t) = y(t).

Theorem 24. For all p, q ∈ R , the generalized exponential function is satisfied the

following properties :

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1,

(ii) ep(σ(t), s) = [1 + µ(t)p(t)]ep(t, s),

(iii)
1

ep(s, t)
= e	p(t, s),

(iv) ep(t, s) =
1

ep(s, t)
= e	p(s, t),

(v) ep(t, s)ep(s, r) = ep(t, r),

(vi) ep(t, s)eq(t, s) = ep⊕q(t, s),

(vii) ep(t,s)

eq(t,s)
= ep	q(t, s),

(viii) If p ∈ R+, thenep(t, t0) > 0 for all t ∈ T,

(ix) If 1 + µ(t)p(t) < 0 for somet ∈ T, thenep(t, t0)ep(σ(t), t0) < 0,

(x) If T = R, thenep(t, s) = e
∫ t

s p(τ)dτ . If p is constant then

ep(t, s) = ep(t−s),

(xi) If T = Z, thenep(t, s) = Πt−1
τ=s(1 + p(τ)). If T = hZ, with h > 0 and p is

constant, thenep(t, s) = (1 + hp)
t−s
h .

9



Proof. We will give only the proofs of (x) and (xi). For the others proofs see

(Bohner and Peterson 2001). SinceT = R, µ(t) = 0 and

ep(t, s) = exp(

∫ t

s

ξµ(τ)(p(τ))∆τ

= exp(

∫ t

s

[
1

µ(τ)
Log(1 + µ(τ)p(τ)]∆τ)

By the L’Hospital rule

ep(t, s) = exp(

∫ t

s

[
p(τ)

1 + µ(τ)p(τ)
]∆τ)

= e
∫ t

s p(τ)dτ

While T = Z, µ(t) = 1 and
∫ b

a
f(t)∆t = Σb−1

t=af(t), (a < b)

ep(t, s) = exp(

∫ t

s

[
1

µ(τ)
Log(1 + µ(τ)p(τ))]∆τ)

= exp(

∫ t

s

Log(1 + p(τ))∆τ)

= exp(Σt−1
τ=sLog(1 + p(τ)))

= exp(LogΠt−1
τ=s(1 + p(τ)))

= Πt−1
τ=s(1 + p(τ))

Second part of proof is similar.
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CHAPTER 2

DYNAMICAL SYSTEMS

In this chapter we will give some key well known results for linear

systems. The general form for a first order linear system is

ẋ = A(t)x+ g(t) (2.1)

whereA(t) is ann×n matrix function oft, andg(t) is a vector function oft. We assume

thatA(t) andg(t) are continuous functions oft on the closed intervalI, a ≤ t ≤ b. If we

denote the right-hand side of (2.1) byf(x, t), thenf(x, t) is a continuous function ofx

andt for all x andt ∈ I. SinceA(t) is continuous function oft on the closed intervalI,

there exist a constantM such that|A(t)| ≤M for t ∈ I. Indeed

|f(x, t)− f(y, t)| = |A(t)x+ g(t)− A(t)y − g(t)|

≤ |A(t)||x− y|

≤ M |x− y|.

It meansf(x, t) satisfies the Lipschitz condition. Ifg(t) = 0 then (2.1) is called a first

order homogeneous linear systems. Consider

ẋ = A(t)x (2.2)

is first order homogeneous linear system. Letx1(t), ..., xn(t) ben solutions of (2.2) on an

interval[a, b] and put

Φ(t) = [x1(t), ..., xn(t)]

wherex(t) is ann× n matrix solution of

Φ̇(t) = A(t)Φ(t).

If x1(t), ..., xn(t) are also linearly independent thenΦ(t) is a fundamental matrix and if

Φ(t0) = I, the unit matrix, thenΦ(t) is called the principal fundamental matrix. Further

W (t) = detΦ(t) is called the Wronskian. Since the elements ofΦ are differentiable, we

can computeΦ′.

Φ′(t) = [x′1(t), x
′
2(t), ..., x

′
n(t)]

= A(t)[x1(t), x2(t), ..., xn(t)]

= A(t)Φ(t).

11



That is,Φ satisfies

Φ′(t) = A(t)Φ(t). (2.3)

Theorem 25. (Abel’s Formula)LetA(t) be ann × n matrix of continuous functions on

I = [a, b] and letΦ(t) be a matrix of differentiable functions such that

Φ′(t) = A(t)Φ(t).

Then fort, t0 ∈ I,

det Φ(t) = Φ(t0) exp(

∫ t

t0

trA(s)ds)

wheretrA(s) is the trace ofA(s) (the sum of the element of its principal diagonal).

2.1. The Constant Coefficient Matrix

The linear autonomous systems do not explicitly ont. So the coefficient matrix of

systemA is a constant matrix.

Theorem 26. LetA be a constant matrix. A fundamental matrixΦ for

ẋ = Ax (2.4)

is given by

Φ = eAt (2.5)

where eAt = Σ∞
k=0

Aktk

k!
.

Theorem 27. If A is a constant matrix,λi an eigenvalue ofA, andvi a corresponding

eigenvector, theny = eλitv is a solution of(2.4).

SinceA hasn eigenvalues, we can findn such solutions, and it would seem then

that we have found the columns for a fundamental matrix. The difficulty, however, is

that the eigenvalues are not necessarily distinct and the eigenvectors corresponding to

a repeated eigenvalue may not be linearly independent. (Eigenvectors corresponding to

distinct eigenvalues are always linearly independent.) If this occurs, we have not found

n linearly independent column vectors to make a fundamental matrix. However, it is the

12



case that if all of the eigenvalues ofA are distinct, thenA is similar to a diagonal matrix,

so then solutions obtained actually are linearly independent, and a fundamental matrix

has been found.

Theorem 28. LetA be a constantn × n matrix with distinct eigenvaluesλ1, ..., λn and

v1, ..., vn be corresponding eigenvectors. Then a fundamental matrix for(2.4) is given by

Φ(t) = [eλ1tv1, e
λ2tv2, ..., e

λntvn].

If some of the eigenvaluesλi turn out to be complex numbers, then the

corresponding eigenvectors,vi, will contain complex entries, buteλitvi will still be a

solution.

Theorem 29. If ϕ(t) is a solution of(2.4) whereA is a constant matrix with real-valued

entries, then the real part ofϕ(t) (writtenReϕ(t)) and the imaginary part ofϕ(t) (written

Imϕ(t)) are both solutions of(2.4). If λi is a complex eigenvalue thenλi is an eigenvalue,

too.

2.2. Structure ofn-Dimensional Nonhomogeneous Linear Systems

The general nonhomogeneous linear system is

ẋ = A(t)x+ f(t) (2.6)

wheref(t) is a continuous column vector,A(t) is ann × n continuous matrix. For

notational purposes, letL[x] denotey′ − Ay. Then, as noted before,(2.6) can be written

as

L[x] = f. (2.7)

Theorem 30. The solution of the system with initial conditions

L[x] = f

x(t0) = x0 (2.8)

is given by

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)

∫ t

t0

Φ−1(s)f(s)ds (2.9)

whereΦ(t) is any fundamental solution matrix of the corresponding homogeneous system

Φ̇ = A(t)Φ.
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2.3. Stability of Time Solutions: Lyapunov Stability

Consider the linear system

x′(t) = Ax (2.10)

whereA is ann× n constant matrix andx is a vector inRn. Equation(2.10) always has

the trivial solution, the functionx(t) = 0, and this solution will play the role of “present

state” in the intuitive description above. The trivial solution is said to be stable if for

everyε > 0 there is aδ such that ifx(t) is any solution of(2.10) with ‖x(0)‖ < δ, then

‖x(t)‖ < ε for all t > 0. We are using norm,‖ ‖, to measure how close a solution is

to the trivial solution. Think of the trivial solution as the present state of the system and

x(t) as a solution that represents a deviation from the present state. If the trivial solution

is stablex(t) will remain arbitrarily close (this is theε) to the present state (the trivial

solution) for all future time if the initial conditionx(0) is sufficiently close (this isδ) to

zero. The trivial solution is said to be unstable if it is not stable. The trivial solution of

(2.10) said to be asymptotically stable if a) it is stable, and b) there is anε > 0 such that

if ‖x(0)‖ < ε, then lim
t→∞

‖x(t)‖ = 0.

Theorem 31. .

(i) The trivial solution of (2.10) is asymptotically stable if and only if all of the

eigenvalues ofA have negative real parts.

(ii) If one eigenvalue ofA has a positive real part, then the trivial solution of(2.10) is

unstable.

(iii) If the eigenvalues ofA with zero real parts are simple and all other eigenvalues have

negative real parts, then the trivial solution of(2.10) is stable.

Definition 32. Letxk(t) be a given real or complex solution vector of the n-dimensional

system, not necessarily autonomous,ẋ = X(x, t) in component form

14



ẋ1 = X(x1, x2, ....., xn, t)

ẋ2 = X(x1, x2, ....., xn, t)

.

.

.

ẋn = X(x1, x2, ....., xn, t)

then

(i) xk(t) is Lyapunov stable fort ≥ t0 if and only if, to each value ofε > 0, however

small, there corresponds a value ofδ > 0 (whereδ may depend only onε and t0)

such that

‖x(t0)− xk(t0)‖ < δ ⇒ ‖x(t)− xk(t)‖ < ε (2.11)

for all t ≥ t0, wherex(t) represents any other neighbour is solution.

(ii) If the given system is autonomous, the reference tot0 in (i) may be disregarded, the

solutionxk(t) is either Lyapunov stable, or not, for allt0.

(iii) Otherwise the solutionxk(t) is unstable in the sense of Lyapunov.

In other words, (2.11) says that no matter how small is the permitted deviation,

measured byε, there still exists a non-zero tolerance, measured byδ, in the initial

conditions when the system is activated, allowing it to run satisfactorily.

Definition 33. If the solution is stable fort ≥ t0 and theδ of Definition 32 is independent

of t0, the solution is uniformly stable ont ≥ t0.

It is clear that any solutions of an autonomous system are uniformly stable, since

the system is invariant with respect to time translation.

Definition 34. Letx∗ be a stable (or uniformly stable) solution fort ≥ t0. If additionally

there existsδ > 0 such that

‖x(t0)− x∗(t0)‖ ≤ δ ⇒ lim
t→∞

‖x(t)− x∗(t)‖ = 0 (2.12)
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then the solution is said to be asymptotically stable (or uniformly and asymptotically

stable).

The most general linear system is the nonautonomous and nonhomogeneous

equation in n variables given by

ẋ = A(t)x+ f(t) (2.13)

whereA(t) is ann× n matrix. Letx(t) represent any other solution and defineξ(t) by

ξ(t) = x(t)− x∗(t). (2.14)

Thenξ(t) tracks the difference between the test solution and a solution having a different

initial value at timet0. The initial condition forξ is

ξ(t0) = x(t0)− x∗(t0) (2.15)

also,ξ satisfies the homogeneous equation derived from

ξ̇ = A(t)ξ. (2.16)

By comparison of (2.14), (2.15), and (2.16) with Definition 32, it can be seen that the

stability property ofx∗(t) is the same as he stability of the zero solution of (2.16).ξ(t) is

called perturbation of the solutionx∗(t). Since this new formulation of the problem is

independent of the solution of (2.13) initially chosen, we can make the following

statement.

Theorem 35. All solutions of the regular linear systeṁx = A(t)x + f(t) have the same

Lyapunov stability property (unstable, stable, uniformly stable, asymptotically stable,

uniformly and asymptotically stable). This is the same as that of the zero (or any other)

solution of the homogeneous equationξ̇ = A(t)ξ.

2.4. Equations With Periodic Coefficients and Floquet Theory

Let

ẋ = A(t)x (2.17)

be a n-dimensional first order system, whereA(t) is periodic with minimal periodT ; that

is,T is the smallest positive number for which

A(t+ T ) = A(t), −∞ < t <∞ (2.18)
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(A(t), of course, also has periods2T , 3T , ...). The solutions are not necessarily periodic.

We shall assume thatA(t) is continuous onR. In particular, all solutions of (2.18) can be

obtained in the form

x(t) = Φ(t)c

whereΦ is a fundamental matrix andc is a constant vector. Knowledge of properties

of a fundamental matrix then yields properties of solutions. A basic theorem in the

theorem of ordinary differential equations, known as Floquet theorem, gives an impor-

tant representation of a fundamental matrix when the coefficients are periodic. Floquet

theorem contains the fundamental results for equations with periodic coefficients, that the

fundamental matrix of (2.17) can be written as the product of a T-periodic matrix and a

(generally) non-periodic matrix.

Theorem 36 (Floquet Theorem).Consider the equation (2.17) withA(t) a continous

T-periodicn×n matrix. Each fundamental matrixΦ(t) of equation (2.17) can be written

as the product of twon×nmatricesΦ(t) = p(t)eBt with p(t) T-periodic and B a constant

n× n-matrix.

Proof. The fundamental matrixΦ(t) is composed ofn independent solutions;Φ(t + T )

is also a fundamental matrix. To show this, putτ = t+ T , then

dx

dτ
= A(τ − T )x

= A(τ)x

soΦ(τ) is also fundamental matrix. The fundamental matricesΦ(t) andΦ(τ) = Φ(t+T )

are linearly independent, which means there exist a nonsingularn× n matrixC such that

Φ(t+ T ) = Φ(t)C.

There exists a constant matrix B such that

C = eBT .

We shall prove thatΦ(t)e−Bt is T-periodic. PutΦ(t)e−Bt = p(t), then

p(t+ T ) = Φ(t+ T )e−B(t+T )

= Φ(t)Ce−BT e−Bt

= Φ(t)e−Bt

= p(t)
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Remark 37. The matrix C which has been introduced is called the monodromy-matrix of

equation (2.17). The eigenvalues ofρi of C are called characteristic multipliers. Each

complex numberλ such that

ρ = eλT

is called a characteristic exponent (or Floquet exponent). The imaginary part of the

characteristic exponents are not determined uniquely. We can add2πi/T to them. The

characteristic multipliers determined uniquely.

Remark 38. The Floquet theorem implies that the solutions of the equation (2.17) consist

of a product of polynomials in t multiplied witheλt and T-periodic terms.

ẋ = A(t)x

can be transformed byx = p(t)y so that

ṗ(t)y + p(t)ẏ = A(t)p(t)y

or

ẏ = p−1(Ap− ṗ)y.

The differentiation ofp(t) = Φ(t)e−Bt produces

ṗ = Φ̇e−Bt + Φe−Bt(−B)

= Ap− pB

so we findẏ = By. In other words, the transformationx = p(t)y carries equation

(2.17) over into an equation with constant coefficients, the solutions which are vector-

polynomials in t multiplied witheλt. This possibility of reduction of the linear part of the

system to the case of constant coefficients will play a part in the theory of stability.

2.5. Discrete Dynamical Systems

The theory of discrete dynamical systems and difference equations developed

greatly during the last twenty five years of the twentieth century, following the

publication of the seminal paper “Period Three Implies Chaos”, by J. Yorke and Y. Li
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in 1975. In 1987 R. Devancy published “An Introduction to Chaotic Dynamical Sys-

tems” the first book on the subject. Applications of difference equations also experienced

enormous growth in many areas. In this section our goal is to present an overview of

the various facts of stability theory for autonomous systems of difference equations. This

section covers many of the fundamental stability results for linear systems.

2.5.1. Linear Difference Equations

Definition 39. An equation of the form

xn+1 = axn + b, n = 0, 1, ...

wherea ∈ R\0 and b ∈ R is called first order linear difference equations (LDE) with

constant coefficients.

xn+1 = anxn + bn, n = 0, 1, ... (2.19)

is called LDE with variable coefficients.

xn+1 = Axn + bn, x0 = d, n = 0, 1, ... (2.20)

wherek ∈ 1, 2, ..., d ∈ Rk, A is a realk × k matrix andbn ∈ Rk for n = 0, 1, ... the

IVP (2.20) has the unique solution given by

xn = And+
n∑

i=0

An−ibi, n = 0, 1, ...

In particular, ifbn = b, a is a constant vector, then we obtain

xn = And+
n∑

i=0

An−ib, n = 0, 1, ...

2.6. Initial Value Problems for Linear Systems

We consider systems of the form

u(t+ 1) = A(t)u(t) + f(t) (2.21)
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where

u(t) =



u1(t)

.

.

.

un(t)


, A(t) =



a11(t) . . . a1n(t)

. . . . .

. . . . .

. . . . .

an1(t) . . . ann(t)



f(t) =



f1(t)

.

.

.

fn(t)


for t = a, a+ 1, a+ 2, ...

Theorem 40. For eacht0 ∈ a, a+ 1, ... and each n-vectoru0, equation (2.21) has a

unique solution u(t) defined fort = t0, t0 + 1, ..., so thatu(t0) = u0. If A is constant

matrix andf(t) = 0, then the solutionu(t) of

u(t+ 1) = Au(t) (2.22)

satisfying the initial conditionu(0) = u0, is

u(t) = Atu0 (t = 0, 1, 2, ...)

= c1λ
t
1u

1 + ...+ ckλ
t
ku

k.

Hence the solutions of equation (2.22) can be found by calculating powers of A.

Example 41. Solveu(t+ 1) =

 0 1

−2 −3

u(t), u0 =

 u1

u2

.

−2 and −1 are eigenvalues and

 1

−2

 and

 1

1

 are corresponding
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eigenvectors. u1

u2

 = c1

 1

−2

 + c2

 1

1

 =

 1 1

−2 −1

 c1

c2


 c1

c2

 =

 −u1 − u2

2u1 + u2

 with initial condition

u(t) = −(u1 + u2)(−2)t

 1

−2

 + (2u1 + u2)(−1)t

 1

−1

 .
Theorem 42. The solution of

u(t+ 1) = Au(t) + f(t)

satisfying the initial conditionu(0) = u0 is

u(t) = Atu0 +
t−1∑
i=0

At−i−1f(i) (2.23)

Proof. By Theorem 40, it is enough to show that (2.23) satisfies the initial value problem.

First we have
t−1∑
i=0

A−i−1f(i) = 0

by the usual condition, sou(0) = u0. For t ≥ 1

u(t+ 1) = At+1u0 +
t∑

i=0

At−if(i)

= At+1u0 +
t−1∑
i=0

At−if(i) + f(t)

= A[Atu0 +
t−1∑
i=0

At−i−1f(i)] + f(t)

= Au(t) + f(t)

2.7. Stability of Linear Systems

Theorem 43. LetA be ann× n matrix withr(A) < 1; wherer(A) is the spectral radius

ofA, r(A) = max|λi|; then every solutionu(t) of

u(t+ 1) = Au(t)
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satisfieslimt→∞ u(t) = 0. Furthermore, ifr(A) < δ < 1, then there is a constantc > 0

so that|u(t)| ≤ cδt|u0| for t ≥ 0 and every solution ofu of equation (2.22).

When all solutions of the system go to the origin as t goes to infinity, the origin is

said to be “asymptotically stable”.

2.8. Discrete Hamiltonian Systems

Consider the discrete Hamiltonian system

∆x(t) = Hu(t, x(t+ 1), u(t)) (2.24)

∆u(t) = −Hx(t, x(t+ 1), u(t))

wheret ∈ Z; x, u ∈ Rn, H(t, x, u) is the corresponding real Hamiltonian function and

has continous derivatives inx, u ; Hx = (Hx1 , Hx2 , ..., Hxn)T ,Hx is the partial derivative

of H in xi, ∆ denotes the forward difference.

If the Hamiltonian functionH is of the quadratic form

H(t, x, u) =
1

2
(xT , uT )S(t)

 x

u


where

S(t) =

 −C(t) AT (t)

A(t) B(t)


is a2n× 2n symmetric matrix, then (2.24) is the discrete linear Hamiltonian system.

2.9. Discrete Hamiltonian Systems with Periodic Coefficients

Consider the following system

∆x(t) = a(t)x(t+ 1) + b(t)u(t) (2.25)

∆u(t) = −c(t)x(t+ 1)− a(t)u(t)

a, b, c are real-valued functions and1 − a(t) 6= 0, for T ≥ 2, a(t + T ) = a(t),

b(t+ T ) = b(t), c(t+ T ) = c(t) ∀t ∈ Z.
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Let Φ(t) =

 x(t)

u(t)

 then we may write (2.25) as

Φ(t+ 1) = M(t)Φ(t) (2.26)

which

M(t) =

 1
1−a(t)

b(t)
1−a(t)

−c(t)
1−a(t)

1− a(t)− b(t)c(t)
1−a(t)

 . (2.27)

M has the following properties :

i ) detM(t) = 1, ∀ t ∈ Z;

ii ) MT (t)JM(t) = J whereJ =

 0 1

−1 0

 .
If a matrixM satisfiesMTJM = J then we sayM is “symplectic” matrix and

the discrete Hamiltonian system (2.26) is of symplectic structure. The discrete linear

Hamiltonian system

∆x(t) = A(t)x(t+ 1) +B(t)u(t)

∆u(t) = C(t)x(t+ 1)− AT (t)u(t)

is expressed as  x(t+ 1)

u(t+ 1)

 = M(t)

 x(t)

u(t)


whereE(t) = (In − A(t))−1 and

M(t) =

 E(t) E(t)B(t)

C(t)E(t) In − AT (t) + C(t)E(t)B(t)

 .
Since the transition matrixM(t) is symplectic, the discrete linear Hamiltonian system is

of symplectic structure.
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Definition 44. SupposeΦ1(t) =

 x1(t)

u1(t)

 and Φ2(t) =

 x2(t)

u2(t)

 be solutions of

(2.26). The Wronskian ofΦ1 andΦ2 is defined as follows.

Wt(Φ1,Φ2) =

∣∣∣∣∣∣ x1(t) x2(t)

u1(t) u2(t)

∣∣∣∣∣∣ = ΦT
1 (t)JΦ2(t).

Proposition 45. The Wronskian of (2.25) is constant.

Proof.

∆Wt(Φ1,Φ2) = ∆[x1(t)u2(t)− x2(t)u1(t)]

= x1(t+ 1)∆u2(t) + u2(t)∆x1(t)− x2(t+ 1)∆u1(t)− u1(t)∆x2(t)

= x1(t)[−c(t)x2(t+ 1)− a(t)u2(t)] + u2(t)[a(t)x1(t) + b(t)u1(t+ 1)]

− x2(t+ 1)[−c(t)x1(t+ 1)− a(t)u1(t)]− u1(t)[a(t)x2(t+ 1) + b(t)u2(t)]

= 0

thenWt(Φ1,Φ2) is constant.

Proposition 46. SupposeΦ1 andΦ2 be two solutions of (2.26).Φ1 andΦ2 are linearly

independent if and only ifWt(Φ1,Φ2) 6= 0 and the linear combination ofΦ1 andΦ2 is

also the solution of (2.26).

Proposition 47. There are two linearly independent solutions of system (2.25) and any

solution can be written as linear combination of these solutions.

Definition 48. If all the solutions(x, u) of (2.25) onZ are bounded then we say that this

system is stable. If there is at least one non trivial and bounded solution of (2.25) then

we say that this system is conditionally stable. If all nontrivial solutions of (2.25) are

unbounded then we say that, this system is unstable.

2.9.1. Floquet Theory

Let

ϕ(t) =

 x(t)

u(t)

 , ϕσ(t) =

 x(t+ 1)

u(t)

 , J =

 0 1

−1 0


H(t) =

 c(t) a(t)

a(t) b(t)


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wherea(t), b(t), andc(t) are periodic. Now consider the system

∆ϕ(t) = JH(t)ϕσ(t), t ∈ Z. (2.28)

Sincea, b, c are periodic then we can getH(t+ T ) = H(t). For aρ ∈ C, we are looking

the nontrivial solutionϕ(t) such that,

ϕ(t+ T ) = ρϕ(t), t ∈ Z. (2.29)

Let ϕ1(t) =

 x1(t)

u1(t)

 andϕ2(t) =

 x2(t)

u2(t)

 be solutions of (2.28) with the

following initial conditions,

ϕ1(0) =

 1

0

 and ϕ2(0) =

 0

1

 .
SinceWt(ϕ1, ϕ2) = W0(ϕ1, ϕ2) =

∣∣∣∣∣∣ x1(0) x2(0)

u1(0) u2(0)

∣∣∣∣∣∣ = 1.1 − 0.0 = 1 6= 0 thenϕ1 and

ϕ2 are linearly independent solutions of (2.28) andϕ(t) = c1ϕ1 + c2ϕ2.

Let ϕ(t) = Φ(t)c where

Φ(t) = [ϕ1(t) ϕ2(t)] =

 x1(t) x2(t)

u1(t) u2(t)

 and c =

 c1

c2

 . (2.30)

For matrix functionΦ(t) the equations

∆Φ(t) = JH(t)Φσ(t), t ∈ Z (2.31)

Φ(0) = I (2.32)

are satisfied. HereΦσ(t) =

 x1(t+ 1) x2(t+ 1)

u1(t) u2(t)

 .
Now substitute (2.30) into (2.29), then we obtain

Φ(t+ T )c = ρΦ(t)c. (2.33)

Now we will show that

Φ(t+ T ) = Φ(t)Φ(T ). (2.34)

SinceH(t + T ) = H(t), the left hand side of (2.34) satisfies (2.31). On the other hand

the right hand side of (2.34) satisfies (2.31) too. Both sides of (2.34) is equal fort = 0.
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Since the uniqueness of the solution, (2.34) is verified for everyt ∈ Z. If we write (2.34)

into the left hand side of (2.33)

Φ(t)Φ(T )c = ρΦ(t)c. (2.35)

SincedetΦ(t) = Wt(ϕ1, ϕ2) = 1 6= 0, Φ(t) is invertible for everyt ∈ Z. Multiplying

both sides withΦ−1(t),

Φ(T )c = ρc. (2.36)

The inverse of these operations are also true. If the equation (2.36) is verified for a

complex numberρ and the vectorc, the functionϕ(t) = Φ(t)c is solution which has

property (2.29). We must find the vectorc 6= 0 which satisfies (2.36).ρ is eigenvalue of

ϕ(x) andc is corresponding eigenvector. From the linear algebra, for nonzero solution of

(2.36),

det[Φ(T )− ρI] = 0 (2.37)∣∣∣∣∣∣ x1(T )− ρ x2(T )

u1(T ) u2(T )− ρ

∣∣∣∣∣∣ = 0

ρ2 − [x1(T ) + u2(T )]ρ+ x1(T )u2(T )− u1(T )u2(T ) = 0

D =: x1(T ) + u2(T ) (2.38)

ρ2 − Dρ+ 1 = 0 (2.39)

ρ1,2 =
1

2
(D ∓

√
D2 − 4).

ForD2 6= 4, Φ(T ) has different two eigenvaluesρ1, ρ2 and different eigenvectorsc(1) and

c(2). For solutionsϕ(1)(t) = Φ(t)c(1) andϕ(2)(t) = Φ(t)c(2) of (2.28), there are linearly

independent solutionsϕ(t) andψ(t) sincec(1) andc(2) are linearly independent.

Proposition 49. If |D| > 2, system (2.28) is unstable. Since system is real-valued and

initial conditions ofϕ1(t) andϕ2(t) are real numbers,D is a real number defined by

(2.38).

Proof. |D| > 2 ⇒ 4 < D2.

In that case, there are linearly independent solutionsϕ(1)(t) andϕ(2)(t) of (2.28) such that

ϕ(1)(t+ T ) = ρ1ϕ
(1)(t)

ϕ(2)(t+ T ) = ρ2ϕ
(2)(t)

ρ1,2 =
1

2
(D ∓

√
D2 − 4).
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It is clear that;ρ1 > 1, 0 < ρ2 < 1 andρ1.ρ2 = 1. The general solution of (2.28) is

ϕ(t) = c1ϕ
(1)(t) + c2ϕ

(2)(t).

Hence,

ϕ(t+ kT ) = c1ϕ
(1)(t+ kT ) + c2ϕ

(2)(t+ kT )

= c1ρ
k
1ϕ

(1)(t) + c2ρ
k
2ϕ

(2)(t), ∀k ∈ Z.

Obviously; fork →∞, it is clear thatρk
1 →∞, and ρk

2 → 0. On the other hand,

for k → ∞, we see thatρk
1 → 0, and ρk

2 → ∞. As a result, every nontrivial solution

ϕ(t) is unbounded, so (2.25) is unstable.

Proposition 50. If |D| < 2, the system is stable.

Proof. |D| < 2 ⇒ D2 < 4 ⇒ ρ2 = ρ̄1

Sinceρ2 = ρ̄1 andρ1.ρ2 = 1, then|ρ1| = |ρ2| = 1.

ϕ(1)(t+ T ) = ρ1ϕ
(1)(t)

ϕ(2)(t+ T ) = ρ2ϕ
(2)(t)

|ϕ(1)(t+ T )| = |ϕ(1)(t)|

|ϕ(2)(t+ T )| = |ϕ(2)(t)|.

|ϕ(1)(t)| and|ϕ(2)(t)| are periodic. Every periodic function is bounded onZ. Sinceϕ(t)

is the linear combination ofϕ(1)(t) andϕ(2)(t), it is bounded. Thus the system (2.25) is

stable.

Theorem 51. Assume that system (2.30) satisfies the following conditions,

i ) 1− a(t) > 0, b(t) ≥ 0, c(t) ≤ 0

ii ) ΠT
t=1

1
1−a(t)

≥ 1, ΠT
t=1{1− a(t)− b(t)

1−a(t)
} > 1.

Then, the system (2.25) is unstable.

Proof. To prove, we must show that

D = x1(T ) + u2(T ) > 2.

It is enough to show thatx1(T ) ≥ 1 andu2(T ) > 1.
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We know that

Φ(T ) =

 x1(T ) x2(T )

u1(T ) u2(T )


and

∆Φ(t) = JH(t)Φσ(t), ∀t ∈ Z.

It can be obtained that

Φ(t+ 1) = M(t)Φ(t), t ∈ Z

Φ(0) = I

such that

M(t) =

 M11(t) M12(t)

M21(t) M22(t)

 =

 1
1−a(t)

b(t)
1−a(t)

−c(t)
1−a(t)

1− a(t)− b(t)c(t)
1−a(t)


Φ(T ) = M(T − 1)M(T − 2)...M(0)Φ(0)

=

 M11(T − 1) M12(T − 1)

M21(T − 1) M22(T − 1)

 M11(T − 2) M12(T − 2)

M21(T − 2) M22(T − 2)

 ...
 M11(0) M12(0)

M21(0) M22(0)

 .
Because of given conditions of the theorem

M11(t) > 0, M12(t) ≥ 0, M21(t) ≥ 0, M22(t) > 0

and

Mij(t+ T ) = Mij(t) i, j = 1, 2

x1(T ) ≥ ΠT−1
t=0 M11(t) = ΠT

t=1M11(t) = ΠT
t=1

1

1− a(t)
≥ 1

u2(T ) ≥ ΠT−1
t=0 M22(t) = ΠT

t=1M22(t) = ΠT
t=1{1− a(t)− b(t)c(t)

1− a(t)
} > 1

then x1(T ) + u2(T ) > 2 and D > 2.

Therefore the system (2.25) is unstable.
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CHAPTER 3

DYNAMICAL SYSTEMS ON TIME SCALES

3.1. Structure of Dynamical Systems on Time Scales

Definition 52. The first order linear dynamic equation

y∆(t) = p(t)y(t) (3.1)

is called regressive ifp ∈ R.

Theorem 53. Suppose (3.1) is regressive. Lett0 ∈ T and y0 ∈ R. Then the unique

solution of the initial value problem

y∆(t) = p(t)y(t) y(t0) = y0 (3.2)

is given by

y(t) = ep(t, t0)y0.

Definition 54. If p ∈ R andf : T → R is rd-continuous, then the dynamic equation

y∆(t) = p(t)y(t) + f(t) (3.3)

is called regressive.

Theorem 55. Suppose (3.3) is regressive. Lett0 ∈ T andx0 ∈ R. The unique solutions

of the initial value problems

x∆ = −p(t)xσ + f(t), x(t0) = x0 (3.4)

and

y∆(t) = p(t)y(t) + f(t), y(t0) = y0 (3.5)

are given by

x(t) = e	p(t, t0)x0 +

∫ t

t0

e	p(t, τ)f(τ)∆τ

and

y(t) = y0ep(t, t0) +

∫ t

t0

ep(t, σ(τ))f(τ)∆τ. (3.6)
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Proof. First, it is easily verified thatx given above solves the initial value problem (3.4).

We multiply both sides of (3.4) by integrating factorep(t, t0) and obtain

[ep(t, t0)x]
∆(t) = ep(t, t0)x

∆(t) + p(t)ep(t, t0)x
σ(t)

= ep(t, t0)[x
∆(t) + p(t)xσ(t)]

= ep(t, t0)f(t)

and we integrate both sides fromt0 to t

ep(t, t0)x(t)− ep(t0, t0)x(t0) =

∫ t

t0

ep(τ, t0)f(τ)∆τ.

Hence we obtain

ep(t, t0)x(t) = x0 +

∫ t

t0

ep(τ, t0)f(τ)∆τ.

We solve forx and apply Theorem 24 (iii) to arrive at

x(t) = e	p(t, t0) +

∫ t

t0

ep(τ, t0)

ep(t, t0)
f(τ)∆τ

Sinceep(t, τ)ep(τ, t0) = ep(t, t0) according to Theorem 24 (v), and by (iii),x(t) can be

written as

x(t) = e	p(t, t0)x0 +

∫ t

t0

e	p(t, τ)f(τ)∆τ

or

x(t) = e	p(t, t0)[x0 +

∫ t

t0

e	p(t0, τ)f(τ)∆τ ].

For uniquely for solutionx(t), similar proof will be given at Theorem 68.

The second proof is similar. We now introduce the concept of an rd-continuous

matrix, a regressive matrix, and circle plus addition on matrix-valued functions. A is

differentiable onT provided each entry of A is differentiable onT and

A∆ = (a∆
ij)1≤i≤m,1≤j≤n where A = (aij)1≤i≤m,1≤j≤n

Theorem 56. If A is differentiable att ∈ Tk, thenAσ(t) = A(t) + µ(t)A∆(t).

Proof.

Aσ = (aσ
ij)

= (aij + µa∆
ij)

= A+ µA∆
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Theorem 57. Suppose A and B are differentiablen× n-matrix-valued functions. Then

i ) (A+B)∆ = A∆ +B∆;

ii ) (αA)∆ = αA∆ if α is constant;

iii ) (AB)∆ = A∆Bσ + AB∆ = AσB∆ + A∆B;

iv ) (A−1)∆ = −(Aσ)−1A∆A−1 = −A−1A∆(Aσ)−1 if AAσ is invertible;

v ) (AB−1)∆ = (A∆ − AB−1B∆)(Bσ)−1 = (A∆ − (AB−1)σB∆)B−1 if BBσ is

invertible.

Definition 58. Let A ben × n matrix-valued function on a time scaleT. We say that

A is rd-continuous onT if each entry ofA is rd-continuous, and the class of all such

rd-continuousm× n matrix-valued function onT is denoted by

Crd = Crd(T) = Crd(T,Rm×n).

We say thatn× 1-vector-valued system

y∆(t) = A(t)y(t) + f(t) (3.7)

is regressive providedA ∈ R andf : T → Rn is a rd-continuous vector-valued function.

The next lemma provides a fact about the relationship between then× n-matrix-

valued functionA and the eigenvaluesλi(t) of A(t).

Lemma 59. Then×n-matrix-valued functionA is regressive if and only if the eigenvalues

of λi(t) ofA(t) are regressive for all1 ≤ i ≤ n.

Definition 60. Assume thatA andB are regressiven× n-matrix-valued functions onT.

Then we defineA⊕B by

(A⊕B)(t) = A(t) +B(t) + µ(t)A(t)B(t),

	A by

(	A)(t) = −[I + µ(t)A(t)]−1A(t) = −A(t)[I + µ(t)A(t)]−1,

andA	B by

(A	B)(t) = (A⊕ (	B))(t)

for all t ∈ Tk.
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Theorem 61. (R(T,Rn×n),⊕) is a group.

From this theorem, wheneverA,B ∈ R(T,Rn×n) thenA ⊕ B ∈ R(T,Rn×n).

We now state two properties of the regressive matrix-valued functionsA andB. LetA∗

be the conjugate transpose ofA. If A ∈ Rn×n, thenA∗ = AT .

Property 62. Suppose thatA andB are regressive matrix-valued functions taking on

complex values. Then we have the following properties.

(i) A∗ is regressive

(ii) A∗ ⊕B∗ = (A⊕B)∗

Now the generalized matrix exponential function is defined. We consider the

matrix-valued IVP

Y ∆(t) = A(t)Y (t), Y (t0) = In, (3.8)

whereIn is then× n-identity matrix.

Definition 63. The fundamental matrix is defined to be the general solution to the matrix

dynamic equation (3.8) and is denoted byΦA(t, t0).

We note thatΦA as a transition matrix can be replaced witheA in the following

lemma and theorem. The next lemma lists some properties of the matrix exponential

function.

Lemma 64. If A,B ∈ R is a matrix-valued function onT, then

i ) Φ0(t, s) ≡ I andΦA(t, t) ≡ I;

ii ) ΦA(σ(t), s) = (I + µ(t)A(t))ΦA(t, s);

iii ) Φ−1
A (t, s) = Φ∗

	A∗(t, s);

iv ) ΦA(t, s) = Φ−1
A (s, t) = Φ∗

	A∗(s, t);

v ) ΦA(t, s)ΦA(s, r) = ΦA(t, r);

vi ) ΦA(t, s)ΦB(t, s) = ΦA⊕B(t, s);

vii ) If T = R and A is constant thenΦA(t, t0) = eA(t,t0);
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viii ) If T = hZ with h > 0 and A is constant thenΦA(t, s) = (I + hA)
t−t0

h .

Theorem 65. If λ0, ξ is an eigenpair for then × n matrix A, thenx(t) = eλ0(t, t0)ξ is

solution of

x∆ = Ax, A ∈ R

onT.

Proof. Let λ0, ξ be an eigenpair for A. Since A is regressive onT, λ0 ∈ R and so

x(t) = eλ0(t, t0)ξ

is well defined onT. Then

x∆(t) = λ0eλ0(t, t0)ξ

= eλ0(t, t0)λ0ξ

= eλ0(t, t0)Aξ

= Aeλ0(t, t0)ξ

= Ax(t)

for t ∈ Tk.

Example 66. Solve the vector dynamic equation

x∆ =

 −3 2

1 −2

x.
The eigenvalues of the coefficient matrix areλ1 = −4 and λ2 = −1. This

equations is regressive for any time scale such that1 − 4µ(t) 6= 0 for all t ∈ Tk.

Eigenvectors corresponding toλ1 andλ2 are

ξ1 =

 −2

1

 and ξ2 =

 1

1


respectively. So

x(t) = c1e−4(t, t0)

 −2

1

 + c2e−1(t, t0)

 1

1


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Theorem 67. If x(t) = u(t) + iv(t) is complex vector-valued solution of regressive

dynamic equationx∆ = A(t)x on T, then u and v are real vector-valued solutions of

x∆ = A(t)x onT.

Proof. Let x(t) = u(t) + iv(t) be a complex vector-valued solution ofx∆ = A(t)x onT.

Then

u∆(t) + iv∆(t) = x∆(t) = A(t)x(t) = A(t)u(t) + iA(t)v(t)

for t ∈ Tk. Consequently

u∆(t) = A(t)u(t), v∆(t) = A(t)v(t) for t ∈ Tk.

We now present a theorem that guarantees a unique solution to the regressive

n× 1-vector-valued dynamic IVP

y∆(t) = A(t)y(t) + f(t), y(t0) = y0. (3.9)

Theorem 68. Let t0 ∈ T and y(t0) = y0 ∈ Rn. Then the regressive IVP (3.9) has a

unique solutiony : T → Rn given by

y(t) = ΦA(t, t0)y0 +

∫ t

t0

ΦA(t, σ(τ))f(τ)∆τ. (3.10)

Proof. First, y given by (3.10) is well defined can be written because of properties of

exponential function as

y(t) = ΦA(t, t0){y0 +

∫ t

t0

ΦA(t0, σ(τ))f(τ)∆τ}.

We use the product rule to differentiatey :

y∆(t) = A(t)ΦA(t, t0){y0 +

∫ t

t0

ΦA(t0, σ(τ))f(τ)∆τ}

+ΦA(σ(t), t0)ΦA(t0, σ(t))f(t)

= A(t)y(t) + f(t).

Obviouslyy(t0) = y0. Thereforey is a solution of (3.9).

Now we show thaty is the only solution of (3.9). Assumeu is another solution of

(3.9) and putv(t) = ΦA(t0, t)u(t). So we haveu(t) = ΦA(t, t0)v(t) and therefore

A(t)ΦA(t, t0)v(t) + f(t) = A(t)u(t) + f(t)

= u∆(t)

= A(t)ΦA(t, t0)v(t) + ΦA(σ(τ), t0)v
∆(t).
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Sov∆(t) = ΦA(t0, σ(t))f(t). Sincev(t0) must be equal toy0, this yields

v(t) = y0 +

∫ t

t0

ΦA(t0, σ(τ))f(τ)∆τ

and thereforeu = y, wherey is given by (3.10).

Theorem 69. Let A ∈ R be ann × n-matrix valued function onT and suppose that

f : T → Rn is rd-continuous. Lett0 ∈ T andx0 ∈ Rn. Then the initial value problem

x∆ = −A∗(t)xσ + f(t), x(t0) = x0 (3.11)

has unique solutionx : T → Rn. Moreover, this solution is given by

x(t) = Φ	A∗(t, t0)x0 +

∫ t

t0

Φ	A∗(t, τ)f(τ)∆τ. (3.12)

Proof.

x∆ = −A∗(t)xσ + f(t)

= −A∗(t)[x+ µ(t)x∆] + f(t)

= −A∗(t)x− µ(t)A∗(t)x∆ + f(t)

i.e,

[I + µ(t)A∗(t)]x∆ = −A∗(t)x+ f(t)

x∆ = −[I + µ(t)A∗(t)]−1A∗(t)x+ [I + µ(t)A∗(t)]−1f(t)

= (	A∗(t))x+ [I + µ(t)A∗(t)]−1f(t).

We can obtain solution of (3.11) as

x(t) = Φ	A∗(t, t0)x0 +

∫ t

t0

Φ	A∗(t, σ(τ))[1 + µ(τ)A∗(τ)]f(τ)∆τ

= Φ	A∗(t, t0)x0 +

∫ t

t0

ΦA∗(σ(τ), t)[I + µ(τ)A∗(τ)]−1f(τ)∆τ

= Φ	A∗(t, t0)x0 +

∫ t

t0

{[I + µ(τ)A(τ)]−1ΦA(σ(τ), t)}∗f(τ)∆τ

= Φ	A∗(t, t0)x0 +

∫ t

t0

{ΦA(τ, t)}∗f(τ)∆τ

= Φ	A∗(t, t0)x0 +

∫ t

t0

Φ	A∗(t, τ)f(τ)∆τ.
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3.2. The Lyapunov Transformation and Stability

We begin by analyzing the stability preserving property associated with a change

of variables using a Lyapunov transformation on the regressive time varying linear

dynamic system

x∆(t) = A(t)x(t), x(t0) = x0. (3.13)

Definition 70. The Euclidean norm of ann× 1 vectorx(t) is defined to be a real-valued

function oft and is denoted by

||x(t)|| =
√
xT (t)x(t).

The induced norm of anm× n matrixA is defined to be

||A|| = max
||x||=1

||Ax||.

The norm ofA induced by the Euclidean norm above is equal to the nonnegative

square root of the absolute value of the largest eigenvalue of the symmetric matrixATA.

Thus, we define this norm next. The spectral norm ofm× n matrixA is defined to be

||A|| = [max
||x||=1

xTATAx]
1
2 .

This will be the matrix norm that used in the sequel and will be denoted by||.||.

The notation that is used for an interval intersected with a time scale is(a, b)∩T = (a, b)T

Definition 71. A Lyapunov transformation is an invertible matrixL(t) ∈ C1
rd(T,Rn×n)

with the property that, for some positiveη, ρ ∈ R,

||L(t)|| ≤ ρ and det L(t) ≥ η (3.14)

for all t ∈ T.

Lemma 72. Suppose thatA(t) is ann× n matrix such thatA−1(t) exists for allt ∈ T.

(i) If there exists a constantα > 0 such that‖A−1(t))‖ ≤ α for eacht,

(ii) There exists a constantβ such that|detA(t)| ≥ β and

‖A−1(t)‖ ≤ ‖A(t)‖n−1

|detA(t)|
(3.15)

for all t ∈ T.
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Proof. (Aitken 1962).

A consequence of Lemma 72 is that the inverse of a Lyapunov transformation is

also bounded. An equivalent condition to (3.14) is that there exists aρ > 0 such that

‖L(t)‖ ≤ ρ and ‖L−1(t)‖ ≤ ρ (3.16)

for all t ∈ T.

Definition 73. The time varying linear dynamic equation (3.13) is called uniformly stable

if there exists a finite positive constantγ such that for anyt0, x(t0) the corresponding

solution satisfies

‖x(t)‖ ≤ γ‖x(t0)‖, t ≥ t0. (3.17)

Uniform stability cab also be characterized using the following theorem.

Theorem 74. The time varying linear dynamic equation (3.13) is uniformly stable if and

only if there exists aγ > 0 such that the transition matrixΦA satisfies

‖ΦA(t, t0)‖ ≤ γ

for all t ≥ t0 with t, t0 ∈ T.

Proof. Suppose that (3.13) is uniformly stable. Then, there is aγ > 0 such that for any

t0, x(t0), the solutions satisfy

‖x(t)‖ ≤ γ‖x(t0)‖, t ≥ t0.

Given anyt0 andta ≥ t0, letxa be a vector such that

‖xa‖ = 1, ‖ΦA(ta, t0)xa‖ = ‖ΦA(ta, t0)‖‖xa‖ = ‖ΦA(ta, t0)‖

so the initial statex(ta) = x0 gives a solution of (3.13) that at timeta satisfies

‖x(ta)‖ = ‖ΦA(ta, t0)xa‖ = ‖ΦA(ta, t0)‖‖xa‖ ≤ γ‖xa‖.

Since‖xa‖ = 1, we see that‖ΦA(ta, t0)‖ ≤ γ. Sincexa can be selected for anyt0 and

ta ≥ t0, we see that‖ΦA(t, t0)‖ ≤ γ for all t, t0 ∈ T. Now suppose that there exists a

γ such that‖ΦA(t, t0)‖ ≤ γ for all t, t0 ∈ T. For anyt0 andx(t0) = x0, the solution of

(3.13) satisfies

‖x(t)‖ = ‖ΦA(t, t0)x0‖ = ‖ΦA(t, t0)‖‖x0‖ ≤ γ‖x0‖, t ≥ t0.

Thus, uniform stability of (3.13) is established.
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Definition 75. The time varying linear dynamic equation (3.13) is called uniformly

exponentially stable if there exists finite positive constantsγ, λ with−λ ∈ R+ such that

for anyt0, x(t0) the corresponding solution satisfies

‖x(t)‖ ≤ ‖x(t0)‖γe−λ(t, t0), t ≥ t0. (3.18)

Uniform exponentially stability can also be characterized using the following

theorem.

Theorem 76.The time varying linear dynamic equation (3.13) is uniformly exponentially

stable if and only if there exists anλ, γ > 0 with−λ ∈ R+ such that the transition matrix

ΦA satisfies

‖ΦA(t, t0)‖ ≤ γe−λ(t, t0)

for all t ≥ t0 with t, t0 ∈ T.

Proof. First suppose that (3.13) is exponentially stable. Then there existγ, λ > 0 with

−λ ∈ R+ such that for anyt0 andx0 = x(t0), the solution of (3.13) satisfies

‖x(t)‖ ≤ |x0‖γe−λ(t; t0)

so for anyt0 andta ≥ t0, letxa be a vector such that

‖xa‖ = 1, ‖ΦA(ta, t0)xa‖ = ‖ΦA(ta, t0)‖‖xa‖ = ‖ΦA(ta, t0)‖.

Then the initial statex(ta) = x0 gives a solution of (3.13) that at timeta satisfies

‖x(ta)‖ = 1, ‖ΦA(ta, t0)xa‖ = ‖ΦA(ta, t0)‖‖xa‖ ≤ ‖xa‖γe−λ(t, t0).

Since‖xa‖ = 1 and−λ ∈ R+, we have‖ΦA(ta, t0)‖ ≤ γe−λ(t, t0). Sincexa can be

selected for anyt0 andta ≥ t0, we see that‖ΦA(ta, t0)‖ ≤ γe−λ(t, t0) for all t, t0 ∈ T.

Now suppose there existγ, λ > 0 with −λ ∈ R+ such that‖ΦA(t, t0)‖ ≤ γe−λ(t, t0) for

all t, t0 ∈ T. For anyt0 andx(t0) = x0, the solution of (3.13) satisfies

‖x(t)‖ = 1, ‖ΦA(t, t0)x0‖ = ‖ΦA(t, t0)‖‖x0‖ ≤ ‖x0‖γe−λ(t, t0), t ≥ t0,

and thus uniform exponential stability is attained.
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Definition 77. The linear state equation (3.13) is defined to be uniformly asymptotically

stable if it is uniformly stable and given anyδ > 0, there exists aT > 0 so that for anyt0

andx(t0), the corresponding solutionx(t) satisfies

‖x(t)‖ ≤ δ‖x(t0)‖, t ≥ t0 + T. (3.19)

It is noted that the timeT that must pass before the norm of the solution satisfies

(3.19) and the constantδ > 0 is independent of the initial timet0.

Theorem 78. Suppose there exists a constantα such that for allt ∈ T, ‖A(t)‖ ≤ α.

Then the linear state equation (3.13) is uniformly exponentially stable if an only if there

exists a constantβ such that ∫ t

τ

‖ΦA(t, σ(s))‖∆s ≤ β (3.20)

for all t, τ ∈ T with t ≥ σ(τ).

Proof. Suppose that the state equation (3.13) is uniformly exponentially stable. By

Theorem 76, there existγ, λ > 0 with −λ ∈ R+ so that

‖ΦA(t, τ)‖ ≤ γe−λ(t, τ)

for all t, τ ∈ T with t ≥ τ . So we now see that∫ t

τ

‖ΦA(t, σ(s))‖∆s ≤
∫ t

τ

γe−λ(t, τ)∆s

=
γ

λ
[e−λ(t, t)− e−λ(t, τ)]

=
γ

λ
[1− e−λ(t, τ)] ≤

γ

λ

for all t ≥ σ(τ). Thus, we have established (3.20) withβ = γ
λ
. Now suppose that (3.20)

holds. We see that we can represent the state transition matrix as

ΦA(t, τ) = I −
∫ t

τ

[ΦA(t, s)]∆s∆s = I +

∫ t

τ

ΦA(t, σ(s))A(s)∆s,

so that, with‖A(t)‖ ≤ α,

‖ΦA(t, τ)‖ ≤ 1 +

∫ t

τ

‖ΦA(t, σ(s))‖‖A(s)‖∆s ≤ 1 + αβ

for all t, τ ∈ T with t ≥ σ(τ).

To complete the proof,

‖ΦA(t, τ)‖(t− τ) =

∫ t

τ

‖ΦA(t, τ)‖∆s

≤
∫ t

τ

‖ΦA(t, σ(s))‖‖ΦA(σ(s), τ)‖∆s

≤ β(1 + αβ) (3.21)
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for all t ≥ σ(τ). Now choosingT with T ≥ 2β(1 + αβ) andt = τ + T ∈ T we obtain

‖ΦA(t, τ)‖ ≤ 1

2
, t, τ ∈ T. (3.22)

Using the bound from equations (3.21) and (3.22), we have the following set of

inequalities on intervals in the time scale of the form[τ + kT, τ + (k + 1)T )T,

with arbitraryτ ;

‖ΦA(t, τ)‖ ≤ 1 + αβ, t ∈ [τ, τ + T )T,

‖ΦA(t, τ)‖ = ‖ΦA(t, τ + T )ΦA(τ + T, τ)‖

≤ ‖ΦA(t, τ + T )‖‖ΦA(τ + T, τ)‖

≤ 1 + αβ

2
, t ∈ [τ + T, τ + 2T )T

‖ΦA(t, τ)‖ = ‖ΦA(t, τ + 2T )ΦA(τ + 2T, τ + T )ΦA(τ + T, τ)‖

≤ ‖ΦA(t, τ + 2T )‖‖ΦA(τ + 2T, t+ T )‖‖ΦA(τ + T, τ)‖

≤ 1 + αβ

22
, t ∈ [τ + 2T, τ + 3T )T.

In general, for anyτ ∈ T, we have

‖ΦA(t, τ)‖ ≤ 1 + αβ

2k
, t ∈ [τ + kT, τ + (k + 1)T )T.

We now choose the bounds to obtain a decaying exponential bound. Let

γ = 2(1+αβ) and define the positive functionλ(t) (with−λ(t) ∈ R+) as the solution to

e−λ(t, τ) ≥ e−λ(τ + (k + 1)T, τ) = 1
2k+1 for t ∈ [τ + 2T, τ + 3T )T with k ∈ N0.

Then for allt, τ ∈ T with t ≥ τ , we obtain the decaying exponential bound

‖ΦA(t, τ)‖ ≤ γe−λ(t, τ).

Therefore by Theorem 76, we have uniform exponential stability.

Theorem 79. The linear state equation (3.13) is uniformly exponentially stable if and

only if it is uniformly asymptotically stable.

Proof. Suppose that system (3.13) is uniformly exponentially stable. This implies that

there exist constantsγ, λ > 0 with −λ ∈ R+ so that‖ΦA(t, τ)‖ ≤ γe−λ(t, τ) for t ≥ τ .

Clearly, this implies unform stability. Now, given aδ > 0, we choose a sufficiently large

positive constantT ∈ T so thatt0 + T ∈ T ande−λ(t0 + T, t0) ≤ δ
γ
. Then for anyt0 and

40



x0, andt ≥ T + t0 with t ∈ T,

‖x(t)‖ = ‖ΦA(t, t0)x0‖

≤ ‖ΦA(t, t0)‖‖x0‖

≤ γe−λ(t0 + T, t0)‖x0‖

≤ δ‖x0‖, t ≥ t0 + T.

Thus, (3.13) is uniformly asymptotically stable.

Now suppose the converse. By definition of uniform asymptotic stability, (3.13) is

uniformly stable. Thus, there exists a constantγ > 0 so that

‖ΦA(t, τ)‖ ≤ γ for all t ≥ τ. (3.23)

Choosingδ = 1
2
, letT be a positive constant so thatt = t0 + T ∈ T and (3.19) satisfied.

Given at0 and lettingxa be so that‖xa‖ = 1, we have

‖ΦA(t0 + T, t0)xa‖ = ‖ΦA(t0 + T, t0)‖.

Whenx0 = xa, the solutionx(t) of (3.13) satisfies

‖x(t)‖ = ‖x(t0 + T )‖ = ‖ΦA(t0 + T, t0)xa‖

= ‖ΦA(t0 + T, t0)‖‖xa‖ ≤
1

2
‖xa‖.

From this, we obtain

‖ΦA(t0 + T, t0)‖ ≤
1

2
. (3.24)

It is easy to see that for anyt0 there exists anxa as claimed. Therefore, the above

inequality holds for anyt0. Thus, by using (3.23) and (3.24) exactly as in Theorem 78

uniform exponential stability is obtained.

Theorem 80. Suppose thatL(t) ∈ C1
rd(T,Rn×n), with L(t) invertible for all t ∈ T and

A(t) is from the dynamic linear system (3.13). Then the transition matrix for the system

Z∆(t) = G(t)Z(t), Z(τ) = I (3.25)

where

G(t) = Lσ−1

(t)A(t)L(t)− Lσ−1

(t)L∆(t) (3.26)

is given by

ΦG(t, τ) = L−1ΦA(t, τ)L(τ) (3.27)

for anyt, τ ∈ T.
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Proof. First we see that by definition,G(t) ∈ Crd(T,Rn×n). For anyτ ∈ T, define

x(t) = L−1(t)ΦA(t, τ)L(τ). (3.28)

Observe that fort = τ, x(τ) = I. By rearranging (3.28) and differentiatingL(t)x(t) with

respect tot, we obtain

L∆(t)x(t) + Lσ(t)x∆(t) = Φ∆
A(t, τ)L(τ) = A(t)ΦA(t, τ)L(τ)

and

Lσ(t)x∆(t) = A(t)ΦA(t, τ)L(τ)− L∆(t)x(t)

= A(t)ΦA(t, τ)L(τ)− L∆(t)L−1(t)ΦA(t, τ)l(τ)

= [A(t)− L∆(t)L−1(t)]ΦA(t, τ)L(τ).

Multiplying both sides byLσ−1
(t)

x∆(t) = [Lσ−1

A(t)− Lσ−1

(t)L∆(t)L−1(t)]ΦA(t, τ)L(τ)

= [Lσ−1

A(t)L(t)− Lσ−1

(t)L∆(t)]L−1(t)ΦA(t, τ)L(τ)

= G(t)x(t).

This is valid for anyτ ∈ T. Thus, the transition matrix ofx∆(t) = G(t)x(t) is

ΦG(t, τ) = L−1(t)ΦA(t, τ)L(τ). If the initial value specified in (3.25) was not the

identity, i.ez(t0) = z0 6= I, then the solution isx(t) = ΦG(t, τ)z0.

Theorem 81 (Preservation of Uniform Stability). Suppose thatz(t) = L−1(t)x(t) is a

Lyapunov transformation. Then the system (3.13) is uniformly stable if and only if

z∆(t) = [Lσ−1

A(t)L(t)− Lσ−1

L∆(t)]z(t), z(t0) = z0 (3.29)

is uniformly stable.

Proof. Equation (3.13) and (3.29) are related byz(t) = L−1(t)x(t). By the Theorem 80,

the relationship between the two transition matrices is

ΦG = L−1(t)ΦA(t, t0)L(t0).

Suppose that (3.13) is uniformly stable. Then there exists aγ > 0 such that

‖ΦA(t, t0)‖ ≤ γ for all t, t0 ∈ T with t ≥ t0. Then by Lemma 72 and Theorem 74,
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we have

‖ΦG(t, t0)‖ = ‖L−1(t)ΦA(t, t0)L(t0)‖

≤ ‖L−1(t)‖‖ΦA(t, t0)‖‖L(t0)‖

≤ γρn

η
= γG

for all t, t0 ∈ T with t ≥ t0. By Theorem 74, since‖ΦG(t, t0)‖ ≤ γG, the system (3.29)

is uniformly stable. The converse is similar.

Theorem 82 (Preservation of Uniform Exponential Stability). Suppose that

z(t) = L−1(t)x(t) is a Lyapunov transformation. Then the system (3.13) is uniformly

exponentially stable if and only if

z∆(t) = [Lσ−1

A(t)L(t)− Lσ−1

L∆(t)]z(t), z(t0) = z0 (3.30)

is uniformly exponentially stable.

Proof. Equations (3.13) and (3.30) are related by the change of variables

z(t) = L−1(t)x(t). By Theorem 80, the relationship between the two transition matrices

ΦG(t, t0) = L−1ΦA(t, t0)L(t0)

Suppose that (3.13) is uniformly exponentially stable. Then there exists onλ, γ > 0 with

−λ ∈ R+ such that‖ΦA(t, t0)‖ ≤ γe−λ(t, t0) for all t ≥ t0 with t, t0 ∈ T. Then by

Lemma 72 and Theorem 76, we have

‖ΦG(t, t0)‖ = ‖L−1(t)ΦA(t, t0)L(t0)‖

≤ ‖L−1(t)‖ΦA(t, t0)‖‖L(t0)‖

≤ γρn

η
e−λ(t, t0) = γGe−λ(t, t0)

for all t, t0 ∈ T with t ≥ t0.

By Theorem 76, since‖ΦG(t, t0)‖ ≤ γGe−λ(t, t0), the system (3.29) is uniformly

exponentially stable. The converse is similar.

3.3. Floquet Theory On Time Scales

In this section we assume the regressive time varying linear dynamic initial value

problem

x∆(t) = A(t)x(t), x(t0) = x0 (3.31)
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whereA(t) is regressive and p-periodic. We note that in general, it is only necessary that

the period ofA(t) is a multiple of the period of the time scale that is being analyzed. We

let the period of the time scale and period ofA(t) be equal for simplicity.

Definition 83. Letp ∈ [0,∞). Then the time scaleT is p-periodic if we have the following

(i) t ∈ T implies thatt+ p ∈ T,

(ii) µ(t) = µ(t+ p),

for all t ∈ T.

Definition 84. SupposeT is a p-periodic time scale. Ann × n matrix-valued function

A : T → Rn×n is p-periodic ifA(t) = A(t+ p) for all t ∈ T.

Theorem 85. Suppose thatT is a p-periodic time scale andR ∈ R(T,Cn×n). Then the

solution of the dynamic matrix initial value problem

Z∆(t) = RZ(t), Z(t0) = z0 (3.32)

is unique up to a period p. That is,eR(t, t0) = eR(t + kp, t0 + kp) for all t ∈ T and

k ∈ N0.

Proof. The unique solution of (3.32) iseR(t, t0)z0. Observe

e∆R(t, t0)z0 = ReR(t, t0)z0

eR(t, t0)|t=t0z0 = eR(t0, t0)z0 = z0.

Now we show thateR(t, t0) = eR(t + kp, t0 + kp). We show this by observing that

eR(t+ kp, t0 + kp)z0 also solves the matrix initial value problem (3.32). We see that

e∆R(t+ kp, t0 + kp)z0 = ReR(t+ kp, t0 + kp) (3.33)

eR(t+ kp, t0 + kp)|t+kp=t0+kp = eR(t+ kp, t0 + kp)|t=t0 (3.34)

= eR(t0 + kp, t0 + kp)z0 (3.35)

= z0. (3.36)

The solution of the matrix initial value problem (3.32) is unique. Thus we have that

eR(t+ kp, t0 + kp) = eR(t, t0) for all t ∈ T and k ∈ N0. (3.37)

Therefore,eR can be shifted by integer multiples of p.
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Theorem 86 (The Unified Floquet Theorem for Time Scales).Suppose that there exists

an n × n constant matrixR such thateR(p + t0, t0) = ΦA(p + t0, t0), whereΦA is the

transition matrix for (3.31). Then the transition matrix for a p-periodicA(t) can be

written in the form

ΦA(t, τ) = L(t)eR(t, τ)L−1(τ) for all t, τ ∈ T (3.38)

whereR ∈ Cn×n is a constant matrix,andL(t) ∈ C1
rd(T,Rn×n) is p-periodic and

invertible at eacht ∈ T. We refer to (3.38) as the Floquet decomposition forΦA.

Proof. We begin by defining the constant matrixR as the solution of the equation

eR(p+ t0, t0) = ΦA(p+ t0, t0) (3.39)

which may require either taking the natural logarithm or obtaining the invertiblepth root

of the real-valued invertible constant matrixΦA(p + t0, t0). Thus, it is possible that a

complexR is obtained. Define the matrixL(t) by

L(t) = ΦA(t, t0)e
−1
R (t, t0). (3.40)

It follows by definition thatL(t) ∈ C1
rd(T,Rn×n) and is invertible at eacht ∈ T. By

taking inverse of (3.40)

ΦA(t, t0) = L(t)eR(t, t0)

yields

ΦA(t0, t) = e−1
R (t, t0)L

−1(t) = eR(t0, t)L
−1(t)

which proves the claim

ΦA(t, τ) = L(t)eR(t, τ)L−1(τ).

We conclude the proof by showing thatL(t) is p-periodic. By (3.40) and Theorem 85,

L(t+ p) = ΦA(t+ p, t0)e
−1
R (t+ p, t0)

= ΦA(t+ p, t0 + p)ΦA(t0 + p, t0)eR(t0, t+ p)

= ΦA(t+ p, t0 + p)ΦA(t0 + p, t0)eR(t0, t0 + p)eR(t0 + p, t+ p)

= ΦA(t+ p, t0 + p)ΦA(t0 + p, t0)e
−1
R (t0 + p, t0)eR(t0 + p, t+ p)

= ΦA(t+ p, t0 + p)e−1
R (t+ p, t0 + p)

= ΦA(t+ p, t0 + p)e−1
R (t, t0).
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Letting t′ = t+ p, we see thatΦA(t′, t0 + p) is a solution to the matrix dynamic equation

Φ∆
A(t′, t0 + p) = A(t′)ΦA(t′, t0 + p) = A(t+ p)ΦA(t+ p, t0 + p)

= A(t)ΦA(t+ p, t0 + p)

with initial conditions

ΦA(t′, t0 + p)|t′=t0+p = ΦA(t+ p, t0 + p)|t=t0 = ΦA(t0 + p, t0 + p) = I.

But nowΦA(t, t0) is another solution to the same matrix dynamic initial value problem.

Since the solutions to initial value problems are unique, we have

ΦA(t+ p, t0 + p) = ΦA(t, t0).

Thus,

L(t+ p) = ΦA(t+ p, t0 + p)e−1
R (t, t0) = ΦA(t, t0)e

−1
R (t, t0) = L(t).

Theorem 87. Let ΦA(t, t0) = L(t)eR(t, t0) as in Theorem 86. Thenx(t) = ΦA(t, t0)x0

is a solution of the p-periodic system (3.31) if and only ifz(t) = L−1(t)x(t) is a solution

of the autonomous system

z∆(t) = Rz(t), z(t0) = x0.

Proof. Assumex(t) is a solution of (3.31). Then

x(t) = ΦA(t, t0)x0 = L(t)eR(t, t0)x0.

If we define

z(t) = L−1(t)x(t) = L−1(t)L(t)eR(t, t0)x0 = eR(t, t0)x0,

then z(t) is a solution ofz∆(t) = Rz(t) and satisfies the initial conditionz(t0) = x0.

Suppose thatz(t) = L−1(t)x(t) is a solution of the systemz∆(t) = Rz(t), z(t0) = x0.

The solution isz(t) = eR(t, t0)x0. Definex(t) = L(t)z(t). It follows that

x(t) = L(t)eR(t, t0)x0 = ΦA(t, t0)x0

sox(t) is a solution of (3.31).
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Theorem 88. Given anyt0 ∈ T, there exists an initial statex(t0) = x0 6= 0 such

that the solution of (3.31) is p-periodic if and only if at least one of the eigenvalues of

eR(t0 + p, t0) = ΦA(t0 + p, t0) is 1.

Proof. Suppose that given an initial time to withx(t0) = x0 6= 0, thex(t) is p-periodic.

By Theorem 86, there exist a Floquet decomposition ofx given by

x(t) = ΦA(t, t0)x0 = L(t)eR(t, t0)L
−1(t0)x0.

Furthermore

x(t+ p) = L(t+ p)eR(t+ p, t0)L
−1(t0)x0 = L(t)eR(t+ p, t0)L

−1(t0)x0;

sincex(t) = x(t+ p) andL(t) = L(t+ p) for eacht ∈ T, we have

eR(t, t0)L
−1(t0)x0 = eR(t+ p, t0)L

−1(t0)x0

which implies

eR(t, t0)L
−1(t0)x0 = eR(t+ p, t0 + p)eR(t0 + p, t0)L

−1(t0)x0.

SinceeR(t+ p, t0 + p) = eR(t, t0),

eR(t, t0)L
−1(t0)x0 = eR(t, t0)eR(t0 + p, t0)L

−1(t0)x0,

and thus

L−1(t0)x0 = eR(t0 + p, t0)L
−1(t0)x0.

SinceL−1(t0)x0 6= 0, we see thatL−1(t0)x0 6= 0 is an eigenvector of the matrix

eR(t0 + p, t0) corresponding to an eigenvalue of1. Now suppose1 is an eigenvalue of

eR(t+ p, t0) with corresponding eigenvectorz0. Thenz0 is real-valued and nonzero. For

anyt0 ∈ T z(t) = eR(t, t0)z0 is p-periodic. Since 1 is an eigenvalue ofeR(t0 + p, t0) with

corresponding eigenvectorz0 andeR(t+ p, t0 + p) = eR(t, t0),

z(t+ p) = eR(t+ p, t0)z0

= eR(t+ p, t0 + p)eR(t0 + p, t0)z0

= eR(t+ p, t0 + p)z0

= eR(t, t0)z0 = z(t)
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Using the Floquet decomposition from Theorem 86 and settingx0 = L(t0)z0 we obtain

the nontrivial solution of (3.31). Then

x(t) = ΦA(t, t0)x0 = L(t)eR(t, t0)L
−1(t0)x0 = L(t)eR(t, t0)z0 = L(t)z(t)

which is p-periodic sinceL(t) andz(t) are p-periodic.

We now consider the nonhomogeneous regressive time varying linear dynamic

initial value problem

x∆(t) = A(t)x(t) + f(t), x(t0) = x0 (3.41)

whereA(t) ∈ R(T,Rn×n), f(t) ∈ Cprd(T,Rn×1)
⋂
R(T,Rn×1) and both are p-periodic

for all t ∈ T.

Lemma 89. A solution x(t) of equation (3.41) is p-periodic if and only if

x(t0 + p) = x(t0).

Proof. Suppose thatx(t) is p-periodic. Then by definition of a periodic function

x(t0 + p) = x(t0).

Now suppose that there exist a solution of (3.41) such thatx(t0 + p) = x(t0).

Definez(t) = x(t+p)−x(t). By assumption and construction ofz(t), we havez(t0) = 0.

Furthermore,

z∆(t) = [A(t+ p)x(t+ p) + f(t+ p)]− [A(t)x(t) + f(t)]

= A(t)[x(t+ p)− x(t)]

= A(t)z(t).

By uniqueness of solutions, we see thatz(t) ≡ 0 for all t ∈ T. Thus,x(t) = (t + p) for

all t ∈ T.

The next theorem uses Lemma 89 to develop criteria for the existence of

p-periodic solutions for any p-periodic vector-valued functionf(t).

Theorem 90. For all t0 ∈ T and for all p-periodicf(t), there exists an initial state

x(t0) = x0 such that the solution of (3.41) is p-periodic if and only if there does not exist

a nonzeroz(t0) = z0 andt0 ∈ T such that the homogenous initial value problem

z∆(t) = A(t)z(t), z(t0) = z0 (3.42)

(whereA(t) is p-periodic) has a p-periodic solution.
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Proof. For anyt0, x(t0) = x0 and p-periodic vector-valued functionf(t), we know that

the solution of (3.41) is

x(t) = ΦA(t, t0)x0 +

∫ t

t0

ΦA(t, σ(τ))f(τ)∆τ.

By Lemma 89, x(t) is p-periodic if and only ifx(t0) = x(t0 + p) which is equivalent to

[I − ΦA(t0 + p, t0)]x0 =

∫ t0+p

t0

ΦA(t0 + p, σ(τ))f(τ)∆τ. (3.43)

By Theorem 88, we must show that this algebraic equation has a solution forx0, for any

t0 and any p-periodicf(t) if and only if eR(t0 + p, t0) has no eigenvalues equal to one.

Let eR(t0 + p, t0) = ΦA(t0 + p, t0) and suppose that there are no eigenvalues equal to 0.

This is equivalent to

det[I − ΦA(t0 + p, t0)] 6= 0. (3.44)

SinceΦA is invertible, (3.44) is equivalent to

0 6= det[ΦA(t0 + p, p)(I − ΦA(p, 0))(ΦA(0, t0))] (3.45)

= det[ΦA(t0 + p, p)(ΦA(0, t0)− ΦA(t0 + p, t0)].

Since ΦA(t0 + p, p) = ΦA(t0, 0), (3.44) is equivalent to the invertibility of

[I − ΦA(t0 + p, t0)]. Thus (3.43) has a solutionx0 for any t0 and for p-periodicf(t).

Now suppose that (3.43) has a solutionx0 for any t0 and for any p-periodicf(t). Given

an arbitraryt0 ∈ T corresponding to anyn×1 vectorf0, we define a regressive p-periodic

vector-valued functionf(t) ∈ Cprd(T,Rn×1) by

f(t) = ΦA(σ(t), t0 + p)f0, t ∈ [t0, t0 + p)T (3.46)

extending this to the entire time scaleT using the periodicity. By construction off(t) we

have ∫ t0+p

t0

ΦA(t0 + p, σ(τ))f(τ)∆τ =

∫ t0+p

t0

f0∆τ = pf0.

Thus (3.43) becomes

[I − ΦA(t0 + p, t0)]x0 = pf0. (3.47)

For any vector-valued functionf(t) that is constructed as in (3.46) and thus for any

correspondingf0, (3.47) has a solution forx0 by assumption. Therefore,

det[I − ΦA(t0 + p, t0)] 6= 0.

Thus,eR(t0 + p, t0) = ΦA(t0 + p, t0) has no eigenvalue of equal to1. By Theorem 88,

(3.42) has no periodic solution.
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CHAPTER 4

CONCLUSION

The aim of this study is to present structure of solution of linear systems of

dynamic equations on time scales; stability criterions of periodic discrete Hamiltonian

systems and periodic systems on periodic time scales. For these purpose, we began with

expending three basic papers (Bohner and Peterson 2001), (Dacunha 2005), (Ahlbrandt

and Ridenhour 2003) on this subject. We have composed these studies and presented

fundamental theorems and concepts. After basic definitions and theorems of time

scales and dynamical real case; stability of discrete case, basic theorems and properties

of periodic discrete Hamiltonian systems were presented. Uniqueness and existence

theorem was given for time scales and finally Lyapunov stability and Floquet theory

was presented. By this study, the basic concepts of dynamical systems in real case have

similar structure with discrete case and time scale case. It is easily seen that, structure of

dynamical systems and stability criterions are similar for these cases.
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