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ABSTRACT

DYNAMICAL SYSTEMS ON TIME SCALES

In this thesis, we have studied dynamical systems on time scales. Firstly, we give basic
definitions and theorems about the time scales and dynamical systems. We present
Floquet theory and stability criterion on periodic discrete Hamiltonian systems. We
introduce the Hilger complex plane and exponential function on time scales. This
exponential function is shown to satisfy an initial value problem involving a first order
linear dynamic equation. Uniqueness and existence theorems are presented. And then
we give stability criterion, Lyapunov transformations and a unified Floquet theory for
periodic time scales. We try to collect studies (Bohner and Peterson 2001), (Dacunha

2005), (Ahlbrandt and Ridenhour 2003) about Dynamical Systems On Time Scales .



OZET
ZAMAN SKALALARINDA D INAM IK SISTEMLER

Bu tezde Zaman Skalalarinda Dinamik Sistemleri caligbkcelikle, zaman skalasinda

ve dinamik sistemlerde temel tanim ve teoremleri verdik. Periyodik diskrit Hamil-
ton sistemlerindeki Floquet teoremini ve kararlilik kriterini sunduk. Zaman skalasinda
Hilger komplex dizlemini ve uistel fonksiyonu tanittik. Buistel fonksiyonun, birinci
mertebe lineer dinamik denklem iceren baslangi@etdeoroblemini sgladgi gosterildi.
Varlik ve teklik teoremleri sunuldu. Sonrasinda periyodik zaman skalalari i¢cin Lyapunov
donigimleri, kararhlik kriteri ve Floquet teoremi verildi. Zaman Skalalarinda Dinamik
Sistemlerle ilgili olarak (Bohner and Peterson 2001), (Dacunha 2005), (Ahlbrandt and
Ridenhour 2003) ¢calismalarini derlemeye calistik.
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CHAPTER 1

TIME SCALES

1.1. Basic Definitions

A time scale is an arbitrary nonempty closed subset of the real numbers. It is
denoted by the symbdI. It was first introduced by Stefan Hilger in his Ph.D thesis in

1988 in order to unifed continuous and discrete analysis.

Definition 1. Let T be a time scale. Fot € T we define the forward jump operator

o:T — Thy
o(t):=inf{s € T:s>t}
while the backward jump operator: T — T is defined by
p(t) :=sup{s € T:s <t}

If o(t) > t, we say that is right-scattered, while if(t) < ¢ we say that is left-scattered.
Points that are both right-scattered and left-scattered are isolated. Algoxitup T and
o(t) = t, thent is called right-dense, and ift > inf T and p(t) = ¢, thent is called
left-dense. Points that are both right-dense and left-dense at the same time are called

dense. Finally, the graininess functipn T — [0, oo) is defined by

We need below the s&F is derived from the time scalB as follows : If T has a left

scattered maximum, thenT* = T — {m}. Otherwise,T* = T. In summary

T T\ (p(supT),supT] if supT < oo
T if supT = o0

Finally, if f : T — R is a function, then we define the functiph: T — R by

fo(t) :== f(o(t)) forall t € T.

Example 2. Let us briefly consider the two examplés= R andT = Z.



() If T =R, thenwe have forany € R
o(t) =inf{s e R: s >t} =inf(t,00) =t

and similarlyp(t) = t. Hence every point € R is dense. The graininess function
4 turns out to be

w(t)=0  forallteT,
(i) If T = Z, then we have for anyc Z
ot)=inf{se€Z:s>t}=inf{t+1,t+2,.. .} =t+1

and similarlyp(t) = ¢t — 1. Hence every point € Z is isolated. The graininess

functiony is the case is
wit)=1 forallteT.

Now we consider a functiofi : T — R and define delta derivative of f at a point

t € T,

1.2. Differention

Definition 3. Assumef : T — R is a function and let € T*. Then we define delta
derivative f2(¢) to be the number with the property that given any- 0, there is a

neighborhood’ of ¢ (i.e,U = (t — 0, + d) N T for somey > 0) such that
(F(a(1) = F(5) = FAE(0(t) — 5)| < elo(t) — 5| for all s€U.
We call f2(t) the delta derivative of att.

Theorem 4. Assumef : T — R is a function and let € T*. Then we have the following

properties.
(i) If fis differentiable at, thenf is continuous at;

(i) If fis continuous at andt is right-scattered, therf is differentiable at with



(i) If ¢ is right-dense, therf is differentiable at iff the limit
MNIOEFIO

s—t t—s

exist as a finite number, in this case

(iv) If fis differentiable at, thenf(o(t)) = f(t) + u(t) f2(t).
Example 5. We consider the two cas@s= R andT = Z.

(i) If T = R then Theorem 4 (iii) yields that : R — R is delta differentiable at € R
iff
P0) — tim 10 =)

s—t t—s
exists, i.e, ifff is differentiable (in the ordinary sense) &t In this case we then

have

by Theorem 4 (iii);
(ii) If T = Z, then Theorem 4 (ii) yields thgt: Z — R is delta differentiable at € 7Z
with

whereA is the usual forward difference operator defined by the last equation above.
Theorem 6. Assumef, g : T — R are differentiable at € T*. Then :

(i) The sumf + ¢ : T — R is differentiable at with
(f +9)2(t) = f2(t) + g2 (1);
(i) Forany constanty € R, functionaf : T — R is differentiable at with
(@f)2(t) = af2(t);
(i) The productfg : T — R is differentiable at with

(f)2(t) = f2(0)g(t) + f(a(1)g>(t) = f(H)g™(t) + F2(t)g(o(t));



(iv) If f(t)f(o(t)) #0, thenl is differentiable at with

7
A O
(f) O = = o)

is differentiable at and

(V) I g(t)g(o(t)) #0, theng

S W) — F0g> )
( ) 0= et

g
We now define functions that are integrable an arbitrary time s@ales

1.3. Integration

Definition 7. Afunctionf : T — R is called regulated provided its right-sided limits exist
(finite) at all right-dense points ifi and its left-sided limits exist (finite) at all left-dense

points inT.

Definition 8. A function f : T — R is called right-dense continuous (denote
rd-continuous) provided it is continuous at right-dense poinfg and its left-sided limits
exist (finite) at left-dense points h The set of rd-continuous functioris: T — R will
be denoted by

Cra = Crg(T) = Cpq(T, R).

It follows naturally that the set of function: T — R whose first n delta deriva-

tives exist and are rd-continuous @ns denoted by

:}d: ;ld(T): ;Ld(TaR)'

Definition 9. The functionsf : T — R is called piecewise right-dense continuous
(denoted prd-continuous) provided it is piecewise continuous at right-dense poifits in
and its left-sided limits exist (finite) at left-dense point&inThe set of prd-continuous

functionsf : T — R will be denoted by
Cpra = Cpra(T) = Cpra(T, R).

It follows naturally that the set of functiong : T — R whose first n delta

derivatives exist and rd-continuous @rns denoted

;)er - ;rd(T) prd(T R)



Some results concerning rd-continuous and regulated functions are contained in

the following theorem.

Theorem 10. For a functionf : T — R;

(i) If fis continuous, therf is rd-continuous,

(i) If fis rd-continuous, therf is regulated,

(i) The forward jump operatas is rd-continuous,
(iv) If fis regulated or rd-continuous, then sofi8,

(v) Assumef is continuous. I : T — R is regulated or rd-continuous, thefo g is also

regulated or rd-continuous, respectively.

Definition 11. A continuous functiory : T — R is pre-differentiable with (region of
differention) D, provided D c T*,T*\ D is countable and contains no right-scattered

elements ofT, and f is differentiable at each € D.

Theorem 12. Let f be regulated. Then there exists a functiagn which is

pre-differentiable with region of differentiob such that

holds for allt € D.

Definition 13. Assumef : T — R is a regulated function. Any functidi as in Theorem
12 is called a pre-antiderivative of.

We define the indefinite integral of a regulated functfdoy

/f(t)At =F({t)+C

whereC'is an arbitrary constant and’ is a pre-antiderivative of .

We define the Cauchy integral by
/ f)At = F(s) — F(r)  for all r;seT.
A functionF’ : T — R is called an anti-derivative of : T — R provided

FA(t) = f(t)  holds for all t€ T



1.4. Hilger's Complex Plane

Definition 14. For h > 0, we define the Hilger complex numbers, the Hilger real axis,

the Hilger alternating axis, and the Hilger imaginary circle as

Cp = {zEC:z;«é—%}

1
R, = {zE]R:z>—E}

1
A, = {ZGR:Z<—E}

1 1
I, = {ZEC:‘Z+E|:E}

respectively. Foh = 0, letCy := C, Ry := R, Ay := 0, and I, := iR.

Letz € C},. The Hilger real part ofz is defined by

|zh 4111
Rey(z) :== .
and the Hilger imaginary part of is defined by

_ Arg(zh +1)

[mh(z) . h

whereArg(z) denotes the principal argument of (—7 < Arg(z) < 7).

Definition 15. Let 5" < w < 7. We define the Hilger purely imaginary numberas
iwh _ 1
h

(&

lw =

Theorem 16. For z € C;, we have

z = Repz ®1Imy,z.



Proof. Letz € C;,. Then

h+1| -1 A h+1
Repz @ 1Imyz = |zh +1] D1 rg(zh +1)

h h

_Jzh 4111
a h

exp(iArg(zh+1)) —1 |zh+ 1| — lexp(iArg(zh + 1)) — 1
+ + h

h h h

1
= E{|2h+1| — 1+ exp(iArg(zh +1)) — 1
+ [lzh + 1| = 1][exp(iArg(zh + 1)) — 1]}

1
= E’Zh + l|exp(itArg(zh + 1)) — 1
_ (zh4+1) -1
B h
= z

[l

Definition 17. The functiorp : T — R is regressive if
L4+ pt)p(t) A0 teT"

From this point, all regressive and rd-continuous functipns T — R will be
denoted as
R =R(T) =R(T,R).

Circle plus additions is defined by
(p @ q)(t) == p(t) + q(t) + p(t)p(t)g(t), for all t€ T, pgeR

Theorem 18. (R(T,R), @) is an Abelian group.

The set of all positively regressive elementgbtiefined by
R =RYT,R)={peR:1+pult)pt) >0, for al tecT"}
is a subgroup ofR..

Definition 19. The functionep is defined by

@)
1+ pu(t)p(t)

It follows that ifp, g € R, thenop, ¢, p® q,pS g € R.

(op) = for all teT* peR.



1.5. The Time Scale Exponential Function

We use a cylinder transformation, defined below, to define a generalized time scale

exponential function for an arbitrary time scéle

Definition 20. For > 0. Let Z,, be the strip

- 7r
—= L — <—
Zp={z€eC . <Im(z) < h}

and forh =0, let Z, := C.

Definition 21. For h > 0 the cylinder transformatios;, : C,, — Z,, is defined by

&n(z) = %Log(l + h2)

where Log is the principle logarithm function. When= 0, we defin€(z) = z for all

z € C. The inverse cylinder transformati(z“rfj1 2 2y, — Cyis

e — 1

&' (2) = —

By using this cylinder transformation we now construct the generalized

exponential function.

Definition 22. If p € R, we define the generalized time scale exponential function by
t
ep(t,s) = exp(/ Eun(p(T)AT),  for all s,te€T.
Example 23. Consider the time scale
T=N; = {n?:n €Ny}
We haver(n?) = (n+ 1)? for n € Ny and
pn?) =con?) —n®*=n+1)>—-n*>=2n+1.

Henceo(t) = (vt + 1) andu(t) = 1+ 2y/tfort € T.

For this time scale, we claim that

er(t,0) =2Y1 (V) for teT.



Lety be defined by the this equation. It is clear th@t) = 1 and fort € T.

ylo(t) = 2V7O(/a(D)!
= 2"V 4+ Vi)
= 221 +VI)(V1)!
= 21+ V()
= (1+pu(t)y(t)

= y(t) + p(®)y(?)

so that

Theorem 24. For all p,q € R, the generalized exponential function is satisfied the

following properties :
(i) eo(t,s) =1 and ey(t,t) =1,

(i) ep(o(t),s) = [1 4 u(t)p(t))ey(t, s),

(i) - é 5 = cenlt.).

—_

(iv) ey(t,s) = m = egp(s, 1),
(V) ep(t, s)ep(s,m) = ep(t, ),

(Vi) ey(t,s)eq(t, s) = epaq(t, s),

(vii) 2 “) = epog(t, 8),
(viii) If pe R, thene,(t,ty) >0forallt €T,
(ix) If 1+ p(t)p(t) < 0forsomet € T, thene,(t,to)e,(o(t),to) <O,

(X) If T =R, thene,(t,s) = e/s P _If p is constant then

ep(t,s) = ePlt=s),

(xi) If T = Z, theney(t,s) = TZL(1 + p(7)). If T = hZ, withh > 0 andp is
constant, them, (¢, s) = (1 + hp) 7 .



Proof. We will give only the proofs of (x) and (xi). For the others proofs see
(Bohner and Peterson 2001). Siriee- R, pu(t) =0 and

t

ep(t,s) = exp(/ &u(r (0(T)) AT
— exp( / [ﬁmﬂ + pu(T)p(r)]AT)

By the L'Hospital rule

ots) = el [ 2D lan)

L+ p(1)p(7)
_ lipnar

While T =2, u(t) =1and [’ f(H)At = Z22Lf (), (a < D)

eo(t.5) = espl [ [ Log(1+ tr)p(r))JAn)

= exp(/lt Log(1 + p(1))AT)
= exp(XiZt Log(1 + p(7)))
= exp(LogITiZL (1 + p(7)))

= I (1+p(7))

Second part of proof is similar. ]

10



CHAPTER 2

DYNAMICAL SYSTEMS

In this chapter we will give some key well known results for linear

systems. The general form for a first order linear system is

T =A(t)xr + g(t) (2.1)
whereA(t) is ann x n matrix function oft, andg(t) is a vector function of. We assume
that A(t) andg(t) are continuous functions @fon the closed interval, a <t < b. If we
denote the right-hand side of (2.1) Byz, t), then f(z,t) is a continuous function of

andt for all z andt € I. SinceA(t) is continuous function of on the closed interval,

there exist a constadt/ such thatA(t)| < M for ¢ € I. Indeed

|f(z,t) = f(y, )] = [A®t)z +g(t) — A(t)y — g(t)]
< JA®)||z -yl
< Mlz -yl

It meansf(z,t) satisfies the Lipschitz condition. f(t) = 0 then (2.1) is called a first

order homogeneous linear systems. Consider
T =A(t)x (2.2)
is first order homogeneous linear system. Lgt), ..., x,,(t) ben solutions of (2.2) on an
interval [a, b] and put
O(t) = [21(t), ..., xp ()]

wherex(t) is ann x n matrix solution of

If 21(t),...,xz,(t) are also linearly independent théxjt) is a fundamental matrix and if
®(ty) = I, the unit matrix, therb(¢) is called the principal fundamental matrix. Further
W (t) = det®(t) is called the Wronskian. Since the element®ddre differentiable, we

can computed’.

'(t) = [21(t),25(t), ... 2, (1)]
= AWB)[21(), 22(t), ooy 20 (t)]
= A(D)D(t).

11



That is,® satisfies
P'(t) = A(t)D(t). (2.3)

Theorem 25. (Abel’'s Formula)Let A(¢) be ann x n matrix of continuous functions on

I = [a,b] and let®(t) be a matrix of differentiable functions such that

Then fort, ty € 1,

det (1) = D(ty) exp(/t trA(s)ds)

to

wheretr A(s) is the trace ofA(s) (the sum of the element of its principal diagonal).

2.1. The Constant Coefficient Matrix

The linear autonomous systems do not explicitlyt 080 the coefficient matrix of

systemA is a constant matrix.

Theorem 26. Let A be a constant matrix. A fundamental matdxor

i = Az (2.4)

is given by
P = M (2.5)

At _ Aktk
where e = X2 5.

Theorem 27.If A is a constant matrix); an eigenvalue ofd, andv; a corresponding

eigenvector, thep = ¢*i'v is a solution of(2.4).

Since A hasn eigenvalues, we can findsuch solutions, and it would seem then
that we have found the columns for a fundamental matrix. The difficulty, however, is
that the eigenvalues are not necessarily distinct and the eigenvectors corresponding to
a repeated eigenvalue may not be linearly independent. (Eigenvectors corresponding to
distinct eigenvalues are always linearly independent.) If this occurs, we have not found

n linearly independent column vectors to make a fundamental matrix. However, it is the

12



case that if all of the eigenvalues dfare distinct, them is similar to a diagonal matrix,
so then solutions obtained actually are linearly independent, and a fundamental matrix

has been found.

Theorem 28. Let A be a constant: x n matrix with distinct eigenvalues,, ..., \,, and

vy, ..., U, DE corresponding eigenvectors. Then a fundamental matri@fdy is given by
O(t) = [Ny, €0y, .., Moy

If some of the eigenvalues; turn out to be complex numbers, then the
corresponding eigenvectors;, will contain complex entries, but‘iv; will still be a

solution.

Theorem 29. If () is a solution of(2.4) where A is a constant matrix with real-valued
entries, then the real part of(¢) (written Rep(t)) and the imaginary part op(t) (written
Img(t)) are both solutions of2.4). If ); is a complex eigenvalue thenis an eigenvalue,

too.

2.2. Structure of n-Dimensional Nonhomogeneous Linear Systems

The general nonhomogeneous linear system is
T =A(t)x + f(t) (2.6)

where f(t) is a continuous column vectori(¢) is ann x n continuous matrix. For
notational purposes, I€t[x] denotey’ — Ay. Then, as noted befor&.6) can be written

as

L[z] = f. 2.7)

Lz) = f
z(to) = o (2.8)

is given by
z(t) :qD(t)CID_l(tO)xO—HID(t)/t d1(s)f(s)ds (2.9)

where®(t) is any fundamental solution matrix of the corresponding homogeneous system
d = A(t)D.

13



2.3. Stability of Time Solutions: Lyapunov Stability
Consider the linear system
2 (t) = Az (2.10)

whereA is ann x n constant matrix and is a vector inR”. Equation(2.10) always has

the trivial solution, the function:(¢) = 0, and this solution will play the role of “present
state” in the intuitive description above. The trivial solution is said to be stable if for
everye > 0 there is & such that ifz(¢) is any solution 0f2.10) with ||z(0)| < 4, then
|z(t)|| < e forallt > 0. We are using norm| ||, to measure how close a solution is

to the trivial solution. Think of the trivial solution as the present state of the system and
z(t) as a solution that represents a deviation from the present state. If the trivial solution
is stablez(¢) will remain arbitrarily close (this is the) to the present state (the trivial
solution) for all future time if the initial condition:(0) is sufficiently close (this i9) to

zero. The trivial solution is said to be unstable if it is not stable. The trivial solution of
(2.10) said to be asymptotically stable if a) it is stable, and b) there isar0 such that

if [|z(0)] < e, thentliglo |z(t)]] = 0.

Theorem 31.

(i) The trivial solution of(2.10) is asymptotically stable if and only if all of the

eigenvalues ofl have negative real parts.

(i) If one eigenvalue oft has a positive real part, then the trivial solution @£.10) is

unstable.

(iii) If the eigenvalues ofl with zero real parts are simple and all other eigenvalues have

negative real parts, then the trivial solution (£.10) is stable.

Definition 32. Letz*(¢) be a given real or complex solution vector of the n-dimensional

system, not necessarily autonomoiis; X (x,t) in component form

14



then

(i) z*(t) is Lyapunov stable fot > ¢, if and only if, to each value of > 0, however
small, there corresponds a value ®f> 0 (whered may depend only onandt)

such that
lo(to) — 2" (to)ll < & = [Ja(t) — 2"(B)]| < (2.11)
for all ¢t > to, wherex(t) represents any other neighbour is solution.

(i) If the given system is autonomous, the referenag o (i) may be disregarded, the

solutionz*(t) is either Lyapunov stable, or not, for al.

(iiiy Otherwise the solutiom”*(¢) is unstable in the sense of Lyapunov.
In other words, (2.11) says that no matter how small is the permitted deviation,
measured by, there still exists a non-zero tolerance, measured kin the initial

conditions when the system is activated, allowing it to run satisfactorily.

Definition 33. If the solution is stable fot > ¢, and thed of Definition 32 is independent

of ¢y, the solution is uniformly stable an> ¢,.

It is clear that any solutions of an autonomous system are uniformly stable, since

the system is invariant with respect to time translation.

Definition 34. Letz* be a stable (or uniformly stable) solution foe> ¢,. If additionally

there exist® > 0 such that

la(to) — =*(t0) | < 8 = lim [la(t) — 2*(1)]| = 0 (2.12)

15



then the solution is said to be asymptotically stable (or uniformly and asymptotically
stable).

The most general linear system is the nonautonomous and nonhomogeneous

eqguation in n variables given by
T =A(t)x+ f(t) (2.13)
whereA(t) is ann x n matrix. Letz(t) represent any other solution and defiiie) by
E(t) = x(t) — x*(1). (2.14)

Thené(t) tracks the difference between the test solution and a solution having a different

initial value at timety. The initial condition for¢ is
&(to) = x(to) — 2" (to) (2.15)
also,¢ satisfies the homogeneous equation derived from
£ = A(t)E. (2.16)

By comparison of (2.14), (2.15), and (2.16) with Definition 32, it can be seen that the
stability property ofc*(¢) is the same as he stability of the zero solution of (2.£6)) is
called perturbation of the solutiari*(¢). Since this new formulation of the problem is
independent of the solution of (2.13) initially chosen, we can make the following

statement.

Theorem 35. All solutions of the regular linear systein= A(t)x + f(t) have the same
Lyapunov stability property (unstable, stable, uniformly stable, asymptotically stable,
uniformly and asymptotically stable). This is the same as that of the zero (or any other)

solution of the homogeneous equatior A(t)¢.

2.4. Equations With Periodic Coefficients and Floquet Theory

Let
T =A(t)x (2.17)

be a n-dimensional first order system, whei) is periodic with minimal period™; that

is, T is the smallest positive number for which

At +T) = A(t), —00 <t <00 (2.18)

16



(A(t), of course, also has perio@g’, 3T, ...). The solutions are not necessarily periodic.
We shall assume that(t) is continuous ofR. In particular, all solutions of (2.18) can be

obtained in the form

where ® is a fundamental matrix andis a constant vector. Knowledge of properties

of a fundamental matrix then yields properties of solutions. A basic theorem in the

theorem of ordinary differential equations, known as Floquet theorem, gives an impor-

tant representation of a fundamental matrix when the coefficients are periodic. Floquet
theorem contains the fundamental results for equations with periodic coefficients, that the
fundamental matrix of (2.17) can be written as the product of a T-periodic matrix and a

(generally) non-periodic matrix.

Theorem 36 (Floquet Theorem).Consider the equation (2.17) with(¢) a continous
T-periodicn x n matrix. Each fundamental matrik(¢) of equation (2.17) can be written
as the product of twa x n matrices®(t) = p(t)e?* with p(t) T-periodic and B a constant

n X n-matrix.

Proof. The fundamental matris(¢) is composed of: independent solution® (¢ + T')
is also a fundamental matrix. To show this, put ¢ + 7', then

dx

el A(r =Tz

= A(r)x

so®(7) is also fundamental matrix. The fundamental matrieég and®(7) = ¢(t+ 7))

are linearly independent, which means there exist a nonsingwar matrix C' such that
O(t+T1)=(¢t)C.
There exists a constant matrix B such that
C =Pl
We shall prove tha®(t)e P! is T-periodic. Putb(t)e=5¢ = p(t), then

pt+T) = ®(t+T)e BHD
= ®(t)Ce Ble Pt
= P(t)e P

= p(t)
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Remark 37. The matrix C which has been introduced is called the monodromy-matrix of
equation (2.17). The eigenvaluesmfof C are called characteristic multipliers. Each

complex numbek such that

AT
p=e

is called a characteristic exponent (or Floquet exponent). The imaginary part of the

characteristic exponents are not determined uniquely. We caradd” to them. The

characteristic multipliers determined uniquely.

Remark 38. The Floquet theorem implies that the solutions of the equation (2.17) consist

of a product of polynomials in t multiplied with* and T-periodic terms.
T = A(t)x
can be transformed hy = p(¢)y so that
p(t)y + p(t)y = A(t)p(t)y

or
y=p""(Ap —p)y.
The differentiation of(t) = ®(¢)e~ P! produces
p = Pe B4 e P (—B)
= Ap—pB
so we findy = By. In other words, the transformation = p(t)y carries equation
(2.17) over into an equation with constant coefficients, the solutions which are vector-

polynomials in t multiplied witl*. This possibility of reduction of the linear part of the

system to the case of constant coefficients will play a part in the theory of stability.

2.5. Discrete Dynamical Systems

The theory of discrete dynamical systems and difference equations developed
greatly during the last twenty five years of the twentieth century, following the

publication of the seminal paper “Period Three Implies Chaos”, by J. Yorke and Y. Li
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in 1975. In 1987 R. Devancy published “An Introduction to Chaotic Dynamical Sys-

tems” the first book on the subject. Applications of difference equations also experienced
enormous growth in many areas. In this section our goal is to present an overview of
the various facts of stability theory for autonomous systems of difference equations. This

section covers many of the fundamental stability results for linear systems.

2.5.1. Linear Difference Equations
Definition 39. An equation of the form
Tpi1 =ax, +b, n=0,1,..

wherea € R\0 andb € R is called first order linear difference equations (LDE) with
constant coefficients.

Tpi1 = @pTp + by, n=0,1,.. (2.19)

is called LDE with variable coefficients.

Tpi1 = Axp + by, xg=d, n=0,1,... (2.20)

wherek € 1,2,..., d € R*, Aisarealk x k matrix andb, € R* forn = 0,1, ... the

IVP (2.20) has the unique solution given by

r, = A"d + ZA"_ibi, n=20,1,...

=0

In particular, ifb,, = b, a is a constant vector, then we obtain

Tp= A"+ Y Ab, n=0,1,...

=0
2.6. Initial Value Problems for Linear Systems
We consider systems of the form

u(t+1) = A(t)u(t) + f(¢) (2.22)
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where

[ w(t) | [ an() .. an(t) |
ult) = Al =
| valt) () . )
fi(®)
i) =
1) |

fort=a,a+1,a+2,...

Theorem 40. For eacht, € a,a+ 1,... and each n-vector,,, equation (2.21) has a
unique solution u(t) defined far= ¢y, tq + 1, ..., so thatu(tg) = ug. If A is constant

matrix andf(¢) = 0, then the solution(t) of
u(t+ 1) = Au(t) (2.22)
satisfying the initial condition(0) = wy, is

u(t) = Aug (t=0,1,2,...)

= o Mul + o au”

Hence the solutions of equation (2.22) can be found by calculating powers of A.
0 1 (51
Example 41. Solveu(t + 1) = u(t), up= :
-2 =3 U9

1

1
—2 and —1 are eigenvalues an{ ] and [ ] are corresponding
—2

1
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eigenvectors.

Up 1 1 1 1 C1
_— Cl —|— C2 _—
U2 —2 1 -2 -1 Co
C1 —Up — U2
= with initial condition
Co 2u1 + Ug

1 1
u(t) = —(uy + ug)(—2)" [ ] + (2u1 + ug)(—1)" [ » } .

-2
Theorem 42. The solution of
u(t+ 1) = Au(t) + f(¢)

satisfying the initial condition(0) = wuy is

u(t) = Alug + i ATTLEG) (2.23)

Proof. By Theorem 40, it is enough to show that (2.23) satisfies the initial value problem.

First we have -
d AT =0
=0

by the usual condition, s@(0) = u,. Fort > 1

u(t+1) = ATlug+ > AT

1=0

t—1
= AMug+ ) AT + f(2)

=0

= Al + Y AT )+ ()

= Au(t) + f(t)

2.7. Stability of Linear Systems

Theorem 43. Let A be ann x n matrix withr(A) < 1; wherer(A) is the spectral radius

of A, r(A) = max|X;|; then every solution(t) of

u(t + 1) = Au(t)
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satisfiedim, .., u(t) = 0. Furthermore, ifr(A) < § < 1, then there is a constart> 0

so that|u(t)| < ¢dt|ug| for ¢ > 0 and every solution of of equation (2.22).

When all solutions of the system go to the origin as t goes to infinity, the origin is
said to be “asymptotically stable”.
2.8. Discrete Hamiltonian Systems

Consider the discrete Hamiltonian system

Az(t) = H,(t,z(t+1),u(t)) (2.24)

Aut) = —H,(tz(t+1),u(t))

wheret € Z; x,u € R", H(t,z,u) is the corresponding real Hamiltonian function and
has continous derivativesinu ; H, = (H,,, H,,, ..., H,,)", H, is the partial derivative
of H in z;, A denotes the forward difference.

If the Hamiltonian function/ is of the quadratic form

H(t,x,u) = %(xT,uT>S(t) ( ’ )
where
—C(t) AT(t
S0 (1) A*(1)
At)  B(1)
is a2n x 2n symmetric matrix, then (2.24) is the discrete linear Hamiltonian system.

2.9. Discrete Hamiltonian Systems with Periodic Coefficients
Consider the following system

Az(t) = a(®)z(t+ 1)+ b(t)u(t) (2.25)
Au(t) = —ct)z(t+1) —a(t)u(t)

a, b, c are real-valued functions and- a(t) # 0, forT > 2, a(t+T) = a(t),
bt +T)="0(t), c(t+T)=c(t)Vt € Z.
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t
Letd(t) = z(t) then we may write (2.25) as

u(t)

O(t+1) = M()P(t) (2.26)

which
1 b(t)
M@ = | 7 (S) o b(B)et) | (2.27)
ey L a(t) — 1—a(t)

M has the following properties :

i YdetM(t) =1, VteZ

. 0 1
i ) MT(t)JM(t) = J whereJ = [ ] :
-1 0

If a matrix M satisfiesM” JM = J then we sayM is “symplectic” matrix and

the discrete Hamiltonian system (2.26) is of symplectic structure. The discrete linear

Hamiltonian system

is expressed as

whereE(t) = (I, — A(t))~* and

M) =

E(t) E()B(t)
CHE(t) I, —AT(t) + C()EMW)B(t) |

Since the transition matrid/(¢) is symplectic, the discrete linear Hamiltonian system is

of symplectic structure.
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. $1<t) x
Definition 44. Supposed,(t) = and &,(t) =
u

uy (t)
(2.26). The Wronskian @, and ®, is defined as follows.

] be solutions of

T (t) T (t)
Ui (t) U9 (t)

Proposition 45. The Wronskian of (2.25) is constant.

Wi (@1, By) = = Y (1)JDy(1).

Proof.

AW (D1, Do) = Alxy(t)ua(t) — xo(t)us (t)]
= x1(t + D) Aus(t) + ua(t) Axy (t) — 2o(t + 1) Auy (t) — uy (t) Aza(t)
= z1(t)[—c(t)za(t + 1) — a(t)ua(t)] + ua(t)[a(t)z1(t) + b(t)us (t + 1)]
— 2ot + D[—c(t)z1(t + 1) — a(t)uy (t)] — ui(t)[a(t)x2(t + 1) 4+ b(t)us(t)]
=0
thenW,(®,, ®,) is constant. O

Proposition 46. Supposeb; and ®, be two solutions of (2.26)»; and &, are linearly
independent if and only ifl;(®,, ;) # 0 and the linear combination ob; and @, is

also the solution of (2.26).

Proposition 47. There are two linearly independent solutions of system (2.25) and any

solution can be written as linear combination of these solutions.

Definition 48. If all the solutions(z, u) of (2.25) onZ are bounded then we say that this
system is stable. If there is at least one non trivial and bounded solution of (2.25) then
we say that this system is conditionally stable. If all nontrivial solutions of (2.25) are

unbounded then we say that, this system is unstable.

2.9.1. Floquet Theory

Let
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wherea(t), b(t), andc(t) are periodic. Now consider the system
Ap(t) = JH(t)e(t), teZ. (2.28)

Sincea, b, ¢ are periodic then we can gét(t + T') = H(t). For ap € C, we are looking

the nontrivial solutiony(¢) such that,
e(t+T)=pp(t), teZ. (2.29)

Let 1 (1) = {EZ andp, (f) = [

following initial conditions,

ZL’Q(Zf)

be solutions of (2.28) with the
us(t)

: 21(0)  x2(0)
S|nceWt<901,Q02) = WO((pl,(pQ) = =11-00=1 7& 0 thempl and

u1(0)  ux(0)
o are linearly independent solutions of (2.28) arld) = c1p1 + capo.

Let p(t) = ®(t)c where

o(t) = [pa(1) soz(t)][””“) ”“"2(”] and [] (2.30)

Ul(t) (%) (t) Cy

For matrix function®(¢) the equations

AD() = JH@A)D(L), teZ (2.31)
o0) = I (2.32)

are satisfied. Her@“(t) =

i (1) wt) |

Now substitute (2.30) into (2.29), then we obtain
Ot +T)e = p®(t)c. (2.33)
Now we will show that
O(t+T)=(t)0(T). (2.34)

SinceH(t + T) = H(t), the left hand side of (2.34) satisfies (2.31). On the other hand
the right hand side of (2.34) satisfies (2.31) too. Both sides of (2.34) is equakar.
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Since the uniqueness of the solution, (2.34) is verified for everyZ. If we write (2.34)
into the left hand side of (2.33)

O(t)D(T)c = p®(t)c. (2.35)

Sincedet®(t) = Wi(¢1,02) = 1 # 0, ®(¢) is invertible for everyt € Z. Multiplying
both sides withd—1(¢),

O(T)e = pe. (2.36)

The inverse of these operations are also true. If the equation (2.36) is verified for a
complex numbep and the vector, the functionp(t) = ®(t)c is solution which has
property (2.29). We must find the vector 0 which satisfies (2.36)p is eigenvalue of

¢(x) andc is corresponding eigenvector. From the linear algebra, for nonzero solution of
(2.36),

det[®(T) — pI] = 0 (2.37)
wi(T)—p  a2(T)

w(T)  ua(T) —p
p* = [21(T) + ua(T)]p + 21(T)uz(T) — ur (T)us(T) = 0

=0

D =: z1(T) + us(T) (2.38)
p° — Dp+1=0 (2.39)
P12 = %(D FVD? - 4).
For D? +# 4, ®(T) has different two eigenvalugs, p, and different eigenvectors$" and
c?), For solutionsp™ (¢) = ®(t)cM) andp® (t) = ®(t)c? of (2.28), there are linearly

independent solutions(t) and(t) sincec’) andc® are linearly independent.

Proposition 49. If |D| > 2, system (2.28) is unstable. Since system is real-valued and
initial conditions of p; (¢) and . (t) are real numberspD is a real number defined by
(2.38).

Proof. |D| >2 = 4< D2

In that case, there are linearly independent solutighgt) andp(? () of (2.28) such that
pWE+T) = prp(t)
PP +T) = pap®(t)

1
P12 = §(D F vV D? — 4)
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Itis clear thatp; > 1,0 < py < 1 andp;.p, = 1. The general solution of (2.28) is

o(t) = 1MW (t) + c20@ ().
Hence,
p(t+kT) = 1D (t+kT) + cap® (¢ + KT)
= W) + ephip®@(t), VE € Z.

Obviously; fork — oo, itis clear thatp? — oo, and p5 — 0. On the other hand,
for k — oo, we see thap? — 0, and p¥ — co. As a result, every nontrivial solution

©(t) is unbounded, so (2.25) is unstable. O
Proposition 50. If |D| < 2, the system is stable.

Proof. |[D| < 2= D?*<4=py=p,
Sinceps = p; andp;.px = 1, then|p;| = |po| = 1.

PVt +T) = ppV (1)
P +T) = pp® (1)
P +T) = o)
PPt +T) = @)
loM(¢)| and|p® (¢)| are periodic. Every periodic function is boundedZnSincey(t)

is the linear combination ap(!)(¢) and(?)(¢), it is bounded. Thus the system (2.25) is
stable. =

Theorem 51. Assume that system (2.30) satisfies the following conditions,
i)l—a(t) >0, b(t) >0, ¢(t)<0

i YL, —— >1, IO7 {1 —a(t)— 249} > 1.

t=11—qa(t) 1—af(t)

Then, the system (2.25) is unstable.

Proof. To prove, we must show that
D = 171(T> + UQ(T) > 2.

It is enough to show that, (7") > 1 anduy(7") > 1.
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We know that

and
AD(t) = JH(L)D(t), VteZ.

It can be obtained that

Ot+1) = M@H)D(), tel

0) = I

such that

i _ [ A M12(t)} ) [ . LON ]
_M21<t) Ms(1) — ¢

O(T) = M(T—1)M(T —2)..M(0)®(0)
Mi(T —1) Myp(T —1)
| Moy (T —1) Ma(T —1)

My(T —2) Ms(T —2)
Moy (T —2)  Ma(T — 2)

Because of given conditions of the theorem

M11<t) > 0, Mlg(t) 2 0, M21<t) Z O, Mgg(t) > 0

and
T—1 _nT = 1nr 1
2(T) 2 Mg Mua(8) = Moy Man (1) = oy — o
us(T) > {5 Moo () = TT_ Moo (t) = T {1 — a(t) — f(i)—z((?)}

then 21(T) + ux(T) > 2 and D > 2.

Therefore the system (2.25) is unstable.

>

>1
>1

My1(0) My2(0
M5 (0) Maa(0
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CHAPTER 3

DYNAMICAL SYSTEMS ON TIME SCALES

3.1. Structure of Dynamical Systems on Time Scales

Definition 52. The first order linear dynamic equation

Yy (t) = p(t)y(t) (3.1)
is called regressive if € R.

Theorem 53. Suppose (3.1) is regressive. lgte T andy, € R. Then the unique

solution of the initial value problem

y2(t) = pt)y(t)  y(te) = yo (3.2)

is given by

y(t) = ep(t, to)yo-
Definition 54. If p € R and f : T — R is rd-continuous, then the dynamic equation
v (t) = p(t)y(t) + f(t) (3-3)
is called regressive.

Theorem 55. Suppose (3.3) is regressive. ligte T andx, € R. The unique solutions

of the initial value problems

a® = —p(t)z” + f(t), x(to) = o (3.4)
and
y2 (1) = p(t)y(t) + f(t),  y(to) = yo (3.5)
are given by
z(t) = egp(t, o)z + /tt ecp(t, ) f(T)AT
and 0

y(t) = yoe,(t, to) —i—/t ep(t,o(r))f(T)AT. (3.6)
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Proof. First, it is easily verified that given above solves the initial value problem (3.4).

We multiply both sides of (3.4) by integrating facig(z, t,) and obtain

[en(t, to)a] () = ep(t,to)a™ () + p(t)ep(t, to)27(2)
= ep(tsto) [ (1) + p(t)27 (1))

= ep(t,to) (1)

and we integrate both sides framto ¢
t
ep(t, to)z(t) — ep(to, to)x(to) = / ep(T,to) f(T)AT.
to

Hence we obtain

ep(t, to)z(t) = xo +/ ep(T,t0) f(T)AT.

to
We solve forx and apply Theorem 24 (iii) to arrive at

z(t) = egp(t, to) +/ M

to ep(t7t0)
Sincee,(t, T)e,(7,to) = e,(t, to) according to Theorem 24 (v), and by (ii)(¢) can be

f(r)AT

written as
t
o) = eeplt.to)so + [ eoplt,r)f(r)AT
to
or
t
x(t) = egp(t, to)[zo +/ ecp(to, 7) f(T)AT].
to
For uniquely for solution:(¢), similar proof will be given at Theorem 68. ]

The second proof is similar. We now introduce the concept of an rd-continuous
matrix, a regressive matrix, and circle plus addition on matrix-valued functions. A is

differentiable orl" provided each entry of A is differentiable dhand

I B R I S R

Theorem 56. If A is differentiable at € T*, thenA“(t) = A(t) + u(t) A2(t).
Proof.

A7 = (af))

= (ay + pagj)

= A+ puA”
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Theorem 57. Suppose A and B are differentiablex n-matrix-valued functions. Then
i ) (A+ B)» = A® + B%,
i ) (aA)® = aA?if ais constant;
i )(AB)® = AAB° 4 AB® = A°B” + A®B;
iV ) (A2 = — (A7) TAR A1 = —A-1TAD (A7) if AA” is invertible;

V) (AB™)A = (4% — AB7'BA)(B%)! = (A2 — (AB~Y"B*)B~' if BB is

invertible.

Definition 58. Let A ben x n matrix-valued function on a time scale We say that
A is rd-continuous oril' if each entry ofA is rd-continuous, and the class of all such

rd-continuousn x n matrix-valued function offl’ is denoted by
Cra = Cpg(T) = Cpg(T, R™™).
We say that: x 1-vector-valued system
y2(t) = Alt)y(t) + f(t) (3.7)
is regressive provided € R and f : T — R”" is a rd-continuous vector-valued function.

The next lemma provides a fact about the relationship betweemn the-matrix-

valued function4 and the eigenvalues (t) of A(t).

Lemma 59. Then x n-matrix-valued functiom is regressive if and only if the eigenvalues

of \;(t) of A(t) are regressive for all <i <n.

Definition 60. Assume thatl and B are regressive, x n-matrix-valued functions offi.

Then we definel ® B by

(A® B)(t) = A(t) + B(t) + u(t) A(t) B(1),

cA by
(BA)(t) = [ + u()AW)]"A(t) = =AM + () A
andA © B by
(Ao B)(t) = (A® (eB))(1)
forall t € T".
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Theorem 61. (R(T,R™™), ®) is a group.

From this theorem, whenevet, B € R(T,R"*") thenA & B € R(T,R"*").
We now state two properties of the regressive matrix-valued functioasd B. Let A*

be the conjugate transpose4f If A € R™*", thenA* = AT,

Property 62. Suppose thatl and B are regressive matrix-valued functions taking on

complex values. Then we have the following properties.
(i) A*is regressive
(i) A*e B*=(A® B)*

Now the generalized matrix exponential function is defined. We consider the

matrix-valued VP

YA = AQ)Y (1), Yty = I, (3.8)

wherel, is then x n-identity matrix.

Definition 63. The fundamental matrix is defined to be the general solution to the matrix

dynamic equation (3.8) and is denoteddy(t, ty).

We note thatd 4 as a transition matrix can be replaced within the following
lemma and theorem. The next lemma lists some properties of the matrix exponential

function.
Lemma 64. If A, B € R is a matrix-valued function off, then
i) Do(t,s) =Tandd4(t,t) = 1;
i) @ao(t),s) =+ p(t)AQR)Pa(t, 5);
i ) ®1(t,s) = DL 4 (L, 5);
iV ) Dt s) =D, (s,t) = N ENIE
V) Da(t,s)Da(s,r) = DPalt,r);
Vi ) Du(t,s)Dp(t,s) = Paepl(t,s);

vii ) If T = R and A is constant thef 4 (¢, t,) = eA(*10);
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vii ) If T = hZ with h > 0 and A is constant thef 4 (¢, s) = (I + hA) ="

Theorem 65. If Ay, £ is an eigenpair for ther x n matrix A, thenz(t) = ey, (¢, %) is
solution of

2 =Az, AeR

onT.

Proof. Let \g, £ be an eigenpair for A. Since A is regressiveTon\, € R and so

l‘(t) = er(tatO)g
is well defined orT. Then
22(t) = Aoex,(t,to)€
= ex(t, o) M€
- 6/\0 (tJtO)Ag

= Ae)\o (t, to)f
= Az(t)

fort € T*. O

Example 66. Solve the vector dynamic equation

The eigenvalues of the coefficient matrix axe = —4 and A\, = —1. This
equations is regressive for any time scale such that4u(t) # 0 for all t € T*.

Eigenvectors corresponding @ and )\, are

&1 = and & =

respectively. So

—2
x(t) = cre_4(t, to) . ) + coe_1(t, to)

1
1
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Theorem 67.If z(t) = wu(t) + iv(t) is complex vector-valued solution of regressive
dynamic equation® = A(t)z on T, then u and v are real vector-valued solutions of

o2 = A(t)r onT.

Proof. Letz(t) = u(t) + iv(t) be a complex vector-valued solution:of = A(t)z onT.
Then
ut(t) + vt (t) = 22(t) = A(t)x(t) = A(t)u(t) + iA(t)v(t)

for t ¢ T*. Consequently
u®(t) = A(Hu(t), v2(t) = A(t)w(t) for te Tk
]

We now present a theorem that guarantees a unique solution to the regressive

n x 1-vector-valued dynamic IVP

y2(t) = Ay(t) + f(t),  y(to) = vo- (3.9)
Theorem 68. Lett, € T andy(tg) = yo € R". Then the regressive IVP (3.9) has a
unique solutiony : T — R™ given by
t
y(t) = ®al(t, to)yo +/ O u(t,o(1))f(T)AT. (3.10)
to

Proof. First, y given by (3.10) is well defined can be written because of properties of

exponential function as

y(t) = B At to){y0 + / B4 (to, o(7)) f () A}

to

We use the product rule to differentiaje
t
V() = AR o)+ [ atto.o(r)1(1)AT)
to
+®4(o(t), t0)Palto, o(t)) f (%)
= AQ)y(t) + f(1).
Obviouslyy(tg) = yo. Thereforey is a solution of (3.9).
Now we show thay is the only solution of (3.9). Assumeis another solution of
(3.9) and pub(t) = P 4(to, t)u(t). So we haveu(t) = & 4(t,to)v(t) and therefore
A(6)Palt, to)u(t) + f(1) = A(t)ult) + f(t)
= W)

= A()Da(t, to)v(t) + Pa(o(T), to)v™(1).
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Sov?(t) = P 4(te,o(t))f(t). Sincev(ty) must be equal tg, this yields
t
o) =0+ [ atto.o(r)f(r)AT
to
and therefore, = y, wherey is given by (3.10). m

Theorem 69. Let A € R be ann x n-matrix valued function ofl and suppose that

f: T — R"™is rd-continuous. Lety € T andz, € R™. Then the initial value problem
ot = —A* ()27 + f(t), x(ty) = x0 (3.11)

has unique solution : T — R™. Moreover, this solution is given by

o) = Bttt [ Bt ()0 (3.1
Proof.
P = A2 + f()
= A )]z + pt)zP] + f(t)
= —A )z — pt)A )z + f(t)
ie,

[+ pt)A* (D))o = —A"(t)w + f(t)

B = [T+ p(O)A ()] A O + [T+ p() A ()] (1)
= (SA (1) + [T+ u(t) A* ()] F(0).

We can obtain solution of (3.11) as
o) = ottt [ orto)L A LA
= Do (t, to)zo + /t: O 4 (o (T), ) + p(T)A* (1) f(T)AT
= ottt [ {1+ AN Balo(r).0) ST
= Bt fo)To + /t:{cpA(T, DY F(r)AT

t
= CI)@A*(tJo)xo—F/ Do (t,7)f(T)AT.
to
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3.2. The Lyapunov Transformation and Stability

We begin by analyzing the stability preserving property associated with a change
of variables using a Lyapunov transformation on the regressive time varying linear
dynamic system

z2(t) = A(W)x(t),  x(ty) = zo. (3.13)

Definition 70. The Euclidean norm of am x 1 vectorz(t) is defined to be a real-valued

function oft and is denoted by
[z ()] = 2T (t)x(t).
The induced norm of am x n matrix A is defined to be

1Al = max [|Az]].

[Jz]|=1
The norm of4 induced by the Euclidean norm above is equal to the nonnegative
square root of the absolute value of the largest eigenvalue of the symmetric mhattix

Thus, we define this norm next. The spectral norm of n matrix A is defined to be

[|Al| = [max :ETATAx]%.

[lz]|=1
This will be the matrix norm that used in the sequel and will be denoted|by

The notation that is used for an interval intersected with a time scdte isNT = (a, b)r

Definition 71. A Lyapunov transformation is an invertible matixt) € C*,(T, R"*")

with the property that, for some positiyep € R,
1L <p and  det L(t) =1 (3.14)
forall t € T.
Lemma 72. Suppose thati(¢) is ann x n matrix such thatd—!(¢) exists for allt € T.
(i) If there exists a constant > 0 such that| A=*(¢))|| < « for eacht,

(i) There exists a constaptsuch thatdet A(t)| > # and

IA@I"

A7 ()] < det A

(3.15)

forall ¢t € T.
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Proof. (Aitken 1962). ]

A consequence of Lemma 72 is that the inverse of a Lyapunov transformation is

also bounded. An equivalent condition to (3.14) is that there exists @ such that
ILOI<p and L' O <p (3.16)
forallt € T.

Definition 73. The time varying linear dynamic equation (3.13) is called uniformly stable
if there exists a finite positive constantsuch that for anyt,, =(t,) the corresponding
solution satisfies

[z < Allz(to)ll, T =to (3.17)
Uniform stability cab also be characterized using the following theorem.

Theorem 74. The time varying linear dynamic equation (3.13) is uniformly stable if and

only if there exists & > 0 such that the transition matrik 4 satisfies
[P a(t, o)l <
forall ¢t > tqwitht,ty € T.

Proof. Suppose that (3.13) is uniformly stable. Then, thereqs>a 0 such that for any

to, z(to), the solutions satisfy
[z < ~llz@o)ll, &= to.
Given anyt, andt, > t,, letz, be a vector such that
[zall = 1, [[Pa(ta, to)zall = 1P a(ta; to) [|7all = | a(ta, to)
so the initial state:(t,) = x( gives a solution of (3.13) that at tintg satisfies
[z(ta)l| = [[Palta, to)zall = 1P a(ta; to) llzall < zall-

Since||z,|| = 1, we see thall® 4 (t,,t0)|| < 7. Sincex, can be selected for arty and

t, > to, we see thalj®4(t,¢)|| < v forall t,ty € T. Now suppose that there exists a
v such thatl|® 4(t, )| < ~ for all ¢,t, € T. For anyt, andz(ty) = xo, the solution of
(3.13) satisfies

[z(E)]] = [[Palt, to)zoll = [[Palt, to)[l[lzoll < Allzoll, ¢ = to.

Thus, uniform stability of (3.13) is established. ]
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Definition 75. The time varying linear dynamic equation (3.13) is called uniformly
exponentially stable if there exists finite positive constantswith —\ € R* such that

for anyt,, x(to) the corresponding solution satisfies
[z(@)[| < lz(to)[[ve-r(t,t0), ¢ = to. (3.18)

Uniform exponentially stability can also be characterized using the following

theorem.

Theorem 76. The time varying linear dynamic equation (3.13) is uniformly exponentially
stable if and only if there exists an~y > 0 with —\ € R* such that the transition matrix
d 4 satisfies

[@a(t,to)ll < ~ve-x(t,to)

forall t > towitht¢, ¢y € T.

Proof. First suppose that (3.13) is exponentially stable. Then there gxist> 0 with

—\ € R* such that for any, andz, = x(t), the solution of (3.13) satisfies
()] < |aollve-x(t; to)
so for anyt, andt, > ty, letz, be a vector such that
[zall = 1, [[@a(ta, to)zall = [Ralta, to) [[|zall = ([ a(ta, to) .
Then the initial state(t,) = xo gives a solution of (3.13) that at tintg satisfies
z(ta)ll = L[ ®a(ta; to)Zall = [|Palta, to)[1zall < [lzallve-x(t,to)-

Sincel||z,|| = 1 and—X € R*, we have||®(t,,t0)|| < ve_a(t,to). Sincex, can be
selected for any, andt, > to, we see thalf® 4 (t,, )| < ve_x(t, to) forall¢,ty € T.
Now suppose there exist A > 0 with —\ € R* such that|® 4 (¢, to)|| < ve_a(t, o) for

all ¢,ty € T. For anyt, andz(ty) = zy, the solution of (3.13) satisfies
[z@)]| = 1, [[®a(t, to)zoll = |Ra(t, to)[|[|zoll < llzollve-x(t, o), ¢ = to,

and thus uniform exponential stability is attained. O
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Definition 77. The linear state equation (3.13) is defined to be uniformly asymptotically
stable if it is uniformly stable and given any> 0, there exists & > 0 so that for any,

andz(ty), the corresponding solution(t) satisfies
le@)] < dllz(to)ll, ¢ =to+T. (3.19)

It is noted that the tim& that must pass before the norm of the solution satisfies

(3.19) and the constant> 0 is independent of the initial tim&.

Theorem 78. Suppose there exists a constansuch that for allt € T, ||A(t)|| < «.
Then the linear state equation (3.13) is uniformly exponentially stable if an only if there

exists a constant such that
t
[ et atsplas < 3.20)
forall t,7 € T witht > o(7).

Proof. Suppose that the state equation (3.13) is uniformly exponentially stable. By

Theorem 76, there exist A > 0 with —\ € R so that
[Palt, T)|| < ve-x(t,T)
forallt,7 € T witht > 7. So we now see that
/t||<I>A(t,a(s))HAs < /tye,\(t,T)As
= leatt) —ex(t, 7)]

[1—e_\(t,7)] <

22
>/I~Q

forallt > o(7). Thus, we have established (3.20) with= . Now suppose that (3.20)

holds. We see that we can represent the state transition matrix as
Gy(t,7)=1-— /t[q)A(t, S As =1 + /t Gy (t,0(s))A(s)As,
so that, with||A(?)|| < a,
|9t 7)< 1+ / a0l A AS < 1+

forallt,7 € T witht > o(7).

To complete the proof,
e lie=7) = [ 1eaerlas

< /||<1>Ato— 1@ alo(s), 7| As
51+ ap) (3.21)

IN
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forall ¢t > o(7). Now choosingl’ with " > 25(1 + af) andt = 7 + T' € T we obtain

[a(t, T <5, t7 €T (3.22)

N | —

Using the bound from equations (3.21) and (3.22), we have the following set of
inequalities on intervals in the time scale of the fofm—+ k7T, 7 + (kK + 1)T)r,

with arbitraryr;

|1Pa(t, 7| < 14aB, te[r,7+T)r,

[@a(t, T = [[@alt, 7 +T)Pa(r+T,7)]
< |@alt, 7+ )| Palr + T, 7)]
< HZO‘B, te[r+T,7+2T)
|Pa(t, )| = ||Palt, 7 +2T)Pa(T + 2T, 7+ T)Pu(r + T, 7)||
< Pat, 7+ 2D)[[[[@al(r + 2T, 1+ T)[[[@a(r + T, 7)|
< 1;&ﬁ, ter+2T, 7+ 3T)r.

In general, for any € T, we have

14+ ap
2k 7

|Pa(t,T)] < te[r+kT, 7+ (k+1)T)7.

We now choose the bounds to obtain a decaying exponential bound. Let
v = 2(14 af) and define the positive functiox(t) (with —\(¢) € R™) as the solution to
ex(t,7) = e\(T+ (k+ 1)T,7) = 5 fort € [r+ 27,7 + 3T)p with & € No.

Then for allt, 7 € T with ¢ > 7, we obtain the decaying exponential bound
[@a(t, 7)]| < ve-x(t, 7).
Therefore by Theorem 76, we have uniform exponential stability. O

Theorem 79. The linear state equation (3.13) is uniformly exponentially stable if and

only if it is uniformly asymptotically stable.

Proof. Suppose that system (3.13) is uniformly exponentially stable. This implies that
there exist constantg A\ > 0 with —\ € R so that||® (¢, 7)|| < ve_(t,7) fort > 7.
Clearly, this implies unform stability. Now, givenda> 0, we choose a sulfficiently large

positive constant” € T so thatty + 7 € T ande_,(to + T, ty) < % Then for anyt, and
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xo, andt > T + towitht € T,

[z@)] = N[®alt; to)xoll

< 1@, o)l ol

IN

ve-x(to + T’ to)||zo|
< d|wol|, t>te+T.
Thus, (3.13) is uniformly asymptotically stable.

Now suppose the converse. By definition of uniform asymptotic stability, (3.13) is

uniformly stable. Thus, there exists a constant 0 so that
|Pa(t,T)|| <~y forall t>T. (3.23)
Choosing) = % let 7" be a positive constant so that ¢, +7 € T and (3.19) satisfied.
Given at, and lettingz,, be so that|z,|| = 1, we have
|Pa(to+ T, to)xa| = ||Palto+ T, to)|.
Whenzx, = z,, the solutionz(¢) of (3.13) satisfies
[zl =l +T)|| = [[®Palto + T, to)xal|
= [ ®alto + T’ to) [ |lzall < %lea\l-

From this, we obtain

[P alto+T,to)|| <

< % (3.24)

It is easy to see that for anty there exists an, as claimed. Therefore, the above
inequality holds for any,. Thus, by using (3.23) and (3.24) exactly as in Theorem 78

uniform exponential stability is obtained. O

Theorem 80. Suppose that(t) € C!,(T,R™*"), with L(¢) invertible for all¢ € T and

A(t) is from the dynamic linear system (3.13). Then the transition matrix for the system

7R =GWHZ(t), Z(r)=1 (3.25)
where
G(t) = L7 " ()AW@)L(t) — L7 () LA(1) (3.26)
is given by
Og(t,7) = L P 4(t,7)L(T) (3.27)

foranyt, m € T.
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Proof. First we see that by definitiods(t) € C,4(T,R"*"). For anyr € T, define
z(t) = L7 (t)®a(t,7)L(T). (3.28)

Observe that fot = 7, z(7) = I. By rearranging (3.28) and differentiatidg¢)x(¢) with

respect ta, we obtain
LA)z(t) + L (t)z2(t) = ®4(t, 7)L(T) = A(t)D (¢, 7)L(T)
and

Lo(t)xz™(t) = A@t)®a(t, 7)L(T) — L2 (t)x(t)
= AW)®A(t,7)L(T) — LA(t) L7 (t) D o (t, T)I(T)
= [A(t) = L&) L7 (1) Palt, 7) L(T).

Multiplying both sides byL.7 ' (t)
p2(t) = [L7A(t) = L7 (LA L ()] Palt, 7)L(7)

= [L7A®)L() — L7 () LAO)IL T () Da(t, 7) L(T)
= G()z(t).

This is valid for anyr € T. Thus, the transition matrix of*(¢) = G(t)x(t) is
Oo(t,7) = L7 (t)PA(t,7)L(7). If the initial value specified in (3.25) was not the
identity, i.ez(ty) = zo # I, then the solution ig(t) = P (¢, 7)20. O

Theorem 81 (Preservation of Uniform Stability). Suppose that(t) = L~1(t)z(t) is a

Lyapunov transformation. Then the system (3.13) is uniformly stable if and only if

) = [L7AQ@)L(E) — L7 LAW®)]2(t),  2(ty) = 2 (3.29)

is uniformly stable.

Proof. Equation (3.13) and (3.29) are related4y) = L~'(¢)z(¢). By the Theorem 80,

the relationship between the two transition matrices is
O = L7 (t)Palt,to)L(to).

Suppose that (3.13) is uniformly stable. Then there exists a> 0 such that
|Pa(t, to)|| < v forallt,tg € T witht > t,. Then by Lemma 72 and Theorem 74,
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we have

[Pa(t, to)| = L™ (#)Pa(t, to)L(to)]|
< LTIt to) L (L)
< " _ G
n

for all ¢,¢, € T with ¢t > ¢,. By Theorem 74, sincg®(t,to)|| < ¢, the system (3.29)

is uniformly stable. The converse is similar. O]

Theorem 82 (Preservation of Uniform Exponential Stability). Suppose that
2(t) = L7(t)z(t) is a Lyapunov transformation. Then the system (3.13) is uniformly

exponentially stable if and only if
CLAWI=(),  2(f) = 20 (3.30)
is uniformly exponentially stable.

Proof. Equations (3.13) and (3.30) are related by the change of variables

2(t) = L71(t)z(t). By Theorem 80, the relationship between the two transition matrices
(I)G(t, to) - Lilq)A(t, to)L(to)

Suppose that (3.13) is uniformly exponentially stable. Then there existsor 0 with
—\ € R* such that||®(t,t0)|| < ve_a(t,tp) forall t > ¢y with ¢,¢, € T. Then by

Lemma 72 and Theorem 76, we have

1a(t to)l = L ()@alt, to)L(to)l|
IL=2 @)1 @at, o) [ L(to)

%G_A(t, to) = ’VGe—A(ta tO)

IN

IN

forall t,tg € T with ¢t > t,.
By Theorem 76, since|®q(t,t0)|| < vee_x(t,to), the system (3.29) is uniformly

exponentially stable. The converse is similar. O

3.3. Floguet Theory On Time Scales

In this section we assume the regressive time varying linear dynamic initial value
problem
z2(t) = A()z(t),  x(to) =z (3.31)

43



whereA(t) is regressive and p-periodic. We note that in general, it is only necessary that
the period ofA(t) is a multiple of the period of the time scale that is being analyzed. We

let the period of the time scale and period4ift) be equal for simplicity.

Definition 83. Letp € [0, o0). Then the time scal is p-periodic if we have the following
(i) t € Timpliesthatt +p € T,
(i) p(t) = p(t+p),

forallt € T.

Definition 84. Suppos€T is a p-periodic time scale. An x n matrix-valued function
A:T — R"™"is p-periodic ifA(t) = A(t + p) forall ¢t € T.

Theorem 85. Suppose thdl is a p-periodic time scale an® € R(T,C"*"). Then the

solution of the dynamic matrix initial value problem
ZR(t) = RZ(t), Z(to) = 2 (3.32)

iS unique up to a period p. That isg(t,ty) = er(t + kp,to + kp) for all ¢ € T and
k € Np.

Proof. The unique solution of (3.32) isz(t, ty)zo. Observe
en(t,to)zo = Reg(t,to)2
er(t,to)|i=t,20 = er(to,t0)z0 = 0.

Now we show thakg(t,tg) = er(t + kp,to + kp). We show this by observing that

er(t + kp,to + kp)zo also solves the matrix initial value problem (3.32). We see that

en(t+kp,to +kp)zo = Reg(t+ kp,to+ kp) (3.33)

er(t + kp,to + kp)levip=torkp = er(t +kp,to+ kp)li=, (3.34)
= er(to+ kp,to+ kp)zo (3.35)

- (3.36)

The solution of the matrix initial value problem (3.32) is unique. Thus we have that
er(t+ kp,to + kp) = er(t,to) forallt € T and k € Ny. (3.37)

Thereforegr can be shifted by integer multiples of p. ]
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Theorem 86 (The Unified Floquet Theorem for Time Scales)Suppose that there exists
ann x n constant matrix®? such thateg(p + to,t9) = Pa(p + to,to), Whered 4 is the
transition matrix for (3.31). Then the transition matrix for a p-periodi¢t) can be

written in the form
®u(t,7) = L(t)eg(t,7)L*(7) forallt,7 €T (3.38)

where R € C"™™ is a constant matrix,and.(t) € C!,(T,R"*") is p-periodic and

invertible at eacht € T. We refer to (3.38) as the Floquet decompositiondiqt

Proof. We begin by defining the constant matfixas the solution of the equation
er(p +to, to) = Pa(p +to, o) (3.39)

which may require either taking the natural logarithm or obtaining the invertibleoot
of the real-valued invertible constant matb (p + to, ). Thus, it is possible that a

complexR is obtained. Define the matrik(¢) by
L(t) = a(t, to)er (t, to). (3.40)

It follows by definition thatL(¢) € C',(T,R™") and is invertible at each € T. By
taking inverse of (3.40)
(I)A(t, to) = L(t)GR(t,to)

yields
Da(to, t) = ex' (t,to) L7 (t) = er(to, t) L7 (¢)

which proves the claim

O u(t,7) = L(t)er(t, )L (7).

We conclude the proof by showing thatt) is p-periodic. By (3.40) and Theorem 85,

Lt+p) = ®a(t+p,to)eg (t+p,to)
= Pa(t+p,to+p)Pa(to+p, to)er(to,t + p)

( (
( )
= O4(t+p,to+p)Palto +p,to)er(to, to + p)er(to +p,t +p)
= Du(t+p,to+p)Palto+p to)er (to + b to)er(to + p,t +p)
( )er

( )

-1

= Qu(t+p,to+pleg (t+p,to+p)

(
= DAt +p,to+pleg'(t to).
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Lettingt’ =t + p, we see thad 4 (¢, t, + p) is a solution to the matrix dynamic equation

DLt to+p) = AP to+p) = At +p)Pa(t +p,to + D)

= A(t)®a(t+p,to +p)
with initial conditions
q)A(tla to + P)lv=torp = Calt +p,t0 +D)|t=ty = Pulto +p,to+p) = 1.

But now @ 4(¢, t) is another solution to the same matrix dynamic initial value problem.

Since the solutions to initial value problems are unique, we have
Da(t+p,to+p) =Palt, to).
Thus,
L(t+p) = @At +p,to+Dpeg (L to) = Pa(t to)er (¢ to) = L(t).
O

Theorem 87.Let ® 4(t,tg) = L(t)er(t,to) as in Theorem 86. Then(t) = P 4(¢,t0)xo
is a solution of the p-periodic system (3.31) if and only(if) = L~'(¢)z(¢) is a solution

of the autonomous system
22(t) = Re(t),  2(to) = 0.
Proof. Assumez(t) is a solution of (3.31). Then
x(t) = Palt, to)xro = L(t)er(t, to)xo.
If we define
z(t) = L7 (t)z(t) = L' (t) L(t)er(t, to)xo = er(t, to)mo,

then z(t) is a solution of 22 (¢) = Rz(t) and satisfies the initial condition(ty) = x.
Suppose that(t) = L~1(t)z(t) is a solution of the systemt*(t) = Rz(t), z(to) = xo.
The solution is:(t) = eg(t, to)zo. Definex(t) = L(t)z(t). It follows that

.T(t) = L(t)GR(t, tg).il?o = @A(t,to)l'o

soz(t) is a solution of (3.31). O
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Theorem 88. Given anyt, € T, there exists an initial state(t,) = zo # 0 such
that the solution of (3.31) is p-periodic if and only if at least one of the eigenvalues of

GR(t() +p, to) = (I)A(to + p, t()) is1.

Proof. Suppose that given an initial time to witl{ty) = = # 0, thex(¢) is p-periodic.

By Theorem 86, there exist a Floquet decomposition given by

z(t) = ®a(t, to)ro = L(t)er(t, to) L (to)zo.
Furthermore

2(t +p) = L(t + per(t + p,to) L~ (o) o = L(t)er(t + p,to) L~ (to)o;

sincex(t) = z(t + p) and L(t) = L(t + p) for eacht € T, we have

er(t,to) L (to)mo = er(t + p,to) L (to)zo
which implies

er(t, to) L™ (to)zo = er(t + p,to + p)er(to + p, to) L' (to)zo.
Sinceeg(t + p, to + p) = er(t, to),
er(t, to) L™ (to)zo = er(t, to)er(to + p, to) L™ (to)xo,
and thus
L™} (to)zo = er(to + p,to) L™ (to)o.

Since L' (tg)zo # 0, we see thatL~'(to)zy # 0 is an eigenvector of the matrix
er(to + p,to) corresponding to an eigenvalue bf Now supposd is an eigenvalue of
er(t + p, to) with corresponding eigenvectes. Thenz, is real-valued and nonzero. For
anyty € T z(t) = er(t, to)z IS p-periodic. Since 1 is an eigenvaluee@f(t, + p, o) with
corresponding eigenvectes ander(t + p, to + p) = eg(t, to),

z(t+p) = er(t+p,to)zo

(
= er(t+p,to+p)er(to + p,to)2o
= er(t+p,to+p)20

(

= eg(t,to)z0 = 2(t)
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Using the Floquet decomposition from Theorem 86 and setting L(t,)z, we obtain

the nontrivial solution of (3.31). Then
w(t) = ®A(t, to)rg = L(t)er(t, to) L™ (to)wo = L(t)er(t,to)z0 = L(t)z(t)
which is p-periodic sincé.(t) andz(t) are p-periodic. O

We now consider the nonhomogeneous regressive time varying linear dynamic

initial value problem

g (t) = Az (t) + f(t), x(ty) =z (3.41)
whereA(t) € R(T,R™ "), f(t) € Cpra(T, R R(T,R"*!) and both are p-periodic
forallt € T.
Lemma 89. A solution z(¢t) of equation (3.41) is p-periodic if and only if
z(to + p) = x(to).
Proof. Suppose that:(t) is p-periodic. Then by definition of a periodic function

z(to + p) = z(to).
Now suppose that there exist a solution of (3.41) such at+ p) = z(to).

Definez(t) = z(t+p)—x(t). By assumption and construction«f), we havez(t,) = 0.

Furthermore,
2(t) = [Alt+p)a(t+p)+ f(t+p)] — [Alt)z(t) + f(2)]
= A()[z(t +p) — z(1)]
= A(t)z(t).

By uniqueness of solutions, we see thét) = 0 for all t € T. Thus,z(t) = (¢ + p) for
allt e T. O]

The next theorem uses Lemma 89 to develop criteria for the existence of

p-periodic solutions for any p-periodic vector-valued functjan).

Theorem 90. For all ¢, € T and for all p-periodic f(t), there exists an initial state
x(ty) = o such that the solution of (3.41) is p-periodic if and only if there does not exist

a nonzero:(ty) = zo andt, € T such that the homogenous initial value problem
22t = A(t)=(1),  2(to) = 2 (3.42)

(whereA(t) is p-periodic) has a p-periodic solution.
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Proof. For anyt,, x(ty) = =, and p-periodic vector-valued functigf{t), we know that

the solution of (3.41) is

x(t) = ®a(t, to)zo + / O y(t,o(T))f(T)AT.

to

By Lemma 89, x(t) is p-periodic if and only if(ty) = (¢, + p) which is equivalent to

to+p
[I — ®alto + p,to)]xo = / Da(to +p,o(7))f(T)AT. (3.43)

to
By Theorem 88, we must show that this algebraic equation has a solutiog, flmr any

to and any p-periodig¢ (¢) if and only if eg(to + p, to) has no eigenvalues equal to one.
Leter(to + p,to) = Pa(to + p,to) and suppose that there are no eigenvalues equal to 0.
This is equivalent to

det[I — @ 4(to + p, to)] # 0. (3.44)

Sinced 4 is invertible, (3.44) is equivalent to

0 # det[Pa(to+p,p)(I — Pa(p,0))(Pa(0,%))] (3.45)
= det[®4(to + p,p)(Pa(0,t0) — Pa(to + p, to)).

Since ®,(ty + p,p) = Da(tr,0), (3.44) is equivalent to the invertibility of
[I — ®A(ty + p,to)]. Thus (3.43) has a solutian, for any t, and for p-periodicf ().

Now suppose that (3.43) has a solutigrfor any ¢, and for any p-periodi¢ (¢). Given
an arbitraryty € T corresponding to any x 1 vector f;, we define a regressive p-periodic
vector-valued functiorf (t) € C,,.4(T,R"*!) by

f(t)=®a(co(t),to+p)fo, tE [to,to+p)r (3.46)

extending this to the entire time scleusing the periodicity. By construction ¢{t) we
have
to+p

[t poensoar= [ par=ph
Thus (3.43) becot;)nes ’
[ — ®4(to + p,to)|mo = pfo- (3.47)
For any vector-valued functiofit) that is constructed as in (3.46) and thus for any

corresponding, (3.47) has a solution far, by assumption. Therefore,
d@t[[ - CI)A(tO +p, to)] 7é 0.

Thus,egr(to + p,to) = Pa(to + p,to) has no eigenvalue of equal to By Theorem 88,

(3.42) has no periodic solution. O
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CHAPTER 4

CONCLUSION

The aim of this study is to present structure of solution of linear systems of
dynamic equations on time scales; stability criterions of periodic discrete Hamiltonian
systems and periodic systems on periodic time scales. For these purpose, we began with
expending three basic papers (Bohner and Peterson 2001), (Dacunha 2005), (Ahlbrandt
and Ridenhour 2003) on this subject. We have composed these studies and presented
fundamental theorems and concepts. After basic definitions and theorems of time
scales and dynamical real case; stability of discrete case, basic theorems and properties
of periodic discrete Hamiltonian systems were presented. Uniqueness and existence
theorem was given for time scales and finally Lyapunov stability and Floquet theory
was presented. By this study, the basic concepts of dynamical systems in real case have
similar structure with discrete case and time scale case. It is easily seen that, structure of

dynamical systems and stability criterions are similar for these cases.
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