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ABSTRACT

HYDRODYNAMIC INTERACTION IN ROTATIONAL FLOW

The interaction of water waves with arrays of vertical cylinders problem is studied

using diffraction of water waves and addition theorem for bessel functions.

The linear boundary value problem which is derived from physical assumptions

is used as the approximate mathematical model for time-harmonic waves. Linearization

procedure is described for the nonlinear boundary conditions on the free surface. The

problem is solved by using Addition theorem for Bessel functions. Limiting case, k → 0,

known as long wave approximation, is analysed using limiting forms of Bessel functions.

Vortex-cylinder interaction is analyzed using a similar technique involving Lau-

rent series expansions of complex velocity and the Circle Theorem. But this method

failed to work. Further analysis is necessary. Vortex dynamics is analysed in annular do-

mains, which can conformally be mapped into infinite domain with two cylinders, using

the terminology of q-calculus.

Finally, the result of vortex-cylinder interaction in annular domain is transformed

into the infinite domain with two cylinders using conformal mapping. Image representa-

tion clearly shows the mechanism of inverse images which accumulate at zero and infinity

in the w-plane and a and 1/a in the z-plane.
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ÖZET

ROTASYONEL AKIŞTA HİDRODİNAMİK ETKİLEŞİM

Dikey yerleştirilmiş silindirler arası su dalgası etkileşimi problemi, su dalgalarının

kırınımı ve Bessel fonksiyonlarının toplam teoremi (Addition theorem) kullanılarak

çalışıldı.

Fiziksel kabullerden elde edilen, linear sınır değer problemi, zaman uyumlu dal-

galar için yaklaşık matematik modeli gibi kullanıldı. Serbest yüzeyde doğrusal olmayan

sınır şartları için doğrusallaştırma prosedürü tanımlandı. Problem Bessel fonksiyonları

için toplam teoremi kullanılarak çözüldü. Uzun dalga yaklaşımı olarak da bilinen k → 0

limit durumu Bessel fonksiyonlarının limit formları kullanılarak incelenmiştir.

Girdap (vortex)-silindir etkileşimi, karmaşık hızın Laurent seri açılımı ve Çember

teoremi (Circle Theorem) içeren benzer yöntem kullanılarak incelenebilir. Fakat henüz

geliştirilemedi. Halka bölgesindeki, konformal olarak iki silindirli sonsuz bölgeye

eşlenebilen girdap dinamikleri, q- hesaplama terminolojisi kullanılarak incelenmiştir.

Son olarak, halka bölgesindeki girdap-silindir etkileşim probleminin sonucu, uy-

gun dönüşüm kullanılarak, iki silindirli sonsuz bölgeye dönüstürülür. Görüntü temsili,

ters görüntü işleyişinin(mekanızmasının), w-düzlemi için sıfır ve sonsuzda, z-düzlemi

içinse a ve 1/a’da yığıldığını açıkça gösterir.
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CHAPTER 1

INTRODUCTION

The history of water wave theory is almost as old as that of partial differential

equations. Their founding fathers are the same: Euler, Lagrange, Cauchy, Poisson. Fur-

ther contributions were made by Stokes, Lord Kelvin, Kirchhoff, and Lamb who con-

structed a number of explicit solutions.

There are several expositions of the classical theory (Crapper(1984), Lamb(1932),

Lighthill(1978), Sretensky(1977), Stoker(1957), Wehausen & Laitone(1960) and

Whitham(1979)). Various aspects of the linear water waves have been considered in

works of Havelock and Ursell. Other works are focused on various applied aspects of the

theory. In particular, Haskind, Mei, Newman and Wehausen (Haskind(1973), Mei(1983),

Newman(1977, 1978) and Wehausen(1971))consider the wave-body interaction. Also,

there is the very recent monography by Linton and McIver (2001) on the mathematical

methods used in the theory of such interactions, but it mainly discusses mathematical

techniques from the point of view of their applications in ocean engineering.

The goal of present thesis is to study interaction in rotational flow. There are

several studies in interaction theory carried out by Linton & Evans, Spring & Monkmeyer

and Yilmaz(Linton & Evans (1990), Spring & Monkmeyer (1974) and Yilmaz (1994)).

Vortex dynamics was analysed by Pashaev & Gurkan and Gurkan & Pashaev (Pashaev &

Gurkan (2007) and Gurkan & Pashaev (2007)).

In Chapter 2 we solved the linear boundary value problem of diffraction of water

waves by arrays of vertical cylinders using Addition theorem for Bessel functions and

analysed long wave approximation using limiting forms of Bessel functions.

In Chapter 3 using Laurent series expansions of complex velocity and the Circle

Theorem we studied Vortex-cylinder interaction

In Chapter 4 we investigated vortex dynamics in annular domains using the termi-

nology of q-calculus.

Finally, Chapter 5, using the conformal mapping we transformed annular domain

onto infinite domain with two cylinders. We sketched the images of vortices.
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CHAPTER 2

BACKGROUND INFORMATION ABOUT

HYDRODYNAMICS

2.1. Equations of Motion

2.1.1. Euler’s Equations

Let D be a region in two or three dimensional space filled with a fluid and bounded

by one or more moving or fixed surfaces that separate water from some other medium.

Our object is to describe the motion of such a fluid. Let x be a point in D and consider the

particle of fluid moving through x at time t. Relative to standard Euclidean coordinates in

space, we write x = (x, y, z). Imagine a particle (think of particle of dust suspended) in

the fluid; this particle traverses a well-defined trajectory. Let u(x, t) denote the velocity

of the particle of fluid that is moving through x at time t. Thus, for each fixed time, u

is a vector field on D. We call u the (spatial) velocity field of the fluid. For each time t,

assume that the fluid has a well-defined mass density ρ(x, t). Thus, if W is any subregion

of D, the mass of fluid in W at time t is given by

m(W, t) =

∫

W

ρ(x, t)dV, (2.1)

where dV is the volume element in the plane or in space. The assumption that ρ exists is

a continuum assumption. Clearly, it does not hold if the molecular structure of matter is

taken into account. For most macroscopic phenomena occurring in nature, it is believed

that this assumption is extremely accurate.

Our derivation of the equations is based on three basic principles:

i) Mass is neither created nor destroyed;

ii) The rate of change of momentum of a portion of the fluid equals the force ap-

plied to it(Newton’s Second Law.);

iii) Energy is neither created nor destroyed.

i) Conservation of Mass: The integral form of the conservation of mass is

d

dt

∫

W

ρdV = −
∫

∂W

ρu.ndA, (2.2)

2



where ∂W is boundary of W . By the Divergence theorem (See Appendix A), equation

(2.2) is equivalent to ∫

W

[
∂ρ

∂t
+ div(ρu)]dV = 0. (2.3)

Because this holds for all W , (2.3) is equivalent to

∂ρ

∂t
+ div(ρu) = 0. (2.4)

The equation (2.4) is the differential form of the law of conservation of mass, also known

as the continuity equation.

ii) Balance of Momentum: If W is region in the fluid at a particular instant of time t, the

total force exerted on the fluid inside W by means of stress on its boundary ∂W is

S∂W = (Force on W ) = −
∫

∂W

pn dA (2.5)

where p is pressure. Divergence theorem gives

S∂W = −
∫

W

grad p dV. (2.6)

If b(x, t) denotes the given body force per unit mass, the total body force is

B =

∫

W

ρb dV. (2.7)

Thus, on any piece of fluid material,

Force per unit volume = −grad p + ρb. (2.8)

By Newton’s Second Law (force=mass×acceleration) we are lead to the differential form

of the law of balance of momentum:

ρ
Du

Dt
= −grad p + ρb, (2.9)

where D
Dt

= ∂
∂t

+ u∇ is material derivative; it takes into account the fact that the fluid is

moving and that the position of fluid particles change with time.

iii) Conservation of Energy: For fluid moving in a domain D, with velocity field u, the

kinetic energy contained in a region W ⊂ D is

Ekinetik =
1

2

∫

W

ρ||u||2dV. (2.10)

We assume that total energy of the fluid can be written as

Etotal = Ekinetik + Einternal (2.11)
1

2

D

Dt
||u||2 = u.

∂u

∂t
+ u.(u.∇)u. (2.12)

3



2.1.1.1. Incompressible Flows

Definition 2.1 A flow is incompressible (Chorin and Marsden 1992) if for any fluid sub-

region W ,

divu = 0. (2.13)

2.1.1.2. Euler’s Equations for Incompressible Flows

Here we assume all the energy is kinetic and that the rate of change of kinetic energy in a

portion of fluid equals the rate at which the pressure and body forces do work;

d

dt
Ekinetic = −

∫

∂Wt

pu.ndA +

∫

Wt

ρu.b dV. (2.14)

Using the divergence theorem and since flow is incompressible, divu = 0 equation (2.14)

becomes, ∫

Wt

ρ{u.(
∂u

∂t
+ u.∇u)}dV = −

∫

Wt

(u.∇p− ρu.b)dV. (2.15)

This argument, in addition, shows that if we assume E = Ekinetic, then the fluid must

be incompressible (unless p = 0). In summary, in this incompressible case, the Euler

equations are

ρ
Du

Dt
= −grad p + ρb, (2.16)

Dρ

Dt
= 0, (2.17)

divu = 0, (2.18)

with the boundary conditions

u.n = 0 on ∂D. (2.19)

2.1.1.3. Isentropic Fluids

A compressible flow will be called isentropic if there is a function ω, called the

enthalpy, such that

gradω =
1

ρ
gradp. (2.20)

Given a fluid flow with velocity field u(x, t), a streamline at a fixed time is an

integral curve of u; that is, if x(s) is a streamline at the instant t, it is curve parametrized

by a variable, say s, that satisfies

dx

ds
= u(x(s), t), t fixed.

4



We define a fixed trajectory to be the curve traced out by a particle as time progresses, as

explained at the beginning of this section. Thus a trajectory is a solution of the differential

equation
dx

ds
= u(x(t), t)

with suitable initial conditions. If u is independent of t streamlines and trajectory coin-

cide. In this case, the flow is called stationary.

Theorem 2.1 (Bernoulli’s Theorem) (Chorin and Marsden 1992) In stationary isen-

tropic flows and in the absence of external forces, the quantity

1

2
||u||2 + ω (2.21)

is constant along streamlines. The same holds for homogeneous incompressible flow with

ω replaced by p/p0.

2.2. Rotation and Vorticity

The vector ∇× u = curlu ≡ ξ, called the vorticity vector. A vortex line is a line

drawn tangent to at each point in the direction of the vorticity vector. When the vorticity

vector is different from zero the motion is said to be rotational. A portion of the fluid

at every point of which the vorticity is zero is said to be irrotational motion. In such a

portion of the fluid there are no vortex lines.

Let C be a simple closed contour in the fluid at t = 0. Let Ct be the contour

carried along by the flow at time t. In other words,

Ct = ϕt(C), (2.22)

where ϕt is the fluid flow map. The circulation around Ct is defined to be the line integral

ΓCt =

∮

Ct

u.ds. (2.23)

Theorem 2.2 (Kelvin’s Circulation Theorem) (Chorin and Marsden 1992) For isen-

tropic flow without external forces, the circulation, ΓCt is constant in time.

2.3. Potential Flow

An inviscid, irrotational flow is called a potential flow. A domain D is called

simply connected if any continuous closed curve in D can be continuously shrunk to a

5



point without leaving D. For example, in space, the exterior of a solid sphere is simply

connected, whereas in the plane the exterior of a solid disc is not simply connected. For

irrotational flow in a simply connected region D, there is a scalar function φ(x, t) on D

called velocity potential such that for each t, u = gradφ. It follows that the circulation

around any closed curve C in D is zero. In particular, if the flow is stationary,

1

2
‖ u ‖2 + w = constant in space. (2.24)

For the last equation to hold, simple connectivity of D is unnecessary. For potential flow

in nonsimply connected domains, it can occur that the circulation ΓC around closed curve

C is nonzero. For instance, consider

u = (
−y

x2 + y2
,

x

x2 + y2
) (2.25)

outside the origin. If the contour C can be deformed within D to another contour C ′, then

ΓC = ΓC′ . The reason is that basically C ∪ C
′ forms the boundary of a surface

∑
in D.

Stokes’ theorem then gives
∫
P ξ.dA =

∫

C

u.ds−
∫

C′
u.ds = ΓC − ΓC′ (2.26)

and because ξ = 0 in D, we get ΓC = ΓC′ . From Kelvin’s Circulation theorem, the

circulation around a curve is constant in time. Thus, the circulation around an obstacle

in the plane is well-defined and constant in time. Next, consider incompressible potential

flow in a simply connected domain D. From u = gradφ and div u = 0, we have

∆φ = 0. (2.27)

Let the velocity of ∂D be specified as V, so

un = Vn. (2.28)

Thus, φ solves the Neumann Problem:

∆φ = 0,
∂φ

∂n
= V.n. (2.29)

If φ is a solution of the equation (2.29), then u = gradφ is a solution of the stationary

homogeneous Euler equations, i.e.,

ρ(u.∇)u = −gradp, (2.30)

div u = 0, (2.31)

u.n = V.n on ∂D, (2.32)

6



where p = ρ‖ u ‖2/2.

Theorem 2.3 Let D be a simply connected, bounded region with prescribed velocity V

on ∂D. Then

i. there is a exactly one potential homogeneous incompressible flow satisfying (2.26) in

D if and only if
∫

∂D
V.n dA = 0;

ii. this flow is the minimizer of the kinetic energy function

Ekinetic =
1

2

∫

D

ρ‖ u ‖2dV,

among all divergence-free vector fields u′ on D satisfying u′.n = V.n.

7



CHAPTER 3

DIFFRACTION OF WATER WAVES BY MULTIPLE

CYLINDERS

3.1. Nonlinear Problem

3.1.1. Equations of Motion

The conservation of mass implies the continuity equation

∂ρ

∂t
+ div(ρu) = 0 in W. (3.1)

Under the assumption that the fluid is incompressible (which is usual in the water wave

theory), equation (3.1) becomes

divu = 0 in W. (3.2)

The conservation of momentum in inviscid fluid leads to the so called Euler Equations.

Taking into account the gravity force, one can write last two equations in the following

vector form:

ut + u.∇u = −ρ−1∇p + g. (3.3)

Here g is the vector of the gravity force having zero horizontal components and the ver-

tical one equal to −g where g denotes the acceleration caused by gravity. An Irrotational

character of motion is another usual assumption in the water-wave theory; that is

rotu = 0 in W. (3.4)

Equation (3.4) guarantees the existence of a velocity potential φ, so that

u = ∇φ in W. (3.5)

From (3.2) and (3.5) one obtains the Laplace equation

∆φ = 0 in W. (3.6)

This greatly facilitates the theory but, in general solutions of (3.6) do not manifest wave

character. Waves are created by the boundary conditions on the free surface.
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3.1.2. Boundary Conditions

We consider boundaries of two types: free surface separating water from the at-

mosphere and rigid surfaces of bodies floating in and/or beneath the free surface.

Let y = η(x, t) be the equation of the free surface. The pressure is prescribed to

be equal to the constant atmospheric pressure p0 on y = η(x, t). From (3.3) and (3.5) we

can obtain Bernoulli’s equation,

∂φ

∂t
+
|∇φ|2

2
= −p

ρ
− gy + c(t) in W̃ . (3.7)

On the free surface y = η(x, t), p = p0 and c(t) = p0

ρ
. We get the dynamic boundary

condition on the free surface:

∂φ

∂t
+
|∇φ|2

2
+ gη(x, t) = 0 for y = η(x, t), x ∈ F. (3.8)

Another boundary condition holds on every ”physical” surface S bounding the

fluid domain W. Let S(x, y, t) = 0 be equation of S, then

DS

Dt
= 0 on S (3.9)

DS

Dt
=

∂S

∂t
+ u∇S = 0 on S (3.10)

∂S

∂t
= −u∇S, ∇S = |∇S|n (3.11)

−∂S

∂t
= u |∇S|n (3.12)

un =
1

|∇S|
∂S

∂t
= υn (3.13)

where υn denotes the normal velocity of S. Thus the kinematic boundary condition means

that the normal velocity of particles is continuous across a physical boundary. On the other

hand,

∇S =
∂S

∂x
i +

∂S

∂y
j (3.14)

0 =
∂S

∂x
dx +

∂S

∂y
dy +

∂S

∂t
dt (3.15)

∂S

∂t
= −∂S

∂x

dx

dt
− ∂S

∂y

dy

dt
(3.16)

∂S

∂t
= −∇S υ (3.17)

un = − 1

| ∇S | (∇S υ) (3.18)

υn = un. (3.19)
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We obtained the kinematic boundary condition on S,

un = υ n on S. (3.20)

On the fixed part of S, (3.20) takes the form of,

∂φ

∂n
= 0 on S. (3.21)

On the free surface, condition (3.10), written as follows,

ηt + φx.ηx − φy = 0 y = η(x, t), x ∈ F, (3.22)

complements the dynamic condition (3.8). Thus, in the present approach, two nonlinear

conditions (3.8) and (3.22) on the unknown boundary are responsible for waves, which

constitute the main characteristic feature of water-surface wave theory.

In the water-wave problem one seeks the velocity potential φ(x, y, t) and the free

surface elevation η(x, t) satisfying

∇2φ = 0 in W, (3.23)
∂φ

∂t
+
| ∇φ |2

2
+ gη(x, t) = 0 for y = η(x, t), x ∈ F, (3.24)

ηt + φx, ηx − φy = 0 y = η(x, t), x ∈ F, (3.25)
∂φ

∂n
= un on W̃ . (3.26)

The initial values of φ and η should also be prescribed, as well as the conditions at in-

finity (for unbounded W ) to complete the problem, which is known as Cauchy-Poisson

Problem.

3.2. Linearization of the Problem

There is a mathematical evidence that the linearized problem provides an approx-

imation to the nonlinear one. More precisely, under the assumption that the undisturbed

water occupies a layer of constant depth, the followings are proved:

1. The nonlinear problem is solvable for sufficiently small values of the linearization

parameter.

2. As this parameter tends to zero, solutions of the nonlinear problem do converge to

the solution of the linearized problem in the norm of some suitable function space.
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To be in a position to describe water waves in the presence of bodies, the equations should

be approximated by more tractable ones. The usual and rather reasonable simplification

consist of a linearization of the problem under certain assumptions concerning the motion

of a floating body. An example of such assumptions (there are other ones leading to the

same conclusions) suggest that a body’s motion near the equilibrium position is so small

that it produces only waves having a small amplitude and small wavelength. There are

three characteristic geometry parameters:

1. A typical value of the wave height H .

2. A typical wavelength L.

3. The water depth D.

They give the three characteristic quotients : H/L, H/D, and L/D. The relative impor-

tance of these quotients is different in different situations. If

H

D
¿ 1 and

H

L

(
L

D

)3

¿ 1, (3.27)

then the linearization can be justified by some heuristic considerations. The last parameter

(H/L)(L/D)3 = (H/D)(H/D)2 is usually referred to as Ursell’s number.

3.2.1. Equations for Small Amplitude Waves

Let assume that the velocity potential φ and free surface elevation η admit expan-

sions with respect to a certain small parameter ε:

φ(x, y, t) = εφ(1)(x, y, t) + ε2φ(2)(x, y, t) + ε3φ(3)(x, y, t) + . . . , (3.28)

η(x, t) = η(0)(x, t) + εη(1)(x, t) + ε2η(2)(x, t) + . . . , (3.29)

where φ(1), φ(2), . . . , η(0), η(1), . . . and all their derivatives are bounded. If we substitute

(3.28) and (3.29) into laplace equation (3.6) we get,

∇2φ(k) = 0 in W. k = 1, 2, . . . (3.30)

When expansion for φ and η are substituted into dynamic boundary condition (3.8) and

grouped according to powers of ε, for y = 0, we get,

η(0) = 0 x ∈ F, (3.31)

gη(1) + φt
(1) = 0 x ∈ F, (3.32)

gη(2) + φt
(2) = −η

′
φyt

(1) − 1

2
| ∇φ

′ |2, (3.33)
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and so on; that is all these conditions hold on the mean position of the free surface at rest.

Similarly, the kinematic condition (3.22) leads to

(εηt
(1) + ε2ηt

(2)) + (εηx
(1) + ε2ηx

(2)).(εφx
(1) + ε2φyx

(1)η(1) + ε2φx
(2))

− (εφy
(1) + ε2φyy

(1)η(1) + ε2φy
(2)) = 0. (3.34)

After grouping, we obtain,

φy
(1) − ηt

(1) = 0 x ∈ F, (3.35)

φy
(2) − ηt

(2) = φx
(1)ηx

(1) − φyy
(1)η(1). (3.36)

By eliminating η(1) between (3.32) and (3.35), one finds the classical first order linear

free surface condition,

g φy
(1) + φtt

(1) = 0 for y = 0 , x ∈ F. (3.37)

In the same way, one obtains from (3.33) and (3.36) the following,

g φy
(2)+φtt

(2) = −φt
(1)(φ(1)

x )2− 1

g2
[φt

(1)φttt
(1)+| ∇xφ

(1) |2] for y = 0, x ∈ F. (3.38)

All these conditions have the same operator on the left-hand side and the right-hand term

depends nonlinearly on terms of smaller orders.

3.2.2. Boundary Condition on an Immersed Rigid Surface

The homogeneous Neumann condition (3.21) is linear on fixed surfaces. The sit-

uation reverses for the nonhomogeneous Neumann condition (3.13) on a moving surface

S. It is convenient to carry out linearization locally. If linearization is done as we did

before, we get linearized boundary condition:

∂φ(1)/∂n = v(1)
n on S, (3.39)

where

v(1)
n = ζ

(1)
t /[1+ | ∇ξζ

(0) |2]1/2,

is the first-order approximation of the normal velocity of S(t, ε).
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3.3. Linearized Problem

As a result we can write boundary value problem for the first-order velocity poten-

tial φ(1)(x, y, t). It is defined in W occupied by water at rest with a boundary consisting

of the free surface F , the bottom B, and the wetted surface of immersed bodies S and it

must satisfy

∇2φ(1) = 0 in W, (3.40)

φtt
(1) + gφy

(1) = 0 x ∈ F, (3.41)

∂φ(1)/∂n = v(1)
n on S, (3.42)

∂φ(1)/∂n = 0 on B, (3.43)

φ(1)(x, 0, 0) = φ0(x), (3.44)

φ
(1)
t (x, 0, 0) = −gη0(x), (3.45)

where φ0, v
(1)
n and η0 are given functions and η0(x) = η(1)(x, 0).

3.4. Linear Time-Harmonic Waves (The Water-Wave Problem)

Since our study is concerned with the steady-state problem of scattering of water

waves by bodies floating in/or beneath the free surface, we assume all motions to be

simple harmonic in time. The corresponding frequency is denoted by ω. Thus, the right-

hand-side (3.39) is

v(1)
n = Re{e−iωtf} on S, (3.46)

where f is complex function independent of t and fist-order velocity potential φ(1) can be

written in the form,

φ(1)(x, y, t) = Re{e−iωtφ̃(x, y)}. (3.47)

A complex function φ̃ in (3.47) is also referred to as velocity potential (this does not lead

to confusion, because it will always be clear what kind of time dependence is considered).

u is defined in the fixed domain W occupied by water at rest outside any bodies present.

The boundary ∂W consists of three disjoint sets:

i. S, is the union of the wetted surfaces of bodies in equilibrium;

ii. F , denotes the free surface at rest that is the part of y = 0 outside all the bodies;
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iii. B, denotes the bottom positioned below F ∪ S.

Sometimes we will consider W unbounded below and corresponding to infinitely deep

water. In this case ∂W = F ∪ S.

3.5. Time Independent Problem

Substituting (3.46) and (3.47) into (3.40)− (3.45) gives the boundary value prob-

lem for φ̃

∇2φ̃ = 0 in W, (3.48)

gφ̃y − ω2φ̃ = 0 on F, (3.49)

∂φ̃/∂n = f on S, (3.50)

∂φ̃/∂n = 0 on B. (3.51)

Normal n to a surface always directed into the water domain W . For deep water (B = ∅),

condition (∂φ̃/∂n = 0) should be replaced by the following one,

|∇φ̃| → 0 as y → −∞ (3.52)

that is, the water motion decays with depth. A natural requirement that a solution to

(3.48) − (3.52) should be unique also imposes a certain restriction on the behavior of φ̃

as |x| → ∞. This is known as Radiation Condition.

3.5.1. Waves With No Bodies Present

Example 3.1 (Waves With No Bodies Present) As an example we can consider waves

existing in the absence of bodies. For a layer W of constant depth d,

F = {x ∈ R2, y = 0}

is the free surface and

B = {x ∈ R2, y = −d}

is the bottom.
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Solution : We can write the problem,

∇2φ̃ = 0 in W,

φ̃y − νφ̃ = 0 on F, (3.53)

∂φ̃

∂y
= 0 on B.

The corresponding potential can be easily obtained by separation of variables (see Ap-

pendix B)

φ̃ =
cosh k(y + d)

cosh(kd)
(c1eikx + c2e−ikx) (3.54)

φ1 = <
{

cosh k(y + d)

cosh(kd)
(c1eikx−iωt + c2e−ikx−iωt)

}
(3.55)

in which c1, c2 any constants and k = |k| =
√

k2
1 + k2

2. If c2 = 0, we get plane pro-

gressive wave. A plane progressive wave propagating in the direction of a wave vector

k = (k1, k2) has the velocity potential

φ̃ =
cosh k(y + d)

cosh kd

(
c1eikx

)
, (3.56)

φ(1) = <
{cosh k(y + d)

cosh kd
(c1eikx−iωt)

}
. (3.57)

If the coefficients in equation (3.54) are identical, progressive waves propagating in op-

posite directions give a standing wave. Standing cylindrical wave in water layer of depth

d has the following potential (see Appendix C),

φ(1) = <{Aeikx−iωt}cosh k(y + d) + <{Ae−ikx−iωt}cosh k(y + d) (3.58)

= <
{

2Ae−iωt

∞∑
n=−∞

cos[n(
π

2
− θ)]Jn(kr)

}
cosh[k(y + d)]. (3.59)

Here r = |x|, A = c1/cosh kd and J0 denotes the Bessel function of order zero (see Ap-

pendix C). Then a standing cylindrical wave in a water layer of depth d has the following

potential,

C1 cos(ωt)J0(kr) cosh[k(y + d)], (3.60)

where C1 is a real constant.

When J0 replaced by H0, which is another solution of Bessel’s equation, we can

obtain a cylindrical wave having arbitrary phase at infinity. This allows one to construct a

potential of outgoing waves as follows,

<{
C2 cos(ωt)H0

(1)(kr) cosh[k(y + d)]e−iωt
}
. (3.61)
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C2 is a complex constant and H0
(1) denotes the first Hankel function of order zero. Out-

going behavior of this wave becomes clear from the asymptotic formula (see Appendix

C).

3.5.2. Case of Single Cylinder

Example 3.2 (Case of Single Cylinder)

Solution : Since there is a cylinder with radius a and with fixed position, only difference

from previous example is boundary condition on S. Then we can write

∇2φ̃ = 0 in W,

φ̃y − νφ̃ = 0 on F,

∂eφ
∂y

= 0 on B, (3.62)

∂eφ
∂n

= 0 on S.

For the problem we can decompose φ̃ as a combination of incident and diffracted waves,

φ̃ = φ̃d + φ̃i .

WithoutBodies WithBodies

∇2φ̃i = 0 in W ∇2φ̃d = 0 in W

φ̃iy − νφ̃i = 0 on F φ̃dy − νφ̃d = 0 on F

∂eφi

∂y
= 0 on B ∂eφd

∂y
= 0 on B

∂eφi

∂n
= −∂eφd

∂n
on S.

For the case without body, there are only incident waves

φ̃i = Re

{
Ae−iωt

∞∑
n=−∞

Jn(kr)ein(π
2
−θ)

}
cosh[k(y + d)]. (3.63)

For the diffracted waves we can construct a potential of outgoing waves

φ̃d = Re

{
Ae−iωt

∞∑
n=−∞

CnHn
(1)(kr)ein(π

2
−θ)

}
cosh[k(y + d)]. (3.64)

If we apply boundary condition ∂eφi

∂n
= −∂eφd

∂n
on r = a, a is the radius of cylinder, we can

find the unknown coefficient

Cn = −Jn
′
(ka)

H ′
n(ka)

. (3.65)
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3.5.3. Multiple Cylinders in Progressive Waves

Now we assume that there are N(> 1) fixed vertical cylinders each of which

extends from the bottom, z = −d up to the free surface. We will use N + 1 coordinate

systems: (r, θ) are polar coordinates in the (x1, x2)-plane. (rj, θj), are polar coordinates

and (x1j, x2j) are cartesian coordinates, (j = 1, . . . , N), centered at (x0
1j, x

0
2j) which is

the center of the jth cylinder. (see Figure 3.1)
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Figure 3.1. Plan View of Two Cylinders.

An incident plane wave making an angle β with the x-axis is characterized by

φI = eik(x1 cos β+x2 sin β). (3.66)

If we put x1 = r cos θ and x2 = r sin θ,

φI = eikr cos(θ−β), (3.67)

Since

x1 = x0
1j + x1j, x1j = rj cos θj (3.68)

x2 = x0
2j + x2j, x2j = rj sin θj (3.69)
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φI for jth cylinder

φj
I = eik(x1 cos β+x2 sin β) (3.70)

= eik((x0
1j+x1j) cos β+(x0

2j+x2j) sin β) (3.71)

= eik((x0
1j+rj cos θj) cos β+(x0

2j+rj sin θj)sinβ) (3.72)

= Ije
ikrj cos(θj−β) (3.73)

where Ij(= eik(x0
1j cos β+x0

2j sin β)) is a phase factor associated with cylinder j.

Incident wave with respect to cylinder j can be written,

φj
I = Ij

∞∑
n=−∞

Jn(krj)e
in(π/2+β−θj) = Ij

∞∑
n=−∞

Jn(krj)e
in(π/2−β)einθj . (3.74)

A general form for diffracted wave emanating from cylinder i,

φi
d = Ii

∞∑
n=−∞

Ai
nHn(kri)e

in(π/2−θi+β). (3.75)

Using Graf’s addition theorem for Bessel functions (see Appendix C) we can express

(3.75) in terms of the coordinates (rj, θj)

φi
d = Ii

∞∑
n=−∞

Ai
ne

in(π/2−β)

∞∑

l=−∞
Hn−l(kRij)e

iαij(n−l)Jl(krj)e
ilθj ,

where Rij is the distance between the center of cylinder j and cylinder i.

Total incident wave for cylinder j,

φj
T I = φj

I +
N∑

i=1
i6=j

φi
d. (3.76)

where φj
TI is the total incident wave for cylinder j.

φj
TI = Ij

∞∑
n=−∞

Jn(krj)e
in(π/2−θj+β) (3.77)

+
N∑

i=1
i6=j

Ii

∞∑
n=−∞

Anie
in(π/2−β)

∞∑

`=−∞
Hn−`(kRij)e

iαij(n−`)J`(krj)e
i` θj .

Total velocity potential for cylinder j is,

φj
T = φj

I +
N∑

i=1
i6=j

φi
d + φj

d. (3.78)

18



If we apply the boundary condition

∂φj
T

∂rj

= 0 on rj = aj, j = 1, . . . , N (3.79)

∂φj
T I

∂rj

= −∂φj
d

∂rj

(3.80)

For N cylinder with radius aj , we get,

Aj
m = −Zj

m −
N∑

i=1
i 6=j

Ii

Ij

∞∑
n=−∞

Ai
nZj

mHn−m(kRij)e
i(n−m)(αij+π/2−β) ∀j, ∀m (3.81)

where Zj
m = J

′
m(kaj)

H′
m(kaj)

. If we change the indices m and n ,

Aj
n = −Zj

n −
N∑

i=1
i6=j

Ii

Ij

∞∑
m=−∞

Ai
mZj

nHm−n(kRij)e
i(m−n)(αij+π/2−β) ∀j, ∀n. (3.82)

or

Ãj
n = −Zj

nIj +
N∑

i=1
i 6=j

∞∑
m=−∞

Ãi
mZj

nHm−n(kRij)e
i(m−n)(αij+π/2−β) ∀j, ∀n. (3.83)

Where Ãj
n = Aj

nIj .

In order to evaluate the constants Aj
n, the infinite system is truncated to an

N(2M + 1) systems of equations in N(2M + 1) unknowns,

Ãj
n = −Zj

nIj −
N∑

i=1
i6=j

M∑
m=−M

Ãi
mZj

nHm−n(kRij)e
i(m−n)(αij+π/2−β) ∀j, n. (3.84)

Converge is studied numerically by several authors (Linton and Evans 1990).

3.5.4. Limiting Value of Velocity Potential as Wave Number

Approaches Zero(Long-Wave Approximation)

Example 3.3 ( Two Cylinder Case ) As an example we can consider two cylinder case:

center of first cylinder is at (0, R/2) and second one is at (0,−R/2). R is the distance

between the center of two cylinders, a is the radius of cylinders. α12 = −π/2, α21 = π/2.

(see Figure 2.2)
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Figure 3.2. Two Cylinder Case.

Solution: If j = 1, i = 2, equation (3.84) can be written as,

Ã1
n +

∞∑
m=−∞

Ã2
mZ1

nHm−n(kR)ei(m−n)(π−β) = −Z1
nI1, ∀n. (3.85)

If j = 2, i = 1 equation (3.84) can be written as,

Ã2
n +

∞∑
m=−∞

Ã1
mZ2

nHm−n(kR)ei(m−n)(−β) = −Z2
nI2, ∀n. (3.86)

When we write Ã2
n into equation (3.85), we get

Ã1
n −

∞∑

l=−∞
Ã1

l

∞∑
m=−∞

ei(l−m)(−β)Hl−m(kR)Z2
mei(m−n)(π−β)Hm−n(kR)Z1

n

= −Z1
nI1 +

∞∑
m=−∞

Z2
mI2e

i(m−n)(π−β)Hm−n(kR)Z1
n

or

M1
nlÃ

1
l = B1

n (3.87)

where

M1
nl = δnl −

∞∑
m=−∞

ei(n−l)β(−1)m−nHl−m(kR)Z2
mHm−n(kR)Z1

n (3.88)

B1
n = −Z1

nI1 +
∞∑

m=−∞
Z2

mI2e
i(m−n)(π−β)Hm−n(kR)Z1

n. (3.89)

When we write Ã1
n into equation (3.86), we get

Ã2
n −

∞∑

l=−∞
Ã2

l

∞∑
m=−∞

ei(n−l)(β)(−1)l−mHl−m(kR)Z1
mHm−n(kR)Z2

n

= −Z2
nI2 +

∞∑
m=−∞

Z1
mI1e

i(m−n)(β)Hm−n(kR)Z2
n
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or

M2
nlÃ

2
l = B2

n (3.90)

where

M2
nl = δnl −

∞∑
m=−∞

ei(n−l)β(−1)l−mHl−m(kR)Z1
mHm−n(kR)Z2

n (3.91)

B2
n = −Z2

nI2 +
∞∑

m=−∞
Z1

mI1e
i(m−n)(β)Hm−n(kR)Z2

n. (3.92)

Let’s truncate the infinite series by taking l = 0 and n = 0,

M1
00Ã

1
l = B1

0 (3.93)

M2
00Ã

2
l = B2

0 (3.94)

where

M1
00 = M2

00 = 1−
∞∑

m=−∞
(−1)−mH−m(kR)Z1

mHm(kR)Z2
n (3.95)

= 1−
∞∑

m=−∞
Hm

2(kR)Z1
mZ2

0 (3.96)

B1
0 = −Z1

0I1 + Z1
0I2

∞∑
m=−∞

Hm(kR)Z2
meimβ

∼ −i
π(ak)2

4
eikx1

2 sin β − i
π

8
(ak)4eikx2

2 sin β ln(kR) +

−iπeikx2
2 sin β

∞∑
m=1

(
ak

2
)m+2λm

m!
((−1)me−imβ + eimβ).

B2
0 = −Z2

0I2 + Z2
0I1

∞∑
m=−∞

Hm(kR)Z1
meimβ

∼ −i
π(ak)2

4
eikx2

2 sin β − i
π

8
(ak)4eikx1

2 sin β ln(kR) +

−iπeikx1
2 sin β

∞∑
m=1

(
ak

2
)m+2λm

m!
(e−imβ + (−1)meimβ)

where λ = a/R.

By using limiting forms of the Bessel functions (see Appendix C) and taking the

leading order terms we get

Ã1
0 ∼ −i

π(ak)2

4
eikx1

2 sin β + O(λ(ak)3) (3.97)

Ã2
0 ∼ −i

π(ak)2

4
eikx2

2 sin β + O(λ(ak)3). (3.98)
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Regardless of angle of attack β, modulus of Ã
(j)
0 is the same for both cylinders. Also, we

observe that λ does not appear in the first term, as obtained by (Linton and Evans 1990).

This suggests that in the limiting case, λ → 1/2, where the cylinders are almost touching,

there should be no convergence problem. Indeed, this is verified by the numerical calcu-

lations of the general problem (3.84) (Yılmaz 2004). In order to investigate the effect of

λ on convergence, we choose n = −1, 0, 1 and l = −1, 0, 1 in (3.88, 3.89 and 3.91, 3.92).

After some algebra we get,

Ã
(2)
−1 = i

π

4
(ak)2(I2 + I1λ

2e−2iβ + I2λ
4 + O(λ6))

Ã
(2)
0 = −i

π

4
(ak)2I2

Ã
(2)
1 = i

π

4
(ak)2(I2 + I1λ

2e2iβ + I2λ
4 + O(λ6))

which means

A
(2)
−1 = i

π

4
(ak)2(1 + λ2e−2iβe2ikb sin β + λ4 + O(λ6))

A
(2)
0 = −i

π

4
(ak)2

A
(2)
1 = i

π

4
(ak)2(1 + λ2e2iβe2ikb sin β + λ4 + O(λ6))

A
(2)
−1 = i

π

4
(ak)2(1 + λ2e−2iβ + λ4 + O(λ6))

A
(2)
0 = −i

π

4
(ak)2

A
(2)
1 = i

π

4
(ak)2(1 + λ2e2iβ + λ4 + O(λ6))

where 2b = R. We see that the convergence is still unaffected by λ approaching the value

1/2.
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CHAPTER 4

VORTEX-CYLINDER INTERACTION IN FLOWS

WITH NO FREE SURFACE

4.1. Complex Velocity

Let D be a region in the plane, the flow is incompressible , that is,

∂u

∂x
+

∂v

∂y
= 0 (4.1)

where V = (u, v) is velocity. Also assume that the flow is irrotational, that is,

∂u

∂y
− ∂v

∂x
= 0. (4.2)

Let

V̄ = u− iv, (4.3)

which is called complex velocity, where V̄ denotes complex conjugation. Equations (4.1)

and (4.2) are exactly the Caucy-Riemann equations for V̄ , and so V̄ is an analytic function

on D. The vector representing the complex velocity is the reflection, in the line through

the point considered parallel to the x-axis, of the vector of the actual velocity.

4.2. Complex Potential

If V̄ has a primitive, V̄ = dF/dz, then we call F the complex potential. Write

F = ϕ + iψ. Then (4.3) is equivalent to

u = ∂xϕ = ∂yψ and v = ∂yϕ = −∂yψ, (4.4)

that is, V = gradϕ and ψ is the stream function.

Conversely, if we assume for F any analytic function of z, the corresponding real

and imaginary parts give the velocity potential and stream of a possible two-dimensional

irrotational motion, for they satisfy (4.4) and Laplace equation.

23



4.2.1. Complex Potential for a Vortex

Complex potential for a vortex of strength κ at z0 is

ω = iκ log(z − z0).

4.2.2. Complex Velocity for a Vortex

Complex velocity for a vortex of strength κ at z0 is

Ω(z) =
iκ

z − z0

. (4.5)

4.2.3. Streamlines of the Particle

A line drawn in the fluid so that its tangent at each point is in the direction of the

fluid velocity at that point is called a streamline. The stream function is constant along

the streamline. When the stream function is constant u = v = 0 and V = 0.

4.2.4. Boundary Conditions

As we analysed in Chapter 2, boundary condition, that the normal velocities are

both zero, or, the fluid velocity is everywhere tangential to the fixed surface. The boundary

of ck is given as a closed parametric curve

ck : z = z(t) = Zk(t), Zk(0) = Zk(2π), 0 ≤ t ≤ 2π,

(k=1,...,K). Then the tangent vector field to the curve ck is proportional to

T = Tx + iTy = ż = Żk(t),

while the normal vector field is related to

n = nx + iny = iż = iŻk(t).

On boundary ck, the normal component of the velocity field must be zero. This is equiva-

lent to the boundary condition

V n|ck
= <(V̄ n)|ck

=
1

2
(V̄ n + V n̄)|ck

= 0.
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or

Stream Function = Constant.

For the circle

ck : z(t) = zk + reit, 0 ≤ t ≤ 2π,

the tangent vector is

T = ż = ireit = i(z(t)− zk),

the normal is

n = iż = −(z(t)− zk).

Then the boundary conditions are

[
V̄ (z)(z − zk) + V (z̄)(z̄ − z̄k)

] |ck
= 0, k = 1, ..., K.

4.3. Circle Theorem in Terms of Complex Velocity

Theorem 4.1 (The Circle Theorem) (Milne-Thomson 1960) Let there be irrotational

two-dimensional flow of incompressible inviscid fluid in the complex z plane. Let there be

no rigid boundaries and let the complex potential of the flow be F (z), where the singular-

ities of F (z) are all at the distance greater than a from the origin. If a circular cylinder,

typified by its cross-section the circle C, |z| = a, be introduced into the fluid of flow the

complex potential becomes

ω = F (z) + F̄ (
a2

z
). (4.6)

Where F̄ is complex conjugate.

Proof: Since z̄ = a2/z on the circle, we see that ω as given by (4.6) is purely real on

the circle C and therefore stream function ψ = 0. Thus C is a streamline. If the point

z is outside C, the point a2/z is inside C, and vice-versa. Since all the singularities of

F (z) are by hypothesis exterior to C, all the singularities of F̄ (a2

z
) are interior to C; in

particular F̄ (a2

z
) has no singularity at infinity, since F (z) has none at z = 0. Thus ω has

exactly the same singularities as F (z) and so all the conditions are satisfied.¥
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4.4. The Circle Theorem for Complex Velocity

Theorem 4.2 (The Circle Theorem for Complex Velocity) Let V̄ (z) be complex ve-

locity, where V̄ (z) = u − iv, in the infinite 2 − D flow. All singularities of V̄ (z) are

outside r = a. When a cylinder of radius a is introduced at the origin, complex velocity

becomes:

Ω(z) = V̄ (z)− a2

z2
V (

a2

z
). (4.7)

Proof : Boundary condition at r = a is that Ω(z)n must be zero. To show Ω(z)n = 0 on

the circle z = aeiθ, it is equivalent to show <{Ω(z).eiθ} = 0,

<{Ω(z).eiθ} = <
{[

V̄ (z)− a2

z2
V (

a2

z
)

]
.eiθ

}

= <{
V̄ (z).eiθ

}−<
{

a2

z2
V (

a2

z
).eiθ

}

= <{
(u− iv)eiθ

}−<{
(u + iv)e−iθ

}

= (u cos θ + v sin θ)− (u cos θ + v sin θ)

= 0.

This means Ω(z) satisfies the boundary condition.¥

Example 4.3 (Application of Theorem (4.2) for a Vortex of Strength κ)

Solution : Let us suppose that V̄ (z) = iκ
z−z0

. Then,

Ω(z) =
iκ

z − z0

− a2

z2

−iκ
a2

z
− z0

(4.8)

Ω(z) = iκ
1

z − z0

+ iκ
a2

z

1/z̄0

a2/z̄0 − z
(4.9)

Ω(z) =
iκ

z − z0

+
iκ

z
+

iκ

a2/z̄0 − z
. (4.10)

To show <{Ω(z).eiθ} = 0 is equivalent to show Ωz + Ω̄z̄ = 0.

z.Ω(z) = iκ

[
z

z − z0

+ 1 +
z̄0z

a2 − zz̄0

]
(4.11)

z̄.Ω̄(z) = −iκ

[
z̄

z̄ − z̄0

+ 1 +
z̄z0

a2 − z̄z0

]
. (4.12)

after the summation (4.11) and (4.12) and putting zz̄ = a2 we get,

zΩ + z̄Ω̄ = iκ

[
z

z − z0

+
zz̄0

a2 − zz̄0

− a2

a2 − z̄0z
− z0

z − z0

]
. (4.13)

After some algebraic manipulation, the right side of (4.13) vanishes.
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4.4.1. Single Cylinder with a Vortex

1. A Vortex at z0 and a Cylinder at the Origin: For a vortex of strength κ at z0 and a

cylinder of radius a at the origin complex velocity as we found above,

Ω(z) =
iκ

z − z0

+
iκ

z
+

iκ

a2/z̄0 − z
. (4.14)

2. A Vortex at z0 and a Cylinder at z1,

Ω(z) =
iκ

z − z0

− a2

(z − z1)
2

−iκ

( a2

z−z1
+ z̄1)− z̄0

=
iκ

z − z0

+
iκ

z − z1

+
iκ

a2

z̄0−z̄1
− (z − z1)

.

3. A Vortex at z0 and a Cylinder at zj ,

Ω(z) =
iκ

z − z0

+
iκ

z − zj

+
iκ

a2

z̄0−z̄j
− (z − zj)

. (4.15)

4.4.2. Multiple Cylinders with a Vortex

1. Laurent Series of iκ
z−z0

around zj ,

iκ

z − z0

= iκ




−(ξ0j)

−1 ∑∞
n=0 (

ξj

ξ0j
)
n

if |ξj| < |ξ0j|
(ξ0j)

−1 ∑∞
n=0 (

ξ0j

ξj
)
n

if |ξ0j| < |ξj|.

2. Laurent Series of iκ
z−zj

+ iκ
a2

z̄0−z̄j
−(z−zj)

around zj ,

= iκ

{
−

∞∑
n=0

(a2/ξ̄0j)
n+1

(ξj)
n+2 if | ξj |<| ξ0j |

Where ξj = z − zj and ξ0j = z0 − zj.

4.4.3. Complex Velocity and Boundary Condition for Cylinder j

Total complex velocity around cylinder j is

V T
j = V I

j + V D
j +

n∑
i=1
i6=j

V D
i (4.16)

=
−iκ

ξ0j

∞∑
n=0

(
ξj

ξ0j

)n

+ iκ
∞∑

n=0

Aj
n

(ξ0j
′
)n+1

ξn+1
j

(4.17)

+ iκ

n∑
i=1
i6=j

∞∑
n=0

Ai
n

(ξ
′
0i)

n+1

(zj − zi + ξj)n+2
. (4.18)
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Boundary condition is

<{V T
j .eiθj} = 0, when | ξj |= aj.

Applying the boundary condition, unknown coefficients Ai
n can be found.

Changing coordinate system from (xi, yi) to (xj, yj): In equation (4.16) to write

Vi, we must change the coordinate system.

6

-

6

-

6

-

x

y

xi

yi

xj

yj

½¼

¾»
½¼

¾»

³³³³³³³³³³³³1

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢¢̧

@
@

@
@

@
@@I

ξi − ξj

ξi

ξj

z

ξi = z − zi

ξj = z − zj

ξi − ξj = zj − zi

Figure 4.1. Changing Coordinate System From ξi to ξj .
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CHAPTER 5

VORTICES IN ANNULAR DOMAIN

5.1. Flow in Bounded Domain

Problem: Find complex velocity for incompressible irrotational flow in bounded

domain D. Where D is bounded by concentric circles. For multiply connected region

D with K islands of shapes c1, ..., cK , the complex velocity V̄ = Vx − iVy is given by

Laurent series (see Appendix D)

V̄ (z) = V̄0(z) +
∞∑

n=0

anz
n +

K∑
α=1

∞∑
n=0

bn+2

(z − zα)n+2

where points z1, ..., zK are inside of corresponding islands and V̄0(z) represents vortex

part.

5.2. N Vortices in Annular Domain

We consider problem of N point vortices in annular domain D : {r1 ≤ |z| ≤ r2},

where z1, ..., zN are positions of vortices with strength κ1, ..., κN correspondingly. The

region is bounded by two concentric circles:

C1 : zz̄ = r2
1

and

C2 : zz̄ = r2
2.

(see Figure 4.1.)

Complex velocity is given by Laurent series (see Appendix D)

V̄ (z) =
N∑

k=1

iκk

z − zk

+
∞∑

n=0

anz
n +

∞∑
n=0

bn+2

zn+2
. (5.1)
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Figure 5.1. N Vortices in Annular Domain.

5.2.1. Algebraic System for Boundary Value Problem

To find the unknown coefficients an, bn+2 we have to determine the boundary con-

ditions,

Γ = V̄ (z)z + V (z̄)z̄ (5.2)

=
N∑

k=1

iκkz

z − zk

+
∞∑

n=0

anz
n+1 +

∞∑
n=0

bn+2

zn+1

+
N∑

k=1

−iκkz̄

z̄ − z̄k

+
∞∑

n=0

ānz̄
n+1 +

∞∑
n=0

b̄n+2

z̄n+2
. (5.3)

Since |zk| > |z| and zz̄ = r1
2 on boundary C1, we rewrite equation (5.3) as follows;

N∑

k=1

iκkz

−zk

(
1− z

zk

) +
∞∑

n=0

anz
n+1 +

∞∑
n=0

bn+2

zn+1
+ C.C. . (5.4)

using z̄ = r2
1/z and expanding the first term in (5.4),

Γ|C1
=

N∑

k=1

(−iκk)
∞∑

n=0

(
z

zk

)n+1

+
∞∑

n=0

anz
n+1 +

∞∑
n=0

bn+2

zn+1

+
N∑

k=1

iκk

∞∑
n=0

(
z̄

z̄k

)n+1

+
∞∑

n=0

ānz̄n+1 +
∞∑

n=0

b̄n+2

z̄n+1
(5.5)

=
∞∑

n=0

[
N∑

k=1

−iκk

zn+1
k

+ an + b̄n+2
1

r
2(n+1)
1

]
zn+1 + C.C. = 0, (5.6)

where C.C stands for complex conjugate. This implies the following algebraic system
N∑

k=1

−iκk

zn+1
k

+ an + b̄n+2
1

r
2(n+1)
1

= 0, n = 0, 1, . . . (5.7)
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Since |zk| < |z| and zz̄ = r2
2 on boundary C2, we rewrite equation (5.3) as follows;

N∑

k=1

iκkz

z
(
1− zk

z

) +
∞∑

n=0

anzn+1 +
∞∑

n=0

bn+2

zn+1
+ C.C. . (5.8)

Then, expanding the first term and using z̄ = r2
2/z, we have

Γ|C2
=

N∑

k=1

iκk

∞∑
n=0

(zk

z

)n

+
∞∑

n=0

anzn+1 +
∞∑

n=0

bn+2

zn+1

+
N∑

k=1

−iκk

∞∑
n=0

( z̄k

z̄

)n

+
∞∑

n=0

ānz̄
n+1 +

∞∑
n=0

b̄n+2

z̄n+1
(5.9)

=
∞∑

n=0

[
N∑

k=1

−iκk
z̄n+1

k

r
2(n+1)
2

+ an + b̄n+2
1

r
2(n+1)
2

]
zn+1 + C.C. = 0. (5.10)

This implies another algebraic system

N∑

k=1

−iκkz̄
n+1
k

r
2(n+1)
2

+ an + b̄n+2
1

r
2(n+1)
2

= 0, n = 0, 1, . . . (5.11)

5.2.2. Solution of Algebraic System

We have two sets of algebraic systems (5.7) and (5.11). By substracting (5.11)

from (5.7), we eliminate an

b̄n+2

[
1

r
2(n+1)
2

− 1

r
2(n+1)
1

]
+

N∑

k=1

(−iκk)

[
z̄n+1

k

r
2(n+1)
2

− 1

zn+1
k

]
= 0. (5.12)

If q ≡ r2
2/r

2
1 we find,

b̄n+2 =
N∑

k=1

(
iκk

zn+1
k

r
2(n+1)
2 − |zk|2(n+1)

qn+1 − 1

)
(5.13)

bn+2 =
N∑

k=1

(
−iκk

z̄n+1
k

r
2(n+1)
2 − |zk|2(n+1)

qn+1 − 1

)
(5.14)

and from (5.7) we determine an,

an =
N∑

k=1

iκk

zn+1
k

− b̄n+2
1

r
2(n+1)
1

, (5.15)

or

an =
N∑

k=1

−iκk

zn+1
k

r
2(n+1)
1 − |zk|2(n+1)

r
2(n+1)
1 (qn+1 − 1)

. (5.16)
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5.2.3. Solution in Terms of q-logarithmic Function

The Taylor series part of (5.1) gives the following,

∞∑
n=0

anzn =
∞∑

n=0

N∑

k=1

−iκk

zn+1
k

zn

qn+1 − 1
−

∞∑
n=0

N∑

k=1

(−iκk)z̄
(n+1)
k zn

r
2(n+1)
1 (qn+1 − 1)

=
N∑

k=1

iκk

z
lnSZ

q

(
1− z

zk

)
−

N∑

k=1

iκk

z
lnSZ

q

(
1− zzk

r2
1

)
(5.17)

and the Laurent part gives,

∞∑
n=0

bn+2

zn+2
=

N∑
n=0

∞∑

k=1

−iκk

z̄n+1
k

r
2(n+1)
2

(qn+1 − 1)

1

zn+2
+

N∑
n=0

∞∑

k=1

iκzn+1
k

(qn+1 − 1)zn+2

=
N∑

k=1

iκk

z
lnSZ

q

(
1− r2

2

zz̄k

)
−

N∑

k=1

iκk

z
lnSZ

q

(
1− zk

z

)
(5.18)

where lnSZ
q is q-logarithmic function given by the following definition.

Definition 5.1 (q-logarithmic function defined by series)

lnSZ
q (1 + x) =

∞∑
n=1

(−1)n−1xn

qn − 1
, |x| < q, q > 1. (5.19)

In the limiting case

lim
q→1

lnq(1 + x) = ln(1 + x). (5.20)

We will need the following lemma and its corollary later.

Lemma 5.1 Let q be real and q > 1. Then for all integers n ≥ 0 and k, with 0 < k <

qn+1, the following identity holds,

∞∑
ν=n+1

1

qν + k
=

1

k
lnSZ

q (1 +
k

qn
). (5.21)

Corollary 5.2 In the particular case when n = 0 from the lemma (5.1), we have a repre-

sentation of q-logarithm

lnSZ
q (1 + x) =

∞∑
n=1

x

qn + x
=

∞∑
n=1

(−1)n−1xn

qn − 1
(5.22)

or

lnq(1 + x) = (q − 1)
∞∑

n=1

x

qn + x
=

∞∑
n=1

(−1)n−1xn

[n]
. (5.23)
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Proof: n = 0 in the lemma,

∞∑
ν=1

1

qν + k
=

1

k
lnSZ

q (1 + k). (5.24)

If n is replaced instead of ν

∞∑
n=1

1

qn + k
=

1

k
lnSZ

q (1 + k). (5.25)

substitute k = x ∞∑
n=1

1

qn + x
=

1

x
lnSZ

q (1 + x). (5.26)

or

lnSZ
q (1 + x) =

∞∑
n=1

x

qn + x
=

∞∑
n=1

(−1)n−1xn

qn − 1
.¥ (5.27)

5.2.4. Complex Velocity and q-logarithm

Substituting equations (5.17) and (5.18) in (5.1) we get the following,

V̄ (z) =
N∑

k=1

iκk

z − zk

+
N∑

k=1

iκk

z
lnSZ

q

(
1− z

zk

)
−

N∑

k=1

iκk

z
lnSZ

q

(
1− zz̄k

r2
1

)

+
N∑

k=1

iκk

z
lnSZ

q

(
1− r2

2

zz̄k

)
−

N∑

k=1

iκk

z
lnSZ

q

(
1− zk

z

)
. (5.28)

Expanding q-log according to the Corollary (5.2) we have

V̄ (z) =
N∑

k=1

iκk

z − zk

+
N∑

k=1

∞∑
n=1

iκk

z − zkqn
−

N∑

k=1

∞∑
n=1

iκk

z − qn r2
1

z̄k

+
N∑

k=1

∞∑
n=1


iκk

z
− iκk

z − q−n r2
2

z̄k


−

N∑

k=1

∞∑
n=1

[
iκk

z
− iκk

z − q−nzk

]
. (5.29)

V̄ (z) =
N∑

k=1

iκk

z − zk

+
N∑

k=1

[ ∞∑
n=1

iκk

z − zkqn
+

∞∑
n=1

iκk

z − zkq−n

]
,

−
N∑

k=1




∞∑
n=0

iκk

z − r2
1

z̄k
q−n

+
∞∑

n=0

iκk

z − r2
2

z̄k
qn


 . (5.30)

5.2.5. Vortex Image Representation

Equation (5.30) for complex velocity has countable infinite number of pole singu-

larities. These singularities can be interpreted as vortex images in two cylindrical surfaces.
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For simplicity let us consider only one vortex at position z0, r1 < |z0| < r2. Then the set

of images in the cylinder C1 we denote z
(1)
I , z

(2)
I , ... and in the cylinder C2 as z

(1)
II , z

(2)
II , ....

µ´
¶³

r
©

ª

©

ª

z0

r2r1

rz
(2)
Irz

(1)
I rz

(2)
IIrz

(1)
II

− +−+ +
©©*HHY

Figure 5.2. Vortex Image Representation.

Considering the above figure, we obtain the following,

z
(1)
I =

r2
1

z̄0

z
(1)
II =

r2
2

z̄0

(5.31)

z
(2)
I =

r2
1

z̄
(1)
II

=
z0

q
z

(2)
II =

r2
2

z̄
(1)
I

= qz0 (5.32)

z
(3)
I =

r2
1

z̄
(2)
II

=
r2
1

z̄0

1

q
z

(3)
II =

r2
2

z̄
(2)
I

=
r2
2

z̄0

q (5.33)

z
(4)
I =

r2
1

z̄
(3)
II

=
z0

q2
z

(4)
II =

r2
2

z̄
(3)
I

= z0q
2 (5.34)

z
(5)
I =

r2
1

z̄
(4)
II

=
r2
1

z̄0

1

q2
z

(5)
II =

r2
2

z̄
(4)
I

=
r2
2

z̄0

q2. (5.35)

Combining together and taking into account alternating signs (positive for the first image

and negative for the next one - image of the image ) we have the set

+ z0, −z
(1)
I , +z

(2)
II , −z

(3)
I , +z

(4)
II , −z

(5)
I , ... (5.36)

and

+ z0, −z
(1)
II , +z

(2)
I , −z

(3)
II , +z

(4)
I , −z

(5)
II , .... (5.37)

This shows that the set of vortex images is completely determined by the singularities of

the q-logarithmic function.
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5.3. Complex Potential and Elliptic Functions

In the above representation we can combine sums so that, we have

V̄ (z) =
N∑

k=1

[ ∞∑
n=−∞

iκk

z − zkqn

]
−

N∑

k=1




∞∑
n=0

iκk

z − r2
1

z̄k
q−n

+
∞∑

n=1

iκk

z − r2
1

z̄k
qn


 (5.38)

=
N∑

k=1

iκk

∞∑
n=−∞


 1

z − zkqn
− 1

z − r2
1

z̄k
qn


 . (5.39)

Let us introduce the complex potential of the flow

V̄ (z) = F ′(z)

so that by simple integration we get

F (z) =
N∑

k=1

iκk

∞∑
n=−∞

Ln


z − zkq

n

z − r2
1

z̄k
qn


 (5.40)

=
N∑

k=1

iκkLn

∞∏
n=−∞

z − zkq
n

z − r2
1

z̄k
qn

(5.41)

=
N∑

k=1

iκkLn


z − zk

z − r2
1

z̄k




∞∏
n=1

(z − zkq
n)(z − zkq

−n)

(z − r2
1

z̄k
qn)(z − r2

1

z̄k
q−n)

. (5.42)

To compare our solution with that of Johnson and McDonald(2004), we consider one

vortex of strength κ at position z0,

F ′(z) = V̄ (z) =
∞∑

n=−∞

iκ

z − z0qn
−

∞∑
n=−∞

iκ

z − r2
1

z̄0
qn

. (5.43)

Then for complex potential we have

F (z) = iκLn

∞∏
n=−∞

(z − z0q
n)

(z − r2
1

z̄0
qn)︸ ︷︷ ︸

Φ

. (5.44)

For comparison purpose, we fix the radius r2 = 1 so that q =
r2
2

r2
1

= 1
r2
1
≡ 1

q̃2 , where we

introduce new parameter q̃. Thus all singularities of F (z) are determined by zeroes and

poles of the function

Φ =
∞∏

n=−∞

(z − z0
1

q̃2n )

(z − q̃2

z̄0

1
q̃2n )

=
∞∏

n=−∞

(z − z0q̃
2n)

(z − 1
z̄0

q̃2n)
(5.45)

=
z − z0

z − 1
z̄0

∞∏
n=1

(z − z0q̃
2n)(z0 − zq̃2n)

(z − 1
z̄0

q̃2n)( 1
z̄0
− zq̃2n)

. (5.46)
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If
z

z0

= e2iu, zz̄0 = e2iv, z0z̄0 =
e2iv

e2iu
(5.47)

we then obtain,

Φ =
(1− e−2iu)

(1− e−2iv)

∞∏
n=1

e2iv

e2iu

(1− q̃2ne2iu)(1− q̃2ne−2iu)

(1− q̃2ne2iv)(1− q̃2ne−2iv)
(5.48)

Φ′ =
2G

2G

q̃1/4 sin u

q̃1/4 sin v

∏∞
n=1(1− q̃2ne2iu)(1− q̃2ne−2iu)∏∞
n=1(1− q̃2ne2iv)(1− q̃2ne−2iv)

(5.49)

where Φ′ is a constant multiple of Φ,

G ≡
∞∏

n=1

(1− q̃2n), q̃ < 1, (5.50)

Φ′ =
Θ1(u, q̃)

Θ1(v, q̃)
=

Θ1(
i
2
(τ − τ0), q̃)

Θ1(
i
2
(τ + τ0), q̃)

(5.51)

where τ ≡ − ln z, τ0 ≡ − ln z0, τ̄0 ≡ − ln z̄0 and where Θ1 is the first Jacobi Theta

function (see Appendix D). (The last transformation is the conformal mapping of annular

domain to semi-infinite strip). Then

F (z) = iκLn
Θ1(

i
2
(τ − τ0), q̃)

Θ1(
i
2
(τ + τ0), q̃)

. (5.52)

For the stream function, we have

Ψ =
F − F̄

2i
=

iκ

2i

[
Ln

Θ1

Θ1

+ Ln
Θ̄1

Θ̄1

]
(5.53)

= κLn

∣∣∣∣
Θ1(

i
2
(τ − τ0), q̃)

Θ1(
i
2
(τ + τ0), q̃)

∣∣∣∣ (5.54)

=
−Γ

2π
Ln

∣∣∣∣
Θ1(

i
2
(τ − τ0), q̃)

Θ1(
i
2
(τ + τ0), q̃)

∣∣∣∣ (5.55)

This coincides with result of Johnson and McDonald (2004).

5.4. Motion of a Point Vortex in Annular Domain

We use the above formulas to determine the motion of single vortex in annular

domain. Complex velocity of vortex is determined by

ż0 = ẋ0 + iẏ0 = V (z̄)|z=z0 (5.56)

=
∞∑

n=−∞

−iκ

z̄0 − z̄0qn
−

∞∑
n=−∞

−iκ

z̄0 − r2
1

z0
qn

(5.57)

=
−iκ

z̄0

∞∑
n=−∞

1

1− qn
+ z0iκ

∞∑
n=−∞

1

|z0|2 − r2
1q

n
. (5.58)

36



Substituting this to following equation we have,

z̄0ż0 + z0 ˙̄z0 =
d

dt
|z0|2 = 0 → |z0| = constant. (5.59)

This implies that the distance of the vortex from the origin is constant. Then only the

argument is time independent,

z0 = |z0|eiϕ(t), ż0 = z0e
iϕiϕ̇, (5.60)

which satisfies

ϕ̇ = −κ

[
1

|z0|2
∞∑

n=−∞

1

1− qn
−

∞∑
n=−∞

1

|z0|2 − r2
1q

n

]
. (5.61)

The right hand side of equation 5.61 is a constant and the solution is

ϕ(t) = ωt + ϕ0 (5.62)

where frequency ω is dependent on modulus |z0|,

ω = −κ

[
1

|z0|2
∞∑

n=−∞

1

1− qn
−

∞∑
n=−∞

1

|z0|2 − r2
1q

n

]
(5.63)

=
−κ

|z0|2
∞∑

n=0

1

qn+1 − 1

[( |z0|2
r2
1

)n+1

−
(

r2
2

|z0|2
)n+1

]
. (5.64)

Finally solution of our problem can be written by using q-logarithmic function

ω =
κ

|z0|2(q − 1)

[
lnq

(
1− |z0|2

r2
1

)
− lnq

(
1− r2

2

|z0|2
)]

. (5.65)

So, we found that vortex is uniformly rotating around the center,

z0(t) = |z0|eiωt+iϕ0 = z0(0)eiωt (5.66)

with frequency depending on vortex strength, initial position and geometry of annular

domain in terms of q-logarithms. This reflects the fact that the motion of vortex results

from interaction with infinite set of its images in the cylinders.
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CHAPTER 6

CONFORMAL MAPPING OF ANNULAR DOMAIN

ONTO

THE INFINITE DOMAIN WITH TWO CYLINDERS

6.1. Möbius Transformation and Mappings of the Annular Domain

Definition 6.1 A mapping of the form

t(z) =
az + b

cz + d
(6.1)

where a, b, c, d ∈ C, is called a linear fractional transformation. If a, b, c and d also

satisfy ad− bc 6= 0 then t(z) is called Möbius transformation. (Churcill and Brown 1984)

when c 6= 0, equation (6.1) can be written

w =
a

c
+

bc− ad

c

1

cz + d
; (6.2)

and it is clear how the condition ad−bc 6= 0 ensures that a linear fractional transformation

is never a constant function.

If c = 0 (d 6= 0), then t(z) in equation (6.1) reduces to the entire linear transfor-

mation,

t(z) = αz + β,

(
α =

a

d
, β =

b

d

)
(6.3)

Möbius transformations carries generalized circles into generalized circles. In the ex-

tended plane a generalized circle is either a circle or a straight line (Circle with infinite

radius).

6.1.1. Equation of Circle

Let c ∈ C, ρ > 0 and Γ be the circle with center c and radius ρ, then the equation

of the circle

(z − c)(z̄ − c̄) = ρ2. (6.4)
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6.1.2. Symmetry with Respect to Circle

Definition 6.2 If

(z1 − c)(z̄2 − c̄) = ρ2 (6.5)

then z1 and z2 are symmetric with respect to Γ.

Lemma 6.1 If a and b are complex numbers, µ > 0
∣∣∣∣
z − a

z − b

∣∣∣∣ = µ (6.6)

represents a generalized circle. Number µ is related with the circle radius ρ, ρ = µ|a−b|
(1−µ2)

.

Equation (6.6) becomes a straight line if and only if µ = 1.

Proof : First of all lets show that equation (6.6) is a circle. Expansion of |z − c|2 = ρ2

gives the following,

zz̄ − c̄z − cz̄ + cc̄− ρ2 = 0 (6.7)

On the other hand, expansion of (6.6) yields,

(1− µ2)zz̄ + (µ2b̄− ā)z + (µ2b− a)z̄ + (aā− µ2bb̄) = 0 (6.8)

zz̄ +
(µ2b̄− ā)

(1− µ2)
z +

(µ2b− a)

(1− µ2)
z̄ +

(aā− µ2bb̄)

1− µ2
= 0 (6.9)

If we compare equation (6.9) with equation (6.7), we find, c = (a−µ2b)
(1−µ2)

and ρ2 =

µ2(ā−b̄)(a−b)
(1−µ2)2

. This implies that (6.6) represents a circle.

If generalized circle represents a straight line then we will show µ = 1. For the general-

ized circle in equation (6.8) to be a straight line, the coefficient of zz̄ must be zero. This

means 1 − µ2 = 0, then since µ > 0, we get µ = 1. If we substitute µ = 1 in equation

(6.6)

|z − a| = |z − b| (6.10)

(z − a)(z̄ − ā) = (z − b)(z̄ − b̄) (6.11)

(b̄− ā)z + (b− a)z̄ + aā− bb̄ = 0 (6.12)

since the last equation is in the form Az + Āz̄ + C = 0, which is equation of a line, we

get the desired result.¥

Theorem 6.2 The points a and b are symmetric with respect to the generalized circle

(6.6).
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Proof : If a and b are symmetric point, from equation (6.5) we should have

(a− c)(b̄− c̄) = ρ2. (6.13)

If we substitute c = (a−µ2b)
(1−µ2)

and ρ2 = µ2(ā−b̄)(a−b)
(1−µ2)2

in equation (6.13), then we get
(

a− a− µ2b

1− µ2

)(
b̄− ā− µ2b̄

(1− µ2)

)
=

µ2(b− a)

1− µ2
.
b̄− ā

1− µ2
(6.14)

= ρ2. (6.15)

Hence equation (6.13) is satisfied.¥

Theorem 6.3 Let a and b be symmetric with respect to generalized circle Γ, a 6= b, then

∃ µ > 0 such that Γ is given by equation (6.6)

Proof : Since a and b are symmetric we can write

(a− c)(b̄− c̄) = ρ2 (6.16)

ab̄− ac̄− cb̄ = ρ2 − cc̄. (6.17)

Equation of a circle with center c and radius ρ is

(z − c)(z̄ − c̄) = ρ2 (6.18)

zz̄ − c̄z − cz̄ + cc̄ = ρ2. (6.19)

In the last equation, (ρ2 − cc̄), can be replaced by(6.17) and using c = (a−µ2b)
(1−µ2)

, we get

zz̄ − (ā− µ2b̄)

(1− µ2)
z − (a− µ2b)

(1− µ2)
z̄ = ab̄− a

(ā− µ2b̄)

(1− µ2)
− (a− µ2b)

(1− µ2)
b̄ (6.20)

zz̄ − µ2zz̄ − āz + µ2b̄z − az̄ + µ2bz̄ = µ2bb̄− aā (6.21)
zz̄ − āz − az̄ + aā

bb̄ + zz̄ − b̄z − bz̄
= µ2 (6.22)

∣∣∣∣
z − a

z − b

∣∣∣∣ = µ.¥ (6.23)

Theorem 6.4 Let a and b be two points of the complex plane which are symmetric with

respect to generalized circle Γ and let t be a Möbius transformation, then a′ = t(a) and

b′ = t(b) are symmetric with respect to Γ′,where Γ′ is the image of Γ under t.

Proof : If

t(z) = z + m, t is translation; (6.24)

t(z) = mz, m > 0, t is a dilation; (6.25)

t(z) = eiθz, t is rotation; (6.26)

t(z) = 1/z, t is inversion. (6.27)
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Möbius transformation is a composition of translation, rotation, inversion and dilation.

When the circle is translated, rotated and dilated, its symmetry is conserved. So it is

sufficient to consider the inversion only, t(z) = 1/z. Since a and b are inverses of each

other with respect to the circle Γ by Theorem 6.3 equation for Γ is,
∣∣∣∣
z − a

z − b

∣∣∣∣ = µ for some µ. (6.28)

Applying inversion (z = 1/w) to t, we have,
∣∣∣∣

1
w
− a

1
w
− b

∣∣∣∣ = µ (6.29)
∣∣∣∣
w − a′

w − b′

∣∣∣∣ = µ

∣∣∣∣
b

a

∣∣∣∣ , where,
1

a
= a′,

1

b
= b′. (6.30)

This shows that a′ and b′ are symmetric with respect to Γ′.¥

6.1.3. Mapping of Disc onto Unit Disc

Example 6.5 Let D be a disk and let a be a point in D. Find all Möbius transformations

t which maps D onto the unit disc such that t(a) = 0.

6

-

?

¾ x

y

&%

'$
a

D

.

D′

-
t 6

-

?

¾ u

v

&%

'$

1

Figure 6.1. Mapping of D onto Unit Disc.

Solution : We have two cases,

1) If a is the center of D, by using the entire Möbius transformation t = az + b we can do

the mapping.

2) If a is not the center, we can use Möbius transformation

t = c
z − a

z − b
, (6.31)

where b is the inverse of a, then ab̄ = 1, a 6= b.

Let us take any point z1 on the boundary of D,

z1
′ = c

z1 − a

z1 − b
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since z1
′ is on the unit circle then

|cz1 − a

z1 − b
| = 1

then |c| = | z1−b
z1−a

| and c = |c|eiα, 0 < α < 2π. Möbius transformation for this case is

t = eiα

∣∣∣∣
z1 − b

z1 − a

∣∣∣∣
z − a

z − b
, 0 < α < 2π. (6.32)

6.1.4. Mapping of Unit Disc onto Unit Disc

Example 6.6 Find the most general Möbius transformation t such that it maps unit disk

onto itself.

6

-

?

¾ x

y

&%

'$
a

D
.

D′

-
t 6

-
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¾ u

v

&%

'$

1

Figure 6.2. Mapping of Unit Disc onto Unit Disc.

Solution : This example is a special case of the previous example. Since D is unit disk

we can take z1 = 1, in (6.32),

t(z) = eiα′ z − a

1− āz
(6.33)

where
∣∣ ā−1
1−a

∣∣ = 1 and eiα′ = eiα. ā
|ā| .

Example 6.7 Let c and ρ be real and c > ρ > b. Map the domain by |z − c| ≤ ρ and

left hand side of the imaginary axis onto an annular domain bounded by |w| = 1 and a

concentric circle. Find the Möbius transformation.

6
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y
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a
cb

q
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m
1
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¡
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Figure 6.3. Mapping of Given D onto Annular Domain.
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Solution : In this example a and b are symmetric with respect to y-axis and |z −
c| = ρ2. Since a and b are symmetric with respect to y-axis then

b = −a.

Since they are symmetric with respect to |z − c| = ρ2 they must satisfy

(b− c)(a− c) = ρ2.

If we replace b = −a, we can find

a = (c2 − ρ2)1/2

b = −(c2 − ρ2)1/2.

Möbius transformation is

t(z) =
z − (c2 − ρ2)1/2

z + (c2 − ρ2)1/2
. (6.34)

Example 6.8 Let ρ and c be real and, 0 < c < 1 − ρ. Map the domain bounded by the

circles |z| = 1 and |z − c| = ρ onto domain bounded by two concentric circles such that

the outer circle is mapped onto itself. What is the radius R0 of the inner circle?

Solution : Using the symmetry of a and b with respect to unit circle and |z − c| = ρ we

can find

a =
1 + c2 − ρ2 +

√
(1− (c + ρ)2)(1− (c− ρ)2)

2c
(6.35)

b̄ =
2c

1 + c2 − ρ2 +
√

(1 + c2 − ρ2)2 − 4c2
. (6.36)

and Möbius transformation;

t(z) = w =
z − a

az − 1
(6.37)

To find R0 we can substitute z = c− ρ in (6.37), then

R0 =
1− c2 + ρ2 +

√
(1− (c + ρ)2)(1− (c− ρ)2)

2ρ
(6.38)

If c = x1+x2

2
and ρ = x1−x2

2
, we get same result with that of Churchill and Brow(Churchill

and Brow 1984).
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6.1.5. Mapping of Two Cylinder onto Annular Domain

Example 6.9 (Special Case of Example 5.8): Let ρ and c be real, 1 < c− ρ
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¡
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¡
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Figure 6.4. Mapping of Two Cylinder onto Annular Domain .

Solution : Lets take two real points a and b which are symmetric points with respect to

both circles |z| = 1 and |z − c| = ρ.

Symmetry with respect to |z| = 1,

ab = 1 ⇒ b =
1

a

symmetry with respect to |z − c| = ρ

(a− c)(b− c) = ρ2

or

a2c + a (ρ2 − c2 − 1) + c = 0

when we solve last equation

a =
1 + c2 − ρ2 +

√
((c + ρ)2 − 1)((c− ρ)2 − 1)

2c
. (6.39)

Using b = 1
a

in equation (6.31) Möbius transformation

t(z) = w =
z − a

az − 1
(6.40)

where c a = 1. When we substitute z = c + ρ in equation (6.40)

R0 =
c2 − ρ2 − 1−

√
((c + ρ)2 − 1)((c− ρ)2 − 1)

2ρ
(6.41)

or in terms of x1 and x2

R0 =
x1x2 − 1−

√
(x1

2 − 1)(x2
2 − 1)

x1 − x2

(6.42)

a =
1 + x1x2 +

√
(x1

2 − 1)(x2
2 − 1)

x1 + x2

. (6.43)
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6.2. Application of the Möbius Transformation to the Vortex-Cylinder

Problem

Let assume that there exist a vortex at z0 in infinite domain (see Figure(6.8)), then

the image of complex potential in w-plane is,

F (z) = ln(z − z0) (6.44)

F (z(w)) = f(w) = ln

(
w − a

aw − 1
− w0 − a

aw0 − 1

)
(6.45)

= ln

(
a2 − 1

a(aw0 − 1)

)
+ ln(w − w0)− ln(w − 1

a
), (6.46)

where w0 is the image of the point z0. Hence if there exists a vortex z0 in z-plane then its

image vortices with opposite strength are at w0 and 1/a. In Chapter 4, we found vortex

image representation for N vortices in annular domain (See equation (5.40)). Now we

consider 2 vortices at positions w0 and 1
a
,

f(w) =
2∑

k=1

iκk

∞∑
n=−∞

Ln


w − wkq

n

w − r2
1

w̄k
qn


 (6.47)

= iκ

∞∑
n=−∞

Ln

(
w − w0q

n

w − R2
0

w̄0
qn

)
− iκ

∞∑
n=−∞

Ln

(
w − qn

a

w − aR0
2qn

)
(6.48)

= iκ

∞∑
n=−∞

Ln

(
w − w0q

n

w − R2
0

w̄0
qn

.
w − aR2

0q
n

w − qn

a

)
. (6.49)

where r1 = R0, r2 = 1 and q ≡ 1
R2

0
.

By applying the inverse mapping w = z−a
az−1

, we can find its vortex image repre-

sentation in z-plane,

F (z) = iκ

∞∑
n=−∞

Ln


αn

z + w0qn−a
1−aw0qn

z +
R2

0qn−aw̄0

w̄0−aR2
0qn

.
z +

−a+aR2
0qn

1−a2R2
0qn

z + qn−a2

a−aqn


 (6.50)

= iκ

∞∑
n=−∞

Ln

(
αn

z − t(w0q
n)

z − t(
R2

0qn

w̄0
)

.
z − t(aqnR2

0)

z − t( qn

a
)

)
(6.51)

where αn =
(1−aw0qn)(1−a2R2

0qn)

(w̄0−aR2
0qn)(a−aqn)

.

By differentiating the equation (6.51), we can write the corresponding complex velocity

as,

V̄ (z) = iκ

∞∑
n=−∞

(
1

z − t(w0qn)
+

1

z − t(aqnR2
0)
− 1

z − t(
R2

0qn

w̄0
)
− 1

z − t( qn

a
)

)
. (6.52)
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From figure (6.5) we can easily understand the nature of the reflection mechanism,
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Figure 6.5. Inverses of w0 With Respect to circles |w| = R0 and |w| = 1.
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(n = −2).

R=R0

²²

Figure 6.6. Inverses of 1/a With Respect to Circles |w| = R0 and |w| = 1.

As we can see from the figure (6.5), we start with w0 and take the inverses with

respect to both circles and then take successive inverses. We see that the inverses accumu-

late at 0 and ∞, in w-plane. Similarly, the vortex at 1/a has successive inverses in both

circles and they accumulate at 0 and∞. Same idea can be applied for a vortex in z-plane,
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Figure 6.7. Inverses of z0 With Respect to Circles |z| = 1 and |z − c| = ρ.

We notice that inverses in z-plane accumulate at a and 1/a.

Example 6.10 In order to visualize the images, we consider a numerical example;

x1 = 4, x2 = 2 and w0 = 0.5i + 0.5.
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Figure 6.8. Vortex Image Approximation.

We calculate that a = 2.61803 and R0 = 0.145898.
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Vortex at w0

w0 = 0.5 + 0.5i
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Figure 6.9. Images of w0 and 1/a.

From the calculations we can see that images of both vortices accumulate at zero and

infinity in w-plane. When we map the annular domain onto z-plane, there exist a vortex

at z0 and images of this vortex converge to a and 1/a as you see below,
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z0 = −4.805× 10−17 + 1.6180i
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Figure 6.10. Images of z0.
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CHAPTER 7

CONCLUSION

Scattering of water waves and its long wave approximation and vortex-cylinder

interaction were studied.

In the first part, starting from mathematical formulation of the water-wave prob-

lem we solved truncated system for velocity potential with unknown coefficients. In the

limiting case which is known as Long-Wave approximation we found unknown coeffi-

cients; Ã1
0 and Ã2

0 behaves like O((ak)2) as k → 0. Also Ã1
1, Ã

1
−1, Ã

2
1 and Ã2

−1 behave

like O((ak)2) as k → 0.

In the second part we tried to do the same thing for vortex-cylinder case by using

the Circle Theorem. To apply boundary condition Laurent series expansion was neces-

sary. This problem needs further attention.

Finally, complex velocity and potential in annular domain are obtained using com-

plex analysis and q-logarithm. By using conformal mapping, annular domain is mapped

onto the infinite 2−D plane with two circular cylinders. Solution in both domains involve

the inverse images in both cylinders. Image representation is clearly depicted.
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APPENDIX A

DIVERGENCE THEOREM

A.1. Divergence Theorem

Theorem A.1 (Divergence Theorem) ( Kaplan Wilfred 1959) Let v = Li + M j + Nk

be a vector field in a domain D of space; let D,M, N be continuous and have continuous

derivatives in D. Let S be a piecewise smooth surface in D that forms the complete

boundary of a bounded closed region R in D. Let n be the outer normal of S with respect

to R. Then ∫

S

∫
vndσ =

∫ ∫

R

∫
divv dxdydz; (A.1)

that is,
∫

S

∫
Ldydz + Mdzdx + Ndxdy =

∫ ∫

R

∫ (
∂L

∂x
+

∂M

∂y
+

∂N

∂z

)
. (A.2)
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APPENDIX B

SEPARATION OF VARIABLES

B.1. Solution of No Body Problem Using Separation of Variables

Problem

∇2φ̃ = 0 in W, (B.1)

φ̃y − νφ̃ = 0 on F (on y = 0), (B.2)

∂φ̃

∂y
= 0 on B (on y = −d). (B.3)

Solution: If we replace φ̃ = G(x1)H(x2)Y (y) into equation (B.1) and dividing

by G(x1)H(x2)Y (y) we get,

Gx1x1

G
+

Hx2x2

H
+

Yyy

Y
= 0. (B.4)

or equivalently

Gx1x1

G
=
−Hx2x2

H
+
−Yyy

Y
= −k2

1 (B.5)

(B.6)

which means

Gx1x1 + k2
1G = 0 (B.7)

Hx2x2

H
+

Yyy

Y
= k2

1 (B.8)

if second separation is done to last equation

Hx2x2 + k2
2H = 0 (B.9)

Yyy − (k2
1 + k2

2)Y = 0 (B.10)

for some constant k2. From the solution of equations (B.7), (B.9) and (B.10) we get,

G(x1) = c1e
ik1x1 + c2e

−ik1x1 (B.11)

H(x2) = c3e
ik2x2 + c4e

−ik2x2 (B.12)

Y (y) = c5 cosh(
√

k2
1 + k2

2)y + c6 sinh(
√

k2
1 + k2

2)y (B.13)
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If the boundary condition (B.3) is applied to the equation (B.13)

Y (y) = c5 (cosh(ky) + tanh(kd) sinh(hy)) (B.14)

where k =
√

k2
1 + k2

2

φ̃ = Y (y)G(x1)H(x2)

= c5 (cosh(ky) + tanh(kd) sinh(hy))
(
c1e

ik1x1 + c2e
−ik1x1

) (
c3e

ik2x2 + c4e
−ik2x2

)

= c5 (cosh(ky) + tanh(kd) sinh(hy))
(
c1e

ik1x1+ik2x2 + c2e
−ik1x1−ik2x2

)

=
cosh k(y + d)

cosh(kd)
(c1eik.x + c2e−ik.x)

where c1 = c5.c1, c
2 = c5.c2 and k.x = k1x1 + k2x2.

Velocity potential

φ1 = Re

{
cosh k(y + d)

cosh(kd)
(c1eik.x−iωt + c2e−ik.x−iωt)

}
. (B.15)
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APPENDIX C

BESSEL FUNCTIONS

C.1. Bessel’s Differential Equation

x2d2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0 (C.1)

Solutions of equation (C.1) are the Bessel functions of the first kind J±(z), of the second

kind Yν(z) and of the third kind H
(1)
ν , H

(2)
ν (also called the Hankel functions).

C.2. Generating Function, Integral Order, Jn(x)

Let us introduce a function of two variables,

g(x, t) = e(x/2)(t−1/t). (C.2)

Expanding this function in a Laurent series, we obtain

e(x/2)(t−1/t) =
∞∑

n=−∞
Jn(x)tn. (C.3)

The coefficient of tn, Jn(x), is defined to be Bessel function of the first kind of integral

order n. Expanding the exponentials, we have a product of Maclaurin series in xt/2 and

−x/2t, respectively,

ext/2. e−x/2t =
∞∑

r=0

(x

2

)r tr

r!

∞∑
s=0

(−1)s
(x

2

)s t−s

s!
. (C.4)

For a given s we get tn (n ≥ 0) from r = n + s

(x

2

)n+s tn+s

(n + s)!
(−1)s

(x

2

)s t−s

s!
. (C.5)

The coefficient of tn is then

Jn(x) =
∞∑

s=0

(−1)s

s!(n + s)!

(x

2

)n+2s

. (C.6)
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Equation (C.6) actually holds for n < 0, also giving

J−n(x) =
∞∑

s=0

(−1)s

s!(s− n)!

(x

2

)2s−n

, (C.7)

which amounts to replacing n by −n in equation (C.6). Since n is an integer, (s− n)! →
∞ for s = 0, . . . , (n − 1). Hence the series may be considered to start with s = n.

Replacing s by s + n, we obtain

J−n(x) =
∞∑

s=0

(−1)s

s!(n + s)!

(x

2

)n+2s

,

showing immediately that Jn(x) and J−n(x) are not independent but are related by

J−n(x) = (−1)nJn(x) (C.8)

C.3. Integral Representation

If we substitute t = eiθ into the generating function (C.3)

e(x/2)(t−1/t) = e(x/2)(eiθ−e−iθ) = eix sin θ =
∞∑

n=−∞
Jn(x)einθ (C.9)

C.4. Standing Cylindrical Waves In terms of Bessel Functions

Standing cylindrical wave in water layer of depth d has the following potential,

φ(1) = Re
{
Ae−iωt

(
eiκx + e−iκx

)}
cosh k(y + d). (C.10)

Using the equation (C.9) and x = r cos θ

eiκx = eiκr cos θ = eiκ sin (π
2
−θ) =

∞∑
n=−∞

Jn(κr)ein(π
2
−θ) (C.11)

e−iκx = e−iκr cos θ = eiκ sin (θ−π
2
) =

∞∑
n=−∞

Jn(κr)e−in(π
2
−θ) (C.12)

If equations (C.11) and (C.12) are replaced into the equation (C.10),

φ(1) = Re

{
Ae−iωt

∞∑
n=−∞

Jn(κr)
(
ein(π

2
−θ) + e−in(π

2
−θ)

)
}

cosh k(y + d) (C.13)

= Re

{
Ae−iωt

∞∑
n=−∞

Jn(κr)
(
2 cos[n(

π

2
− θ)]

)}
cosh k(y + d). (C.14)
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C.5. Asymptotic Expansion for Large Arguments

C.5.1. Hankel’s Asymptotic Expansions

When ν is fixed and |x| → ∞

Jν(x) =
√

2/(πx){P (ν, x) cos χ−Q(ν, x) sin χ} (| arg x| < π) (C.15)

Yν(x) =
√

2/(πx){P (ν, x) sin χ−Q(ν, x) cos χ} (| arg x| < π) (C.16)

H(1)
ν (x) =

√
2/(πx){P (ν, x) + iQ(ν, x)}eiχ (−π < arg x < 2π) (C.17)

H(2)
ν (x) =

√
2/(πx){P (ν, x)− iQ(ν, x)}e−iχ (−2π < arg x < π) (C.18)

where χ = x− (1
2
ν + 1

4
)π and, with 4ν2 denoted by µ,

P (ν, x) ∼
∞∑

k=0

(−)k (ν, 2k)

(2z)2k
= 1− (µ− 1)(µ− 9)

2!(8z)2
+

(µ− 1)(µ− 9)(µ− 25)(µ− 49)

4!(8)4
− . . .

Q(ν, x) ∼
∞∑

k=0

(−)k (ν, 2k + 1)

(2x)2k+1
=

(µ− 1)

(8z)
− (µ− 1)(µ− 9)(µ− 25)

3!(8)3
+ . . .

Theorem C.1 Graf’s Addition Theorem For Bessel Functions

Hν(x)cos
sinνχ =

∞∑

k−∞
Hν+k(u)Jk(v)cos

sinkα (|ve±iα| < |u|) (C.19)

¡
¡

¡
¡¡

³³³³³³³³³³³³³

v

xu

α

χ

Graf ′s Addition Theorem

C.6. Limiting Forms of Bessel Functions for Small Arguments

When ν is fixed and x → 0

Jν(x) ∼ 1

ν!

(
1

2
x

)ν

(C.20)

H(1)
ν (x) ∼ −i

(ν − 1)!

π

(
1

2
x

)−ν

(<ν > 0) (C.21)

Using the relations

J−ν(x) = (−)nJn(x) (C.22)

H
(1)
−ν (x) = eνπiH(1)

ν (x) (C.23)
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J−ν(x) ∼ (−)n

ν!

(
1

2
x

)ν

(C.24)

H
(1)
−ν (x) ∼ −i(−)n+1 (ν − 1)!

π

(
1

2
x

)−ν

(<ν > 0) (C.25)

For ν = 0,

H
(1)
0 (z) ∼ 2i

π
ln z. (C.26)
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APPENDIX D

CAUCHY INTEGRAL FORMULA

D.1. Cauchy Integral Formula

Theorem D.1 (Churcill and Brown 1984) Let f be analytic everywhere within and on a

simple closed contour C, taken in the positive sense. If z is any point interior to C, then

f(z) =
1

2πi

∮

C

f(ξ)dξ

ξ − z
. (D.1)

Formula (D.1) is called the Cauchy integral formula.

D.2. Complex Velocity Using Cauchy Integral Formula

D.2.1. No Singularity in C

Since complex velocity f(z) = V̄ = u − iv, which we analysed in Chapter 3 is

an analytic function in C, we can apply the Theorem D.1. Complex velocity V̄ can be

written,

f(z) =
1

2πi

∮

C

f(ξ)dξ

ξ − z
(D.2)

and
1

ξ − z
=

1

ξ

1

1− z
ξ

=
∞∑

n=0

zn

ξn+1
. (D.3)

If we substitute equation (D.3) into (D.2)

f(z) =
1

2πi

∮

C

f(ξ)
∞∑

n=0

zn

ξn+1
dξ. (D.4)

We can write

f(z) =
∞∑

n=0

anz
n, an =

1

2πi

∮

C

f(ξ)

ξn+1
dξ. (D.5)
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D.2.2. One Singularity in C

Let there exist a singularity at z = 0. In this case we can apply Theorem D.1 in

annular domain,

f(z) =
1

2πi

∮

C1

f(ξ)dξ

ξ − z
− 1

2πi

∮

C2

f(ξ)dξ

ξ − z
, (D.6)

where C1 is inner circle around singular point z = 0 and C2 is outer circle.

If we expand 1
ξ−z

around C1 and C2

C1 :
1

ξ − z
=

∞∑
n=0

− ξn

zn+1
when |ξ| < |z|, (D.7)

1

2πi

∮

C1

f(ξ)dξ

ξ − z
=

∞∑
n=0

bn+1

zn+1
, bn+1 =

−1

2πi

∮
f(ξ)ξndξ (D.8)

C2 :
1

ξ − z
=

∞∑
n=0

zn

ξn+1
when |z| < |ξ|, (D.9)

− 1

2πi

∮

C2

f(ξ)dξ

ξ − z
=

∞∑
n=0

anz
n, an =

−1

2πi

∮
f(ξ)

ξn+1
dξ. (D.10)

From the equations (D.8) and (D.10)

f(z) =
∞∑

n=0

anz
n +

∞∑
n=0

bn+1

zn+1
(D.11)

D.2.3. N Singularity in C

If we generalize method which is applied above for N singular point,

f(z) =
∞∑

n=0

anzn +
N∑

k=0

∞∑
n=0

bk
n+1

(z − zk)n+1
. (D.12)

These singular points can be interpret as a cylinder, as an example let analysis one cylinder

case when there is no vorticity

D.2.4. Complex Velocity for One Cylinder

Let there exist a cylinder at z = 0 with radius a. Complex velocity is

f = V̄ =
∞∑

n=0

anzn +
∞∑

n=0

bn+1

zn+1
(D.13)
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which is same with equation (D.11). To find unknown coefficients an and bn+1 we must

apply boundary condition

V̄ (z).z + V (z̄).z̄|c1 = 0. (D.14)

Since there is no vorticity around z = 0, b1 = 0, equation (D.13) becomes

V̄ =
∞∑

n=0

anzn +
∞∑

n=0

bn+2

zn+2
. (D.15)

When the boundary condition is applied

bn+2 = −āna
2(n+1) (D.16)

and

V̄ (z) =
∞∑

n=0

anzn − a2

z2

∞∑
n=0

ān

(
a2

z

)n

. (D.17)

This coincides with result of Circle Theorem (4.2) for complex velocity.

D.2.5. Complex Velocity for One Cylinder and One Vortex

Let consider a vortex at z0 with strength κ and cylinder at z1 with radius a . Com-

plex velocity

V̄ (z) =
iκ

z − z0

+
∞∑

n=0

an(z − z1)
n +

∞∑
n=1

bn+1

(z − z1)n+1
(D.18)

with boundary

c : (z − z1)(z̄ − z̄1) = a2. (D.19)

If first term is expanded around z1

iκ

z − z0

= −iκ

∞∑
n=0

(z − z1)
n

(z0 − z1)n+1
(D.20)

and substituted into equation (D.37);

V̄ (z) = −iκ

∞∑
n=0

(z − z1)
n

(z0 − z1)n+1
+

∞∑
n=0

an(z − z1)
n +

∞∑
n=1

bn+1

(z − z1)n+1
. (D.21)

Boundary condition

V̄ (z − z1) + V (z̄ − z̄1) = 0 (D.22)
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is applied to complex potential (D.21)

V̄ (z − z1) = −iκ

∞∑
n=0

(z − z1)
n+1

(z0 − z1)n+1
+

∞∑
n=0

an(z − z1)
n+1 +

∞∑
n=1

bn+1

(z − z1)n
(D.23)

V (z̄ − z̄1) = iκ
∞∑

n=0

(z̄ − z̄1)
n+1

(z̄0 − z̄1)n+1
+

∞∑
n=0

ān(z̄ − z̄1)
n+1 +

∞∑
n=1

b̄n+1

(z̄ − z̄1)n
(D.24)

from the equation (D.19)

1

(z − z1)
=

(z̄ − z̄1)

a2
⇒ 1

(z̄ − z̄1)
=

(z − z1)

a2
. (D.25)

If the last two equation is substitute into equations (D.23) and (D.24)

V̄ (z − z1) + V (z̄ − z̄1) = − iκ

∞∑
n=0

(z − z1)
n+1

(z0 − z1)n+1
+

∞∑
n=0

an(z − z1)
n+1 +

∞∑
n=1

bn+1(z̄ − z̄1)
n

(a2)n

+ iκ

∞∑
n=0

(z̄ − z̄1)
n+1

(z̄0 − z̄1)n+1
+

∞∑
n=0

ān(z̄ − z̄1)
n+1 +

∞∑
n=1

b̄n+1(z − z1)
n

(a2)n

V̄ (z−z1)+V (z̄− z̄1) =
∞∑

n=0

[ −iκ

(z0 − z1)n+1
+ an +

b̄n+2

a2(n+1)
(z − z1)

n+1

]
+C.C. (D.26)

where C.C is complex conjugate. Then

−iκ

(z0 − z1)n+1
+ an +

b̄n+2

a2(n+1)
= 0 (D.27)

or

bn+2 = a2(n+1)

[ −iκ

(z̄0 − z̄1)n+1
− ān

]
. (D.28)

Equation (D.21) becomes

V̄ (z) = iκ

∞∑
n=0

(z − z1)
n

(z0 − z1)n+1
+

∞∑
n=0

an(z − z1)
n (D.29)

+
∞∑

n=0

(a2)n+1

[ −iκ

(z̄0 − z̄1)n+1
− ān

]
1

(z − z1)n+2
(D.30)

Term
∑∞

n=0 an(z − z1)
n represents flow without vortex and cylinder but since there is no

flow, an = 0.

V̄ (z) =
iκ

z − z0

− iκ

∞∑
n=0

a2(n+1)

(z̄0 − z̄1)n+1(z − z1)n+2
(D.31)

=
iκ

z − z0

+
iκ

z − z1

− iκ

(z − z1)− a2

(z̄0−z̄1)

. (D.32)
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D.2.6. Complex Velocity for Two Cylinder and One Vortex

We consider problem of vortex at z = z0 with strength κ in annular domain

D : {r1 ≤ |z| ≤ r2}. The region is bounded by two concentric circles:

C1 : zz̄ = r2
1 (D.33)

and

C2 : zz̄ = r2
2. (D.34)

Complex velocity is given by Lourent series

V̄ (z) =
iκ

z − z0

+
∞∑

n=0

anzn +
∞∑

n=0

bn+2

zn+2
. (D.35)

To find the unknown coefficients an and bn+2 we must apply the boundary conditions on

C1 and C2.

D.2.7. Complex Velocity for K Cylinder and One Vortex

Complex velocity for K cylinder with vortex is

V̄ (z) = V̄0(z) +
∞∑

n=0

anz
n +

K∑
α=1

∞∑
n=0

bn+2

(z − zα)n+2
(D.36)

where V̄0(z) represents the complex velocity of vortex.

D.2.8. Complex Velocity for Two Cylinder and N Vortices

Complex velocity for two concentric cylinder at the origin, with N vortices at

position z1, . . . , zN with strength κ1, . . . κN is

V̄ (z) =
N∑

k=1

iκk

z − zk

+
∞∑

n=0

anzn +
∞∑

n=0

bn+2

zn+2
(D.37)

D.3. Jacobi’s Expressions for the Theta-functions as Infinite Products

For complex numbers w and q with |q| < 1 and w 6= 0 first order Jacobi’s Theta

function

θ1(w, q) = 2Gq1/4 sin z

∞∏
n=1

(1− 2q2n cos 2z + q4n) (D.38)

where

G =
∞∏

n=1

(1− q2n). (D.39)

64


