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ABSTRACT

DAMPING OSCILLATORY MODELS IN GENERAL THEORY OF
RELATIVITY

In my thesis we have studied the universe models as dynamical systems which can
be represented by harmonic oscillators. For example, a harmonic oscillatior equation is
constructed by the transformation of the Riccati differential equations for the anisotropic
and homogeneous metric. The solution of the Friedman equations with the state equa-
tion satisfies both bosonic expansion and fermionic contraction in Friedman Robertson
Walker universe with different curvatures is studied as a conservative system with the
harmonic oscillator equations. Apart from the oscillator representations mentioned above
(constructed from the universe models), we showed that the linearization of the Einstein
field equations produces harmonic oscillator equation with constant frequency and the
linearization of the metric on the de-Sitter background produces damped harmonic os-
cillator system. In addition to these, we have constructed the doublet and the Caldirola
type oscillator equations with time dependent damping and frequency terms in the light
of the Sturm Liouville form. The Lagrangian and Hamiltonian functions are calculated
for all particular cases of the Sturm Liouville form. Finally, we have shown that zeros of
the oscillator equations constructed from the particular cases can be transformed into pole

singularities of the Riccati equations.



OZET

GENEL GORELILIK TEORISINDE SONUML U OSLASYON
MODELLERI

Tezimde harmonik salinici olarak betimlenebilen dinamik evren modelleri
calisildi. Bu modellereédrnek olarak homojen ve isotropik olmayan evren icin Ric-
cati diferansiyel denkleminin dpusal @nisiminden olusturulan harmonik salinici den-
klemlerini elde ettik. Buna ek olarak, Friedman diferansiyel denklemlerinin ve durum
denkleminin Friedman Robertson Walker evreninde ort@&igiinden bosonik olarak
genisleyen ve fermionik olarakilalilen evren modellerini farkhi@ilikler icin korunumlu
sistem olarak harmonik salinici denklemleyigda inceledik. Yukarida ki harmonik
salinici evren modellerinden farkli olarak, Einstein denklemlerinin Minkowski uzayinda
dogrusallastiriimasinin sabit frekansl standart harmonik salinici denklemini ve ayni den-
klemlerin de-Sitter uzayinda geusallastiriimasiyla dabsimli harmonik salinici den-
klemlerinin Uretildigini gosterdik. Bunlara ek olarak, zamandoal sHnimleme ve
frekans bilesenlerine sahip olan cift ve Caldirola tn8mli salinici denklemleri, Sturm
Liouville formu yardimiyla elde edildi. Sturm Liouville formunuirn 6zel durumlari
icin Lagrangian ve Hamiltonian fonksiyonlari elde edildi. Son olatael durumlar igin
elde edilmis salinici denklemlerinin sifirlarinin Riccati denklemlerinin kutup noktalarina

donlsebilecgini gosterdik.
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CHAPTER 1

INTRODUCTION

Modern mathematical cosmology started in 1917 when Albert Einstein applied his
gravity model in order to understand the large scale structure of the universe. This model
was built using his general theory of relativity which was constructed in 1916 by using the
Riemannian Geometry. The first problem faced by his model was that it is not static, while
it was generally believed that the universe is static. The model predicted that the universe
is expanding while observations, of that time, did not support this prediction. When
Alexander Friedman used the modified equations of the General Relativity in 1922, he got
again an expanding universe model. Einstein was enforced to modify the field equations
of the General Theory of Relativity by adding a term, called the Cosmological constant.
This term introduces a repulsion which expected to compensate the gravity attraction
to stop expansion and to get a static model. However, Edwin Hubble by studying the
red-shift of distant galaxies, in 1929 confirmed the prediction of the General Theory of
Relativity that the universe is expanding. Therefore, Einstein rejected this term as it does
not stop expansion. After Hubbles discovery, many researches started to build models for
the expanding Universe, in the context of the General Theory of Relativity, investigating
the consequences of different assumptions about the distribution of matter in the universe.
Then initial simplicity of the cosmological model has been replaced by more complex
models taking into account nonlinearity and dissipation.

The modern standard models of the universe are the Friedman-Lemaitre family
of models, based on the Robertson-Walker (1934) spatially homogeneous and isotropic
geometries. There is evidence supporting these models on the largest observable scales,
but at smaller scales they are clearly not well description. The question is (Ellis 1997): On
what scales and in what domains is the universe’s geometry nearly Friedman-Robertson-
Walker (FRW) ? What are the best fit FRW parameters in the observable domain? Why is
it FRW? How did the universe come to have such an improbable geometry?

One of the approaches to this problem is the inflation theory (Linde 1982 and Guth
1981). According to this theory quantum fluctuations in the very early universe formed the

seeds of inhomogeneities that could then grow. To examine these questions one needs to



consider the family of cosmological solutions in the full state space of solutions, allowing
to see how realistic models are related to each other and to higher symmetry models
including, in particular, the Friedman-Lemaitre models.

In the present thesis we develop general techniques for examining FRW type fam-
ily of models and their generalizations which could be useful in description of universe
at smaller scales. First of all in FRW type approach the universe is characterized by cos-
mic scale parameter which is a function of global time variable. From this point of view
the isotropic universe is a dynamical system with one degree of freedom. But at smaller
scales anisotropy of the universe could be important this is why one can consider more
general situation with three different scale parameters depending on one global time. In
this case, which is in the class of so called Bianchi family of universes, we have dynamical
system with three degrees of freedom and the FRW universe appears only as symmetric
reduction valid for isotropic case. The general anisotropic case can be described by the
Riccati equation and the last one admits transformation to the time dependent damped
harmonic oscillator. This is why such models are called the oscillatory models of the
universe. Using factorization properties of the oscillatory models we can introduce new
characteristic of the models as in the super symmetric quantum mechanics with graded
structure or fermionic and bosonic models. General oscillatory models suggest also to
consider time dependent gravitational and cosmological constants.

Time dependent metric leads also to the problem what is the physics in such time
dependent background. Concerning with this, particles and their interaction in expanding
geometry have been considered, particularly in inflation models, where at smaller dis-
tances expansion rate of the universe is very high. Perelomov showed that inflationary
universe or inflationary metrics also implies time-dependent frequency for the gravita-
tional wave modes, and this leads one to extend the canonical quantization method for
non-unitary time evolution so to include the quantization formalism for parametric os-
cillator (Perelomov 1986). Lemos and Natividade studied a harmonic oscillator with a
time-dependent frequency and a constant mass in an expanding universe (Lemos and Na-
tividade 1987). In the inflating case the Friedmann-Robertson-Walker (FRW) metrics is
producing the damped harmonic oscillator equation for the partial waves of thé field
(Grishchuk and Sidorov 1990). Vitiello et al. discussed the canonical quantization of non-

unitary time evolution in inflating Universe. Vitiello considered gravitational wave modes



in the FRW metrics in a de Sitter phase then proceeds with the quantization method for
the damped oscillator mentioned above. The doubling offheartial waves which was
called double universe was shown (Vitiello et al. 1997).

If damped oscillatory models are very important at small scales the natural ques-
tion is quantization of these models, when one can not neglect quantum fluctuations. One
of the first approaches to quantize the damped harmonic oscillator is to start with the
classical equation of motion, find Lagrangian and then Hamiltonian, which leads to the
Hamilton equations of motion and then quantize them by canonical formalism method.
This approach is called (Bateman)-Caldirola-Kanai model which derives quantum me-
chanics from a dissipative Hamiltonian. This Hamiltonian was actually proposed earlier
by Bateman, but in a classical context (Bateman 1938). This approach has the attractive-
ness of providing an exact solution, in essence because the classical equation of motion
has an exact solution and formal quantization merely has the effect of converting the clas-
sical variables into operators. A second approach uses an interaction Hamiltonian and
applies perturbation theory. One is a rather simple system (the undamped harmonic os-
cillator) that we construct an environment of the damped harmonic oscillator also exist.
These, in fact, close the system which make a realistic or artificial embedding in a larger
system that preserves energy. This way, Hamiltonians that describe a total, conserved
energy can be obtained. An example of this line of thought is the so-called doubling the
degrees of freedom approach. In fact also this idea can be traced back to a Hamiltonian
that was coined by Bateman, the so-called dual Hamiltonian (Bateman 1938). The idea
is that the damped oscillator is coupled to its time-reversed image oscillator which ab-
sorbs the energy lost, so that the energy of the whole system is conserved or closed. In
fact, since the phase space of the whole system describes the damped harmonic oscillator
and its image, the degrees of freedom are effectively doubled. Another way of looking
at this is that adding a time-reversed oscillator restores the breaking of the time-reversal
symmetry. In the earlier attempts to elaborate this idea, difficulties arose, such as, the
time evolution leads out of the Hilbert space of states, but later a satisfactory quantization
could be achieved within the framework of quantum field theory (Feshbach et al. 1977,
Celeghini et al. 1992, Blasone et al. 1996). The doubling of degrees of freedom approach
has the conceptual disadvantage that the environment to which the damped harmonic os-

cillator is coupled is artificial. But the word artificial is used for just well known systems.



Because, the structure of universe is not well defined, this approach has advantage to show
main form of dissipation as a system.

Apart from these approaches for damped harmonic oscillator with constant fre-
guency and damping coefficient, the general form of time dependent Hamiltonian which
describes a classical forced oscillator with a time dependent damping coefficient and fre-
guency were studied by Havas (1957) and this kind of system was also considered by
others (Khandekar and Lawande 1979, Lee and George and Um 1989). Moreover, Kim
demonstrated that canonical transformations in classical mechanics correspond to unitary
transformations in quantum mechanics (Kim et al. 1997). Also, Kim and Lee studied
time dependent harmonic and anharmonic oscillator and found the exact Fock space and
density operator for time dependent anharmonic oscillator (Kim and Lee 2000).

The goal of the first part of present thesis is to study dissipative geometry of uni-
verse models in General Theory of Relativity as in the following context.

In Chapter 2, we give the fundamental definitions of General Theory of Relativity
such as Christoffel symbol, Rieman tensor, Ricci tensor and Ricci scalar (Section 2.1).
The definitions of Einstein field equations both in the presence and in the absence of
matter and then the definitions of the cosmological constant are given. Moreover, the one
of the most important tensors of the GRT is the energy momentum tensor which tell us
the energy like aspects of the system given. In Section 2.2, we discussed Universe as
a dynamical system based on time and scale factor dependent metric. The solution of
the Einstein field equation with this metric produces two linearly independent equation
which is called the Friedman equations. The state equation with the Friedman differential
eqguations can help us to understand universe as a dynamical system.

In Chapter 3, The construction of the universe models begin with the idea that the
universe on large scales is isotropic and homogeneous. In the light of this, we consider
the Friedman universe models as a dynamical models because of time and scale factor
dependency. The Friedman models include four basic group of models which are the
static, the empty, the non empty models with zero cosmological constant and the non
empty models with non zero cosmological constant. These universe models also have
sub universe models (Section 3.1). In Section 3.2, the Milne’s model are discussed with
its fundamental properties and we have compared the Milne’s model with the Friedman

models.



In Chapter 4, Anisotropic and homogeneous universe models are investigated in
terms of different density and pressure functions. In Section 4.1, we have formulated the
general solution of the field equations with respect for the anisotropic and homogeneous
metrics. In the following subsections, we consider the particular results of the field equa-
tions in terms of constant density with zero pressure function, constant pressure with zero
density function and absence of both pressure and density functions.

In Chapter 5, the Riccati equation can be derived by using the Friedman equa-
tions and the equation of state, in other words, barotropic equation. The linearization
of it gives a second order differential equation. In Section 5.1, we investigate the re-
sults of the second order differential equations in terms of negative and positive curved
bosonic Friedman Robertson Walker (FRW) universe models. In Section 5.2, we consider
the same differential equation with respect to the fermionic Friedman Robertson Walker
(FRW) universe models with hyperbolic and spherical geometries. In Section 5.3, we
study the Dirac equation without a mass term in the super symmetric non-relativistic for-
malism in fermionic and bosonic universe models with respect to the negative and positive
curvatures. In Section 5.4, similar to the previous section, we consider the Dirac equation
with mass term.

In Chapter 6, we consider the cosmological constants as a function of time. In
Section 6.1, we construct the field equations and in Section 6.2, we solve the field equa-
tions. In Subsection 6.2.1, we assume that the gravitational constant is proportional to
the Hubble parameter. Hence, under this assumption, we investigate the inflationary and
radiation dominated phase of universe. In Subsection 6.2.2, we assume that gravitational
constant is inversely proportional to the Hubble parameter. Then, under this assumption,
we investigate the inflationary and radiation dominated phase of universe.

In Chapter 7, we formulate the linearization of the Einstein equations which pro-
duces gravitational waves on Minkowski background and from the Fourier expansion of
the field, we get the Fourier component of the field which satisfies harmonic oscillator
equation with constant frequency (Section 7.1). In Section 7.2, the linearization of the
same equation on the de-Sitter background produces damped harmonic oscillator systems
with respect to the Bateman approach and then the double universe models can be formed
with respect to this approach.

The second part of this thesis is devoted to study variational formulation of time



dependent harmonic oscillator.

The Lagrangian and the Hamiltonian description are vital to understand the
damped oscillator in quantum and classical theory. Hence, we give the basic knowledge
in Chapter 8. In Section 8.1, we give the definitions of the generalized coordinates and
the velocities. In Section 8.2, a formulation for the study at mechanical system which
is called least action principle is given. In Section 8.3, we discuss the Hamiltonian and
the Hamilton’s equations, the Poisson brackets and the properties of the Poisson brackets.
In Section 8.4, we consider the solution of damped harmonic oscillators for three differ-
ent cases which are called over damping, critical damping and under damping. In Section
8.5, we give the definition of the Bateman dual description and by using this approach, we
investigate the Lagrangian and the Hamiltonian functions for doublet damped oscillator
systems. In Section 8.6, we consider the time dependent Hamiltonian with time depen-
dent mass satisfying the standard damped harmonic oscillator equation which is called
Caldirola-Kanai Hamiltonian. In Section 8.7, we quantize the Caldirola-Kanai Hamilto-
nian with constant damping coefficient and frequency.

In Chapter 9, it will be shown that two different formulations of damped oscil-
lator are related with the self adjoint expansion of the Sturm Liouville problem (Section
9.1). In Section 9.2, we will discuss the particular representation for the time dependent
frequencies and the damping coefficient functions with different special functions. In
Chapter 10, Riccati representation of the special functions as oscillator type problem is
considered and some particular cases are given. In conclusion, Chapter 11, we discuss
main results obtained in this thesis.

In Appendices, we study the essential points mentioned in the main text in detail.
In Appendix A, we give the preliminaries of tensor calculus. In Appendix B, we consider
the definition and some properties of the Riccati equation. In Appendix C, we write the
important properties of the Hermite differential equation and its generating function. In
addition to this, the recurrence relations and the special results of the Hermite polynomials
are given. In Appendix D, we obtain oscillator type equation constructed by the Friedman
Equations. The oscillator equation is transformed into the &bhger equation with
m = 1/2, h = 1 and we consider this Sabdinger equation with delta potential and
we investigate the condition for positive and negative cosmological constants which are

interpreted as bound and unbound states in quantum mechanics.
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CHAPTER 2

PSEUDO-RIEMANNIAN GEOMETRY AND
GENERAL RELATIVITY

Einstein’s relativity theories, both the special theory of 1905 and the general the-
ory of 1915, are the modern theories of space and time which have replaced Newton’s
concepts.

In the special theory of relativity it is assumed that the space of events is the pseudo-
Euclidean Minkowski space which admits introduction of a coordinate systéms:

t,2t, 22, 2® and possesses a pseudo-Euclidean metric with signature, (-, —), that is,
3

ds® = (da®)* =) (da)? (2.1)

a=1

However, according to the Einstein’s general theory of relativity, the space of events is

a four dimensional pseudo-Riemannian space and it possesses a pseudo- Riemannian
metric represented by symmetric metric tenggr(z’, ) with a signaturesign[g,.,| =
(+,—,—,—) which is often used as—(, +,+,+). In each local coordinates:{ =

t,x', 2%, 2%), the pseudo-Riemannian metric
ds* = Guvdatdz” (2.2)

provides a complete information on how to measure physical distances and time lapses
between space-time points. Here and everywhere in this thesis, we use Einstein’s conven-
tion of summations for repeated indices (upper and lower). Furthermore, metric tensor
g, plays the role of gravitational field and specifies fully the dynamics of gravitating
bodies, and thus it is of a fundamental importance for the Einstein relativistic theory of
gravitation.

In the next subsections, there will be given main definitions and ingredients of
the Einstein’s as gravitational field equations and the energy momentum tensor will be
considered. Then we consider the Friedman-Robertson-Walker metric and the Friedman
equations to describe the universe at large scales. Main notations and definitions form

tensor analysis are given in Appendix A.



2.1. Curvature of Space Time and Einstein Field Equations

In pseudo-Riemannian geometry the metric is symmetric and compatible with t he

corresponding connection which is called the Levi Civita connection.

Definition 2.1 The covariant derivative in the tensor formalism is defined by using the
Levi- Civita connectiori’; ;, which physicists generally refer to as the Christoffel symbol
named for Elwin Bruno Christoffel (1829 - 1900). In pseudo-Riemannian geometry the
Levi-Civita connection is symmetrical, compatible with metric and is determined by two
conditions, the covariant constancy of the metric and the absence of torsion. In the tensor

notations, these conditions are

metricity:
Guv;a = aag;w - P)\cxug)\u - FAaugu/\ =0
no torsion:
T —l(r“ —I%.) =0
af 2 af Ba) —

From these conditions the Christoffel symbols are then uniquely determined in terms of

the metric to be

1
s = 59 (9orw + 9p = Gus ) (2.3)

where the matrix* is an inverse of the matrix,,,, defined ag*g,, = 2. By using

the Christoffel symbols the corresponding Riemann curvature tensor can be obtained.

Definition 2.2 The Riemann curvature tensor characterizes the curvature of the space

and it is defined as

ory, oL,

ozh 0x°

Rllja‘ﬁ - FT ]_—‘M - Frﬂrgo. +

vo~ rf v

(2.4)

The definitions of Ricci tensor is symmetric, and the only nonzero contraction of the

Riemann curvature tensor is given below.

Definition 2.3 The Ricci tensor is defined by

Ru=R’, =¢PRups (2.5)

uBv



Definition 2.4 We also define the Ricci scalar by
R=g¢"R,, (2.6)

The General relativistic space time is curved and its curvature is caused by matter. The

relation between curvature and the source is governed by Einstein’s field equations.

2.1.1. Einstein Field Equations

Definition 2.5  a. The Einstein equation for a gravitational field in the absence of mat-

ter and all other physical fields has the form
R, =0 (2.7)
whereR,,, is the Ricci tensor.

b. In the presence of matter, the Einstein equation has the universal form as

1 8w
G;u/ = RMV — EgMVR = —77—‘“” (28)

whereG is the gravitational Newton’s constant/(= 6.67 x 10" N.m?/kg?), c
is the speed of light in a vacuum € 2.9979 x 10°m/s). T, is called the energy
momentum tensor (we will discuss the energy momentum tensor in the next section

in details). R is the Ricci scalar and- ,, is called the Einstein tensor.

c. Modified Einstein equations are defined as

871G

ij + Ag'w/ = —FTHV (29)

whereA is the cosmological constant.

Definition 2.6 The vacuum energy density is a universal number which is proportional a
constant. This constant is proportional the cosmological constarfo clarify the defi-

nition of cosmological constant, we need to define meaning of the vacuum: it is state of
matter without any matter, radiation, and other substances. It has the lowest energy, but
there is no physical reason for that energy to be equal zero. However, in General Rela-
tivity, any form of energy affects the gravitational field, so the vacuum energy becomes a

potentially crucial ingredient. We believe that the vacuum is the same everywhere in the

10



universe is a good approximation and the cosmological constant is proportional to the

vacuum energy densipi

81G

(2.10)

2.1.2. Energy Momentum Tensor

Definition 2.7 The energy momentum tensBt” is a symmetric (2, 0) tensor and this
tensor contains all energy characteristics of the system: energy density, pressure, stress,

and so forth. If the matter is a "perfect” fluid then the following formula holds

p
ZW = (P + g) UMUV — PGuv (211)

whereU,, is the 4-velocity (it satisfie§,U, = diag (c*,0,0,0) where we assume= 1)

andp is density ang is pressure. They are related py= p(p).

In the general relativity all interesting types of matter from stars to electromagnetic
fields and the entire universe can be thought of as a perfect fluid.

Weyl's Postulate states that the cosmological substratum in general relativity is a
perfect fluid, which means the fluid with no fluid particle intersections and interactions.
Therefore, we consider the perfect fluid tensor as our energy-momentum source. There
are many other definitions, for example, Schutz (1970) defines a perfect fluid to be the
one with no heat conduction and no viscosity, while Weinberg (1972) defines it as a fluid
which looks isotropic in its rest frame. These two viewpoints turn out to be equivalent.
Operationally, we should think of a perfect fluid as one which may be completely char-
acterized by its pressure and density. Hence, (2.11) is a typical formula for applications
such as stellar structure and cosmology. In addition to this, it is generally agreed that a
perfect fluid with zero pressure is technically referred to as the dust. In the early universe,
uniform radiation is thought to have predominated.

Besides being symmetri@;*” has important property of being conserved. Conservation

is expressed as the vanishing of the divergence

v, T" =0

11



2.2. Universe as a Dynamical System

Here we are making the standard assumption that on large scales, physics is dom-
inated by gravity, which is well described by the general relativity theory, where gravi-
tational effects result from the space-time curvature. This is why we can apply general
relativity to the universe. We suppose first the existence of a universal time- a global
time coordinate. Then simplest structure of the universe is the one where metric ten-
sor components are only time dependent. If we consider an isotropic universe which is
characterized by the global time and the characteristic scale, evolution of the universe
is described by the dynamical system (Rindler 2001). In such a universe, the metric is
defined by the Friedman-Robertson-Walker (FRW) metric and the dynamical system is

described by the Friedman equations.

2.2.1. Friedman-Robertson-Walker (FRW) Metric

Before discussing full four dimensional space time, we consider the particular
case where the space is represented by a two dimensional surface in three dimensional
Euclidean space. From geometry of surfaces we know that there are three classes of

isotropic and homogeneous two dimensional spaces
e 2-sphereS? whose Gaussian curvature is positive; 0
e x-y plane(R?) whose Gaussian curvature is zexos 0
e hyperbolic plan€$?) whose Gaussian curvature is negative; 0

We will now compute what the metric for these spaces looks like. Differential

distanceds, in Euclidean spacgR?)
ds* = dx,® + dxy? (2.12)
gives the metric tensay,, = J,,,. Changing to polar coordinates§ ¢
x1 =: 1" cosf, xy=:7"sinb
it is easy to see that
ds? = dr'"* + 1" dp?

12



substituting”’ = ar by re-scaling, we have
ds’> =a (dr2 + r2d92)

A more complicated case occurs if the space is curved. For example, the surface of three-

dimensional sphere, two sphe§é with radiusa in R? is defined by
T+ 2 + 232 = a? (2.13)
Length element oR?
ds? = dxq? + dxo? + dus?

Equation (2.13) gives

1’3:\/612—9512—9522

such that

dl’3 = %dﬂjl 4 %dl’g _ r1dxy + xodxo

0x, 0o \/@2 —x,2 — 1,22

Introduce again polar coordinatesf in x,x, plane
x1 =:1r" cosf, x, =:7"sinb
(note:7’, 6 only unique in upper or lower half-sphere). The differentials are given by

dzy = cosOdr’ — r' sin §df

dxo = sin Odr’ + r' cos df (2.14)

In cartesian coordinates, the length elementdis

(x1dxy + xgdx2)2

d82 = dill'12 + dCC12 + D) D)

a? — 112 — 19

Inserting equation (2.14), we obtain

ds? = r%do? +

2
Sdr”? (2.15)

a?—r

after redefining: = ’a, we get the result

2
ds® = az( dr +7“2d92)

1—17r2
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In the spherical coordinates as

r1 = asingcosf
Ty = asingsing
T3 = acoso

(0 €[0,7], ¢ €[0,2x]). This line element is
ds®* = a? (d92 + Sin29)
The hyperbolic plane?, is defined by
x12 + x22 - x32 = —q?
If we work in Minkowski space
ds* = day® +day® — das®

then

(x1dxy + scgdxg)Q
a? + 112 + 192

dSQ = d.lflz + d$22 —

Using polar coordinates to obtain similar form of the metric as for the sphere (2.15),

d 2
ds®> = a? (1 —:rz + 7’2d62)

The analogy to spherical coordinates on hyperbolic plane are given by

x1 = asinh#cosh¢
x9 = asinh#sinh ¢
r3 = acoshf

(0 € [—o0,+0], ¢ € [0,2n]). Hence,
ds®> = a*(df? + sinh® 0d¢?)

If we summarize, the line element for sphere

d2
ds? = a2<1_: 2+T2d92)
r
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the line element for plane

ds®

a® (dr2 + r2d92)

and for hyperbolic plane

can be written as

ds? = a2< dr —|—7"2d92) (2.16)
1+ kr?
where curvature: defines the geometry
+1, spherical
k=14 0, planar
—1, hyperbolic

Because of the homogeneity, we can choose the same time coordinate for each point in
space, and at each time slice. Then we must have the isotropic and homogeneous three

dimensional metric

d 2
ds? = < N r2d92) A0 = d? +sin20de?, k=041  (2.17)

1 — kr?
The angle®) andd are the usual azimuthal and polar angles of spherical coordinates, with
(0 €0,7], ¢ €]0,2n]). As before, the parametercan take on three different values.
However, there is no constraint relating the cosmic scale facavdifferent time slices,
which can therefore be a function of time= a(t). Aside from isotropy and homogeneity,
general relativity requires that locally the line element

dr?

— Kkr2

ds® = Pdt? — dx*, dx* = d*(t) ( : + r2d92)

be invariant under the Lorentz transformations. Thus we arrive at the Friedman-
Robertson-Walker (FRW) metric, which is the metric (up to coordinate transformations)
fulfilling the cosmological principle:

dr?

— K12

ds* = Adt* — a(t)? <1 + 7’2sz) , dQ* = db* +sin*0de*, k=041 (2.18)

Coordinates, r, 6, ¢ are called co-moving coordinates. The reason is because two objects
at different spatial coordinates can remain at those coordinates at all times, provided the
proper distance between them changes with time according to how the scale:zfactor

changes with time.
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2.2.2. Friedman Equations

Definition 2.8 Friedman equations were derived by Alexander Friedman in 1922 and

they are
3(a%+ ck 8Gm
% — CQA = 62 p(t) (219)
(2ad + a* + k) 8rG
202 —A=- i p(t) (2.20)

Proposition 2.1 The Friedman equations derived from the modified Einstein field equa-

tions by using FRW metric.

Proof First, the metric which describe evolution of the space is given in the form

dr?

1 — kr?

ds* = Adt* — a(t)? < + rdeQ) . d? = d? +sin®de?, k=0+1

which we have defined before (2.18). Then, the metric tensor and its inverse are repre-

sented by using the following matrix forms

c? 0 0 0
0 —a2(t)(1—wr?)™" 0 0
Juv = (221)
0 0 —a?(t)r? 0
0 0 0 —a?(t)r?sin?0
c? 0 0 0
0 —(I—rr*)a>(t 0 0
4 = (1 —rr?)a™=(t) (2.22)
0 0 —a 2 (t)r=2 0
0 0 0 —a"2(t)r~2sin" 20

which satisfies thg"g,, = ¢ whered is Kronecker Delta tensor. Then, we use the

modified Einstein’s equations

1 8t
G/Jl/ = R’wj - §g“yR + Agﬂ’/ = _?TNV (223)

to find components of the Einstein’s tengey, in terms of Ricci tensorsz,, and Ricci

scalarR by using the metrics (2.21) and (2.22). To obtain the Ricci tensor, we need to

16



calculate Christoffel symbols and then the Riemann tensor. The Christoffel symbols are

defined by the following equation

1
Lot = 59” (Gars + 9ora — Gasn) (2.24)

whereg,, s = iggj;. After substituting metric tensors (2.21) and (2.22) into (2.24), the

nonvanishing Christoffel symbols are

a(t)
F(l]l = ng = Fg:s = @
Iy, = r(-1+7r%k)
T TK
M = 1 — kr?
Iy, = 7 (=14 r’k)sin®f
1
F%Q = F?:') = ;
%, = —cosfsind
P _dfalt)
1 2 (1 — kr?)
po e
22 2
o r2a(t)a(t)sin0
33 2
I, = cotf (2.25)
For the Riemann tensor defined by
R = =130 + 1% + 178, 1%, — T73,% (2.26)
we obtain
ad
R = —
o101 —1+ kr?
Rogoz = —r’ai
R()gog = —’I“QCLdSiHQH
R _ rfa?(Pr+ad?)
r2a’sin®0 (c*k + a?)
Riziz = — ) 3
(=1 + kr?)
1 ) .
Rozo3 = = (r4a281n29) (cz/e + az) (2.27)
For the Ricci tensor
2R,u,1/ = Rau,,ua + R,ua,ya - R,Lw,aa - R,,LLI/ (228)
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we have

3a
ROO =
a
2¢%k + 2a% + ad
Ry = 2 2
(=1 + kr?)
1
Ryy = _g{ﬂ (2¢°k + 24° + ad) }
1
Rys = —={r’sin®0 (2c% +24° + aii) } (2.29)
The Ricci scalar
R=R,,g" (2.30)

{6 (*k + a* + ad)}

R = Roog™ + Ri19"" 4 Razg™ + Rs39™ = 22 (2.31)
and the non-vanishing components of Einstein’s tensor
Ak +a?
G = —3¥
a
(*k + a* + 2ad)
Gn = —
2 (=14 1r2k)
Gy = G33=0 (2.32)
Finally, the energy momentum tensor can be written as
Too = 02,0
CL2
Ty = ——p="Ty =T 2.33
11 1- m’?)p 22 33 ( )
(2.34)

Substitution equations (2.21), (2.32) and (2.33) in equation (2.23) leads to the Friedman

Equations
3(a*+c*k) 8GT
z oA =
(2ad + a* + *K) 8rG
a202 - A = - C4 p(t)
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2.2.3. Adiabatic Expansion and Friedman Differential Equation

In this subsection, we consider the universe as a thermodynamical system. For

this thermodynamical system we have the next proposition

Proposition 2.2 Universe has to expand adiabatically
dE +pdV =0 (2.35)

whereV is the volume of a co-moving ball of the substratum and is proportionaf to
(V ~ a®) and F is the total energy in the volumié = pV = pa® (Rindler 2001).

Let us discuss the First Law of Thermodynamics and the adiabatic expansion in
detail so as to understand equation (2.35) physically. The first law of thermodynamics is
the application of the conservation of energy principle to heat and thermodynamic pro-

cesses. The first law of thermodynamics is

Proposition 2.3 The change in internal energy of a system is equal to the change in heat
added or leaved to the system minus the work done by the system.

AE - AQ - AW (2.36)
~~~ ~—~ N~~~

Changeininternalenergy Heataddedtothesystem W orkdonebythesystem

or

A — AE + AV 2.37
Q AE, p (2.37)

Heataddedtothesystem Changeininternalenergy — Workdonebythesystem

wherep andV are the pressure and volume.

Definition 2.9 Adiabatic expansion occurs where no heat enters or leaves the system and
occurs when the work is done fast. Therefore, there will be no change in the heat of the

system which means@ = 0. Hence, equation (2.38) is reduced to the following form
AE = —pAV (2.38)

The Friedman equations (2.19) and (2.20) may be rewritten as

a4k
3 = ) A = 8mp(t) (2.39)
.. .2

whereGG = c = 1.
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Proposition 2.4 The Friedman equations can be interpreted as an energy type equation
(2.39) and equation of motion type of equation (2.40)(Rindler 2001). By using equations
(2.39) and (2.40), the adiabatic expansion equation (2.35) is derived.

Proof Let us differentiate equation (2.39) in terms of timéhen we obtain

. e . 2
6ad 6@(@(—1—/{): - (2.41)

a? a?
after multiplying this equation bg; it becomes,

. e . 2
6ad  6a(a”+ k) _; (2.42)

ma? ma’

multiplying the second Friedman equation (2.40)%%

6ai  3a(a®+k) 3aA _ a
e = 3p2 2.43
8ma? 8ma’ + 8ma pa ( )

then adding (2.42) and (2.43), we get

Suisats g0 (2.44)
8ma | a? a
By using the first Friedman equation, we can wgite instead of{?)(ai—jk) — A} . Hence,
equation (2.44) can be reduced as
3%= %4 p (2.45)
a a
Multiplying (2.45) through by:?, we get
pa® + 3paa® = —3paa’
or
d d
%(pag) —|—p£a3 =0 (2.46)

Since the volumé’” of a co-moving ball of the substratum is proportionabtqV ~ a?).

Then we can writd/ instead ofz*, and equation (2.46) becomes

d

d
E(pa:s) +p—-V =0

dt
We assume the total mass energy in the volume t& bidence,F = pV = pa® and

d d
—E4+p—V =0 2.47
a” TP (2.47)
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As a result, we can represent (2.47) equation in the form,
dE + pdV =0

Finally, we have derived the adiabatic expansion equation from Friedman equations.
If we write pa® = E for the total energy densityl for the surface area of the ball and
r for the radius, we obtaidEl = —pdV = —pAdr. In the absence of thermal flow,
isotropy implies that the motion must be adiabatic. In general perfect fluids obeys a

simple equation of state,
p=wcp (2.48)
at the following calculations, we choose the velocity of lightas 1. Hence
pa’ =E (2.49)
take derivative of (2.49)
pa® + 3paa® = —3paa’
by using (2.48) in the last equation, we obtain
pa® = —3(w + 1) paa® (2.50)
After rearranging the equation (2.50), we get the first order differential equation

=—%w+Dg (2.51)

DI

Inp=-3w+1)Ina
Hence, the result is
—3(wt1)
or
pa® @t = constant (2.52)
Particularly we have

a. For pure radiationy = § thenpa* = constant (radiation/relativistic particle)
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b. For pure dusty = 0, thenpa® = constant (dark matter/dust)
c. For cosmological constant= —1, thenp = constant

Now assume that we have a dust-dominated universe, and accordingly set p=0.
Then directly fromdpa® + pdV = 0 wheredpa® = 0 thenpa® = constant (conservation

of mass). It convenient to define a constant C by the equation

gﬂ'GpCLg =: C'(constant). (2.53)

Hence, the first Friedman equation becomes,

a> 8mp Kk A
2 _ T4 2.54
a? 3 prl 3’ (2.54)
or
2 A 2
= 8”5“ ke ?“ (2.55)

Combining the last equation with equation (2.53) finally we obtain

AQ
A (2.56)
a 3

which is called the Friedman’s differential equation. In the next chapter, the Friedman

universe models are constructed with respect to this Friedman differential equations.
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CHAPTER 3

DYNAMICS OF UNIVERSE MODELS

Cosmological models are based on the idea that the universe is the same every-
where which known as the Copernican principle. The Copernican principle is related to

two mathematical properties that the space might have isotropy and homogeneity.

Definition 3.1 Isotropy applies at some specific point in the space, and states that the
space looks the same no matter what direction you look in. The isotropy of the universe is

verified by modern observations of the microwave background.

Definition 3.2 Homogeneity is the statement that the metric is the same throughout the

space.

We begin construction of cosmological models with the idea that the universe is
homogeneous and isotropic in space. In general relativity this translates into the statement
that the universe can be foliated into space-like slices such that each slice is homogeneous
and isotropic. It will be very useful, if we think of isotropy as invariance under rotations,

and homogeneity as invariance under translations.

3.1. Friedman Models

We shall discuss the solutions of the Friedman differential equation (2.56) to ob-
tain and classify all General Relativity dust universes that are homogeneous and isotropic

which are known as Friedman models. So that Friedman’s equation can be written as

22
a* = € Ade ket =: F(a) (3.1)

a
whereC = %wGpcﬁ’ is considered as a constant due to the adiabatic expansion, when the
universe expands so quickly, the slow change of the density of universe can be neglected.
ThereF'(a) is function of the scale factor and simply the abbreviation for the three terms.

Hence, equation (3.1) becomes
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and we can formally write down the solution at once by quadrature,
da
VF

Analyzing form of ' we could proceed to the full solution by using elliptic functions.

t = (3.2)

But instead of it we obtain solutions in special cases which construct the universe models
(Rindler 2001) as

a. Static Models
b. Empty Models
c. Non-empty Models witl\ = 0

d. Non-empty Models with\ # 0

3.1.1. Static Models

The static models havie = 0. This is the exceptional case in which Friedman’s
equation is insufficient and both its parent equations (2.39) and (2.40) must b& uséd.

provided that

C+Aa2
K= —+ —
a 3

After substitutingC' = ngpcﬁ and rearranging the last equation, we obtain
3K
= 8rGp+ A (3.3)

Equation (3.3) implies constant densify £constant) and under this condition we can

construct two models as follows

a. Einstein Universey(> 0 andx = 1)
This model is the first General Relativistic universe was proposed by Einstein in
1917.
Note that a positive density which means the non empty universe can not stay in

static equilibrium without\

b. Static Non-gravitating Universe & A = k = 0 anda =constant)
These conditions lead to the Minkowski metric and the model represents a static

and non gravitating universe.
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3.1.2. Empty Models

For empty models we choose the density to be zero so the coﬁ%tar@wGpa?’

vanishes. Hence, equation (3.1) reduces to the following form
@ =— —r="F(a) (3.4)

Substituting (3.4) into (3.2) we get,
da 1
t:/—F :/—A . da
Vv F(a) \/55 — K

Depending ofA andx we have different models:

(3.5)

a. A =0,k =—1,a(t) = ¢t Milne’s model

b. A>0,x=0,a(t) = exp(f) de Sitter space

c. A> 0,k =1,a(t) = beosh(;) de Sitter space
d. A >0,k = —1, a(t) = bsinh(%) de Sitter space

e. A <0,x = —1,a(t) = bsin(}) is the analog of Milne’s model in anti-de Sitter

spaceD*.

whereb = (4)~3.

3.1.3. Three Non-Empty Models withA = 0

WhenA = 0 andC # 0 the Friedman’s equation (3.1) becomes
a“=——kK (3.6)
There are three models includirg= —1, 0, —1.

a. A=0andk =0
If we choose the cosmological constant and curvature to be zero, equation (3.1)

becomes

> =— = F(a) (3.7)
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while (3.2) reduces to the following form

\/% - / \/gda (3.8)

9 1/3
a(t) = t*3¢, %3 (%) (3.9)

wherec, is integration constant. Equations (3.7) and (3.9) construct the model

and

which is called the Einstein de-Sitter universe. Moreover, we can find the density

parameter of the Einstein universe by solving equation (3.7) as follows

we mentioned” = 8%”& before. After substituting”’ into the last equation, it

becomes
_ 3 (ay
P= 8tG \ a
or
3 2
S J— A
P=5a (3.10)

whereH = £Ina(t) is called to the Hubble parameter.
When the curvature of the non empty models is different from zero, there are two

models proposed as follows

. A=0andsk =1

Under these conditions, the equation (3.1) reduces to the form

a’ = c_ 1= F(a) (3.11)
a
and (3.2) becomes
va da
vC —a

If we apply trigonometric substitution = Csin®0, da = 2Csin fcos §df, this

integral easily can be solved as follows

—1/ . @ + arcsin ] (3.12)
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This transcendental equation does not allow to fif\J explicitly. But instead of

this, we can find parametric form of the curve= a(t). Let assumeX = 2. Then,
t=C|—vVX — X2+ arcsin VX (3.13)

Proposition 3.1 SubstitutingX = sin2§ in equation (3.13), we find the relation

between time and the scale factor in the next parametric form

a1
— 20N = = 14
ax QC [1—cosx]=a (3.14)

Proof Let substituteX = sin” X into (3.13). Hence we get

t=C {— \/sin2 % — sin? g + arcsin 4 /sin? %] (3.15)

and it becomes
t==C_ [— sin % cos % + arcsin sin g] (3.16)

wheresin ¥ cos § = % sin xy andarcsinsin ¥ = ¥. Then the equation (3.16) reduces

to the following equation

_olX Ly
t—C[Q 2Slan| (3.17)

Differentiating this equation, we obtain
1
dt = 50 [1 — cos x]dx (3.18)

and the result is

which is the parametrized curve af = a(t). Thex = 1 model includes the
geometry which is the parametric equation of cycloid. Here the radius of the circle
is %C andy is the angle. The full range of for the cycloid universe i§ to 2.

Its maximal radius is given by,... = a(x = ) = C and its total duration by

tiot = t(x = 2m) = (.
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c. A=0andk = —1
If the nonempty models with zero cosmological constant is defined with the nega-

tive curvatures = —1, then equations (3.1) and (3.2) become

=41 (3.19)
a
and
Ja
t= d
/\/C—l—a ¢
Now, we can apply the hyperbolic substitution = Csinh®0, da =

2C'sinh fcosh 6d6 to solve this integral. Then we obtain

la a®> | J|a
t==C ol + o + sinh ol (3.20)
And again, let us take instead of%. Hence,
t=C [\/X X2+ sinh ! \/X] (3.21)
Proposition 3.2 SubstitutingX’ = sinh? 3 we can express this solution in the para-
metric form
dt 1
Fi §C[coshx —1l=a (3.22)

Proof Let substituteX = sinh2§ into (3.21). Hence we get

t=C {\/ sinh? g n sinh4§ — sinh™"4 /sinh? ﬂ (3.23)

and equation (3.23) becomes

t=C [sinh %cosh% — sinh~'sinh g] (3.24)

wheresinh cosh § = %sinhx and sinh‘lsinhg = %. Hence equation (3.24)

becomes
L., ..
t= §C [sinh xy — x] (3.25)
After differentiating equation (3.25), we obtain

dt = %C’[coshx — 1]dx (3.26)
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and the result is

a(x) = %C[COShX—l]

_ inh Xcosh X — X
tlx) = C [smh 2cosh 5" 5

which is the parametric form of the scale factor= «(t). The curvature con-
stant is negative: = —1, the scale factor is = $C[cosh x — 1] and time is
t = 3C[sinhy — x]. Sincesinhx > x for large x thata ~ t and this model

look like Milne’s model whose details will be given later.

3.1.4. Non-Empty Models withA # 0

If we allow arbitrary value of\, the number of possible solutions will increase. To
obtain the class of solutions of the Friedman differential equation, we begin by rewriting

it in the form

2
=1 ATCL —: f(a,A) (3.27)
a

where we assum@ > 0 and functionf(a, A) is defined by equation (3.27). This function

will serve as a kind of potential.

3.2. Milne Model

The Milne model was the first cosmological model proposed by Edward Arthur
Milne in 1932. Milne derived a model of an empty universe and it is, in fact, one of the
Friedman models corresponding to the limit— 0 with A = 0. Using Friedman equa-
tion (2.56) for flat, spherical and hyperbolic universes, let us check the Milne’s model,

under the above constraints. The Friedman equation becomes
= —k (3.28)

a. If the Milne’s universe is flat = 0, the equation (3.28) becom%% = 0 and then

a(t) = constant

b. If the Milne’s universe has the hyperbolic geometry- —1, the equation (3.28)

becomes? = 1 and them(t) ~ ¢
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c. Casex = 1 where the Milne’s universe has the spherical geometry does not have

physical meaning.

Friedman, Lemaitre, Robertson, Walker Metric (Friedman-Robertson-Walker metric) re-
duces to the Milne universe for a space-time that is a pure vacuum without matter, radia-
tion, or a cosmological constant. Milne cosmology therefore corresponds to a cosmolog-

ical solution to the Einstein equations for
T, =0 (3.29)

The Milne metric follows when the scale factor of the FRLW metric is a constant over

time, yielding
ds* = 2dt? — dr* — r*dQ? (3.30)
where
dQ¥? = db? + sin® Od¢*

r gives the proper motion distance between points in the universe and appropriate con-
stants are subsumed into relevant coordinates. The Milne metric is therefore simply a
restatement of the Minkowski metric. Whereas the FLRW metric explains the expansion

of space, Milne’s model has no expansion of space.
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CHAPTER 4

ANISOTROPIC AND HOMOGENEOUS UNIVERSE
MODELS

In the previous chapter we have derived the Friedman equations under the assump-
tion of an isotropic and homogeneous space. Because of the homogeneity in this kind of
spaces we can choose the same time coordinate for each point and the scale parameters
are the same for all coordinates due to isotropy. However, the situation is different for
anisotropic space. An anisotropic space introduces different scales for each space coor-
dinates with the same time coordinate. The simplest metric for a universe in which the
expansion rate changes with direction is given by the family of Bianchi universes (Ellis
and Mac Callum 1996).

di? = AT (t)dt* — X2(t)da? — Y (t)dy? — Z2(t)dz* (4.1)
and the cosmic time can be given by
dr = T(t)dt
As a consequence of this, the metric becomes,
di? = dr? — X2(1)dx? — Y2(1)dy* — Z*(7)dz? (4.2)

and the Riemannian metric tensor and the inverse of the metric tensor can are

2 0 0 0
o —xm) o 0

S I RS 2T
0 0 0 —221)
20 0 0

g _ | 0 X0 0 0 w3
0 0 —Y2) 0
0 0 0 —Z7r)

The Christoffel symbols are defined by the following equation,

1 o
F;);u = 59)\ (g/w,u + Guou — g,uz/,a)
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o= o
ng = i_QY
Fgg = %
11<131 = F%o :é
FgQ = Fgo :é
Fg:& = Fgo :g (4.4)
The Riemannian Tensor is
Ry = ~Tguw + Vo + T Vo = Tgula,
Ry = —XX
Ryps = —YY
Ross = —2Z
iy = VXY
Riziz = XZC;XZ
Ro = —og” (4.5)
The Ricci tensor is
Rp, = —T5,, + 15,0 + 13,10, — 3.5,
Hence,
Ry = —012 XX+X§Y+X§Z
Ry = —012 YY+Y§X +Y§Z
Ry = _0_12 77 + Z)Z(X + Ziy (4.6)
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The Ricci scalar,

R=g¢"R,,

R=g¢g"R, = " Roo + "' R1y + g% Ras + g** Ras

Then,
R_2X Y Z XY XZ YZ

=S|+ +Z 4.7
2IXT YTz Ty "Xz vz @.7)

The Einstein equations are given,

1 87G
Guzx = R,uu - EQMVR = _ﬁ

T,

1%

where the energy momentum tensor is defifigd= (c?p, —g:;p) (Rindler 2001) and the

Einstein’s tensor is

o XY+XZ+YZ
0= Xy "Xz 'vz
o X2 Y+Z+YZ
W= e2ly "z vz
o ve [ X Z+XZ"
2 7 2 |\x "z"Xxz
22y X vX]
_ 4Ly oA ra 4.8
Giss 2|y T x Tyx (4.8)
and the energy momentum tensor components are
Too = CQP
T, = X2p
Thy = Y2p
Tys = Z% (4.9)
Then, the field equations become
XYy XZ YZ| siG
— 4.1
XY xz vz|” 32’ (4.10)
Y 7 YZ 8rG
r,oz2 rey 4.11
vy "7 vz 32 P (4.11)
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X 7 XZ 871G
X, 4, X2 _ 4.12
X" 77Xz 32 P (4.12)
v X vX| TG
Y X Tvx| T 32’ (4-13)

To solve the system of the equations, let us define new variables written as

X v Z
o 0 =5 v =

(4.14)

=% (;) =t (;) in=2- (g) @.15)

Inserting into the system of equations we get the system

8rG
ul + vu + v = 50 p(T)
: 8rG
2 .2 _
O+0°+0+0v"+0v = —3C2p(7)
8rG
. 2 . 2
U4 u +0+v +uv = —362p(7)
0+0*+a+u+0u = —8;—2;])(7) (4.16)
c

the first equation does not include time derivatives thus can be considered as a constraint.

4.1. General Solution

Let us add the third and the fourth equations of system (4.16)

20 + 2u® + uv + Ou + <9+"[J+02+02> - —28;539(7) (4.17)
and subtract the second equation of the system. Then we get
20 + 2u* + uv 4 u — v = — Sgcfp(r) (4.18)
After using the first equation of (4.16), (4.18) becomes
U+ uR = 4575 (p(1) — p(1)) (4.19)
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whereR = u + v + 0. Hence (4.16) becomes

ituR = T [p(r) ~ p(r)
bror = T lo(r) ~ plr)] (4.20
bHoR = T [o(r) —p(r)]

if we add them together, we obtain the Riccati equation

Rt B = T [o(r) — p(r)] (4.21)

we can determine explicit solution of v andé for given R.

U = Uy + Up
0=0,+0, (4.22)

V=19 + Up

whereug, 6, andv, are general solutions for homogeneous equation, the particular solu-
tions areu,, 6, andv,. The general solutions are the same bu# andv are given by
different constants in the general solutions.

The homogeneous solution of the first equation of system (4.22) is the solution of
i +uR = 0 (4.23)
and is given by
g = elri FO% (4.24)

To obtain the particular solution, we multiply the first equation of the system (4.20) by an

integration constant

L . A G
)i+t puR — e =~ [p(7) = p(7)] 1 (4.25)
wherey = e/ f©d Then
d 4G
= - - 4.2
- (hu) a2 [P(T) = (7)1 (4.26)
Hence the particular solution far
G _ - T ¢
wp = gegre O [ o(e) — ple)] el Mvnag (@.27)
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and the general solutions are

tr) = RO (1452 o) - ple] el g

3c?
T G [T
or) = e RO (1+4302 / [p(&)—p@ﬂefgmmdnds) (4.28)
[ G [T :
o) = ¢ % (14 (e - ple e )

we can find explicit solution of,, v andé for given R.

4.1.1. Constant Density and Zero Pressure

In this part, we define the system of equations for the dust-dominated universe. If

the universe is dust-dominated, we can neglect the pregsure. Hence, system (4.20)

reduces to
i+uR = 4;5 p(7)
6+0R = 4;0 f o(7) (4.29)
o+vR = 4;5 o(7)

Adding the equations together, we have the Riccati equation (see Appendix B) as

R(T) + R¥ (1) = 47rGp(T) (4.30)

c2

The Riccati equation is a first order nonlinear differential equation. To linearize equation

(4.30), the transformatioR(7) = % is employed. Hence, equation (4.30) becomes

¢ — P(7)7¢ =0 (4.31)

which is a second order nonlinear differential equation. It has the form of the harmonic
oscillator with time dependent frequency(7) = —4:—2Gp. Forp < 0 itis a standard
oscillator if p = pg = constant. If the densityp is chosen as a positive constant, equation
(4.31) becomes simple hyperbolic oscillator equation. But density function is positive

definite function. Therefore, we solve the hyperbolic oscillator equation

- 4AnG
¢ =5 PP =0 (4.32)
with the general solution
¢(71) = C} sinh %\/ (porG)T 4 C4 cosh %\/ (pomG)T (4.33)
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where(; and(}, are integration constants. Let us substitute this solution/fihte %.

Hence

R M _ ZWQ cosh 24/(pomG)T + Cosinh 24/ (powG)T (4.34)
o(7) C| sinh 2 “V/ (pomG)T + Cs cosh 2 “V/ (pomG)T

In addition to this, let us multiply and divide equation (4.34)@y

R qb(T) 2 m01 COSh 62 \/ pQﬂ-G T + Slnh N / poﬂ'
Coo(r) pom C1 sinh 24/(pomG)T + cosh 2 \/W

we may writeC' instead of% and then, equation (4.35) becomes

C cosh 2/(pomG) h2\/(porG)T
R—u+v—|—9— (ponc) S8 eV (pom )T + sinh £y (por (4.36)
C'sinh 2 =/ (pomG)T + cosh 2 =V (pomG)T

We conclude that if universe has constant density function, the sum of Hubble parameters

(4.35)

which is given by

R(t) =u(r) +v(r) +0(1) = ; + g + ; (4.37)
and
d d
R(T):%(lnX%—lnY—l—an):Eln(XYZ) (4.38)

where% = Hx, % = Hy, % = H  are Hubble parameters ixi, Y, Z directions. Rates
of expansion in arbitraryX, Y, Z direction is given byR(7). Equation (4.36) can be also

written as

C + tanh 2 \/ (porG)T
(4.39)
1+ C'tanh 2 =/ (pomG)T

When we chooser = 0, R(r) becomesR(0) = 2./(pomG)C where C =
tanh <%\/(,007TG)7‘0>. Hence, equation (4.39) is rewritten

2 tanh (%\/ (POWG)%) + tanh (% (poﬂ'G)T>

R(T)Z— (pomG)

R(1) = =/ (pomQ) (4.40)
¢ 1 + tanh <%\/(p07rG)7'0) tanh <% (pmG)) T
For simplicity, we use the following identity
tanha +tanh 3 sinhacosh 8 + sinh 3 cosh «
1 +tanhatanh3  cosha cosh 8 + sinh asinh 8
~ sinh(a+ 3)
~ cosh(a+ f)
= tanh (o + () (4.41)
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then equation (4.40) is reduced to

R(r) = % (o) {tanh (% (0onC) (7 + TO))} (4.42)

Rate of expansio?(7) is considered as a kink. At timg = 2mtanh‘10, rate

of expansion changes the sign (from contraction to expansion). Now, we can write the

general solutions for, v andf explicitly. Hence

/ CR(©)ds = onG g " tanh ( VporG (£ + &J)) d¢
= Incosh E\/W T4 7o) (4.43)
and integration factor for constant density
p(r) = 70 MO = cosh 2\ /pnG (r + ) (4.44)

Let us substitute (4.43) and (4.44) in (4.28). Then the general solutions are

cosh O“G (11 + 70) 4 G 4 G

u(r) = 5 L P tanh | P02 (7 4+ 7)  (4.45)
cosh 4’)0” (T4 70)
cosh 4”0” (9 + 70) A G G

o(r) = \ [ P27 tanh 4/ WT ) (4.46)
cosh 4”0”G (T4 70)
cosh 4”°”G (13 + 70) 4 G 4 G

o(r) = < \ 2272 fanh | LU (7 1) (4.47)
cosh 4’)°’TG (T + 7o)

Hence, the mean rate of change can be written as

cosh 4"0”G (11 + 70) + cosh 4POWG (12 + 70) + cosh 4”0”G (13 4+ 70)

R(t) =

cosh 4p°”G (T + 7o)
4pomG 4pomG
+ /P tanh | LU (7 4 1) (4.48)
c c

4.1.2. Constant Pressure and Zero Density

In this part, we define the system of equations for the radiation-dominated uni-

verse. If the universe is radiation-dominated, we can neglect the density). Hence,
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system (4.20) reduces to

. e

t+uR = — 5.2 p(T)

: e

6+6R = ——p(7) (4.49)
: ArG

v+vR = — 5.2 p(T)

If we add the equations of system (4.49), the system reduces to the Riccati equation

: ArG
R+R* = — :; p(7) (4.50)
Linearizing equation (4.50) ak(7) = j—i we have
5 4nG
gz - ; p(7) (4.51)
4 G
b+ —5-op(r) = (4.52)

It is a second order differential equation. If pressure is constast p, andp > 0,
equation (4.52) becomes a standard harmonic oscillator. Whije 400, equation (4.52)

becomes a hyperbolic oscillator. Here we investigate the case

b+ ﬁpogb =0 (4.53)

c2

ArG
A:b2—4ac:—4{ 7T po]
Hence, the roots of the equation are

2
o = :i:zi\/ 7er0 (454)

the general solution of the differential equation is

¢(1) = Cysin 2\/ (mGpo)T + Cs cos % (mGpo)T (4.55)

Let us substitute this solution int® = f)(T)

(m)’

¢ _ e/ (Gp)Cicos £/ (mGpo)7 — £/ (nGpo)Cosin £/ (Cpo)T ) o

R=2_
¢ Cysin 24/(7Gpo)T + Co cos 24/ (nGpo)T

Next, multiply and divide the equation (4.56) by,

b B (mGpo) & b cos 62\/ (7Gpo)T — —\/ (7Gpo) sm—\/ (7Gpo)T

R:——
¢ g—; sin Z‘/ (mGpo)T + cos Z (mGpo)T

(4.57)
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we can writeC' instead ofg—; and then, the equation becomes

‘ Ccos 2,/(7G —sin 2,/(7G
R:u—HJ—I—H:?:z (mGpo) o gc (TCb0)T Smg )T (4.58)
o ¢ C'sin 2,/ (7Gpo)T 4 cos 21/(7Gpo)T

Whenr = 0, R(0) = %\/poﬂ'GC whereC' = tan (%\/poﬂ'G) T0-

tan (%mm> — tan (% (po?TG)T)
1 + tan (% (pgﬂ'G)TO) tan (% (pOWG)) T

For simplicity, we use the following trigonometric identity

(4.59)

R(r) = 2/ {70)

tana —tan3  sinacos3 —sinfcosa  sin(a— )
l+tanatan3  cosacosf +sinasinf  cos(a — 3)

=tan (o — ) (4.60)
Hence, equation (4.59) is reduced to the following form

R(t) = % (pomG) {tan %\/per (1 — 7'0)} (4.61)

Now, we can obtain the following terms

/TR(g)dg - 20 / " fan (QJpOTG(g &)) ¢

= Incos g\/7rp0G (T —70) (4.62)
c
and
M(T) = e_-f:o R(£)dE = COS g\/p()?TC; (T — T()) (463)
c

Let us substitute (4.63) and (4.62) in (4.28). Then the general solutions are

4p07rG
COS s T1 — T() ]_ 4 4
u(r) = 2 _ _\/ PG \/ ng (r—1) (4.64)

CoS /4p07rG 3
COS\/%(E—TO) 1 [4pyrG 4ponG
c PoT DoT
v(T) = — — 5\/2—2 tan\/ 22 (tr—1) (4.65)
cos \/ 2= (T — 7o
cos\/ BEE (15— m0) 1 [dponC 4pomG
c Do DoT
0(r) = — - 5\/ > tan\/ o (T—m)  (4.66)
cos \/ 5= (T — 1)
The mean rate of chand®(7) is
COS 4/ 4p°7rG (11 — 70) + cos 4/ 4p°7rG (19 — 70) + cos 4/ 4p°7rG (13 — 70)
R = \/m
07T

4poG 4pomG
\/ pZQ tan 4/ p; (T — 7o) (4.67)
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4.1.3. Absence of Pressure and Density

In the absence of both pressure and density the system (4.20) is reduced to the

following equation

u+uR = 0
0+0R = 0 (4.68)
v+uvR = 0

Let us add the equations together and the result is
R+R* = 0 (4.69)

whereR = u + v + 6. Similar to the previous case, we get the Riccati equation. Let us

linearize (4.69) by using transformatidt(t) = 9(r) Hence, it becomes

()’
;
- =0 4.70
5 (4.70)
we can easily recognize that,
¢ = C (4.71)

and we know thak(t) = j—ﬁ. Then, the equation (4.71) becomes,

o(r) _ G
¢<T> 017' + C()

R(#) (4.72)

we reach the last form the solution by dividing the numerator and the denominatgr by
and let say thaf’ = &
o(r) _ 1

R(r) = U(T)—FU(T)—FH(T):%—T_’_C

(4.73)

This model has a singularity at= —C. When cosmic time equivalent @, the volume
of the anisotropic universe goes to infinity. Thus= —C can be represented as Big

Bang.
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CHAPTER 5

BAROTROPIC MODELS OF FRW UNIVERSE

In Chapter 4, it was shown that mean value of the rate change of cosmic scales
satisfies the Riccati equation. In FRW model the rate of cha;rigethe Hubble parame-
ter. We are going to show in this chapter that the Hubble parameter satisfies the Riccati
equation.

Barotropic cosmological zero modes are simple trigonometric and/or hyperbolic
solutions of second order differential equations of the oscillator type equation and these
oscillator type equations can be reduced to FRW system of equations when it is passed
to the conformal time variable (Rosu and Ojeda-May 2006). In this chapter, we briefly
review these differential equations in mathematical a scheme.

Barotropic FRW cosmologies in co-moving timebey the Einstein-Friedmann
dynamical equations for the scale facteft) of the universe supplemented by the

(barotropic) equation of state of the cosmological fluid

g = —$(P+3p) (5.1)
Hy? = (g)2 - 87T3Gp — % (5.2)
p = (y=1p (5.3)

wherep andp are the density and the pressure of the perfect fluid of which a classical
universe is usually assumed to be made;of 0, £1 are the curvature indices of flat,

closed, open universes ands the constant adiabatic constant.

5.1. Bosonic FRW Model

Proposition 5.1 Passing to the conformal time variable defined throughlt = a(n)dn,
we can combine the three equations (5.1-5.3) in a Riccati equation for the Hubble param-

eter Hy(n) as follows

Hy' () + cHZ (n) +cx =0 (5.4)

whereHy(n) = £ = &£1na
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Proof Let substitute (5.3) in (5.1) and then the equation (5.1) becomes

B 4G

g = ——-[Bv=2)) (5.5)

and by using the equation (5.5), we get the densig

P= _47?(;%(371— 2) (5-6)
insert (5.6)p into (5.2). Hence
(3 ) S . (5.7)
a a(3y—2) a?
arrange equation (5.7) and then we obtain
0@ =2~ G-z 2

for simplification in notation, let us take that= (%7 — 1). Hence, equation (5.8) is

reduced to the following form
_a_ 0(9)2 1Ll (5.9)
and multiply equation (5.9) by?. Thus
—ia = ca® + ck (5.10)

By using conformal time, we can construct equation (5.10) in terms of Hubble parameter:

dt
dt = a(n)dn = an = a(n) (5.112)
by using the chain rule, we get
da  da dt a
e S SIS AR Z = 5.12
" dt i = 4 = aa(n) = L =0 ( )

the second derivative in terms gis given by

da d*t
)%+ d_jd_nQ = a’ = da® + ad’ (5.13)

d?a B da

d’a _ d'a df
dn?  dt?

(G

In the light of equations (5.12) and (5.13), the second derivativg0fin terms of time

can be written as

i=— — — (5.14)
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Substitute equations (5.14) and (5.12) in (5.10). Thus, we obtain the following equation

/ " 12
()2 + ok = — {a— . “—2} (5.15)
a a a

it is clear thatty(n) = < andH'y(n) = “7‘;—22 consequently, (5.15) is

Hy'(n) + cH3(n) +ck =0

Equation (5.4) for the Hubble paramet®(n) is the Riccati equation (see Ap-
pendix B). To linearize this Riccati equation, the Cole-Hopft transformation should be

given asHy(n) = l%. After substituting this transformation, the linearized equation is

c

given
—— +ck = (5.16)
Let arrange (5.16) as follows
W= cepw =0 (5.17)

wherec, , = —rc. Moreover, the particular Riccati solutions for the positive and negative

curvature indices are discussed (Rosu and Ojeda-May, 2006) as follows.

a. Fork =1

The positive curvature index means that the constanbecomes
Cop = —1l.c=—cC (5.18)
Hence, equation (5.17) becomes
W'+ w =0 (5.19)

which is the standard oscillator equation and the solution of this second order dif-

ferential equation is obtained as

w(n) = Asin(cn) + B cos(cn) (5.20)
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this solution corresponds to under damped harmonic oscillator. The solution of

(5.20) can be reduced to the following equation
w1 p(n) = C4 cos(cn + d) (5.21)

whered is an arbitrary phase and, is the integration constant. If we substitute
(5.21) and its first derivatives in the Hubble parameter, the Hubble parameter be-

comes

_lw _(sin(cn—l—d)

Hy™(n) = -~ S d)) = —tan(en + d) (5.22)

where the symbo(+) means positive curvature. Equation (5.22) is the particular
solution of Riccati equation for = 1. We conclude that the Hubble parameter is

including a periodic motion as oscillations.

. Fork = -1

For the negative curvature, the constanyis transformed into the following
Cop=—(—1).c=c (5.23)
Hence, (5.17) becomes
W= cFw=0 (5.24)
The solution of this differential equation as
w(n) = Dsinhen + FE cosh en (5.25)

which corresponds to over-damped harmonic oscillator. In addition to this, equation

(5.25) can be written as
w_1(n) = C_sinhen (5.26)

and the Hubble parameter of bosonic case for the open universe, in other word the

negative curvature, is

1o/ h
Hy™(n) = —2 T coth cn (5.27)
cw  sinhen

where the symbo|—) means negative curvature. Equation (5.27) is the particular
solution of the Riccati equation fer = —1. As a result, we consider that the Hub-

ble parameter is including the hyperbolic type motion as over damped oscillations.
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Generally, the two Hubble parameter are obtained?gs(n) = cothcn and
Hy"(n) = —tan(en + d) which completely depending on the geometry of the universe.
Moreover, Hy (1) = cothcn and Hyt(n) = —tan(cn + d) are related to the common

factorizations of equation (5.17) and then

(% s CH0> (dif? - cHo>w 0 (5.28)
and
(chc;) — cdd—z(]w — CQng) =0 (5.29)
by using (5.29), we get
w" — c(H) + cHS)w =0 (5.30)

Equations (5.30) and (5.28) are equivalent. Then we can combine them as follows,

d d ,
(d_ﬁ + CH()) (d_n - CHO)w =w" —c(H)+ cH)w =0 (5.31)

Borrowing a terminology from super symmetric quantum mechanics, we call the solutions

w as bosonic zero modes in terms of scale factors. First, the Hubble parameter is defined

as

H=-—="= (5.32)

=Ca (5.33)
where(' is integration constant. Generally, we can write
we ~a (5.34)
this result can be specified for both geometry for closed and open universes as follows
a. For Spherical Geometryx = 1
WL~ ar (5.35)

and

wip(n) ~ cos(en + d) — ayp ~ [cos(cn + d)]% (5.36)

As a consequence, we can say that for bosonic zero modes, the universe with closed

geometry has the scale factor which shows oscillator character as contracting and

expanding.
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b. Fork = —1

1

W_1p° ~ Q-1p (5.37)

wo1(n) ~ sinh e — a_yy ~ [sinher]e (5.38)

Finally, we can conclude that the universe with open geometry has the scale factor
showing over damped oscillator character as contracting and expanding universe

for bosonic zero modes.

5.2. Fermionic FRW Barotropy

A class of barotropic FRW cosmologies with inverse scale factors with respect
to the bosonic ones can be obtained by considering the supersymmetric partner (or
fermionic) equation of equation (5.30) which is obtained by applying the factorization

brackets in reverse order

d d
(d_T] — CH()) (d_n + CH())w =0 (539)
and
2 H
(2—7;; + cdd—now — c2ng) =0 (5.40)

we can write the equation (5.40) as follows
W' —c(—H)+ cH})w =0 (5.41)
Equation (5.41) can be rewritten as
w" = c.cppw =10 (5.42)

where

c(1 + 2tan? cn), if k=1

Cef(n) = —Hy+ cHS = (5.43)

c(—1+ 2coth*cn), ifr=—1
denotes the supersymmetric partner adiabatic index of fermionic type associated trough
the mathematical scheme to the constant bosonic index. Notice that the fermionic adia-
batic index is time dependent. The fermionisolutions are

c
-— 5.44
WLt cos(cn + d) ( )
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and

C

(5.45)

w_ e
b sinh cn

for k = 1 andk = —1, respectively. In addition to them relation between scale factor and

w IS the similar as before

we ~a (5.46)
a. Fork =1
We g~ an (5.47)
¢ 1

wi,y(n) ~ cos(en +d) — ay,y ~ [cos(en + d)] ¢ (5.48)

b. Fork = —1
w_17f% ~ Q_1f (549)
w_1,7(n) ~ sinhen — a_y y ~ [sinh cn]_% (5.50)

Summary, we see that the bosonic and fermionic cosmologies are reciprocal to each other,

in the sense that

o=

arp = ayp ~ [cos(cn + d)] (5.51)

and

_1
c

arr = asg ~ [cos(en + d)] (5.52)

Both equations have the positive curvature. From multiplication of two equations (5.51)
and (5.52), the result is

1 —
c

1
c

a1pa1,f = apag g = [cos(en +d)]c[cos(en +d)] e =1 (5.53)

For negative curvature, the relations between the scale factors of bosonic and fermionic

cases are given in the following equations

1
c

(5.54)

a_1p = a_y ~ [sinh en]
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and
a_1,f = a_y ~ [sinh cn]_% (5.55)

Again, the multiplication of these two quantity gives the same result

a_1p0-1f = a_pa_¢ = [sinh cn]%[sinh cn]_% =1 (5.56)
Then, we can write these results in general
aipay s = constant (5.57)

Thus, bosonic expansion corresponds to fermionic contraction and viceversa

5.3. Decoupled Fermionic and Bosonic FRW Barotropies

The Dirac equation in the super symmetric non relativistic formalism has been
discussed by Cooper (Cooper et.al 1988). They showed that the Dirac equation with a
Lorentz scalar potential is associated with a SUSY pair of &lihger Hamiltonians.

Rosu made an application to barotropic FRW cosmologies that he found not to be a trivial
exercise except for the decoupled "zero-mass” case (Rosu 2006).
A matrix formulation of the previous results is possible as follows. Introducing

the following two Pauli matrices. The cosmological matrix equation

oy D,W + o, (icHy)W =0 (5.58)

W1 . . T
whereWW = is two component zero-mass spinat, denotes the derivative in
W2

terms of the conformal timg. Theno, ando, are defined as the following matrices

0 —1
v 0

= —10y = —1

and

01
10

f=o0,=

Equation (5.58) is equivalent to the following decoupled equations

0 —1 01 . w1
D, + (icHp) =0 (5.59)
t 0 10 Wy
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then

0 i(CH() — Dn) w1
Z(Dn + CHO> 0 W9

—0 (5.60)

hence from matrix multiplication, we get the system of equations
i(cHy+ Dy)wy; =0 (5.61)
and
i(cHy — Dy)ws =0 (5.62)
Let us solve these equations one by one. First, equation (5.61) is reduced to
Dywy = —cHyw, (5.63)

for k = 1, the Hubble parameter ;" = — tan(cn + d). Substitute this in (5.63). Then

Dywy = ctan(en + d)wy (5.64)
solution of (5.64) is
A
= 5.65
1 cos(cn + d) ( )

whereA is integration constant. In general,

1
~— 5.66
1 cos(cn + d) ( )

For negative curvature = —1 and the Hubble parameter for negative curvature is defined

asH,~ = coth ¢n. Substitute this in (5.63) and then we get
Dy,wy = —ccoth enuw, (5.67)

the solution of (5.67) is obtained as

B
W = —— (5.68)
sinh cn
whereB is integration constant ang, is
1
Wy ~ — (5.69)
sinh cn
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We will use the same procedure in order to get solutionsfEquation (5.62),

i(cHy — Dy)wy =0 (5.70)
and
Dyws = cHyws (5.71)
for k = 1, the Hubble parameter H,* = —tan(cn + d). Substitute this in equation
(5.71) and it becomes
D,wy = —ctan(cn + d)ws (5.72)
then the solution is given as
wy = Ccos(cn + d) (5.73)

where(' is integration constant. Equation (5.73) can be written as
wy ~ cos(en + d) (5.74)

For v = —1, the Hubble parameter By~ = coth ¢n. Substitute this in equation (5.62)

as
Dywy = ccoth enws (5.75)
The solution is
we = Dsinhen (5.76)

whereD is an integration constant and the function is

wo ~ sinh cn (5.77)
In summary,
Wy~ —
k=1 cos(en+d) (5.78)
wo ~ cos(cn + d)
and
wy ~ sinlllc
k=—1 " (5.79)
wy ~ sinh cn
. w1 wr . . . .
Thus, we obtainl” = = . This shows that the matrix equation contains
5) Wy

two reciprocal barotropic cosmologies same as the two components of the Bpinor
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5.4. Coupled Fermionic and Bosonic Cosmological Barotropies
Consider a "massive” Dirac equation which is defined as
oy D,W + o, (icHy + m)W = mW (5.80)

wherem is equivalent to the mass parameter of a Dirac spinor. Equation (5.80) can be

written as

i 01\ wy wy
D, + (icHy +m) =m
v 0 10 7)) )

is equivalent to the following system of coupled equations as follows

(’ZDW + iCHQ + m)w1 = Mwsa (581)

(—iD,, + icHy + m)wy = mw; (5.82)

These two coupled first order differential equations are equivalent to second order differ-
ential equations for each of the two spinor components. First, we formulate the second
order equation for bosonic case whichus To do this, multiply equation (5.82) bi

and then it becomes
%(—iDn +icHy + m)wy = wy (5.83)
Insert (5.83) into equation (5.81) instead.gf Then
[iD,, + icHy + m][%(—iD77 +icHy + m)|ws = mwsy (5.84)
and
D?,wy — cHy'wy — ¢ Hy*wy + 2iem Howy = 0 (5.85)
after arranging (5.85), we obtain
D?,wy — c[Hy' + cHy? — 2imHglwy = 0 (5.86)

Hubble parameter of the bosonic case for closed univerégis= — tan(cn + d) and

Hy" = —c.sec?(cn + d). Substitute them in (5.86). Hence

D?,wy — c[—c.sec®(cn + d) + ctan®(cn + d) + 2im tan(cn + d)Jws =0 (5.87)
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by using trigonometric identityec?  — tan? = 1, we find the solution as

D?,wa + c[c — 2imtan(cn + d)|ws = 0 (5.88)
we can write (5.88) in terms of different notation as

w5 + clc — 2imtan(cn + d)]wty =0 (5.89)

To obtain the functionu,, we are using Hubble parameter which belongs to the open
universe for bosonic caseH,” = cothcn and its derivative isH,” = —c.csch?en.

When we insert them into (5.86), we obtain
D?,wy — c[—c{csch®en — coth®en} — 2im coth enjws = 0 (5.90)
using hyperbolic identityoth?n — csch?n = 1, we get the solution as
D?,wy + ¢[—c + 2im coth enwy = 0 (5.91)
In different notation, equation (5.91) becomes
w4 c[—c+ 2imcothen|w™2 =0 (5.92)

We will apply the similar procedure to find the fermionic spinor component. Equation

(5.82) is divided by~ as follows
%[(mn +icHy + m)wn] = ws (5.93)
and insert thisu, function into equation (5.81) and then it becomes
(—iD,, +icHy + m)%[(iD77 +icHy + m)w| = Kw,y (5.94)
hence
D?, w1 + cHy'wy — ¢ Hy*w; + 2iemHow, = 0 (5.95)
In a more appropriate form, equation (5.95) becomes
D?wy + c[Hy — cHy? + 2imHylw; = 0 (5.96)

For the fermionic case, Hubble parameter of the closed universel() is similar to the
bosonic case which i#," = — tan(cn + d) and its derivative,*" = —c.sec?(cn + d).

Substitute them in equation (5.86). Thus,

D?, w1 + c[—csec®(en + d) — ctan®(cn + d) — 2im tan(cn + d)Jw; =0 (5.97)
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from trigonometric substitution, we can write equation (5.97) by using the following

trigonometric identitysec?(cn + d) + tan®(cn + d) = 1 + 2tan®(cn + d) as
D?, w1 + c[—c{l + 2tan®*(cn + d)} — 2im tan(cn + d)|w; = 0 (5.98)

Moreover,

c(1 + 2tan®c if k=1
cup(n) = —H+ cHy = ( ) (5.99)
c(—1+4 2coth®cn) if K = —1
shows that(1+ 2tan®(cn +d)) is equivalent to the fermionic index for the= 1. Hence,

we can write (5.98) as follows

D?,w; — cleyf(n) + 2iK tan(cn + d)]w; = 0 (5.100)
in other word,

wty — cler,p(n) + 2K tan(en + d)|Jw™ =0 (5.101)
for k = —1, Hy~ = cothcn and its derivative isy™" = —c.csch?cn. When we insert

them into (5.96), it becomes
D?,0; + c[—c{esch*en + coth?en} + 2im coth enjw; = 0 (5.102)

using trigonometric substitution, we can write:h?cn + coth?cn = —1 4 2coth?en and

combination with equation (5.102). The result is
D?, w1 + c[—c(—1 4+ 2coth®cn) + 2im coth cnlw; = 0 (5.103)
and
w1 = c[—c_1,¢(n) + 2im cothenlw™ =0 (5.104)

The solutions of the bosonic equations are expressed in terms of the Gauss hypergeometric

functions, F; of complex parameters that can be written in explicit form
z
Zg_k2w+2(77) = AzlklgFl []{31 + k‘g + 1, k‘l + k’g, 1 + 2]61; —51]

. 4
_Be—z(1+2k1)7r(_)k12F1[_k1 + ko, —ky 4+ ko + 1,1 — 2ky; —%] (5.105)
21

and

V4
24_k4w_2(77) = C23k32F1 [kg + kg, ks + kg + 1,1 + 2ks; 53]

4k
+D(—= )"y Fy[—ks + ks + 1, —ks + ka, 1 — 2ks; %] (5.106)

23
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where the variables; (i = 1, ...,4) are given in the following form

zp =itan(en+d) — 1, zy =itan(en+d) + 1 (5.107)

z3 =cothen+1, z4 =cothen —1 (5.108)

and thek parameters are

1 2m, L 1 2m. L

k1:§(1—7)2, k2:§(1+7)2 (5.109)
1 2m. L 1 2m. 1

k3—§(1+z—c )2, /f4:§(1—z—c )2 (5.110)

whereasA, B, C, D are constants (Rosu and Perez 2004). Based on thesero-

modes, we can introduce bosonic scale factors and Hubble parameters depending on the

parametem
+ 1 1 d +
Umy = (W2)e, Hpyy(n) = Ed_n(lng 2) (5.111)
_ 1 1d B
m,— = (W 2)e, Hp-(n) = Ed_n(lng 2) (5.112)

and similarly for the fermionic components by changisit, to w®; in equations (5.111)
and (5.112).
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CHAPTER 6

TIME DEPENDENT GRAVITATIONAL AND
COSMOLOGICAL CONSTANTS

In relativistic and observational cosmology, the evolution of the universe is de-
scribed by Einstein’s field equations together with the equation of state (for perfect
fluid)which we discussed in the second chapter. Einstein’s theory of gravity contains
gravitational and cosmological constant and the gravitational con&taotays the role
of a coupling constant between geometry of space and matter content in Einstein’s field
equation (Singh 2006). In evolving universe, it appears natural to look at this constant as a
function of time. Dirac (Dirac 1937a) and Dicke (Dicke 1961) have suggested a possible
time varying gravitational constant. The Large Number Hypothesis (LNH) proposed by
Dirac (Dirac 1937b, 1938) leads to a cosmology wh&rearies with the cosmic time.

In addition to this, many cosmologists believe that the valu& &f a function of
time (Canuto et al. 1977b). For example, Carvalho (Carvalho 1996) studied a spatially
homogeneous and isotropic cosmological model of the universe in general relativity by
using the equation of state= (v — 1)p, where they, varies with cosmic time. A unified
description of early evolution of the universe has been presented by him in which an
inflationary period is followed by a radiation-dominated period. His analysis allows one
to consider botlG andA. A spatially homogeneous and isotropic Friedman Robertson
Walker line element is considered with variables G @nth general relativity by Singh
(Singh 2006). His approach is similar to that of Carvalho (Carvalho 1996) but with time-
dependent gravitational and cosmological constants. Singh (Singh 2006) applied the same

gamma-law equation of state in which the parametdepends on scale factoft).

6.1. Model and Field Equation

The Einstein field equations are considered in zero-curvature Robé@visdier
cosmology with perfect fluid source and time-dependent gravitational and cosmological
constants. Exact solutions of the field equations are obtained by using the gamma-law

equation of state = (v — 1)p in which ~ varies continuously with cosmological time.
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The functional form ofy(a) is used to analyze a wide range of cosmological solutions at

early universe for two phases in cosmic history

a. Inflationary phase

b. Radiation-dominated phase

The corresponding physical interpretations of the cosmological solutions will be dis-
cussed in this section. We consider a spatially homogeneous and isotropic Robertson-
Walker line element

dr?

1 — kr?

ds* = dt* — a(t)? + 72(d6* + sin*0dp*) (6.1)

wherea(t) is the scale factor and = —1, 0 or +1 is the curvature parameter for open,
flat and closed universe. The universe is assumed to be filled with distribution of matter

represented by energy-momentum tensor of a perfect fluid

T,uz/ = (p + p>UuUl/ — PG (62)

where we choose = 1 for simplicity, p is the energy density of the cosmic matter and

is its pressurel/, is the four velocity vector such that,U* = 1. The field equations are
those of Einstein but with time-dependent cosmological and gravitational constants and
given by Weinberg (1971)

1
le — ag‘uVR = SWG(t)T#V + A(t>g,u,1/ (63)

whereR,, is the Ricci tensor7(¢) andA(t) being the variable gravitational and cosmo-
logical constants. An additional equation relating the variatiors ahd A with time can
be obtained by taking the covariant divergence of equation (6.3), and taking into account

the Bianchi identity. This gives
87GT,, + Ag,|” =0 (6.4)

Equations (6.3) and (6.4) can be considered as the fundamental equations of Gravity

andA coupling parameters. Using co-moving coordinates
U, = (1,0,0,0) (6.5)

in equation (6.2) and with line element (6.1), Einstein’s field equation (6.3) yields two
independent equations which are called Friedman equations

2ad + a®> + Kk
— -

A(t) = —8G(t)p (6.6)
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3(a+ k)
a2

A(t) =8nG(t)p (6.7)

After arranging equations (6.6) and (6.7), the Friedman equations become

3i = —4nG(t)a — {3}9 +p— 47/:C(j(>t)] (6.8)
3a* = 87 G (t)a® {p + 87/:((;()15)1 — 3K (6.9)

Proof Firstly, multiply Equation (6.6) by three and then we get

2 2
3i = —127G/(t)ap — g <“+A—“+“) (6.10)
a
and from equation (6.7) we obtain
o 81G(t)a? A
P — ) = 6.11
¢ 3 (p * 87rG(t)> " (6.11)
Substitute (6.11) in equation (6.8). Rearranging this equation
. A(t)
= —4nG(t — 6.12
3a 7G( )a[3p+p 47rG(t)} ( )

similarly, we rearrange equation (6.7) easily as follows,

3a* = 87G(t)a® [p + 87/:C(;()t)} — 3k

Proposition 6.1 In uniform cosmologys = G(t) and A = A(t) so that conservation

equation (6.4) should be in the form

A =—81Gp (6.13)
Proof
(87GTyw) + Agu)” =0 (6.14)
and
87 | G0 T + GO T | + M) g + AW gy, = 0 (6.15)
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We know thatl},, = g,.., = 0 due to energy conservation of energy momentum tensor

(6.15) is reduced to the following form
87G(t)u Ty + A(t)., g =0 (6.16)
For the time component, equation (6.16) becomes as
8mG(t).0T00 = A(t) 0900 (6.17)
Hence, for the time compone(ii0), energy momentum tensor becomes
Too = —pgoo + (p + p)uguo = p (6.18)

whereg,,, is metric tensor of the Minkowski space in the matrix form

1 0 0 0
0 -1 0 O
ur = (619)
0 0 -1 0
0 0 0 -1

Let us substitute equations (6.18) and (6.19) in equation (6.17) with respect to time. Then

it becomes
A= —87er

Proposition 6.2 Equations (6.6) and (6.7) can be rewritten in terms of the Hubble pa-

rameterd
d a
H=—Ina=- .
ina=— (6.20)
as follows
. 9 471 1
and
8w 1 K
2 [ — — —_——
H* = 3 G(t)p+ 3A(i&) e (6.22)
Proof Take the derivative of equation (6.20) in terms of time. Hence
i i (@)
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and using equations (6.20) and (6.23), we obtain
: , a
H+H =- (6.24)
a
let us insert equation (6.24) into (6.8). Then, it becomes
. 9 41 1
H+ H® = —?G(t) (3p+p) + gA(t)

similarly, substitute/7? instead of(% Ina)? = Z—z in equation (6.9), we get

81 1 K
H? = — —A(t) — —
3 G(t)p+ 3 (t) e

The system of equations (6.13), (6.21) and (6.22) may be solved by a physical
assumption such as he form of the equation of state and additional explicit assumption on
H, G(t) andA(t) in terms oft or H (which itself depends on cosmic time). The equation

of state is defined as

p=(—-1p (6.25)

where~ is an adiabatic parameter varying continuously with cosmological time so that
in the course of its evolution the universe goes through a transition from an inflationary
phase to radiation-dominated phase. Carvalho (1996) assumed the functional fprm of

depends on scale factor as

2 b
a b a
~(a) = §A<a°a> ; - <> (6.26)
Als) + (%)

where A is a constant and is free parameter related to the power of cosmic time and

liesO < b < 1. Hereaqy is reference value such thatdf < ag, inflationary phase of
the evolution of the universe is obtained anddos- ay, we have a radiation-dominated

phase. Substituting equation (6.25) in (6.21), we obtain
. 9 47 1
H+H* = —?G(t) By —=2]p+ §A(t) (6.27)

Proposition 6.3 We eliminatep between equations (6.21) and (6.27) for zero curvature
(k = 0). Then, we get

1/3 Gt)A  1A(t
H’H+H2:§(§7—1> é)a +3 C(L) (6.28)

where a prime denotes differentiation with respect to the scale factor
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Proof To obtain equation (6.28), first of all, in the light of equation (6.13) we firas
1A
=——— 2
p 3 G (6.29)

then insert thig into equation (6.27). Hence,

. 47 A 1
H+H*=—-—Gt)[3y-2] | —— | + =A(¢ 6.30
G0 B ]( M) FAW) (6.30)
after arranging equation (6.30), we get
: 1/3 GA 1
H+H =-(>7-1 . At 6.31
r =3 (30-1) 2924 a0 (631

Solving equation (6.31) is easy. We need the derivatives with respect to the scale factor

a(t), instead of time derivation. To obtain this, we use the chain rule

g AH _dHda _

G T daar (6.32)
. dA  dAda .
- dG  dG da /.
d a )
H=—Ina=-—a=Ha (6.35)
dt a

Substitute (6.32), (6.33), (6.34) and (6.35) in equation (6.31). As a result of this substitu-

tion, we get

1/3 GH)Na 1
! 2 _ — (2. -
H'Ha+ H* = 3 (27 1> G T30

and then multiply the equation bb/ Finally, we obtain the following equation

O H? 13 GHN 1A
1“”7—5(57—1) Ga 3 a

6.2. Solution of The Field Equation

In this section, we discuss the solutions of the field equation for two different
early phases which are inflationary and Radiation-dominated. Equation (6.28), involving

H, A(t), andG(t) admits a solution fofd only if A(¢) andG(t) are specified. According
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to the LNH (Dirac 1937a, 1938), gravitational constaharies linearly with the Hubble
parameter.G decreases with the age of the universe. Chen and Wu built a dimensional
argument to justifyA ~ a=2? (Chen and Wu 1990). Lima and Carvalho argued in favor of

a new term of the typd ~ H? (Lima and Carvalho 1994). Thus, the phenomenological
approach to investigate the cosmological constant is generalized to include a term propor-
tional to 2. Singh obtained the solution of equation (6.28) by taking certain assumption
on G andA (Singh 2006).

6.2.1.G(t) ~ H
Proposition 6.4 We assume that

G(t) = aH (6.36)
and

A(t) = BH? (6.37)

wherea and $ are dimensionless positive constants. Substituting the valigsand
A(t) from equations (6.36) and (6.37) in (6.28), we obtain

H
H + <M - w) 2y (6.38)
3 a
Proof
H? 1/3 Gt)AN  1A(t)
HH+— = Z([2y-1 - .
i a 3 (27 ) G'a 3 a (6.39)
2 2 2
[0 1(%—1) 26H +16H (6.40)
a 3\ 2 a 3 a
H’+E = 1(%—1) 25H+15—H (6.41)
a 3\ 2 a 3 a
H 2 1 H
H+= = (vﬁ - =0+ —ﬁ) — (6.42)
a 3 3 a
H
H + (@ _ ﬁ) ~— =0
3 a
Proposition 6.5 The solution of the first order differential equation (6.38) is
C
= o (6.43)

where(' is the integration constant.
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Proof At the first stage, to solve the equation, we use separation of variables

df _ Bt3
() o4

by using (6.26) in equation (6.38), we formulate the following equations
B+3  _AAE+ (5L

dH ) (o
T ‘/ 5 M3y (ay

mH = — (@) 1na+ﬁ/(ilA(%) ) “i)b)]da (6.46)

)] — (6.45)
(

Let us definekX as

2 Q a\b
K= 5/ 2)(;0) da (6.47)
(g) a
and doing the substitutioft = = = da = aed=z in (6.52), we obtain
Az? + dz
Zb—S
K = 4
B= / d+5 )/[A+zb 2]dz (6.49)
and after the second substitutidn+ 22 = u, 2" ~3dz = 2%
4 4 b 1 du
S LR I -
4 2
= ﬁglnz+ﬁglnu+ln0
= ﬁ§1n2+5§1n[,4+zb—2] +InC (6.50)
HenceK follows as
K= 5 In(-- ) 5 I[A(-2)2 + ()] + In C (6.51)
Qo Qo

Insert equation (6.51) into equation (6.46). Hence, equation (6.46) becomes

lnH:—(ﬁ+3)lna+ﬁ In[A (a)2+(i)b]+ln0 (6.52)
3 Qo Qo
and finally, we obtain
H_ C
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If we chooseH = H, anda = a in equation (6.43), we have relation between

constant4d andC, is given by

C
Hy= — 6.53
0 5+ [A N 1] ( )

and the integration constant becomes

C = Hyao # [A+1]"7 (6.54)

By using of (6.54) into (6.53), equation (6.43) is transformed into the following form

B+3 25
Hyao 5 [A+1]7%
i — Mot [A+1] - (6.55)
a3 [A(2)?+ ()73
and
Hoao [A+1]7% = Ha™5 [A(-)? + (=) 7% (6.56)
0 0

by using the propertyf = <Ina = ¢ = 1% in to (6.56), we get

543 w 1da e VY @\ 28
H(]CLO [A + ] = a%a [A(ao) + (ao) ] (657)
SO
Hoag 14+ 1175 = Lafa( Ly 4 (Ly-% (6.58)
0%0 N dt Qo Qo .

and integrating to obtain an expressionfam terms of the scale facta(t), is given by

/Hoao"g”[A 1 Hdr - /aé’[A(; 2 () da (6.59)
0 0

and finally, we obtain

2 (L% da (6.60)

Hoao 5 [A + 1]‘?1& = / *[A(a0 o
We can obtain not only the scale factdr) but also Hubble, Gravitational, Cosmological

constants and the energy density in terms of both inflationary and radiation-dominated
regimes, by solving (6.60). We will discuss these regimes in the light of equation (6.60)

as follows
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6.2.1.1. Inflationary Phase

For inflationary phase < a,, the second term on the right hand side of integral

in equation (6.60) dominates f0¥ £ 0) a and (6.60) is reduced to the following equation

Hoao' s [A+ 175t = /a‘i(i)?bda (6.61)
Qo
Taking the integral, we obtain
S(1-2b)41,, 28
Hoao 5 [A+1] %t =" G4 (6.62)
8(1-20)+1
Then, scale factat can be written as
a8 = fa0 A + 1]25[2(1 —2b) + 1] (6.63)

and

3
(1-20)8+3 Hy coe
3 (A+1)%

(6.64)

a = Qo

Equation (6.64) shows that during inflation, the dimensions of the universe increase ac-

cording to the formula
(4 ~ {2053 (6.65)

which is the case of power-law inflation (Singh 2006). We can easily see that the radius

of the universe increases linearly with the age of universe and we can obtain the Hubble

parameter,
H = 4 Ina = a = 5 s = 5 t! (6.66)
dt a (1-20)+3 ;omss (1-2b)3+3
Gravitational constant
Glt) = ol = — 5% 41 (6.67)
(1—2b)6+3
The gravitational constaidt varies inversely with the age of the universe.
Cosmological constant
A(t) = BH? = (= 2(2)% - 3]215*2 (6.68)
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and energy density

1A
o) = o (6.69)
85

Ar o [(1 — 2b)3 + 3]

t! (6.70)

For energy density to be positive definite, we must have 3. The energy density tends
to infinity ast tends to zero. The energy density decreases as time increases and it tends

to zero ag tends to infinity.

6.2.1.2. Radiation Dominated Phase

For the radiation-dominated phase> a,, the first term on right-hand side of the
integral in equation (6.60) dominates so
; 9 3
Hoao F'[A+1] 5t = /aé’ {A(ai)} da (6.71)
0
After taking the integral, equation (6.71) becomes

B+3 % a Pl o 48

Hoag 5 [A+1] 5t = e 1ATaO3 (6.72)
and the scale factor is
28
(1-p) | 4 |7
and
A 28 (liﬁ)
a = a [(1—5)(1+A)23 Hot} (6.74)
From equation (6.74), we find the following solution for the scale factor
@~ tT (6.75)
Hubble parameter,
d i 1t 1
a =
H=—Ina=-= — = t! 6.76
e N I (676)
gravitational constant,
G(t) = aff = ! (6.77)
= X = — .
(1-p)t
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cosmological constant

1 (6.78)

and energy density

. —28
. —1A o -1 (1—p)2t3
e (= (6.79)
-1 5 1
p(t) = Tma(l— 3t (6.80)
6.2.2.G(t) ~ 1/H
Proposition 6.6 We assume that
_a
G = 7 (6.81)
whereq; is a positive constant (Singh 2006) and
A(t) = BH? (6.82)
Using equations (6.81) and (6.82) in (6.28), we obtain
, H
H +— [(1—=8)++6] =0 (6.83)

Proof Firstly, by using the chain rule, we obtain first derivative of the cosmological and

gravitational constants in terms of the scale factor as follows

d\N  dAdt  d 1 1
N="="""= _"(BH*= =28HH*= 84
da dt da dt(ﬁ >d g a (6.84)
and
, dG  dGdt d,ay 1 H1
O T wd - a@'Ha T TME (6.85)
Substituting (6.84) and (6.85) in equation (6.28) which was defined as
H?* 1.3 Gt)N  1A®t)
HH+~— =>(5y— =
T T3V T3
results in
H* 1 ) (28H H?L 1 3H?
H’H+—:—(§ —1)<H)<ﬁ : a)+—ﬁ (6.86)
a 32 a (—041%1) 3 a
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SO

2
HH+£: F%—l—v} lﬁHQ (6.87)
a 3 3 a
dividing equation (6.87) by7,
H 2 1 1
H +—= [— + - — y] ~BH (6.88)
a 3 3 a

arrange equation (6.88), we obtain
, H
H' 4+ = [(1=8)+78] =0

Proposition 6.7 Solution of differential equation (6.89) is

H= (6.89)

where(C' is the integration constant.

Proof Equation (6.89) can be solved by the separation of variables as follows

e (6.90)
SO

dH da

5 = ~A=8)+08]— (6.91)

Substitute the adiabatic parameter in (6.91). Then the equation becomes

dH AAEP + (B2 da
- = ~1A=08)+5(5 A () ) (6.92)
and by substitutin%&0 = 2z = da = agdz and integrate (6.92). Hence
dH da 4 Az +(2)2 da
- fo-nT- [T 699

to get solution, we use the same procedure as equation (6.45). Then equation (6.93) can

be written as

InH=—(1-08)lna— gln(i) - gﬁln(A + 27 +InC (6.94)

Qo

S0 (6.94) becomes

H = (6.95)
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and

C
a(l B)(& ) (a;) éﬁ[A(i)2+(i>b]§ﬁ

ag ao

(6.96)

Finally, we obtain the solution of (6.89)

To obtain the integration constant, let us assuime H, anda = a, as the initial

value problem and equation (6.89) is obtained as

C
Hy=—— (6.97)
ay A + (27737
Then, we can obtain the integration constant
C = Hyal' P[A + 1]3° (6.98)
Substituting equation (6.98) in (6.89), equation (6.89) becomes
2
28
_ _ HoaPIA + 1] - (6.99)
a=D[A(E)? + ()57
and
i 1 HoagWP)[A + 1]5°
g _del _ Hoa A+ 137 (6.100)
a dta a(l—ﬁ)[A(%)2+(%>b]gﬁ
then
Hoao"™P[A + 1]3%dt = =D [A(L )2 + (ﬁ)b]%ﬁ@ (6.101)
Qo Qo a
Integrating equation (6.101), we obtain
/ Hoao "~ [A + 1)3dt / a ALY 4 (L))38da (6.102)
Qo Qo
and
1
Hoag"=P[A +1]3% = / —IA()? + ()1 da (6.103)
a Qo ao

Using equation (6.103), we obtain the solutions for two different early phases of the uni-

verse
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6.2.2.1. Inflationary Phase

For inflationary phase < a, and equation (6.103) is reduced to the following

equation

2 1 2
Hoao ™A + 135 — / L2384 (6.104)

abag

and after integrating (6.104), we obtain

-4 2 5 aBGb-1)+1 510
Hoag" P [A+ 15t = ————— 105
odo” A+ 1] BEb—1)+1 (6.105)
after rearranging (6.105), it becomes
2
Hoag'P[A + 1]%%(51) — 1) + 1)t = ¢*Gb-DH1 (6.106)
and the scale factor is
3
2 WETI(AB)
a= |Hya'™ [A+ 1]§B (ﬁ(gb —1)+ 1) t} (6.107)
For inflationary phase we find the following solutions respectively,
o ~ BT (6.108)
Hubble parameter
d a 3 1
H="1lng= 2 — - 6.109
at T AT Wi r3(1-pB)¢ (6.109)
Gravitational constant
a;  aq 206+ 3(1— )]
t) = — = t 6.110
Gt) =5 ; (6.110)
Cosmological constant
1
A(t) = BH? — 1 (6.111)
208 +3(1 =) ¢
Energy density
. —183 1
1 A 1 ([2b6+3(1—ﬂ)]2) &
He - 6.112
p( ) 87TG 8 ( 3o ) ( )
206+3(1-0)
clearly
3 51
)= ———— 6.113
plt) =~ T ( )

70



6.2.2.2. Radiation Dominated Phase

For radiation-dominated phase> a,, the first term on right-hand side of the

integral in equation (6.103) dominates as

1 i
Hoao [ A + 1% — / — A4 da (6.114)
a Qo
and then
) |
Hoao P[4 + 13% = A%g,—3 / L a¥da (6.115)
a

after rearranging (6.115), we obtain

Hoap"ag3? A3P[A + 1]5% = / a5da (6.116)
and take integral
3 |[A+1 e a%
H0a05+3 |:T:| t = @ (6117)

by constructing equation (6.117), we get the scale factor

3 %ﬁ 3
[Hoaoﬁ“ [E} (M) b= (6.118)
A 3
and
3
3 2 B+3
o= {HOaOM[Azl]gﬁ(ﬁ;3>t} : (6.119)

for radiation-dominated phase we obtain the following solutions, For inflationary phase

we find the following solutions respectively,

a ~ 7 (6.120)
Hubble parameter
— a <3>t¢*3+31 (3)1 (6.121)
= — nNaqg=—-— = = - .
dt a B+3) 7 B+3)t
Gravitational constant
G(t) = % = ot (6.122)
3
Cosmological constant
1
A(t) = BH? = G137 iﬁg)Qt—Q (6.123)
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Energy density

1A 1 543 1
and finally
oty = > (6.125)

From the above solutions we observe that gravitational constant increases with the cosmic
time in both phases whereas cosmological constant varies inversely as the square of the
cosmic time. The energy density varies with the cube of the cosmic time inversely and

hence tendg to infinity ast tends to zero. The expanding model has singularity=ap.
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CHAPTER 7

METRIC WAVES IN NON-STATIONARY UNIVERSE
AND DISSIPATIVE OSCILLATOR

The Einstein equations describe the General Relativity Theory that consist of a
set of nonlinear differential equations. The application of these equations to cosmology
produces metrics depending on time with exponential growth and decay which are char-

acteristics of dissipative phenomena.

7.1. Linear Metric Waves in Flat Space Time

Solving Einstein equations is very difficult because of the nonlinearity. The lin-
earization of the equations is a useful method to get an appropriate solution. The lin-
earization method is known as the weak field approximation in general relativity and this
method is used to describe the gravitational field very far from the source of gravity. In
this approximation, we have a weak gravitational field, in the sense that for its space time,
we can find quasi-Minkowskian coordinate$ = {x,y, z,t} (we shall work in units

makingc = 1) such that the metric differs from its Minkowskian form

1 0 0 O
0 -1 0 0 ,
N = = 77” (71)
0 0 -1 0
0O 0 0 -1
only by a small quantity,,, ;
G = N + Eh,uw |hm/| <1 (72)

These must clearly be symmetrik,,, = h,,. We assume not only the smallness of the
h themselves, but also that all of their derivatives, and neglect products of any of these.

This corresponds to assuming that tisare small multiples of regular functiord$,,,

hyw = €l (7.3)
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wheree is taken to be a non-zero real constant and we can get ktl &eside, we have

the inverse of the metric
g = —eht” (7.4)

whereh#” = nten“Sh, s (which is also ordet); for only this guaranteeg*g,, = §*,.

It follows that indices on quantities of ordeare shifted by using** and,,, since, for
examplegh“h., = n*h, to first order ine. In summary, that is to say that the metric
tensor is written in terms of the sum of the Minkowski metric and a correction term whose
components are much less than unity. After obtaining the Christoffel symbols, Riemann
and Ricci tensors and finally Ricci scalar in terms of the weak field approximation, we

substitute them into the Einstein equation

1 &G
P = g0 = =0

2 T

Then the field equation transform into the following equation

167G

haua'u + h#a,ya - h“y,aa - h,l/'u - nul/ (h/i@“ﬁ - hvﬁﬁ) = C4

T, (7.5)
Proof The Christoffel symbol is defined as the following equation
H 1 HA
Lag" = 59" (gars + gora = gas) (7.6)
Let us substitute (7.2) and (7.4) to the equation (7.6). Hence, it becomes,
1
Lopt = E(U”A + eh" Y (Mars + €harg) + (Mara + €hpra) — (Napa + €hasy)}
and
H 1 HA
Lot = 3" (Rarg + hpra — hag,)
we obtain the Christoffel symbol
I 1 H I M
Fop = 3 (Wap + 50— hap!) (7.7)
Subsequently, the Riemann tensor is defined

Ra/g/w = —FQQMV + Fa/gl,’“ + I‘”BVIWW — F"WF“W (78)
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Since the Christoffel symbols are the first order quantities, the only contribution to the
Riemann tensor will come from the derivativeslgfnot thel'? terms. Then the Riemann

tensor becomes,

Raﬁuv = Faﬁlw - Faﬁuﬂf (7.9)
and loweringx indices,

Raﬁ/w = Faﬁl«u - Faﬁu,v (7'10)

and by using the equation (7.7), we obtain thg, , andl',s,, wWhich are necessary to

get solution of (7.10). Hence

r (hﬁa,uu + hVOé,/@M - h’ﬁlaau) (711)

DO | —

afv,p =

r (h,@a7uu + hua,ﬁu - h,@u,au) (712)

aBu,v

N —

Substitute the Christoffel symbols (7.12) and (7.11Jiy,.. Then, it becomes
QRaB/w = hvaﬂu + hﬂu,fw - hﬁvaau - huaﬁv (7'13)
After raising thex in (7.13), (7.13) becomes
2R3, = 0 Rappu (7.14)
and we get
2R% g, = Wy gu + hpn™ — hgu ™ — R g0 (7.15)
and contract the Riemann tensor (7.15) to get Ricci tensor
2Rp, = 2R%300 = h”) ga + hga ™ — hpuo™ — ha 0 (7.16)
and
2R, = h 0 + Rpan™ — Ry o™ — W% 0 (7.17)
using the definitiorh = h*,, we can re-write the Ricci tensor (7.18) is

ZR;U/ = hal/,;wc + h,ua,l/a - h',ul/,aa - hf,uu (718)
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Raise the: index to obtain the Ricci scalar in equation (7.18)
2R, = 1" Ry, = " (W% pa 4 haaw™ — owa™ — hoyw) (7.19)
Then, it becomes,
2RM, = B, M+ W — R — R (7.20)

If we assume thati = v. Hence, equation (7.20) transforms into the Ricci scalar as

follows,
2R = 2R, = 2h,0 ' — 2h " (7.21)
and
R = hyot® — ho° (7.22)
Let us assume = 3 in equation (7.22). Then the Ricci scalar becomes
R=hup"’ —hg’ (7.23)

The Einstein’s field equation is

1 8¢
Ruy - §guuR = _?Tuy
or
167G
2Ry — G R = ——=T,, (7.24)
C

Substitute Ricci tensor (7.18), metric tensor (7.2) and Ricci scalar (7.23), which we have

found for weak field, in the Einstein’s field equation.

167G

Wyl 4+ o™ — By — ho — 1 (h#ﬁ,“ﬁ _ h”@’g) =——

Ty
c H

Finally, we obtain the Einstein equation in terms of the weak field approximation.

Equation (7.5) is invariant under the gauge-transformation

Ry — Py + Yy + U0 (7.25)

Impose the gauge condition

1
" (hW - §n,wh) ~0 (7.26)
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which is called the Hilbert condition. Field equation (7.5) then reduced to

“ 1 167G
0%0, (hW — §7hwh> = _TTW (7.27)

This expression may be written as
1
Cuw = by — §nw,h (7.28)

Equation (7.28) is the trace-reversed version oftheWriting ¢ := c,*. We can show

thatc = —h and consequently the usual inverse relation

1 1
Cu = Py — 57]/“,]1 = hy = ¢ — §nw,c (7.29)

Ricci tensor (7.18) can rewritten in terms ©by using relation (7.29) and the identity

¢ = —h. Then the Ricci tensor becomes
QRMV = Cua Va + Cga'u - Dhuu (730)

whered = (9,> — V?). Let us prove this.

Proof Let us calculate the all terms of the equation (7.18). Then

@ _ « 1 o __ « 1
L humy - C,uau - §n,uac,1/ - C,LLazz - ic,u,u
o he = —lp o r—co 1.
va,u T Cvap 277'/04 Mo T Frap 2 LMY
«@ _ 1 (o'
i h’;u/,a - Cuy,a - Qnul/c,a
e h,,=—c

02 o

After substituting every components in (7.18). It can be condensed to

2Ry = Cuar™ + oy — Dy
A suitable coordinate transformation will even rid us of the last two term of equation

(7.30). To this end, consider an infinitesimal coordinate transformation

A L ) (7.31)
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where the functiong* of position are of ordet, f* = e¢F* just like thehs andcs. In
addition to this, this equation is not an infinitesimal Lorentz formation (unigss f, ., =

0). Theg,, transforms as a tensor, so

S e
g}U/ = g g al‘“ axl/ (732)
and
"o o e 8x/a Oz @ ey o
rh=attf —>ax#:8x#+fv#:§vﬂ+f,u (7.33)
similarly,
) '8 s
xﬁzxmrfﬁ_)a‘” _ O +f2, =0+, (7.34)
orv  OxV ’ ’ ’
Substitute partial derivatives of coordinates (7.34) and (7.33) in (7.32) as,
9w =9 s (0% + £ ,) (070 + 7)) (7.35)
Then, equation (7.35) is reduced to,
Wow =Py — frw — fou (7.36)

this form is in analogy to the gauge transformatibp = @, — ¥ ,. From thec =
—h property, we get the relation — ¢ = h — 1'. To use this relation, let us multiply

Py =Ny = fuu+ fo, Dy 0" After these calculations, we obtain the following equation
h—h =2 =c—¢. (7.37)

By using this result andl,,, = c,, — in..c, find A, = hy — fu, — f,, in terms ofc.

To construct forms, firstly, usér,, = c,, — %n,u,c equation in appropriate notation as,

/ 1 , 1
Cuw — 5”#1/0 = Cu — 577;wc - fu,u - fzz,u (738)

and we obtain the following equation,
¢ = Cu + N 53 = Fu = o (7.39)
let us multiply equation (7.39) by*”. Then

c=c—f", (7.40)
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again multiply (7.40) withy*”,

7

A (7.41)

and take the derivative in terms of

/

= ok — fr (7.42)

WV

and it is obvious thaf*’, = Of* = ¢4 under the conditiomfﬁ” = 0. Then, we know
thatc” = h'* — in,,h" and this multiply byy*” twice and take the derivative in terms

of v and then

/ 1

W= S =0, (7.43)
then we get harmonic gauge,
’ 1 [
hy —Sh' " =0. (7.44)

The harmonic gauge is analogous to the Lorentz gauge of electromagnetism characterized
by <I>,M“ = 0 and condensed Ricci tensorig,, = cAWA +cAV,M — Ohy. Thencjﬁ” =0

in the gauge condition and then then Ricci tensor (7.30) becomes,
2R, = —0Ohy,, (7.45)

so that Einstein’s vacuum field equatidt, = 0 reduces to

Ohyw =0 (¢ =0) (7.46)
and
Oh = On*hy, = 7" Oh,, = 0 (7.47)
similarly,
c¢c=—h, Oh,, =—-0¢, =0—0c, =0 (7.48)

finally, Oh,, = 0 suggests the existence of gravitational waves. In this addifgp,,

Riemann curvature tensor becomes we will get gravitational waves

Uhy =0 or O =0 (7.49)
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The fieldh*” is then decomposed in partial waves

1 ) .
h* = Z /d%e“"m{mx(i)e’kx + ul g (t)e Y (7.50)
X

273
with & = {ko = w = ck, k}. Wave functionu, (¢) satisfies the simple harmonic oscillator
equation (Vitiello et al. 1997) as follows
d2
@Um(t) + wlupa(t) = 0 (7.51)
wherew is called frequency. In Minkowskian space, the frequency is time independent. In
addition to this, we can obtain the line element of the Minkowski space for gravitational

waves. The geodesic equations (see Appendix A) are

d?z dzP dat
N ———=0 7.52
dr? b dr dr ( )

But for a slowly moving particle ~ ¢, equation (7.52) is

d?x dz? dzt
rn —— = 7.53
di2 B de  dt 0 (7.53)

Moreover, 2 is very small , so we can neglect terms IKg %4 Geodesic equation

(7.53) reduces to

% 4 30%]%) —0 (7.54)
so the space equation (three- acceleration) is
% + godd—f’fdd—”f =0 (7.55)
Since®’ = ¢, equation (7.55)
ng = -, (7.56)
Now
Féo = %6 (hé,o + hé,o - hbi,o) R _%Ehbi,o
The spatial geodesic equation becomes
‘gg - CQ—thg’,O - gevihw (7.57)
But the Newtonian theory has
CS;’; = Vi) (7.58)

80



and

2
Vid = %evihm (7.59)

where® is the gravitational potential. So we make the identification

goo = Moo + €hoo (7.60)
20
goo = (1 + ?) (761)
This is equivalent to having space-time with the line element
29 29
ds?® = (1 + —2) Adt? — (1 — —2> (de + dy? + sz) (7.62)
C C

7.2. Linear Metric Waves in Non-Stationary Universe

We consider the gravitational wave modes in the FRW metrics in a de Sitter space.

In the four dimensional space-time
ot ={xg=ct,2'},i=1,2,3
In linear approximation one decomposes the mefyicas before
G = 9° 0 + €y

When one chooses the flat background metrics for de-Sitter space as follows

1 0 0 0
0 —d*(t) 0 0
gOW = (7.63)
0 0 —a?(t) 0
0 0 0  —a(t)
its inverse metric is
1 0 0 0
, 0 —a 2(t 0 0
¢ = (®) (7.64)
0 0 —a2(t) 0
0 0 0 —a~2(t)
with
a(t) = apes™ (7.65)
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Similar to previous case, we will get gravitational waves
Uhy =0 or O =0
whered = 9%, + 3H9, — a*(t)V? is the D’Alembertian operator for the de-Sitter space.

Field h*" is then decomposed in partial waves

1
» (2m)

with k = {ko = w = ck,k}. Wave functionu, (t) satisfies the oscillator equation. How-

W =

/dgke“”k,\um(t)eikx + UT]C)\@)Giikz

(NI

ever, in such a case we obtains the equation for parametric (frequency time dependent)

damped harmonic oscillator.

ilk,\(t) + Hl'Lk)\(t) + wQ(t)u(t);M = 0 (766)
with
Wi (t) = 523(0152) (7.67)

7.2.1. Hyperbolic Geometry of Damped Oscillator and Double Uni-

verse

The canonical quantization in inflating universe was discussed by Vitiello, Alfinito
and Manka (Vitiello and Alfinito and Manka 1997). Similarly, the quantization of the one
dimensional damped harmonic oscillator with constant frequency was studied by Vitiello
et. al. ( Vitiello et. al. 1992). It has been shown that the canonical quantization can
be properly performed by doubling the degrees of freedom of the system. The reason
to choose the doubling system of the damped or dissipative system is based on the fact
that one must work with closed systems as required by the canonical quantization formal-
ism. Therefore, we consider the double oscillator system so as to perform the canonical

guantization of the oscillator equation which is

ii(t) + Hu(t) + w?(t)u(t) = 0 (7.68)

i(t) — Ho(t) + w*(t)v(t) =0 (7.69)
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In this sense we speak of "Double Universe” (Vitiello et.al 1997). In the same way equa-
tion (7.68) is implied by inflating metrics, equation (7.69) for the oscillatazan be

associated to the deflating metric and the metric of the deflating universe is defined by

10 0 0
o 0 —a2%(t) 0 0
g 0 0  —a2t) 0

0 0 0 —a2(t)

In summary,
¢ the oscillatoru can be associated to tirdlating metric
e the oscillator can be associated to tdeflating metric

The Lagrangian with respect toandv modes from which equations (7.68) and (7.69) is

obtained as
oo H, 5
L = miv + E(UU — ) — w*(t)uv (7.70)

The canonical momenta are

oL H
— 2 — 7.71
pu =50 =mi— T (7.71)

oL . H
Py = 5o = mu + ZU (7.72)

and the Hamiltonian is
1 H2 2

H = pyi+ p,0 — L = pupy, + éH(vpy —upy) + (wQ(t) — T) (7.73)

H2
Q2 (t) = (wZ(t) - T) (7.74)

which we will get reak) > 0 for inflating universe. The reason is implied o¥(t) > HTQ

and then0 < t < 21n (i’;ij) with (Z’;‘;;) > 1. There is also an interesting relation

between: andv
v = ueflt (7.75)
Proof. First, let us solve the system of the equations

i(t) + Hu(t) + w’(t)u(t) = 0
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b(t) — Ho(t) + w*(t)v(t) =0

these equations are the second order differential equations by using the constant coeffi-

cient method, we obtain the following results for each equation

—H++VH?2-4u2 H+VH2—4w?
2 bot) =Ce 2 !

u(t) = Ce
and let divideu by v. Hence,

u(t) = ve M, v(t) = ue”

by substituting
1 —Ht
u(t) = Er(t)e 2 (7.76)
and
o(t) = %r(t}e%t (7.77)

into systems of equations (7.68) and (7.69), finally the doublet oscillator system becomes
i+ Q*r =0 (7.78)

which is the equation for parametric oscillataft). This clarifies the meaning of the
doubling of theu oscillator. Thenu — v oscillator is a non-inflating or non-deflating
system. This is why it is now possible to set up the canonical quantization. Hence, we

introduce the commutators

[w, pu] = th = [v,py], [u,v] =0 = [pu, Do) (7.79)

and it will be more convenient to introduce the varialdleandV” by the transformations

u(t) + v(t)

u() ===

(7.80)

Vi = U= olt) (7.81)

which is known as the hyperbolic transformation and this transformations also preserve

the commutation relation as
[U7pU] =1ih= [V7PVL [Uv V] =0= [pU7pV} (782)
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In terms of the/ andV" we can do the decomposition of the parametric oscillatoron

the hyperbolic plane and then the parametric oscillator becomes
r2(t) = U(t) — V3(t) (7.83)

As we said before that is the decomposition of the oscillator on hyperbolic plane and

Lagrangian function (7.70) is rewritten in termsiofandV” as follows
H . :
L=1Loy— Lov + 3(UV - VU) (7.84)

in which Ly ;; and L, are

1.

LQU::EUQ———ET—UQ (7.85)
1. 2(t

Loy = 5V félv2 (7.86)

The associate momenta for this system are

- H
pV:—V—gU (7.88)

and equations of motion for system (7.68) and (7.69) are given by the following equations

U+HV +*t)U =0 (7.89)

V 4+ HU + &)V =0 (7.90)

and the Hamiltonian becomes

1 H_\> ()., 1 H_\’
H—Hl_HQ—Q(pU_EV) -+ U — 5 pv—i-?U)
w

(1) o
- 5V (7.91)

Equation (7.91) shows that the dissipation or inflation téfmavhich is the Hubble con-
stant acts as a coupling between the oscillatbendl” and produces a correction to the
kinetic energy for both oscillators. Finally, this system can be quantized by using this

Hamiltonian which is in hyperbolic form.
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Part |l

VARIATIONAL PRINCIPLES FOR
TIME DEPENDENT OSCILLATIONS
AND DISSIPATIONS
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CHAPTER 8
LAGRANGIAN AND HAMILTONIAN DESCRIPTION

8.1. Generalized Co-ordinates and Velocities

The position of a particle in space is defined by its radius vegtarhose com-
ponents are its Cartesian coordinateg, z. The derivativev = dr /dt of r with respect
to the timet is called the velocity of the particle, and the second derivativedt? is its
acceleration. To define a position of a system\oparticles in space, it is necessary to
specify N radius vectors. The number of independent quantities which must be speci-
fied so as to define uniquely position of any system is called the number of generalized

coordinates here; this number3ig/.

Definition 8.1 Any s quantitiesq,, ¢o, ..., ¢ Which completely define the position of a
system withs degrees of freedom are callggtneralized co-ordinated the system, and

the derivativesgj; are called itsgeneralized velocitied.andau and Liftshitz 1960).

8.2. Principle of Least Action

The most general formulation of the laws governing the motion of mechanical

systems is the principle of least action or the Hamilton’s principle.

Definition 8.2 According to which every mechanical systems are characterized by a def-
inite functionL (¢1, g2, ---, ¢sq1, Go, ---, Gs, t), O briefly L (¢, ¢, t).

Let the system occupy, at the instantandt,, positions defined by two sets of values of
the coordinates¢(" and¢®. Then the condition is that the system moves between these
positions in such a way that the integral

to

S = /L(q,q,t) dt (8.1)

t1
takes the least possible value. The functiois called Lagrangian of the system and the

integral (8.1) is called the action.
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Let us derive the differential equations that solve the problem of minimising the integral
(8.1). For simplicity, we assume the system has only one degree of freedom, so that only
one functiory(t) has to be determined.

Let ¢ = ¢(t) be the function for whiclt' is a minimum. This means thatis increased

wheng(t) is replaced by any function of the form

q(t) + 0q(t) (8.2)

wheredq(t) is a function which is small every where in the interval of time fronto ¢.;
dq(t) is called a variation of the functiof(t). Since, fort = t; and fort = t,, all the

functions (8.2) must take the valug®) andq® respectively, it follows that
6q(t1) = dq(t2) =0 (8.3)

The change it wheng is replaced by; + dq is

to to

o5 = [ Lla+da.q+dd.0de— [ Lig.d0)a

t1 t1
When this difference is expanded in powerg@anddq in the integrand,the leading terms
are of the first order. The necessary condition§do have a minimum is that these terms

should be zero. Hence, the principle of least action can be written in the form

t2

5525/L(q,q',t)dt:0

t1

that is,
Fron. oL
—0q+ —0q | dt =0
/ <8q o 9q q)
t1
Sincedq = ddq/dt and we integrate the second term by parts,

to

to
3S = [%54 +/ (a—L - ia—L) dgdt =0 (8.4)
q 14

t1
The conditions (8.3) indicate that the first term in (8.4) is zero. There remains an integral

which must vanish for all values a@¥;. This can be so only if the integrand is zero

d(oLy oL
dt \ 0q dqg

identically, Thus we have
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When the system has more than one degree of freedom,dtierent functions
¢:(t) must be varied independently in the principle of least action. We then obtain
equations of the form

d (0L oL
— — = =1,2,...s. .

These differential equations are called Lagrange’s equations. If the Lagrangian of a given
mechanical system is known, the equations (8.5) give relations between accelerations,

velocities and coordinates. They are the equations of motions of the system.

8.3. Hamilton’s Equations

In the Lagrangian formalism the mechanical state of a system can be described by
its generalized coordinates and the velocities. At the previous section we look a mechani-
cal system from the Lagrangian perspective. In Hamiltonian formalism, we can represent
the same mechanical system in terms of the generalized coordinates and the momenta.

We will use Legendre’s transformation to interpret the Hamiltonian equation in
terms of Lagrangian and the passage from one set of independent variable to another
can be effected by means of Legendre’s transformation. The total differential of the La-

grangian as follows

OL OL
dL = —dg; —dg; 8.6
Z,c‘)qu+;8qiq (8.6)
this expression may be written
dL = Zpid% + Zpidqz‘ (8.7)
since the derivatives are given by the definition
oL oL
Pi= 500 D=5 (8.8)

wherep; are generalized momenta. Writing the second term in (8.7) asdq; =
d (> pigi) — > ¢:dp;, the taking the differentiad (> p;¢;) to the left hand side, the re-

versing the signs, we obtain from (8.7)

d <ZP¢Q¢ - L> == Zpid%‘ + Z qidp; (8.9)
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which is called the Hamilton’s function or Hamiltonian of the system and this expressed

in terms of coordinates and momenta

H(p,q,t) =) pigi — L (8.10)

From the equation in differentials

dH = — Zpiin + Z ¢idp; (8.11)

in which the independent variables are the coordinates and momenta, we have the equa-

tions

0OH OH
;= ), = — 8.12

These are required equations of motion in the varigbksdg, and are called Hamilton’s
equations. They form a set @k first order differential equations for ths unknown
functionsp;(t) andg;(t), replacing thes second order equations in the Lagrangian treat-
ment. Because of their simplicity and symmetry of form, they are also called canonical
equations.

The total time derivative of the Hamiltonian is

dH  0H OH OH
o o 8qi%+za_p' (6.13)

Substitution ofg; andp; from the equations (8.12) shows that the last two terms cancel,

and
dH O0H OH OH OH OH
— = — 8.14
dt ot * Z dq; Op; Z Op; 0g; ( )
then the result
dH O0H
- = A
dt ot (8.15)
If the Hamiltonian does not depend explicitly on time, then
dH
i A
o 0 (8.16)

and we have the law of conservation of energy.
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8.3.1. Poisson Brackets

Definition 8.3 Let f is the function of coordinates, momenta and tif@, ¢, ¢). Its total

derivative is
df _of of . of .
vz , , A7
= o 2 (G 617)
Inserting of the values af; and p; given by Hamilton’s equations (8.12) leads to the
expression
df _of
i ot +{H, f} (8.18)
where
B OH O0f OH of
U = ; (api dq; g 8pi) (8.19)

This expression is called the Poisson bracket of the quantifiesd f.

Definition 8.4 Those functions of the dynamical variables which remain constant during
the motion of the system are called integrals of the motion. From (8.18), the condition for

the quantityf to be an integral of the motion

df
=0 (8.20)
or
of B
i {H f} =0 (8.21)

If the integral of the motion is not explicitly dependent on the time
{H.f}=0 (8.22)
Thus, the Poisson bracket of the integral and the Hamiltonian must be zero.
For any two quantitieg andg, the Poisson bracket is defined analogously to (8.19)
of 9g  0f dg
= — 8.23
t.93 ZZ: (api d0q;  0q; Op; ( )

The Poisson bracket has the following properties,

a. Antisymmetric
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b. The Poisson bracket satisfies Leibniz identity
{af1, fo} = g{f1. fo} + fi{g, fo}
c. The Poisson bracket is bilinear

{fi+fo9y = {fi9}+{f9}
{fi. 29} = {fi. e} +{f1,9}
{fi,eqr = el g}
{cfg} = {f,9}

wherec is constant.
d. The Jacobi’s identity
{f {9, n}} +{g.{h, f}} +{h.Af.9}} =0 (8.24)
Taking the partial derivatives of (8.23) in terms of time
%{f,g} = %79} +1{/, %

If one of the functiongf andg is one of the momenta or coordinates, the Poisson bracket

reduces to a partial derivative

of
Op;

of
{f,pi} = _3_%’ {f> Qi} =
and the canonical relations are given by the following equations
{@i;ar} = 0= {pi,p}, {Pi> )} = din

Theorem 8.1 An important property of the Poisson bracket is thaty iind f are two

integrals of the motion, their Poisson bracket is an integral of the motion
{f, g} = constant
This is called Poisson’s theorem.

Puttingh = H in Jacobi’s identity (8.24), we obtain

{HAf 9}y +{f {9, H}} +{9,{H, f}} =0

Hence, if{H,g} = 0 and{H, f} = 0, then{H,{f,g}} = 0, which is the required

results.
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CHAPTER 9

DAMPED OSCILLATOR: CLASSICAL AND
QUANTUM

9.1. Damped Oscillator

Definition 9.1 The equation of motion of tHeamped Harmonic OscillatgDHO) is in

the form

mz + vyt + kxr =0 (9.2)
wherem is mass;y is damping constant andis string constant. The Damped Harmonic
Oscillator equation (9.1) is solved in the fonm= e and then the characteristic equation
of equation (9.1) is

mq* +yq+ k=0 (9.2)

The roots of equation (9.2) are

kA dmk
1o = —— L —— (9.3)

which give the three cases

a. v2 —4mk > 0, Over Damping
b. v — 4mk = 0, Critical Damping
c. 2 —4mk < 0, Under Damping

The solutions of equation (9.1) for the cases

a. Over Damping Case

, 2~ dmk 2 dmk
o{t) = -3 (a s VI G o Yk t) (0.4)
m m

b. Critical Damping Case
z(t) = e73 (O} + Cyt) (9.5)
c. Under Damping Case

, 2 dmk
)= i (VT

t + Cycos

—Wt> (9.6)
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9.2. Bateman Dual Description

Definition 9.2 A dissipative system is physically incomplete and so additional equations
are to be expected when an attempt is made to derive the defining equations from a vari-

ational principle which is called Bateman Dual Description (Bateman 1931).

Itis well known that to set up the canonical formalism for dissipative systems the doubling
of degrees of freedom is required in such a way to complement the given dissipative
system with its time-reversed image, thus obtaining a globally closed system for which
the Lagrangian formalism is well defined.

The Bateman method of finding a complementary set is illustrated by the follow-

ing example. Consider for simplicity a single equation
mz + vyt + kxr =0

in which dot denote differentiations with respectitand the coefficients:, v andk are

constants. This equation is evidently derivable from the variational principle

5/y(mfi+7¢+k3x)=0 (9.7)
/6(“+‘+k:)+5 d—2+i+k: =0 (9.8)

y (mi + 7yt + kx) +yd | mozz + oo+ ke | = .

/5 (m& + vy + kx) + d—25 + ié +kox ) =0 (9.9)

y(md +9& +kr) +y | moz0r 47207 x| = .

and
. . d? d
oy (m& + vi + kx) + Moy = VY +ky ) ox =0 (9.10)

in which bothx andy are to be varied. This principle gives, moreover, the complementary

equation
mij — vy +ky =0 (9.11)
and the dual description is given by the system of equations

mz + vyt + kr =0

my —yy + ky =0 (9.12)
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The time reversed image of the given system plays the role of reservoir or thermal path
into which the energy dissipated by the original system flows and the whole system acts
as a conservative system (Bateman 1931). This system is described by the Lagrangian

density as follows
T
L =miy+ i[xy — zy| — kzy (9.13)
its momenta in terms of andy are

oL . oL

.
pz:%:my__ya py:a—y,:mx+—x (914)

2 2
The Hamiltonian through Legendre transformation is determined from
H = ip, +ypy, — L
by substituting momenta (9.14), that is
P N S BN e A
H = (my = 5y)2 + (md + S2)g —miy — 5 |2y — 2y] + kay
SO

H = mzy + kxy (9.15)

The Hamiltonian can be written in terms of the canonical momentandp,, we get

through
mﬂk:p—zx:>5c:i[p—zx]
vo2 m-Y 2
my:pw+zy:>y':i[px+zy]
2 m 2

Substitute (9.16) and (9.16) in equation (9.15). Hence, we obtain the Hamiltonian

2
by Y B k!
+5 (ypy — xps) + xy(k —4m) (9.16)

H(z,y,pz,py) =

9.3. Caldirola Kanai Approach for Damped Oscillator

The standard equation of motion for damped harmonic oscillator may be written

in the following form
G+T(t)g+w?q=0 (9.17)
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wherel'(t) = £ Inm(t) for the case where the masst) is given bym(t) = mee'™. The

constant frequency is? and the convenient Lagrangian of the oscillator is given by
1 I't -2 2 2
L= 3¢ (moq — mow~q ) (9.18)

and Lagrangian (9.18) satisfies equation (9.17) of motion. To construct the Hamiltonian

of the oscillator, we need momenta which is given by

oL

p=—=¢"moq (9.19)
dq
and
2 _—2I't
pe .
— e (9.20)

Hence, the Hamiltonian is obtained by the Legendre transformation
H(g,p) = dp — L(q.9)
If we substitute equation (9.19) into the Legendre transformation, we obtain

H=yq (ertmoq') — %ert (m0q2 — mow2q2) (9.21)

By substituting equation (9.20) to (9.21), we get a harmonic oscillator with a time depen-
dent mass and described by the Hamiltonian
2

_ b 1 2 2
H= om(®) + §m(t)w q (9.22)

where the massu(t) is given bym(t) = mge!® with T' = constant. The Hamiltonian

(9.22) is called Caldirola (Caldirola 1977) and Kanai Hamiltonian (Kanai 1948).

9.4. Quantization of Caldirola-Kanai Damped Oscillator with Con-

stant Frequency and Constant Damping

In this section, we will quantize the Caldirola-Kanai’s damped harmonic oscillator
with constant dampind@l and frequency??. The damped harmonic oscillator is given in

the following form

G+Tq+wiq=0
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wherel is constant damping term and constant frequentyand the convenient La-

grangian of the oscillator is
I — lel“t (qz —w2q2)
2

which is known as the Caldirola-Kanai Lagrangian and this Lagrangian satisfies the
damped harmonic oscillator equation of motion. To construct the Hamiltonian of the

oscillator, we define momentum and coordinate operators as
L0
q—q, p— —th_— (9.23)
dq

The classical Caldirola-Kanai Hamiltonian function was given by equation (9.21) but in

this section we assume that, = 1 for simplicity and the Hamiltonian is
2H = e 1ip? + w2 (9.24)

Then, evolution of the wave function is described by the time dependend@oger
equation as follows

ih%fb(q,t) = HP(q,t) (9.25)

where H is defined by equation (9.24). Then, we get the corresponding Schrodinger

equation

P 1 1
ihaa—t = (ée_rtp2 + §w2q26rt) ) (9.26)

which is nonlinear Scladinger equation. In terms of new coordinates, we reduce equa-
tion (9.26) to the standard Sditinger equation for the harmonic oscillator by using the

following transformation
q(q,t) = e sty t=1 (9.27)

then partial derivatives become

o _ o oo

dq — 9q0¢ " dq 0t

[Nl

0
(— 9.28
57 (9-28)
and

0 ot 0 oq 0 0 r,o

- 29,9 _9, 9 2
ot~ oror Totog or  2%9g (9.29)
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and the Jacobian matrix of the transformation is given by the following matrix

oq¢ ot Ly

(3 s \_ [ ¢ O

T=1 0 o | = o, (9:30)
B ot 3qez" 1

the determinant of the Jacobian matrix is

2 0 r
‘ _ o5t (9.31)
1

r s L¢
= 2
2

Since determinant (9.31) is not equivalent to zero, this transformation will not form a

singular equation. After substituting (9.28) and (9.29) in (9.26), we obtain

ih {% + gq'%] d = —%2832@ + %uﬂq% (9.32)
if we arrange (9.32), it becomes
z‘h%@ = —%2%2,2@ + %wQ(]'QqD — z'hgq’(%/tb (9.33)
and the new momentum operator defined as
82
p = —ma—q,, p? = —h? e (9.34)

and which is satisfies the following commutation relations

v'.¢] = —ih
p.q = —ihe=! (9.35)
. = 0=1[¢.q]

Hence, the new Hamiltonian function of equation (9.33) can be represented in tesms of

as

1 1
Hy = 5 (p'2 + Fq'p') + 5002(]/2 (9.36)

By adding and subtractin%aq’2 to get the square of the parenthesis, the new Hamiltonian

H, can be written as

1 r N\ 1 2\
H, = = / - - 2 - ! 37
1 2(p+2q) +2<w 4)q (9.37)
and we can define the new frequerityas follows
2
0 =w? — FZ (9.38)
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Hence, equation (9.37) becomes

1 r \? 1
H o==(p+>¢ —0%”? 9.39
1 2<p+2q) + 5% (9.39)

let us define momentum operatBrin the following form

P= (p’ + gq> (9.40)

So, we can define the second Hamiltonian with respect to new opétator

1

H, = %732 + §qu’2 (9.41)

If we insertP = p’ + aq’ into the H,. Then, we get

1 1
Hy = 5 (¢ +ad) (' + oq) + 50%" (9.42)
and
_ 1 /2 o,y I 1 2 2\ /2
H2—§p +§{pq +QP}+§(o¢ —i—Q)q (9.43)

using commutation relation as follows
[, 0] =ih=lq,p], p'qd =qP —ih (9.44)

Substitute (9.44) to (9.43) and then

o 1 12 Oy . / a2 1 27 12
H2—§P +§{QP—ZTL—|—QP}+{7+§Q taq (9.45)
as a result,
1 2 1 h
Hy = 5p” +aqp + {5 + 594" - Sa (9.46)

If we compareH; and H,, we obtain the relation

10
Hi = Hy+Sa (9.47)
wherea = §
T
Hl = H2 + th (948)

Under this representation, we can rewrite time dependent8tiger equation (9.25) as,

0 LT
Zhaq)—qu)— |:H2+ZhZ:| P
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and
0 r 1 1
h—® — ih—® = —P*® + -0¢°® 9.49
zhat zh4 277 + ik ( )
Let us substituté® = p' + a¢' = p' + gq' in equation (9.49). Then, we obtain
1 r \° 1
h|———|®=-(—-ih—+ —¢ | ®+ =@ 9.50
m{@t 4} 2( maq'+2q> o (9.50)
We consider the first term of the right hand side of equation (9.50) to solve the equation
with respect to the Gauge transformation as

. 8 F . a ZP . _ i /2 i /2
<—Zha—q, + EQ/>CI) = —Zh<8—q/ + ﬁq')fb = —the w4 a—qlq)ezlhq (951)

and the square of (9.51)

. a F 2 2 a ZF 2 2 _ i /2 82 i 12
(—Zha—q, -+ Eq/) d=-—-h <a—q/ + %q/) b = —he m? W (I)ejjq (952)
Let us define a new functioR” which is a function of/ andt as a given on the right hand

side of equation (9.52),

i /2

K(q ) = @(q t)eiit (9.53)
We can easily see that
a(q,t) = K(qt) (e ") (9.54)

We know that the Scladinger equation has the general solution in the following form

a(¢1) = e7e(q) () (9.55)
N——
K(q't)
by using the gauge transformation, we get the wave function as the following form

il /2

B(q,t) = e e g(q) (9.56)

After substituting (9.56) in Sclkidinger equation (9.50) becomes

r o il 2 —1 il s
" [% B Z] e le i1 g (q) = —%eﬁ%”(d)e—&q ?
1 o2 zig _ivp2.
5 e et E(d) (9.57)
and neglecting the exponential terms, we obtain
r h? 1
|:E — ZhZ:| f — _35// + 592‘1/25 (958)
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To normalize equation (9.58), we multiply the equation V\ﬁtfg;l

2

Nz {E_”i }f &= 02 (9.59)

At this stage we will do one more transformation in termg;/ofvith respect to the first

transformation as

dzayeé;:i%é% (9.60)
then equation (9.59) becomes
—%cﬁ [e - z‘hﬂ £ = 88_;2 — %Q2a4y2§ (9.61)
and we assume that
a= % (9.62)

and by substituting (9.62), equation (9.61) is reduced to the following form

2 0? 9
0 {e—zh ]f y2§—yf (9.63)
If we chooses = % [¢ — ik} ], Schdinger equation (9.63) is reduced to the following
equation

¢+ (s—y*) =0 (9.64)

This differential equation can be transformed and solved by inspection by making the

substitution

Ey) =e 2 f(y) (9.65)

Taking the first and the second derivatives with respegtdives

£) = [f —ufle ™
e'y) = [f'—2f — f+iPf]e s (9.66)

so plugging the first and second derivatives into (9.64) gives

" =2yf +(s=1)f=0 (9.67)
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If s — 1 = 2n, equation (9.67) is called the Hermite differential equation. Before solving

(9.67), we can define the energy eigenstates are

2 T 1 r
s=2n+1=— 0 [ zhz} — €, = hQ) {(n—k 2)] +Z@ (9.68)

We can see that the energy eigenstates includes imaginary term. It means that the eigen-
states with positive imaginary eigenvalues imply growing states (Feshbach and Tikochin-
sky 1977).

The Hermite differential equation is solved by applying series solution as

[e.9]

fly) = D> ey
n=0
Fly) =) ey (9.69)

f'y) = D ean(n—1)y"

If we substitute them into the Hermite differential equation

chn n—1)y" " — Qchnny” L (s — 1)§:cny" =0 (9.70)
n=0

let us choose — 1 = \

o0

Chpon(n+2)(n+1)y" —2 Z oy 4+ A Z cy” = 0 (9.71)

n=0 n=1 n=0

and

(22 + Aco) + Z [(n+1)(n+2)chae — 2nc, + Aep]y" = 0 (9.72)

n=1
by using recurrence relation, we get
2n — A

n n 9.73
En+2 n+1)(n+2)° (9.73)
and
A
202 + )\CQ = O, Cy = —ECO (974)

this relation is just a special case of the first general recurrence relatian=00, 1, ....
To obtain the linearly independent solutions, we are firstly chooging 0, ¢; = 1.

Hence, the surviving terms are

RIS
@ T Ty @
“ (2=
o = (6 )55 e .. (9.75)
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So on, but the even integers are zero becausg ef 0. In addition, the first linearly

independent solution is given by

2—A
3!

(6—X)(2=2X)
5!

h = aly+ Y+ Yo+ (9.76)

and the surviving coefficients for the second linearly independent solutions with respect

toc; =0, cg=1

A
Cy = —ECO
C4 = —<4_4—‘)\))\C0 (977)
8=N)(4—-XA
= EINE=N
Hence,
A 44—\ 8—A)4d—-NA
These can be represented by using the superposition principle as
A 4—X)A 8—=AN)(4—-XNA
fi = « {1—5y2—( 4!) y4—( )é, ) ?JG-'}
2—-X 43 (6=N(2-XN) 4
+ o |y+ T + = Yo+ (9.79)

we can write the functiorf in terms of the Hypergeometric function as follows

1. 1 1 3
f = colFi <—Z>\; E;yz) + iy Fh (—Z(A - 2)% 5592) (9.80)

Then, the solution to the original differential equation is

f(y) = €7§ |:Co 1B (—i)\; %;yz) —|—ClH/2\<y):| (981)

wherecy, andc; are constantsH% is Hermite polynomial (see Appendix C) and; is
a confluent hypergeometric function. However, we are just interested in the solution for
which{(y) — 0 asy — oo. Then,

2

Ey) = ¢ TeHy(y) (9.82)
where) = 2n. Hence, the wave function becomes

i 2 42

O(q,t) = encem! e T Hy(y) (9.83)
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We take the module of the wave function so as to find the coefficient
D2 = 3D* = 2V H,2(y) (9.84)
and

/ D°dd = 1= 612/ H2(y)e ¥ dy = 2"nly/m = 1 (9.85)

[e.9]

which is the orthogonality property of the Hermite polynomials (see Appendix C). Then,
we know thaty’ = ay and as a result of this, we can write that= %egt_ If we again

change the variables for simplicity in the following form

oc=e 2 (9.86)
Hence
y = L (9.87)
o

by using this transformation in (9.85), we obtain

o’ (%54, 2
—/ H:(=)edqg =2"nloy/m =1 (9.88)
o J_s o
a? = 2™loiyr =1 (9.89)
! (9.90)
g = —F— .
' oV 2nn!rl/2
let us define
A, = (2nlrt/2) (9.91)
hence,
An
g
Then, the wave function is given by
A —1 % / q2
o,(d,t) = —neTE”te_TEQQG_ﬁHn (2) (9.93)
g g
By substitutingy’ = egtq into the last equation, we obtain
. . q2
o, (q,t) = ée%e"tcfﬁqu*ﬁHn <qegt %) (9.94)
g

wheres = e*gt\/g. Regarding the Hermite polynomial in equation (9.94), the inclusion
of 2! term in the argument makes this quite different from the case of a simple harmonic

oscillator.
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CHAPTER 10

STURM LIOUVILLE PROBLEM AS DAMPED
PARAMETRIC OSCILLATOR

10.1. Sturm Liouville Problem in Doublet Oscillator Representation

and Self-Adjoint Form

We consider the second order differential equations corresponding to linear, sec-

ond order differential operators of the general form

£u(t) = po0)-ult) + 1 () Su(t) + palt)at) (10.)

and assume that thg, p; andp, are real functions of in intervala < ¢t < b and the
first 2 — ¢ derivatives ofp; are continuous. Further, if functign(¢) has singular points,
then we choose our interval, b] so that there are no singular points in the interior of the

interval.

Definition 10.1 For a linear operatorL the bilinear form

S

(v(t)|Lu(t)) = /bav(t)ﬁu(t)dt
= /b“ v [poii + p1tt + pou] dt (10.2)

is the associated action integral, where the dots on the real functiondenote deriva-

tives.

After integration by parts we are led to the equivalent expression

S = (Lo(t)|u(t)) = {vplu + vpott — % (vpo) u} )

“d? d
- = 10.
+ /b { 2 (vpo) u ; (vpr) w +pgvu} dt (10.3)

SO

b

S = (Lou(t)|u(t)) = {Uplu + vpots — % (vpo) u}

t=a

+ / w [Vpo + 0 (2P0 — p1) + (P2 — D1 + Po) v] dt (10.4)
b
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where we will skip the non integral part because of the Lagrange function theorem which

satisfies

d
Ll—L2+d—{:>551—552—0

If p1 = po in equation (10.4), we can easily see that
(v(®)[Lu(t)) = (Lo(t)|ut)) = S (10.5)

In the light of the conditioy; = p,, we can write equation (10.1) and (10.4) as

d .. d d

7 [upo] +pou=0— L = 7 {POE} + po

d . — d d

i [Upo] +pov=0— L = i {poa} + P2 (10.6)

as the adjoint operatof. The necessary and sufficient condition that= L or
(v(t)|Lu(t)) = (Lo(t)|u(t)) is that we can write

Lu=Lu= % {p(t)%u(t)} + q(t)u(t) (10.7)

wherep is replaced by andp; is replaced by;. If (10.7) is satisfied then the operatdr
is called self adjoint.

If p; is not equal tg, in equation (10.4), we obtain the equations

upo + upy + pau =0 (10.8)

Upo + (2p0 — p1) O + (P2 — P1 +Po) v =0 (10.9)

The operators for equations (10.9) and (10.8) become

2 d
tpo +upr +pou=0— L = pO@ —l—pl% + po (10.10)
.. ) ) ) . — d? ) d
Upo+ (2p0 —p1) 0+ (p2 —p1 +Po)v=0— L = po@+(2po—p1)%
+  (p2 — 1 + Do) (10.112)

We can easily see that for the condition# po, the operatoi is not self adjoint.

If we divide equations (10.8) and (10.9) py, we obtain

i+ P+ P2y=o (10.12)

Po Po
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. L
@'+<—p° pl)@+(p—2 p1+p°)v:0 (10.13)
Do Do

If we define new variables ds = T;—é andw? = I’j—i above equations (10.12) and (10.13)

become
i+ D(t)u + uﬂ(t)u =0 (10.14)
o . ) .
i+ (—r(t)+ﬁ) 0+ (wQ(t) —F—F@+@> v=0 (10.15)
Po Do Do

We assume that p, = ®(t). After substituting this in equation (10.15), we get
i+ (—F(t) + 2<i>(t)) b+ (wz(t) T Td() + d(t) + <i>2(t)) v=0 (10.16)
If po = 1, then® = 0. Hence, equations (10.14) and (10.16) become

i+ i+ wu =0 (10.17)

i~ T(t)i + (wQ(t) - r) v=0 (10.18)

The following Lagrangian function is corresponding equations (10.17) and (10.18)
o1 L 2 L.

L=uv— §F(t) (v — du) — | wW(t) — EF(t) uv (10.19)

and the conjugate momenta are

oL 1 oL 1
e = __— =+ T 10.2
Du 5 v 2I (t)v, py 5 u+ 5 (t)u (10.20)

The Legendre transformation
H=up, +ovp, — L

results in

H = PuPo + %F (Upv - upu)
4 (w2(t) _ %lﬂ(t) _ %f@)) w (10.21)

(Pashaev and Tigrak 2007).
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10.1.1. Particular Cases for Non-Self Adjoint Equation

Case I:

Case ll:

If the damping coefficiefitis constant and the frequeney is a generic function

of time, the damped oscillator equation becomes

i+ 0+ w?(t)u =0

b —T0+w (=0

Then, we get the Bateman Dual Description for the damped harmonic oscillator
with time dependent frequency and the Lagrangian function for the double oscilla-

tor system is

1
L =40 — §F(t) (vit — vu) — w?(t)uw (10.22)
its momenta in terms af andv are
oL . 1 oL ) 1
pu—%—v—éfv, pv—%—u—i—ﬁfu (10.23)

and the Hamiltonian is

1 1
H = pup, + o1 (vpy — upy) + (w2(t) - ZF2> uv (10.24)

If the frequency? is constant and the dampiigis a generic function of time, the

damped oscillator equations become
i+ ()t +wu=0
i~ D(t)o + <w2—f‘>v:0

Hence, we obtain the Lagrangian equation of the damped oscillator with constant

frequency
o1 . 9 1.
L =140 — §F(t) (vi —vu) — (w” — §F(t) uv (10.25)
The momenta in terms ef andv are
oL 1 oL 1
A = —— =4+ -T 10.2
Pu=go=0—3 (t)v, py 5, = Ut g (t)u (10.26)

4 (wQ ~ Lpagy - %F(t)) w (10.27)
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Case llI: If the damping coefficiemtand the frequency? are constants, the doublet damped

oscillator system can be written as

i+ T+ w?u=0

—To+w?v=0

This system is standard double damped harmonic oscillator with constant damping

and constant frequency and the Lagrangian is given by the following equation

1
L =nui— §F (vit — vu) — wuv (10.28)
The momenta are
oL 1 oL 1
Pu=t9; =Vt o= gy st gl (10.29)
The Hamiltonian is
1 2 1 2
H= PuPv + §F (vpv - upu) + | w” — ZF uv (1030)

From above consideration, we can conclude that if the system described by a second
order differential equation that is that not self adjoint, the variation description of the
system includes adjoint equation which can be called as mirror image. In particular case
in which the damping term and the frequency? are constant. It is time reversal image

of the system and the energy for the considered system is a conserved quantity (Pashaev

and Tigrak 2007).

10.1.2. Variational Principle for Self Adjoint Operator

In the previous consideration, we have formulated variational action functional
as a bilinear form for operataf that describes the doublet oscillator system. If we like
to avoid doublet of degrees of freedom, we should find another Lagrangian formulation
which includes only the variables of the original system. To do this, we notice the well
known fact, using integration factor any linear second order system can be written in
a self adjoint form which is called the Sturm Liouville form. Consider the oscillator

representation as

i+ ()i +w*(tu=0
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and the corresponding linear operator is non self adjoint

2 d
L= 4T

— H D)2 + WD) (10.31)

To obtain the self adjoint operator, we need an integration factor. If we multiply equation

(10.14) with the integration factor(t) as

d? d
bl + (¢ )au +w?(tu| =0 (10.32)
which can be written as
d
7 ()] — fui + T ()t + pew®(H)u = 0 (10.33)

Hence, we choosgu = I'(t)ua and the integration factor is

p(t) = el T (10.34)
so the self adjoint operator is
d? d
Lo = ult)L = u(t) g + p(OT(0) 3o + p(0() (10.35)

The operatoC; = p(t) L corresponding to differential equation (10.32) leads to the same

equation of motion but it is now self adjoint.

Definition 10.2 Action corresponding to the self adjoint linear operaty is

= %<U|£su> = ;/a [Z (1) + pw?(t )} udt (10.36)

where the coefficierf comes from the symmetry betwéenC,u) = (£ ulu)

and
1 1 ¢ .2 2 2
S = §<£su\u> = 5/ [—pd® + pw?(t)u?] di (10.37)
b
1 1 1 [
S = Flu®)]Lsfu(t)) = S(u®)lLu(t)) = 5 b u(t)Lou(t)dt
1 [ [dr g t
. Y ST (n)dr JTT(r)dr, 2
5 /b ’ { ¥ E i +e W (t)u] dt (10.38)
and then
1 1 [ 1
SLa®lu(®) = 5 [ Luuttide = i,
2 2 J, 2
+ %/ [ el T2 4 ol T 74T 2 (2| dt (10.39)
b
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From action (10.39), we obtain the Lagrangian in the following form

I = %eft F(T)dTuQ . %wQ(t)eft F(T)dTUQ (1040)

and its canonical momenta

L ¢
Pu = g—u = ¢l T(dr (10.41)

and the Hamiltonian for the self adjoint system is

t 1 1
H=e¢/ F(T)dTipUQ + §ef PO 2 (1) (10.42)

10.1.3. Particular Cases for Self Adjoint Equation

Case I: IfT'(t) is constant and the frequency is a generic function of time, then the integra-
tion constant becomes’ and the Lagrangian equation is reduced to the following

form

1 1
L= Eertiﬁ — §w2(t)ertu2 (10.43)

satisfies the equation of motion

i+ T+ w?(tu =0 (10.44)
and its momentum is
L
Pu= a—. = el (10.45)
ou

By using the Legendre transformation, we obtain the Hamiltonian function

1 1
H= e’Ft§pu2 + §ertw2(t)u2 (10.46)

Case II: If the frequency? is constant and the damping coefficient is the generic function
of time, the Lagrangian function becomes
1 . 1 ¢
L = —€f F(T)dTUQ . —u)26f F(T)d7u2 (1047)
2 2

This Lagrangian satisfies the following equation of motion

i+ T ()i + w?u =0
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The momentum

)

pu=o=¢ Ty, (10.48)
u
and the Hamiltonian is obtained as
—ftF(T)dTl 9, 1 [ T(rydr, 2. 2
H=e SPu + 3¢ wu (10.49)

Case llI: If the damping coefficiert and the frequency?(¢) are constants, the Lagrangian

can be written as

1 1
L= éeptif — EWQeFtUQ (10.50)

satisfies the equation of motion

i+ It + w?u =0 (10.51)
and its momentum is
oL
Pu= 5o = et (10.52)

by using the Legendre transformation, we obtain the Caldirola-Kanai Hamiltonian

1 1
H=e'op,” + 5etwhu” (10.53)

Variational formalism for doubled and self adjoint oscillators is valid for harmonic os-
cillator which hasw? > 0 and for hyperbolic oscillator which has negative frequency

w? < 0.

10.2. Oscillator Equation with Three Regular Singular Points

Oscillator representation is just homogeneous degree two structure of solution this
equation according to Frobenius theory by singular points of frequency and damping. In
this part, we will consider special case, when equation admits three singular points. If
singular points are-1, 1, oo, the solution of this equation is known as Gauss Hypergeo-
metric function. When the singular points merge together, the equation becomes confluent
hypergeometric form as a particular cases of many special functions such as Bessel, Her-

mite, Laguerre..., etc. The elements of self adjoint form of these special functions which
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are the coefficients(t), ¢(t), the eigenvalue and the weight functiom(¢) are given in

table (10.1) (Arfken and Weber 1995). In this section, we will describe particular forms
of damping for frequencies with fixed singularities and corresponding solutions in terms
of the special functions. In every case, we will provide the Lagrangian formulation in
terms of the doublet oscillator representation and the self adjoint form and then, using

this Lagrangian, we will construct Hamiltonian description (Pashaev and Tigrak 2007).

Table 10.1. Coefficients and parameters of the special functions.

Equation p(t) q(t) A w(t)
Legendre (1—1¢?) 0 I(1+1) 1
Shifted Legendre t(1—1t) 0 I(1+1) 1
Associated Legendre (1—¢*) | —m?/(1 —¢?) I(1+1) 1
Chebyshev | (1 — )12 0 n? (1 —¢2)~1/2
Shifted Chebyshev | | [t(1 —t)]'/? 0 n? [t(1—t))~4/2
Chebyshev I (1 — )32 0 nin+2) | (1—1t)71/2
Ultraspherical (Gegenbauer)(1 — ¢?)*+2 0 n(n +2a) | (1 — )12
Bessel t —n?/t a? t
Laguerre te! 0 o et
Associated Laguerre thtlet 0 a—k thek
Hermite et 0 20 et
Simple Harmonic Oscillator 1 0 n? 1
i [P 5] + don) = v (10.54)

(0 + a0yu(t) = w(b) () (10.55)

wherep(t), ¢(t) are the coefficientsy is the eigenvalue and(¢) is the weighting function.

Then

Eult) PO du (@ B M) u(t) = 0 (10.56)
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Let define new variables as
/
A (@ - M) (10.57)
p(t) pt)  p(t)
In addition to the damping and the frequency terms, we can obtain the integration factor

as follows
p(t) = el TOdr — oI ar _ (10.58)

Then, equation (10.59) is reduced to the following form

d*u(t) du _
T T F(t)% +w?(t)u(t) =0 (10.59)

The second order differential operator which satisfies equation (10.59) is given by
L= s + F(t)i + w?(t) (10.60)

dt? dt
which is not a self adjoint operator. However by using the integration fadtor we
can construct the self adjoint operator. The following table (10.2), the danipid
frequencyw? values for the special functions are given. In addition, the intgmva| for

the special function is defined in table (10.3).

After introducing the new time variable in equation (10.54) given as

p(t)% = % (10.61)
]% — dr (10.62)
T o= 7(t) = /t % (10.63)

we obtain the harmonic oscillator equation
u” + QP (T)u =0 (10.64)

where the time dependent frequer§2y(r) is
Q*(t(1)) = p(t(r)) [a(t(r)) — Aw(t(r))] (10.65)

The new time variable can be written in terms of dissipation coefficient fundtias

follows

t
= / el Tmdn g (10.66)
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Table 10.2. Dampings and frequencies for the special functions.

Equation Dampingl'(t) | Frequencyw?(t)
Hypergeometric W —
Confluent Hypergeometric @ -4
Legendre -2 )
Shifted-Legendre s —igllflt))
Associated Legendre | —L; [2¢ + m?] )
Chebyshev | — S
Shifted Chebyshev | 1a e
Chebyshev I -2 — e
Ultraspherical (Gegenbauef) — 2?5‘1;%)) n((fff;;)
Bessel 1 — “—2 + aﬂ
Laguerre — 20 —2
Associated Laguerre | [(k+ 1)t —1] | —(a—k)t™!
Hermite —2t —2«
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Table 10.3. Interval§:, b] of the special functions.

Equation a b
Hypergeometric 0 1
Confluent Hypergeometric 0 00
Legendre —1 1
Shifted-Legendre 0 1
Associated Legendre —1 1
Chebyshev | —1 1
Shifted Chebyshev | 0 1
Chebyshev i -1 1
Ultraspherical (Gegenbauer) —1 1
Bessel 0 00
Laguerre 0 00
Associated Laguerre 0 00
Hermite —00 00
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This means that by choosing proper time variabldamped oscillator equation (10.59)

can be transformed into (10.64). Here we like to stress in general oscillatory represen-
tation of Sturm Liouville problem, the frequencies(t) and Q2?(7) could change sign

at some values of time. It means that in some time intervals our harmonic oscillator
may become a hyperbolic and unstable oscillator. It would be interesting to analyze cos-
mological models in such type of oscillatory representations. Because in such models
we can observe different behaviors: for positive frequency -oscillatory character and for
negative frequency-hyperbolic dissipative character. According to this, we can get dif-
ferent dynamics of universe which include both possibilities. Below we give Lagrangian
and Hamiltonian descriptions for the main equations of special functions of mathematical
physics in oscillatory representation. In next chapter we will discuss related nonlinear
Riccati equations and the quantization of harmonic oscillators with general time depen-
dent frequency when? is positive. They are characterized by quasi discreet energy
spectrum with wave functions written in terms of Hermite polynomials with time depen-
dent argument. Quantization of hyperbolic unstable oscillator, witeis negative and

no bound state or quasi discreet state exist, still is an unsolved problem.
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10.2.1. Hypergeometric Functions
The Hypergeometric differential equation
t(1—=t)u"(t) +[c—(a+b+1)t]u(t) — abu(t) =0 (10.67)
was introduced as a canonical form of a linear second-order differential equation with

regular singularities at= 0, 1 andoo and let divide equation (10.67) by1 — ). Hence

c—(a+b+1)¢] , ab

The range of convergen¢g < 1 andt = 1, fore¢ > a+b,andt = —1,forc > a+b—1.

We assume that = =t gngu? = —

t1=1) = t(fft) and then equation (10.68) becomes

u”(t) 4+ T () + w?u(t) = 0 (10.69)

which does not have a self adjoint operator. For this non self adjoint operator, we obtain

the two equations which are (10.17) and (10.18) as the doublet oscillator representation

i+ Tu+w?u=0

5 T(t)0 + (wz(t) - r) v=0

Let substitute the dampinig and the frequency? to get the doublet oscillator represen-

tation of the Hypergeometric equation as

. lce—(a+b+1)t]. ab B
U+ rA=1) U_t(l—t)u_o (10.70)
c—(a+b+1)¢]. ab

v t1—1  t1—10)"

1 1-2 — 1
a+b+ ( t)[c—(a+b+ 1)t I (10.71)
t(1—1t) t2(1 —t)?
The solution of oscillator (10.70) is
abt a(a+1)b(b+1) t2 = (a)n(
= LI — 14+ ==
u(t) oFi(a,b,c;t) =1+ T clet1) o " ; (©)n n"
c#0,-1,-2,-3... (10.72)

which is known as the hypergeometric series érjg is Pochhammer symbol.
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Definition 10.3 The Pochhammer symbol is defined as
(a+n—1)!
(a—1)!
(a)p = 1 (10.73)

(a), = ala+1)(a+2)..(a+n—-1)=

We notice that Lagrangian function is to corresponding equations (10.70) and (10.71) is

c—(a+b+1)41

L = av— - §(vu—®u)
ab 1fa+b4+1 (1=2t)[c—(a+b+1)t]
" (t(l—w‘i[m—w 21— 1) D“

and the momenta in terms efandv are

0L fe—(atb+ 1)
Po = 94 =" "2 ta-¢ "

0L lle—(atb+1)d]
Po= it —ap (10.74)

and finally, we can write the Hamiltonian function for non self adjoint form as

le—(a+b+1)1

H = pupv+§ F1—1) (vpy — upy)
- ab  1f[e—(a+b+1)H]]
t(1-1) 1[ t(1—1) } uv
Lfat+b+1 (A=2t)c—(a+b+1)i]
2 { t(1—1) 21— t)2 } (10.75)

It is possible to get self adjoint form of equation (10.69) by multiplying it with an integra-
tion factor. Hence, the integration factor of equation (10.69) to transform it into the self
adjoint form is

't [e(atbt)7] o t¢

u(t) = B G (10.76)

The Lagrangian for self adjoint case is defined as

]_ t [cf(a+b+1)‘r]d . ]_ t [cf(a+b+l)7']d
L= §€f AT - el A TW?(t)UZ

and
1 t¢ o 1 abte! )
L = QWU + éwmu (1077)
and its momentum
oL te
Du (10.78)

:@:WU
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and the Hamiltonian is given in the following form

_ pt lem(atbinyr] o ] 1t e—(atbinn]
H=e ) a0 m i op 2 g ool Ty (10.79)

wherew?® was defined as® = — ;% and then
t¢ ab

1 atbretrl o 1
H (1—1) p ) (1— t)a+b+c+1 t(1— t)u

:2—tc u

(10.80)

10.2.2. Confluent Hypergeometric Function
The confluent hypergeometric equation is
ti(t) + (c—t)u(t) —au(t) =0 (10.81)

may be obtained from the hypergeometric equation by merging two of its singularities.
The relating equation has a regular singularity at 0 and an irregular one dt= oo.
After dividing equation (10.81) by

@u@) ~Lut) =0 (10.82)

ii(t) + :

After re-arranging equation (11.8), we obtain the damped harmonic oscillator equation

with time dependent frequency and damping
i(t) + Tu(t) + wu(t) =0 (10.83)

We choose the damping term Bs= @ and the frequency as> = —¢. Equation

(210.83) is not self adjoint. Then, we form the doublet oscillator representation of this

equation as
—t
a+(ct )u—%u:o (10.84)
@—@o+<—9+5)v—o (10.85)
t t o 2/ '

We know the solution of oscillator equation (10.84) which is called Kummer's differential
equation. It has a regular singular pointtaand an irregular singularity ato. The

solutions
u(a,c,t) = M(a,c,t) = A1Fi(a; ¢;t) + BU(a, ¢, t) (10.86)

where, F} (a; ¢; t) is the first and/(a, ¢, t) is the second kind confluent hypergeometric

functions.
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Definition 10.4 The confluent hypergeometric function of the first kifgla; c; t) has a

hypergeometric series given by

a ala+1)t? = (a) tF
Fila;ct) =1+ —t — 4 ... = -— 10.87
hlaet) =14 24 gy + ; (O F (10.87)

where(a), and(b), are Pochhammer symbols.

Definition 10.5 The confluent hypergeometric function of the second Kiad ¢, t) has

a hypergeometric series given by

1Feet) R —ct+1;2-¢t)
I'a—c+1) '(a)

Ula,c,t) = mese(me) (10.88)

wherel is gamma function.

Definition 10.6 The gamma functiofi(n) is defined to be an extension of the factorial

to complex and real number arguments. It is related to the factorial by
['(n)=(n—1)! (10.89)

The following Lagrangian function is corresponding to equations (10.84) and (10.85)

1 1
S (vit — i) — (—% + 5%) wv (10.90)

oL 1(c—1t) oL . 1(c—1)

=== = = — 10.91
O A e T N (10.99)
and finally, we can write the Hamiltonian function as
c—1t
H = puper( 57 )(vpv—um)
a 1[(c=t1* 1e¢
e —— 10.92
(t 4{ ; }—I—Qﬁ)uv (10.92)

Subsequently, to construct the self adjoint differential operator from equation (11.8), we

obtain the integration factor as
u(t) = el T — gt (10.93)
The Lagrangian of the damped harmonic oscillator is defined as

1 1
L= itce’tif - §tce’tw2(t)u2 (10.94)
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The corresponding momentum is

oL
Py = — = te (10.95)
ou
and the Hamiltonian is given in the following form
Loy o 1. a,
= —elp,2 — =t t= 10.
57 P 2te e (10.96)

10.2.3. Bessel Equation

2

p(t) =t, q(t) = =%, A =a?, w(t) = tinsertinto (10.55),

v du n? )
td—t2 + - ?u(t) = ta u(t) (10.97)

After dividing equation (10.97) by, we obtain

d*u  1du n?*
kel B = 10.
dt2+tdt LQ—l—a]u(t) 0 (10.98)
Then, equation (10.98) is reduced to the following form
d’*u du
4= 2 = 10.
ozt (1) ot (t)u(t) =0 (10.99)
where we assume that the dampiing= % and the frequency? = — [7;—22 + aQ}. By

using this non self adjoint equation, we can construct the Lagrangian function for double

oscillator. In the light of the following equations

.. 1. n? 2

i+ il ey +a*lu=0 (10.100)
. 1. n? 2 1
v_gv_ t_2+a - v=20 (10.101)

The solution of equation (10.100) is
u(t) = AJd,(t) + BN,(t) (10.102)

where J,, is the first kind Bessel and/,, is the second kind Bessel function. A Bessel
function of the third kind called a Hankel function is a special combination of the first and

second kinds.

Definition 10.7 J,, is called Bessel function of the first kind of ordedefined by

() _1)s ¢ n+2s mn 2
a = SSCU (T .
« sl(n 4 s)!'\ 2 2npl 272 (n 4 1)!

Toat) = (=1)"Ju(t) (10.103)

122



Definition 10.8 NV, is called Bessel function of the second kind or the Neumann function

can be defined by linear combination.bf,(¢) and J,(¢)

cos Ny (t) — J_p(t)

sin nmw

N (t) = (10.104)

We obtain the Lagrangian function by substituting the damping and the frequency terms

in the following form
11 1 1
L =40 — —;(vu—bu)—l— [— (nz——+a2>] u (10.105)

the momenta are

oL _,_ L b= OL _ .41y (10.106)
v

A Y

and by using the Legendre transformation, we find the Hamiltonian as

1
H = PuPy + @ (Upv - upu)

2 1
- ({7;—2 + aQ] - @) wv (10.107)

It is possible to get self adjoint form of equation (10.69) by multiplying it with an integra-
tion factor. Hence, the integration factor of equation (10.69) to transform it into the self

adjoint form is defined as
p(t) =el T =+ (10.108)

The Lagrangian of the Bessel function for self adjoint case is defined as

Loy, 1 [n® | 5] 5
L= §tu + Et {t—Q +a } u (10.109)
the momentum is
L
Pu = 8— = tu (10.110)
ot
and the Hamiltonian is
He Lty L ”—2+2 2 (10.111)
T TR T '
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10.2.4. Legendre Equation

p(t)=1—12 q(t) =0, A\=1(l+1), w(t) = linsertinto (10.55),

& d
(1) d;; - th—z (I + Du(t) =0 (10.112)

multiply equation (10.112) with /(1 — ?) and it becomes

d*u 2t du I(141)

We can re-write equation (11.48) as damped harmonic oscillator in the following form

d*u du
A= —
p7E + I'(t) i +w (t) (t)=0

i+

17 are time

where we assume that the damping:= —1312 and the frequency? =
dependent.
We can easily see this equation has non self adjoint form. Hence, the doublet oscillator

representation of the Legendre equation can be obtained as follows

" 2t . l(l+1)
i ey L s N u=20 (10.114)
" 2t . I(1+1)  2(1+¢%)
— = 10.11
Ch il (1—t2+(1—t2)2 v=0 (10.115)

The solution of equation (10.114) gives the Legendre series which is defined by

/2 B
u(t) = P(t) =) (—1)12%! (Z(Q_Z k)fg)!_ Qk)!tl—% (10.116)

Forl even,P, has only even powers ofand even parity, and odd powers and odd parity
for [.

The following Lagrangian function corresponds to equations (10.114) and (10.115)

12t (1+1) 12(1+8)
L:uv—l—ilftz(vu—vu)—(—1_t2 +§(1—t2)2 uv (10.117)

The corresponding momenta are

oL .1 2t oL .1 2t

" , Do = - = 10.118
p T ou +21—t2v p ER - 21—t2u ( )
and we can write the Hamiltonian function as
1 2t
H= —
Do~ 57 (vpy — upy)
(1+1) 1 o2t 17 121482
— S — -~ 10.119
( -2 4[ 1—t2] e | ( )
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Moreover, we can define the integration factor to get the self adjoint form of equation

(11.48) as

u(t) =l TR = (1-1¢%) (10.120)
The Lagrangian equation of the oscillator of the Legendre function for self adjoint case is

1
L= (1=8)d+ i+ 1) (10.121)

1
2
and its momentum is defined as

pu=—=(1-1")u (10.122)

and the Hamiltonian is

1 1
H=——_p2—Zl(l+1u? 10.123

10.2.5. Shifted-Legendre Equation

p(t) =t(1—1), q(t) =0, A=1(l+1), w(t) = 1insertinto (10.55),

& d
H1— )+ (1— 2t)d—1; -

pTE I+ Du(t) =0 (10.124)

Dividing equation (10.125) by(1 — t), we obtain

v 1—=2t du 1(I+1)

i oa wi—g =" (10.125)

If we write equation (10.125) as damping oscillator

d?u du

— 4T — + 2 Du(t) =0

dt2+ ()dt+w()U()

1(1+1)
t(1—t)

dependent. Due to existing of the non self adjoint operator, we can construct the doublet

where we assume that the damping= % and the frequency? = — are time

oscillator representation of the shifted Legendre equation can be obtained as follows

1—=2t . I(l+1)

(1_t)u—t(1_t)u20 (10.126)

u—f—t

2 (1—2t)°
=1 2=

D v=0  (10.127)
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The solution of oscillator equation (10.126) gives the shifted Legendre series.

The following Lagrangian function is corresponding equations (10.17) and (10.18)
11—2t

1—1t)

I(+1) 1 2 (1—2t)°
=0 "2 |ti=p a2

L=uv — (v — vu)

21(

oL . 11-2t oL _+1 1—2t
u:—‘:v—— ”U’ U:_-:u —_
Pu= 34 2t —0) 0 T o 2¢(1 — 1)

] ) uv (10.128)

the momenta are

U (10.129)
and the Hamiltonian function is

11-2¢
H = PuPov + ) (Upv - upu)

26(1—t
(l+1) 1[1-2t77
+_[t )]]uv

H1—t) 4|1t

1 2 (1—2t)°
3 [t(l = + oI —t)2] uv (10.130)

In addition to this doublet oscillator representation, we obtain the integration factor of
equation (10.125) to construct the self adjoint form of the oscillator equation of the shifted

Legendre equation as

t _1-—27 dr

p(t) = el T = (1 1) (10.131)

The Lagrangian function of the damped harmonic oscillator of the shifted Legendre func-

tion for self adjoint case is defined by

1 1
L=t (1—t)u*+ 5z(l + 1)tu? (10.132)
The momentum is
oL
w=—=1(1—-1)1 10.133
Pu= 5o (1—t)a ( )

and the Hamiltonian is defined as

= u (10.134)
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10.2.6. Associated-Legendre Equation

p(t) =1—12, q(t) = =25, A=1(l+1), w(t) = 1 insertinto (10.55),

1—¢2

du du m?
1 —t)— —2t— —
( t)dlf2 tdt 1 —¢2

u—I(l+1)u(t) =0 (10.135)

Divide equation (10.135) by — ¢2. Hence,

d’*u 2t du 1 m?
— - —— | —— + (I +1 t)=0 10.136
iz 12 dt 1—t2{1—t2+(+)}u() ( )
and
d*u du 9
W + F(t>E +w (t)u(t) =0
where the damping = —2; and the frequency? = — -1 [{f—; +1(l+1)|. Then,
we can construct the doublet oscillator representation of equation (11.15) as
.. 2t . 1 m2
b= pU— T3 [1_t2+l(l+1)}u:0 (10.137)
1 m? 2(1+1?)
U ) ——— | ——+ 1l +1 — v = 10.138
U+1_t2v+( 1_t2{1_t2+(+)]+(1_t2)2 v=0 ( )

Equation (10.137) has associated Legendre series.

The following Lagrangian function is corresponding equations (10.137) and (10.138)

L = u1}+§1_t2(vu—i)u)
1 m? (14 ¢%)
S (. S (] ERR A 10.1
< [ L_tQ—l—l(l—i— )}—l—(l_ﬂ)?)uv (10.139)

and the momentum are

oL .t oL .t

oL _ = 2 10.140
Pu=g, =0 gt Pe= g T TRt ( )

and in the light of the Legendre transformation, we obtain the Hamiltonian function as

H = PuPv — (qu) - upu)

1—t2

- oy L ww (10.141)
(1 {m z<z+1)}+[ r (1+t2))

1—t2 |11t 1 (1_752)2
Moreover, we can define the integration factor to get the self adjoint form of equation

(11.15). The integration factor is defined as

ey = el TR = (1 p2) (10.142)
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The Lagrangian equation of the damped harmonic oscillator of the associated Legendre

function for self adjoint case is

1::1(1—752)112+1 m +1(1+1)| u? (10.143)
2 21—t '

Then, the momentum

Pu= 5o = (1-t) (10.144)
and the Hamiltonian is
1 1i(l+1)
H=— p2—- 10.14
s1—) T2 (10.145)
10.2.7. Hermite Equation
p(t) = e, q(t) =0, A =20, w(t) = e ¥ insertinto (10.55),
42 d2u 42 du 42
e tﬁ— e ta—Qae Pu(t) =0 (10.146)
multiply equation (10.146) with!” and then
d*u du

The Hermite differential equation has the time dependent damping but frequency is con-

stant.

d?u du
A= 2 —
72 + I'(t) i +w (t)u(t) =0

where the dampinfj = —2t and the frequency? = —2«. Hence, the doublet oscillator

representation can be written for equation (11.21).

i — 2t — 20u = 0 (10.148)

P42 +2(1—a)v=0 (10.149)

The following Lagrangian function is corresponding equations (10.148) and (10.149)

L =40+t (v —ou) — (—2a+ 1) ww (10.150)
its momenta are
L L
pu:a—,:i)—i—tv, pv:a—.:u—tu (10.151)
ou 00

128



and the Hamiltonian function can be written in the following form as
H = pupy — t (vpy — upy) + (=200 — % + 1) uv (10.152)

By using integration factor, we can get the self adjoint form of the Hermite differential

equation. Hence, the integration factor of equation (11.21) is
u(t) = el i = ot (10.153)

Now, we can write the Lagrangian for the damped oscillator which is generated from the

Hermite differential equation as

1 . 1
L=-e"i?— —ePwu? (10.154)
2 2
and its momentum
oL
Py=— =eu (10.155)
o

and the Hamiltonian which is produced from the Hermite differential equation for self

adjoint form is

21 1 _p2
H=¢ Epf — Ee*t o’ (10.156)

10.2.8. Ultra-Spherical(Gegenbauer)Equation

p(t) = (1 —12)°F2, q(t) = 0, A = n(n + 20), w(t) = (1 — %) 2 insert into
(10.55),

1d2u 1 1du

_ 2\a+5 7 7 - _ 42a—5 "7

(1—1¢%) 2dt2 2t(a+2)(1 %) th
— n(n+2a)(1 —t2)* 2u(t) =0 (10.157)

multiply the above equation withl — ¢2)~*~2

Pu 2t(a+ 1) du  n(n+2a) B
B OlE G i = (10.158)

let arrange equation (10.158) as damped harmonic oscillator,

d*u du
— 4+ T(t)— + ?*(Bu(t) =0
T + ()
. 2t(a+%) n(n+2a)

where the damping = and the frequency? = —

are time dependent.

1) =5

Then, we can construct the doublet oscillator representation of equation (10.158) as
. 2t(a+3) . n(n+2a)
u —

i—a) U — ) u=20 (10.159)
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2t(a + %) . n(n + 2«) 1\ 14¢2 B

The solution of equation (10.159) has the Ultraspherical series.

The following Lagrangian function is corresponding equations (10.159) and (10.160)

o 12tla+ )l
L = UU+§W(UU—UU)
n(n + 2a) 1\ 1+¢
(2T e - 10.161
( -2 +(a+2)1_t22)uv (10.161)
and the momenta are
oL . 12t(a+3) oL . 12t(a+g)

Pu (10.162)

B R B T W TR
and the Hamiltonian function of the Ultraspherical Gegenbauer differential equation for

the non-self adjoint form is

tla+3)
H = pupo = 1 tg) (vpy — upy) +

On the other hand, by using integration factor, we can get the self adjoint form of the

Ultraspherical differential equation. Hence, the integration factor of equation (10.158) is

]'t _ 27(a+%)

= 17 = (1 2)* (10.164)

u(t) =e

The Lagrangian equation of the damped harmonic oscillator produced from the Ultra-

Spherical (Gegenbauer) equation is

L=2(1—-)" 52 %(1 —3)* 2 (n + 20 (10.165)

N | —

The momentum is
pu= oo = (1—12)"" % (10.166)
and the Hamiltonian is in the following form
1

1 i
He—— p2— —(1-)" 2n(n+ 20)u (10.167)
2(1 — t2)**2 2
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10.2.9. Laguerre

p(t) =te™, q(t) =0, A =a, w(t) = e "insertinto (10.55),

2

et T8 (1= et S~ aetu(t) = 0 (10.168)

multiply equation (10.168) Witﬁti. Hence, it becomes

Py (1-t)du «

and as oscillator type equation (11.27) becomes

d*u du 9
2 T F(t>E + w(t)u(t) =0

where the damping@l = @ and the frequency® = —¢ are time dependent. For this

non self adjoint form, we get the double oscillator representation as

1_
i & t%—%u:o (10.170)
. (1=1). a 1
B i (T 45 =0 (10.171)

Equation (10.170) has power series representation as

«

ut) = La(t) = Y = S),O‘! (10.172)

— Ha — s)!s!

The following Lagrangian function is corresponding equations (10.170) and (10.171)

o 1=, .. a 11
L—uv—§ ; (vu—vu)—(—?—l—it—Q)uv (10.173)
The momenta are
oL . 1(1-1) oL . 1(1—1)
oL 1 e 10.174
Pu ou v 2t Y Do ov qu2 t Y (10 )

and by using the Legendre transformation, the Hamiltonian can be written as

1
H = Pubo + §F (Upv - upu)

N <_2 _ E{Mr + 11) w (10.175)

t 4 t

In addition to the doublet oscillator representation, we can construct the self adjoint form

of equation (11.27) by using the integration factor. Hence, the integration factor is

u(t) = el T = et (10.176)
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The Lagrangian equation of the damped harmonic oscillator produced from the Laguerre

equation is given as follows

1 1
L= éte_tif — Ete_tw2u2 (10.177)
The momentum is
oL
pu= - =te U (10.178)
ot
and the Hamiltonian is
t (1—71 ]_ ]_ t (1—7
H=e """ )dT§pu2 + el HFrdr 2,2 (10.179)
wherew?® is —¢. Hence
1 1 a
H=—¢ep,2— —te t— 10.180
2t “ P Tt ( )

10.2.10. Associated Laguerre Equation

p(t) =tFle™, q(t) =0, A=a —k, w(t)=tFe tinsertinto (10.55),

tkﬂe_t@ + [k+ 1t e = 1] tk+1e_td—u — (@ —k)t*etu(t) =0  (10.181)
di? dt B '

divided by thet*+1e~!. Hence, let arrange equation (10.181),

d*u -1 du 1 .
pro [(k+ 1)t —1] & (=Rt u(t) =0 (10.182)

let rewrite equation (11.33). Then

d*u du
T a2 2 —
o +T'(t) = +w?(t)u(t) =0

where the dampin@ = [(k + 1)t~! — 1] and the frequency? = —(a — k)t~'. The
doublet oscillator representation of the associated Laguerre differential equation can be

represented as

i+ [(k+ 1t —1]a— (e — k)t u=0 (10.183)

b—[(k+ 1)t =10+ (—(a — k)t - {@ - 1D v =0 (10.184)
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Equation (10.183) has the associated Laguerre series solution.

The following Lagrangian function is corresponding equations (10.183) and (10.184)

L = ui— % [(k+ 1)t~ = 1] (v — du)
— (—(a I % {% — 1]) uv (10.185)

Pu = 2_5:“—% [(k+ 1)t —1]v
Py = 2—5 =+ % [(k+ 1)t —1]u (10.186)

and we can write the Hamiltonian functio®?) as

H = pupy + % [(k+ 1)t~ = 1] (vpy — upa) +
(—(a — k)t — }1[(/« + 1)t —1]7 - % {% - 1D wv  (10.187)

To transform the non self adjoint form (11.33) into the self adjoint form, we need integra-

tion factor which is
pu(t) = e 1 1dr — (k4 1) Ing —¢ (10.188)
The Lagrangian equation for the self adjoint case

1
L=—(k+1)Int—ti* - 3 [(k+1)Int — t] w*u? (10.189)

N —

The momenta

L
Pu = 8— =[(k+1)Int —t]u (10.190)
ot
and the Hamiltonian is
H= ! p 2+1[(l€—|—1)1nt—t]w2u2 (10.191)
2(k+1)Int —2t7" 2 '

wherew? is —(a — k)t L.

10.2.11. Chebyshev Equation |

p(t) = (1 —12)z, q(t) =0, A =n?, w(t) = (1 —t2)"2 insertinto (10.55),

1 d%u t  du

g (- t2)"2n%u(t) = 0 (10.192)
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Equation (10.192) is divided bt — ¢?)'/2 and then we obtain the following equation

d*u t  du n?
@ Topa 1-p=0 (10-199)

as the damped harmonic oscillator, we can write equation (11.46)

d*u du 9
W + F(t>$ +w (t)u(t) =0
t

where we assume that dampifig= — - and the frequency?® = —1:‘12. Due to the

fact that, the damped oscillator equation has non self adjoint operator, it is represented

with respect to the doublet oscillator equations as

t . n?

I TETE TR

0 (10.194)

i

t n? 1+t
U ) - =0 10.195
v—l—l_th—l—( 1_t2—|—(1_t2)2)v ( )
The power series representation of the solution of equation (10.194) is

[n/2]

-y <_1>n%<zt>"—2m (10.196)

m=0

The following Lagrangian function corresponds to equations (10.194) and (10.195)

| S 1 1+4¢

oL 1 ¢ oL 1 ¢

— = 54z e Y 10.198
Pe= g VT or e T gy Tt T a2t ( )

and finally, we can write the Hamiltonian function as

1 ¢
H = Pupv—§m(vpv—upu)+

1 t 1% 1 1+
- 10.199
<w<> 4[ 1_t2:| +2(1_t2)2>uv ( )
By using integration factor, we can get the self adjoint form of the first kind Chebyshev
differential equation. Hence, the integration factor of equation (10.192) is given by
() =l TR = (1) (10.200)

The Lagrangian equation of the oscillator of the first Chebyshev function for the self

adjoint case is given as

L=-(1-8)"% - %(1 — 1) 7P (10.201)

1
2
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The momentum is

pu= 5= (1~ )" (10.202)
u
and the Hamiltonian is
1 1 _
H=(1- t2)1/2§pu2 + 5(1 — %) V222 (10.203)

. 2
wherew?® is — .

10.2.12. Chebyshev Equation Il

p(t) = (1 —12)2, q(t) =0, A =n(n+2), w(t) = (1 — )2 insertinto (10.55),

3 dzu

1—¢2 —
( )2dt2

3t(1 — t?)%% — (1= 8)2n(n+ 2u(t) =0 (10.204)

multiply equation (10.204) witiil — t2)~2 and we obtain

d*u 3t du n(n+2)

v _ ¢
2 i—pa 1-pg "W

—0 (10.205)

and we can write equation (11.45) as

d*u du
az + F(t)d_t + w*(t)u(t) =0

n(n+2)

= Since, this

where we assume that dampihig= _122 and the frequency? = —

damped harmonic oscillator equation has non self adjoint differential operator, we can get

the doublet oscillator representation as

. 3t . nn+2)
b—T %~ _p u=20 (10.206)

. t n(n +2) 1+1¢2
— = 10.207
ij1—1t2v+< 1- ¢ +3(1—t2)2)v ! ( )

The power series representation of the solution of equation (10.206) is

[n/2]
u(t) = Un(t) = 3 (—1)"%(2@"% (10.208)

The following Lagrangian function is corresponding to equations (10.206) and (10.207)

1 3t
L 13t
Wt

(vl — D) — (—”gnftf) 4 g(llj;)Q) w  (10.209)
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The momenta are

9L 1 3t 9L 1 3t

“ou VTt Ty, Tl T p

Du u (10.210)

We can write the Hamiltonian functio?®) as

1 3t
H = pup, — 51_ 2 (vpy — upu) +
nn+2) 1 3t 1% 3 1442
e —— 10.211
< 1 — ¢2 4[ 1—252] +2(1—t2)2 uv ( )

Beside the double oscillator representation, the oscillator equation can be transformed
into self adjoint form. To do this, the integration factor for the second kind Chebyshev

function is

() =l TR = (1 2)? (10.212)
and the Lagrangian equation is for the self adjoint case is

L=-(1-)"%2+ %(1 — )’ n(n + 2)u (10.213)

N | —

and its momentum is

oL 3/2 .
— 2 (1 —¢2 10.214
and the Hamiltonian is
He— 1 2 1(1 — 1) n(n + 2)u? (10.215)
2(1—1&2)3/2 b 2 '

10.2.13. Shifted Chebyshev Equation |

p(t) = [t(1 — t)]%, q(t) =0, A=n?, w(t)=[t(l - t)]‘% insert into (10.55),
[t(1 — t)]% ZTS + %1—%% —[t(1 - t)]*%n2 (t)=0 (10.216)

multiply equation (10.216) with (1 — t)]_%. Hence

d®u 1 1-2t du n?

S =0 10.217
oo na  won Y ( )
We obtain the damped harmonic oscillator as follows

d*u du
o aT(H= 2 —
72 + I'(t) i +w (t)u(t) =0

136



. _ n2
where we assume that dampifig= %&1—2:) and the frequency® = — ;7.

11-2t n?
i+ — L — = 10.218
u+2t(1_t)u u=20 ( )

t1—t)
L1 1—2t . n? 1 2 (1—2t)?
U_§—t(1—t)v+<_—t(1—t)+§[t(l—t)+t2(1—t)2]>vzo (10.219)

The solution of the oscillator equation (10.218) gives the first kind shifted Chebyshev

function as a series solution.

The following Lagrangian function is corresponding equations (10.218) and (10.219)

_ 11-2¢ ..
L = av— 10 =1 (v — Du)
n? 1 2 (1—2t)°
_ - 10.220
( t(l—t)+8[t(1—t)+t2(1_t)2 b ( )
The corresponding momenta are
L 11-2 L 11-2

Du 0 ' ! v, Py = 0 ' ! u (10.221)

“ou U At1-o 20 "I
and we can obtain the Hamiltonian function as

1-2t n?
e LR Crer) I

1[1-2t1 1 (1—2t)
+<_E{t(1—t)} +[2t<1_t)+4t2(1_t)2]>uv (10.222)

Then, the oscillator equation can be transformed into self adjoint form. To do this, the

H = DuDv +

integration factor is

t1 1-27 dr

p(t) = el 2FEn T = (4(1 — ¢)M? (10.223)

and the Lagrangian equation is for the self adjoint case is

L= 5t = )"0 4 501 = ) ned (10.224)
The momentum
oL 1/2.
pu =5z = (t1L— 1) (10.225)

and the Hamiltonian is in the following form
1

_ 2_1 _an—Ll/2 22
H = 20— t))1/2p" 2(t(1 t)) 7 "nu (10.226)
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CHAPTER 11

RICCATI REPRESENTATION OF TIME DEPENDENT
DAMPED OSCILLATORS

In the first part of this thesis, we discussed the cosmological models where the size
of the universe satisfies the Riccati equation and that equation was linearized in terms of
the Schédinger problem. In the second part, we studied general second order linear
differential equation in oscillator representation and found several solutions in terms of
special functions. In the present, we are going to construct the Riccati equations corre-

sponding solutions for oscillatory models discussed in this chapter.

Theorem 11.1 The damped harmonic oscillator with time dependent parameters was de-

fined as
G+T(t)g+w?*(t)g=0 (11.1)
We can construct the Riccati equation as
0+ +T(t)n+w?(t)=0 (11.2)
wherer = 1.

Proof To construct the Riccati equation from the time dependent harmonic oscillator
equation, we can change the variablesgas: ¢™? in equation (11.1). The first and
the second derivative gf = "¢ are given as in the following equations
dgq
dt
d*q
dt?

Ing

= (Ing)e
= {(lng), + [(Ing),]"}e (11.3)

After substituting the first and the second derivatives in the time dependent harmonic

oscillator equation (11.3), we obtain
{(Ing),, + [(Ing),]* + T(t)(Ing), +w*(t)}e™* =0 (11.4)
If we choose! = (Ing), = 7, we get the Riccati equation as

04+ n*+T(t)n +w?(t) =0
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As a consequence, equation (11.2) is explicitly soluble system in which the damping and
frequency terms are given in Table (10.2). Besides, we I«powg = 7 values for every
particular cases for example, the solution to the oscillator equation represented by Hermite
differential equation is Hermite polynomials. In addition to this result, every zercgs of

determine pole of singularity of.

Definition 11.1 A pointz, is called a zero of ordem for the functionf if f is analytic
at zo and f and its firstm — 1 derivatives vanish at,, but f™(z,) # 0 (Saff and Snider,
2003).

In other words, we have
f(z0) = f'(20) = f"(20) = .. = F7" D (z0) = 0 £ FU) ()
In this case the Taylor series f@raroundz, takes the form
f(2) = am(z = 20)™ 4 tmer(z — 20)™ ™ + amga(z — 20)™ 2 + ...
or
f(z) = (2= 20)" [am + ami1(z — 20) + amya(z — 20)* + .. (11.5)
wherea,, = fmT(,ZO) # 0.

Theorem 11.2 Let f be analytic atzy. Thenf has a zero of ordem at z, if and only if

f can be written as

f(2) = (2= 20)"g(2)
whereg is analytic atz, andg(zo) # 0 (Saff and Snider, 2003).

Lemma 11.3 A function f has a pole of ordern at z, if and only if in some punctured
neighborhood of,
9(z)
Z2)=7T7——m

whereg is analytic atz, andg(zo) # 0 (Saff and Snider, 2003).

Lemma 11.4If f has a zero of ordem at 2z, then% has a pole of ordern at z, (Saff
and Snider, 2003).
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Proposition 11.1 Every zero of solution of (11.1) corresponds to the poles of Riccati

equation (11.2).
Example, lett = ¢, which is simple zero and lef(¢) is analytic function and(t) =
(t —to) f(t) wheref(ty) # 0. Then,

- g
BEOE D) (11.6)

In this chapter, we are going to investigate this result with respect to the special functions.

11.1. Hypergeometric Equation

The oscillator representation of the Hypergeometric function is defined as

c—(a+b+1)¢]. ab
P B Y )

G+ q=0

and the Riccati representation of the oscillator equation becomes

c—(a+b+1)t] ab

t(1—1) n_t(l—t):O (11.7)

n+n+

11.2. Confluent Hypergeometric Equation

The damped harmonic oscillator form of the confluent hypergeometric function is

written as

(c—t). a
r ! tq_o

g+
Hence, the Riccati representation can be written as

. c—t a
g+ 20 . )n—gzo (11.8)

All special functions can be represented as hypergeometric or confluent hyper geometric
form. In the following parts, we will discuss the zeros and poles relations between oscil-
lator type and the Riccati type of oscillations for some particular cases as examples. All
examples given here have zeros related to the degree of the polynomials. As a result of

this, the Riccati representations have poles related to the degree of the polynomials.
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11.3. Legendre Equation

The oscillator representation of Legendre equation is defined as

. 2t . l(l+1)
i—y—pl-q—p1="

and the Riccati representation of the oscillator is written as

2t I(1+1)
—e2! 1

0+ n?— =0 (11.9)

The Legendre polynomials, sometimes called Legendre functions of the first kind and its
recurrence relation is given by

[ It
- p., -
e 7t oe

P(t) P, (11.10)

(Arfken and Weber 1995) Then,= g becomes

q _ F(t) I [P
== = —t 11.11
"L T Rm IR ( )
The first few Legendre polynomials are
P =1
Pl =1
1
Po= 5 (3t — 1) (11.12)
1
Py = 3 (5¢> — 3t)
1
Pro= 3 (35¢* — 30t* + 3)
For example,
P11
P=t n=—=- 11.13
1 y N Pl t ( )

wheret = 0 is zero of P, but the pole of; in other words, the pole of the Riccati equation.

(3t —1), n= Lo O (11.14)

P =
2 P, 321

1
2
wheret = i\/g are zeros ofP, at the same time, they are two poles of the Riccati

equation. As a result of these examples,/thd_egendre’s polynomial hdszeros and the

Riccati equation of the Legendre oscillator hgmles.
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11.4. Associated-Legendre Equation

The associated Legendre oscillator equation is

2t 1 m?
i — | — (1+1)]q=0
1T1elT e L—t2+ (+ )}q

Hence, unden = g transformation, it becomes

9t 1
11— 1-¢

[ﬁ; S+ 1)} _0 (11.15)

N+ —
Associated Legendre’s polynomials satisfy the following recurrence relation

0 p——
V1—1t?
where—[ < m < [ (Arfken and Weber 1995). For example,/lit= 1, m = —1,0, 1.

mt

P _
! 1—¢t2

m+1(t)

P™(t) (11.16)

Hence, the) = ¢ becomes

| Pt 1t t
77:32 () _ l = (11.17)

P"t)  Ji—g BT 1t

and the first few associated Legendre polynomials are

Pr(t) = 3tV1—t2 (11.18)

As an example,

. . Pl ot(1—)

wheret = +1 are zeros ofP,! and at the same time, the polesipbr the pole of the

Riccati equation.

R 1t
Pgl(t) = 3t\/1—t2, n:P—zIZE—TtZ (1120)

wheret = 0, =+ 1 are zeros ofP,', in other words, three poles of or three poles
of the Riccati equation. As a result of these examples, we conclude that the Riccati
representation of the associated Legendre equation has poles which are directly related to

the sum of the lower and upper indides m of the Legendre’s polynomial.
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11.5. Hermite Equation
The Hermite oscillator equation is
q—2tq—2aq =0
and the Riccati representation is written as
i+ n* —2tn —2a =0 (11.21)
The recurrence relation of the Hermite polynomials is
H'(t) = 20H,_, (11.22)

(Arfken and Weber 1995) and then

qg H)/(t) He 1 (t)
=1= 2 11.23
=T HL Ha(t) (11.23)
For the few Hermite polynomial (see Appendix C).
Ho(t) = 1
Hy(t) = 4t* -2
H3(t) = 8t* —12t (11.24)
For example,
H 1
H(t) = 2t = —=- 11.25
l( ) y N Hl n ( )

wheret = 0 are zeros of{,(¢) and at the same time, the poles:pbr the pole of the

Riccati equation.

Hy, 1 At

wheret = i% are zeros off,(t), in other words, two poles ofor two poles of the Riccati
equation. As a result of these examples, we conclude that the Riccati representation of
the Hermite differential equation has poles related to the lower india#she Hermite’s

polynomials.
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11.6. Laguerre Equation

The Laguerre oscillator equation is written as

Lo 1=t «a
_Za=0
q+ / 4q tq

and the Riccati representation of the oscillator equation becomes

(1 - D, % ~0 (11.27)

n+n +
The recurrence relation for the Laguerre polynomials is
Ly(®) = TLa(t) = T Lama(t) (11.28)

(Arfken and Weber 1995). Hence pbecomes

q L) « Lo—1(t)
(A el e oy (129

The first few Laguerre polynomials are

Ly = 1
Ly = 1—t
1
L, = §(t2—4t+2) (11.30)
1, .
Ly = 6(—t3+9t2—18t+6)
Examples,
L, -1
L, = 1—¢t n="t—_—"° 11.31
1 y N Ll 1—¢ ( )

wheret = 1 is zero ofL; and at the same time, the polembr the pole of the Riccati

equation.

L o2 — 4
I B A (11.32)

L, = _ 2 _
2 Lo 2 — 4t +2

(—4t+2), 7

DO | —

wheret = 2 + 2+/2 are zeros ofL,, in other words, two poles of or two poles of
the Riccati equation. As a result of these examples, we can conclude that the Riccati
representation of the Laguerre oscillator equation has poles which are related to the lower

indicesa of the Laguerre’s polynomial.
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11.7. Associated Laguerre Equation
The associated Laguerre oscillator equation is written as in the following form
G+ [(k+Dt " —1]¢— (a—k)t 'g=0
and the Riccati representation of the associated Laguerre oscillator equation becomes
n+n?+ [+t =1 n—(a—kt =0 (11.33)

The associated Laguerf¢’ polynomials satisfy the following recurrence relation

a-+m
t

Ly/(t) = SLE(t) = =Ly, (1) (11.34)

(Arfken and Weber 1995) and thefunction becomes

g _Ly'(t) 1 Lg oy (t)
_1_ =~ |a— k 11.35
(i R R 710 (H-35)
The few first associated Laguerre polynomials
LYy =1
Ly = 2—t
1
L} = 3 (3t — )
1
Ly’ = 3 (12 —¢?) (11.36)
Examples,
Li = 2—t —ﬁ———l (11.37)
L= TN T T '
wheret = 2 is zero ofL; and the pole of the Riccati equation.
1 L} 3-2
2 = ) _
L = 5 (3t—¢%), n % g (11.38)

wheret = 0, 1 are zeros of 2 and two poles of the Riccati representation of the associ-
ated Laguerre equation. As a result of these examples, we can conclude that the Riccati
representation of the associated Laguerre oscillator equation has poles which are related

to the upper indices: of the associated Laguerre’s polynomial.
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11.8. Chebyshev Equation |

The oscillator representation of the first kind of the Chebyshev equation can be

defined as

t . n? -
Tl 7 pe=0

Q'_

and its Riccati representation is given

t n?
)~ T =0 (11.39)

n+n -
The recurrence relation for the first kind Chebyshev polynomial is

n nt
Tn/(t) — —Tn_l(t) - m

— T, (t) (11.40)

(Arfken and Weber 1995) and thefunction becomes

QT [, T
T TR -

The first few Chebyshev polynomials of the first kind are

T, = 1
T o=t

T, = 2t*—1 (11.42)
Ty, = 43— 3t

T, = 8t*—8t2+1

For example,

1

wheret = 0 is zero ofT; and the pole of the Riccati equation.

T, 4t
T, 212—1

T, = 2°-1, n= (11.44)

wheret = i\/g are zeros off;, and two poles of the Riccati representation of the first
kind of the Chebyshev equation. As a result of these examples, we can conclude that
the Riccati representation of the first kind of Chebyshev equation oscillator equation has

poles which are related to the lower indigesf the first kind of Chebyshev polynomial.
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11.9. Chebyshev Equation Ii

The oscillator representation of the second kind of the Chebyshev equation can be

written as
; 3t . nn+2)
_ _ =0
"1l e 1
Hence, its Riccati representation
. 3t n(n +2)

-2 1o
The recurrence relation is

v = 2y ") (11.46)

BT e
(Arfken and Weber 1995) and thefunction becomes

G U n U1 (8)
(e ] i A

The first few Chebyshev polynomials of the second kind are

U = 1
U, = 2t

Uy = 4t —1 (11.48)
Usg = 8t°—4t

U, = 16t" — 12t +1
For example,

o1
_0 ; (11.49)

Ul - 2t777_7_
1

wheret = 0 is zero ofU; and the pole of the Riccati equation.

U. At

wheret = i% are zeros ot/; and two poles of the Riccati representation of the second
kind of the Chebyshev equation. As a result of these examples, Hence, the Riccati repre-
sentation of the second kind of Chebyshev equation oscillator equation has poles related

to the lower indices of the second kind of Chebyshev polynomial.
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CHAPTER 12

CONCLUSION

In the present thesis we have studied the universe models as oscillatory dynami-
cal systems. These systems are constructed for Bianchi type anisotropic models by the
linearization transformation of nonlinear Riccati differential equation for the mean rate
of change. Using factorization properties of the oscillatory models we introduced new
characteristic of universe as in the supersymmetric quantum mechanics with bosonic and
fermionics structures corresponding to expanding and contracting universes.

In addition to this, we have showed that physics in non-stationary universe like
inflation cosmology, string theory and gravitational waves implies the damping charac-
ter of the oscillatory models and the possibility for time reflection symmetry and the
dual oscillator representation. To quantize the oscillatory models the Lagrangian and the
Hamiltonian formalism for damped system becomes essential this is why we construct
classical and quantum theory of damped oscillator in two different approaches known as
the Bateman dual and the Bateman-Caldirola-Kanai approaches. We have showed their
classical equivalence as the self-adjoint extension of the Lagrangian linear operator for the
dual system. For Sturm Liouville Problem represented as damped parametric oscillator
and the Lagrangian and the Hamiltonain formulations with exact solutions for all special
functions of the mathematical physics in other words, the Hypergeometric functions are
given. Finally, we have found that the zeros of the oscillator equation transformed into the
poles of the corresponding Riccati equations are important for real physical application
which we discussed in cosmological Friedman type models. As a result of this, the size
of universe is described by the Riccati equation and pole singularity would corresponds

to singularities of universe such as Big Bang.

148



REFERENCES

Alfinito, E., Manka, R., Vitiello, G., 1997."Double Universe”hepth/9705134
WEB,, 1997.ADS’swebpage, 10/12/2006.http : //adsabs.harvard.edu

Arfken, G.B. and Weber H.J., 19986lathematical Methods for Physicists (Academic
Press, Inc., San Diego, California), Fourth edition, p. 551-801.

Bateman, H., 1931. "On Dissipative Systems and Related Variational Principles”,
Physical Revieywol.38, p. 815.

Blasone, H., Graziano, E., Pashaev, O.K. and Vitiello, G., 1996. "Dissipation and
Topologically Massive Gauge Theories in the Pseudo-Euclidean Plaad,
Phys., New YorRvol. 252, p. 115.

Caldirola, P., 1941. "Forze non conservative nella meccanica quantistd@ipvo
Cimentq \Vol. 18, p. 393.

Canuto, V., Hsich, S. H. and Adams, P.J., 1977b. "Varyingf3iysics Lettersvol. 39,
p. 429.

Carvalho, J. C., 1996. "Derivation of the mass of the observable Universe”,
International Journal of Theoretical Physicgol. 35, p. 2019.

Celeghini, E., Rasetti, M., and Vitiello, G., 1992. "Squeezing and Quantum  Groups”,
Annals of Physigsvol. 215, p. 156.

Chen, W. and Wu, Y. S., 1990. "Implications of a Cosmological Constant Varying  as
R~2", Physical Review DVol. 41, p. 695.

Cooper, F., Khare, A., Musto, R. and Wipf, A., 1988. "Supersymmetry and the  Dirac
equation”,Annals of Physigsvol. 187, p. 1.

Dicke, R. H., 1961. "Diracs Cosmology and Machs Principl&fature London Vol.
192, p. 440.

Dirac, P. A. M., 1937a. "The Cosmological Constant¥jture London\Vol. 139, p.
323.

Dirac, P. A. M., 1937b. "Intervento nel dibattito su Physical Science and  Philosophy”,
Nature LondonVol. 139, p. 1001.

Ellis G.F.R. and Mac Callum M.A.H, 1969. “The Family of Bianchi Universes,Comm.
Math. Phys.\Vol. 12, p. 108.

Ellis G.F.R., 1997. "Dynamical Systems in Cosmolog@ambridge University = Press
, p. 108.

Feshbach, H. and Tikochinsky, Y., 1977. "Quantization of the Damped Harmonic
Oscillator”,N.Y. Acad. Sci38 (Ser. Il), p. 44.

149



Grishchuk, L. P. and Sidorov, Y. V., 1990. "Squeezed Quantum States of Relic
Gravitons and Primordial Density FluctuationBhys. Rev. D42, p. 3413.

Guth, A. H., 1981. "The Inflationary Universe: A Possible Solution to the Horizon  and
Flatness ProblemsPhys. Rev. D\Vol. 23, p. 347.

Havas, P., 1957. "The Range of Application of The Lagrange Formaligwibyo
Cimento Suppl.5, p. 363.

Ince, E.L., 1946.Integration of Ordinary Differential Equations(Oliver and Boyd,
New York, Interscience Publishers Inc.), fourth, p. 42.

Kanai, E., 1948. "On the Quantization of the Dissipative Systeisig.  Theoretical
Physics 3, p. 440.

Khandekar, D. C. and Lawande, S. V., 1979. "Exact Solution of a Time-Dependent
Quantal Harmonic Oscillator with Damping and A Perturbative Force” Journal
of Mathematical Physi¢d/0l. 20, p. 1870.

Kim, D. H., Yeon, K. H., Um, I.C., George, T.F. and Pandey L.N., 1997.  "Relations of
Canonical and Unitary Transformations for A General Time  Dependent Quadratic
Hamiltonian System”Physical Review AVol. 55,  p. 4023.

Kim, S. P. and Lee, C. H., 2000. "Nonequilibrium Quantum Dynamics of Second
Order Phase TransformatiorPhysical Review DVol. 62, p. 125020-1.

Landau, L., D., and Lipschitz, E., M., 19@dechanics Course of Theoretical  Physics
(Butterworth Heinemann), p. 45.

Lee, H.R., Oh, H. G., George, T. F. and Um, C. I., 1989. "Exact Wave Functions  and
Coherent States of a Damped Driven Harmonic OscillatBHys. Review  Avol.
39, p. 5515.

Lemos, N . A. and Natividade, C. P., 1987. "Harmonic Oscillator in Expanding
Universes”Nuovo Cimento Bvol. 99, p. 211.

Lima, J. A. S. and Carvalho, J. C., 1994. "Dirac’s Cosmology with Varying
Cosmological ConstantGeneral Relativity and Gravitatignv/ol. 26, p. 909.

Linde, A., 1982. "A New Inflationary Universe Scenario: A Possible Solution Of  The
Horizon, Flatness, Homogeneity, Isotropy And Primordial Monopole  Problems”,
Phys. Lett. BVol. 108, p. 389.

Novikov, S. P., Fomenko, A. T., 199®asic Elements of Differential Geometry and
Topology (Kluwer Academic Publishers, The Nederlands), p.188-198.

Pashaev, O. K., Grak, E., 2007. "Sturm Liouville Problem as Damped Parametric
Oscillator”, (In preparation).

Perelomov, A.M., 1986.Generalized Coherent States and their Applicatjons
(Springer- Verlag, Berlin), p.213.

Ray Chaudhari, A. K., 1979 heoretical Cosmology(Clarendon Press, Oxford), p.
52.

150



Rindler W., 2001 Relativity; Special, General and Cosmologic@xford  University
Press Oxford;New York), p.391-405.

Rosu, H. C., Cornejo-Perez, O., and Lopez-Sandoval, R., 2004. "Classical = harmonic
oscillator with Dirac-like parameters and possible applications”Journal of Physics
A, \Vol. 37, p. 1169.

Rosu, H. C., Ojeda-May, P., 2006. "Supersymmetry of FRW Barotropic
Cosmologies”]nternational Journal of Physi¢d/ol. 45, p. 1191.

Saff, E. P. and Snider, A. D. 2003-undamentals of Complex Analysis with
Applications to Engineering and SciencéPearson Education, Inc., New
Jersey), p. 272-282.

Schutz, Jr., B.F., 1970. "Perfect Fluids in General Relativity: Velocity Potentials  and
a Variational Principle”Phys. Rev. DVol. 2, p. 27-62.

Singh, C.P., 2006. "Early Universe with Variable Gravitational and Cosmological
Constants”|nternational Journal of Theoretical Physicgol. 21, p. 1803- 1813.

Weinberg, S., 1972Gravitation and Cosmology(John Wiley Sons Inc., New York,
U.S.A), p. 49.

151



APPENDIX A

PRELIMINARIES FOR TENSOR CALCULUS

A.1. Tensor Calculus

The main principle of general relativity is that the only valid physical laws are
those that equate two quantities that transform in the same way under any arbitrary change
of coordinates. We need to express the equations of physics in a frame independent way.
We can apply this idea by introducing more general coordinate independent quantities

called Tensors.

Definition A.1 Atensor or tensor field of type (p,q) and rankg is relative to coordinate

systemx’ = (z!, 22, ..., 2")

itsizeip (A1)

J1,925--Jq

which is family of functions and these functions or components can be transformed under

coordinate changing’ = (z', 22, ...2") as

Z Tkhkg,..‘kpaxil ox'r 0z 9zl

T 5 B o, (A2)
ky -k,
I ly
~k1,k2,...kp

whereT,

llvl27---lq

includes components of vector in coordinate systém?, ..., 2".

In particularly, we can define the contravariant and covariant tensors and their

transformation rules are given by the following definitions

Definition A.2 An object having componenis®z in the coordinate system’ =
(z', 2% ...,2") is called contravariant tensor, besides the type of the tensor field is (p,0)
and its rank is p. Under the coordinate changirig= (2!, 22, ...z") transformation rule

is

o ~ or Ox'r
01,02,..0p __ k1k2,.kp 27
Tritsiz,ip § : Tk1ke SR (A.3)
Bk

Similarly,
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Definition A.3 An object having component, ;, ,; in the coordinate system’ =

yeelp
(x',22,...,2") is called covariant tensor. In addition to this, the type of the covariant
tensor is (0,p) and its rank is p. Under the coordinate changihg= (2!, 2%, ...2")

transformation rule is

~ 9zF Oz
E 12,0 T’1 o, kp N e - A4
iz, > kihoky g g (A.4)

ke ...k

(Novikov and Fomenko 1990).

Next, we will find the derivative of a tensor, which should give us back a new tensor and
we are going to require some additional mathematical formalism. Then we will show how
this works and then describe the metric tensor, which plays a central role in the study of
gravity. Next we will introduce some quantities that are important in Einsteins equation

such as the Ricci tensor and the Ricci scalar,...etc.
A.2. Calculating Christoffel Symbols from Metric
Sincel“ .5 is a tensor we can lower the indexusing the metric tensor:
Vasg = gauV"5 (A.5)
But by linearity, we have:
Vasg = (9ouV") 5 = GoppV" + 9oV (A.6)
So consistency requirgs,,.sV* = 0. SinceV is arbitrary this implies that

Jou;8 = 0 (A-7)

Thus the covariant derivative of the metric is zero in every frame. We will prove that

I'*s, =T1'*,5 (i.e. symmetric in3 and~). In a general frame we have a scalar figld

¢;ﬂo¢ = ¢,ﬁ;a = ¢,ﬂo¢ - Iwﬁoegb,w (A8)

in a local inertial frame, this is just g, = aﬁ% , Which is symmetric in5 anda. Thus

it must also be symmetric in a general frame. Helitg; is symmetric in3 anda:

[og =154 (A.9)
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We now use this to expre$s .z in terms of the metric. Sincg,s,, = 0, we have:

gaﬁ“u - Fyaugu,u + Fyﬂugay (A.].O)

By writing different permutations of the indices and using the symmetiy'Qf, we get

Japp + o8 — 9pua = 290l sy (A.11)

Multiplying by 1¢*” and usingy®7¢g*” = 67, gives

1 (0%
Do = 59" (Gapp + Goup — 9u.e) (A.12)

Note thatl”, is not a tensor since it is defined in terms of partial derivatives. In a local

inertial framel” 5, = 0 sinceg,s, = 0. We will see later the significance of this result.

A.3. Parallel Transport and Geodesics

A vector fieldV is parallel transported along a curve with tangent

dx

U= —
X

(A.13)

where )\ is the parameter along the curve (usually taken to be the properrtifinthe
curve is time-like) if and only if

ave

) 0 (A.14)
In an inertial frame this is
dve  ovVe ozP
_ _ 178y
N aman UV (A.15)

so in a general frame the condition becomes:
UPVe5=0 (A.16)

we just replace the partial derivatives (,) with a covariant derivative (;). The curve is a

geodesic if it parallel transports its own tangent vector.
UPU 5 =0 (A.17)

This is the closest we can get to defining a straight line in a curved space. In flat space a

tangent vector is everywhere tangent only for a straight line. Now

UPU® 5 =0= UU® 5+ T ,5U"U” =0 (A.18)
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SinceU® = <~ and-4 = UP 2. we can write this as
X

d%ze dz* da®
pa d2TATT A19
o2 T (A-19)

This is the geodesic equation. It is a second order differential equatiart for) , so one
gets a unique solution by specifying an initial positiayand velocityU,.
A.4. Variational Method For Geodesics

Definition A.4 Geodesic is a generalization of the motion of a "straight line” to "curved
spaces”. In presence of a metric, geodesic is defined to be locally the shortest path be-

tween points on the space.

We apply the variational technique to compute the geodesics for a given metric. For a

curved space-time, the proper tinie is defined to be
2 1 2 1 o 7.0
dr* = —=ds™ = —— gapdz®dx (A.20)
C
Remember in flat space-time it was just
i = — Ly detde” A.21
T =~ lapdatdy (A.21)

Therefore the proper time between two poidtand B along an arbitrary time-like curve

IS
B B
S / dr — / (A.22)
A A
7 1 dz® dxY
T X
= d - A.23
/T /c{ Y dA] (A23)
A A
SO we can write the Lagrangian as
1 da? dz ]
L(x*z%N) =—|— — A.24
(0,8 3) = ¢ |=am0 5 1 | (n.24)
and the action becomes
B
S =7Tap = /E(:v“,jso‘,/\) d\ (A.25)
A
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varying the action, we obtain the Euler-Lagrange equations

oL i oL
oz d\ \ 9i®

Now
oL 1 ( 9zt dx\ V?dgs, daf du
ozo 20\ I TN T 9z dX dA
and
oc _ _1(  owroa\T, do?
oo 2e\ I Tdn JeB= N
Since
1 B oxt OxY 1/2_ dr
A\ TN AN i
we get
oL _ _1dA0gs, d_xﬁ@
Ox®  2dr dx® d\ d\
and
oL dx d’ - daf
ope drdt gy T IR yr

so the Euler- Lagrange equations become:

1d\dgs, dx’ dz?  d [ d:pﬁ]

Multiplying by 22 we obtain

19gg, dx’ dz”  d { dmﬁ]

2000 dr dr dr | dr
Using
dgap  Ogap dx?
dr ox7 dt
we get
10995, d_svﬂ dx” d?2®  0gap dx? daP

2 0xe dr dr = Gap dr? + oxY dr dr
Multiplying by ¢°* gives

d?a° _ 5o (095 1095, da? dx”
dr? OxY 20z ) dr dr

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)
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Now

0Gap d_xﬁﬁ 1 Gap dxP dz? Dgap dx? da” (A.37)
ory dr dr 2\ 0xY dr dr = 0x" dr dr '
1 (0gap = OGar \ da’ da”
— A.38
2 (8:67 o0 ) ar ar ( )
Using the above result gives us
d?x® 1 daP dx”
— 4% (g, 3 — Um) —— A.39
I 59" (s + Garp = prya) - (A.39)
da® dx”
= I05 = A.40
ar dr ( )
so we get the geodesic equation again
2.0 B Y
d°x s dxPdx —0 (A.41)

i g A
This is the equation of motion for a particle moving on a time-like geodesic in curved
space-time. Note that in a local inertial frame i.e. whéte, = 0, the geodesic equation
is reduced to

d2x®

= (A.42)

which is the equation of motion for a free particle.

A.5. Properties of Riemann Curvature Tensor

Definition A.5 The Riemann tensor which is sometimes called the curvature tensor. In

terms of the metric connection (Christoffel symbols) it is given by
Ra/gm, = Fa,gV’H — Faﬁml, + Paauraﬁy — Fam,l““ﬁ# (A43)

In a local inertial frame we hav”,,, = 0, so in this frame

Raﬁm, = Fagwb — Faﬁw, (A.44)
Now
1o 1 ad
[%g, = 59 (9580 + 9sv.8 — Gpvs) (A.45)
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SO

1
Faﬂy,u = §ga5 (géﬁ,uu + 9év.pp — gﬁu,&,u) (A46)

sincega‘s,# = 0 i.e., the first derivative of the metric vanishes in a local inertial frame.

Hence

1
Raﬁuy = Egoui (géﬁ,uu + 9év.pp — GBv,n — g(SB,wj) (A47)

Using the fact that partial derivatives always commute sodhat, = gsz .., We get

1

Raﬁ,uy - §ga5 (951/,,(3# — Gsu,Bv + 9pu.ov — gﬁu,éu) (A48)

in a local inertial frame. Lowering the indexwith the metric we get

Raﬁ;w = ga)\R)\BuV (A49)
1
= 596(1 (950,61 — Goupv + Gpuov — 9pvou) (A.50)

So, in a local inertial frame the result is

1
Raﬂ,ul/ = § (gau,ﬂ,u — Gap,pBv + 9Bu,ov — gﬁu,au) (A51)

We can use this result to discover what the symmetrieB gf,, are. It is easy to show

from the above result that
Raﬂ/w = _Rﬁauv = _Raﬂvu = Ruvaﬁ (A-52)
and
Ropuw + Ravpy + Rapwp =0 (A.53)

Thus Rz, is antisymmetric on the first pair and second pair of indices, and symmetric
on exchange of the two pairs. Since these last two equations are valid tensor equations,
although they were derived in a local inertial frame, they are valid in all coordinate sys-
tems. We can use these two identities to reduce the number of independent components
of R,s,, from 256 to just 20. A flat manifold is one which has a global definition of
parallelism: for example, a vector can be moved around parallel to itself on an arbitrary

curve and will return to its starting point unchanged. This clearly means that

R, =0 (A.54)
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Hence, the manifold is flat. All together, indimensions, there ar€* (n* — 1) /12 inde-
pendent nonzero components of the Riemann tensor. This fact together with the symme-
tries in tells us that in two dimensions, the possible nonzero components of the Riemann

tensor are
R1212 = R2121 = _R1221 = _R2112 (ASS)
while in three dimensions the possible nonzero components of the Riemann tensor are
R1212 = R1313 = R2323 = R1213 = R1232 = R21237 R1323 = R3132 (A56)

Computation of these quantities using a coordinate basis is extremely tedious, especially
when we begin dealing with real space-time metrics. An important use of the curvature
tensor comes when we examine the consequences of taking two covariant derivatives of a

vector fieldV

V. VgVH = V,(VFp) (A.57)
= (V99 0+ Tal 7 = T3V (A58)

As usual we can simplify things by working in a local inertial frame. So in this frame we

get
Vo VgVH = (V’u;g)’a (A.59)
= (VFg+T"5V"), (A.60)
= VVoa +T" g, VY T 3V, (A.61)

The third term of this is zero in a local inertial frame, so we obtain

Vo VeVt =V 5 4+T",5,V" (A.62)
Consider the same formula with the interchanged indices:

Vo VeVt =VH 5, +T,05V" (A.63)

If we subtract these we get the commutator of the covariant derivative ope¥aiaad

VBZ
[V, V| VI = Vo VsV — VgV VH (A.64)
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The terms involving the second derivatives/6f drop out becausg” .3 = V" 3, (partial

derivatives commute). Since in a local inertial frame the Riemann tensor takes the form
Rty =T"080 —T"0ap (A.65)

we get
[V, V] VH = R¥,o5VH (A.66)

This is closely related to our original derivation of the Riemann tensor from parallel trans-
port around loops, because the parallel transport problem can be thought of as computing,
first the change d¥ in one direction, and then in another, followed by subtracting changes

in the reverse order.

A.6. Bianchi Identities; Ricci and Einstein Tensors

In the last section we found that in a local inertial frame the Riemann tensor could

be written as

1
Raﬂ,ul/ = § (gau,ﬁ,u — Gapu,Bv + 9Bu,ov — gﬁu,au) (A67)

Differentiating with respect ta* we get

1

Raﬁuu,)\ - 5 (gal/,ﬁu)\ — Goyp,Br + 9Bu,avX — gﬁu,au)\) (A68)

From this equation, the symmetys = g3, and the fact that partial derivatives commute,

it is showed that
Roguwy + Rapapy + Rapuau =0 (A.69)
This equation is valid in a local inertial frame, therefore in a general frame we get
Roguvn + Ragrpy + Ragury =0 (A.70)
or
VaRapuw + VuRagry + VuRagr =0 (A.71)

This is a tensor equation, therefore valid in any coordinate system. It is called the Bianchi

identities.
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A.6.1. Ricci Tensor

The Riemann tensor can be used to derive two more quantities that are used to
define the Einstein tensor. The first of these is the Ricci tensor, which is calculated from
the Riemann tensor by contraction on the first and third indices. Before looking at the

consequences of the Bianchi identities, we need to define the Ricci tBpgor
Definition A.6

Rag = R'ops = Rgo =0 (A.72)
It is the contraction of?*,, 3 on the first and third indices.

Other contractions would in principle also be possible: on the first and second, the first
and fourth, etc. Becausk,g,, is antisymmetric orv and 3 and onu andv, all these
contractions either vanish or reducetg,s. Therefore the Ricci tensor is essentially the

only contraction of the Riemann tensor. Similarly, the Ricci scalar is defined as

R= gaﬁRaﬂ = gaﬂg“l/Ruauﬁ =0 (A73)

A.6.2. Einstein Tensor

Proposition A.1 The Einstein tensof,, is constructed by applying the Ricci contrac-

tion to the Bianchi identities.

Proof The curvature tensor, in other word the Riemann teri&gy, satisfies the

following differential equations
Raﬁuu;)\ + Ra,@)\,u;u + Raﬁu)\;u =0 (A74)

They are known as the Bianchi relations. The Bianchi relation (A.74) involves five suf-

fixes.
gozu (Rozﬁw/;)\ + Raﬁ)\u;l/ + Raﬁl/)\;u) =0 (A75)

Sincegap,, = 0 andgaﬁ;“ = 0, we can takeg/** = 0 in and out of covariant derivatives.

Then we obtain
R gpux + R pa + B guny = 0 (A.76)
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Using the antisymmetry on the indicesand \ we get
RE g — B gun + R guxy = 0 (A.7T7)
SO
Rgun — Ry + R'gun, =0 (A.78)

These equations are called the contracted Bianchi identities. Let us now contract a second

time on the indiceg andv:

9% (Rgyx — Raxw + R s0) = 0 (A.79)
This gives
(R"yx — Ry + R 5p) =0 (A.80)
SO
Ry —2R"\, =0 (A.81)
or
2RI\, — Ry =0 (A.82)

SinceR,\ = g\ R,,, we get

1
Pwk—ﬁyuR} =0 (A.83)
g7

Raising the index with ¢* we get

1
{RW ~3 g“”R] =0 (A.84)
HY
Defining
1

G" = R" — §g“”R =0 (A.85)

we obtain
G"., =0 (A.86)
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The tensoG*” is constructed only from the Riemann tensor and the metric, and it is auto-
matically divergence free as an identity. Einstein’s field equations for General Relativity

are

G =

Vs (A.87)
The Bianchi Identities then imply
™., =0 (A.88)

which is known as the conservation of energy and momentum.
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APPENDIX B

RICCATI DIFFERENTIAL EQUATION

Definition B.1 The Riccati differential equation is the second order nonlinear differential

equation. The standard form of this equation is
Y =py’+aqy+r (B.1)
wherep, ¢ andr are functions of: alone, andp is not identically zero (Ince, 1946).

The Riccati differential equation may be integrated completely when any particular solu-
tion, sayy = y1, is known, a result by the substitution

1
y=uy+ - (B.2)

wherewv is a new variable which is function. After substituting (B.2)
'+ 2py1 +q)v=0 (B.3)

and the integration can be completed by quadratures.

Important Properties

The general integral can be expressed in terms of any three fungtiopsandys which
satisfy the Riccati equation. If we make the substitutioa= y; + % yo and ys will

correspond to two particular valuesofvhich are defined as, andv,

1 1
Yo = Y1+ —, Ys=Y1+ — (B.4)
U1 (%)

and sincev = v; andv = v, are particular solutions of the linear equation (B.3) and its
general solution becomes

Vv — U

=c (B.5)

Uy — U1
wherec is the integration constant. Making the reverse substitutions, we obtain
1 1 1

U= , U1 = , U3 =
Yy—mn Y2 — Y1 Ys — 1

(B.6)

we obtain that

Y—U Ys — Y1

Yy—Yya Cys — Y2 (B.7)
(Ince, 1946).
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It is well known how to get Riccati equations from the general form of homogeneous

linear differential equation of the second order

A(x)% + B({E);i—z +C(z)u=0 (B.8)

it requires the transformation

1 1du

whereS(z) is an arbitrary function and this transformation is also called the Cole-Hopft
transformation. Note that we are using the same transformation to obtain the linearize the

Riccati equation. Then, the first and second derivative of (B.9) become
v = yuS(x) (B.10)
and the second derivative ofin terms ofzx is
' = y'uS(z) 4+ y*S%(x) + yuS’ (B.11)
Substitute them in the second order differential equation. Then,
A(z) [y'uS(z) + y*S*(z)u + yuS'] + B(z) [yuS(z)] + C(z)u = 0

and it becomes

S'(z)  B(x) C

/ QS = O 812
/s v |50+ 20) + ae (812
we can choos%g(;‘)) + fg} such that the coefficient of y be zero. Then

S@) B _ o [T BE)
S T A@ 0 W / A"

So(z) = " A (B.13)
Hence,
C
" y2S) = — B.14
Y +y"So A(7)S, ( )

Let us apply the change of independent variable

dy _ dyds

- < B.1
dx dz dx (B.15)
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Hence, equation (B.8) becomes

ldydz C
—_—— = — B.16
Sedzdr 7 A(r)S2, (8.16)
and again let assume that
1 dz *
— % _ _ / B.17
N 8.17)
under this condition, the Riccati equation can be given as
dy 2 C(2)
— = — B.18
dz Ty A(z)S? ( )
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APPENDIX C
HERMITE DIFFERENTIAL EQUATION

Definition C.1 Hermite differential equation is defined as:
y" —2zy +2ny =0 (C.2)

where n is a real number. For n is a non-negative integer, i.e., n=0, 1, 2, 3,..., the
solutions of Hermite’s differential equation are often referred to as Hermite polynomials
H,(z) (Arfken and Weber 1995).

By solving the Hermite differential equation, the series

—4k +4)...(—4k +4j —4) ,;
2 x (C.2)

Hap(w) = (=1)"2(2k — 1)! {1 + i (=4k)(

Important Properties

Definition C.2 The Hermite polynomial#/,,(x) can be expressed by Rodrigues’ formula

2 dar 2

H(a) = (—1)"e” (™) (C3)
wheren=0,1, 2, 3,...
and the first few Hermite polynomials are
Ho(z) = 1
Hi(z) = 2z
Hy(z) = 42° -2
H3(z) = 82° — 12z
Hy(x) = 162" — 4822 + 12
Hs(z) = 322° —1602° + 120z (C.4)
Hg(z) = 642° — 4802 + 7202* — 120
Hy(x) = 12827 — 13442° + 33602° — 1680z
Hg(z) = 2562° — 35842° + 134402* — 134402° + 1680
Hy(z) = 5122° — 92162" + 483842° — 806402° + 30240z
Hig(z) = 10242' — 230402° + 1612802° — 4032002 + 3024002* — 30240
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The valuedd,,(0) may be called Hermite numbers.

Definition C.3 The generating function of Hermite polynomial is

2w H,(z)t"
2tr—t* __ n
e = ano (C.5)

n!

Proof ConsiderF'(x + t) = exp(—(z + t)?) and the Taylor series expansion,

f@) = > rleo (C6)
yields,
Sl — 1" _o?
Flatt) = 3 uF " @ =2 g0 Hwe (€7
Lett’ =t. Hence,
22 o <_t,)n —1\)"H C.8
R ) = D () H () (C-8)
Py = S0 c.9
e" Fle—t) = Z oy Hpy (). (C.9)
aots t)" " 0" o
e~ g(z,t) :Z(n_)!H(n)(x) :Z<7’L)! %6( o )|t:0- (C.10)
Then,
o" (—t2+2tx)
Hpy(z) = o =0, (C.11)

e(~*+2i7) j5 called the generating function for the Hermite polynomids ().

C.1. Orthogonality

Hermite polynomiald,, (z) form a complete orthogonal set on the intervab <

© < oo in terms of the weighting functioa*”. It can be shown that
/ H,(2)Hyp(z)e ™ dz = nl2"/T6um (C.12)

whereJ,,,,, is the Kronecker delta, which equals unity when= m and zero otherwise.

The same integration can be written in different way for simplicity as follows,

0, m#n

/ Hy(2)Hpp(x)e™™ dz = nl2"/ T =
oo nl2"/m, n=m
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C.2. Even/Odd Functions

Whether a Hermite polynomial is even or odd function depends on its degree

Based onH,,(—x) = (—1)"H,(—x),
a. H,(z) is an even function, when is even.

b. H,(x) is an odd function, when is odd.

C.3. Recurrence Relation

A Hermite polynomial at one point can be expressed by neighboring Hermite poly-

nomials
a. H,y1(v) =aH,(z) — 2nH, 1 (x).

b. H,(z) = 2nH,_;.

C.4. Special Results

a. Hy(r) = (20)" — ") (20)72 4 2l 200 9yt |

b. [H,(t)dt = Hpp1(z)  Hpi1(0)

. 2(n+1) 2(n+1)

c. [e®H,(t)dt = H, 1(0)—e*
0

H, (x)

d. Hy(r+y)= k:OnQ’ﬂ% ( : ) Hk(x\/i)Hn—k(y\/i)

e.
~1)22%.1.35...(n — 1), neven
H,(0) = (—1) (n—1)
0, n odd
P L ()} = — e H ()
dx
e 2k k! 2rtinl(z — y)
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APPENDIX D

NON-STATIONARY OSCILLATOR
REPRESENTATION OF FRW UNIVERSE

We can determine the standard oscillator equation by combining the Friedman’s

equations as follows,

a4k
3 - ) A = smp(t) (D.1)
2 .o .2 k
%—A — _8mp(t) (D.2)

where A is the cosmological constang,is density andp is the pressure of the Fried-
man Robertson Walker universe. Moreover, the density and pressure are time dependent
functions. Firstly we arrange the first Friedman equation (D.1)

a 8tp kA

) = 5 -5+3 (D.3)

After substituting (D.3) in the second Friedman equation (D.2), we get the oscillator type
equation with time dependent frequency

a(t) + %ﬂ [p(t) + 3p(t)]alt) = %a(t) (D.4)

In this appendix we will interpret (D.4) as the Sodmger equation in order to solve

it for some particular cases. The scale fact@r) is considered as a wave function of

the stationary Sckdinger equation. To get Sddinger type equation with = 1 and

m = 5. In below consideration we will treat(¢) as a complex function from which only

reel or imaginary part have direct physical meaning. Let assume that the second term of
the left hand side is the potential part of the Sxhinger equation

A7

V(t) = 3

[p(t) + 3p(t)] (D.5)

Hence, the Sclidinger type equation is obtained

a(t) + V(t)a(t) = %a(t) (D.6)

At the following subsection, we will discuss the different cases with respect to time de-

pendent delta potential.
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D.1. Time Dependent Oscillator

D.1.1. Delta Function Potential

Equation (D.6) is obtained as

() + (1) + 3p(0)]alt) = () (0.7)

Let assume that pressure and density are in the form of theditection.

p(t) = pod(t), p(t) = pod(t) (D.8)

and in the oscillator equation, the potential part is givertbip(t) + 3p(t)]. Then, the

potential becomes

47

V= [pud(t) + 3p00(6)] = o [po + 3] 501 (D.9)

and we assume that
A7
Uo = 5 [P0 + 3po] (D.10)

The goal is to get the similar form of the Sélinger equation. In this assumption, the po-
tential of the Schrodinger equationlis= Uyd(t). Let us assume that is the Sodmger

equation, where(t) represents the one-dimensional wave function

A

a(t) + Upd(t)a(t) = ga(zf) (D.11)
and multiply equation (D.11) by-1 and then
—a(t) — Upd(t)a(t) = Ea(t) (D.12)

where we assume thét is the energy and it is equivalent to = —%. Now, let us firstly

look at the region outside af= 0 in which the delta function becomes zero
i(t) = —Ea(t) = xa(t) (D.13)
wherex = +/—F = \/§
a. If the energy is negative ar > 0, x will become real.

b. If the energy is positive ak < 0, x will become purely imaginary.
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Case [A > 0] or Bound State:

If cosmological constant is the real, the solution of equation (D.13) is obtained

as
a(t) = Ae™" + Be™ (D.14)

For negative in other words, the left side of the potential, the wave functiawll blow
up ast goes to negative infinity, sd must be zero. On the right side the same thing

happens and there, the const&nust be zero. Then we get the step function

Beft, t<0
a(t) =
Ae ™ t>0
As a consequence, at= 0, the wave function must be continuous, 40= B and we

have
Aeft. +<0
a(t) =
Ae ™ t>0
Now we must use the informationdat= 0, in the region near = 0, equation (D.13) gives

us,
—i(t) — Upd(t)a(t) = Balt) (D.15)

We integrate both sides with respect twver infinitesimally small region around the delta

potential from—e to e:

/ it — / Uob(t)a(t)dt / Ea(t)dt (D.16)
and
- [‘96{;&’5)“ - a‘é—i’f)k} _Upa(0) = E / o(t)dt (D.17)

Now, let epsilon goes to zero. Then the right hand side of the equation will go to zero

sinceua is finite and we integrate it over a zero width. This gives us

[8@(15) ~ da(t)

7|—e ot |e:| = —Upa(0) (D.18)

and lete — 0
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—K da
a.t>0,a(t) = Ae ", then%]o = —Ak

b. t < 0,a(t) = Ae™, then?| ) = Ag

so that

8a(t)| _8a(t)|
o < ot

Now, a(0) = A and then we can obtainas follows

= —Ak — Ak = =24k (D.19)

—2AK = —AUO

1
R = §U0 ==Y, —F (Dlg)

where we defined the enerdgy = —%. Hence, there is one and only one allowed energy
level as

A A
E=—=_Uy=42%/=
37 0 3

To be complete, we can find the constantia the normalization constant

oo

/ la(t)|*dt = 2A% / e 2tdt =1 (D.19)

0
Then,

A = Jr= <\/—_E)1/2 - (%)m _ (i é) " (D.20)

Finally, the wave functiom(t) = Ae™** becomes,

1/2
a(t) = (%) e~ 2l (D.21)
or
A 1/2 7\ 1/2
a(t) = (i §> e (EVE) T (D.22)

Case A < 0] or Unbound State:

When the state is unbound, it does not vanish at infinity, it will not be possible to
normalize the wave function. In addition to this, such states are called scattering states.

For these states different normalization convention is used. Equation (D.13) becomes

—i(t) — Upd(t)a(t) = Ba(t)
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and
a(t) + Upd(t)a(t) = Ka(t) (D.22)

wherex = V—FE = ./—% = z\/§ Out sidet = 0, the solution of equation (D.22)
becomes

a(t) = Ae"™' 4 Be " (D.23)

This is the most general form both to the left and to the right. Thus, there are four con-
stants involved:A;. ¢, Ayights Biesit, Brigne- \WWe need four constraints to determine these
constants. But, there are only two constraints. Clearly we need a different procedure. For
scattering states it is traditional to specify the direction of the incident beam of particles.
This eliminates one of the four unknown constants. Since such states are not normal-
izable, the incident flux (amplitude) is chosen as one. Suppose we specify the beam is

incident from the left. Then the solutions are taken to be,

1. 4+ Biepre ™t t <0
alt) = o
Arightemta t>0

We assume that the amplitude of the incident wave, the first term on the right-hand side

of the first equation of the(t) is unity. Then the constraint relations are
1+ Bleft - Aright (D24)

and note that the poirit= 0 is singularity; we integrate equation (D.22) betweenand

e wheree is small positive number, then take the limiteas> 0 and thus
a'(07) —d’(07) = —Upa(0) (D.25)

Also at the point = 0, equation (D.25) is reduced to

d(0%) = a'(07) (D.26)

Hence,
a'(0%) = ikApight (D.27)
a’(O*) = Zlﬂ[l - Bleft} (D28)
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a(0) = Ayignt (D.29)
let us substitute (D.27), (D.28) and (D.29) in equation (D.25). Hence
ZﬁAmght [ Bleft] - UOAright (Dso)

dividing equation (D.30) by: and

U
ZAmght [1 Bleft] — _?OAright (Dsl)

we assumed that = UO and using by equation (D.31) and (D.24), we determine the
coefficientsB.;; and A, as follows

1
A'right - 1— ’Lﬁ (D32)

Biesr = 11@5 (D.33)

Reflection and transmission coefficients
Whenever a Quantum Mechanical wave experiences a change of potential there
is a probability that the wave will be reflected in terms of the coefficients of the wave

function, this probability is

By,
R = | = |Biep (D-34)
left
Hence,
Bupl? = (7 —t0 D.35
| Bieil (1—w) (1+zﬂ (D-35)
and the probability density of reflection term is
3 1
= ——— = D.36
1+52 \1+% (B-30)
0
wherel, = 47 3 [P0 + 3po]. The probability density of transmission across the interface is
T—1-R= |tz _ g (D.37)
Aleft
1 1
T=1-R=1-—p|=— (D.38)
(1 + —) 1+ ik

Whel’er = 4?# [po + 3p0]
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