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ABSTRACT 
 

DISINFECTION OF LIQUID EGG PRODUCTS  

BY USING UV LIGHT 

 

The application of UV treatment to continuous flow of liquid egg products is the 

initial study among the others. The objective of this study was to investigate the 

efficiency of UV-C radiation as a non-thermal pasteurization process for liquid egg 

products (LEPs). The outcomes of this study were evaluated from the rheological, 

biodosimetric and inactivation efficiency points of view. 

The results pertaining to rheological characterization, physical and optical 

measurements of the fresh and pasteurized LEPs indicated that liquid whole egg (LWE) 

and liquid egg white (LEW) showed Newtonian behavior within the range studied. 

Liquid egg yolk (LEY) exhibited pseudoplastic and time independent behavior in 

temperature ranges from 4 ºC to 25 ºC. But its rheological behavior was affected at 

pasteurization temperature and showed thixotropy and time dependent.  

The biodosimetric study based on the UV treatment of LEPs by using collimated 

beam apparatus pointed out that the best reduction (> 2-log) was achieved in liquid egg 

white (LEW) when the fluid depth and UV dose were 0.153 cm and 98 mJ/cm2, 

respectively. Maximum inactivation was 0.675-log CFU/ml in liquid egg yolk (LEY) 

and 0.316-log CFU/ml in liquid whole egg (LWE). The kinetics of UV inactivation of 

E.coli  in LEPs was found nonlinear. Our results emphasize that UV-C radiation can be 

used as a pre-treatment process or combined with mild heat treatment to reduce the 

adverse effects of thermal pasteurization of LEPs. 

The efficacies of short wave ultraviolet light (UV-C) as a non-thermal process 

for LEW were investigated in the continuous flow UV reactor based on the result 

derived from the biodosimetric study.  Maximum 0.2 log reduction was achieved after 5 

cycle of operation.  The efficiency of the UV light treatment in continuous flow UV 

reactor was found to be lower compared to bench-top studies.  This is attributed to the 

problems caused by inefficient design of UV chamber. Results of these work showed 

that the UV reactor was designed poorly to supply enough UV irradiation exposure for 

all the fluid elements in the system. Redesigning of the system was suggested. 
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ÖZET 
 

SIVI YUMURTA ÜRÜNLER�N�N ULTRAV�OLE (UV) I�IK �LE 

DEZENFEKS�YONU 

 

Sıvı yumurta ürünlerinin ultraviole dezenfeksiyonun sürekli akı� sistemlerinde 

uygulaması, di�er UV uygulamalarıyla kıyasla bir ilk te�kil etmektedir. Bu çalı�manın 

amacı, ısıl i�lemden farklı olarak, UV-C ı�ınlarının sıvı yumurta ürünlerindeki 

mikrobiyal azalmayı incelemekti. Bu çalı�manın alt ba�lıkları olarak sıvı yumurta 

ürünlerinin reolojik, biyodozimetrik ve mikrobiyal azalma verimlili�inin ayrı ayrı 

karakterizasyonu gösterilebilir.   

Taze ve pastörize sıvı yumurta ürünlerinin reolojik, fiziksel ve optik 

karakterizasyon sonuçlarına gore, yumurta beyazı ve karı�ık yumurtanın, sıcaklı�a ba�lı 

kalmaksızın Newtonian akı� özelli�i sergiledi�i görülmü�tür. Yumurta sarısının 4 ºC ve 

25 ºC lerde psüdoplastik davranı� gösterdi�i, bununla birlikte pastörizasyon sıcaklı�ında 

reolojik davranı�ının zamana ba�lı olarak tiksotropik yapı kazandı�ı bulgulanmı�tır. 

Paralel ı�ın demeti aparatı ile UV dezenfeksiyon baz alınarak yapılan 

biyodozimetrik çalı�malar sonucunda,  sıvı derinli�inin 0.153 cm, UV dozun 98 mJ/cm2 

olarak ölçüldü�ü ko�ullarda en iyi logaritmik mikrobiyal azalmanın (> 2-log) yumurta 

beyazında sa�landı�ı farkedilmi�tir. Yumurta sarısındaki maksimum inaktivasyon 

miktarı 0.675-log CFU/ml, bütün yumurtadaki maksimum inaktivasyon oranı da 0.316-

log CFU/ml olarak bulunmu�tur. Patojen olmayan E.coli su�unun sıvı yumurta 

ürünlerinde UV inaktivasyonunun, do�rusal olmayan bir davranı� gösterdi�i 

görülmü�tür. UV-C ı�ınlarının, ön dezenfeksiyon a�amasında kullanılabilirli�i veya ısıl 

olmayan ba�ka bir dezenfeksiyon metoduyla seri bir �ekilde kullanılarak yumurta 

ürünleri üzerindeki negatif etkilerinin en aza indirilebilirli�i incelenmi�tir.  

UV-C ı�ınlarının devamlı akı� UV reaktöründeki etkinli�i, biyodozimetrik 

çalı�maların sonuçları baz alınarak incelenmi� ve maksimum 0.2 log CFU/ml azalma 

sa�lanabilmi�tir. Devamlı akı� UV reaktörünün inaktivasyon verimlili�inin, 

biyodozimetrik denemelere göre çok daha dü�ük oldu�u de�erlendirilmi�tir. Bu 

verimsizlik, UV reaktörün uygun olmayan tasarımına ba�lanmı�tır. Sonuç olarak, UV 

reaktöründen kaynaklanan dizayn probleminin, yeterli UV ı�ı�ının akı�kan ürüne 

aktarılmasını önledi�i ve sistemin yeniden tasarlanmasının gerekti�i görülmü�tür.  
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CHAPTER 1 
 

INTRODUCTION 

 

 The term “egg products” refers to eggs that are removed from their shells for 

processing and convenience forms of eggs for commercial, foodservice and home use.  

These products can be classified as refrigerated liquid, frozen and dried products.  

Liquid egg products (LEPs) are valuable due to its high protein content, low cost, being 

used throughout the kitchen, both by serving alone or by using as ingredients in a 

prepared meal in order to provide texture, flavor, structure, moisture and mostly 

developed from poultry animals (Samimi and Swartzel 1985, Punidadas and McKellar 

1999).   

 Food-borne disease outbreaks involving Escherichia coli O157:H7 and 

Salmonella enteritidis in liquid egg products are the major public health concern (Lee et 

al. 2001, Mañas et al. 2003). As a result, these products must be processed in sanitary 

facilities under continuous inspection and pasteurized before distributed for 

consumption. In the production of ready to use and shelf stable LEPs, pasteurization is 

the fundamental process to eliminate food pathogenic microorganisms from the product. 

The most common pasteurization method for LEPs is the thermal treatment, having the 

principle of inactivation of microorganisms by application of heat for certain periods of 

time (Muriana 1997). USDA requires liquid egg pasteurization (conventional thermal 

processing) to be conducted on a critical temperature-time condition where egg protein 

coagulation may not occur. Minimum temperature and holding time requirements for 

the egg yolk is 60 ºC and 6.2 min. For the egg white and whole egg, minimum 

temperature and holding time requirements are 55.6 ºC and 6.2 min., 60 ºC and 3.5 min, 

respectively (USDA-ARS, USA).  Although thermal pasteurization still represents the 

most available and best understood technique, it may affect the coagulation, foaming 

and emulsifying properties and degrade the quality and functional properties (both 

technological and nutritive) of egg products (Gongora-Nieto et al. 2003, Hermawan et 

al. 2004).   

 Alternative pasteurization methods including ultrasonic wave treatment, high 

electric field pulses, high hydrostatic pressure or ultrapasteurization combined with 

aseptic packaging are explored to extend the shelf life and minimize disadvantages of 
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thermal processing of LEPs (Ball et al. 1987, Ma et al.1997, Ponce et al. 1998, Wrigley 

and Llorca 1992). Most of these methods cause substantial changes in the structure of 

liquid egg products by causing coagulation and denaturation of proteins.  In response to 

these limitations, UV-C radiation can be an alternative non-thermal process for LEPs in 

order to achieve microbiologically safe and shelf stable products (Bintsis et al. 2000). 

UV-C radiation does not only eliminate the harmful effects of thermal treatment but 

also decreases the high operating and separation cost of the other pasteurization 

methods (Garibaldi et al. 2003). In this process, microorganisms are eliminated by 

penetration of UV-C light to outer membrane of the cell and damaging the DNA due to 

formation of thymine dimers, which prevent the microorganism from DNA transcription 

and replication, and eventually leading to cell death (Bank et al. 1990, Bintsis  2000, 

Miller et al. 1999).   

 UV-C light treatment has been used in the food industry for different purposes 

including air sanitation in the meat and vegetable processing, reduction of pathogen 

microorganisms in red meat, poultry and fish processing (Wong et al. 1998, Liltved and 

Landfald 2000). UV-C treatment of heat resistant yeasts, moulds, Bacillus subtilis and 

Bacillus pumilus spore is also common application in the orange juice processing (Tran 

and Farid 2004). Additionally, UV-C radiation has been successfully applied for 

pasteurization of certain liquid foods such as milk and fruit juices (Koutchma et al. 

2004,  Matak et al. 2005).   

 There are many research cited in the literature about the efficacy of UV-C light 

for the reduction of different microorganisms by using either bench top collimated beam 

apparatus or continuous flow reactors (Lage et al. 2003, Sommer et al. 1998). Most of 

these works were conducted with drinking and wastewater samples and the microbial 

inactivation achieved in those studies with lower UV doses than those required for 

microorganisms suspended in liquid foods such as apple cider and milk. For example, 

Lage treated E.coli  suspension with UV exposure of 12 mJ/cm2 UV dose and achieved 

3-log reduction (Lage 2003), whereas Sommer inoculated water samples of 0.4 cm in 

depth with three different E.coli  strains (ATCC 25922, ATCC 11229 and isolated from 

sewage) and applied 10-50 mJ/cm2 UV dose to obtain maximum 6-log reduction 

(Sommer 1998). On the other hand, UV dosages applied by Wright et al. ranged from 

9.4 to 61.5 mJ/cm2 and the mean log reduction of E.coli O157:H7 strain for treated 

apple cider was found to be 3.81 log CFU/ml in flow through UV reactor (Wright et al. 
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2000). 5-log reduction of L. monocytogenes in milk was achieved when the milk 

samples treated with UV dose of 15.8 ± 1.6 mJ/cm2 in continuous flow reactor.    

The application of UV treatment to continuous flow of liquid egg products is the 

initial study among the others. The objective of this thesis is to investigate the efficiency 

of UV-C radiation as a non-thermal pasteurization process for liquid egg products 

(LEPs).  It covers four work packages: 

• Determination of some physical properties important for the efficiency of UV-

C treatment including pH, absorbance, turbidity, and color and rheological parameters 

of fresh and pasteurized liquid egg products.  

• Development of model solutions simulating the rheological behavior of fresh 

and pasteurized liquid egg products that will be used to adjust the volumetric flow rate 

in  UV-C continuous flow studies. 

• UV Dose determination in bench scale UV-C studies with UV-resistant strain 

of E.coli (NRRL B-253) as the target microorganism (Biodosimetric study). 

• Non thermal processing of liquid egg white by using continuous flow UV 

reactor. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

2.1.  Liquid Egg Products (LEPs) 
 

2.1.1. Structure and Chemical Properties  
 

 Egg can be described as the food source developed from most poultry animals, 

commonly chicks. Eggs, particularly chicken eggs, are known as a perfect food for 

humans due to their high protein content, low cost and being readily availability in most 

of the countries (Hamid-Samimi and Swartzel 1985, Punidadas and McKellar 1999). 

They are highly versatile and are used throughout the kitchen, both by serving alone or 

by using as ingredients in a prepared meal in order to provide texture, flavor, structure, 

moisture and nutrition for much prepared foods, from soups and sauces to breads and 

pastries (Punidadas 1999).  

Hen’s egg contains three main parts. The egg shell, which is a composition of 

calcium carbonate, is the tough, outermost covering membrane of the egg. Main 

purpose of shell is to prevent microbial action from entering and moisture from 

escaping, and also to protect the egg during handling and transport.  Shell color is 

determined by the breed of the chicken. Color of the shell can change from bright white 

to brown genetically. On the other hand, shell color has no effect on quality, flavor or 

nutrition of egg contents (USDA Egg-Grading Manual, 2000). 

Egg white (also known as albumen) substitutes for most of an egg's liquid 

weight, which is about 67% in a whole egg. Egg white, which contains niacin, 

riboflavin, lysozyme, chlorine, magnesium, potassium, sodium and sulfur, is more 

opalescent than truly white. Carbon dioxide makes the structure cloudy. But in contrast, 

carbon dioxide is disappeared in aged eggs, causing more transparent structure of 

albumen than that of fresher eggs. When egg albumen is beaten vigorously, it foams and 

increases in volume 6 to 8 times. Consequently, egg foams are essential for making 

several meals such as soufflés, meringues, puffy omelets, and angel food and sponge 

cakes (Foregeding et al. 2006).  



 5 

The term “egg yolk” is defined as the yellow part of the egg that forms 

approximately one third of the egg (33 % by volume) and includes three fourths of the 

calories, most of the minerals and vitamins and all the fat content in the whole egg (high 

nutritive properties exist). The yolk protein lecithin, termed as the compound is 

responsible for emulsification in products such as hollandaise sauce and mayonnaise 

(Telis-Romero et al. 2006). Increasing in size and becoming less viscous due to the 

inner flow of water from the white is the result of  higher concentration of solids in the 

yolk. Hence, egg yolk solidification (coagulation) occurs at temperature range between 

65 ºC – 70 ºC. Although the color of a yolk may vary depending on the chicken's feed, 

color does not affect quality or nutritional content. The yolk also includes such the 

essential elements that iron, phosphorus, sulphur, copper, potassium, sodium, 

magnesium, calcium, chlorine, and manganese (USDA, Egg-Grading Manual, 2000). 

Main components and their weight percentages of LEPs are listed in Table 2.1. 

 

2.1.2.  Physical properties 
  

 Process properties of liquid egg products are not only necessary for proper 

design of process instruments, but also fundamental in order to identify product 

development, quality determination, sensory evaluation, and determination of process 

instruments (Punidadas 1999, Rao et al. 1999). These properties can be categorized as 

the rheological, physical and optical properties of LEPs. 

 In a rheological analysis, the viscosity of a product determines the flow behavior 

of LEPs, varied from Newtonian to time-dependent non Newtonian, in different 

processing steps of LEPs, industrially (conversion step, pasteurization, holding and 

transport from one unit to another in the same process flow). Besides, physical 

properties, such as density and total solid determination, contribute the estimation of 

flow regime parameters and composition of LEPs. Finally change in sensory evaluation 

before and after pasteurization step are dependent on optical parameters like turbidity, 

absorbance and color standard of LEPs for each. Therefore, understanding the 

rheological and physical properties of liquid egg products (LEPs) with a wide range of 

temperature have great importance for the application of new processes in the egg-

products industry. 
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Table 2.1. Components of LEPs.  

(Source: Lee 2002) 

 

 
Component Whole 

Egg 
Egg 
Yolk 

Egg 
White 

Water 75.33 48.81 87.81 
Protein 12.49 16.76 10.52 
Total Lipid 10.02 30.87 0.00 
Carbohydrate 1.22 1.78 1.03 

Proximate 
(g/100g) 

Ash 0.94 1.77 0.64 
Calcium 49.00 137.00 6.00 
Iron 1.44 3.53 0.030 
Magnesium 10.00 9.00 11.00 
Phosphorus 178.00 488.00 13.00 
Potassium 121.00 94.00 143.00 
Sodium 126.00 43.00 164.00 

Minerals 
(mg/100g) 

Zinc 1.10 3.11 0.01 
Ascorbic Acid 0.00 0.00 0.00 
Thiamin 0.06 0.17 0.01 
Riboflavin 0.51 0.64 0.45 
Nicotinic Acid 0.07 0.02 0.10 
Pantothenic Acid 1.23 3.81 0.12 

Vitamins 
(mg/100g) 

Pyridoxal 0.14 0.39 0.00 
 

Rheological and physical properties of LEPs depend on several factors including 

temperature, density, and total solid content. There are several works available about the 

rheological properties of LEPs (Kaufman et al. 1968, Hamid Samimi 1984, Hamid 

Samimi 1985, Ibarz and Sintes 1989, Ibarz 1993, Punidadas 1999, Telis-Romero 2006).   

For example, Hamid Samimi et al. and Hamid-Samimi and Swartzel studied the 

rheological behavior of whole egg (Hamid Samimi et al. 1984, Hamid-Samimi and 

Swartzel 1985). They found out that whole egg shows shear-thinning (pseudoplastic) 

behavior at temperatures above 60 ºC while at temperatures below 60 ºC it behaves as a 

Newtonian fluid. Punidadas et al. investigated the rheological properties and density of 

liquid egg products at pasteurization temperatures (Punidadas et al. 1999). They 

reported that all the products show shear-thinning behavior, which are described by the 

Power-Law model. Telis-Romero studied the rheological behavior of egg yolk at a 

range of 4-60 ºC using a concentric cylinder viscosimeter (Telis-Romero 2006). They 

showed that egg yolk is pseudoplastic and dependent on temperature. These studies 
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revealed that the rheological behavior of all the egg products (except salted ones) 

showed shear-thinning (pseudoplastic) behavior, which can be described by                 

Power-Law model.  The rheological parameters such as K and n values were dependent 

on dry content and temperature.  

 

2.1.3.  Manufacturing of Liquid Egg Products (LEPs) 
 

Instead of traditionally produced and marketed shell eggs, processed liquid egg 

products have been consumed, increasingly. For example, 30 % of the whole eggs sold 

in the USA in 2001 were processed (Anonymous). Since processed liquid egg products 

are handled easily in distribution to the food manufacturing processes and marketing, 

egg processing plays a fundamental role in addition to the high shelf life and safety for 

human body. Processing of LEPs constitues several steps to achieve high quality and 

safety product within high shelf life until consuming.  

Before processing, shell eggs are usually held in refrigerated storage no longer 

than seven to ten days (USDA, 2000). In the production line, shell eggs are holded and 

received up to their size and shape and divided into quailty groups, then washed and 

rinsed completely to remove outer faeces coming from hen. This section is essential 

since great amount of foodborne microorganisms are sourced from faeces after 

ovulation. Shell eggs are sanitized by highly diluted chemicals as sprayed. In order to 

determine and remove the imperfections, shell eggs are then candled by quartz halogen 

light (USDA, 2000).   

Shells are broken and liquid eggs are either separated to produce egg white and 

yolk or mixed to form whole egg. Whole or separated eggs are mixed uniformly to 

homogenize and filtered to remove shell fragments, membranes, and chalazae. Egg 

products are sent to pasteurization unit to inactivate foodborne pathogens. Various times 

and temperatures are used for effective pasteurization, depending on the product. All 

pasteurized liquid egg products is to contain less than 1,000 microorganisms per gram. 

Moreover, Only Salmonella-negative products are allowed to be sold (USDA, 2000). 

Pasteurized egg products are finally refrigerated, dried, plained or salted according to 

the consumers’ needs before packaging. Egg production line is shown in Figure 2.1. In 

the production of ready to use and shelf stable liquid egg products (LEPs),  
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Figure 2.1. Liquid egg products’ processing line.  

(Source: USDA 2000, Lee 2002) 

 

Refrigeration (max. 7 days) 

Holding 

Receiving (for size and shape) 

Washing - Rinsing 

Shell Sanitation 

Candling 

Shell Breaking and Separation 

Egg White Egg Yolk Whole Egg 

Filtration - Homogenization 

PASTEURIZATION 

Packaging – Storage - Marketing 

Freeze 
Products 

Liquid 
Products 

Chilling  
4 °C 

Freezing  
-30 °C 

Drying  
>65 °C 

Dried 
Products 



 9 

pasteurization is the most important process in order to inactivate harmful 

microorganisms  and  undesirable  enzymes  from  liquid  egg products to prevent health 

risk in human body (Muriana 1997, Gut et al. 2005, Daugrthy et al. 2005). Main 

pathogen microorganisms, which cause several foodborne ilnesses in liquid egg 

products are Salmonella enteridis, Salmonella seftenberg, Listeria monocytogenes and 

Escherichia coli (Ferreira et al. 1998, Lee et al. 2001, Ngadi et al. 2003, Man�s 2003). 

Most common pasteurization method is defined as thermal pasteurization, having the 

principle of inactivation of microorganisms at proper pasteurization temperature and 

residence time without affecting the quality and characterization of products. In this 

technique, heat is directly applied to LEPs in a plate heat exchanger in a definite period 

of time according to the product properties. Consequently, heat sensitive food 

pathogenic microorganisms are inactivated. Moreover, the process parameters is to be 

designed for the desired level of thermal treatment with minimum damage to the 

lipoprotein ingredients of the LEPs (Gut 2005).  

Since thermal treatment has the potential to degrade the nutritive quality and 

functional properties (both technological and nutritive) of egg products, negative effects 

of high temperature, as denaturation of high protein structure should be eliminated 

(Gongora-Nieto et al. 2003, Hermawan et al. 2004). Two main parameters of LEPs 

(liquid egg products) are fundamental for thermal pasteurization processes: 

pasteurization temperature and residence time, which depends directly on the flow type 

(either in laminar or turbulent) (Pottier et al, 2006, Schuerger et al. 2005). USDA 

requires liquid egg pasteurization (as a conventional processing) to be conducted on a 

critical temperature-time condition where egg protein coagulation may not occur 

(Anonymous).  

Minimum temperature and holding time requirements for LEPs without affecting 

the quality and characteristics are shown in Table 2.2. Instead of thermal treatment, 

several pasteurization methods have been developing for LEPs, such as ultrasonic wave 

treatment (Wrigley and Llorca 1992), high electric field pulses (Ma et al. 1997), high 

hydrostatic pressure (Ponce et al. 1998) or ultrapasteurization combined with aseptic 

packaging (Ball 1987).  

Sanitation method is used by additional chemicals, such as hydrogen peroxide, 

especially in egg white in spite of its negative effect on quality and taste in the presence 

of high concentration (Muriana 1997). 
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Table 2.2. Thermal Pasteurization Conditions of LEPs.  

(Source: USDA-ARS, USA) 

 

Minimum Holding 

Liquid Egg Product Temperature (°C) Time (min) 

Egg White (Without chemicals) 55.6 3.10 
Whole Egg (Without chemicals) 60.0 3.50 
Egg Yolk (Without chemicals) 60.0 3.10 
Whole Egg Blends (2 % ingredient) 60.0 3.10 
Salted Whole Egg (2 % or more salt) 62.2 3.10 
Sugared whole egg (2 to 12 % sugar) 60.0 3.10 
Salted yolk (2 to 12 % salt) 62.2 3.10 
Sugared yolk (2 % or more sugar) 62.2 3.10 

 

2.2. Ultraviolet Light Treatment (UV-C Radiation) of Liquid Foods 
 

Ultraviolet light can be described as a spectrum of light, remaining below the 

range visible to the human eye (Sosnin et al. 2006, Shama 2007). UV light can be 

divided into four distinct spectral areas upto their effectiveness, such as Vacuum UV 

(between 100 to 200 nanometers), UV-C (between 200-280 nanometers), UV-B 

(between 280-315 nanometers), and UV-A (between 315-400 nanometers). The part of 

an electromagnetic spectrum, which is responsible for germicidal effect to microbial 

structure in wavelengths between 200 nm and 300 nm, is called UV-C (Shama 2007). 

The UV-C spectrum (200-280 nanometers) is the most lethal range of wavelengths for 

microorganisms. This 253-264 nanometers range having the peak germicidal 

wavelength is known as the “germicidal spectrum”, shown in Figure 2.2.   

 

 
 

Figure 2.2.UV radiation range groups.  

(Source: WEB_1 2003) 
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UV treatment is used to eliminate microorganisms from several food materials 

such as fruit juice, apple cider and milk.  It is described as a non thermal disinfection 

method having no undesirable effect on the organoleptic and nutritional properties on 

food materials (Bintsis et al. 2000). Photochemical damage to nucleic acids in cellular 

structure is the main result of the absorption of germicidal UV-C light. The DNA of 

most living organisms is double stranded, including the adenine in one strand is 

opposite thymine in the other, and linked by one hydrogen bond, and guanine is paired 

with cytosine by one hydrogen bond (Bank 1990, Moan 1998, Miller 1999, Bintsis 

2000, Tornaletti 2005, Cadet et al. 2005). The purine and pyrimidine combinations are 

called base pairs. When UV light of a germicidal wavelength is absorbed by the 

pyrimidine bases, the hydrogen bond is ruptured (Cieminis et al. 1987, Tornaletti 2005). 

New bonds between adjacent nucleotides are structured with the help of high energy, 

utilized by UV wavelengths ranging in UV-C region forms. This phenomena creates 

double molecules or dimers (Tornaletti 2005), shown in Figure 2.3. Dimerization of 

adjacent pyrimidine molecules is the most common photochemical damage. But in 

contrast, cytosine-cytosine, cytosine-thymine, and uracil dimerization can be identified. 

Hence, cell replication is interrupted by formation of numerous dimers in the DNA and 

RNA of microbial structure with the effect of other types of damage such as cosslinking 

of nucleic acids and proteins resulting cell death (Tornaletti 2005).  

 

 
 

Figure 2.3. Effect of UV-C light on DNA double strand. 

(Source: WEB_2 2003) 
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The amount of cell damage depends on the dose of UV energy absorbed by the 

microorganisms and their resistance to UV. Requirement of UV doses for inactivation 

of most bacteria and viruses are low. UV dose is a product of UV intensity and exposure 

time and is expressed as milli Joules per square centimeter (mJ/cm2) or milli Watt 

seconds per square centimetre (mWs/cm2). UV doses required for 99.9% destruction of 

various microorganisms are represented in Table 2.3.  

 

Table 2.3. Destruction Levels of UV Doses on Main Microorganisms. 

(Source: WEB_3 2006) 

 

Organisms       Energy  
(mW sec / cm2)  

Salmonella enteritidis 7.6 
Bacillus subtilis 11 
Bacillus subtilis spores 22 
Escherichia coli 6.6 
Pseudomonas aeruginosa 10.5 
S. typhimurium 15.2 
Shigella paradysenteriae 3.2 
Staphylococcus aureus 6.6 
Saccharomyces cerevisiae 13.2 
Baker’s yeast 6.6 
Brewer’s yeast 8.8 
Aspergillus niger 330 
Influenza 6.6 
Paramecium 200 
Penicillium expansum 22 

 

Use of ultraviolet irradiation was allowed by Food and Drug Administration 

(FDA) to inactivate foodborne pathogens and other microorganisms in juice products by  

regulation effective since November 29, 2000. UV disinfection is mainly used in air and 

water purification and sewage treatment of food and beverages (Blume and Neis 2004, 

Chmiel et al. 2002, Green et al. 1995, Hassen et al. 2000) processing of drinking water 

(Peldszus et al., 2003, Lehtola et al., 2004), milk and fruit juice production (Koutchma 

2004, Matak 2005) 

 Various advantages of UV disinfection process are present in the meaning of 

low total operation cost, environmentally friendly applications without hazardous 

chemicals and safe to use. UV systems are universally accepted disinfection processes 

especially in food and water disinfection. UV systems are not only operated 
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automatically without special attention, but maintenance is also made with easy re-

installation (Tchobanoglous et al. 1996, Lazarova et al. 1998, Elyasi  and Taghipour 

2006). Overall advantages of UV can be represented as the following.  

• UV systems are environmentally friendly and no need to dangerous chemicals 

to handle or store. 

• Low initial capital cost is a characteristic of UV systems as well as reduced 

operating expenses according to the similar technologies, such as thermal disinfection 

of ultrasonic treatment, etc. Installation is easy (Lazarova et al. 1998).  

• Depending on the food materials, treatment process may be immediately 

operated without any holding tanks or long retention times (Oppenheimer et al. 1993, 

Masschelein et al. 1989). 

• UV operation is extremely economical that great amount of food material may 

be treated for a little operating cost with low power consumption (Green et al. 1995). 

• Comparing the thermal treatment, no or hardly any change in taste, odor, pH 

or conductivity is differentiated in food. 

• UV system may somehow be used as a compatible device with other treatment 

equipments or systems when complete destruction of microbial population is needed 

(Blume and Neis 2004, Koivunen and Heinonen-Tanski 2005). 

UV treatment method not only dominates the harmful effects of denaturation of 

biochemical structure when consuming, also decreases the high operating and 

separation cost of the other pasteurization methods. (Garibaldi et al. 2003). It is 

expected that an efficient UV operation must destroy the targeted microorganism in a 

food material (Lazarova 1998). Hence, there are several parameters affecting design, 

performance, and operating principals in using an UV system as a disinfector or a 

pasteurization device (Harris et al. 1987, Qualls et al. 1985, Parker and Darby 1995). 

Main factors that will help determine the ability and efficiency of a UV disinfection 

device are as follows: 

• The type of lamp used in the treatment (low-pressure or medium/high-

pressure) (Harris et al. 1987, Hassen 2000) . 

• The length of the lamp being used (Hassen et al. 2000). 

• Physical, chemical and optical properties of food material being treated 

(density, viscosity, turbidity, absorbance coefficient) (Parker and Darby 1995). 
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• The flow rate of food material through the UV's exposure chamber (Hassen et 

al. 2000). 

• The physical design of the UV's exposure chamber. 

• The chemical composition and condition of the food material being treated 

(temperature, pressure, etc.). 

Nevertheless, UV biodosimetric and UV inactivation studies have been present. 

Koutchma described and compared the performance of three designs of flow-through 

UV reactors in turbulent flow, thin film and annular laminar systems for the disinfection 

of a solid-liquid media (apple cider) for UV disinfection of  E.coli (Koutchma 2006).  

Triassi et.al. studied ultraviolet disinfection of 30 environmental Legionella strains from 

the paediatric and cardiac surgery units (CSU) in hospital environment, hospital water 

supply and medical devices to prevent Legionnaries’ disease (Triassi et.al. 2005). 

Templeton et.al. analyzed the protection against UV light of two viral surrogates (MS2 

coliphage and bacteriophage T4) in three types of particles (kaolin clay, humic acid 

powder, and activated sludge), two coagulants (alum and ferric chloride), two filtration 

conditions (none and 0.45 mm), and two UV doses (40 and 80 mJ/cm2 for MS2 

coliphage, 2 and 7 mJ/cm2 for bacteriophage T4) considering in a series of            

bench-scale UV collimated beam studies at 254 nm (Templeton et.al. 2005). Particle 

diameter and UV absorbing organic content were critical parameters for this type of 

protection.  

Pottier applied the two-flux approach to the Chlamydomonas reinhardtii growth 

in a photobioreactor of torus shape using daylight fluorescent tubes (Pottier 2006). 

Instead of the destruction of pathogens, the aim of this study was differed from 

inactivation processes of UV light in specialization of constructing the necessary 

m.orgns. It can be predicted that not only UV light is used in food pasteurization, but 

also applied on the growth of organism in biotechnology. Schuerger improved the UV 

simulations in order to create an inactivation model for spore-forming Bacillus species, 

used as the benchmark for assessing the cleanliness of spacecraft surfaces prior to 

launch, on sun exposed surfaces of spacecraft on Mars (Schuerger 2005). Logan et al.  

studied on the prevention of biofouling on glass and quartz surfaces with 

photocatalytical materials, like active metal oxides (Logan et al. 2004). Fauquet et al. 

determined the inactivation procedure for foodborne pathogens in blood derived 

therapeutic material transferred blood, used in clinic operations from unknown donors 

(Fauquet et al. 2004). 
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Lehtola experienced the effectiveness of pipeline modifying on UV and chlorine 

disinfection (Lehtola 2004). Biofilm formation decreased the effect of UV-light on 

bacteria and higher chlorine remove the biofilm and microbial population from copper 

pipes than that of plastic ones. Drinking water was disinfected with UV-radiation  

(70mWs/cm2) produced by a low-pressure UV-lamp and the drinking water was 

disinfected with both UV-radiation and chlorine (NaOCl). Pozos et.al. operated two 

model distribution systems on water for biofilm and microbial population by UV 

disinfection (Pozos et.al. 2004). It was seen that, opportunistic pathogen attachment was 

not affected by the UV treatment, but was correlated to the biofilm density of 

heterotrophic bacteria having a non-consistent impact of UV treatment on the biofilm 

community. UV annular system was irradiated with a low-pressure UV lamp, delivering 

a dose of 106 mJ/cm2. The UV dose delivered was determined with a bioassay using a 

collimated beam test. Koutchma developed a mathematical models such as Dispersed 

Phase model to describe particle phase flow pattern and particle residence times and the 

UV intensity distribution model to simulate processing of apple cider in a thin-film UV 

reactor under 253.7 nm UV light at 60 mW.s/cm2 UV dose (Koutchma 2004). 

Unluturk et.al. studied the effects on UV light efficiency on the destruction of 

Escherichia coli K-12 bacteria in the presence of model fluids using laminar and 

turbulent flow treatment systems by the single factor of UV absorbance on fresh apple 

juice/cider (Unluturk et.al. 2004). Continuous thin-film laminar and turbulent flow UV 

reactors were used on this study. Ngadi et.al. evaluated the effect of pH, depth of food 

medium and UV dose on E.coli O157:H7 in egg white and apple juice at 0.315            

mW/cm2 between 0-16 minute in 2 min interval (Ngadi et.al. 2003). Peldszus et.al. 

investigate the bromate removal from drinking water on irradiation with                   

medium-pressure UV lamps for drinking water disinfection with UV fluences up to 718 

mJ/cm2 (Peldszus et.al. 2003). 19% bromate removal was achieved. Chmiel determined 

the reduction of highly contaminated spent process water contamination on food and 

beverage industries using the combination of membrane bioreactor, UV pre-disinfector 

and UV disinfection apparatus (Chmiel 2002). Wright studied UV inactivation for 

reducing E.coli O157:H7 in apple cider in continuous flow UV reactor in the UV dose 

range of 9.4-61 mW.s/cm2 (Wright 2000). UV pathogen treatment was reduced with a 

mean reduction of 3.81 log CFU/ml. Lage et al. treated E.coli suspension with UV 

exposure of 12 mJ/cm2 UV dose and achieved 3-log reduction (Lage et al. 2003). Matak 
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achieved 5-log reduction of L. monocytogenes in milk when the milk samples were UV 

exposured in a dose range of 15.8±1.6 mJ/cm2 in continuous flow reactor (Matak 2005).    

Giese defined the responses of three coliform bacteria species (Citrobacter 

diversus, Citrobacter freundii and Klebsiella pneumoniae) to three wavelengths of UV 

light (254, 280 and 301 nm) with a collimated beam apparatus having medium pressure 

UV lamps at 29 to 575 second under 2.3-39 mW s/cm2 and achieved 3 log inactivation 

level (Giese 2000). Hence, germicidal efficiency determined for one species of bacteria 

or virus may be used to represent the relative responses of all bacteria and viruses to 

medium pressure UV irradiation. Tosa and Hirata determined the susceptibility of 

enterohemorrhagic E.coli O157:H7 to UV radiation at 254 nm and photoreactivation in 

a batch disinfection device at 1.5 and 3.0 mWs/cm2 UV dose (Tosa and Hirata 1999). 

Liltved identified the significant difference of both photoreactivating and 

photoinactivating process for two fish pathogenic bacteria (Aeromonas salmonicida and 

Vibro anguillarium) after exposing to sunlight and artifical (UV) light in their natural 

river waters in bench top systems under 254 nm and 2-3 mWs/ cm2 UV dose (Liltved 

2000).  

Several researches on the efficiency of UV light for the reduction of different 

microorganisms by using either bench top collimated beam apparatus or continuous 

flow reactors were reported in the literature (Sommer 1998, Lage 2003). Bolton 

calculated the fluence rate distribution and the average fluence rate in an annular UV 

reactor with either a monochromatic (254 nm) low pressure mercury lamp or a 

broadband medium-pressure mercury UV lamp, placed at the center (Bolton 2000). 

Wright examined the efficacy of UV light for reducing E.coli O157:H7 in unpasteurized 

apple cider using thin film UV disinfection unit at 254 nm and 0.94-6.1005 mW s/cm2 

3.81 log reduction was achieved (Wright 1999). Yaun et.al. defined the UV light 

treatment and reduced the numbers of multistrain coctails of Salmonella and E.coli 

O157:H7 on agar surfaces using a 1 m long UV chamber having 253.7 nm wavelength 

and 100 mW s/cm2 dose, then achieved 5 log reduction under >8.4 mW/cm2 and >14.5 

mW/cm2 irradiance average (Yaun et.al. 1999). Wong et.al. determined the >5 log 

reduction of E.coli on the surface of tryptic soy agar with doses of >12 mW/cm2 (Wong 

et.al. 1998). Sumner et.al. achieved the 7-log reduction of Salmonella typhimurium on 

brain heart infusion agar plates with doses of 36 mW/cm2 (Sumner et.al. 1995). 
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CHAPTER 3 
 

MATERIALS AND METHODS 

 

3.1. Sample Preparation and Handling 
 

3.1.1. Preparation and Handling of Shell Eggs 
 

Shell eggs (maxi sizes, A3 quality) were washed with chlorinated water in order 

to eliminate “Avian Influenza” virus and other foodborne pathogenic organisms, which 

could be seen in poultry animals and faeces on shell egg. After the water is drained, 

shell eggs were washed with deionized water and finally broken properly and separated 

into 2 of 1000 ml beaker. In order to separate chaladza and other membraneous 

impurities, egg yolk was filtered by colander. Egg white was double filtered by colander 

and gauze to separate foam layer. In order to remove foam from egg white completely, 

egg white was centrifuged at 800 rpm speed for 1 minutes at 4 ºC. Whole egg was 

prepared by mixing approximately 13-14 eggs (egg white and egg yolk together) in the 

same container. Then separated from impurities (chaladza, membranes). Finally, 600 ml 

of samples for each LEPs were stored under refrigeration conditions (T=4-6 ºC) before 

measurement. 

 

3.1.2. Preparation and Handling of Pasteurized LEPs 
 

Pasteurized products for biodosimetric studies, obtained from the egg product 

manufacturer (IPAY Izmir Pastörize San. And Tic. A.�., �zmir, Turkey), were selected 

in order to make sure that samples did not contain significant levels of indigenous 

microflora. 1 liter of LEPs’ boxes were handled and stored at 4 – 6 ºC in refrigerator. 
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3.1.3.  Preparation and Handling of Carboxylmethylcellulose Model          

Solutions  

 
Before continuous flow UV reactor studies, great amount of LEPs were needed 

to be used in the system for maximum effectiveness of operations. In order to define 

flow conditions, including total cycling time and UV residence time per cycle for a 

given volumetric flow rate for each LEPs, Carboxylmethylcellulose (CMC) is used as 

one of the rheological modifiers, most commonly employed in the food industry. 

Different concentrations (0.7 %, 1.25 % and 3.5 % wt/v) of CMC were used as model 

fluids CMC obtained from Kimetsan Inc, Ankara, Turkey was in powdered form and 

initially dissolved in small amount of distilled water, then proper concentrations of 

CMC solutions were prepared in 1 liter of distilled water. Solutions were finally stored 

under refrigeration conditions before measurements. 

 

3.2. Rheological, Physical and Optical Measurements of LEPs 
 

3.2.1.  Rheological Measurements of LEPs 
 

Rheological parameters define the flow behavior of fluids in a defined 

temperature range. By applying several viscosity tests with respect to temperature and 

time gives some information about the type of fluid and its flow behavior in the 

processing equipment. In these studies, up-down rate ramp, time sensitivity test and 

temperature sensitivity test were done for each LEPs. These tests were carried out by 

choosing one parameter that is kept constant and changing the remaining factors. 

Viscosity measurements were conducted for liquid egg products at different 

temperatures by using concentric cylinder viscosimeter (Brookfield DV II+Pro, 

Brookfield Engineering Lab. Inc., MA, USA) equipped with a cylindrical spindle               

(LV-1) (cylinder diameter 18.84 mm, length 115 mm, beaker diameter 86.30 mm and 

600 ml of sample volume) as seen in Figure 3.1a. Since egg yolk samples were more 

viscous than other samples, LV-2C type spindle (cylinder diameter 10.25 mm, length 

115 mm) was used for this product (Figure 3.1b). Rotational speeds of these spindles 

ranged between 5 (1.02 s-1) and 200 rpm (53.7 s-1).  
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(a)  (b)  

 

Figure 3.1. (a) LV-1 cylindirical spindle: A=115 mm, B=3.2 mm, C=18.84 mm, D=65.1 

mm, F=80.97 mm. (b) LV – 2C cylindirical spindle: A=115 mm, B =3.2 

mm, C=10.25 mm, D=53.95 mm, F=66.25 mm. 

 

Liquid egg white (LEW) and whole egg (LWE) were less viscous and egg yolk 

(LEY) exhibited considerably high viscosity. Therefore LEW and LWE samples were 

subjected to a programmed shear rate linearly increasing from 8 to 53.7 s-1 (30-200 

rpm), followed by a steady shear at 53.7. s-1 for 10 minutes and a finally a linearly 

decreasing shear rate from 53.7 s-1 to 8 s-1 (hysteresis loop). LEY samples were sheared 

in a similar way but shear rate was changed from 1 to 34 s-1 (5- 160 rpm). During the 

shear, torque was recorded every 60 sec as a function of rotational speeds by a software 

program (Rheocalc32, Brookfield Eng., MA, USA) attached with the instrument and 

connected to a personal computer. At each rotational speed, care was taken to ensure 

that the torque has attained its steady state value. Measured torque values at different 

agitation speeds were converted to shear stress–shear rate data by using proper 

conversion equations (WEB_4 2006). Ranges of shear rate for LEPs were selected to 

simulate the typical processing conditions. Shear rates at the wall within a commercial 

UV system under typical processing conditions (data calculated according to the study 

of Telis-Romero et al. 2006) have been 8 to 30 s-1. Therefore, shear rate ranges were 

chosen to cover this range. The onset of turbulent flow (Rao 1999) was also evaluated 

to ensure that the flow remained laminar. Three replicates were made for each sample at 

a given temperature and new samples were used for each test. 

Viscosity measurements were done for LEPs at storage temperatures, room 

temperature and pasteurization temperature by using different spindle. Spindles were 

created a shear near the metalic surface of cylinder. This shear rate data were collected 
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and made an algorithm with respect to viscosity-shear stress-shear rate relationship. 

Viscosity values were directy displayed on screen. Calibrations of viscosimeter with        

LV-1 and  LV-2C spindles were done by using silicone oil standards (Brookfield 

viscosity standards, Brookfield Eng., MA, USA). Temperature  adjustment was 

controlled by the help of cooling water bath. 

Rheological measurements of LEPs were carried out at different temperatures 

and summarized as follows: 

 

• For egg white: 4 ºC (storage conditions), 25 ºC (room temperature) and 55,6 

ºC (optimum pasteurization temperature). 

 

• For egg yolk: 4 ºC (storage conditions), 25 ºC (room temperature) and 60 ºC 

(optimum pasteurization temperature).  

 

• For whole egg: 4 ºC (storage conditions), 25 ºC (room temperature) and 60 ºC 

(optimum pasteurization temperature). 

 

Several rheological tests were applied on LEPs and CMC solutions under the same 

conditions. These tests were explained in the following sections. 

 

3.2.1.1. Up-Down Rate Ramp 
 

 Using the time versus RPM or shear rate curve, flow behavior of fluid at 

different RPM or shear rate were estimated. Methods were shown in Figure 3.2. A 

starting and a maximum rotational speed were chosen for each LEPs and CMC 

solutions. Speeds were increased and decreased with equal intervals. Rheocalc32 

software program was used to write an algorithm in order to make data display after 

each measurement with equal time intervals automatically. Using the method defined 

above, controlled rate ramp creates the up ramp. Upon reaching the maximum rotational 

speed or shear rate, direction was reversed and returned to the direction of starting speed 

to create down ramp. 
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RPM or shear rate (1/sec)      Viscosity (Pa.s) 

  

 

 

 
 
                                                   (a)                            (b)                   RPM or shear rate (1/sec) 
              Time (sec)                      
 

Figure 3.2. Up-down rate ramp method (a) defines the method of rate ramp model  and 

(b) represents the application of rate ramp model with respect to viscosity 

versus RPM curve. 

 

Viscosity and torque data were recorded at each speed. Torque readings were 

kept greater than 10 %. For each specific speed or shear rate, hysterisis was observed 

among the viscosity value on the up ramp and down ramp.  Different viscosity value 

indicate that the material is time sensitive to shearing action. Time interval was defined 

as 60 seconds for up-down rate ramp viscosity measurements. In addition to the time 

interval, 10 minutes of resting period was applied for the viscosimeter readings reached 

at max point in rheological tests of CMC solutions. 

Viscosity of liquid egg white and whole egg were measured by # 1 LV 

cylindirical spindle since viscosity range of liquid egg white is lower at given 

temperature than that of egg yolk. Following equations were represented to estimate 

shear rate and shear stres values for measured liquid egg product by   # 1 LV spindle: 
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 x=radius at which shear rate is being calculated (cm)     

 M=torque input by instruments (dyn / cm) 

 L=effective length of spindle=7.493 cm (for LV – 1) and 6.062 (for LV-2) 

 

 100
7.673*(%)

)/(
torque

cmdynestorque =
        (3.3) 

 

where, 673.7 dynes/cm identifies the common spring torque available from Brookfield 

for LV adapters. Besides, it was not necessary to use Rb, Rc and effective length of         

LV-2C spindle, since shear stress and shear rate levels could be directly read on 

Rheocalc32 software during the measurement. 

 

3.2.1.2. Time Sensitivity Test 
 

Time sensitivity test was applied by using viscosity (or torque) versus time 

curve. Method was shown in Figure 3.3. A starting and a maximum speeds were chosen 

as appropriate. Time interval was adjusted as 30 seconds for time sensitivity test at 

storage, room and pasteurization temperatures. For CMC solutions, 20 seconds of time 

interval was applied.  It was observed as whether the viscosity or torque values changed 

as a function of time.  

 

 

 

Figure 3.3. Time sensitivity test method. 

 

Time 
Independent 
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Very Time 
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3.2.1.3. Temperature Profiling with Up-Down Rate Ramp Test  
 

 This method combines the approaches in temperature sensitivity test and             

up – down rate ramp test. Time sensitivity test can be done by choosing a rotational 

speed or shear rate by choosing a starting and maximum temperature. Viscosity values 

are recorded at defined time intervals, while temperature ramps up. Method was 

represented in Figure 3.4.  

 

 
 

Figure 3.4. Temperature profiling with up-down rate ramp test method. 

 

Temperature profile was defined between maximum and starting temperature. 

The procedure for choosing the appropriate time interval were the same as in up – down 

rate ramp and time sensitivity tests. 

 

3.2.1.4. Dynamic Yield Test 
 

Different rotational speed values between the acceptable torque values            

(10 %-100 %) are chosen after the determination of time interval for specific product. 

Viscosity, shear stress and shear rate measurement are done in small sample adapter 

with constant temperature for each test. Shear stress or torque values at defined time 

intervals are recorded. Data are rewieved and a best fit straight line through the data is 

determined as shown in Figure 3.5. 

Temp 1 

Temp 2 

Temp 3 

RPM or shear rate (1/sec) 

Viscosity (Pa.s) 
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Figure 3.5. Dynamic yield test method. 

 

The shear stress and shear rate were determined from the torque measurements, 

rotational speed and geometry of the system and calculated automatically by using the 

software attached to the system. Different rheological flow models (Newtonian (3.4), 

Power Law (3.5) and Herschel-Bulkley (3.6)) based on shear stress shear rate were 

tested (Rao, 1999). Fitted functions were obtained by using the least square fit method 

of commercial spread sheet (Excel, Microsoft Corp., 2003). The suitability of the fitted 

functions was evaluated by the coefficient of determination (r2) as well as the standard 

error of estimate Sest  (3.7): 

  

 ��� =                     (3.4) 

 

 
n
�K� =   (3.5) 

 

 
n

0 �K�� +=   (3.6)  

 

 
n
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where τ is the shear stress (Pa), τ0 is the yield stress (Pa), γ is the shear rate (s-1), µ is the 

Newtonian viscosity (Pa.s), K is the consistency index (Pa.sn), n is the flow behavior 

index, In order to quantify the effect of temperature on the viscosity or consistency 

coefficient, an Arrhenius type equation (3.8) was applied: 

x 
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 RT
E
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e�� =   (3.8) 

 

where ηa is the apparent viscosity (Pa.s), η0 is a parameter considered as the viscosity at 

infinite temperature (Pa.s), Ea is the activation energy (J/mol), R is the molar gas 

constant (J/mol K), and T is the temperature (°K). 

 

3.2.2. Rheological Properties of Model solutions (CMC) 
 

Similar tests explained in Section 3.2.1, were applied on CMC model solutions, 

prepared at different concentrations (0.7, 1.25 and 3.5 % wt/v). Viscosity and density of 

CMC solutions were measured at different temperatures. Then, results were recorded, 

rheological behavior were determined similarly using (3.4), (3.5), (3.6), (3.7) and (3.8) 

and compared with that of LEPs. 

 

3.2.3.   Measurements of Physical Properties 
 

3.2.3.1.  Density of LEPs and CMC Solutions 
 

 Density and pH values of LEPs were measured by using densitometer (Kyoto 

Electronics DA, Japan) at different temperature gradient taking several data at different 

temperature ranges (4-55.6 °C for LEW, 4-60 °C for LEY and LWE). Fluid was filled 

in the measurement tube and density was recorded as a function of its instant 

temperature in g / cm3.  

 

3.2.3.2. pH of LEPs 
 

pH of each LEPs before and after UV treatment in bench top and continuous 

system studies were measured using pH meter (Metrohm, Switzerland). Along with pH 

measurements, temperature changes were also recorded. 
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3.2.3.3. Total Solid Content of LEPs 
 

Total dry solid content (by weight percent) of each product were also determined 

in terms of AOAC 925.30 method.–Total Solids in Eggs (Daniel Lebryk, 1999). A 

metal petri dish was previously dried at  98-100 °C and cooled in desiccator. Then 

weighted at room temperature. 5 g of sample was added in petri dish and final weight 

was recorded nearest to 0.0001 rapidly. Finally sample was dried at 98-100 °C in an 

incubator (Memmert GmbH Co. KF D-91126 Schwabach, Germany). Total weight was 

recorded in a very short period of time per hour. 

 

3.2.4.  Optical Properties  

 

3.2.4.1.  Absorbance of LEPs 
 

Before each test, UV absorbance (Ae) (the fraction of UV intensity transmitted 

through 1 cm path length of the sample) was measured using a UV-VIS 

spectrophotometer (Cary 100 Bio, Varian Inc., CA, USA) set at a wavelength of 254 

nm. LEPs were diluted at 1:50, 1:100, 1:250, 1:500 and 1:1000 dilution factors. Then 

UV absorbance was measured by 1 ml of cuvette for each dilution. 

 

3.2.4.2  Turbidity of LEPs 
 

Turbidity of LEPs were also determined both in bench top and continuous flow 

studies by using a turbidimeter (2100AN, HACH Company, CO, USA).  45-50 ml of 

samples were poured in a glass sample cell and turbidity measurements were done 

before and after UV inactivation of LEPs, for twice for each cell. 

 

3.2.4.3. Color Measurement of LEPs 

 
Color attributes of LEPs were determined by CR 400 chromometer (Konica 

Minolta, Japan) using Illuminant D65. The instrument was calibrated using a standard 

white tile. A cylindrical glass cell (5.5 cm in diameter) filled with 90 ml of LEPs was 

placed on the top of the light source. CIE L*(Brightness), a*(redness-greenness) and b* 
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(yellowness–-blueness) values (CIE, 1976) of LEW, LEY and LWE were measured 

before and after UV exposure. Three readings were averaged for each depth and 

exposure time. The color change of the samples was also expressed as a single 

numerical value �E. This value defined the magnitude of the total color difference. The 

�E value was expressed by the following equation: 

 

   
222 *** baLE ∆∆+∆=∆              (3.9) 

 

L* a* and b* values were determined for the samples treated with bench top 

collimated beam and continuous flow UV studies. �E values were determined for only 

the bench top collimated beam experiment. The data of the bench top collimated beam 

treatment was analyzed using Analysis of Variance and means were compared using 

Duncan Multiple Range Test. 

 

3.3. Bench top Biodosimetry Studies 

 

3.3.1. Target Microorganisms (Biological Dosimeter) and Growth 

Conditions 
 

The non-pathogenic strain of E.coli  (NRRL B-253), serotype E.coli O157:H7 

(ATCC 700728) and S.typhimurium (CCM 5445) were used as biological dosimeters in 

the preliminary biodosimetric study. E.coli  (NRRL B-253) was kindly provided from 

United States Department of Agriculture, Microbial Genomics and Bioprocessing 

Research Unit, Peoria, Illionis. serotype E.coli O157:H7 (ATCC 700728, Dr. Ali Aydın, 

Department of Food Hygiene and Technology, Faculty of Veterinary, �stanbul 

University, Turkey) and S.typhimurium (CCM 5445, Dr Ayse Handan Baysal, 

Department of Food Engineering, �zmir Institute of Technology, Turkey). During this 

study, they were maintained at -80°C. A broth subculture was prepared by inoculating 

loopful from stock culture into a test tube containing nutrient broth (NB, Merck, 

Darmstadt, Germany) and strains were incubated for overnight (24 h) at 37°C. Serial 

dilutions of the subculture were carried out to determine the inoculum concentration. 

Incubation of 24 h allowed the respective bacteria to approach stationary phase of 

growth at a concentration of ca. 108 CFU/ml.   
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The depth in 50 mm standard Petri-dishes was adjusted by adding a in different 

amount of volume to give sample depths of 0.153, 0.3 and 0.5 cm. Biodosimetric study 

of E.coli O157:H7 (ATCC 700728) and S.typhimurium (CCM 5445) were applied on 

0.153 cm sample depth and 1.315 mW/cm2 UV incident intensity level. Then, LEPs 

samples was directly inoculated with the subculture to provide a final inoculum of ~107-

108 CFU/ml. For enumeration, appropriate dilutions were made with 0.1% peptone 

water and surface plated in duplicate on tryptic soy agar (TSA, Merck, Darmstadt, 

Germany). To determine the level of injured cells, serial dilutions of the UV treated 

samples were spread on Violet Red Bile Agar (VRBA, Fluka, Biochemica, Spain) and 

Eosin Methylene Blue (EMB, Fluka, Biochemica, Spain) plates. All the plates were 

incubated at 37 °C for 24h and counted.  All studies were replicated twice.   

 

3.3.2. UV Irradiation Equipment and Inactivation Treatments 
 

In order to determine reduction rate of microorganisms in logarithmic scale 

under ultraviolet light, UV biodosimetry experiment was conducted with collimated 

beam apparatus  described in Bolton 2003. Liquid egg white sample were UV 

exposured using closed bench top ultraviolet system, shown in Figure 3.6. Bench top 

system consists of two identical low pressure mercury vapor UV lamp at 254 nm 

wavelength (UVP XX-15, UVP Inc., CA, USA) (1), a platform on which petri dish and 

a vortex mixer was placed for UV exposure. It is easy raised or lowered by tray system 

(2 and 3), a hole, placed on top of the system with dimensions of one standard petri dish 

diameter (4), one passage system in front of the lamp to use blocking UV light before 

measurement and a shutter to block or allow passage of UV energy to a stage (5). 

Ultraviolet lamps were switched on about 30 minutes before the measurement to 

provide complete activation.  

A cover was closed in front of the system during UV experiment to prevent 

contact of UV light to human skin directly. The whole system was constructed by 

cardboard with a flatblock point in order to minimize the loss of light. Samples were 
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Figure 3.6. Closed bench top ultraviolet system. 

 

placed in 50 mm diameter Petri dishes directly below the collimated UV beam and 

stirred continuously during the irradiation with a vortex mixer (IKA, Yellowline TTS 2, 

IKA® Werke GmbH & Co. KG, Germany) set at dial #5. The UV intensity at the 

surface of the sample (incident intensity (Io) or irradiance at the surface) was measured 

using a radiometer with UVX-25 sensor (UVX,  UVP Inc., CA, USA). The radiometer 

was placed at a similar distance from the UV lamp as the LEW samples. The UV lamp 

was switched on for about 30 min prior to UV treatment of LEW samples in order to 

minimize fluctuations in intensity.  

Prior to usage, the collimated beam apparatus was cleaned and sanitized. For the 

UV inactivation treatments, inoculated plates were subjected to different doses of UVC 

light. The average UV intensity (average irradiance or fluence rate) in the stirred sample 

(Iavg) was calculated by an integration of Beer-Lambert law over the sample depth 

(Morowitz, 1950): 

 

              L)/Ae(1II e
LA

0avg
e−−=              (3.10)   

 

where Io is the incident intensity (mW/cm2), Ae is the absorbance per centimeter and L 

is the path length (cm). UV dose can be calculated using these irradiance values from          

t = 0-20 min minutes using the following formula: 
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 Ι= *d t     (3.11) 

 

where “d” represents UV dose (mJ/cm2), “t” is time (in minutes) and “I” refers to 

irradiance in mW / cm2 

Pasteurized products obtained from the egg product manufacturer (IPAY Izmir 

Pastörize San. And Tic. A.�., �zmir, Turkey) were selected for this study in order to 

make sure that samples did not contain significant levels of indigenous microflora.  

Inoculated LEW samples were exposed to UV radiation of known intensity levels 

(1.315 mW/cm2, 0.709 mW/cm2 and 0.383 mW/cm2) for 5, 10 and 20 min excluding 

untreated control sample and incubated at 37 oC for 24 h. All studies were conducted 

within the UV Dose range of 0-100 mJ/cm2 and replicated twice.   

The total elapsed time between inoculation and UV treatment was controlled in 

order not to allow extra microbial growth. Enumeration of E.coli  (NRRL B-253) after 

each treatment was made as described in previous section. The survival ratio of cells 

after each treatment was calculated from the following equation: 

 

            0N
N

S =
  (3.12) 

 

Where N is the microbial population after UV exposure, N0 is the initial inoculation 

level.  The inactivation of microorganism is generally reported in terms of log reduction 

per unit UV Dose. The inactivation rate of microorganism can be described by a linear 

first order model (Chick, 1908): 
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              (3.13) 

 

where d is the UV Dose (in mJ/cm2), k is described as the inactivation rate constant (in 

cm2/mJ) as the slope of the log N/N0 vs. UV dose curve and estimated from the slope of 

log (N/No) versus UV Dose curve, y is the intercept. Experimental procedure was 

summarized in Figure 3.7. 
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3.3.3. Statistical Analysis 
 

The effects of three factors, depth of liquid medium, UV intensity and time on 

the inactivation of UV resistant of E.coli  (NRRL B-253) in LEPs were investigated by 

using of a general full factorial design.  Average log reductions were used in statistical 

analysis. All treatments were replicated twice.  Analysis of Variance (ANOVA) was 

performed using the general linear model procedure of MINITAB 14 (Minitab Inc., 

State College, PA, USA) in order to determine the significance of each factor.  

Regression analysis was performed for the kinetics of UV inactivation data by using 

commercial spread sheet (Excel, Microsoft Corp., 2003). 

 

3.4. Continuous Flow UV Treatment of LEPs 

 
Continuous flow UV reactor system not only differs from bench top collimated 

beam apparatus as a basis of design, operation method and equipment characteristics, 

but fluid motion also integrates more fundamental factors about microbial inactivation 

and UV light penetration to the sample fluid, than that of static system. Dramatically, it 

has not been possible until now to measure the slope of UV dose distribution in flow-

through systems. Consequently, bench top biodosimetry studies were applied first in 

order to establish logarithmic reduction versus UV dose curve in LEPs. Then based on 

the logarithmic reduction obtained in flow-through system, applied UV-dose were 

found from this curve. Additionally, bench top studies pointed out that UV light 

radiation  creates  pronounced effect on LEW samples. UV inactivation of E.coli  

(NRRL B-253) in LEY and LWE samples were limited due to their high turbid nature. 

As a result of this conditions, continuous UV treatment was applied only to LEW 

samples.
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Figure 3.7. Experimental procedure of cultivation after bench top collimated beam UV inactivation of E.coli (NRRL B-25)
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3.4.1.  Processing Parameters for Continuous Flow UV Reactor  

 

UV treatment system consists of following equipments: 

• A vertical UV reactor (Wedeco-Durco AG Water Technology, Germany); 

equipped with 6 of 254 nm low mercury UV lamp and a quartz tube (See Table 3.1.). 

• 150 lt of stainless steel tank,  

• A 2M25 type stainless monopomp (Inokstek Inc, Turkey), having the capacity 

of 100-1000 lt per hour, with a frequency inventor.  

• Stainless steel piping system and fitting equipments (manual valves, elbows, 

non-aseptic sample valves) 

o 3.5 m of stainles steel pipe (D=1”) 

o 1.1 m of stainless steel pipe (D=2 “) 

o 1 m of quartz tube (D=2”) 

Continuous flow UV reactor system was illustrated in Figure 3.8. Since 

operating parameters plays an important role in the design of UV system, it is essential 

to determine UV residence time, total operation time per one cycle and volumetric flow 

rate for LEW samples in the system. Besides, great amount of LEPs was to be spent for 

the determination  of  parameters  and  cleaning of the whole system after operation was  

 

Table 3.1. Specifications of Continuous Flow UV Reactor. 

 

Reactor Type E10 

Reactor connections:  
male thread, stainless steel, 1.4571 (316 Ti) R 2” 

Width (mm) 240 
Height (mm) 1090 
Depth (mm) 245 
Volume (lt.) app. 4.5 
Weight (kg) app 31 
Operating Pressure (bar) 10 
Pressure Loss (bar) app. 0.01 
Voltage (V/Hz) 230/50 
Power Consumption (W / VA) 230/500 
Protection Class IP 54 
Lamp Type NLR1579W 
Lamp Power (W) 30 
UV-C Output 254 nm (W) 12.5 
Quantity 6 
Expected Lamp Life Time (h) 8000 
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Figure 3.8. Continuous flow UV reactor system. 

 

crucial. Consequently CMC model solutions, which mimic the rheological properties of 

LEW, were  used initially to determine processing parameters such volumetric flow rate 

 (m3/s), Reynolds number, total cycling time and UV residence time in the continuous 

UV system. 0.7 % CMC solution was filled into the tank and pump was switched on. 

Meanwhile, chronometer was started and time was checked for UV residence time when 

passing from UV reactor and total cycle time until the first fluid dropped was detected 

at the outlet of the system. Moreover, volumetric flow rate for each solution was 

measured by collecting certain amount of fluid in a volumetric flask per unit time. 

Laminar flow is preferred in continuous flow system in order to prevent foaming in 

LEW caused by mixing and turbulence. Hence, Reynolds numbers were estimated for 

Newtonian and Non-Newtonian fluids in laminar flow by (3.14) and (3.15) (Telis-

Romero 2006). 

UV Reactor 

Sample Tank 

Check
Valve 

Mono pump UV Intensity 
Control Screen 

Inlet Sample 
Valve 

Outlet Sample 
Valve 

Check
Valve 

Monopump 

Direction of Fluid 
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where Re is reynolds number and Reg is generalized reynolds number, D is diameter 

(m), � refers to average flow velocity (m/s), � is density (kg/m3), n is flow behavior 

index, K is consistency index (Pa.sn) and 
 is viscosity (Pa.s). Results of Reynolds 

number of both Newtonian and Non-Newtonian behaviour was summarized in Table 

3.2. 

 

Table 3.2. Flow Parameters of 0.7 % CMC in Continuous Flow UV Reactor. 

 

Flow 
Rate 
Level 

Volumetric 
Flow Rate 
(ml/min) 

Time of one 
cycle (sec) 

UV 
residence 
time (sec) 

UV Q 
(m3/s) 

UV v 
(m/s) 

Re 
(Newtonian) 

Reg (Non-
Newtonian) 

1 360 850 426 1,056E-05 0.0054 18.473 16.685 
2 710 397 233 1.931E-05 0.0099 33.776 30.984 
3 1080 292 156 2.885E-05 0.0147 50.447 46.760 
4 1560 205 107 4.206E-05 0.0215 73.549 68.840 
5 1840 183 91 4.945E-05 0.0252 86.481 81.283 

6 2190 155 77 5.844E-05 0.0298 102.205 96.476 

 

3.4.2.  Inactivation Study  

 
As similarly in UV biodosimetry studies in bench top collimated beam 

apparatus, explained in Section 3.3.1., the non-pathogenic strain of E.coli  (NRRL B-

253) was again used in this continuous system study, A broth subculture was prepared 

by inoculating loopful from stock culture into a test tube containing 10 ml of nutrient 

broth (NB, Merck, Darmstadt, Germany) and strains were incubated for overnight (18-

24 h) at 37°C. Incubation of 24 h allowed for the respective bacteria to approach 

stationary phase of growth at a concentration of ca. 108 CFU/ml.   

Logarithmic growth rate of E.coli  (NRRL B-253) was determined by measuring 

optical densities. In this method, after an overnight incubation, 100 µl of E coli 

suspension from 10 ml of culturewas transferred into 4 of 500 ml erlenmayer filled with 
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250 ml of nutrient broth and left for incubation in an orbital shaker (Thermo Electron 

Corp., Ohio, USA) at 300 RPM. Optic density was measured by UV spectrophotometer 

at the wavelength of 600 nm and microbial count was determined by spread plate count 

method on TSA, per hour.  

According to the activation curve (Figure 3.9.), it could be said that, E.coli  

(NRRL B-253) reached stationary phase after 5 hours of incubation by orbital shaking. 

Total microbial count was observed as 109 CFU / ml. Logarithmic growth rate curve as 

a basis of optical density values was plotted and shown in Figure 3.10. 

 It was decided to inoculate 106 CFU/ml in 10 lt of sample, 4 x 250 ml of E.coli  

(NRRL B-253) culture was added to 9 lt of sample. Figure 3.11. shows optical density 

procedure. 10 lt of LEW were prepared at 4 °C and stock culture was inoculated at the 

rate of  106 CFU/ml. Before the UV inactivation study, storage tank was filled with 

LEW and pump was started at a given flow rate. It was checked that LEW was passed at 

least one cycle in the system, completely before turning on the UV reactor. Sample 

valves were sterilized with 70 % ethanol by flaming. 

50 ml of sample was taken before inoculation of stock culture for the 

enumeration of total aerobic count and stored in a dark container in the refrigerator until 

the microbiological examination. Enumeration of total aerobic count was done by 

spreading on Tryptic Soy Agar (TSA, Fluka, Biochemica, Spain) and Violet Red Bile 

Agar (VRBA, Fluka, Biochemica, Spain), also pouring by Plate Count Agar (PCA, 

Fluka, Biochemica, Spain).  

After one cycle was ended, pump was swiched off and LEW was inoculated 

with 1 lt of stock culture. In order to distribute microbial population homogeneously, 

sample was mixed with a sterile rod or spoon very well without forming any foam 

structure.  
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Figure 3.9. Time versus microbial count curve of E.coli  (NRRL B-253). 

 

 

Optical Density vs.Microbal Count Curve

y = 2E+08x - 1E+07
R2 = 0,9482

0,00E+00

5,00E+07

1,00E+08

1,50E+08

2,00E+08

2,50E+08

3,00E+08

0 0,2 0,4 0,6 0,8 1 1,2

Optical Density (abs)

M
ic

ro
bi

al
 C

ou
n

t (
C

FU
)

 
 

Figure 3.10. Optical density versus microbial count curve of E.coli  (NRRL B-253). 
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Figure 3.11. Determination of inoculum rate by optical density study. 

 

 Initially, 50 ml of sample was taken from the inlet sample valve to determine the 

initial microbial count in the whole system. UV lamps and UV intensity sensor was 

switched on, meanwhile pump was started at a given flow rate (1080 ml/min). A stop-

watch was started in order to record the total cycle time in the whole system (t=t0). Time 

was recorded when the liquid was reached to the inlet of UV reactor (t=t1). 50 ml of 

sample was taken to a sterile erlenmeyer flask from the inlet of the UV system for the 

E.coli   (NRRL B-253) enumeration as the initial count (UV inlet). During the passage, 

UV intensity in the UV reactor was recorded by the UV sensor. 

At the end of first cycle, all the liquids in the system were allowed to collect in 

the storage tank. In order to determine the waiting time for collecting the whole fluid in 

the pipes, total cycling time levels of 0.7% CMC for each flow rates were used.  

Figure 3.12. demonstrates that 300 sec (5 min) waiting time was necessary to 

complete one cycle in order to discard the whole fluid in the pipes for choosen 

volumetric flow rate (1080 ml/min).  
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Figure 3.12. Waiting time versus whole cycle time curve for liquid egg white (LEW). 

 

In addition to completing one cycle in UV reactor, UV residence time of one 

pass for the given LEW was recorded (t=t2). Then 50 ml of sample was taken from the 

outlet sample valve for the E.coli  (NRRL B-253) enumeration for the reduction after 

one pass (UV outlet). After the passage of liquid was completed in UV reactor, time 

was continued to record and stop-watch was stopped when one cycle was completed 

within turning LEW to storage tank (t=t3). The total cycle time was found by the 

summation of t1, t2 and t3, as 294 sec. Samples were refrigerated in aseptic storage 

conditions in dark container for further microbiological analysis.  

 

3.4.3. Cleaning of the Whole System 
 

3.4.3.1.  Discharging and Washing by Disinfectants 
 

In order to clean all the residual protein and microbial structure of LEW from 

piping and quartz tube of UV reactor, a disinfection agent was needed. To remove entire 

egg residue, 15 lt of 0.5 M NaOH solution was prepared by dissolving 300 g of NaOH 

(Panreac E-08110, Montcada I Reixac, Barcelona, Spain) in 15 lt of distilled water. 

Then, tank was filled with 0.5 M NaOH solution Three complete cycles were operated 
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to remove the whole LEW. Finally NaOH solution was discharged and system was 

rinsed with distilled water for three cycles.  

To remove microbial population from the system, 15 lt of 2 % (or at least 200 

ppm) chlorine solution was prepared by dissolving 300 ml of pure chlorine in 15 lt of 

distilled water, completely. As done with 0.5 M NaOH solution, 2 % chlorine solution 

was passed from the system for 3 cycles. At the end of 3rd cycle, chlorine solution was 

discharged and system was re-washed with 15-20 lt of hot distilled water. During 

rinsing, UV reactor was switched on to remove residual microbial population. From the 

outlet of the UV reactor, 50 ml of sample was taken, aseptically for enumeration of total 

microbial count by spreading on TSA-VRBA and pouring by PCA. 50-75 ml of water 

was taken to analyze the residual chlorine. At the end of the cleaning operation, all the 

connections were separated and allowed to dry. Connections were attached again to 

make the system ready for the next experiment. 

All the physical (pH, T and Cl2 residue), mirobiological and optical (color, 

absorbance and turbidity) measurements carried out during the continuous flow studies 

in UV reactor were summarized in Table 3.3. 

 

3.4.3.2 Determination of Residual Chlorine After Cleaning Step 

 
Residual chlorine in final-rinsed water was analyzed by 4500-CI B Iodometric 

Method I (American Public Health Association 2005). Since chlorine will disengage 

free iodine from potassium iodine (KI) solutions at pH 8 or less, the disengaged iodine 

was applied to titremetric method with a standard solution of sodium thiosulphate 

(Na2S2O3)   with   starch  as  the  indicator   (Fluka  Chemie,  GmbH,   CH-9471  Buchs,  

Switzerland). 0.025 N sodium thiosulphate (Merck KgaA, 64271, Darmstadt, Germany) 

was prepared by dissolving 6.2 g in 1 lt of distilled water, then standardized by 

potassium di-chromate (Carlo-Elba, 7778-50-9, Spain) after at least 2 weeks storage. 1 g 

of KI (Sigma-Aldrich Laborchemikalien GmbH.D-30926, Seelze) was dissolved in 5 ml 

of acetic acid to reduce pH between 3.0-4.0, since reaction is not stoichiometric at 

neutral pH due to partial oxidation of thiosulfate to sulfate. Mixture was poured to 50 

ml of water-sample. Titration was done away from direct sunlight, 0.025 N of Na2S2O3 

was dropped to water sample until yellow color of the disengaged iodine was almost 

discharged. 1 ml of starch indicator solution was added and dark blue color was 
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appeared. Titration was continued until dark brown color was turned to colorless. For 

the determination of total available residual chlorine in the water sample, following 

correlation was applied 

 

Table 3.3. Summary of Continuous Flow UV Reactor Studies. 

 

Microbiological 

Examination 

Optical  

Measurements 

Physical   

Measurements Sampling 

Points 
TSA VRBA PCA Color Abs. Turbidity pH T 

Cl2 

residue 

Pasteurized  egg 

white (control, 

untreated) 

 � � � � � � �  

Cycle 1 

inlet-outlet 
�   � � � � �  

Cycle 2 

inlet-outlet 
�   � � � � �  

Cycle 3 

inlet-outlet 
�   � � � � �  

Cycle 4 

inlet-outlet 
�   � � � � �  

Cycle 5 

inlet-outlet 
�   � � � � �  

After cleaning � � �      � 

 

 

 sampleml
xNxA

mlClasClmg
45.35

/2 =
       (3.16) 

 

where A was ml titration for sample and N is normality of  Na2S2O3. 
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CHAPTER 4 
 

RESULT AND DISCUSSION 
 

The results of our study were expalined in four main sections.  The results 

pertainning to rheological characterization, physical and optical measurements of the 

fresh and pasteurized LEPs were given in the section 4.1 and 4.2.  Rheological 

properties are important for determination of processing parameters and selection of 

model solutions that simulates the LEPs during UV treatment in continuous flow 

reactor.  In the section 4.3, the results of the biodosimetric study based on the UV 

treatment of LEPs by using collimated beam apparatus were presented.  UV dose in the 

continuous flow UV reactor cannot be directly measured.  Therefore, biodosimetry 

studies which are carried out by using collimated beam apparatus are essential in 

determination of the UV dose applied in continuous flow UV reactor studies.  In the last 

section (4.4), the results of continuous flow UV inactivation studies were evaluated and 

presented.  

 

4.1. Rheological, Physical and Optical Measurements of Liquid Egg 

Products (LEPs) and CMC Model Solutions 
 

4.1.1. Rheological Measurements 
 

4.1.1.1. Time Dependency 
 

A change in the LEPs´ viscosity over time indicates time-dependent behavior; a 

decrease signifies thixotropy. This decrease is an important consideration in process 

design. As the sample is sheared during its passage through the process system, the 

linkages between particles or molecules in the food are broken, resulting in reduction in 

the size of the structural units and offer lower resistance to flow (Rao 1999). 

In this study, thixotropic behavior of LEPs was examined by measuring 

hysteresis loop at different temperatures. Results were summarized in Figures 

4.1.,4.2.and 4.3. 
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Figure 4.1. Thixotropy of liquid egg products at 4 °C (a) Egg white (b) Whole egg (c) 

Egg yolk. 
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Figure 4.2. Thixotropy of liquid egg products at 25 °C (a) Egg white (b) Whole egg (c) 

Egg yolk. 
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Figure 4.3. Thixotropy of liquid egg products at pasteurization temperatures (a) Egg 

white  (at 55.6 °C) (b) Whole egg (at 60°C) (c) Egg yolk (at 60 °C). 

 

Although LEW and LWE showed evidence of hysteresis at pasteurization 

temperature of 4 °C, LEY samples exhibited higher degree of hysteresis at 60 °C. It is 

obvious from the figures that none of the products exhibited thixotropy at low shear 

rates and temperatures of 4 and 25 °C.  

This was also confirmed by recording apparent viscosity at regular time intervals 

(s  4.4.). Apparent viscosity of these products did not show any time-dependency at low 

shear rates and 25 °C.  

As a result, LEW and LWE were determined to be time-independent in the 

temperature ranges from 4 °C to 60 °C. But, LEY having higher protein content was 

especially affected at 60 °C, indicating that the chemical structure was broken primarily 

because of a susceptibility to heat (coagulation of proteins). Therefore, LEY could be 

also considered to be time-independent in the temperature ranges from 4 °C to 25 °C but 

time-dependent at pasteurization temperature. 

 

a b 

c 
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4.1.1.2. Rheological Parameters 
  

Different rheological models (Newtonian, Herschel- Bulkley and Power law) 

have been tested to ascertain the correct flow behavior of liquid egg products. 

Rheological parameters of unpasteurized LEPs were reported in Table 4.1. The 

coefficient of determination (r2), for all cases, were higher than 0.99 (p<0.05) and 

standard error of estimates (Sest) were lower than 0.16 which confirms that selected 

models were adequately suitable for describing the flow behavior of LEPs within the 

range studied (see in Appendix A).  

Yield stress was observed in the cases of LWE and LEW (Table 4.2.) and shear 

stress and shear rate data fitted Herschel-Bulkley model (3.6.) well in the range of 

temperatures from 4 to 60 °C. The flow behavior index (n) of LWE and LEW obtained 

from this model showed values varying from 0.9290 to 0.9878 indicating that, in this 

range of temperature, the liquid whole egg and liquid egg white are slightly 

pseudoplastic in nature. Because the magnitudes of n were higher than 0.9, one could 

assume that these products have Newtonian like behavior and can be considered as 

Newtonian fluids in engineering calculations (Scalzo et al. 1970).  

The consistency index (K) of both products varied from 0.021 to 0.038 Pa.sn
 and 

decreased with increasing temperature. Newtonian model (3.4.) was also applied to 

shear stress shear rate data of LWE and LEW. Newtonian viscosity values were found 

to be in the range of 0.017 and 0.037 Pa.s and, in the same way as the consistency 

coefficient (K), decreased when increasing temperature. 
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Figure 4.4.  (a) Time dependency of LEW and LWE at shear rate of 16.12 s-1
 and        

25 °C. (b) Time dependency of egg yolk at 8.48 s-1and 25 °C. 
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Table 4.1. Flow Parameters of Fresh LEPs at Selected Temperatures. 

 

Herschel-Bulkley Model 

Product 
 

Temperature 
(°C) 

Consistency 
index, 

K (Pa sn) 

Flow 
behavior 
index, n 

r2 Sest 

4 0.038 0.9878 0.991 0.0325 

25 0.030 0.9720 0.992 0.0138 

 
Whole 

egg 
 60 0.028 0.9290 0.980 0.0252 

4 0.032 0.9607 0.995 0.1421 

25 0.024 0.9545 0.992 0.1609 

 
Egg 

white 
 55.6 0.021 0.9436 0.986 0.0219 

Newtonian Model 

 Temperature 
(°C) Viscosity (Pa.s) r2 Sest 

4 0.037 0.993 0.0402 

25 0.028 0.991 0.0365 

 
Whole 

egg 
 60 0.021 0.986 0.0343 

4 0.028 0.994 0.0336 

25 0.020 0.994 0.0213 Egg 
white 

55.6 0.017 0.989 0.0254 
Power Law Model 

 Temperature 
(°C) 

Consistency 
index, 

K (Pa sn) 

Flow 
behavior 
index, n 

 

r2 Sest 

4 1.013 0.9324 0.999 0.0045 

25 0.438 0.8970 1 0.0016 

 
Egg 
yolk 

 
 60 0.284 0.8777 0.999 0.0073 

 
 

Table 4.2. Yield Stress at Selected Temperatures. 
 

Product Temperature (°C) Yield Stress (Pa) 

4 0.1654 
25 0.2049 Whole Egg 

60 0.1947 
4 0.0704 

25 0.1157 Egg White 
55.6 0.1799 
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Those findings were in agreement with the results of Scalzo et al., Hamid 

Samimi et al. and Hamid-Samimi and Swartzel (Scalzo et al. 1970, Hamid Samimi et al. 

1984, Hamid-Samimi and Swartzel 1985). They reported that whole egg behaves as a 

Newtonian fluid below 60 °C and pseudoplastic at temperatures above 60 °C. Tung et 

al. also observed that egg white is slightly pseudoplastic at its respective pasteurization 

temperature (Tung et al. 1971).  

In Figures 4.1., 4.2. and 4.3, it was evident that the shear stress-shear rate 

relationship at all temperatures were non-linear for LEY. Experimental data of LEY 

were fitted to power law model in the range of temperatures from 4 to 60 °C. The value 

of consistency coefficient (K) ranged from 0.28 to 1.013 Pa.sn
 and the flow behavior 

index (n) ranged between 0.87 and 0.93 indicating pseudoplastic behavior. 

The egg yolk exhibited non-Newtonian and shear-thinning (pseudoplastic) behavior, 

which could be attributed to its chemical structure. The lipids of the eggs are all 

contained in the yolk. Nearly all of the yolk lipids are present as lipoproteins, which are 

classified as high density, low density and very low density lipoproteins (Lee 2002). 

These types of high molecular weight polymers increase the viscosity even at 

very low concentrations (Damodaran 1996). Those findings were in agreement with 

those previously reported (Kaufman et al. 1968, Ibarz and Sintes 1989, Punidadas and 

McKellar 1999, Telis-Romero et al. 2006). 

 

4.1.1.3. Effect of Temperature 
 

For each liquid egg product, the effect of temperature on the viscosity at 

different shear rates is illustrated in Figure 4.5. It was observed that apparent viscosities 

of LEPs decrease with increasing temperature. An Arrhenius-type equation (3.9) was 

used to quantify the effect of temperature on the rheological behavior of these products. 

Linear form of (3.9) was fitted to experimental data to find the values of the flow 

activation energies for different products tested. Flow actication energy results were 

listed in Table 4.3.  

It can be seen that egg yolk has high activation energy (Ea) value which means 

that this product is more sensitive to temperature than other samples. It needs to have a 

great care if typical thermal pasteurization process will be applied to this product. 
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Figure 4.5. Effect of temperature on the viscosity as a function of shear rate (s-1) for (a) 

egg white (b) whole egg and (c) egg yolk. 

 

Table 4.3. Flow Activation Energies for Fresh LEPs. 

 

Product Ea (J/mol) r2 
Whole Egg (LWE) 10,523.86a 0.9728 

   
Egg White (LEW) 15,495.63a 0.9912 

   
Egg Yolk (LEY) 20,095.76b 0.9813 

acalculated from data measured at 16.12 s-1
 

bcalculated from data measured at 8.48 s-1 

 

As done in fresh LEPs, Herschel Bulkley, Power Law and Newtonian models 

were applied on pasteurized LEPs. Table 4.4. represents the rheological parameters of 

pasteurized LEPs at appropriate models. Rheological property curves as a basis of shear 

stress and shear rate for Herschel Bulkey, Power Law and Newtonian Models were 

represented in Figures 4.6, 4.7 and 4.8. 

a b 

c 
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Table 4.4. Results of Rheological Properties for Pasteurized LEPs. 

 

Herschel-Bulkley Model Power Law Model 
Product 

(pasteurized
) 

Temperature 
(0C) 

Consistency 
index, K  
(Pa sn) 

Flow 
behavior 
index, n 

Consistency 
index, K 
(Pa sn) 

Flow 
behavior 
index, n 

Whole egg 25 0.020 1.0616 0.0724 0.7499 
Egg white 25 0.015 0.9729 - - 

Newtonian Model 

 Temperature 
(0C) Viscosity (Pa.s) r2 Sest 

Whole egg 25 0.0247 - - 
Egg white 25 0.014 - - 
Egg yolk 25 0.153 - - 

Power Law Model 

 Temperature 
(0C) 

Consistency 
index, K 
(Pa.sn) 

Flow 
behavior 
index, n 

r2 Sest 

Egg yolk 25 0.1936 0.9422   
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Figure 4.6. (a) Shear stress (SS)-shear rate (SR) (b) viscosity-shear rate curves (c) Log 

SS-Log SR curve for Herschel-Bulkley Model (d) Log SS-Log SR curve for 

Power Law Model for pasteurized liquid egg white (LEW).  

a b 

c d 
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appeared. Titration was continued until dark brown color was turned to colorless. For 

the determination of total available residual chlorine in the water sample, following 

correlation was applied. 
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Figure 4.7. (a) Shear stress (SS)-shear rate (SR) (b) viscosity-shear rate curves (c) Log 

SS-Log SR curve for Power Law Model (d) Log SS-Log SR curve for 

Herschel-Bulkley Model for pasteurized liquid whole egg (LWE). 
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Figure 4.8.  (a) Shear stress (SS)-shear rate (SR) (b) viscosity-shear rate curves (c) Log 

SS-Log SR curve for Power Law Model (d) Log SS-Log SR curve for 

Herschel-Bulkley Model for pasteurized liquid egg yolk (LEY).  

 

The flow behavior index (n) of pasteurized LWE and LEW obtained from 

Herschel-Bulkley model indicates that, the liquid whole egg and liquid egg white are 

slightly pseudoplastic at ambient temperature (Figure 4.6., 4.7.). On the other hand, it was 

seen that most appropriate rheological model for LEY was determined as Power Law, 

which was the result of non-linear behavior of shear stress vs. shear rate (Figure 4.8.). 

It was seen that, shear stress – shear rate relationship at ambient temperature 

could be observed as non-linear for pasteurized LEY. Consequently, experimental data 

of LEY were applied on Power Law model. The value of consistency coefficient (K) 

was detected as 0.1936 Pa.sn and the flow behavior index (n) was determined as 0.9422 

indicating pseudoplastic behavior. 

As a result of the comparison of rheological properties between fresh and pasteurized 

egg products (Table 4.1 and 4.4), it could be concluded that, consistency index (K) and flow 

behavior index (n) parameters of both LEW samples are not extremely different by applying 

a b 

c d 
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Herschel-Bulkley Model at ambient temperature. For the same model, difference of flow 

behavior index between fresh (1.0616) and pasteurized (0.9720) LWE samples may be 

explained by the thermal treatment effect at high temperature. But in contrast, Newtonian 

Model shows that pasteurization effect may be negligible since viscosity levels are slightly 

identical.  According to Power Law Model, it may be defined that pasteurization effect seems 

to be great for LEY by the difference between K and n indexes, due to its high percent of 

denaturable protein content than that of LWE. 

 

4.1.2. Physical Measurements 
 

The density of all three products decreased with increasing temperature (Figure 

4.9.). Density (ρ) data were correlated by polynomial models (Table 4.5.). All fitted 

functions presented r2
 values higher than 0.99 (p<0.05) and Sest lower than 1.1845. The 

results were in good agreement with those reported by Punidadas and McKellar 

(Punidadas and McKellar 1999). 

In present study, the pH and total dry solid content (% weight) were determined 

before the rheological and density measurements in order to obtain the information 

about the quality attributes of liquid egg products. pH data are listed in Table 4.6. pH 

values of all the egg products were found to be decreased by increasing temperature. 
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Figure 4.9. Density of different fresh egg products as a function of temperature. 
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Table 4.5. Temperature Dependency of Density of Fresh LEPs. 

 

Product Temperature 
Range (°C) Equation1 r2 Sest 

Egg White 
(LEW) 4-55.6 ρ = −0.0074Τ2 − 0.0039Τ + 1038.9 0.9943 1.1845 

Whole Egg 
(LWE) 4-60 ρ = −0.0036Τ2 − 0.272Τ + 1039.9 0.9968 1.6488 

Egg Yolk 
(LEY) 4-60 

ρ = −0.0037Τ2 − 0.52Τ + 1042.3 0.9997 0.1756 

 

1T is the temperature (°C) 
 

The observed standard deviation values of total solid content (% weight) were 

0.307, 0.060, 0.079 for liquid egg yolk (LEY), liquid egg white (LEW) and liquid whole 

egg (LWE), respectively. Data are listed in Table 4.7. 

 

Table 4.6. pH of Fresh and Pasteurized LEPs at Different Temperatures. 

 

  pH 

Product Temperature  
(°C) 

Fresh  
LEPs 

Pasteurized  
LEPs 

4 9.43  
25 9.14 6.72 

 
Egg White 

 55.6 8.61  
4 6.25  

25 6.13 6.42 
 

Egg Yolk 
 60 5.92  

4 8.00  
25 7.96 7.46 

 
Whole Egg 

 60 7.74  
 

Table 4.7. Total Dry Solid Content of Fresh and Pasteurized LEPs. 

 

 Total Solid (%) 

Product Fresh  
Egg Products 

Pasteurized Egg 
Products 

Egg White 12.60 11.50 

Egg Yolk 48.87 41.0 

Whole Egg 25.10 23.50 
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Density of pasteurized LEPs were also measured as in Section 3.2.3.1. Density 

vs. temperature curve was represented in Figure 4.10. Besides, Table 4.8. shows the 

density equations as a function of temperature. As in unpasteurized LEPs samples, all 

fitted functions presented r2
 values higher than 0.99 (p<0.05) and Sest lower than 5.1555. 

Estimated standard deviation of pasteurized LEW is lower than that of unpasteurized 

LEW. But in contrast, pasteurized LEY and LWE give higher standard deviation in 

density results due to the effect of thermal pasteurization. 

  

Table 4.8. Temperature Dependency of Density of Pasteurized LEPs. 
 

Product Temperature 
Range (°C) Equation1 r2 Sest 

Egg White 
(LEW) 

4-55.6 
 

ρ = −0.0002Τ3−0.0264Τ2+0.5379Τ + 1037.1 
 

0.9985 
 

 .0319 

Whole Egg 
(LWE) 

4-60 
 

ρ = −0.0046Τ2 − 0.1499Τ + 1039.4 
 

0.9933 
 

5.1555 
 

Egg Yolk 
(LEY) 

4-60 
 

ρ = −0.0002Τ3 −0.0169Τ2 + 0.0115Τ + 1036.2 
 

0.999 3.2856 
 

 

1T is the temperature (°C) 
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Figure 4.10. Density of different pasteurized egg products as a function of temperature. 
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4.1.3. Optical Measurements 
 

Absorbance values of fresh LEPs were measured at 254 nm wavelength by 

applying different dilution factors (1:50, 1:100, 1:250, 1:500 and 1:1000). Then, 

absorbance (A254) and absorbance coefficients (a254) were estimated. These parameters 

were calculated from the following correlation: 

 

 df*absA254 =        (4.1)  

 

Where L refers to the measurement length of spectrometer cuvette that is 10 mm for 

each measurement. Results were given in Table 4.9. 

 

Absorbance for pasteurized LEPs at 254 nm were collected for most appropriate 

diluton factor of “500” for all the samples. As done for unpasteurized LEPs,  

absorbance coefficients were estimated with (4.1) and shown in Table 4.9. It was seen 

that absorbance coefficients differs from unpasteurized LEPs samples. This may be 

occurred by the heat effect of thermal treatment for pasteurization samples. 

 

UV light penetration is much better in egg white than others on the basis of 

absorbance values. Other than absorbance, turbidity and color has found also to be 

important in the UV light penetration. Results of turbidity for fresh and pasteurized 

LEPs and color measurement of fresh LEPs were shown in Table 4.10. and Table 4.11. 

Turbidity levels of fresh and pasteurized LEW samples are not close, whereas LEY and 

LWE keeps their high protein content behavior by high turbidity levels, which are 

slightly close for both. 

 

Table 4.9. Absorbance Results of Fresh and Pasteurized LEPs. 

 

 A254 

Sample Fresh  
Egg Products 

Pasteurized Egg 
Products 

Egg White 873 104.65 ± 6.22 
Egg Yolk 345,7 630.75 ± 6.64 

Whole Egg 336,2 807.5 ± 1.62 
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Table 4.10. Turbidity Results of Fresh and Pasteurized LEPs. 

 

 Turbidity (NTU) 

Sample Fresh  
Egg Products 

Pasteurized Egg 
Products 

Egg White 62,86 398 ± 8.86 
Egg Yolk 7147,625 8114.25 ± 33.50 

Whole Egg 8807,62 8369.83 ± 91.01 
 

 

Table 4.11. Color Measurements of Fresh and Pasteurized LEPs. 

 

 Fresh 
Egg Products 

Pasteurized Egg  
Products 

Sample L* 1 a* 2 b* 3 L* a* b* 
Egg White 21,07 -0,67 2,99 29,08 -0,15 -0,41 
Egg Yolk 52,00 6,72 51,42 56,75 2,95 47,15 

Whole Egg 62,34 3,62 40,55 58,73 2,71 29,44 
 

1 Brightness 
2 Redness-greenness 
3 Yellowness-blueness 

 

Egg yolk and whole egg have higher turbidity values than egg white. This can be 

attributed to the high protein content of these products. Moreover, color measurement 

results showed that,  brightness property of LWE is greater than that of LEW and LEY 

and yellowness index of LEY is the highest. But in contrast, LEW has greatest opaque 

characters that may allow more UV permeability than the other LEPs. 
 

4.1.4. Rheological and Physical Measurements of CMC Model 

Solutions 
 

Rheological measurements of model solutions (0.7, 1.25 and 3.5 % CMC) at 

ambient temperature were analyzed by different rheological models (Newtonian, 

Herschel- Bulkley and Power law) to detect the correct flow behavior of the model 

solutions. Figure 4.11. represents rheological behavior of 0.7 % CMC model solution. 

Rheological parameters of model solutions at ambient temperature are shown in Table 

4.12. 
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Table 4.12. Results of Rheological Parameters for Model Solutions. 

 

Herschel-Bulkley Model Power law Model 

Product 
(pasteurized) 

Temperature 
(0C) 

Consistency 
index, K  
(Pa sn) 

Flow 
behavior 
index, n 

Consistency 
index, K 
(Pa sn) 

Flow 
behavior 
index, n 

1.0 CMC 25 0.002 0.9687   
0.7 CMC 25 0.016 0.9742   

1.25 CMC 25 0.0246 0.9257 0.02157 0.9554 
2.5 CMC 25 0.0460 1.0899 0.0985 0.8558 
3.0 CMC 25 0.0906 0.9814 0.1302 0.8912 
3.5 CMC 25 0.1185 1.0364 0.2070 0.8909 
4.0 CMC 25 0.172 1.1062 0.412 0.8234 

Newtonian Model 

  Temperature 
(0C) Viscosity (Pa.s)   

1.0 CMC   
25 

 
0.017   

0.7 CMC  25 0.0146   

1.25 CMC  25 0.019   

2.5 CMC  25 0.0585   

3.0 CMC  25 0.0853   

3.5 CMC  25 0.1332   

4.0 CMC  25 0.2245   

Power Law Model 

  Temperature 
(0C) 

Consistency 
index, K 
(Pa.sn) 

Flow 
behavior 
index, n 

r2  

4.0 CMC  25 0.4121 0.8234 1  
2.5 CMC  25 0.0985 0.8558 0.9999  
3.0 CMC  25 0.1302 0.8912 0.9973  
3.5 CMC  25 0.2070 0.8909 0.9997  

1.25 CMC  25 0.0215 0.9554 0.9865  
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Figure 4.11. Rheological Properties of 0.7 % CMC. 
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Figure 4.12. Rheological properties of 1.25 % CMC. 



 59 

3.5 % CMC

y = 0,1332x + 0,2747
R2 = 0,9991

0

1

2

3

4

5

6

7

0 10 20 30 40 50

SR (1 / sec)

S
S

 (P
a)

 3.5 % CMC

0

0,05

0,1

0,15

0,2

0 20 40 60
SR (1 / sec)

V
is

co
si

ty
 (P

a.
s)

y = 0,8909x - 0,684
R2 = 0,9997

-0,2

0

0,2

0,4

0,6

0,8

1

0 0,5 1 1,5 2

Log SR 

Lo
g 

S
S

3.5% CMC - PL Model

y = 1,0364x - 0,9261
R2 = 0,9981

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 0,5 1 1,5 2

log SR

Lo
g 

S
S

-Y
S

3.5% CMC - HB Model

 
 

Figure 4.13. Rheological Properties of 3.5 % CMC. 

 

Flow behavior index (n) differs from 0.9257 to 1.1062 for 0.7-4.0 % CMC 

model solutions, having the consistency index range of 0.002-0.172 Pa sn according to 

Herschel-Bulkley model. Flow behavior and consistency index of 1.25 % CMC solution 

were nearest to that of LWE as a result of this model. Moreover, Newtonian model 

indicated that 0.7 % CMC solution might be a proper simulator of LEW. As approached 

to LEY, rheological parameters of 3.5 % CMC solution were simulated by Power Law 

model and found to be similar flow behavior index and consistency factor. 

 

4.2. Microbiological Results of Bench Top Biodosimetry Studies 
 

The standard plate count for LEW samples was found to be 3-4 log units 

CFU/ml and E.coli  was not detected in any of the tested LEPs samples prior to 

inoculation. Additionally, the number of surviving microorganism on VRBA and EMB 

plates were not different than those enumerated on TSA plates indicating that E.coli  

(NRRL B-253) cells were mostly inactivated by UV-C radiation rather than just injured.  
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Influence of UV radiation of E.coli (NRRL B-253) inactivation in liquid egg 

product samples at different fluid medium depth and UV intensity (I0) levels are 

depicted in Figure 4.14., 4.15 and 4.16. The inactivation curve was constructed by 

plotting the log reduction (log (N/N0)) versus UV Dose (mJ/cm2).   

 

4.2.1. Liquid Egg White 
 

The best reduction (2.2-log CFU/ml) of E.coli (NRRL B-253) was achieved in 

liquid egg white samples (LEW) subjected to the highest UV intensity (1.314 mW/cm2), 

and the lowest medium depth (0.153 cm) after 20 min UV exposure (UV dose of 98 

mJ/cm2) (Figure 4.14).  Ngadi, Smith and Cayouette  applied 300 mJ/cm2 (5 

mW.min/cm2) UV dose at 0.315 mW/cm2 incident UV intensity for 16 min in order to 

achieve 3.8-log (CFU/ml) reduction of E.coli O157:H7 (ATCC 35150) in LEW samples 

of 0.1 cm in depth (Ngadi, Smith and Cayouette 2003). In their study, they calculated 

average UV intensity from Bouguer-Lambert law, which resulted in higher UV dose 

values than Beer-Lambert law, used in this work. The variation in the log reduction 

values might be a result of differences in E.coli  strains, background flora and 

absorbance of LEW samples used in these studies. 

 Ngadi et al. reported higher UV sensitivity of E.coli  O157:H7 compared to  

non-pathogenic E.coli  strain used in this study (Ngadi et al. 2003).  Although, no E.coli  

cells were detected in LEW before treatment, initial population of aerobic mesophilic 

bacteria in LEW ranged from 103 to 104 CFU/ml. Ngadi et al. has not reported any 

background flora in their work. Additionally, LEW samples used in our study had 

absorbance of 104.65±6.22 (<0.01 % UV transmittance) at 254 nm.  

Ngadi et al. measured UV transmittance of LEW as 0.02 %. Decrease in UV 

transmittance reduces the UV dose by diminishing UV intensity and results in lower 

inactivation rate (Sommer et al., 1997). As a result, it was expected to have higher UV 

dose (98 mJ/cm2) and lower inactivation rate (2.2 log) for E.coli  (NRRL B-253) in 

LEW than those reported by Ngadi et al. (Ngadi et al. 2003)   

Besides, 3.2 log CFU/ml reduction of E.coli  O157:H7 (ATCC 700728) and    

2.6 log CFU/ml reduction of S.typhimurium (CCM 5445) were achieved at the highest 

UV intensity (1.314 mW/cm2), and the lowest medium depth (0.153 cm) after 20 min 

UV exposure (See in Appendix C). 
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4.2.2. Liquid Egg Yolk  

 

In LEY samples, maximum inactivation (0.675-log CFU/ml) was observed at the 

highest UV intensity (1.314 mW/cm2) and the lowest medium depth (0.153 cm) after 

being exposed to treatment time of 20 min (UV dose of 13.25 mJ/cm2, Fig 4.15.).  The 

amount of light that penetrates through a liquid decreases with increasing liquid 

medium absorbance (Murakami et al. 2006).  

Since absorbance of LEY was higher than LEW, the lower inactivation of E.coli  

was expected in these samples. At the highest UV intensity (1.314 mW/cm2), and the 

lowest medium depth (0.153 cm) after 20 min UV exposure, E.coli  O157:H7 (ATCC 

700728) was inactivated maximum 1.25 log CFU/ml and reduction of S.typhimurium 

(CCM 5445) was estimated as 0.62 log CFU/ml (See in Appendix C). 

 

4.2.3. Liquid Whole Egg  
 

LWE samples showed different inactivation response (Figure 4.16) where the 

maximum  reduction  (0.316-log CFU/ml)  was  achieved  at  the  medium  UV intensity  

(0.709 mW/cm2) and the lowest depth (0.153 cm) after 20 min treatment time (UV dose 

of 16.55 mJ/cm2). On the other hand, 0.4 log CFU/ml reduction of E.coli  O157:H7 

(ATCC 700728) and 0.34 log CFU/ml reduction of S.typhimurium (CCM 5445) were 

found at 1.314 mW/cm2 UV intensity and 0.153 cm medium depth after 20 min UV 

exposure. 

This can be due to the fact that LWE samples have the highest absorbance and 

turbidity (suspended material) (see Table 4.15.). Suspended materials influence the 

inactivation of bacteria by protecting them during irradiation (Quintero-Ramos 2004, 

Murakami 2006). Therefore it was thought that the mixing was not homogeneous and 

microorganisms were shadowed by suspended material, which led to different 

inactivation pattern in LWE samples. 
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Figure 4.14. Influence of UV-C radiation on E.coli (NRRL B-253) inactivation in liquid 

egg white (LEW) at different fluid medium depth and UV intensity levels 

(I) (a) I= 1.314 mW/cm2, (b) I= 0.709 mW/cm2, (c) I= 0.383 mW/cm2. 

a) 

b) 

c) 
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Figure 4.15.  Influence of UV-C radiation on E.coli (NRRL B-253) inactivation in liquid 

egg yolk (LEY) at different fluid medium depth and UV intensity levels (I) 

(a) I= 1.314 mW/cm2, (b) I= 0.709 mW/cm2, (c) I= 0.383 mW/cm2. 

 

a) 

b) 

c) 
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Figure 4.16. Influence of UV-C radiation on E.coli  (NRRL B-253) inactivation in 

liquid whole egg (LWE) at different fluid medium depth and UV intensity 

levels (I) (a) I= 1.314 mW/cm2, (b) I= 0.709 mW/cm2, (c) I= 0.383 

mW/cm2. 

 

a) 

b) 

c) 
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4.2.4. Statistical Analysis 
 

Statistical analysis of full factorial design, which considers the factors (liquid 

depth, UV intensity and exposure time) and their interactions on the reduction of E.coli  

(NRRL B-253) in LEPs (presented in Table 4.13.). Small p-values (p < 0.05) show that 

the parameter is significant on the log reduction at the 5% level of significance. The 

intensity and its interaction with depth and time were found to be insignificant (p>> 

0.05) in LWE samples, which support our observation (See in Appendix B). To best of 

our knowledge there is no available literature on the UV-C inactivation of LEY and 

LWE. Hence, it is not possible to make comparison with any of the literature data. 

Overall, it can be concluded that increasing the liquid depth resulted in decrease of the 

inactivating effect of UV-C radiation on E.coli  (NRRL B-253) in LEPs (p<<0.05). 

Many researchers (Wright et al. 2000; Ngadi et al. 2003; Yaun et al. 2003; 

Quintero-Ramos et al., 2004; Matak et al. 2005 and Murakami et al. 2006) found UV 

dose (time x UV incident intensity) as the major factor for inactivation of E.coli . 

Additionally, the relationship between time and UV incident intensity was reported to 

be important for the design of UV equipment (Murakami et al. 2006; Sommer et al. 

1998).  

The influence of exposure time on the inactivation of E coli (NRRL B-253) was 

examined  in  Figure 4.17.  With  exposure  time  between  0 and 20 min,  killing rate of  

E.coli  was  linear  in  LEW  samples.  On the other hand, the log  reduction of E.coli  

was parabolic in LEY. and LWE samples suggesting that exposure time was also 

significant (p<<0.05) for UV-C radiation process. 

E.coli  was  linear  in  LEW  samples.  On the other hand, the log  reduction of 

E.coli  was parabolic in LEY. and LWE samples suggesting that exposure time was also 

significant (p<<0.05) for UV-C radiation process. The evaluation of interaction data 

between time and incident intensity revealed the existence of time-incident intensity 

reciprocity for LEW whereas such a linear trend was not observed in LWE and LEY 

samples. This means that the same level of microbial reduction can be achieved by 

applying higher incident intensity for a shorter period of time for the same UV dose 

level. Murakami et al. also reported the same interdependence of time and incident 

intensity for UV inactivation of E.coli  K12 in apple juice (Murakami et al. 2006).   
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Table 4.13. Results of Full Factorial Design: Effect of Factors and Interactions on the 

Log10 Reduction (N/N0) of E.coli  (NRRL B-253) in LEPs. 

 

Response: log10 reduction (N/N0) p-value 

Factor: time 
  LEW 
  LWE 
  LEY 

 
<10-3 

<10-3 

<10-3 

Factor: incident intensity  
  LEW 
  LWE 
  LEY 

 
<10-3 

>>0.05, insignificant 
<10-3 

Factor: depth 
  LEW 
  LWE 
  LEY 

 
<10-3 

<10-3 

<10-3 

Interaction: time x incident intensity 
  LEW 
  LWE 
  LEY 

 
<10-3 

>>0.05, insignificant 
>>0.05, insignificant 

Interaction: time x depth 
  LEW 
  LWE 
  LEY 

 
<10-3 

>>0.05, insignificant 
<10-3 

Interaction: incident intensity x depth 
  LEW 
  LWE 
  LEY 

 
>>0.05, insignificant 
>>0.05, insignificant 
0.014 
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Figure 4.17. Inactivation of E.coli  NRRL B-253 as a function of treatment time at           

I0 = 1.314 mW/cm2. 
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4.2.5. The UV Inactivation Kinetics of LEPs 

 
The kinetics of UV inactivation of E.coli  (NRRL B-253) in LEPs was studied. 

The inactivation rate constant (k) calculated from (3.12) for the different fluid medium 

depths and UV intensities with regression coefficients are shown in Table 4.14.  

inactivation rate constant values calculated in different depths at a fixed UV intensity 

showed variations. UV light penetration was expected to decrease with increasing fluid 

depth. Even though UV intensity was kept high (I=1.314 mW/cm2), increasing the fluid 

depth did not show any decreasing trend in k values as expected. In some cases, 

regression coefficients were also found to be lower. This is attributed to the nonlinear 

relationship between logarithm of the survival fractions and UV dose. The inactivation 

curves were in sigmoidal shape when the fluid depth increased to 0.3 cm and 0.5 cm 

(Figures 4.1, 4.2 and 4.3.). Sigmoidal curve has an initial lag in the slope called 

“shoulder “and tailing at the higher UV doses. While the fluid depth was 0.3 cm, 

shoulder curve was dominant for LEW and tailing curve was the main in LEY and 

LWE. When the fluid depth was 0.5 cm, tailing was more pronounced regardless of UV 

intensity. Sigmoidal shape is a common survival curve observed in the UV inactivation 

of microorganisms and explained with single-hit and multiple-hit phenomena (Fenner 

and Komvuschara, 2005).  

 

Table 4.14. Kinetic Parameters for UV Inactivation of E.coli  (NRRL B-253) in LEPs. 

 

LEW LWE LEY Intensity 
(mW/cm2) 

Depth 
(cm) k 

(cm2/mJ) 
R2 k 

(cm2/mJ) 
R2 k 

(cm2/m) 
R2 

1.314 0.153 
0.3 
0.5 

0.0204 
0.0386 
0.0203 

0.9987 
0.9792 
0.7986 

 

0.0076 
0.0068 
0.0176 

0.8791 
0.9661 
0.8650 

0.0445 
0.0305 
0.0543 

0.6421 
0.9244 
0.8222 

0.709 0.153 
0.3 
0.5 

0.0296 
0.0657 
0.0453 

0.9999 
0.8787 
0.9681 

 

0.0196 
0.0074 
0.0299 

0.9866 
0.7952 
0.9569 

0.0551 
0.0427 
0.0529 

0.6581 
0.7378 
0.8252 

0.383 0.153 
0.3 
0.5 

0.0491 
0.0776 
0.0558 

0.9907 
0.9432 
0.9298 

0.0166 
0.0174 
0.0381 

0.6530 
0.8206 
0.8938 

 

0.1134 
0.0613 
0.1382 

0.9031 
0.5865 
0.9836 
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The initial lag (shoulder) in the survival curve might be due to initiation of cell 

injury, as exposure to UV radiation continues, maximum cell damage occurs and 

minimal additional treatment becomes lethal. Tailing can result from suspended 

material in the medium showing high turbidity that protects bacteria during irradiation, 

aggregates of cells caused by inhomogeneous distribution of microorganisms in the 

liquid medium and in-homogeneity in radiation. Thus, (3.13) (Chick´s model of 

disinfection) can only be used to predict inactivation parameter k from the linear 

inactivation curve. In order to model the UV death kinetics more precisely, a nonlinear 

model needs to be developed to take into account variations in the UV intensity and 

microorganism sensitivity in liquid egg products. 

Nevertheless, comparison of inactivation rate constants of E.coli  O157:H7 

(ATCC 700728) and S.typhimurium (CCM 5445) with that of E.coli  (NRRL B-253) 

(See Table A.9.), indicates that, E.coli  (NRRL B-253) strain is more resistant to UV 

exposure having lower inactivation rate constant and needs more UV light. This 

commend was also supported by comparing inactivation rates of these strains in LEPs. 

(See in Appendix C) 

 

4.2.6. The Effect of UV on the Optical Properties 
 

Statistical analysis of color parameters L*(Brightness), a*(redness-greenness) 

and b* (yellowness-blueness) for LEPs before and after UV treatment were carried out 

by applying Two-Way Analysis of Variance (ANOVA) within the factors of liquid 

sample depth (1.53, 3 and 5 mm), UV biodosimetry time levels (0, 5, 10 and 20 

minutes) and interaction of three factors. After comparing of P-values of factors and 

interaction with alpha (� = 0.05), it could be concluded that color parameters seem to be 

liquid depth dependent by lower level of P values than 0.0001. As liquid depth 

increases, increment of L*, a* and b* values occur for each LEPs. Besides, there is no 

significant effect of time-depth interaction on each parameter (Table 4.16.). 

During the measurements of the color parameters for liquid depth dependency, it 

was seen that brightness of LEW remains between the same tolerance range for 3 and 5 

mm of sample depth after 10 min. UV exposure. Moreover, brightness of LEY and 

LWE have distinct intervals for each depth. But in contrast, similar brightness could be 

differed after 20 min. of UV application. Redness of LEY have dissimilar characteristics 
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after 5 mm UV exposure, whereas greenness of LEW represents the same range in the 

increase of sample depth. Yellowness of LWE and LEY not only have no change as a 

function of UV exposure time, but also have dissimilarities in depth level dependency. 

Nonetheless UV exposure time have a significant effect on yellowness of LEW.   

It is obvious that liquid egg products are UV-opaque wherein penetration of   

UV-C light is lower than clear liquids. Numeric results of the statistical analysis for 

color parameters before and after UV exposure were shown in Appendix D, Table A.10. 

After the analysis of  �E parameters for LEPs as a basis of UV biodosimetry 

results, significancy of time in LEW and sample depth in LEY was indicated in two 

replicates. Time-depth interaction was insignificant for �E after UV exposure. 

Numerical results of statistical analysis for �E values of LEPs were shown in Appendix 

D. 

 

Table 4.15.  Statistical Analysis of �E for LEPs Before and After UV Biodosimetric 

Study (at I0=1.314 mW/cm2). 

 

Response: Color Parameter  p-value 

�E Replicate-1 Replicate-2 

Factor: time 
  LEW 
  LWE 
  LEY 

 
<0.05 

>>0.05, insignificant 
>>0.05, insignificant 

 
>>0.05, insignificant 
>>0.05, insignificant 
>>0.05, insignificant 

Factor: depth 
  LEW 
  LWE 
  LEY 

 
>>0.05, insignificant 
>>0.05, insignificant 
>>0.05, insignificant 

 
>>0.05, insignificant 
>>0.05, insignificant 
<0.05 

Interaction: time x depth 
  LEW 
  LWE 
  LEY 

 
>>0.05, insignificant 
>>0.05, insignificant 
>>0.05, insignificant 

 
>>0.05, insignificant 
>>0.05, insignificant 
>>0.05, insignificant 
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Table 4.16.  Color Parameters of LEPs After UV Biodosimetric Study (at I0=1.314 

mW/cm2) 

 

Response: Color Parameter  p-value 

L*-Brightness  

Factor: time 
  LEW 
  LWE 
  LEY 

 
>>0.05, insignificant 
>>0.05, insignificant 
>>0.05, insignificant 

Factor: depth 
  LEW 
  LWE 
  LEY 

 
<0.05 

<0.05 

<0.05 

Interaction: time x depth 
  LEW 
  LWE 
  LEY 

 
>>0.05, insignificant 
>>0.05, insignificant 
>>0.05, insignificant 

a*-Redness-greenness  

Factor: time 
  LEW 
  LWE 
  LEY 

 
>>0.05, insignificant 
<0.05 
>>0.05, insignificant 

Factor: depth 
  LEW 
  LWE 
  LEY 

 
<0.05 
<0.05 
<0.05 

Interaction: time x depth 
  LEW 
  LWE 
  LEY 

 
>>0.05, insignificant 
>>0.05, insignificant 
>>0.05, insignificant 

b*-Yellowness-blueness  

Factor: time 
  LEW 
  LWE 
  LEY 

 
<0.05 
>>0.05, insignificant 
>>0.05, insignificant 

Factor: depth 
  LEW 
  LWE 
  LEY 

 
<<0.05 
<0.05 
<0.05 

Interaction: time x depth 
  LEW 
  LWE 
  LEY 

 
>>0.05, insignificant 
>>0.05, insignificant 
>>0.05, insignificant 
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4.3.  Results of Continuous Flow UV Treatment of Liquid Egg White 

(LEW) 
 

4.3.1. Results of Inactivation Study 
 

Inactivation study in continuous flow UV reactor was applied on liquid egg 

white (LEW) samples based on the results derived from biodosimetric study. Since, 

USDA listed five approved continuous pasteurization process for egg white which are 

carried out at two different pH (pH 7.0 and 9.0). In Lineweaver-Cunningham method 

pasteurization was applied at pH 7.0 adjusted with lactic acid or aluminum sulfate. In 

simple heat treatment method, pH of liquid egg white (LEW) was kept at its natural 

value of 9.0. Therefore, the effect of pH was also investigated in this part of work.   

In the first study, UV treatment of liquid egg white (LEW) was carried out pH 

7.0. Unlike in the Lineweaver-Cunningham method, pH was adjusted by using 

potassium bitartrate (cream of tartar) in the local production company. liquid egg white 

(LEW) was inoculated from the stationary phase culture to give an approximately 106 

CFU/ml of microbial population. 10 lt of inoculated liquid egg white (LEW) was passed 

through the UV reactor for five consecutive passes (5 cycles) at a flow rate of 1080 

ml/min.  At this flow rate, the lamps generated approximately 2.93 mJ/cm2 UV dose at 

an approximate exposure time of 257 sec. Before and after each cycle color, turbidity, 

absorbance, pH and temperature were measured. Serial dilutions were also spread plated 

on TSA to check the reduction in microbial counts. Additionally, initial background 

flora of liquid egg white (LEW) was assessed for each new product before processing. 

 Maximum 0.176 logarithmic reduction was achieved (Figure 4.18). There was an 

increase in microbial population during the intermediate cycle of UV treatment. One of 

the reason of this may be due to an increase in temperature during each cycle. Measured 

temperature and pH at the inlet and outlet of UV reactor was shown in Table 4.17.  

Passage of liquid egg white (LEW) through the UV reactor resulted in a temperature 

increase of  18 oC. This may have caused slight unfolding of egg proteins (e.g. 

ovalbumin) and change in the lipid structure resulted in an increase in the suspended 

material. Eventually, suspended materials influence the inactivation of bacteria by 

protecting them  during  irradiation. This  findings were supported by application of color,  
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Figure 4.18. Microbial inactivation results of 1st continuous flow UV reactor 

experiment carried out at pH 7.0 and flow rate of 1080 ml/min. 
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Color change versus turbidity

y = 0,0034x + 21,351
R2 = 0,98

23

23,5

24

24,5

25

25,5

26

600 800 1000 1200 1400
Turbidity (NTU)

C
ol

or
 (L

*)

color vs.turbidity Do�rusal (color vs.turbidity)

change of turbidity vs. temperature

y = 238,95Ln(x) + 688,35
R2 = 0,9409

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12
Temperature (°C)

Tu
rb

id
ity

 (N
TU

)

turbidity vs. temperature Log. (turbidity vs. temperature)
 

 

Figure 4.19.  (a) Color-turbidity and (b) turbidity-temperature effect after 1st continuous 

flow UV reactor experiment carried out at pH 7.0 and 1080 ml/min. 

 

 a 

b 
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turbidity and absorbance  analysis   for   each   samples   of  these, absorbance coefficient 

was slightly drawn from different cycle of continuous flow UV treatment. It was realized 

that the increase in temperature directly affected the turbidity level and color of liquid egg 

white LEW (Figure 4.19.a). Color change versus turbidity curve (Figure 4.19.b) showed 

that color parameters were automatically affected by turbidity change after each cycle, 

causing a decrease in the UV penetration depth. Second reason may be due to the fact that 

the bacteria was more resistant at pH 7.0 than the alkaline conditions (pH 9.0) to UV 

irradiation. Robertson and Muriana (2004) were also reported significant difference 

between thermal pasteurization methods applied to egg white at different pH values. They 

observed lower microbial reduction with egg white of pH 8.2 compared with pH 9.0.     

 

Table 4.17. Temperature and pH Change of Liquid Egg White (LEW) Sample in Each 

Cycle (first experiment). 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

In the second study of continuous flow UV reactor, pH of liquid egg white 

(LEW) samples was kept at its natural pH value (approximately 9-9.2). In this case, the 

flow rate was adjusted to slightly higher value (1860 ml/min) compared to first 

experiment. At this flow rate, the lamps generated approximately 31.57 mJ/cm2 UV 

dose at an approximate exposure time of 180 sec. The applied UV dose was much 

higher than the first experiment.  

This is because, the liquid egg white (LEW) samples were free from any additives 

used to adjust its pH value. Therefore average absorbance coefficient was around 1.5 which 

increased the UV light penetration in the sample. However, similar results were obtained in 

microbial reduction as in the first experiment. Although maximum log reduction was 

  Temp (°C) pH 
Initial Sample 10.2 6,78 

C1in 19.9 6.79 
C1out 19.8 6.77 
C2in 21.0 6.71 
C2out 22.1 6.72 
C3in 22.6 6.79 
C3out 24.2 6.77 
C4in 24.8 6.77 
C4out 26.2 6.72 
C5in 26.6 6.73 
C5out 28.3 6.73 
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slightly higher (0.2 log) than  the  first experiment, an increase in temperature and microbial 

population  during intermediate cycles were still the problem. 
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Figure 4.20.  Microbial inactivation results of 2nd continuous flow UV Reactor 

experiment carried out at pH 9.0 and flow rate of 1860 ml/min. 
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Color change vs. turbidity
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Figure 4.21. Color-turbidity and turbidity-temperature effect after 2nd continuous flow  

                    UV reactor experiment carried out at pH 9.0 and flow rate of 1860 ml/min. 
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In summary, the UV light treatment of liquid egg white (LEW) samples resulted in 

inefficient microbial reduction (Table 4.18, Figure 4.20 and 4.21 a and b) at pH 7.0 and 

9.0 for a given UV system. Based on our experimental observations we suggest the 

change of UV reactor design to thin film and addition of cooling jacket to the system in 

order to supply efficient reduction in liquid egg white (LEW) samples. 

 

Table 4.18.  Temperature and pH Change of Liquid Egg White (LEW) Sample in Each 

Cycle (second experiment) 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
4.3.2. Results of Residual Chlorine Determination After Cleaning Step 
 

 After application of continuous flow UV reactor studies, cleaning procedure was 

done as explained in Section 3.4.3.2. system was firstly washed with 15 lt of 0.5 M 

NaOH, and then cleaned with 15 lt of 2 % sodium hypochloride disinfectant. Between 

each solution, system was cleaned by distilled water to remove the residuals, which had 

the potential reactivity risk of themselves. System was finally cleaned by hot distilled 

water to completely remove the residual chlorine and UV light was switched on to 

disinfect the residual microbial population in water. This operation was ended after 3-4 

cycle and 100 ml of water sample was taken from outlet of the reactor. After application 

of titrametric chlorine test, explained in Section 3.4.3.2., it was seen that residual 

chlorine level was non detectable in the pipe wall and quartz sleeve as a result of 

thiosulphate titration. 

  Temp (°C) pH 
Initial Sample 10,1 9,17 

C1in 17,8 9,11 
C1out 20,8 9,08 
C2in 22,6 9,04 
C2out 23,3 9,0 
C3in 23,6 9,0 
C3out 25 8,97 
C4in 24,5 8,98 
C4out 26 8,94 
C5in 25,9 8,95 
C5out 27,6 8,91 
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CHAPTER 5 
 

CONCLUSION 
 

 The results of this work are concluded under three basic headlines including 

rheological, biodosimetric and continuous flow UV inactivation studies of liquid egg 

products. 

 Rheological and selected physical properties of liquid egg products (LWE, 

LEW, and LEY) were studied as a function of temperature. Density data were well 

correlated by polynomial models and decreased by increasing temperature. Different 

rheological flow models (Newtonian, Power law and Herschel-Bulkley) based on shear 

stress and shear rate were applied to fit the experimental data. The good agreement 

between values predicted by these models and experimental values confirmed 

appropriateness of the equations proposed for describing the selected physical and 

rheological properties of liquid egg products (LEPs).  

 Experimental data of LEW and LWE were successfully fitted to Herschel-

Bulkley model, LEY data was well suited to power law model. It was found that liquid 

egg white (LEW), liquid whole egg (LWE) and liquid egg yolk (LEY) exhibited mildly 

shear thinning (pseudoplastic) behavior at 4, 25 and 55.6/60 °C. LEW and LWE showed 

thixotropy and time-dependency at their pasteurization temperatures (55.6 °C for LEW, 

60 °C for LWE). As a result, LEW and LWE were determined to be time-dependent at 

their pasteurization temperatures and time-independent below these temperatures.  

 On the other hand, liquid egg yolk (LEY) exhibited time-dependent behavior at 

4 °C and 60 °C. But its rheological behavior showed no thixotropy and time-

dependency at 25 °C. An Arrhenius-type equation was found to be useful to quantify the 

effect of temperature on the rheological behavior of these products. The activation 

energy of LEY samples was found to be highest indicating higher sensitivity to 

temperature than other samples.  

 Biodosimetric studies were conducted with using bench top collimated beam 

apparatus for LEPs. UV-C inactivation data from E.coli  (NRRL B-253) provides a 

conservative estimate of inactivation rate in liquid egg products. The results of this 

study indicate that UV-C light inactivation could achieve a greater than 2 log reduction 

of UV resistant E.coli  (NRRL B-253) in LEW emphasizing that UV-C light treatment 
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can be used as a pre-treatment process or alternative method when combined with mild 

heat treatment in order to reduce the adverse effects of thermal pasteurization of LEW. 

Due to very low UV-C light penetration, E.coli inactivation was inefficient in LEY and 

LWE samples. Therefore, the continuous flow UV inactivation studies were applied on 

LEW only.  

 The continuous flow UV inactivation studies revealed that maximum 0.2 

logarithmic reduction could be obtained after 5 cycle of operation. Inefficiency of 

system might be due to undesired temperature increase caused by inappropriate UV 

reactor design. Based on our experimental observations, in order to supply efficient 

reduction in LEW samples we suggest the change of UV reactor design to thin film in 

order to increase the UV light penetration, addition of cooling jacket to the storage tank 

to keep the product temperature at 4-10 0C and installation a fan to the UV reactor to 

remove the heat generated by the lamps. Additionally, there should be an air 

temperature control at the place where the UV reactor is located.  

 Further research needs to be done on the modeling of UV irradiation kinetics of 

E.coli  (NRRL B-253) and the phenomenon of photo-regeneration in UV-C treated 

liquid egg products. Future research should also asses the re-design of the UV reactor.   
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APPENDIX A 
 

ESTIMATION OF STANDARD DEVIATION FOR 

RHEOLOGY OF LEPs 
 

Table A.1. Standard Deviations of Liquid Egg White (LEW) for Herchel Bulkey Model. 

 

HB model for LEW at 4 °C 
X Y Y´=0.9607x-1.494 Y-Y´ (Y-Y´)2 Sest 

log SR log (SS-YS)     
1,0315 -0,4879 -0,5030 0,0151 0,0002 0.0198 
1,2076 -0,3307 -0,3338 0,0032 1,012E-05  
1,3325 -0,2166 -0,2139 -0,0027 7,314E-06  
1,4295 -0,1445 -0,1207 -0,0238 0,0006  
1,5086 -0,0637 -0,0446 -0,0190 0,0004  

HB model for LEW at 25 °C 
  Y´=0.9545x-1.622    

log SR log SS-YS     
1,1283 -0,5075 -0,5451 0,0375 0,00141 0,01609 
1,2074 -0,4667 -0,4695 0,0028 7,8E-06  
1,2746 -0,4146 -0,4054 -0,0092 8,5E-05  
1,3324 -0,3536 -0,3502 -0,0034 1,1E-05  
1,3836 -0,3129 -0,3013 -0,0116 0,00013  
1,4293 -0,2770 -0,2577 -0,0193 0,00037  
1,4709 -0,2294 -0,2180 -0,0113 0,00013  
1,5085 -0,1918 -0,1822 -0,0097 9,4E-05  
1,5432 -0,1603 -0,1490 -0,0113 0,00013  
1,5755 -0,1281 -0,1182 -0,0099 9,8E-05  
1,6054 -0,0982 -0,0897 -0,0085 7,2E-05  
1,6334 -0,0668 -0,0629 -0,0039 1,5E-05  
1,6598 -0,0293 -0,0377 0,0084 7,1E-05  
1,6847 -0,0081 -0,0139 0,0058 3,4E-05  
1,7080 0,0235 0,0083 0,0152 0,00023  
1,7303 0,0567 0,0296 0,0271 0,00074  

HB model for LEW at 55.6 °C 
  Y´=0.9436x-1.669    

log SR log SS-YS     
1,2075 -0,4990 -0,5303 0,0313 0,0010 0,0219 
1,3325 -0,4204 -0,4124 -0,0080 6,5E-05  
1,4294 -0,3461 -0,3209 -0,0251 0,0006  
1,5086 -0,2642 -0,2462 -0,0180 0,0003  
1,5755 -0,1931 -0,1831 -0,0101 0,0001  
1,6334 -0,1312 -0,1284 -0,0028 7,8E-06  
1,6845 -0,0745 -0,0802 0,0057 3,2E-05  
1,7303 -0,0097 -0,0370 0,0272 0,0007  
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Figure A.1. Standart deviation curves of Herchel Bulkey model for the rheology of fresh 

                   liquid egg white (LEW) (a) 4 °C (b) 25 °C (c) 55.6 °C. 

a 

b 

c 
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Table A.2. Standard Deviations of Liquid Egg White (LEW) for Newtonian Model. 
 

Newtonian Model for LEW at 4 °C 
X Y Y´=0.0279x-0.0704 Y-Y´ (Y-Y´)2 Sest 

SS (Pa) SR (sec-1)     
0,2547 10,7530 0,2296 0,0251 0,0006 0.0336 
0,3966 16,1292 0,3796 0,0170 0,0003  
0,5369 21,5012 0,5295 0,0074 5,48E-05  
0,6465 26,8823 0,6796 -0,0331 0,0011  
0,7932 32,2585 0,8296 -0,0364 0,0013  

Newtonian Model for LEW at 25 °C 
  Y´=0.0203x-0.1157    

SS (Pa) SR (sec-1)     
0,1951 13,4356 0,1570 0,0380 0,0014 0,0213 
0,2257 16,1227 0,2116 0,0141 0,0002  
0,2692 18,8197 0,2663 0,0029 8,47E-06  
0,3273 21,4969 0,3207 0,0066 4,36E-05  
0,3708 24,1904 0,3754 -0,0045 2,07E-05  
0,4127 26,8711 0,4298 -0,0170 0,00029  
0,4740 29,5720 0,4846 -0,0106 0,0001  
0,5272 32,2453 0,5389 -0,0117 0,0001  
0,5756 34,9288 0,5934 -0,0178 0,0003  
0,6288 37,6231 0,6480 -0,0193 0,0004  
0,6820 40,3067 0,7025 -0,0205 0,0004  
0,7416 42,9938 0,7571 -0,0154 0,0002  
0,8190 45,6877 0,8118 0,0073 5,29E-05  
0,8658 48,3874 0,8666 -0,0008 6,02E-07  
0,9400 51,0520 0,9207 0,0193 0,0004  
1,0238 53,7422 0,9753 0,0485 0,0024  

Newtonian Model for LEW at 55.6 °C 
  Y´=0.8777x-0.5462    

SS (Pa) SR (sec-1)     
0,1370 16,1261 0,1023 0,0347 0,0012 0,0255 
0,1999 21,5015 0,1964 0,0035 1,26E-05  
0,2709 26,8768 0,2904 -0,0196 0,0004  
0,3644 32,2522 0,3845 -0,0201 0,0004  
0,4611 37,6276 0,4786 -0,0175 0,0003  
0,5593 42,9906 0,5724 -0,0131 0,0002  
0,6625 48,3666 0,6665 -0,0040 1,63E-05  
0,7979 53,7428 0,7606 0,0373 0,0014  
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Figure A.2.  Standart deviation curves of Newtonian model for the rheology of fresh 

liquid egg white (LEW) (a) 4 °C (b) 25 °C (c) 55.6 °C. 
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Table A.3. Standard Deviations of Liquid Egg Yolk (LEY) for Power Law Model. 
 

Power Law for LEY at 4 °C 
X Y Y´=0.9324X+0.0058 Y-Y´ (Y-Y´)2 Sest 

log SS log SR     
0,0253 0,0314 0,0294 0,0020 4,0532E-06 0,0046 
0,3263 0,3071 0,3101 -0,0030 9,0456E-06  
0,5024 0,4709 0,4743 -0,0034 1,164E-05  
0,6274 0,5915 0,5908 0,0008 5,683E-07  
0,7243 0,6848 0,6811 0,0036 1,325E-05  
0,8035 0,7605 0,7549 0,0056 3,0852E-05  
0,8704 0,8115 0,8174 -0,0059 3,43E-05  

Power Law for LEY at 25 °C 
  Y´=0.897x-0.3583    

log SS log SR     
-0,0630 0,3263 -0,0656 0,0026 6,7228E-06 0,0016 
0,2014 0,6274 0,2044 -0,0031 9,303E-06  
0,3608 0,8035 0,3624 -0,0016 2,619E-06  
0,4745 0,9284 0,4745 3,66E-05 1,336E-09  
0,5616 1,0253 0,5614 0,0002 3,204E-08  
0,6333 1,1045 0,6324 0,0008 7,081E-07  
0,6927 1,1714 0,6925 0,0002 3,7826E-08  
0,7448 1,2294 0,7445 0,0003 1,1931E-07  
0,7915 1,2806 0,7904 0,0011 1,213E-06  
0,8107 1,3041 0,8114 -0,0007 5,453E-07  

Power Law for LEY at 60 °C 
  Y´= 0.929x-1.5599    

log SS log SR     
0,0154 0,6274 0,0044 0,0109 0,0001 0,0073 
0,1418 0,8035 0,1590 -0,0172 0,0003  
0,2762 0,9284 0,2687 0,0076 5,744E-05  
0,3535 1,0253 0,3537 -0,0002 3,2184E-08  
0,4236 1,1045 0,4232 0,0004 1,3336E-07  
0,4764 1,1714 0,4820 -0,0056 3,1033E-05  
0,5358 1,2294 0,5329 0,0029 8,604E-06  
0,5808 1,2806 0,5778 0,0030 9,286E-06  
0,6196 1,3263 0,6179 0,0017 2,8562E-06  
0,6485 1,3677 0,6543 -0,0058 3,361E-05  
0,6807 1,4055 0,6874 -0,0067 4,5217E-05  
0,7145 1,4403 0,7179 -0,0034 1,1804E-05  
0,7469 1,4725 0,7462 0,0007 4,707E-07  
0,7765 1,5024 0,7725 0,0040 1,6024E-05  
0,8047 1,5305 0,7971 0,0076 5,7812E-05  
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Figure A.3. Standart deviation curves of Power Law model for the rheology of fresh 

liquid egg yolk (LEY) (a) 4 °C (b) 25 °C (c) 60 °C. 
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Table A.4. Standard Deviations of Liquid Whole Egg (LWE) for Herschel Bulkey Model. 

 

HB Model for LWE at 4 °C 

 
Observed 

Xm Observed Predicted 
Xc HB model  

log SR log SS-YS log SS eqn HB obs-pred Sest 
0,9066 -0,4204 -0,6687 -0,5202 0,0998 0,0033 
1,0315 -0,3571 -0,5621 -0,3968 0,0397  
1,1284 -0,2893 -0,4581 -0,3010 0,0117  
1,2076 -0,2308 -0,3743 -0,2228 -0,0079  
1,2745 -0,1729 -0,2956 -0,1568 -0,0161  
1,3325 -0,1397 -0,2522 -0,0995 -0,0403  
1,3837 -0,0645 -0,1571 -0,0489 -0,0156  
1,4294 -0,0147 -0,0962 -0,0037 -0,0110  
1,4707 0,0326 -0,0397 0,0371 -0,0045  
1,5086 0,0621 -0,0051 0,0745 -0,0124  
1,5433 0,1125 0,0532 0,1088 0,0037  
1,5755 0,1458 0,0911 0,1406 0,0052  
1,6055 0,1771 0,1265 0,1702 0,0069  
1,6335 0,2137 0,1674 0,1979 0,0158  
1,6598 0,2403 0,1969 0,2239 0,0164  

HB Model for LWE at 25 °C 
X Y Y´= 0.972x-1.5185 Y-Y´ (Y-Y´)2 Sest 

log SR log SS-YS     
1,3325 -0,2033 -0,2233 0,0200 0,0004 0,0139 
1,4293 -0,1419 -0,1292 -0,0126 0,0002  
1,5085 -0,0688 -0,0523 -0,0165 0,0003  
1,5756 0,0084 0,0130 -0,0046 2,08E-05  
1,6335 0,0692 0,0693 -6,6E-05 4,38E-09  
1,6846 0,1230 0,1190 0,0041 1,67E-05  
1,7303 0,1728 0,1634 0,0095 8,94E-05  

HB Model for LWE at 60 °C 
log SR log SS-YS Y´= 0.929x-1.5599   Sest 
1,1283 -0,4606 -0,5118 0,0511 0,0026 0,0253 
1,2074 -0,4238 -0,4382 0,0144 0,0002  
1,2744 -0,3763 -0,3760 -0,0003 1,036E-07  
1,3324 -0,3442 -0,3221 -0,0221 0,0005  
1,3836 -0,2864 -0,2745 -0,0119 0,0001  
1,4293 -0,2538 -0,2321 -0,0217 0,0005  
1,4707 -0,2223 -0,1936 -0,0287 0,0008  
1,5085 -0,1908 -0,1585 -0,0322 0,0010  
1,5435 -0,1454 -0,1260 -0,0194 0,0004  
1,5754 -0,1070 -0,0963 -0,0107 0,0001  
1,6054 -0,0860 -0,0685 -0,0175 0,0003  
1,6334 -0,0376 -0,0425 0,0048 2,336E-05  
1,6599 -0,0024 -0,0179 0,0154 0,0002  
1,6846 0,0301 0,0051 0,0250 0,0006  
1,7081 0,0474 0,0269 0,0205 0,0004  
1,7303 0,0800 0,0476 0,0325 0,0011  



 94 

y = 1,0475x - 0,0049
R2 = 0,9843

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

-0,6 -0,4 -0,2 0 0,2 0,4

Actual Value (Log SS-YS)

P
re

di
ct

ed
 V

al
ue

 (L
og

 S
S

-Y
S

)

HB model for LWE at 4 °C

y = 0,2601x - 1,1652
R2 = 0,8889

-1,3

-1,25

-1,2

-1,15

-1,1

-1,05
-0,5 -0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3

Actual Value (Log SS-YS)

P
re

di
ct

ed
 V

al
ue

 (L
og

 S
S

-Y
S

)

HB model for LWE at 25 °C

y = 1,0475x - 0,0049
R2 = 0,9843

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

-0,6 -0,4 -0,2 0,0 0,2 0,4

Actual Value (Log SS-YS)

P
re

di
ct

ed
 V

al
ue

 (L
og

 S
S

-Y
S

)

HB model for LWE at 60 °C

 
 

Figure A.4.  Standart deviation curves of Herchel Bulkey model for the rheology of 

fresh liquid whole egg (LWE) (a) 4 °C (b) 25 °C (c) 60 °C. 
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Table A.5. Standard Deviations of Liquid Whole Egg (LWE)  for Newtonian Model. 

 

Newtonian Model for LWE at 4 °C 
X Y Y´=0.0279x-0.0704 Y-Y´ (Y-Y´)2 Sest 

SS (Pa) SR (sec-1)     
0,2144 8,0644 0,1338 0,0806 0,0065 0,04024 
0,2741 10,7527 0,2335 0,0406 0,0016  
0,3482 13,4407 0,3333 0,0150 0,0002  
0,4224 16,1288 0,4330 -0,0106 0,0001  
0,5063 18,8128 0,5326 -0,0263 0,0007  
0,5595 21,5010 0,6323 -0,0728 0,0053  
0,6965 24,1924 0,7321 -0,0356 0,0013  
0,8013 26,8801 0,8319 -0,0306 0,0009  
0,9125 29,5608 0,9313 -0,0188 0,0004  
0,9883 32,2559 1,0313 -0,0430 0,0018  
1,1302 34,9366 1,1307 -0,0005 3,01E-07  
1,2334 37,6261 1,2305 0,0029 8,15E-06  
1,3382 40,3188 1,3304 0,0078 6,01E-05  
1,4704 43,0064 1,4301 0,0403 0,0016  
1,5736 45,6903 1,5297 0,0439 0,0019  
1,6284 47,9926 1,6151 0,0133 0,0002  

Newtonian Model for LWE at 25 °C 
  Y´=0.0203x-0.1157    

SS (Pa) SR (sec-1)     
0,1661 10,7484 0,0939 0,0722 0,0052 0,0366 
0,2031 13,4356 0,1686 0,0345 0,0012  
0,2596 16,1227 0,2433 0,0163 0,0003  
0,3176 18,8161 0,3182 -0,0006 3,28E-07  
0,3740 21,4969 0,3927 -0,0187 0,0003  
0,4450 24,1840 0,4674 -0,0224 0,0005  
0,5063 26,8711 0,5421 -0,0359 0,0013  
0,5756 29,5624 0,6169 -0,0414 0,0017  
0,6481 32,2453 0,6915 -0,0434 0,0019  
0,7287 34,9350 0,7663 -0,0375 0,0014  
0,8287 37,6342 0,8413 -0,0126 0,0002  
0,8932 40,3067 0,9156 -0,0224 0,0005  
0,9835 43,0032 0,9906 -0,0071 5,05E-05  
1,0834 45,6956 1,0654 0,0180 0,0003  
1,1383 48,3749 1,1399 -0,0017 2,76E-06  
1,2398 51,0640 1,2147 0,0252 0,0006  
1,3575 53,7635 1,2897 0,0678 0,0046  

Newtonian Model for LWE at 60 °C 
  Y´=0.8777x-0.5462    

SS (Pa) SR (sec-1)     
0,1516 13,4356 0,0942 0,0574 0,0033 0,0344 
0,1822 16,1227 0,1519 0,0302 0,0009  
0,2257 18,8098 0,2097 0,0160 0,0003  
0,2580 21,4969 0,2675 -0,0095 9,06E-05  
0,3225 24,1901 0,3254 -0,0029 8,6E-06  
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Table A.5. (Cont.) 

 

Newtonian Model for LWE at 60 °C 
  Y´=0.8777x-0.5462    

SS (Pa) SR (sec-1)     
0,3628 26,8711 0,3830 -0,0203 0,0004 0,3628 
0,4047 29,5602 0,4408 -0,0362 0,0013 0,4047 
0,4498 32,2453 0,4986 -0,0488 0,0024 0,4498 
0,5208 34,9505 0,5567 -0,0360 0,0013 0,5208 
0,5869 37,6196 0,6141 -0,0273 0,0007 0,5869 
0,6256 40,3067 0,6719 -0,0463 0,0021 0,6256 
0,7223 42,9938 0,7297 -0,0074 5,43E-05 0,7223 
0,7997 45,6963 0,7878 0,0119 0,0001 0,7997 
0,8771 48,3769 0,8454 0,0317 0,0010 0,8771 
0,9206 51,0596 0,9031 0,0175 0,0003 0,9206 
1,0077 53,7422 0,9608 0,0469 0,0022 1,0077 
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Figure A.5.  Standart deviation curves of Newtonian model for the rheology of fresh 

liquid whole egg (LWE) (a) 4 °C (b) 25 °C (c) 60 °C. 

a 

b 

c 



 98 

APPENDIX B 
 

STATISTICAL TABLES OF BIODOSIMETRY STUDIES 

FOR E.coli (NRRL B-253) 
 

Table A.6. Summary of Statistical Analysis for Biodosimetry Study of E.coli (NRRL B-

253) in Liquid Egg White (LEW). 

 

General Linear Model: Log Reduction versus Time; Intensity; Depth 
Factor Type Levels Values 
Time fixed 4 0; 5; 10; 20 
Intensity fixed 3 1.315; 0.709; 0.3831 
Depth fixed 3 1.53; 3.00; 5.002 

Analysis of Variance for log reduction, using adjusted SS for Tests 
Source DF3 Seq SS4 Adj SS Adj MS5 F P 
Time 3 20.99717 20.99717 6.99906 447.52 0.000 
Intensity 2 0.89283 0.89283 0.44641 28.54 0.000 
Depth 2 1.07845 1.07845 0.53923 34.48 0.000 
Time* Intensity 6 1.13665 1.13665 0.18944 12.11 0.000 
Time* Depth 6 1.51949 1.51949 0.25325 16.19 0.000 
Intensity* Depth 4 0.12950 0.12950 0.03238 2.07 0.105 
Time* Intensity* Depth 12 0.64565 0.64565 0.05380 3.44 0.002 
Error 36 0.56302 0.56302 0.01564   
Total 71 26.96277     
S=0.125058 R-Sq=97.91% R-Sq(adj)=95.88% 
1 Unit in mW/cm2 

2 Unit in mm 
3 DF: Degrees of Freedom 
4 SS: Sum of Square 
5 MS: Mean of Square 
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Table A.7. Summary of Statistical Analysis for Biodosimetry Study of E.coli (NRRL B-

253) in Liquid Egg Yolk (LEY). 

 

General Linear Model: Log Reduction versus Time; Intensity; Depth 
Factor Type Levels Values 
Time fixed 4 0; 5; 10; 20 
Intensity fixed 3 1.315; 0.709; 0.383 
Depth fixed 3 1.53; 3.00; 5.00 

Analysis of Variance for log reduction, using adjusted SS for Tests 
Source DF Seq SS Adj SS Adj MS F P 
Time 3 0.848612 0.848612 0.282871 41.17 0.000 
Intensity 2 0.12581 0.12581 0.051290 7.47 0.002 
Depth 2 1.032962 1.032962 0.516481 75.17 0.000 
Time* Intensity 6 0.055628 0.055628 0.009271 1.35 0.261 
Time* Depth 6 0.366172 0.366172 0.061029 8.88 0.000 
Intensity* Depth 4 0.098393 0.098393 0.024598 3.58 0.015 
Time* Intensity* Depth 12 0.047625 0.047625 0.003973 0.58 0.845 
Error 36 0.247346 0.247346 0.006871   
Total 71 2.766369     
S=0.0828898 R-Sq=91.16% R-Sq(adj)=82.57% 
 

 

Table A.8. Summary of Statistical Analysis for Biodosimetry Study of  E.coli (NRRL 

B-253) in Liquid Whole Egg (LWE). 

 

General Linear Model: Log Reduction versus Time; Intensity; Depth 
Factor Type Levels Values 
Time fixed 4 0; 5; 10; 20 
Intensity fixed 3 1.315; 0.709; 0.3831 
Depth fixed 3 1.53; 3.00; 5.002 

Analysis of Variance for log reduction, using adjusted SS for Tests 
Source DF3 Seq SS4 Adj SS Adj MS5 F P 
Time 3 0.249540 0.249540 0.083180 24.35 0.000 
Intensity 2 0.005293 0.005293 0.002647 0.77 0.468 
Depth 2 0.095266 0.095266 0.047633 13.94 0.000 
Time* Intensity 6 0.013482 0.013482 0.02247 0.66 0.684 
Time* Depth 6 0.043479 0.043479 0.007246 2.12  0.075 
Intensity* Depth 4 0.003894 0.003894 0.000973 0.28 0.886 
Time* Intensity* Depth 12 0.017253 0.017253 0.001438 0.42 0.945 
Error 36 0.123001 0.123001 0.003417   
Total 71 0.551207     
S=0.0584525 R-Sq=77.69% R-Sq(adj)=55.99% 
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APPENDIX C 
 

RESULTS OF BIODOSIMETRY STUDIES FOR 

S.typhimurium (CCM 5445) AND E.coli O157:H7  

(ATCC 700728) 
 

Table A.9. Inactivation Rate Constant Values (in cm2/mj) for Target Microorganisms at 

0.153 cm Sample Depth and 1.314 mW/cm2 UV Intensity. 

 

 Inactivation Rate Constant (cm2/mj) 

M.organism LEW LEY LWE 

E.coli (ATCC 8739) 0.0204 0.0493 0.0229 

E.coli O157:H7 0.0317 0.1922 0.0126 

S.Typhimurium 0.0265 0.1071 0.027 
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Figure A.6. Influence of UV-C radiation on S.typhimurium inactivation at 0.153 cm 

                fluid medium depth and 1.314 mW/cm2 UV intensity levels (I) (a) Liquid  

                egg white (LEW) (b) liquid egg yolk (LEY) (c) liquid whole egg (LWE). 

a 

b 

c 



 102 

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0
0 20 40 60 80 100 120

UV Dose (mJ/cm2)

Lo
g

 (N
/N

o)

E.coli O157:H7 (ATCC 700728) in LEW (I=1.314 mW/cm2, L=0.153 cm)

-1,4

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0
0 2 4 6 8 10 12 14

UV Dose (mJ/cm2)

Lo
g 

(N
/N

o
)

E.coli O157:H7 (ATCC 700728) in LEY (I=1.314 mW/cm2, L=0.153 cm)

-0,45

-0,4

-0,35

-0,3

-0,25

-0,2

-0,15

-0,1

-0,05

0
0 5 10 15 20 25 30 35

UV Dose (mJ/cm2)

L
og

 (N
/N

o
)

E.coli (ATCC 700728) in LWE (I=1.314 mW/cm2, L=0.153 cm)

 
Figure A.7. Influence of UV-C radiation on E.coli inactivation at 0.153 cm fluid 

medium depth and 1.314 mW/cm2 UV intensity levels (I) (a) Liquid egg 

white (LEW) (b) liquid egg yolk (LEY) (c) liquid whole egg (LWE). 
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APPENDIX D 
 

RESULTS OF THE COLOR ANALYSIS OF LEPs 
 
 
Table A.10. Statistical Analysis of Color Parameters of LEPs Before and After UV 

Treatment in Bench Top Collimated Beam UV Apparatus. 

 
      Time (min) 

Parameter Product Depth  
(mm) 0 5 10 20 

1.53 28.51 ± 0.45c 28.57 ± 0.24c 28.56 ± 0.44b 28.16 ± 0.64b 

3 29.57 ± 0.25b 29.25 ± 0.33b 29.35 ± 0.32a 29.42 ± 0.59a LEW 
5 30.16 ± 0.28a 29.74 ± 0.19a 29.80 ± 0.21a 29.66 ± 0.22a 

1.53 55.93 ± 0.64c 55.23 ± 0.83c 55.21 ± 0.95c 54.70 ± 0.57c 

3 57.31 ± 1.00b 57.32 ± 0.74b 57.27 ± 0.78b 56.75 ± 0.50b LEY 
5 58.92 ± 0.32a 58.90 ± 0.26a 58.79 ± 0.44a 58.83 ± 0.29a 

1.53 57.23 ± 0.87c 57.34 ± 0.88c 57.31 ± 0.63c 56.72 ± 0.79c 

3 59.75 ± 1.09b 59.66 ± 1.24b 59.79 ± 0.96b 59.58 ± 1.30b 

L*  

LWE 
5 61.56 ± 0.79a 61.32 ± 0.86a 61.14 ± 0.69a 61.21 ± 0.91a 

1.53 0.14 ± 0.20a 0.18 ± 0.18a 0.11 ± 0.20a 0.11 ± 0.14a 
3 -0.21 ± 0.10b -0.09 ± 0.17a, b -0.01 ± 0.12a, b -0.05 ± 0.23a, b LEW 
5 -0.36 ± 0.22b -0.33 ± 0.25b -0.32 ± 0.26b -0.30 ± 0.20b 

1.53 1.05 ± 0.51c 0.52 ± 0.64c 0.46 ± 083c 0.37 ± 0.27c 

3 3.40 ± 0.64b 3.27 ± 0.61b 3.31 ± 0.60b 2.93 ± 0.31b LEY 
5 6.02 ± 0.17a, x 5.60 ± 0.14a,  y 5.66 ± 0.18a, y 5.68 ± 0.22a, y 

1.53 -0.34 ± 0.52c -0.13 ± 0.74c -0.22 ± 0.77c -0.28 ± 0.56c 
3 2.45 ± 0.35b 2.22 ± 0.35b 2.21 ± 0.30b 2.19 ± 0.34b 

a*  

LWE 
5 4.86 ± 0.76a 4.74 ± 0.77a 4.62 ± 0.59a 4.63 ± 0.66a 

1.53 -0.65 ± 0.12b, x -0.58 ± 0.08b, x -0.63 ± 0.05b, x -0.53 ± 0.25b, x 
3 -0.68 ± 0.19b, y -0.48 ± 0.09b, xy -0.52 ± 0.16b, xy -0.34 ± 0.18b, x LEW 
5 -0.16 ± 0.15a, y 0.05 ± 0.11a, xy 0.01 ± 0.18a, xy 0.16 ± 0.13a, x 

1.53 44.45 ± 0.72c 43.39 ± 1.14c 43.16 ± 1.96c 43.64 ± 1.99c 

3 47.45 ± 1.41b 47.10 ± 0.90b 46.96 ± 0.81b 46.34 ± 1.01b LEY 
5 49.51 ± 0.90a 49.60 ± 1.05a 49.70 ± 0.75a 49.33 ± 0.93a 

1.53 25.74 ± 0.70c 26.05 ± 0.98c 26.02 ± 0.94c 25.79 ± 0.68c 

3 30.74 ± 0.92b 30.94 ± 1.15b 30.71 ± 1.11b 30.51 ± 1.31b 

b*  

LWE 
5 33.31 ± 0.76a 33.36 ± 1.09a 33.25 ± 0.86a 33.35 ± 0.83a 

 

a, b, c Column means having a different letter are significantly different (p<0.05, depth efffect) 

x, y   Row means having a different letter are significantly different (p<0.05, time efffect) 
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Table A.11. Results of Statistical Analysis of �E for LEPs Before and After UV 

Treatment in Bench Top Collimated Beam UV Apparatus. 

 

Parameter Depth 
(mm) Time (min) Replicate-1 Replicate-2 

5 0.33 ± 0.18 a b 0.64 ± 0.41 
10 0.18 ± 0.14 b 0.45 ± 0.62 1.53 
20 0.69 ± 0.24 b 0.27 ± 0.12 
5 0.59 ± 0.33 0.36 ± 0.24 

10 0.33 ± 0.10 0.46 ± 0.13 3 
20 0.90 ± 0.33 0.40 ± 0.10 
5 0.57 ± 0.22 0.68 ± 0.44 

10 0.43 ± 0.18 0.70 ± 0.29 

LEW 

5 
20 0.60 ± 0.34 0.72 ± 0.32 
5 1.60 ± 0.95 1.27 ± 0.93 

10 1.16 ± 0.82 2.13 ± 2.55 1.53 
20 1.17 ± 0.54 2.84 ± 1.17 y 
5 0.92 ± 0.64 0.52 ± 0.11 

10 1.34 ± 0.61 0.71 ± 0.23 3 
20 1.41 ± 0.86 1.79 ± 0.69 xy 
5 0.41 ± 0.23 0.85 ± 0.13 

10 0.75 ± 0.48 0.98 ± 0.39 

LEY 

5 
20 0.49 ± 0.09 0.53 ± 0.18 x 
5 0.98 ± 0.61 0.48 ± 0.37 

10 1.47 ± 1.01 0.84 ± 0.61 1.53 
20 0.68 ± 0.19 0.79 ± 0.38 
5 0.64 ± 0.49 0.53 ± 0.36 

10 0.89 ± 0.42 0.63 ± 0.42 3 
20 1.34 ± 0.57 0.91 ± 0.64 
5 0.45 ± 0.27 0.50 ± 0.05 

10 0.60 ± 0.05 0.53 ± 0.17 

LWE 

5 
20 0.63 ± 0.09 0.41 ± 0.04 

 

a, b   Means having a different letter are significantly different (p<0.05, time efffect) 
x, y   Means having a different letter are significantly different (p<0.05, depth efffect) 

 


