
A DOMINATING SET BASED

COMMUNICATION ARCHITECTURE FOR

DISTRIBUTED APPLICATIONS IN MOBILE

AD HOC NETWORKS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by
Deniz ÇOKUSLU

July 2007
İZMİR

We approve the thesis of Deniz ÇOKUSLU

Date of Signature

. 2 July 2007
Prof. Dr. Sıtkı AYTAÇ
Supervisor
Department of Computer Engineering

İzmir Institute of Technology

. 2 July 2007
Prof. Dr. Kayhan ERCİYEŞ
Co-Supervisor
International Computer Institute
Ege University

. 2 July 2007
Assoc. Prof. Dr. Ahmet KOLTUKSUZ
Department of Computer Engineering

İzmir Institute of Technology

. 2 July 2007
Assist. Prof. Dr. Radosveta SOKULLU
Department of Electrical and Electronics Engineering
Ege University

. 2 July 2007
Assist. Prof. Dr. Tuğkan TUĞLULAR
Department of Computer Engineering

İzmir Institute of Technology

. 2 July 2007
Prof. Dr. Sıtkı AYTAÇ
Head of Department
Department of Computer Engineering

İzmir Institute of Technology

. .

Prof. Dr. M. Barış ÖZERDEM
Head of the Graduate School

ACKNOWLEDGEMENTS

I would like to gratefully acknowledge the supervision of my co-advisor, Prof.

Dr. Kayhan Erciyeş, for his guidance, patience and encouragement. His enthusiasm,

inspiration, and great efforts during this research made this work possible.

I also would like to thank to Prof. Dr. Sıtkı Aytaç for his encouragement

and support. Furthermore, I had the pleasure of working with Orhan Dağdeviren

who collaborated with me in many studies.

Finally, I thank my parents who always supported me throughout my whole

education life.

ABSTRACT

A DOMINATING SET BASED COMMUNICATION

ARCHITECTURE FOR DISTRIBUTED APPLICATIONS IN

MOBILE AD HOC NETWORKS

In this thesis, we aim to design and implement algorithms in a distributed

environment in order to solve clustering, backbone formation and efficient routing

problems for mobile ad hoc networks(MANET)s. Our first goal is to find a connected

dominating set (CDS), then construct clusters using the clusterhead information and

extend this approach to multi-level clusters. We propose a new Connected Dom-

inating Set based clustering algorithm for clustering in MANETs. Our algorithm

is based on Wu and Li’s algorithm (2002), however we provide significant modifi-

cations and heuristics such as considering the degrees of the nodes during marking

process. We also extend our algorithm in order to generate a hierarchy of clusters.

Our second goal is to implement a flooding based routing mechanism on top of

CDS based clusters. We propose a two level flooding mechanism by using the CDS

members as the gateways of the clusters. We describe the algorithms, analyze their

time and message complexities and measure their performance in the simulation

environments.

iv

ÖZET

GEZGİN TASARSIZ AĞLARDA DAĞITIK UYGULAMALAR

İÇİN HAKİM KÜME TABANLI BİR İLETİŞİM MİMARİSİ

Bu tezde, dağıtık ortamlarda gezgin tasarsız ağlar için kümeleme, omurga

oluşturma ve verimli yönlendirme problemlerini çözmek üzere algoritmalar tasar-

lanması ve gerçeklenmesi amaç edinilmiştir. İlk amaç, bir bağlı hakim küme

bulup küme başları kullanılarak ağ üzerinde kümeler oluşturulması ve yöntem

geliştirilerek çok seviyeli kümeler belirlenmesidir. Gezgin ağlarda kümeleme için

yeni bir Bağlı Hakim Set Tabanlı Kümeleme Algoritması (BHSTKA) önerilmiştir.

BHSTKA, Wu ve Li’nin kümeleme algoritması (2002) tabanlı olarak tasarlanmıştır,

ancak küme başları seçlirken düğümlerin derecelerini de gözönünde bulundur-

mak gibi iyileştirmeler ve buluşsal yöntemler kullanılarak önemli değişiklikler

sağlanmıştır. Bunun yanısıra hiyerarşik kümeler oluşturmak amacıyla İki Seviyeli

Bağlı Hakim Set Tabanlı Kümeleme Algoritması (İSBHSTKA) geliştirilmiştir. İkinci

amaç, bağlı hakim kümeler üzerinde taşırma tabanlı bir yönlendirme mekanizması

oluşturulmasıdır. Bağlı hakim kümenin üyelerini geçit olarak kullanan iki seviyeli

bir yönlendirme mekanizması önerilmiştir. Algoritmalar tanımlanmış, zaman ve

mesaj karmaşıklıkları analiz edilmiş ve benzetim ortamlarındaki başarım ölçümleri

sağlanmıştır.

v

TABLE OF CONTENTS

LIST OF FIGURES . x

CHAPTER 1 . INTRODUCTION . 1

CHAPTER 2 . BACKGROUND . 6

2.1. Clustering Algorithms . 7

2.1.1. Dominating Set Based Clustering Algorithms 7

2.1.1.1. Clustering Using IDS 7

2.1.1.2. Clustering Using WCDS 8

2.1.1.3. Clustering Using CDS 9

2.1.2. Spanning Tree Based Algorithms 11

2.2. Routing Algorithms in MANETs 14

2.2.1. Proactive Routing . 15

2.2.2. Reactive Routing . 15

2.2.3. Hybrid Routing . 16

2.2.4. Cluster Based Routing 16

CHAPTER\3.\THE\CONNECTED\DOMINATING\SET\BASED

\\\\\\\\\\\\CLUSTERING\ALGORITHM\\\\\\\\\\\\\\\\\\\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\\\\18

3.1. General Idea and Description of the Algorithm 18

3.2. An Example Operation . 24

3.3. Analysis . 25

3.4. Results . 26

3.5. Discussions . 34

CHAPTER 4 . TWO-LEVEL CONNECTED DOMINATING

\\\\\\\\\\\\SET\BASED\CLUSTERING ALGORITHM\\\\\\\\\\\\\\\\\\\\\\. 36

4.1. General Idea and Description of the Algorithm 36

4.2. An Example Operation . 43

4.3. Analysis . 45

4.4. Results . 45

vi

4.5. Discussions . 51

CHAPTER 5 . CDS FLOODING ALGORITHM 53

5.1. General Idea and Description of the Algorithm 53

5.1.1. Sending a Message . 59

5.1.2. Receiving and Processing Messages 60

5.2. An Example Operation . 62

5.3. Analysis . 64

5.4. Results . 65

5.5. Discussions . 67

CHAPTER 6 . CONCLUSION . 69

APPENDIX A. SIMULATION SETUP . 77

vii

REFERENCES\\\\.\\\72

LIST OF FIGURES

Figure Page

Figure 1.1. Hierarchical Representation of the Proposed Algorithms 4

Figure 2.1. (a)IDS (b)WCDS (c)CDS. 6

Figure 3.1. Finite State Machine of the Dominating Set Based Clustering

Algorithm . 20

Figure 3.2. Example after the first phase 25

Figure 3.3. Example resulting graph . 26

Figure 3.4. Runtime Test in a Static Network 27

Figure 3.5. Runtime Test in a Low Speed Dynamic Network 28

Figure 3.6. Runtime Test in a High Speed Dynamic Network. 28

Figure 3.7. Number of Clusterheads in a Static Network 29

Figure 3.8. Number of Clusterheads in a Low Speed Dynamic Network . . 29

Figure 3.9. Number of Clusterheads in a High Speed Dynamic Network. . 30

Figure 3.10. Cluster Size Test in a Static Network 30

Figure 3.11. Cluster Size Test in a Low Speed Dynamic Network 30

Figure 3.12. Cluster Size Test in a High Speed Dynamic Network 31

Figure 3.13. Cluster Quality Test in a Static Network 31

Figure 3.14. Cluster Quality Test in a Low Speed Dynamic Network 32

Figure 3.15. Cluster Quality Test in a High Speed Dynamic Network 32

Figure 3.16. Average Number of Clusterheads Test in a Static, Moving in

Low Speed and Moving in High Speed Dynamic Network . . . 33

Figure 3.17. Comparison Between CDSC and Wu’s CDS Algorithms in terms

of Number of Clusterheads . 33

Figure 4.1. Finite State Machine of the TLCDSC Algorithm 37

Figure 4.2. TLCDSC Algorithm Sample Graph 43

Figure 4.3. TLCDSC Algorithm Samle Graph at the End of First Level. . 44

Figure 4.4. TLCDSC Algorithm Resulting Graph 45

Figure 4.5. TLCDSC Algorithm Runtime Test in a Static Network 47

viii

Figure 4.6. TLCDSC Algorithm Runtime Test in a Low Speed Dynamic

Network . 47

Figure 4.7. TLCDSC Algorithm Runtime Test in a High Speed Dynamic

Network . 48

Figure 4.8. Number of Super Cluster Heads in a Static Network 48

Figure 4.9. Number of Super Cluster Heads in a Low Speed Dynamic Network 49

Figure 4.10. Number of Super Cluster Heads in a High Speed Dynamic Net-

work . 49

Figure 4.11. Size of the Super Clusters in a Static Network 50

Figure 4.12. Size of the Super Clusters in a Low Speed Dynamic Network . 50

Figure 4.13. Size of the Super Clusters in a High Speed Dynamic Network . 51

Figure 5.1. Finite State Machine of the 2-Level Hierarchical Clustering Al-

gorithm . 55

Figure 5.2. Data Structure for the MessageInfoBox 58

Figure 5.3. An Example CDS Based Clusters 62

Figure 5.4. CDS Flooding Examples . 63

Figure 5.5. CDS Flooding Examples . 64

Figure 5.6. CDS Flooding Test Results for Static Network 66

Figure 5.7. CDS Flooding Test Results for Low Speed Dynamic Network . 67

Figure A.1. Header File of the udp-cds Class 79

Figure A.2. Header File of the udp-cds Class 80

Figure A.3. Modification Made on mac-80211.cc 80

Figure A.4. CDSClusApp Class Header File 81

Figure A.5. CDSClusApp Class Header File (con.). 82

Figure A.6. CDSClusApp Class Header File (con.). 83

Figure A.7. TLCDSCApp Class Header File 84

Figure A.8. TLCDSCApp Class Header File (con.) 85

Figure A.9. TLCDSCApp Class Header File (con.) 86

Figure A.10. TLCDSCApp Class Header File 87

Figure A.11. CDSFloodingApp Class Header File 88

Figure A.12. CDSFloodingApp Class Header File (con.) 89

ix

Figure A.13. CDSFloodingApp Class Header File (con.) 90

Figure A.14. An example Scenario File . 91

Figure A.15. An example Scenario File (con.) 92

Figure A.16. An example Scenario File (con.) 93

x

CHAPTER 1

INTRODUCTION

Wireless communication technology has becoming an essential framework for

the today’s communication environments. Being freed of the mess of wires, and mo-

bility issues attracts people to build wireless communication platforms everywhere.

This interest leads the researchers to improve the current wireless technology. Most

of the today’s wireless devices are, in some sense, limited by their need for in-

frastructure. Today’s most popular approach for the non-fixed infrastructure is the

Ad hoc networking which can be considered as a solution to the infrastructure lim-

itations of the wireless technology. Mobile Ad hoc Networks (MANETs) do not

have any fixed infrastructure and consist of wireless mobile nodes that perform var-

ious data communication tasks in an Ad hoc manner. Generally in a MANET,

the nodes are dynamically moving without any boundary limitations. Therefore,

the nodes must have some key specifications in order to provide continuous com-

munication. MANETs have potential applications in rescue operations, battlefield

communications, mobile conferences etc. Although the primary application area of

the MANETs is considered to be the military and rescue operations, the tendency

of the communication community shows that commercial and educational use of

MANETs is growing rapidly. The law enforcement operations, sensor networks,

personal area networking, media distribution applications are such examples of the

commercial and educational use of the MANETs. Although MANETs have nu-

merous advantages over the wired and structured mobile networks, they have some

issues to be addressed such as topology changes, bandwidth optimization, locality of

information, ad hoc addressing, energy conservation, self routing, self organization

and self routing. Most of these problems are caused by the common wireless trans-

port layer and the awareness of the nodes. A generic structured ad hoc topology

eases most of those problems.

A very popular approach for structuring MANETs is clustering the network.

In a typical clustering scheme, the MANET is firstly partitioned into a number of

1

clusters by a suitable distributed algorithm according to some common attributes

of the nodes such as degrees, power levels, geographical locations etc. In a clustered

structure, some nodes may be assigned with some special functionalities in order to

perform different operations. The nodes in a clustered MANET may be clusterheads,

cluster gateways or cluster members. A clusterhead can be used in many roles

such as management of the cluster members, routing of messages or inter cluster

communications. A cluster gateway is used to establish connection between different

clusters. A cluster gateway can be both a clusterhead or a cluster member. If the

clusterheads in the entire network build a backbone, the cluster gateways are all

clusterheads. A cluster member is called an ordinary node generally and is not

loaded by any special functionalities. An ordinary node does not involve in inter-

cluster communication or does not have to know about routing of messages. There

are many advantages of clustering in MANETs. By clustering the network, one can

build small sized clusters with clusterheads and cluster gateways forming a backbone

which may be very useful in many applications. Clusters can be used in order to

develop efficient routing protocols which is very necessary in MANETs. The clusters

may also be used in order to perform different operations in different clusters which

resides in the same environment. As the clusterheads play cluster manager roles as

well, they can easily determine the operation which is to be executed within their

own cluster.

There are many research studies in the field of clustering MANETs, espe-

cially in clustering using graph theoretical algorithms such as dominating set based

algorithms. MANETs can easily be modeled by using graph theoretical concepts.

The mobile nodes in the MANETs are modeled by the vertices, and the communica-

tion links are modeled by the edges in the graphs. Once the MANETs are mapped

to the graphs, the graph theoretical algorithms can be implemented on them in

order to select some special nodes with some common properties. This leads us to

build clusters around the selected special nodes. The special nodes are called the

clusterheads and their adjacent neighbors are called the cluster members. In this

thesis, we focused on the dominating sets as the graph theoretical concept which is

used to model the MANETs. A dominating set is a subset of the vertices of a graph

if every vertex not in the subset is adjacent to at least one vertex in the subset.

2

The advantage of using the dominating set concepts is that they do not have the

need of a backbone formation algorithm in some special cases such as the models in

which the connected dominating sets (CDS) are used. After clustering the network,

a backbone which is consisting of clusterheads is already created in CDSs, because

all clusterheads are directly connected to each other in a CDS. The main disadvan-

tage of building CDSs is their cost. Therefore the primary aim of the researchers

is to minimize the cost of the algorithms. Another important problem of building

connected dominating set based clusters is the large number of clusterheads. In

clustered environments the clusters have to be in an optimized size in terms of num-

ber of cluster members. The ideal size depends on the application which is to be

executed within the clusters. For instance, if the application requires a large number

of message exchange between the cluster members, less crowded clusters are needed

in order to minimize the message conflicts caused by the use of wireless communi-

cation. But the small cluster sizes increase the messaging between the clusterheads

which may slow down the inter cluster communication. Therefore, optimizing the

cluster sizes is an important issue in clustering MANETs.

The most commonly used applications which is built on top of clustered

MANETs are the routing applications. Routing in MANETs is a very problem-

atic issue because of the dynamicity of the network. In dynamic networks, routing

tables should be updated very frequently. Keeping the routing tables up to date

may consume a large part of the wireless traffic in the network. This traffic might

sometimes be extremely dense which may possibly block the circulation of the mes-

sages between nodes. A virtually structured network such as a clustered MANET

can be considered as a good solution to make message transfers more efficient. In

a clustered scheme, the clusterheads are allocated to manage inter and intra-cluster

routing. Moreover, in a connected dominating set based clustered MANET, the

clusterheads form a backbone which is also used as the gateways of the clusters.

There are several categories of routing protocols in ad hoc wireless networks. The

most well known types are proactive, reactive, hybrid and cluster based routing. In

proactive routing, routes to all destinations are computed a priori and are main-

tained in the background via a periodic update process. In reactive routing, route

to a specific destination is computed only when needed. Hybrid routing protocols

3

Figure 1.1. Hierarchical Representation of the Proposed Algorithms

combine the advantages of both reactive and proactive routing protocols. To effi-

ciently use resources in controlling large dynamic networks, cluster based routing is

generally used. Cluster based routing protocols uses structured network topologies

such as connected dominating set based clustered networks. The advantage of using

such a structured topology is that it simplifies the routing process to the one in a

smaller subnetwork generated from the connected dominating set. This means that

only gateway hosts need to keep routing information in a proactive approach and

the search space is reduced to the dominating set in a reactive approach (Wu 2002).

The aim of this thesis is to analyze, design and implement a communication

architecture which consists of a hierarchical dominating set based clustering algo-

rithm and a flooding based routing algorithm which is designed to run on top of the

resulting CDS based clusters. A brief hierarchical representation of the proposed

algorithms can be seen in Fig. 1.1. We search various graph theoretic algorithms

for clustering in MANETs and propose two new distributed connected dominating

set based algorithms. Firstly, we propose the Connected Dominating Set Based

Clustering (CDSC) Algorithm which finds a minimal connected dominating set in

a MANET (Cokuslu et al. 2006). We developed our algorithm based on Wu’s CDS

Algorithm (2002) but we add some extra heuristics. We determine some situations

that a node cannot change its color after the first phase. We also consider the degree

of a node when marking it. We then improve the CDSC Algorithm and propose the

Two-Level Connected Dominating Set Based Clustering (TLCDSC) Algorithm by

applying the CDSC Algorithm recursively. We construct a CDS using the basic prin-

ciples of the CDSC Algorithm and then run the same basics on the resulting CDS

in order to find second level clusterheads. This approach provides more crowded

clusters which are more preferable than the CDSC Algorithm in which the size of

4

the clusters are very small compared to the number of nodes in the MANET. Third,

we analyze, design and implement the CDS Flooding Algorithm which is a hierar-

chical routing algorithm running on top of the CDS clusters. Hierarchical routing

decreases the inter-cluster message traffic and provides an efficient flooding based

routing protocol.

We define dominating set and minimum spanning tree concepts and related

clustering algorithms in Chapter 2. We describe, analyze and show the test results

for the CDSC Algorithm in Chapter 3. The TLCDSC Algorithm is explained in

Chapter 4 and CDS Flooding Algorithm is described in Chapter 5. Finally the

conclusion which concludes the three algorithms is explained in Chapter 6.

5

CHAPTER 2

BACKGROUND

A dominating set is a subset S of a graph G such that every vertex in G is

either in S or adjacent to a vertex in S (West 2001). Dominating sets are widely

used for clustering in networks (Chen and Liestman 2002). Dominating sets can be

classified into three main classes, Connected Dominating Sets (CDS), Weakly Con-

nected Dominating Sets (WCDS) and Independent Dominating Sets (IDS) (Haynes

et al. 1978).

• Independent Dominating Sets: IDS is a dominating set S of a graph G in

which there are no adjacent vertices. Fig. 2.1.a shows a sample independent

dominating set where black nodes show clusterheads.

• Weakly Connected Dominating Sets (WCDS): A weakly induced subgraph

(S)w is a subset S of a graph G that contains the vertices of S, their neighbors

and all edges of the original graph G with at least one endpoint in S. A

subset S is a weakly-connected dominating set, if S is dominating and (S)w is

connected (Chen et al. 2004). Black nodes in Fig. 2.1.b show a WCDS example.

(b)(a)

(c)

Figure 2.1. (a)IDS (b)WCDS (c)CDS

6

• Connected Dominating Sets: A connected dominating set (CDS) is a subset S

of a graph G such that S forms a dominating set and S is connected. Fig. 2.1.c

shows a sample CDS.

An undirected graph is defined as G = (V,E), where V is a finite nonempty

set and E ⊆ V × V . The V is a set of nodes v and the E is a set of edges e. A

graph GS = (VS, ES) is a spanning subgraph of G = (V,E) if VS = V . A spanning

tree of a graph is an undirected connected acyclic spanning subgraph. Intuitively,

a minimum spanning tree(MST) of a graph is a subgraph that has the minimum

number of edges for maintaining connectivity (Grimaldi 1997).

2.1. Clustering Algorithms

Dominating sets and spanning trees are widely used to cluster MANETs,

since MANETs can easily be modeled by graphs where wireless nodes are mapped

to vertices and communication links between the nodes are mapped to edges. Several

graph theoretical clustering algorithms exist in the literature but in this thesis, we

focused on the dominating set and spanning tree based clustering algorithms.

2.1.1. Dominating Set Based Clustering Algorithms

Various algorithms exist for clustering in IDS, WCDS and CDS. The nodes

in the dominating sets are called clusterheads which can be loaded by several special

functionalities such as gateways, backbone members, routers etc. The dominating

set based clustering algorithms are examined in three classes which are explained in

more detail below.

2.1.1.1. Clustering Using IDS

By using independent dominating sets, one can guarantee that there are no

adjacent clusterheads in the entire graph. This minimizes the number of dummy

clusters in the network and results in more crowded clusters which may be preferable

in some situations.

Baker and Ephremides proposed an independent dominating set algorithm

called highest vertex ID (Baker and Ephremides 1981). In this algorithm, each vertex

7

scans its closed neighbor set and chooses the highest id neighbor as a clusterhead.

If a node does not have the highest id, then it does not have to mark itself as

a clusterhead. However, such a node must also check whether it is the highest

id neighbor of some other node. This can be done by checking the connectivity

information of the node’s lower numbered neighbors. If the node i is the highest id

neighbor of a node j, node i must become a cluster head for at least node j . This

guarantees that the selected set of nodes constructs a dominating set but does not

guarantee a CDS or a WCDS. A very similar algorithm to the highest id algorithm

is the lowest id algorithm by Gerla and Tsai where each vertex with the lowest id

within its closed neighborhood is selected as a clusterhead (Gerla and Tsai 1995).

Gerla and Tsai developed another algorithm to find the independent dominating

sets called the highest degree algorithm. In this algorithm, each vertex with the

highest degree in its closed neighborhood is selected as the clusterhead.

Although these algorithms are considered as important algorithms, Chen et

al. showed that these algorithms do not work correctly for some graphs (Chen et al.

2002). In some situations, some independent sets cannot form a dominating set.

To solve this incorrect operation, Chen et al. developed the k-distance independent

dominating set algorithm (Chen et al. 2002). By this algorithm, Chen adds one

more rule to the above algorithms such that in a k-distance dominating set, every

clusterhead must be at least k+1 distant from each other (Ohta et al. 2003).

2.1.1.2. Clustering Using WCDS

Although independent dominating sets are suitable for constructing optimum

sized dominating sets, they have some deficiencies such as the lack of direct commu-

nication between clusterheads. In order to obtain connectivity between clusterheads,

WCDSs can be used to construct clusters. The WCDS was first proposed for clus-

tering in ad hoc networks by Chen and Liestman (Chen and Liestman 2003). In this

algorithm, the graph is first partitioned into non-overlapping regions (this is done by

growing a spanning forest of the graph) and at the end of this phase, the subgraph

induced by each tree defines a region. Then a greedy approximation algorithm is

executed to find a small WCDS of each region. The greedy algorithm is based on

Guha and Khuller’s second algorithm which is described next (Guha and Khuller

8

1998). Once small WCDSs are constructed, the union of these WCDSs constructs

the dominating set of the entire graph. Some additional vertices from region borders

can be added to the dominating set to ensure that the final dominating set of G

is weakly-connected. This type of clustering is called zonal clustering (Chen and

Liestman 2003).

2.1.1.3. Clustering Using CDS

CDSs have many advantages in network applications such as ease of broad-

casting and constructing virtual backbones because, the clusterheads in CDS con-

struct a backbone which is also used as the gateways of the clusters (Stojmenovic

et al. 2002). However, when we try to obtain a connected dominating set, we may

have undesirable number of clusterheads. So, in constructing connected dominating

sets, the primary problem is to construct a minimal connected dominating set.

Guha and Khuller proposed two centralized greedy algorithms for finding

suboptimal connected dominating sets (Guha and Khuller 1998). In the first algo-

rithm, initially all vertices are white colored. In the first step, the algorithm selects

a node with the maximum number of white neighbors as a dominating node. The

dominating node becomes black, and its neighbors become grey. Then the algorithm

iteratively scans the grey nodes and their white neighbors. In each iteration, the

grey node or the pair of nodes with the maximum number of white neighbors is

selected as a cluster node. This iteration process continues until no white vertex left

in the graph. In the second algorithm, white vertex with the maximum number of

white neighbors is selected as a dominating node. This iteration lasts until no white

colored vertex left in the graph. When the iteration ends, the algorithm re-colors

some gray nodes to black so that the dominating set becomes connected. Das and

Bharghavan provided distributed implementations of Ghua and Khuller’s algorithms

(Das and Bharghavan 1997, Das et al. 1997).

Wu and Li, improved Das and Bhraghavan’s distributed algorithm as a local-

ized distributed algorithm for finding connected distributed sets in which each node

only needs to know its distance-two neighbor (Wu and Li 2002). In Wu and Li’s

algorithm, initially each vertex marks itself as F indicating that it is not dominated

yet. In the first phase, a vertex marks itself as T if any two of its neighbors are not

9

connected to each other directly. In the second phase, a T marked vertex v changes

its mark to F if either of the following pruning rules is met:

1. ∃u ∈ N(v) which is marked T such that N [v] ⊆ N [u] and id(v) < id(u);

2. ∃u,w ∈ N(v)which is marked T such that N(v) ⊆ N(u)
⋃

N(w) and id(v) =

min{id(v), id(u), id(w)};

Dai and Wu proposed an extended localized algorithm for finding CDS (Dai and

Wu 2004). The algorithm is based on Wu and Li’s algorithm with improved prun-

ing rules. Dominant pruning rules with more than two connector hosts were not

considered in early studies due to the following two assumptions: 1) testing the

coverage of multiple hosts could be costly and 2) only a few hosts neighbor sets

need to be covered by three or more other hosts. However, Dai and Wu showed

that these assumptions are not always true. They proposed a generalized dominant

pruning rule, called Rule k, which can unmark cluster heads covered by k other

cluster heads, where k can be any number. According to this algorithm, the first

phase works same as Wu and Li’s algorithm, but in phase two, Rule k pruning rule is

applied to eliminate dummy clusterheads instead of Wu and Li’s two pruning rules.

According to Rule k, if neighbors of a clusterhead is dominated by more than two

directly connected clusterheads, it can be eliminated. With this work, Dai and Wu

showed that Rule k can be implemented with local neighborhood information that

has the same complexity as Wu and Li’s pruning rule 1 and, less complexity than

Wu and Li’s pruning rule 2 (Dai and Wu 2004).

Xinfang Yan, Yugeng Sun, and Yanlin Wang proposed a heuristic algorithm

for minimum connected dominating set (Yan et al. 2003). The algorithm first calcu-

lates a weight for each node indicating node’s uptime and its amount of power left.

It then uses weight parameter and some rules from Wu and Li’s algorithm in select-

ing the clusterheads. By using this heuristic, Yan et al. make a better estimation

on the stability of the backbone topology.

Peng-Jun Wan, Khaled M. Alzoubi and Ophir Frieder proposed a distributed

algorithm for finding a CDS (Wan et al. 2004). This algorithm consists of two phases.

The first phase constructs a maximal independent set (MIS) using a rooted spanning

tree which is constructed at the beginning of the phase. The second phase constructs

10

a dominating tree from the MIS, whose internal nodes would become a CDS.

Hui Liu, Yi Pan and Jiannong Cao, improved Wu and Li’s algorithm by

adding a third phase elimination (Liu et al. 2004). In the additional third phase,

the algorithm searches redundant clusterheads. A clusterhead is eliminated if it is

dominated by two of its clusterhead neighbors. The distributed algorithm has a

time complexity O(n2) and a message complexity O(n).

2.1.2. Spanning Tree Based Algorithms

Gallagher, Humblet and Spira proposed a distributed algorithm which de-

termines a minimum-weight spanning tree for an undirected graph that has distinct

finite weights for every edge (Gallagher et al. 1983). The aim of the algorithm is

to combine small fragments into larger fragments with outgoing edges. A fragment

of an MST is a subtree of the MST. An outgoing edge is an edge of a fragment if

there is a node connected to the edge in the fragment and one node connected that

is not in the fragment. Combination rules of fragments are related with levels. A

fragment with a single node has the level L = 0. Suppose two fragments F at level

L and F’ at level L’ ;

• If L < L’, then fragment F is immediately absorbed as part of fragment F ’.

The expanded fragment is at level L’.

• Else if L = L’ and fragments F and F’ have the same minimum-weight out-

going edge, then the fragments combine immediately into a new fragment at

level L+1

• Else fragment F waits until fragment F ’ reaches a high enough level for com-

bination.

Under the above rules, the combining edge is then called the core of the new

fragment. The two nodes adjacent to the core exchange messages on the core branch

itself, allowing each of these nodes to determine both the weight of the minimum

outgoing edge and the side of the core on which this edge lies. The upper bound for

the number of messages exchanged during the execution of the algorithm is 5Nlog2N

+2E, where N is the number of nodes and E is the number of edges in the graph.

11

A message contains at most one edge weight and log28N bits. Worst case time for

this algorithm is O(E+Nlog2N) (Gallagher et al. 1983).

Awerbuch proposed an algorithm in which each tree will hook itself on edge

leading to the neighboring tree of maximum level instead of hooking itself on its

minimum weight edge (Awerbuch 1987). The algorithm has two stages: Counting

Stage and MST Stage. In this algorithm, if the tree waits for a long time, it will

be rewarded properly. This is the main idea behind the Counting stage of the

algorithm. The MST stage assumes knowledge of V , the total number of nodes,

which is provided by the previous Counting Stage. This has a lot of similarity

with Gallagher, Humblet and Spira’s algorithm (GHS) (Gallagher et al. 1983). The

only difference is that level increases are originated by many nodes, not only by

the root node. The MST stage is performed in two phases. The first phase runs

an algorithm identical to GHS algorithm, and terminates when all trees reach the

size of Ω(V/logV). The new algorithmic ideas are introduced in the second phase.

Algorithm updates the levels in a very accurate fashion, which prevents small trees

waiting for big trees and speeds up the algorithm. The algorithm requires O(E +

Vlog V) messages and O(V) time.

The algorithms proposed by GHS (1983) and Awerbuch (1987) uses Tree−
join − tree approach. Yao-Nan Lien proposed a distributed minimum spanning

tree algorithm that uses Node − join − tree approach (Lien 1988). The algorithm

is initialized from a single node such that there is no need to wake up all nodes

at the beginning as stated in GHS algorithm. Starting from any node, an MST

fragment(M) grows from a single node to complete MST iteratively by drafting

nodes into M . In each iteration, each terminal node of M tries to draft more nodes

into M by sending a ′Follow−me′ message to each of its neighboring nodes except

its preceding node. Each neighboring node decides whether or not to hook itself to

M as a new terminal node based on its own local information. The new terminal

nodes continue the drafting process iteratively until the end of the iteration when

there is no node that wants to hook to M . A complete MST is formed if all nodes

are included in M . The algorithm needs at most (2e+n(n-1)/4) messages in O(n2)

time where e is the total number of edges and n is the number of nodes in the graph.

In the best case, it needs only 2e messages in O(nlogn) where e is the number of

12

edges and n is the number of nodes.

Ahuja and Zhu proposed a distributed minimum spanning tree algorithm

which uses the Tree− join− tree approach as used in the GHS Algorithm (Ahuja

and Zhu 1989). The algorithm works in phases. In phase 1 of the algorithm, each

node needs to do the following:

• Sets the minimum adjacent edge as Branch and notifies its decision to the

node on the other side of the edge.

• Learns the nodeIDs at the other side of its adjacent edges.

• Participates in the construction of underlying spanning tree.

By cutting the number of fragments at least one half in each phase, it needs at most

O(logn) phases where n is the number of nodes. In the worst case, the algorithm

needs at most (2m + 2(n− 1)log(n/2)) messages and (2dlogn) time, where d is the

diameter of the graph, m is the total number of edges and n is the number of nodes

in the graph. In the best case, it needs only 2m messages in 2d time. On the average,

the algorithm needs only O(m) messages and O(d) time.

Garay, Kutten and Peleg provide a modified, controlled version the GHA

algorithm (Garay et al. 1993). The algorithm is able to achieve the following:

• Upon termination, the number of the fragments is bounded above by n /

2numberofphases.

• Throughout the execution, the diameter of every fragment F satisfies Diame-

ter(Fragment) < 3numberofphases.

The time complexity of the algorithm is O(Diam(G)+n0,614).

Banerjee and Khuller (2000) proposed a protocol based on a spanning tree

for hierarchical routing in wireless networks (Kleinrock and Faroukh 1997, Xu and

Dai 1998). In their scheme, a cluster is a subset of vertices whose induced graph

is connected. These subsets are chosen with consideration to cluster size and the

maximum number of clusters to which a node can belong. Banerjee and Khuller

defined their clustering problem in a graph theoretic framework, and present an

efficient distributed solution that meets all the desirable properties (Banerjee and

13

Khuller 2000). The algorithm proceeds by finding a rooted spanning tree of the

graph. The algorithm creates a BFS tree and then visits each vertex in the the tree

in post order. The time complexity of the algorithm is O(|E|).
A topology graph for a mobile ad hoc network can have any arbitrary struc-

ture (Royer and Toh 1999). Srivastava and Ghosh proposed a distributed algorithm

for constructing a rooted spanning tree of a dynamic graph with the root being lo-

cated towards the center of the graph (Srivastava and Ghosh 2003). They described

the α cone as the origin concerned node and bounded by two rays with an angle

α between them. The attribute color is given for each node to define their states.

The algorithm proposed works in two stages. In the first stage, it finds a spanning

forest. In the second stage, the trees of the spanning forest are connected together

to produce tree with a single root. The authors proposed a priority-based algorithm

for the second stage.

Dagdeviren et al. proposed the Merging Clustering Algorithm(MCA) which

finds clusters in a MANET by merging the clusters to form higher level clusters

as mentioned in GHS algorithm (Dagdeviren et al. 2006). However, Dagdeviren et

al. focus on the clustering operation by discarding minimum spanning tree. This

reduces the message complexity. They also use upper and lower bound heuristics

for clustering operation which results balanced number of nodes in the resulting

clusters.

2.2. Routing Algorithms in MANETs

Because of the importance of routing protocols in MANETs, many routing

protocols have been proposed in the last few years for MANETs. Although the

proposed routing schemes are successful in many cases, there is no one-for-all rout-

ing protocol which works well in all scenarios with different network sizes, traffic

overloads and node mobilities. Moreover, those protocols are based on different ap-

proaches and are proposed to meet specific requirements from different applications.

Generally, a well designed MANET routing protocol should adapt to the dynamic

network changes quickly with lower consumption of communication and computing

resources. We only mention the most recent ones out of many routing protocols here.

Although the routing protocols for MANETs can be classified basically as Proac-

14

tive, Reactive, Hybrid and Cluster Based Routing protocols, many other proposed

schemes exist which are not suitable for none of these classifications (Liu and Kaiser

2005). In this chapter we mainly focus on the Cluster Based Routing protocols.

2.2.1. Proactive Routing

In proactive routing schemes, the routing tables are prepared priori and up-

dated as the topology changes occur. Using a proactive routing protocol, nodes

in a MANET continuously evaluate routes to all reachable nodes. Therefore, the

route to a destination node is always ready to be used when needed. In proactive

routing protocols, all nodes need to maintain an updated view of the whole network

topology. When a topology change occurs, updates must be propagated throughout

the network to distribute the change. Most proactive routing protocols proposed for

mobile ad hoc networks are influenced from the routing protocols for wired networks.

Wireless Routing Protocol (Murthy and Garcia-Luna-Aceves 1996), Destination Se-

quence Distance Vector (DSDV) Routing protocol (Perkins and Bhagwat 1994),

Fisheye State Routing (Pei et al. 2000) and Distance Routing Effect Algorithm for

Mobility (Basagni et al. 1998) are well known proactive routing protocols.

2.2.2. Reactive Routing

Reactive routing protocols are routing schemes in which routes are searched

only when needed. When a node wants to send a message, a route discovery opera-

tion is started through the destination node. The discovery procedure is terminated

either when a route has been found or no route is available after trial for all route

possibilities. Compared to the proactive routing protocols, less control overhead is a

distinct advantage of the reactive routing protocols. Thus, reactive routing protocols

have better scalability than proactive routing protocols in MANETs. However, when

using reactive routing protocols, message transfer times may be longer due to the

on-demand routing determination process. The Dynamic Source Routing (Johnson

and Maltz 1996) and Ad hoc On-demand Distance Vector (AODV) routing (Perkins

and Royer 1999) are examples for reactive routing protocols.

15

2.2.3. Hybrid Routing

Hybrid routing protocols combine the advantages of proactive and reactive

routing protocols and minimize their shortcomings. Generally, hybrid routing pro-

tocols uses the benefits of the hierarchical network architectures. Proper proactive

and reactive routing approaches are utilized in different hierarchical levels. A good

example of hybrid routing protocols for MANETs is Zone-based Hierarchical Link

State routing (Joa-Ng and Lu 1999).

2.2.4. Cluster Based Routing

The cluster based routing protocols use specific clustering algorithms for

clustering in MANET. The cluster based routing protocols generally assume that

the clusters, memberships and clusterheads are already determined. In the cluster

based routing schemes, mobile nodes are grouped into clusters and clusterheads take

the responsibility for membership management and routing functions. Some cluster

based routing protocols potentially support a multi-level cluster structure.

Clusterhead Gateway Switch Routing (CGSR) is an example of cluster based

routing scheme (Chiang et al. 1997). In CGSR, gateway nodes are responsible for

communication between the clusterheads. Nodes maintain a cluster member table

which maps each node to its respective clusterhead. A node broadcasts its cluster

member table periodically. After receiving broadcasts from other nodes, a node

updates its cluster member table. In addition, each node maintains a routing table

that determines the next hop to reach other clusters.

The Hierarchical State Routing (HSR) is a multi-level cluster-based hier-

archical routing protocol (Pei et al. 1999). In HSR, the clusterheads of low level

clusters organize themselves into upper level clusters. The nodes broadcast their

link state information to all others within their clusters. The clusterhead collects

link state information of its cluster and sends the information to its neighboring

clusterheads via gateway nodes. Nodes in upper level hierarchical clusters flood the

network topology information.

The Cluster Based Routing Protocol (CBRP) is a routing protocol for

MANETs in which every node maintains a neighbor table filled with the infor-

16

mation about link states of its neighbors (Mingliang et al. 1999). The clusterheads

keep the connectivity information of their clusters and their neighboring clusters. If

a source node wants to send a packet but has no active route which can be used,

it floods route request to clusterhead of its own and all neighboring clusters. If a

clusterhead receives a request it has already received before, it discards the request.

Otherwise, the clusterhead checks if the destination of the request is in its cluster.

If the destination is in the same cluster, the clusterhead sends the request to the

destination, or it floods the request to its neighboring clusterheads. At the end

of the flooding operation, the destination node sends a reply including the route

information recorded in the request. When the source node receives the reply mes-

sage, it sends its message to the destination by using the route information which

is collected by the route request.

Denko and Lu proposed an adaptive cluster based routing architecture which

is based on an extended AODV routing protocol (Denko and Lu 2006). By using

AODV route construction and maintenance mechanisms, clustering architecture can

be constructed on demand. Clusters are maintained when data are to be sent.

Denko and Lu used a clustering algorithm based on Chiang et al’s Lowest ID (LID)

clustering algorithm (Chiang et al. 1997). Firstly, they built two level clusters, then

on top of the clusters they implemented the AODV Based Routing Algorithm. The

clusters are maintained only when a message is needed to be sent. They implemented

their routing protocol in two groups which are the Intra-cluster Routing and Inter-

Cluster Routing. Intra-cluster routing involves routing within a cluster. Each node

maintains routing information about its cluster. When a route request fails to find

a route for a message, the routes are maintained within the cluster. Inter-cluster

routing involves routing between clusters. The clusterheads keep the connectivity

information about 2-hop cluster topology. Inter-cluster communication is based on

AODV routing again, but only clusterheads are involved in the routing of inter-

cluster messages.

17

CHAPTER 3

THE CONNECTED DOMINATING SET

BASED CLUSTERING ALGORITHM

3.1. General Idea and Description of the Algorithm

The Connected Dominating Set Based Clustering Algorithm (CDSC) finds a

minimal connected dominating set in a MANET in a distributed manner (Cokuslu

et al. 2006). We developed our algorithm based on Wu’s CDS Algorithm (Wu and

Li 2002). Wu’s CDS algorithm finds a connected dominating set which can be used

as a backbone, it is totally distributed and it does not require a predefined routing

mechanism. It also gives us a good starting point which can be easily modified. On

the other hand, most of the other CDS algorithms are centralized and some of them

such as Wu’s Extended CDS algorithm requires a routing mechanism. Therefore,

we determined our base algorithm as Wu’s CDS algorithm which can be enhanced

in many ways in order to work better. Using the basic principles of the Wu’s

CDS Algorithm, we built our CDSC Algorithm. As the basic enhancements, we

determined some situations that a node cannot change its color after the first phase.

We also consider the degree of a node when marking it. This is due to the fact

that a node with a higher degree should have a better chance of being in CDS as it

has more neighbors than a node with a lower degree. We also added a third color

as a transition color during the pruning phase. We also modified the algorithm so

that every node will have a clusterhead at the end of the CDSC algorithm. The

assumptions which are required by the CDSC Algorithm are:

• The neighborhoods remain constant in a reasonable period of time in order to

complete the algorithm in a single node.

• The graph is connected, each node has a unique node id.

• Every node knows its adjacent neighbors by polling them using beacon mes-

sages or collecting their positions from a GPS or by using any other position

18

determining method.

Each node has a color indicating whether the node is in the dominating set

or not. The color is set to BLACK if the node is in the dominating set, or WHITE if

the node is not in the dominating set. Color GRAY is used to indicate that the node

is marked after the first phase, but it will change its color after the second phase

to either WHITE or BLACK. The message types used in this algorithm are Pe-

riod TOUT, Neighbor REQ, Neighbor LST, Color REQ, Color RES, Cluster REQ

and Cluster RES which are described below:

• Period TOUT : Every node sends this message internally and periodically in

order to trigger the CDSC Algorithm. The period depends on how fast the

nodes are moving.

• Neighbor REQ : Any node which starts the execution of the CDSC Algorithm

requests a list of distance-2 neighborhood information by broadcasting a Neigh-

bor REQ message in order to determine its color at the first phase of the

algorithm.

• Neighbor LST : Any node which receives a Neighbor REQ message, sends a

Neighbor LST message informing its adjacent neighbors.

• Color REQ : A node will send a Color REQ message in order to request its

neighbors’ colors after the first phase.

• Color RES : The Color RES message is used to send the node’s first level color

after the first phase. It is sent when a Color REQ message is received.

• Cluster REQ : When a node determines its first level color as WHITE, it will

check its neighbors’ colors in order to select a suitable clusterhead. If the node

does not have any BLACK colored neighbor, then it broadcasts a Cluster REQ

message in order to find out which neighbor became a clusterhead.

• Cluster RES : A clusterhead sends a Cluster RES message whenever it receives

a Cluster REQ in order to inform its status, whether it is a clusterhead or not,

to the sender of the message.

19

Period_TOUT / Neighbor_REQ

/Neighbor_LST
Neighbor_REQ

IDLE

Color_REQ
/Color_RES

Neighbor_REQ
/Neighbor_LST

Neighbor_LST, C1

Neighbor_LST,C2,C10
/Color_REQ

Color_RES,C1

CHK_CH

Cluster_RES,C11

Color_RES,C2,C16
/ (BLACK)

Cluster_REQ / Cluster_RES, C19

Cluster_REQ / Cluster_RES, C19

Color_REQ
/Color_RES

CHK_DOM

/ (WHITE), Cluster_REQ
Neighbor_LST,C2,C9

Neighbor_REQ
/Neighbor_LST

CHK_NODES

See state machine conditions for transition details

Color_RES,C2,C12 or C13 or C14 or C15
/ (WHITE)

Neighbor_LST,C2,C4 or
C5 or C8 / (WHITE)

Neighbor_LST,C2,C3 or
C6 or C7 / (BLACK)

Cluster_REQ
C18 / (WHITE),

Color_RES,C2, C17 or

/Color_RES
Color_REQ

/Cluster_RES, C19
Cluster_REQ

Figure 3.1. Finite State Machine of the Dominating Set Based Clustering Algorithm

Every node in the network performs the same local algorithm periodically.

The finite state diagram for the algorithm can be seen in Fig. 3.1. During the

runtime of the CDSC Algorithm, the conditions which affect the state transitions

are described below:

CDSC Algorithm Finite State Machine Transition Conditions:

• C1. The responses to the multi-casted message are not completely collected.

• C2. The responses to the multi-casted message are completely collected.

• C3. The node is isolated, its neighbor is isolated too and node’s id is bigger

than its neighbor’s id.

• C4. The node is isolated, its neighbor is isolated too and node’s id is smaller

than its neighbor’s id.

• C5. The node is isolated and its neighbor is not isolated.

• C6. The node has at least one isolated neighbor.

• C7. The graph is complete and the node has the biggest id in the graph.

• C8. The graph is complete and the node doesn’t have the biggest id.

20

• C9. Node’s neighbors are all connected and the graph is not complete.

• C10. The node has at least two unconnected neighbors.

• C11. Clusterhead is set to the sender’s id.

• C12. CDS pruning rule 1 which is described below is true.

• C13. CDS pruning rule 2 which is described below is true.

• C14. CDS pruning rule 3 which is described below is true and the node has

at least one BLACK neighbor.

• C15. CDS pruning rule 4 which is described below is true and the node has

at least one BLACK neighbor.

• C16. Conditions C12 to C15 are all false.

• C17. CDS pruning rule 3 is true and the node doesn’t have any BLACK

neighbors.

• C18. CDS pruning rule 4 is true and the node doesn’t have any BLACK

neighbors.

• C19. Nodes color is currently BLACK.

Each node is in the IDLE state and colored as UNDEFINED COLOR ini-

tially. When the period is timed out, the node sends a Period TOUT message to

itself. This message causes the node to send a Neighbor REQ message to all of its

adjacent neighbors and switch its state to CHK NODES. Then the node waits for

Neighbor LST messages from all of its adjacent neighbors. If some response mes-

sages are timed out from some of the neighbors, a Neighbor REQ is sent to those

neighbors in case a previous one is lost in the network. When all Neighbor LST

messages are collected, the node checks the heuristics C3 to C9 defined in the state

machine transition conditions list to determine if it will be among the ones whose

color will not alter after the first phase.

The condition C3 happens if the graph consists of only two nodes connected

to each other or if there are isolated pairs in the graph. In such a case, the node

21

which has a bigger node id marks itself as BLACK. If the node has smaller node id

than its pair, condition C4 becomes true, and the node marks itself as WHITE and

selects its pair as its clusterhead.

If the node is an isolated node and its neighbor is connected to other nodes

in the graph then the node marks itself as WHITE and sets its clusterhead as its

neighbor according to heuristic C5.

If a node has at least one isolated neighbor, then according to condition C6,

it has to be BLACK colored as there are no other alternative nodes which dominate

the isolated neighbor.

If all neighbors of the node are directly connected to each other it means

that there might be other alternatives to be the clusterhead in the neighborhood.

In such a case, we select the node which has the biggest degree in the neighborhood.

But we first check if the graph is complete or not. If the graph is complete then

the node with the biggest id is selected as the clusterhead by applying the condition

C7 and marked as BLACK. Other nodes in the complete graph apply the condition

C8 and set their color as WHITE and their clusterheads as the biggest id in their

neighborhood.

The nodes which suit any one of the conditions C3 to C8 switch their state

from CHK NODES to IDLE as they determine their colors permanently as BLACK

or WHITE.

If condition C9 is true for any node, it means that the node’s neighbors

are all connected to each other but the graph is not complete. In such a case,

the node marks its color as WHITE switches its state to CHK CH and multicasts

a Cluster REQ message in order to learn which neighbor become its clusterhead.

When the node receives a Cluster RES message related to its request, it then sets

its clusterhead as the sender of the message and changes its state to IDLE. Such a

node will ignore the following Cluster RES messages from the other BLACK colored

neighbors as it has already determined its clusterhead.

If a node has at least two unconnected neighbors, it is suitable for the condi-

tion C10 and is potentially a clusterhead candidate. In this case, the node needs to

analyze its neighbors if there are other clusterhead candidates which dominate the

two unconnected neighbors. Such an analysis requires the neighbors’ colors informa-

22

tion; the 2-distance neighborhood information collected until now is not adequate.

Therefore, the node switches its state to CHK DOM, changes its color to GRAY

and multicasts a Color REQ message in order to collect its neighbor’s colors.

At this point, we can say that the node completed the first phase of the

algorithm and starts the second phase. When the node switches its state to

CHK DOM it waits for all of its neighbors to send their colors. When the node v

collects all color information, it starts to apply the CDS pruning rules which are

described below:

CDSC Algorithm Pruning Rules:

1. ∃u ∈ N(v) which is marked BLACK such that N [v] ⊆ N [u];

If the node has a BLACK neighbor which covers its closed neighborhood, then

it should mark itself as WHITE because there is already a BLACK node which

dominates all closed neighborhood.

2. ∃u,w ∈ N(v)which is marked BLACK such that N(v) ⊆ N(u)
⋃

N(w);

If the node has two connected BLACK neighbors and if the union of the

neighborhoods of these BLACK neighbors cover the node’s closed neighbor-

hood then the node should mark itself as WHITE.

3. ∃u ∈ N(v) which is marked GRAY such that N [v] ⊆ N [u] and degree(v) <

degree(u) OR (degree(v) = degree(u) AND id(v) < id(u));

If the node has a GRAY colored neighbor which covers its closed neighbor-

hood, it means both of them are candidates to be in the dominating set. In

this case, if the node has a smaller degree than its GRAY colored neighbor, it

should mark itself as WHITE.

4. ∃u,w ∈ N(v)which is marked GRAY or BLACK such that N(v) ⊆
N(u)

⋃
N(w) and degree(v) < min{degree(u), degree(w)} OR degree(v) =

min{degree(u), degree(w)} AND id(v) < min{id(u), id(w)};
If the node has two connected BLACK or GRAY neighbors which covers its

closed neighborhood and if its degree is smaller than these neighbors’ degrees,

then it will mark itself as WHITE.

23

If one of these pruning rules is true, then the node v changes its color to

WHITE. Otherwise, the node is suitable for the condition C16 and marks itself as

BLACK. If the node determines its color as BLACK, it switches its state to IDLE,

if it determines its color as WHITE, the node needs to set its clusterhead. If the

node is suitable for the condition C12 or C13, which indicates that the node is

dominated by one or two BLACK neighbors, it switches its state to IDLE and sets

its clusterhead from one of its dominators.

If the node is suitable for the condition C14 or C15, it checks its neighbors’

colors and selects its smallest id BLACK colored neighbor as its clusterhead and

switches its state to IDLE.

If the node is suitable for the conditions C17 and C18 it has to find out which

neighbor is its clusterhead before it switches to IDLE state. Therefore the node

multicasts a Cluster REQ message and changes its state to CHK CH. It waits at this

state and multi-casts Cluster REQ message periodically until at least one BLACK

colored neighbor sends a Cluster RES message. At this stage we are definitely sure

that at least one neighbor will mark its color as BLACK and sends a Cluster RES

message.

At any state, a node can receive request messages to help other nodes run

their algorithms. These messages are Neighbor REQ, Color REQ and Cluster REQ.

In such a case, the node prepares the required information requested in the received

message and continues to its current operation. No state changes are performed in

these cases.

3.2. An Example Operation

We obtained the resulting connected dominating set in Fig. 3.3 by using our

algorithm. This section explains the algorithm step by step by using the sample

graph in Fig. 3.3. Runtime of the algorithm is explained phase by phase, for all

nodes.

• Execution of algorithm:

At the end of the first phase, nodes 6, 8, 9, 10, 11 and 14 determine their colors

permanently. Node 6 has an isolated neighbor, it satisfies the condition C6

24

10

6
9

8

3

1

2

4

7

5

12

1311

14

Figure 3.2. Example after the first phase

thus changes its color to BLACK. Nodes 8, 9, 11 and 14 satisfy condition C9

and change their colors to WHITE because all of their neighbors are directly

connected to each other and the graph is not complete. These nodes changes

their states to CHK CH in order to set their clusterheads. Node 10 is an

isolated node, it is suitable for the condition C5, therefore it changes its color

to WHITE and sets its clusterhead as node 6. Other nodes become GRAY

colored because none of them are suitable for the conditions C3 to C9 and all

of them satisfy the condition C10.

At the end of the first phase, the resulting colors of the nodes can be seen in

Fig. 3.2.

In the second phase the CDSC algorithm checks the conditions C12 to C18.

At the end of this phase, nodes 1, 2 and 4 determine their colors as WHITE

because they are suitable for the condition C17 and switch their states to

CHK CH in order to set their clusterheads. Nodes 12 and 13 change their

colors as WHITE because they are suitable for the condition C12, they also

set their clusterheads as node 6. Nodes 3, 5 and 7 change their colors to

BLACK as they satisfy condition C16.

3.3. Analysis

Theorem 3.3.1. Time complexity of the clustering algorithm is O(6).

Proof. Each node executes the distributed algorithm by the exchange of at most

6 messages. Since all these communication occurs concurrently, at the end of this

phase, the members of the CDS are determined, therefore the time complexity of

25

10

6
9

8

11

14

3

5

7

1 4

2
13

12

Figure 3.3. Example resulting graph

the algorithm is O(6). The time complexity during the local iterations are ignorable

compared to the messaging durations, therefore they are ignored during the time

complexity analysis.

Theorem 3.3.2. Message complexity of the clustering algorithm is O(n2) where n

is the number of nodes in the graph.

Proof. For every mark operation of a node, at most 6 messages are required (Neigh-

bor REQ, Neighbor LST, Color REQ, Color RES, Cluster REQ, Cluster RES). As-

suming every node has n-1 adjacent neighbors, total number of messages sent is

6(n − 1). Since there are n nodes, total number of messages exchanged during

the algorithm is n(6(n − 1)). Therefore message complexity of our algorithm is

O(n2).

3.4. Results

We implemented the Dominating Set Based Clustering Algorithm using C++

on top of the network simulator ns2. We generated random scenarios for static and

dynamic graphs. In our experiments we collected test results for the runtime of the

algorithm and the resulting number of clusterheads, namely cluster quality.

During the experiments we used three different parameters which are number

of nodes, mobility of nodes and density of the network. We determined 4 number of

nodes scenarios which are 20, 30, 40 and 50 nodes. We decided to use the degree of

the graph as the density parameter. In the tests as the surface area decreases the

density of the graph increases, it means that the nodes will have more neighbors in

a smaller surface area. We set the surface area such that the degree of our graph

26

Figure 3.4. Runtime Test in a Static Network

will be between 4 and 12. For the mobility parameter we generated three mobility

situations namely static, low speed and high speed tests. In static tests nodes remain

still. In the low and high speed mobility scenarios respective node speeds are limited

from 1 m/s to 5 m/s and 5 m/s to 10 m/s. The speed of the nodes are determined

randomly by the simulation environment within the specified velocity limits. In

dynamic graph experiments we take into account only the experiments in which all

nodes are moving but the neighborhoods of the nodes do not change. Because the

change in the neighborhoods, results in invalidation of the neighborhood information

which is already distributed to the nodes.

The parameters which are described above generate 108 different test cases

with the specified values. During the tests we collected 6 test results for each of

the 108 different test cases. Total of 648 samples are collected during the CDSC

Algorithm tests.

In Fig. 3.4, we tested the runtime of the algorithm in a static graph. In this

experiment we observed that the time needed to complete the cluster formations is

below 20 seconds for the densities below 8. We also observed that the runtime is

nearly the same for the nodes 20 to 50 for densities smaller than 8. This is because

the algorithm runs distributed in each node and is independent from the size of

the graph. The only parameter that affects the runtime is the density of the graph.

The density of the graph determines the number of messages exchanged between the

neighbor nodes. The limitation with the maximum degree is that for the degrees over

a limit value, the message conflicts increase dramatically, this results in a sudden

27

Figure 3.5. Runtime Test in a Low Speed Dynamic Network

Figure 3.6. Runtime Test in a High Speed Dynamic Network

increase in the runtime of the algorithm and makes the observations meaningless.

In Fig. 3.5 we experimented the same runtime test using a low speed dynamic

graph. In this experiment, we observed that the graph has nearly the same shape

with the static graph test. The Fig. 3.6 shows the test results in which the nodes are

moving faster. The density limit decreases to 7 and runtime values become irregular

over this limit, because in some experiments the graph couldn’t keep its neighbor-

hoods stable. It means that as the message conflicts occur, the runtime of the

algorithm increases, and longer experiments result in changes in the neighborhoods

when the nodes are moving relatively faster.

In Fig. 3.7 we observed the number of clusterheads in a graph of size 20

to 50 for varying densities from 4 to 13. Typically in a graph, we expect to have

less clusterheads as density increases. We can see the decrease in the clusterhead

numbers in the graph as the degree value increases.

28

Figure 3.7. Number of Clusterheads in a Static Network

Figure 3.8. Number of Clusterheads in a Low Speed Dynamic Network

We repeated this experiment for dynamic graph moving in low and high

speeds. The results for these experiments can be seen in Fig. 3.8 and Fig. 3.9 re-

spectively. We can see almost the same decrease in the clusterheads as the maximum

degree increases.

In Fig. 3.10, we varied the size of the clusters for the different parameters.

Typically as the density increases, the number of clusterheads decreases. Therefore,

we expect an increase in the size of the clusters as the degree increases. We can see

this increase in the experiment results.

We repeated this experiment for low speed and high speed dynamic graphs.

In Fig. 3.11 and Fig. 3.12, we can see that the same decrease exists in dynamic

graph experiments too.

In Fig. 3.13, we calculated the deviation of the resulted cluster sizes from

the average cluster size. We calculated coefficient of variances and plotted graphs

29

Figure 3.9. Number of Clusterheads in a High Speed Dynamic Network

Figure 3.10. Cluster Size Test in a Static Network

Figure 3.11. Cluster Size Test in a Low Speed Dynamic Network

30

Figure 3.12. Cluster Size Test in a High Speed Dynamic Network

Figure 3.13. Cluster Quality Test in a Static Network

for the cluster qualities. We expect to have nearly equal sizes of clusters in our

network. That means, we expect to have small readings of coefficient of variances in

order to say that there are little differences between clusters. In the static network

of Fig. 3.13, we can see that the coefficient of variances remains between %50 and

%70, in low speed dynamic networks, in Fig. 3.14, it is between %40 and %80 and

in high speed dynamic networks of Fig. 3.15 it remains between %40 and %70 in

our experiments. If we look at Fig. 3.10, Fig. 3.11 and Fig. 3.12, we can see that the

cluster sizes are between 2 and 4 nodes per cluster. When we look at the coefficient

of variances, we can see clusters vary maximum of 3 nodes per cluster in terms of

the cluster sizes. In our case, 3 nodes of differences do not affect the communication

quality in a cluster of size 4. Therefore, we can say that cluster qualities are good

enough to meet the communication quality expectations.

In Fig. 3.16 we calculated the average number of clusterheads for all densities.

31

Figure 3.14. Cluster Quality Test in a Low Speed Dynamic Network

Figure 3.15. Cluster Quality Test in a High Speed Dynamic Network

32

Figure 3.16. Average Number of Clusterheads Test in a Static, Moving in Low Speed

and Moving in High Speed Dynamic Network

Figure 3.17. Comparison Between CDSC and Wu’s CDS Algorithms in terms of

Number of Clusterheads

We plotted the average clusterhead numbers for static, low and high speed dynamic

graphs to see the effect of dynamicity in the network. In each case, we observed that

the number of clusterheads is almost proportional to the number of nodes in the

network and nearly the same for the three mobility scenarios. According to these

readings, we can say that our algorithm is independent from the dynamicity of the

network.

The comparison between Wu’s CDS Algorithm and the CDSC Algorithm is

given in Fig. 3.17. As it can be seen from the figure, CDSC Algorithm, results in

less number of clusterheads than the Wu’s CDS Algorithm.

Our overall results show that the CDSC Algorithm is independent from the

mobility of the MANET. They also prove that the algorithm has very little depen-

33

dence on the size of the network. The results showed that the CDSC Algorithm

performs better than the Wu’s CDS Algorithm for the given scenario tests. We can

say that the algorithm can be preferable in environments in which the density value

does not exceed the limit values shown in the graphs.

3.5. Discussions

CDSC Algorithm results in a less crowded connected dominating sets than

Wu’s CDS algorithm. We also ensure that the additional heuristics and pruning

rules do not change the performance of the algorithm. Wu’s CDS Algorithm has

O(n2) message complexity which is the same as our CDSC Algorithm. The time

complexity of the modifications are ignorable compared to the unchanged messaging

complexity of the algorithm.

The limitations of the CDSC Algorithm are the dynamicity of the nodes and

the density of the network. We always assumed that the neighborhoods of the nodes

remain constant during the runtime of the algorithm. That means nodes are moving

within the intersectional coverage area of their neighbors. This is because a change

in the neighborhood of any node may result in undeliverable messages as well as

damaging the properties of the resulting CDS.

The limitation concerning the density of the network lead us to investigate

the cause of this problem. At the end of a debugging period of the runtime of the

CDSC Algorithm, we noticed that the degree limitation is raised because of the

conflicting messages in the wireless network. We observed that above a limit value

in the degree of the nodes, the message conflicts increase dramatically. Moreover, we

observed that the nodes re-send the dropped messages at the same time because they

all use same clock provided by the ns2 simulator. Some node specific parameters

such as different period values may help us to solve this problem but in order to

distribute the same code evenly to all nodes, this solution is not favorable. Instead,

this problem shows us that message conflicts may be a serious problem in wireless

networking protocols. A MAC Layer solution may help us to definitely solve the

degree limitation of the CDSC Algorithm which is caused by the message conflicts.

The latest limitation of the CDSC Algorithm is concerning to the connectivity

of the network. The nature of CDS requires the network should be connected without

34

any isolated nodes, which is a fair assumption. Therefore in our tests we ignored such

scenarios as they do not reflect reliable statistics for the tested scenario specifications.

The CDSC Algorithm results in clusters which are determined by a con-

structed connected dominating set. At the end of the CDSC Algorithm, we construct

a connected dominating set and each WHITE colored node determines a suitable

clusterhead for itself. But at the end of the algorithm, clusterheads are not aware of

the members of their clusters. Some applications such as CDS Flooding may require

this information. These kind of properties may be simply added to the protocol by

inserting one or more states to the finite state machine.

35

CHAPTER 4

TWO-LEVEL CONNECTED DOMINATING

SET BASED CLUSTERING ALGORITHM

4.1. General Idea and Description of the Algorithm

The Two-Level Connected Dominating Set Based Clustering Algorithm (TL-

CDSC) finds two minimal connected dominating sets in a MANET. We developed

our algorithm as an extension to CDSC Algorithm. First, we find a CDS on a

MANET using our CDSC Algorithm and call the resulting subset of clusterheads

as First Level CDS, then we run the same clustering algorithm on the subset of

First Level CDS. At the end of the algorithm, a two level connected dominating set

is constructed. First Level CDS is composed of Cluster Heads and Second Level

CDS is composed of Super Cluster Heads. The TLCDSC Algorithm provides more

crowded clusters which are relatively better than our first approach in which the

size of the clusters are very small compared to the number of nodes in the MANET.

The assumptions and coloring rules which are explained in the CDSC Algo-

rithm are also required for the TLCDSC Algorithm as it is an extended version of the

CDSC Algorithm. We assume that the nodes are almost static in a reasonable pe-

riod of time in order to complete a whole cycle in every single node. We also assume

that the graph is connected, each node has a unique node id and knows its adjacent

neighbors. Each node has a color indicating whether the node is in the dominating

set or not. The color is set to BLACK if the node is in the dominating set, or

WHITE if the node is not in the dominating set. Color GRAY is used to indicate

that the node is marked after the first phase, but it will change its color after the

second phase either to WHITE or BLACK. At the end of the algorithm, every node

will be in either one of the three states namely WHITE STATE, BLACK STATE

and RED STATE which indicate that the node is an Ordinary Node, a Cluster Head

or a Super Cluster Head respectively.

The basic idea of the algorithm is very similar to the CDSC Algorithm. The

36

Cluster_RES,C11

Neighbor_LST_L2, C1

Neighbor_LST, C1

BLACK

WHITE

RED

See state machine conditions for transition details

CHK_NODES

CHK_CH

LEVEL1

LEVEL1

CHK_DOM
LEVEL1

CHK_NODES

LEVEL2

LEVEL2

CHK_CH

CHK_DOM

LEVEL2

/ Cluster_REQ
Neighbor_LST,C2,C9

Color_RES,C2, C16 or

Neighbor_LST_L2,C2,C9 / Cluster_REQ_L2

Color_RES_L2,C2, C16 or

Color_RES,C1

C17 / Cluster_REQ_L2

C17 / Cluster_REQ

Color_RES,C2,C12 or C13 or C14 or C15
Neighbor_LST,C2,C4 or
C5 or C8

IDLE

BLACK
WAIT

/ Black_RES, C2

/ Neighbor_REQ_L2

Neighbor_LST_L2,C2,C4 or C5 or C8
Cluster_RES_L2,C11

Neighbor_LST_L2,C2,C10
/Color_REQ_L2

Color_RES_L2,C2,C18

Neighbor_LST_L2,C2,C3 or C6 or C7

Color_RES_L2,C1

Color_RES,C2,C18,C21

/ Black_REQNeighbor_LST,C2,C10
/Color_REQ

/ Neighbor_REQ
Period_TOUT

Color_RES,C2,C18,C20
/ Neighbor_REQ_L2

Color_RES_L2,C2,C12 or C13
or C14 or C15

In any state: Neighbor_REQ / Neighbor_LST
Color_REQ / Color_RES
Cluster_REQ / Cluster_RES, C19

Neighbor_LST,C2,C21,C3 or
C6 or C7
/ Black_REQ

Figure 4.1. Finite State Machine of the TLCDSC Algorithm

37

finite state machine and the transitions between states differ from the CDSC because

of the second level clustering.

The message types used in the TLCDSC Algorithm can be classified as first

level and second level messages. The first level messages are Period TOUT, Neigh-

bor REQ, Neighbor LST, Color REQ, Color RES, Cluster REQ and Cluster RES

which are described in the CDSC Algorithm in detail, Black REQ and Black RES

which are described below.

• Black REQ : When a node determines its first level color as BLACK it will

check its neighbors’ first level colors in order to find out which nodes will be

in its second level neighborhood. If there are still GRAY of UNDEFINED

colored neighbors, a Black REQ message is multicasted to those neighbors in

order to learn their permanent first level colors.

• Black RES : A node which receives a Black REQ message, checks if it is in the

multicast list which is provided in the message body. If it is in the list and if

it determined its first level color as either WHITE or BLACK then it sends a

Black RES message indicating its first level permanent color.

These messages are exchanged until all nodes determine their first level colors.

The message types used during the second level clustering are: Neighbor REQ L2,

Neighbor LST L2, Color REQ L2, Color RES L2 and Cluster REQ L2, Clus-

ter RES L2. The effect of the messages are the same with the first level messages

except they are applied to a subset of the graph which consists of nodes which are

BLACK colored after the first phase.

Every node in the network performs the same local algorithm periodically.

The finite state diagram of the algorithm can be seen in Fig. 4.1. During the

runtime of the TLCDSC Algorithm, the state machine transition conditions which

determine state transitions are very similar to those which are described in the

CDSC Algorithm. A modified list of the conditions are described below:

TLCDSC Algorithm Finite State Machine Transition Conditions:

• C1. The responses to the multicasted message are not completely collected.

38

• C2. The responses to the multicasted message are completely collected.

• C3. The node is isolated, its neighbor is isolated too and node’s id is bigger

than its neighbor’s id.

• C4. The node is isolated, its neighbor is isolated too and the node’s id is

smaller than its neighbor’s id.

• C5. The node is isolated and its neighbor is not isolated.

• C6. The node has at least one isolated neighbor.

• C7. The graph is complete and the node has the biggest id in the graph.

• C8. The graph is complete and the node does not have the biggest id.

• C9. Node’s neighbors are all connected and the graph is not complete.

• C10. The node has at least two unconnected neighbors.

• C11. Cluster Head is set to the sender’s id.

• C12. CDSC pruning rule 1 is true.

• C13. CDSC pruning rule 2 is true.

• C14. CDSC pruning rule 3 is true and the node has at least one BLACK

neighbor.

• C15. CDSC pruning rule 4 is true and the node has at least one BLACK

neighbor.

• C16. CDSC pruning rule 3 is true and the node doesn’t have any BLACK

neighbor.

• C17. CDSC pruning rule 4 is true and the node doesn’t have any BLACK

neighbor.

• C18. Conditions C12 to C17 are all false.

• C19. Node’s color is currently BLACK.

39

• C20. Node’s neighbors completed the first level and determined their first level

color.

• C21. The node still has GRAY colored neighbors in its color list.

• C22. The node does not have any neighbors.

Although basic idea of the first level clustering of the TLCDSC Algorithm is

quite similar to the CDSC Algorithm, in order to explain the FSM completely, we

explain the whole sequence.

Each node is in the IDLE state and colored as UNDEFINED COLOR ini-

tially. When the period is timed out, the node sends a Period TOUT message to

itself. This message causes the node to switch its state to CHK NODES LEVEL1

and send a Neighbor REQ message to all of its adjacent neighbors. Then the node

waits for Neighbor LST messages from all of its adjacent neighbors. When all Neigh-

bor LST messages are collected, the node checks the heuristics C3 to C9 which

are defined in the state machine transition conditions list, to determine their next

state transition. If the node is suitable for conditions C4, C5 or C8, it determines

its First Level and its Second Level Colors as WHITE and changes its state to

WHITE STATE. In all these three conditions, the node can determine its cluster-

head. For conditions C4 and C5, the clusterhead is determined as the node’s single

neighbor, and in the condition C8, clusterhead is determined as the node with the

maximum degree in the complete graph. Such a node completes the algorithm in

this step and becomes an Ordinary Node.

If condition C9 is true for a node, it marks its First Level Color as WHITE,

switches its state to CHK CH LEVEL1 and multicasts a Cluster REQ message in

order to learn which neighbor became its clusterhead. When the first Cluster RES

message is received, the node sets its clusterhead as the sender of the message,

changes its state to WHITE STATE, sets its First and its Second Level Colors as

WHITE and finishes the algorithm.

If the node is suitable for the condition C10, it is potentially a clusterhead

candidate. In this case, the node switches its state to CHK DOM LEVEL1,

changes its First Level Color to GRAY and multicasts a Color REQ message

in order to collect its neighbors’ colors. When the node switches its state to

40

CHK DOM LEVEL1, it waits for all of its neighbors to send their colors. When

the node v collects all the color information, it starts to apply the CDS pruning

rules which are described previously in the CDS Algorithm. The pruning rules are

described below:

CDS Algorithm Pruning Rules:

1. ∃u ∈ N(v) which is marked BLACK such that N [v] ⊆ N [u];

If the node has a BLACK neighbor which covers its closed neighborhood then

it should mark itself as WHITE because there is already a BLACK node which

dominates all the closed neighbors.

2. ∃u,w ∈ N(v)which is marked BLACK such that N(v) ⊆ N(u)
⋃

N(w);

If the node has two connected BLACK neighbors and if the union of the

neighborhoods of these BLACK neighbors cover the node’s closed neighbor-

hood then the node should mark itself as WHITE.

3. ∃u ∈ N(v) which is marked GRAY such that N [v] ⊆ N [u] and degree(v) <

degree(u) OR (degree(v) = degree(u) AND id(v) < id(u));

If the node has a GRAY colored neighbor which covers its closed neighbor-

hood, it means both of them are candidate to be in dominating set. In this

case, if the node has smaller degree than its GRAY colored neighbor, it should

mark itself as WHITE.

4. ∃u,w ∈ N(v)which is marked GRAY OR BLACK such that N(v) ⊆
N(u)

⋃
N(w) and degree(v) < min{degree(u), degree(w)} OR degree(v) =

min{degree(u), degree(w)} AND id(v) < min{id(u), id(w)};
If the node has two connected BLACK or GRAY neighbors which covers its

closed neighborhood and if its degree is smaller than these neighbors degrees,

then it will mark itself as WHITE.

If the node is suitable for conditions C12, C13, C14 or C15, it finishes the

algorithm, changes its state to WHITE STATE and sets its first and second level

colors to WHITE. If the node is suitable for one of the conditions C12 or C13 which

indicate that the node is dominated by one or two BLACK neighbors, it sets its

41

clusterhead as one of its dominators. If the node is suitable for the conditions C14

or C15 it selects smallest id BLACK colored neighbor as its clusterhead.

If the node is suitable for conditions C16 or C17, it changes its state to

CHK CH LEVEL1 and multicasts a Cluster REQ message in order to learn which

neighbor become its clusterhead. When the first Cluster RES message is received,

the node sets its clusterhead as the sender of the message, changes its state to

WHITE STATE, sets its First and its Second Level Colors as WHITE and finishes

the algorithm.

If none of the four pruning rules is true, then the node is suitable for the

condition C18, it then marks its first level color as BLACK. In this case, if the

node is also suitable for the condition C21, it changes its state to WAIT BLACK

and multicasts a Black REQ message to its GRAY colored neighbors in order to

wait its neighbors to determine their permanent colors. If the node’s neighbors

have already determined their First Level Colors, then the node changes its state to

CHK NODES LEVEL2 and multicasts a Neighbor REQ L2 message to its Second

Level Neighbors.

If the node is suitable for the conditions C3, C6 or C7, it changes its

First Level Color as BLACK and switches to state WAIT BLACK and broad-

casts a Black REQ message to all its neighbors. When a node which is in the

WAIT BLACK state, collects all Black RES messages, it changes its state to

CHK NODES LEVEL2.

Nodes which reach the CHK NODES LEVEL2 state finish the First Level

Clustering and from this point they start to execute the Second Level Clustering.

The algorithm which is used in the Second Level Clustering is the same algorithm

which is used during the First Level Clustering. The most important difference is

the new set of nodes used in the Second Level Clustering are the nodes which are

BLACK colored after the First Level Clustering. We create a subset S which is

composed of First Level Cluster Heads, and apply the CDS algorithm to the subset

S.

In the Second Level Clustering, nodes which are not Level 2 Cluster Heads

end in the state BLACK STATE indicating that they are Level 1 Cluster Heads.

Level 2 Cluster Heads end in the state RED STATE.

42

WHITE
BLACK
RED

10

9

8

11

14

1 4

2
13

12

3

5

6 7

17
18 15

16

Figure 4.2. TLCDSC Algorithm Sample Graph

When the TLCDSC Algorithm is finished, the nodes are in either one of the

WHITE STATE, BLACK STATE or RED STATE. The cluster information for a

node is held locally, each node knows only its clusterhead. This makes our algorithm

more flexible, thus our algorithm can be easily extended to a K-Level Hierarchical

Clustering.

At any state, a node can receive request messages to help other nodes run

their algorithms. These messages are Neighbor REQ, Cluster REQ, Color REQ,

Neighbor REQ L2, Cluster REQ L2, Color REQ L2 and Black REQ. In such a case,

the node prepares the required information requested in the received message and

continues its current operation. No state changes are performed in these cases.

4.2. An Example Operation

We obtained the resulting connected dominating set in Fig. 4.4 by using

our algorithm. On the sample graph of Fig. 4.2 the execution of the algorithm is

explained step by step for all nodes.

• Execution of First Level Clustering:

At the end of the first phase of the First Level Clustering, nodes 6, 8, 10, 11,

14, 15, 16 and 18 determine their colors permanently. Node 6 satisfies the

condition C6, thus changes its First Level Color to BLACK and finishes its

First Level Clustering and changes its state to WAIT BLACK. Nodes 8, 11,

14, 15, 16 and 18 satisfy condition C9 and change their First Level Colors to

WHITE. Nodes 8, 15, 16 and 18 change their states to CHK CH LEVEL1 in

order to set their clusterheads. Nodes 11 and 14 set their clusterhead as node

6 and finish their execution. Node 10 is an isolated node, therefore it changes

43

WHITE
BLACK

10 8

11

14

1 4

2
13

12
17

18 15

16

3

95

6 7

Figure 4.3. TLCDSC Algorithm Samle Graph at the End of First Level

its First Level Color to WHITE and sets its clusterhead as node 6 and finish

its execution. Other nodes become GRAY colored, because all of them satisfy

the condition C10.

In the second phase of the First Level Clustering, the CDS algorithm checks

the conditions C12 to C18. At the end of this phase, nodes 1, 2, 4, 12, 13 and

17 determine their colors as WHITE, because they are suitable for one of the

four pruning rules. Nodes 12 and 13 select node 6 as their clusterhead and

finish their First Level Clustering. Nodes 1, 2, 4 and 17 change their states

to CHK CH LEVEL1 in order to set their clusterheads. Nodes 3, 5, 7 and 9

change their colors to BLACK as they satisfy condition the C18. At the end

of the First Level Clustering, the resulting CDS can be seen in Fig. 4.3.

• Execution of Second Level Clustering: The Second Level Clustering uses the

new subset of First Level Cluster Heads as its domain, therefore the working

set for the Second Level Clustering is nodes 3, 5, 6, 7 and 9. When the

Second Level Clustering starts its execution, nodes 3 and 9 determine their

Second Level Colors as WHITE because they are suitable for the condition

C5. Thus nodes 3 and 9 finish their Second Level Clustering by determining

their Second Level Colors as WHITE and their end states as BLACK STATE.

Nodes 5 and 7 are suitable for the condition C6, thus they finish their Second

Level Clustering as Super Cluster Heads by determining their Second Level

Colors as BLACK and their end states as RED STATE. Node 6 is suitable

for the condition C10, thus it changes its state to CHK DOM LEVEL2. After

collecting its neighbor’s second level colors, it determines its Second Level

Color as BLACK because it is suitable for the condition C18. The overall

result of the 2-Level CDS Algorithm can be seen in Fig. 4.4.

44

WHITE
BLACK
RED

Level 1 Cluster
Level 2 Cluster

10 8

11

14

1 4

2
13

12
17

18 15

165

6 7
3

9

Figure 4.4. TLCDSC Algorithm Resulting Graph

4.3. Analysis

Theorem 4.3.1. Time complexity of the TLCDSC Algorithm is O(10).

Proof. Every node executes the distributed algorithm by the exchange of at most

10 messages (Neighbor REQ, Neighbor LST, Color REQ, Color RES, Black REQ,

Black RES, Neighbor REQ L2, Neighbor LST L2, Color REQ L2, Color RES L2).

As explained in Section 4.1., in the worst case scenario, after exchanging of these

10 messages, the members of Two-Level CDS are determined. The time complex-

ity during the local iterations are ignorable compared to the messaging durations,

therefore the time complexity of the local iterations are ignored during the time

complexity analysis. Since all these communication occurs concurrently in every

node, the time complexity of the algorithm is O(10).

Theorem 4.3.2. Message complexity of the TLCDSC Algorithm is O(n2) where n

is the number of nodes in the graph.

Proof. For every mark operation of a node, 10 messages are required (Neigh-

bor REQ, Neighbor LST, Color REQ, Color RES, Black REQ, Black RES, Neigh-

bor REQ L2, Neighbor LST L2, Color REQ L2, Color RES L2). Assuming every

node has n-1 adjacent neighbors, total number of messages sent is 10(n− 1). Since

there are n nodes, total number of messages in the system is n(10(n− 1)) Therefore

messaging complexity of our algorithm has an upperbound of O(n2).

4.4. Results

We implemented the TLCDSC Algorithm using C++ on top of the network

simulator ns2. We generated random scenarios for static and dynamic graphs. In

45

our experiments, we collected test results for the runtime of the algorithm, size of

the superclusters and the resulting number of super clusterheads.

During the experiments, we used three parameters which are number of

nodes, mobility of nodes and density of the network. We determined 4 ”number

of nodes scenarios” which have 20, 30, 40 and 50 nodes. We used the degree of

the graph as the density parameter. As the surface area decreases the density of

the graph increases, it means that the nodes will have greater degrees. We set

the surface area such that the degree of our graph will be between 4 and 10. For

the mobility parameter we generated three ”mobility scenarios” namely static, low

speed and high speed. In the static scenario tests, nodes remain still. In the low

and high mobility scenarios, respective node speeds are limited from 1 m/s to 5 m/s

and from 5 m/s to 10 m/s. The speed of the nodes is determined randomly by the

simulation environment within the specified velocity limits. In the dynamic graph

experiments, we take into account only the experiments in which nodes are moving

but the neighborhoods of the nodes do not change.

The parameters which are described above generate 84 different test cases

with the specified values. During the tests we collected an average of 60 test results

for each of the 84 different test cases. Total of 5000 samples were collected during

the TLCDSC Algorithm tests.

In Fig. 4.5, we tested the runtime of the algorithm in a static network. In this

experiment we observed that the runtime of the algorithm is below 25 seconds for

the densities nearly below 6. We also observed that the runtime is nearly the same

for the nodes 20 to 50 for densities smaller than 5. This is because the algorithm

runs distributed in each node and is independent from the size of the graph. The

runtime increases dramatically for the densities above 6. This is because of the

conflicting messages in the mobile network.

In Fig. 4.6, we can see that in a low speed mobile network, runtime of the

algorithm is similar to the static network as long as the neighborhoods do not change.

The only parameter that affects the runtime is the density of the graph which

determines the number of messages exchanged between the neighbor nodes. For

higher degrees, the message conflicts increase dramatically which results in a sudden

increase in the runtime of the algorithm and makes the observations meaningless.

46

Figure 4.5. TLCDSC Algorithm Runtime Test in a Static Network

Figure 4.6. TLCDSC Algorithm Runtime Test in a Low Speed Dynamic Network

47

Figure 4.7. TLCDSC Algorithm Runtime Test in a High Speed Dynamic Network

Figure 4.8. Number of Super Cluster Heads in a Static Network

The test results for the high speed dynamic networks can be seen in Fig. 4.7.

As can be seen in the figure, we could not collect meaningful data for the networks in

which the number of nodes are above 30. This is because the time required to con-

struct the two level clusters is larger than the duration in which the neighborhoods

of the nodes remain constant.

In Fig. 4.8, Fig. 4.9 and Fig. 4.10, we observed the number of super cluster-

heads in our resulting clustered network. Typically in a network, we expect to have

less super clusterheads as density increases. We can see the decrease in the super

clusterhead numbers in the graph as the degree value increases as we expected. We

can see almost the same decrease in the three mobility scenarios.

Compared to the CDSC Algorithm, the TLCDSC Algorithm selected less

48

Figure 4.9. Number of Super Cluster Heads in a Low Speed Dynamic Network

Figure 4.10. Number of Super Cluster Heads in a High Speed Dynamic Network

super clusterheads which means that the clusters will be more crowded. In fact,

sum of the number of clusterheads and the number of super clusterheads in the TL-

CDSC Algorithm is exactly the same with the number of clusterheads in the CDSC

Algorithm. But because the TLCDSC Algorithm selects some of the clusterheads as

super clusterheads, we can guarantee that the second level CDS which is constructed

by TLCDSC Algorithm will consists of less number of super clusterheads.

In Fig. 4.11, we tested the size of the super clusters for varying parameters.

Typically as the density increases, the number of clusterheads decreases. Therefore,

we expect to have more crowded clusters as the degree increases. We can see this

increase in the experiment results. As we can see from the test results, for each

graph we have nearly similar cluster sizes. This result shows us that our algorithm

49

Figure 4.11. Size of the Super Clusters in a Static Network

Figure 4.12. Size of the Super Clusters in a Low Speed Dynamic Network

is independent from the size of the MANET in terms of the cluster qualities. We also

expected to have more crowded clusters than the CDSC Algorithm. When we look

at the test results we can see that in CDSC Algorithm the cluster sizes vary between

2 and 3, however the resulting super cluster sizes of the TLCDSC Algorithm vary

between 3 and 5.

The Fig. 4.12 and Fig. 4.13 show that the size of the superclusters are also

similar for three different mobility scenarios, which means that the algorithm is also

independent from the mobility.

The test results of the TLCDSC Algorithm satisfy our expectations. These

results show us that the TLCDSC Algorithm is independent from the mobility and

the size of the MANET, if we ignore message conflicts. They also prove that the

50

Figure 4.13. Size of the Super Clusters in a High Speed Dynamic Network

algorithm is independent from the number of nodes in the network. We can say that

the algorithm can be preferable in environments in which the density value does not

exceed the limit values shown in the graphs.

4.5. Discussions

The TLCDSC Algorithm showed us that CDSC Algorithm, which is ex-

plained in Chapter 3, can be easily expanded to a k-level clustering algorithm with-

out loosing the CDS property of the resulting clusters. The advantage of using two

level clusters is the capability of providing a hierarchical structure to the applica-

tions which may require group communication. This hierarchical structure may be

used for efficient multicast communication among the group members. Two Level

Clustering also provides a more reliable and energy efficient network topology by

decreasing the hop-counts, inter-cluster message traffic and message conflicts.

The limitations of the TLCDSC Algorithm are quite similar to those which

are discussed in the CDSC Algorithm, because both algorithms rely on the same

fundamental logic. Although the message complexity of the TLCDSC Algorithm

is greater than the CDSC Algorithm, during the experiments, the runtime of the

TLCDSC Algorithm remain nearly in the same time range with the CDSC Algo-

rithm. This is because most of the duration which is required to build the clusters

is spent for the conflicting messages. We observed the difference between two al-

gorithms more clearly in high speed dynamic network experiments in which the

51

message conflicts occur more frequently. We couldn’t collect meaningful data for

the networks consisting of 40 and 50 nodes which are moving at high speed. The

message complexity causes an increase in the conflicting messages which make our

algorithm run longer in such cases. The runtime of the algorithm exceeds the time

limit which results in alterations in the neighborhoods of the nodes. This situation

breaks our first assumption, therefore we can say that the TLCDSC Algorithm is

not suitable for high speed dynamic networks without having a MAC level support

to the message conflict problem.

52

CHAPTER 5

CDS FLOODING ALGORITHM

5.1. General Idea and Description of the Algorithm

Routing in MANETs is a very problematic issue because of the dynamicity

of the network. In dynamic networks such as MANETs, routing tables should be

updated very frequently. Keeping the routing tables up to date may consume a large

part of the wireless traffic in the network. This traffic might sometimes be extremely

dense which may possibly block the circulation of the messages between nodes. A

virtually structured network such as a CDS can be considered as a good solution

to make message transfers more efficient. But even in the structured networks a

routing protocol is required in order to deliver messages to the destinations. CDS

Flooding Algorithm is a cluster based routing algorithm. We first construct a con-

nected dominating set by using our TLCDSC Algorithm, then implement a message

flooding mechanism which uses the clusterheads as the gateways of the clusters. In

CDS Flooding Algorithm, there are two types of message traffic; traffic between

an ordinary node and its clusterhead, and traffic between the clusterheads. Flood-

ing process takes place only between the clusterheads, therefore the CDS Flooding

Algorithm significantly reduces the number of flooded messages in the network.

For the CDS Flooding Algorithm, we assume that CDS clusters are already

constructed and every node has a unique node id. A node which would like to send a

message to any node in the network, sends the message to its clusterhead. From this

point, the clusterhead floods the message to the network where only clusterheads are

involved in the flooding operation. When a clusterhead realizes that the destination

is in its cluster, it stops flooding the message and sends the message directly to the

destination. Flooding lasts until all clusterheads receive the message.

For the CDS Flooding algorithm, we used our TLCDSC as the CDS con-

structor algorithm. By using the TLCDSC Algorithm, we may enhance the CDS

Flooding to a multi level flooding algorithm as a future work without modifying the

53

underlying clustering algorithm.

The CDS Flooding algorithm requires that every node knows its clusterhead

and every clusterhead knows the members of its cluster. In TLCDSC Algorithm, the

membership information of the clusters is missing in the clusterheads. Therefore, we

modified the first level clustering part of the TLCDSC Algorithm by informing the

clusterheads about the members of their clusters. We didn’t modify the second level

clustering part of the TLCDSC Algorithm as we don’t use the second level clusters

during the CDS Flooding algorithm. For this purpose we add a WAIT MBR ACK

state to the finite state machine of the TLCDSC Algorithm. We also add two more

messages, Cluster MBR INF and Cluster MBR ACK, which are described below.

• Cluster MBR INF : When a WHITE colored node determines its first level

clusterhead, it sends a Cluster MBR INF message to its first level clusterhead

informing that it will join the cluster of its clusterhead.

• Cluster MBR ACK : The Cluster MBR ACK message is used in order to be

sure that the cluster membership information is received by the clusterhead.

When a first level clusterhead receives a Cluster MBR INF message, it will

add the sender’s id to its cluster members list and sends a Cluster MBR ACK

message to the sender node.

The modified version of the finite state machine of the TLCDSC Algorithm

can be seen in Fig. 5.1. In addition to the TLCDSC Algorithm which is described in

Chapter 4, the nodes which determine their first level color as WHITE and which

have more than one clusterhead possibilities, send a Cluster MBR INF message

to their clusterheads and change their state to WAIT MBR ACK. By sending this

message, an ordinary node informs its clusterhead that it has joined the cluster.

Then the node waits for a Cluster MBR ACK message which ensures that the clus-

terhead has received the cluster membership information. When a node receives a

Cluster MBR ACK message, it changes its state to WHITE STATE and finishes

its modified TLCDSC Algorithm. At the end of the modified version of TLCDSC

Algorithm two level clusters are constructed, every node has a clusterhead and every

clusterhead knows the list of nodes which are in its cluster. This information satisfies

the requirements which are needed by the CDS Flooding Algorithm.

54

WHITE

Neighbor_LST,C2,C4 or
C5 or C8

In any state: Neighbor_REQ / Neighbor_LST
Color_REQ / Color_RES
Cluster_REQ / Cluster_RES, C19

Neighbor_LST_L2, C1

Neighbor_LST, C1

BLACK

RED

See state machine conditions for transition details

CHK_NODES

CHK_CH

LEVEL1

LEVEL1

CHK_DOM
LEVEL1

CHK_NODES

LEVEL2

LEVEL2

CHK_CH

CHK_DOM

LEVEL2

/ Cluster_REQ
Neighbor_LST,C2,C9

Color_RES,C2, C16 or

Neighbor_LST_L2,C2,C9 / Cluster_REQ_L2

Color_RES_L2,C2, C16 or

Color_RES,C1

C17 / Cluster_REQ_L2

C17 / Cluster_REQ

IDLE

BLACK
WAIT

/ Black_RES, C2

/ Neighbor_REQ_L2

Neighbor_LST_L2,C2,C4 or C5 or C8
Cluster_RES_L2,C11

Neighbor_LST_L2,C2,C10
/Color_REQ_L2

Color_RES_L2,C2,C18

Neighbor_LST_L2,C2,C3 or C6 or C7

Color_RES_L2,C1

Color_RES,C2,C18,C21

/ Black_REQNeighbor_LST,C2,C10
/Color_REQ

/ Neighbor_REQ
Period_TOUT

Color_RES,C2,C18,C20
/ Neighbor_REQ_L2

Color_RES_L2,C2,C12 or C13
or C14 or C15

Neighbor_LST,C2,C21,C3 or
C6 or C7
/ Black_REQ

WAIT
_MBR

_ACK

Color_RES,C2,C12 or C13 or C14 or C15
/Cluster_MBR_INF

Cluster_RES,C11
/Cluster_MBR_INF

Cluster_MBR_ACK

Figure 5.1. Finite State Machine of the 2-Level Hierarchical Clustering Algorithm

55

The CDS Flooding Algorithm consists of two distinct procedures, sending a

message and receiving a message. Each node calls the related procedure to send or

receive a message.

The procedure which is executed to send a message can be seen in the Fig. 5.1.

The procedure depends on the type of the node and the destination of the message.

A more detailed explanation of the algorithm can be found in 5.1.1..

send proc

begin

if i am a clusterhead then

if the destination is in my cluster then
send message directly to the destination.

else
multicast the message to my BLACK neighbors.

end

else
send message to my clusterhead.

end

end

Algorithm 5.1. Procedure executed by the nodes to send a message

A general description of the CDS Flooding Algorithm which is executed upon

receiving a message can be seen in Fig. 5.2. The process which is executed depends

on the type of the node, sender and the receiver of the message.

56

receive proc

begin

if i am a clusterhead then

if the message is received for the first time then

if i am the destination then
process the message.

else

if destination is in my cluster then
send message directly to the destination.

else
multicast the message to my BLACK neighbors.

end

end

end

else
if sender of the message is my clusterhead AND i am the

destination AND the message is received for the first time then
process the message.

end

end

end

Algorithm 5.2. Procedure executed by the nodes upon receiving a message

The messages which are transferred during the CDS Flooding algorithm have

unique message ids which are determined by the sender nodes. The message ids are

calculated locally in each node according to the formula: ”MessageId = (NodeId *

maximumMessageNumber) + Index” where NodeId is the unique id of the sender

node and Index is a modular incremental value which is calculated in base maxi-

mumMessageNumber. The formula prevents duplicate MessageIds in a network up

to maximumMessageNumber messages. There is no need to have infinitely many

unique message ids. After a message is completely flooded in the network, its mes-

57

Figure 5.2. Data Structure for the MessageInfoBox

sage id can be reused. For that, we determine the maximumMessageNumber such

that it will be at least the maximum number of messages which can be flooded to

the network in a duration of flooding of a single message.

Each node records the processed messages to a table which is called Message-

InfoBox. The data structure for the MessageInfoBox can be seen in the Fig. 5.2.

The entities in the data structure are described below:

• MessageId : Unique id of the messages which are calculated locally in each

node according to the algorithm which is explained above.

• MessageBody : MessageBody includes the whole message object. MessageBody

is required when the message is needed to be resent.

• AckNeededNeighbors : A list of nodes to which the message is sent. The list is

particularly used in order to keep track of the ACK messages. When an ACK

message is received, the sender of the ACK message is deleted from the list.

• Count : Count holds the size of the AckNeededNeighbors list and is used in

order to check if there are still neighbors from which acknowledgements are

expected.

• ToutExpireTime: The expiration time of the message inside the node. When

the node reaches the ToutExpireTime in its local clock, it processes the message

according to the ToutType. The ToutExpireTime is calculated by adding a

predefined period value to the current time. Predefined periods are AckPeriod

and DeletePeriod. The AckPeriod should be set to at least the duration of two

message transfers between two adjacent neighbors, DeletePeriod should be set

to at least the duration of one message transfer time between two adjacent

58

nodes multiplied by the number of clusterheads, which can be considered as

the total duration of the flooding operation in the network.

• ToutType: Expiration type of the message determines the process which should

be executed when the local clock reaches the ToutExpireTime. The ToutTypes

are AckTout and DeleteTout. AckTout is used to remark that an ACK message

is expected for the message. DeleteTout is used to remark that at the end of

the ToutExpireTime, the entry which belongs to the message should be deleted

from the MessageInfoBox.

5.1.1. Sending a Message

In CDS Flooding algorithm the behavior of the nodes which want to send a

message changes according to the type of the sender node. When an ordinary node

wants to send a message, it prepares the message and records it in its MessageIn-

foBox. The node sets ToutExpireTime to AckPeriod and sets ToutType to AckTout.

It then sends the message to its clusterhead. When the sender node receives an

ACK message before the ToutExpireTime, it sets the ToutExpireTime to DeletePe-

riod and sets ToutType to DeleteTout. If the ACK message is not received before

the ToutExpireTime, the node sends the same message again. The node re-sends

the message periodically until the ACK is received.

If the sender node is a clusterhead, it checks the members of its cluster. If

the destination is in its cluster, then the node sets ToutExpireTime to AckPeriod

and sets ToutType to AckTout. It then sends the message to the destination. If the

destination is in another cluster, it prepares the message as a multicast message and

records the message to its MessageInfoBox. It puts its BLACK colored neighbors to

the AckNeededNeighbors list, sets Count to the size of the list, sets ToutExpireTime

to AckPeriod and sets ToutType to AckTout. The AckNeededNeighbors list is also

copied into the message body as MulticastNeighbors. Then the node floods the

message to the network by multicasting the message. The sender node removes a

node from its AckNeededNeighbors list upon receiving acknowledgement from the

corresponding node. When the local clock reaches the ToutExpireTime, the node

checks the Count variable if there are still ACK needed neighbors. If there are, the

59

node resends the message to the neighbors which are still in AckNeededNeighbors

list. When all the ACK messages are collected, the node sets the ToutExpireTime

to DeletePeriod and sets ToutType to DeleteTout.

5.1.2. Receiving and Processing Messages

During the CDS Flooding algorithm, ordinary nodes are not involved in the

flooding operation. An ordinary node accepts a message if and only if it is the

destination of the message received. Moreover, in a CDS, an ordinary node can only

receive a message from its clusterhead. Therefore, when an ordinary node receives

a message, it first checks if the message is sent by the node’s clusterhead. Then

it checks if it is the destination of that message. If one of these conditions is false

then the node ignores the message and does nothing. If both conditions are true, it

processes the message.

When a clusterhead receives a message, it checks the following conditions.

• C1: The message is received for the first time and the node is the destination

of the message

• C2: The message is received for the first time and the destination of the

message is in the node’s cluster

• C3: The message is received for the first time and the destination of the

message is outside of the node’s cluster

• C4: The message is already received before and the node is the destination of

the message

• C5: The message is already received before and the destination of the message

is in the node’s cluster

• C6: The message is already received before and the destination of the message

is outside of the node’s cluster

If the condition C1 is true then the node records the message in its Message-

InfoBox, sets the ToutExpireTime to DeletePeriod, sets ToutType to DeleteTout,

sends an ACK message to the sender of the message and processes the message. If

60

the message is suitable for the condition C2, then the node records it in its Mes-

sageInfoBox. The node sets ToutExpireTime to AckPeriod and sets ToutType to

AckTout. Then it sends the message to the destination node and sends an ACK

message to the sender. If condition C3 is true then the node prepares the message

as a multicast message and records the message to its MessageInfoBox. It puts its

BLACK colored neighbors to the AckNeededNeighbors list, sets Count to the size

of the list, sets ToutExpireTime to AckPeriod and sets ToutType to AckTout. The

AckNeededNeighbors list is also copied into the message body as MulticastNeighbors

in order to indicate which nodes should process the message. Then the node floods

the message to the network as a multicast packet. If the one of the conditions C4,

C5 or C6 is true, the node ignores the message an does nothing. If the received

message is an ACK message, the node searches its MessageInfoBox and checks if

the sender is in the AckNeededNeighbors list, if it is in the list then the node deletes

the sender node from the AckNeededNeighbors list for that message.

When a clusterhead delivers a message which suits to the condition C1, it

stops flooding the message. But the flooding operation continues in the network

until the message is distributed to all clusterheads. If a node receives a message

for more than once, it does not reply to this message. But in order to acknowledge

the sender node, the echoes to the flooding messages are needed to be sent. If the

sending node needs an ACK and receives nothing, there might be three possibilities:

1. The message isn’t received by the destination

2. The message is received by the destination but the ACK message is lost in the

network

3. The message is already received by the destination, therefore is ignored by the

receiver

If an ACK message is not received before the ToutExpireTime in order to ensure

the message delivery, the node sends a special type of message, ForceMessage, which

forces the receiver to send an ACK message in any case. If a clusterhead receives a

message which suits to one of the conditions C4, C5 or C6, it checks if the message is

a ForceMessage. If the message is a ForceMessage, the node sends an ACK message

61

Ordinary Node
Cluster Head

10 8

11

14

1 4

2
13

12
17

18 15

16

3

95

6 7

Figure 5.3. An Example CDS Based Clusters

to the sender of the message. The nodes which reply to a FroceMessage do not

expect any acknowledgement for the replied message.

5.2. An Example Operation

We explain the example operation of the CDS Flooding Algorithm on top of

the example CDS which can be seen in the Fig. 5.3 . A node which wants to send a

message sends the message to the BLACK node in the cluster. For example nodes

1, 2 and 4 should send the outgoing message to node 3, nodes 10, 11, 12, 13 and 14

should send the outgoing message to the node 6 and so on.

• Intra-cluster Communication Towards a Clusterhead: When node 1 wants

to send a message to node 3, it prepares the message and sends it to its

clusterhead which is node 3. The node 3 receives the message and finds out

that it is the destination. Therefore it does not flood the message, just sends

an ACK message to the node 1 and finishes the operation. Routing of the

message can be seen in Fig. 5.4.a

• Intra-cluster Communication Between Ordinary Nodes: When node 4 wants

to send a message to node 2, it sends the message to its clusterhead which is

node 3. Node 3 finds that the message is destined to a node which is in its

cluster, therefore it does not flood the message to the CDS, instead, node 3

sends the message to the destination node, node 2, and finishes the operation.

Routing of the message can be seen in Fig. 5.4.b

• Inter-Cluster Communication from an Ordinary Node to a Clusterhead : When

node 2 wants to send a message to node 6 it sends the message to its cluster-

62

1 4

2

3

1 4

2

3

a. From 1 to 3 b. From 4 to 1

10 8

11

14

1 4

2
13

12
17

18 15

16

3

95

6 7

c. From 2 to 6

Figure 5.4. CDS Flooding Examples

head, node 3. When node 3 receive the message it finds out that the destination

is outside of its cluster. Therefore it floods the message. Node 5 receives the

flooded message and it checks its cluster, it sees that the destination is not in

its cluster, therefore it floods the message too. Node 6 receives the message

and finds out that it is the destination. Therefore it stops flooding and finishes

the operation. Routing of the message can be seen in Fig. 5.4.c

• Inter-cluster Communication Between Ordinary Nodes: When node 1 wants

to send a message to node 12, it sends the message to its clusterhead. The

message reaches to the node 6 in the same fashion with the previous descrip-

tion. But this time node 6 finds out that the destination is in its cluster.

Therefore it sends the message directly to the destination node, node 12, and

stops flooding the message. Routing of the message can be seen in Fig. 5.5.a

• Intra-cluster Communication from a Clusterhead to an Ordinary Node: When

node 3 wants to send a message to node 2 it checks its cluster members, it

finds out that destination node is in its cluster. Therefore it directly sends the

message to the destination and finishes its operation. Routing of the message

can be seen in Fig. 5.5.b

63

10 8

11

14

1 4

2
13

12
17

18 15

16

3

95

6 7

a. From 1 to 12

101 4

2

3

5

6

1 4

2

3

b. From 3 to 2 c. From 3 to 6

Figure 5.5. CDS Flooding Examples

• Inter-cluster Communication from a Clusterhead to Any Type of Node: When

node 3 wants to send a message to node 6 it floods the message to the CDS.

Node 5 receives the flooded message, it checks its cluster and finds out that

the destination is not in its cluster. Therefore, node 5 continues to flood

the message, then node 6 receives the message and finds out that it is the

destination of the message. Routing of the message can be seen in Fig. 5.5.c

5.3. Analysis

Theorem 5.3.1. Time complexity of the CDS Flooding Algorithm has a lowerbound

of Ω(2) and an upperbound of O(n) where n is the number of clusterheads in the

network.

Proof. The best case scenario of the algorithm is the intra-cluster communication.

In the intra-cluster communication scenario the node sends the message to its clus-

terhead and the clusterhead redirects the message to the destination. In this case 2

message exchange is required, thus the lowerbound complexity of the CDS Flooding

Algorithm is Ω(2). In the worst case scenario, source and destination nodes are lo-

cated in the most distant clusters, and the clusterheads have at most 2 clusterhead

neighbors. Source node sends the message to its clusterhead first, then the message

64

is flooded to all the clusterheads by broadcasting the message sequentially n − 1

times. Finally destination node’s clusterhead sends the message to the destination

node. Since the distribution of the message is sequential, the time complexity of

the algorithm in the worst case can be expressed as O(n) where n is the number

of clusterheads in the network. The time complexity during the local iterations are

ignorable compared to the messaging durations, therefore the time complexity of

the local iterations are ignored during the time complexity analysis.

Theorem 5.3.2. Message complexity of the CDS Flooding Algorithm is O(n) where

n is the number of the clusterheads in the network.

Proof. In the worst case, a message is flooded to all clusterheads in order to reach

the destination. The message is first sent to the first clusterhead and then flooded

to the CDS. A message is flooded to the network by using the broadcast messages.

In the worst case, each clusterhead has maximum of two BLACK colored neighbors,

therefore each time the message is flooded, it is received by only one clusterhead

which receives the flooded message for the first time. Each pair of clusterheads com-

municate by the exchange of one broadcast message. Therefore the total messaging

complexity of the algorithm is O(n+1) in the worst case which can be expressed as

O(n) in the big O notation where n is the number of clusterheads in the network.

5.4. Results

We implemented the CDS Flooding Algorithm using C++ on top of the

network simulator ns2. In order to get reliable results for the message transfer

times, we used the same network scenarios for each test. We generated 8 random

network scenarios for static and low speed dynamic graphs for the number of nodes

as 20, 30, 40 and 50. We first constructed the CDSs with these scenarios using the

modified TLCDSC Algorithm which is described in Section 5.1. Therefore, during

our tests we assumed that we already have underlying CDS based clusters. We

tested our algorithm for random message traffics for 0.5, 1, 2, 4 and 8 messages per

second.

In our experiments we collected test results for the duration of the delivery

of messages. The duration is measured between the creation of the message at the

65

Figure 5.6. CDS Flooding Test Results for Static Network

application level and the delivery to the destination node at the application level.

We add a timestamp to the message body. When the target node receives the

message it calculates the duration and stores the result. Each node sends a message

to a random destination at a random time. We have collected data for a total of

2800 samples. We have generated 40 different scenarios for 5 message density, 4

number of nodes and 2 mobility parameters and we collected 70 sample result for

each scenario. We classified the samples according to the number of nodes and

message traffic densities.

In the dynamic graph experiments, random movements are generated for

each simulation. For the low mobility scenarios, node speeds are limited from 1 m/s

to 5 m/s. In dynamic graph experiments, we take into account only the experiments

in which, nodes are moving but the neighborhoods of the nodes do not change.

The results for the static network experiments can be seen in Fig. 5.6. We

expect that the message times won’t be affected from the traffic density under the

ideal conditions. But because of the message conflicts, the message times increase as

the message traffic increases. We also expect that as the number of nodes increases

the message times will also increase. In a larger network, our CDS will have more

clusterheads. Therefore the messages will be flooded to a larger set of nodes. We

can see the increase in the Fig. 5.6 as the number of nodes increases.

The test results for the low speed dynamic network can be seen in Fig. 5.7.

66

Figure 5.7. CDS Flooding Test Results for Low Speed Dynamic Network

The CDS Flooding Algorithm is independent from the mobility of the network. As

it can be seen in the Fig. 5.7 the results are quite similar to the results of the static

network. Both results vary between approximately 0.05 and 0.5 seconds. We can

observe nearly the same behaviors against the number of nodes and the traffic load.

5.5. Discussions

The CDS Flooding Algorithm satisfies the expectations according to the

experimental results. The limitations with the algorithm are generally caused by the

conflicting messages. Under the high traffic load, the results became unstable. For

traffic loads greater than 8 msg/sec, we cannot collect meaningful readouts. This

is because when the traffic load exceeds a limit, the message conflicts increases and

blocks the message traffic.

Another limitation that we encountered during the tests is the mobility of

the network. During our experiments we cannot collect meaningful data for the

high speed dynamic networks. In order to generate random traffic, we set the test

duration between 200 and 2000 seconds. In high speed dynamic networks the neigh-

borhoods change in such durations and one of our assumptions is not valid anymore.

This limitation is not related to the CDS Flooding Algorithm, it is a result of our

test scenarios. In ideal conditions, as the TLCDS Algorithm runs periodically be-

67

fore the neighborhoods change, the period is determined according to the speed of

the nodes. Therefore this limitation can be ignored. Moreover, this problem should

be left to the TLCDSC Algorithm as the CDS Flooding Algorithm assumes that

the underlying CDS topology is managed by the underlying TLCDSC Algorithm

independently from our CDS Flooding Algorithm. Therefore we didn’t make tests

for the high speed dynamic networks.

For the future work some modifications and optimizations can be applied to

the CDS Flooding Algorithm in order to decrease message complexity. For example,

some additional rules may be applied such that if two nodes are adjacent, they may

communicate directly without sending the message to the clusterhead.

The CDS Flooding Algorithm shows us that our TLCDSC Algorithm may be

easily applied to many applications. It also shows that TLCDSC Algorithm meets

the expectations under an application which is using the resulting CDS.

68

CHAPTER 6

CONCLUSION

We proposed, designed and implemented three protocols in order to solve

clustering and routing problems in MANETs. We implemented our protocols in two

layers. The first layer is the clustering layer which divides the unstructured MANET

into clusters. In this layer, clustering algorithms implemented are Connected Domi-

nating Set Based Clustering (CDSC) Algorithm and Two Level Connected Dominat-

ing Set Based Clustering (TLCDSC) Algorithm. The CDSC Algorithm is focused

to find minimal connected dominating sets in MANETs. The CDSC Algorithm is

based on Wu’s CDS Algorithm which finds a crowded dominating set and prunes the

MANET by eliminating redundant clusterheads (Cokuslu et al. 2006). We added

extra heuristics and pruning rules to the Wu’s CDS Algorithm in order to reduce

the size of the resulting CDS. The CDSC Algorithm also contributes to Wu’s CDS

Algorithm by informing the nodes about their clusterheads. At the end of the CDSC

Algorithm, every node determines their clusterheads and are ready to implement any

cluster based application. We describe the algorithm by using finite state machine

design. We analyzed the time and message complexities of the algorithm. We tested

the CDSC Algorithm on top of the network simulator ns2. We measured the time

to build the clusters, cluster sizes, number of clusterheads per cluster and coefficient

of variances in the cluster sizes. We tested our algorithm in different scenarios in

which the number of nodes varies between 20 and 50, and mobilities vary between 0

m/s and 10 m/s. The implementation results confirm with the theoretical analysis

and show that the CDSC Algorithm is scalable in terms of the size of the network

and the mobility. The second algorithm which is designed and implemented in the

clustering layer is the TLCDSC Algorithm. At the end of the evaluation period

of the CDSC Algorithm we realized that in some situations in which inter-cluster

communication is the main part of the entire communication in the network, the

cluster sizes are needed to be larger than the sizes of clusters that CDSC Algorithm

builds. In order to build more crowded multi-level clustered environments, we im-

69

proved the CDSC Algorithm so that it runs recursively on top of the resulting CDS

of the previous recursion. We implemented the TLCDSC Algorithm to build two

level clusters. We extended the finite state machine of the CDSC Algorithm and

described the algorithm in detail. We analyzed the time and message complexities

of the algorithm and implemented on top of the network simulator ns2. We tested

the TLCDSC Algorithm with the same scenarios which are used during the tests of

the CDSC Algorithm and compared the results of the two clustering algorithms. As

it is expected, the first level clustering results are similar in both algorithms, but the

TLCDSC Algorithm extracted a second level CDS which consists of a subset of CDS

elements of the first level clustering. The test results of the TLCDSC Algorithm

are very similar to the expected behavior and confirm with the theoretical analysis.

They also show that the CDSC Algorithm can easily be extended to a multi-level

hierarchical clustering algorithm.

The second layer protocol which is proposed in this thesis is a Flooding based

routing algorithm for clustered MANETs (CDS Flooding). The CDS Flooding Algo-

rithm assumes that the network is clustered by an underlying clustering algorithm.

It also assumes that the clusterheads create a backbone between the clusters. In

order to meet the assumptions, we used the TLCDSC Algorithm as the clustering al-

gorithm. We build the CDS based clusters and design the CDS Flooding Algorithm.

The CDS Flooding Algorithm is based on the idea of reverse-path multicast algo-

rithms. In CDS Flooding Algorithm, the flooding operation takes place between the

clusterhead nodes instead of the whole network. Therefore, the algorithm reduces

the flooding complexity directly by using a smaller set of nodes. We analyzed, im-

plemented and tested the CDS Flooding Algorithm by using the network simulator

environment ns2. The test results met our expectations and showed that the CDS

Flooding algorithm can be used in clustered MANETs especially if the clustering

algorithm is based on connected dominating sets. The CDS Flooding Algorithm

also showed that the TLCDSC Algorithm is a very suitable algorithm for the de-

velopment of distributed applications which are designed to run on top of clustered

environments.

In summary, we proposed three algorithms for the distributed applications

in mobile ad hoc networks. This study shows that the proposed architecture may

70

be preferable in implementing distributed applications which require CDS based

clustered networks with a built-in routing capabilities. The test results show that

our algorithms are scalable in terms of the number of nodes in the MANET. The

clustering algorithms perform similarly in different test scenarios in which the num-

ber of nodes varies. Cluster sizes are not affected by the size of the network. The

CDS Flooding Algorithm also performs similarly in the different test scenarios. Test

results show that end-to-end message transfer times are proportional to the size of

the CDS which is built at the end of the TLCDSC Algorithm, instead of the number

of nodes in the entire network. The protocols implemented are also preferable for

static and low speed networks, but they are not very suitable for the high speed dy-

namic networks. Test results show that performance values of the three algorithms

are nearly constant in the different mobility scenarios as long as the neighborhoods

remain still.

Our algorithms have better performance than many other similar algorithms

such as Wu’s CDS Algorithm in crowded MANETs in which the degrees of the nodes

do not exceed the specified values in the test results.

We are planning to make enhancements in the CDS Flooding Algorithm and

implement a proactive routing algorithm for MANETs as a future work in order to

speed up the algorithms. We are planning to get help from a MAC level protocol

in order to decrease the number of conflicting messages which can be considered

as the main problem encountered during the tests. We are also planning to adapt

the proposed communication architecture to the Wireless Sensor Networks (WSN),

which is an important research area in today’s wireless technology. We are planning

to enhance the algorithms by adding some critical wireless sensor node constraints

such as energy levels, signal strengths and lifetime of the nodes.

71

REFERENCES

Ahuja, M. and Zhu, Y. 1989. ”A distributed algorithm for minimum weight span-

ning trees based on echo algorithms”, Proceedings of the 9th International

Conference on Distributed Computing Systems, pp. 2–8.

Awerbuch, B. 1987. ”Optimal distributed algorithms for minimum weight spanning

tree, counting, leader election and related problems”, Proceedings of the 9th

Annual ACM Symposium on Theory of Computing, pp. 230–240.

Baker, D. and Ephremides, A. 1981. ”The architectural organization of a mobile

radio network via a distributed algorithm”, IEEE Transactions. Vol. 29, pp.

1694–1701.

Banerjee, S. and Khuller, S. 2000. ”A clustering scheme for hierarchical routing in

wireless networks”, Technical Report CS-TR-4103, University of Maryland.

Basagni, S., Chlamtac, I., Syrotiuk, V., and Woodward, B. 1998. ”A distance

routing effect algorithm for mobility (dream)”, Proceedings of the 4th an-

nual ACM/IEEE international conference on Mobile computing and networking,

ACM Press, pp. 76–84.

Chen, G., Nocetti, F., Gonzalez, J., and Stojmenovic, I. 2002. ”Connectivity based

k-hop clustering in wireless networks”, Proceedings of the 35th Annual Hawaii

International Conference, pp. 2450–2459.

Chen, Y. and Liestman, A. 2002. ”Approximating minimum size weakly-connected

dominating sets for clustering mobile ad hoc networks”, Proceedings of 3rd

ACM International Symposium Mobile Ad Hoc Net. and Comp., pp. 165–72.

Chen, Y. and Liestman, A. 2003. ”A zonal algorithm for clustering ad hoc networks”,

International Journal of Foundations of Computer Science, pp. 305–322.

Chen, Y., Liestman, A., and Liu, J. 2004. ”Clustering algorithms for ad hoc wireless

networks”, Nova Science Publishers.

72

Chiang, C., Wu, H., Liu, W., and Gerla, M. 1997. ”Routing in clustered multihop,

mobile wireless networks with fading channel”, Proceedings of IEEE Singapore

International Conference on Networks SICON’97, IEEE, pp. 197–211.

Cokuslu, D., Erciyes, K., and Dagdeviren, O. 2006. ”A dominating set based clus-

tering algorithm for mobile ad hoc networks”, Proceedings of International

Conference on Computational Science 2006, Springer-Verlag LNCS, Vol. 3991,

pp. 571–578.

Dagdeviren, O., Erciyes, K., and Cokuslu, D. 2006. ”A merging clustering algo-

rithm for mobile ad hoc networks”, Proceedings of International Conference on

Computational Science and Its Applications 2006, Springer-Verlag LNCS, Vol.

3981, pp. 681–690.

Dai, F. and Wu, J. 2004. ”An extended localized algorithm for connected dominating

set formation in ad hoc wireless networks”, IEEE Transactions On Parallel and

Distributed Systems, Vol. 15, No. 10.

Das, B. and Bharghavan, V. 1997. ”Routing in ad-hoc networks using minimum con-

nected dominating sets”, IEEE International Conference on Communications,

Vol. 1, pp. 376–380.

Das, B., Sivakumar, R., and Bhargavan, V. 1997. ”Routing in ad hoc networks

using a spine”, Proceedings of Sixth IEEE Int. Conf. Computers Comm. and

Networks, IEEE, pp. 1–20.

Denko, M. and Lu, H. 2006. ”An aodv-based clustering and routing scheme for

mobile ad hoc networks”, Ad-Hoc Networking, Boston, Springer, pp. 83–97.

Gallagher, R., Humblet, P., and Spira, P. M. 1983. ”A distributed algorithm for

minimum-weight spanning trees”, ACM Transactions on Programming Lan-

guages and Systems, Vol. 5, pp. 66–77.

Garay, J., Kutten, S., and Peleg, D. 1993. ”A sub-linear time distributed algorithm

for minimum-weight spanning trees”, Proceedings 34th Annual Symposium on

Foundations of Computer Science, pp. 659–668.

73

Gerla, M. and Tsai, J. 1995. ”Multicluster, mobile, multimedia radio network wire-

less networks”, ACM/Baltzer Journal of Wireless Networks, Vol. 1, No. 3, pp.

255–265.

Grimaldi, R. 1997. ”Discrete and Combinatorial Mathematics, An Applied Introduc-

tion”, in Addison-Wesley Longman Publishing Co., Inc., (Boston, MA, USA).

Guha, S. and Khuller, S. 1998. ”Approximation algorithms for connected dominating

sets”, Proceedings of the Fourth Annual European Symposium on Algorithms,

Springer-Verlag, pp. 2450–2459.

Halvardsson, M. and Lindberg, P. 2004. ”Reliable group communication in a military

ad hoc network”, Technical report, Vaxjo University.

Haynes, T., Hedetniemi, S., and Slater, P. 1978. ”Domination in graphs: Advanced

Topics”, (Dekker).

Joa-Ng, M. and Lu, I. 1999. ”A peer-to-peer zone-based two-level link state rout-

ing for mobile ad-hoc wireless networks”, IEEE Journal on Selected Areas in

Communications, pp. 1415–1425.

Johnson, D. and Maltz, D. 1996. ”Dynamic source routing in ad hoc wireless net-

works”, Imielinski and Korth, Mobile Computing, Kluwer Academic Publishers,

Vol. 353.

Kleinrock, L. and Faroukh, K. 1997. ”Hierarchical routing for large networks”,

Computer Networks, Vol. 1, pp. 155–174.

Lien, Y. 1988. ”A new node-join-tree distributed algorithm for minimum weight

spanning trees”, Proceedings of the 8th International Conference on Distributed

Computing System, pp. 334–240.

Liu, C. and Kaiser, J. 2005. ”A survey of mobile ad hoc network routing protocols”,

University of Ulm Technical Report Series.

Liu, H., Pan, Y., and Jiannong, C. 2004. ”An improved distributed algorithm for

connected dominating sets in wireless ad hoc networks”, Proceedings of Parallel

74

and Distributed Processing and Applications: Second International Symposium,

p. 340.

Mingliang, J., Li, J., and Tay, Y. C. 1999. ”Cluster based routing protocol (CBRP)”.

Murthy, S. and Garcia-Luna-Aceves, J. 1996. ”An efficient routing protocol for

wireless networks”, Mobile Networks and Applications, Vol. 1, No. 2, pp. 183–

197.

Ohta, T., Inoue, S., and Kakuda, Y. 2003. ”An adaptive multihop clustering scheme

for highly mobile ad hoc networks”, Proceedings of 6th ISADS03, pp. 2450–

2459.

Pei, G., Gerla, M., and Chen, T. 2000. ”Fisheye state routing in mobile ad hoc

networks”, ICDCS Workshop on Wireless Networks and Mobile Computing,

pp. D71–D78.

Pei, G., Iwata, A., Chiang, C., Gerla, M., and Chen, T. 1999. ”Scalable routing

strategies for ad-hoc wireless networks”, IEEE Journal on Selected Areas in

Communications, Vol. 17, No. 8, pp. 1369–1379.

Perkins, C. and Bhagwat, P. 1994. ”Highly dynamic destination-sequenced distance-

vector routing (dsdv) for mobile computers”, Conference on Communications

Architectures, Protocols and Applications, SIGCOMM94, ACM, pp. 234–244.

Perkins, C. and Royer, E. 1999. ”Ad-hoc on-demand distance vector routing”,

Mobile Computing Systems and Applications, IEEE, pp. 90–100.

Royer, E. and Toh, C. 1999. ”A review of current routing protocols for ad-hoc mobile

wireless networks”, IEEE Magazine Personal Commun., Vol. 8, pp. 46–55.

Srivastava, S. and Ghosh, R. 2003. ”Distributed algorithms for finding and main-

taining a k-tree core in a dynamic network”, Information Processing Letters,

Vol. 88, No. 4, pp. 187–194.

Stojmenovic, I., Seddigh, M., and Zunic, J. 2002. ”Dominating sets and neighbor

elimination-based broadcasting algorithms in wireless networks”, IEEE Trans-

actions on Parallel and Distributed Systems, Vol. 13, pp. 14–25.

75

Wan, P., Alzoubi, K. M., and Frieder, O. 2004. ”Distributed construction of con-

nected dominating set in wireless ad hoc networks”, Mobile Networks and Ap-

plications, Vol. 9, No. 2, pp. 141–149.

West, D. 2001. ”Introduction to Graph Theory”, in Prentice Hall, second edition.

Wu, J. 2002. ”Extended dominating-set-based routing in ad hoc wireless networks

with unidirectional links”, IEEE Transactions on Parallel and Distributed Sys-

tems, Vol. 9, No. 3, pp. 189–200.

Wu, J. and Li, H. 2002. ”A dominating-set-based routing scheme in ad hoc wireless

networks”, Telecommunication Systems, Vol. 18, No. 1–3, pp. 13–36.

Xu, Z. and Dai, S. 1998. ”Hierarchical routing using link vectors”, Proceedings of

Infocom, pp. 702–710.

Yan, X., Sun, Y., and Wang, Y. 2003. ”A heuristic algorithm for minimum connected

dominating set with maximal weight in ad hoc networks”, Proceedings of Grid

and Cooperative Computing: Second International Workshop, pp. 719–722.

Zeng, X., Bagrodia, R., and Gerla, M. 1998. ”Glomosim: a library for parallel

simulation of large-scale wireless networks”, Proceedings of the Principles of

Advanced and Distributed Simulation Conference 1998, pp. 154–161.

WEB 1, Fall, K. and Varadhan, K., The ns manual, 10/01/2007.

http://www.isi.edu/nsnam/ns/doc/ns doc.pdf.

WEB 2, Scalable Corporation, Qualnet user’s guide, 10/01/2007.

http://www.scalable-networks.com/.

WEB 3, OPNET Corporation, Opnet users manual, 10/01/2007.

http://www.opnet.com/.

76

APPENDIX A

SIMULATION SETUP

The protocols which are described in this thesis are implemented and tested

on top of the network simulation environment ns2 (Fall and Varadhan 2006).

There are lots of other network simulation environments such as GloMoSim (1998),

QualNet (2005), and OPNET (2006). They all provide simulation platforms for

MANETs. Before the implementation of our protocols, we examined these simula-

tion environments and chose ns2 as the simulation environment for our protocols.

We find out that ns2 is broadly used in the academic studies in order to simulate

various networks. In contrast, OPNET and QualNet are mostly considered to be

commercial products. GloMoSim is available for free of charge for the academic

applications, but it does not have a wired network support. The ns2 can be down-

loaded free of charge, it has both wired and wireless network support and can be

compiled on different operating systems. The source code can be modified and some

protocols can be added easily. Moreover, many wireless extensions have been con-

tributed from the UCB Daedelus, the CMU Monarch projects and Sun Microsystems

(Halvardsson and Lindberg 2004).

The wireless model essentially consists of the MobileNode class at the core,

with additional supporting features that allows simulations of multi-hop ad-hoc

networks, wireless LANs etc. MobileNode is the basic ns2 Node object with added

functionalities like ability to move, transmit and receive on a channel which allows

it to be used to create mobile, wireless simulation environments. During our im-

plementations, we used MobileNode class with its interfaces which are required to

send-receive message, create a list of adjacent neighbors etc. The network compo-

nents such as link layer and MAC layer components are created together in OTcl

language (Fall and Varadhan 2006).

The protocol stack is implemented in C++. We firstly modified the ex-

isting UDP and MAC layer implementations to communicate with our protocols.

UDP CDS class header can be seen in Figs. A.1 and A.2. Modifications to recvACK

77

method of MAC802 11 class must be made to communicate with upper layers which

can be seen in Fig. A.3.

The class header of the CDSC Algorithm can be seen in Figs. A.4, A.5 and

A.6, class header of the TLCDSC Algorithm can be seen in Figs. A.7, A.8, A.9 and

A.10 and class header of the CDS Flooding Algorithm can be seen in Figs. A.11, A.12

and A.13.

The mobile node is designed to move in a three dimensional topology. How-

ever the third dimension (Z) is not used. That is, the mobile node is assumed to

move always on a flat terrain with Z always equal to 0. Thus the mobile node has

X, Y, Z(=0) coordinates that are continually adjusted as the node moves. The node

movement is defined in a separate file for convenience. Movement file can be gener-

ated using CMU’s movement generator. By this generator, one can set number of

nodes, pause time, maximum speed, minimum speed, simulation time, maximum X

and Y coordinates (Fall and Varadhan 2006). The executable command of move-

ment generator is given below:

• setdest -v <version> -n <number of nodes> -m <minimum speed(m/s)> -M

<maximum speed(m/s)> -t <simulation time(s)> -p <pause time> -x <width

of surface area> -y <height of surface area> > scenario file

In our simulations, we set the surface area in order to ensure the density

constraints, therefore the surface areas varied relative to the number of nodes. We

generated simulation surfaces varied from 850m × 850m to 850m × 3000m. Static,

low and high mobility scenarios are generated with the respective node speeds 0m/s,

1.0m/s to 5.0m/s and 5.0m/s to 10.0m/s. Pause time is set to 0.

After protocols are implemented in C++, the scenario files are written in

Otcl. A complete scenario file is given in Figs. A.14, A.15 and A.16.

78

//

// Author: Deniz Cokuslu

// File: udp-cds.h

// Date: 10/09/06 (for CDSC Algorithm)

//

#ifndef ns_udp_cds_h

#define ns_udp_cds_h

#include "udp.h"

#include "ip.h"

#include "cds_protocol.h"

// Message Header Structure

struct hdr_cdsClus {

int ack; // is it ack packet?

int seq; // sequence number

int nbytes; // bytes for pkt

double time; // current time

int32_t source; // source address

int32_t destination; // next hop destination address

int32_t real_destination; //final destination address

int32_t real_source; //Use for ldr_poll_node message

int cluster_level; // Cluster Level

int cluster_leader; // Cluster Leader

int old_cluster_leader; // Old Cluster Leader

int message_type; //Message Type

int message_propagation_type;//Message Propagation Type

int protocol_type; //Type of the protocol, CDSC, TLCDSC or CDSFlooding

int priority; //Priority of the message

//Added for CDSC Algorithm

int D_neighbors; //A list of neighbors of the sending node

int D_color; //Color of the sender

int D_degree; //Degree of the sender

int *multicast_neighbors;//A list of neighbors to which the message is sent

//Added for CDS Flooding Algorithm

double message_id; //Unique id of the message

double sentTime; //sent time of the message

// Packet header access functions

static int offset_;

inline static int& offset() { return offset_; }

inline static hdr_cdsClus* access(const Packet* p) {

return (hdr_cdsClus*) p->access(offset_);

}

};

Figure A.1. Header File of the udp-cds Class

79

// UdpCDSClusAgent Class definition

class UdpCDSClusAgent : public UdpAgent {

public:

UdpCDSClusAgent();

UdpCDSClusAgent(packet_t);

Application* getApplication();

virtual int supportCDSClus() { return 1; }

virtual void enableCDSClus() { support_cdsclus_ = 1; }

virtual void sendmsgdst(int nbytes, const char *flags = 0, int32_t dist=0);

virtual void sendmsg(int nbytes, const char *flags = 0);

void recv(Packet*, Handler*);

void notification(int src, double message_id);

};

Figure A.2. Header File of the udp-cds Class

void Mac802_11::sendACK(int dst, double message_id)

{

Packet *p = Packet::alloc();

hdr_cmn* ch = HDR_CMN(p);

struct ack_frame *af = (struct ack_frame*)p->access(hdr_mac::offset_);

assert(pktCTRL_ == 0);

ch->uid() = 0;

ch->ptype() = PT_MAC;

ch->size() = phymib_.getACKlen();

ch->iface() = -2;

ch->error() = 0;

bzero(af, MAC_HDR_LEN);

//Modified for CDSFlooding Algorithm

af->src=addr();

af->message_id = message_id;

.

.

.

UdpMergClusAgent* udp=(UdpMergClusAgent*)UDPMCContainer::instance().getElementById(my_addr);

//Modified for CDSFlooding Algorithm

udp->notification(source, message_id);

.

.

.

Figure A.3. Modification Made on mac-802 11.cc

80

// Author: Deniz Cokuslu

// File: cdsclus-app.h

// Date: 10/09/06 (for CDSC Algorithm)

#include "timer-handler.h"

#include "packet.h"

#include "app.h"

#include "mobilenode.h"

#include "timeque.h"

class CDSClusApp;

// CDS Clustering Protocol uses this timer to

// schedule next app data packet transmission time

class CDSTimer:public TimerHandler

{

public:

CDSTimer(CDSClusApp* t) : TimerHandler(), t_(t) {}

inline virtual void expire(Event*);

inline virtual void init();

inline virtual void tout_on(double added_time);

inline virtual void tout_off();

inline virtual void set_tout_seconds(double seconds);

inline virtual void tout_schedule(double time);

void state_tout();

protected:

CDSClusApp* t_;

double tout_seconds;

int tout_state;

};

// CDSClus Application Class Definition

class CDSClusApp:public Application

{

public:

CDSClusApp();

//Sends a cds clustering packet

void send_cdsclus_pkt(int source,int destination,int message_type, int neighbors[],

int color, int degree, int packet_type);

//Generic send method

void send_msg(int nbytes,const char* msg);

void recordNode(MobileNode *node);

void init();

void externalInit();

void init_fsm();

//Sets the methods to the FSM transitions

void CDSClusApp::fsm_jump_next_state(void *message);

//Generic receive message method

virtual void recv_msg(int nbytes, const char *msg = 0);

Figure A.4. CDSClusApp Class Header File

81

//Global variables

int D_color; //Color of the node

int D_count; //Count of the message sent, used to collect ACK messages

int D_degree; //Number of node’s neighbors

int D_neighbor_matrix[N_NODES][N_NODES]; //Node’s 2 hop neighborhood list

int D_neighbors_colors[N_NODES]; //List of node’s neighbors colors

int D_neighbors_degrees[N_NODES]; //List of node’s neighbors’ degrees

int D_message_sent_neighbors[N_NODES]; //List of nodes to which the multicast message

//is sent

int D_lost_message_type; //Type of the ACK needed message

int myNeighbors[N_NODES]; //list of node’s neighbors

int D_my_cluster_head; //Node’s clusterhead

protected:

int command(int argc, const char*const* argv);

void start(); // Start method of the protocol

void stop(); // Stop method of the protocol

//States of the Finite State Machine

#define D_IDLE 0

#define D_CHK_NODES 1

#define D_CHK_DOMINATION 2

#define D_CHK_CH 3 //Check Cluster Head

//Message types

#define D_Period_TOUT 0

#define D_Neighbor_REQ 1

#define D_Neighbor_LST 2

#define D_Color_REQ 3

#define D_Color_RES 4

#define D_Cluster_REQ 5

#define D_Cluster_RES 6

//Colors

#define D_UNDEFINED_COLOR -1

#define D_WHITE 0

#define D_BLACK 1

#define D_GRAY 2

//Timeout constants

#define D_tout_period 0.010

#define D_tout_timer 0.200

//FSM Methods State - Message Received

int Act00(void *message);//IDLE - D_Period_TOUT

int Act01(void *message);//IDLE - D_Neighbor_REQ

int Act03(void *message);//IDLE - D_Color_REQ

int Act05(void *message);//IDLE - D_Cluster_REQ

int Act11(void *message);//D_CHK_NODES - D_Neighbor_REQ

Figure A.5. CDSClusApp Class Header File (con.)

82

int Act12(void *message);//D_CHK_NODES - D_Neighbor_LST

int Act13(void *message);//D_CHK_NODES - D_Color_REQ

int Act15(void *message);//D_CHK_NODES - D_Cluster_REQ

int Act21(void *message);//D_CHK_DOMINATION - D_Neighbor_REQ

int Act23(void *message);//D_CHK_DOMINATION - D_Color_REQ

int Act24(void *message);//D_CHK_DOMINATION - D_Color_RES

int Act25(void *message);//D_CHK_DOMINATION - D_Cluster_REQ

int Act31(void *message);//D_CHK_CH - D_Neighbor_REQ

int Act33(void *message);//D_CHK_CH - D_Color_REQ

int Act35(void *message);//D_CHK_CH - D_Cluster_REQ

int Act36(void *message);//D_CHK_CH - D_Cluster_RES

int ActNA(void *message);//Method Not Applicable

//CDS Application methods

//Used to multicast a message to a list of neighbors

int multicast_message(int id, int type, int *neighbors, int color, int degree);

//Returns the degree of the node

int getMyDegree(int *my_neighbors, int numberOfNodes);

//Finishes the execution of the algorithm

int finish_phase(int id, int color);

//Selects an appropriate clusterhead if possible

int selectMyClusterHead();

};

Figure A.6. CDSClusApp Class Header File (con.)

83

// Author: Deniz Cokuslu

// File: cdsclus-app.h

// Date: 28/03/07 (for TLCDSC Algorithm)

#include "timer-handler.h"

#include "packet.h"

#include "app.h"

#include "mcfque.h"

#include "mobilenode.h"

#include "timeque.h"

class TLCDSCApp;

// TLCDSC Protocol uses this timer to

// schedule next app data packet transmission time

class TLCDSCTimer : public TimerHandler

{

public:

TLCDSCTimer(TLCDSCApp* t) : TimerHandler(), t_(t) {}

inline virtual void expire(Event*);

inline virtual void init();

inline virtual void tout_on(double added_time);

inline virtual void tout_off();

inline virtual void set_tout_seconds(double seconds);

inline virtual void tout_schedule(double time);

void state_tout();

protected:

TLCDSCApp* t_;

double tout_seconds;

int tout_state;

};

// TLCDSC Application Class Definition

class TLCDSCApp : public Application

{

public:

TLCDSCApp();

void send_cds_pkt(int source,int destination, int message_type, int *neighbors,

int color, int degree, int *multicast_neighbors, int packet_type);

hdr_tlcdsc generate_packet(int root_source, int source, int destination,

int final_destination, double message_id,

int message_type, int *neighbors, int color,

int degree, int multicast_neighbors[N_NODES], int packet_type,

int protocol_type, double sentTime);

void send_tlcdsc_pkt(hdr_tlcdsc mh_buf);

void send_msg(int nbytes,const char* msg);

void notification(int source, double message_id);

virtual void upper_notification(int ntf_src, double mesasge_id);

Figure A.7. TLCDSCApp Class Header File

84

void recordNode(MobileNode *node);

void init();

void externalInit();

void init_fsm();

void TLCDSCApp::fsm_jump_next_state(void *message);

virtual void recv_msg(int nbytes, const char *msg = 0); // (Sender/Receiver)

//Level 1 Global variables

int D_color; //Level 1 Color of the node

int D_count; //Count of the message sent, used to collect ACK messages

int D_degree; //Number of node’s Level 1 neighbors

int D_neighbor_matrix[N_NODES][N_NODES];//Node’s 2 hop Level 1 neighborhood list

int D_neighbors_colors[N_NODES]; //List of node’s Level 1 neighbors colors

int D_neighbors_degrees[N_NODES]; //List of node’s Level 1 neighbors’ degrees

int D_message_sent_neighbors[N_NODES]; //List of nodes to which the multicast message

//is sent

int D_lost_message_type; //Type of the ACK needed message

int myNeighbors[N_NODES]; //list of node’s Level 1 neighbors

int D_cluster_members[N_NODES]; //A list of nodes which are in the node’s cluster

//if the node is a clusterhead

int D_my_cluster_head; //Node’s clusterhead

//Level 2 Level Global Variables

int D_degree_L2; //Number of node’s Level 2 neighbors

int D_neighbor_matrix_L2[N_NODES][N_NODES];//Node’s 2 hop Level 2 neighborhood list

int D_neighbors_colors_L2[N_NODES]; //List of node’s Level 2 neighbors colors

int D_neighbors_degrees_L2[N_NODES]; //List of node’s Level 2 neighbors’ degrees

int myNeighbors_L2[N_NODES]; //list of node’s Level 1 neighbors

int D_color_L2; //Level 2 Color of the node

int D_multicast_neighbors[N_NODES]; //Multicasted neighbors list

protected:

int command(int argc, const char*const* argv);

void start(); // Start sending data packets (Sender)

void stop(); // Stop sending data packets (Sender)

//FSM States

//Level 1 States

#define D_IDLE 0

#define D_CHK_NODES 1

#define D_CHK_DOMINATION 2

#define D_CHK_CH 3 //Check Cluster Head

//Level 2 States

#define D_WAIT_BLACK 4 //A Black node waits for its GRAY colored neighbors’ permanent colors

#define D_CHK_NODES_L2 5

#define D_CHK_DOMINATION_L2 6

#define D_CHK_CH_L2 7 //Check Cluster Head

#define D_WAIT_MEMBERSHIP_ACK 11

Figure A.8. TLCDSCApp Class Header File (con.)
85

//End States

#define D_WHITE_STATE 8

#define D_BLACK_STATE 9

#define D_RED_STATE 10

//Message types

//Level 1 Messages

#define D_Period_TOUT 0

#define D_Neighbor_REQ 1

#define D_Neighbor_LST 2

#define D_Color_REQ 3

#define D_Color_RES 4

#define D_Cluster_REQ 5

#define D_Cluster_RES 6

//Level 2 Messages

#define D_Black_REQ 7

#define D_Black_RES 8

#define D_Neighbor_REQ_L2 9

#define D_Neighbor_LST_L2 10

#define D_Color_REQ_L2 11

#define D_Color_RES_L2 12

#define D_Cluster_REQ_L2 13

#define D_Cluster_RES_L2 14

#define D_Cluster_MBR_INF 15

#define D_Cluster_MBR_ACK 16

//Level 1 Colors

#define D_UNDEFINED_COLOR -1

#define D_WHITE 0

#define D_BLACK 1

#define D_GRAY 2

//Level 2 Colors

#define D_BLUE 3 // Gray of Level2

#define D_RED 4 //Supernode

//Timer constants

#define D_tout_period 0.010

#define D_tout_timer 0.200

//FSM Methods

int ActNA(void *message); //Not Applicable

// STATE - Received Message Type

int ActX1(void *message); //Any State - D_Neighbor_REQ

int ActX3(void *message); //Any State - D_Color_REQ

int ActX5(void *message); //Any State - D_Cluster_REQ

Figure A.9. TLCDSCApp Class Header File (con.)

86

int ActX7(void *message); //Any State - D_Black_REQ

int ActX9(void *message); //Any State - D_Neighbor_REQ_L2

int ActX11(void *message); //Any State - D_Color_REQ_L2

int ActX13(void *message); //Any State - D_Cluster_REQ_L2

int ActX15(void *message); //Any State - D_Cluster_MBR_INF

int Act00(void *message); //D_IDLE - D_Period_TOUT

int Act12(void *message); //D_CHK_NODES - D_Neighbor_LST

int Act24(void *message); //D_CHK_DOMINATION - D_Color_RES

int Act36(void *message); //D_CHK_CH - D_Cluster_RES

int Act48(void *message); //D_WAIT_BLACK - D_Black_RES

int Act510(void *message); //D_CHK_NODES_L2 - D_Neighbor_LST_L2

int Act612(void *message); //D_CHK_DOMINATION_L2 - D_Color_RES_L2

int Act714(void *message); //D_CHK_CH_L2 - D_Cluster_RES_L2

int Act1116(void *message); //D_WAIT_MEMBERSHIP_ACK - D_Cluster_MBR_ACK

//TLCDSCApp methods

//Broadcasts the message

int broadcast_message(int id, int type, int *neighbors, int color, int degree);

//Multicasts the message to the specified list of neighbors

int multicast_message(int id, int type, int *neighbors, int *multicast_neighbors,

int color, int degree);

//Get the node’s degree

int getMyDegree(int *my_neighbors, int numberOfNodes);

//Finises the application

int finish_phase(int id, int color, int color_L2, int state);

//Selects an appropriate clusterhead if possible

int selectMyClusterHead();

};

Figure A.10. TLCDSCApp Class Header File

87

// Author: Deniz Cokuslu

// File: cds-flooding.h

// Date: 07/03/07 (for cds flooding)

#include "timer-handler.h"

#include "packet.h"

#include "app.h"

#include "mobilenode.h"

#include <time.h>

class CDSFloodingApp;

//t_message_info_box is a structure that holds

// message_id: unique message id

// ack_needed_neighbors: From who the node is waiting the ACK

// count: The number of neighbors to which the message is sent

// expire_time: When the ACK will be expired

// message: the message object

// tout_type: type of the expiration, this variable

// is either Delete_TOUT or ACK_TOUT

// which indicates the action to be done

// when the time as come.

typedef struct t_message_info_box {

double message_id;

int ack_needed_neighbors[N_NODES];

int count;

double expire_time;

hdr_tlcdsc message;

int tout_type;

}t_message_info_box;

// CDSFlooding Protocol uses this timer to

// schedule next app data packet transmission time

class CDSFloodingTimer : public TimerHandler {

public:

CDSFloodingTimer(CDSFloodingApp* t) : TimerHandler(), t_(t) {}

inline virtual void expire(Event*);

inline virtual void init();

inline virtual void tout_on(double added_time);

inline virtual void tout_off();

inline virtual void set_tout_seconds(double seconds);

inline virtual void tout_schedule(double time);

void state_tout();

protected:

CDSFloodingApp* t_;

double tout_seconds;

int tout_state;

};

Figure A.11. CDSFloodingApp Class Header File

88

// Application Class Definition

class CDSFloodingApp : public Application

{

public:

CDSFloodingApp();

//CDSFlooding packet send method

void send_cds_flooding_pkt(hdr_tlcdsc mh_buf);

//Packet generating method

hdr_tlcdsc generate_packet(int root_source, int source, int destination,

int final_destination, double messageId,

int message_type, int *multicast_neighbors,

int packet_type, double sentTime);

//Generic send message method

void send_msg(int nbytes,const char* msg);

//Constants

#define D_tout_timer 0.200

#define DELETE_PERIOD 50 //delete messages from the message_info_box in this period

#define ACK_PERIOD 0.800 //if ACK is not received in this time interval then expire

#define MSG_BUFFER_SIZE 1000//length of the message_info_box

//Type of the timeouts

#define DELETE_TOUT 0

#define ACK_TOUT 1

#define Normal_MSG 0

#define Forced_MSG 1//Forces the receiver to reply the message even it is already received

//

void notification(int source);

virtual void upper_notification(int ntf_src, double message_id);

void recordNode(MobileNode *node);

void init();

//Unique message id generator

double message_id_generator();

//Records the message into the message_info_box

int recordMessage(double message_id, int *ack_needed_neighbors, int count,

double expire_time, hdr_tlcdsc *message, int tout_type);

void externalInit();

//finds the index of the specified message in the message_info_box

int findMessage(double message_id);

//Process message is the heart of the CDSFlooding algorithm

void processMessage(void *message);

//Generic receive message method

virtual void recv_msg(int nbytes, const char *msg = 0);

Figure A.12. CDSFloodingApp Class Header File (con.)

89

int D_color; //Color of the node

int *D_neighbor_matrix; //List of node’s 2 hop neighbors

int *D_neighbors_colors;//List of nodes’ neighbors’ colors

int *myNeighbors; //List of node’s neighbors

int *D_cluster_members; //List of members of the cluster if the node is a clusterhead

int D_my_cluster_head; //Id of the node’s clusterhead

t_message_info_box message_info[MSG_BUFFER_SIZE];//message_info_box

protected:

int command(int argc, const char*const* argv);

void start(); // Start sending data packets (Sender)

void stop(); // Stop sending data packets (Sender)

};

Figure A.13. CDSFloodingApp Class Header File (con.)

90

==

Define options

==

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 500 ;# max packet in ifq

set val(nn) 20 ;# number of mobilenodes

set val(rp) DumbAgent ;# routing protocol

set val(mp) "../../ns-2.28/indep-utils/cmu-scen-gen/setdest/CDSFlooding20_"

#set val(mrequest) "../mrequests/mrequest10M"

set val(start_time) 0

set val(mmapp_end_time) 100.56

set val(cds_flooding_start_time) 101.00

set val(cds_flooding_end_time) 2000.00

set val(end_time) 2000.56

set val(halt_time) 2000.57

set val(tr_file) out20lt.tr

set val(log_time1) 1.751763

set val(log_time2) 5.0

set val(log_time3) 8.10

==

Main Program

==

#

Initialize Global Variables

#

set ns_ [new Simulator]

set tracefd [open $val(tr_file) w]

$ns_ trace-all $tracefd

set up topography object

set topo [new Topography]

#20 nodes

$topo load_flatgrid 850 950 #Surface area width * height

#

Create God

#

set god_ [create-god $val(nn)]

Figure A.14. An example Scenario File

91

#

Create the specified number of mobilenodes [$val(nn)] and "attach" them

to the channel.

Here all the nodes

configure node

set chan_1_ [new $val(chan)]

$ns_ node-config -adhocRouting $val(rp) \

-llType $val(ll) \

-macType $val(mac) \

-ifqType $val(ifq) \

-ifqLen $val(ifqlen) \

-antType $val(ant) \

-propType $val(prop) \

-phyType $val(netif) \

-channel $chan_1_ \

-topoInstance $topo \

-agentTrace OFF \

-routerTrace OFF \

-macTrace OFF \

-movementTrace ON

for {set i 0} {$i < $val(nn) } {incr i} {

set node_($i) [$ns_ node]

$node_($i) set X_ [expr ($i+1)]

$node_($i) set Y_ [expr ($i+1)]

$node_($i) set Z_ 0

$node_($i) random-motion 1 ;# enable random motion

set udp_($i) [new Agent/UDP/tlcdsc]

set cds_flooding($i) [new Application/CDSFloodingApp]

$ns_ attach-agent $node_($i) $udp_($i)

$udp_($i) set packetSize_ 1000

$udp_($i) set fid_ 1

}

for {set i 0} {$i < $val(nn) } {incr i} {

for {set j 0} {$j < $val(nn) } {incr j} {

if {$i != $j} {

$ns_ connect $udp_($i) $udp_($j)

}

}

}

for {set i 0} {$i < $val(nn) } {incr i} {

set mmapp_($i) [new Application/TLCDSCApp]

set cds_flooding($i) [new Application/CDSFloodingApp]

$mmapp_($i) attach-agent $udp_($i)

$mmapp_($i) set pktsize_ 1000

}

Figure A.15. An example Scenario File (con.)

92

for {set i 0} {$i < $val(nn) } {incr i} {

for {set j 0} {$j < $val(nn) } {incr j} {

$mmapp_($i) record $node_($j)

}

$cds_flooding($i) record-cdsclus $mmapp_($i)

}

#

Define node movement model

#

puts "Loading movement pattern..."

source $val(mp)

#

Tell nodes when the simulation ends

#

for {set i 0} {$i < $val(nn) } {incr i} {

$ns_ at $val(start_time) "$node_($i) log-movement";

$ns_ at $val(log_time1) "$node_($i) log-movement";

$ns_ at $val(log_time2) "$node_($i) log-movement";

$ns_ at $val(mmapp_end_time) "$node_($i) log-movement";

$ns_ at $val(end_time) "$node_($i) log-movement";

}

#

Tell nodes when the simulation ends

#

for {set i 0} {$i < $val(nn) } {incr i} {

$ns_ at $val(end_time) "$node_($i) reset";

}

$ns_ at $val(end_time) "stop"

$ns_ at $val(halt_time) "$ns_ halt"

proc stop {} {

global ns_ tracefd

$ns_ flush-trace

close $tracefd

}

for {set i 0} {$i < $val(nn) } {incr i} {

$ns_ at $val(start_time) "$mmapp_($i) start"

$ns_ at $val(mmapp_end_time) "$mmapp_($i) stop"

$ns_ at $val(cds_flooding_start_time) "$cds_flooding($i) start"

$ns_ at $val(cds_flooding_end_time) "$cds_flooding($i) stop"

}

$ns_ run

Figure A.16. An example Scenario File (con.)

93

