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ABSTRACT 

 

MICROSTRUCTURAL ANALYSIS OF THE CORROSION OF Al2O3 

AND ZrO2 IN FRIT MELTS  

 

Dense alumina and zirconia crucibles manufactured in the laboratory by slip 

casting were tested for their resistance to corrosive attack by opaque and transparent 

frits between 1400-1500oC. Interface between the crucible and the frit was investigated 

by Scanning Electron Microscopy (SEM, Philips XL-30S FEG) equipped with EDS 

(Energy Dispersive Spectroscopy) unit, X-ray diffraction (XRD, Philips X’Pert Pro), 

and Optical Microscope (OM, Nikon Eclipse L150). Formation of a continuous band of 

zinc aluminate (gahnite) crystals was observed at the interface between the alumina 

crucible wall and the contained opaque and/or transparent frit melt. When opaque frit 

was used, isolated pockets of zirconia were present adjacent to the zinc aluminate band 

inside the frit. Deeper inside the frit incompletely dissolved zircon were observed.             

On the other hand zirconia crucible failed against both of the corrosive frits, resulting in 

complete penetration of frit species into zirconia crucible wall. Thermodynamic 

predictions based on the use of phase diagrams also produced similar conclusions with 

the practically observed results. Crucibles with 50 wt% zirconia and 50 wt% alumina 

were also manufactured and tested for their corrosion resistance against the frit. It was 

found that the alumina crucibles could be safely used for corrosion testing with minimal 

aluminum contribution to the frit melt.  
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ÖZET 
 

Al2O3 VE ZrO2’NIN FR�T ER�Y��� �ÇER�S�NDEK� KOROZYONUNUN 

M�KROYAPISAL ANAL�Z� 
 

Laboratuvarda slip-döküm yöntemiyle üretilmi� olan yo�un alumina ve zirkonya  

krozelerin 1400–1500 oC aralı�ında opak ve saydam frit korozyonuna dayanımı test 

edilmi�tir. Kroze ve frit arasındaki arayüzey SEM-EDS, XRD ve OM yöntemleri 

kullanarak incelenmi�tir. Devamlı bir bant �eklinde ZnAl2O4 kristallerinin olu�umu 

Al2O3 kroze duvarı ve içeri�indeki opak ve/veya saydam frit eriyi�i arasındaki 

arayüzeyde gözlemlenmi�tir. Opak frit kullanıldı�ı zaman izole olmu� ZrO2 kümeleri 

ZnAl2O4 bantına kom�u bir �ekilde frit içerisinde olu�mu�tur. Frit yüzeyinde daha 

içerilere girildi�inde ise çözünümünü tamamlamamı� ZrSiO4 gözlemlenmi�tir. Öte 

yandan ZrO2 kroze her iki a�ındırıcı frite kar�ı, fritin ZrO2 kroze duvarına tamamen 

nufuz etmesi nedeniyle ba�arısız olmu�tur. Faz diyagramlarının kullanımı üzerine olan 

termodinamik tahminler de pratikte saptanan sonuçlar ile benzerlik göstermi�tir. Ayrıca, 

kütlece 50% zirkonya ve 50% alüminadan olu�an krozeler de üretilmi� ve frite kar�ı 

korozyon dayanımları test edilmi�tir. Alümina krozelerin, frit eriyi�ine minimum 

alüminyum katkısı ile korozyon testi için güvenle kullanılabilece�i sonucuna 

varılmı�tır.  
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CHAPTER 1 
 

INTRODUCTION 
 

Ceramic products are made from natural or synthetic raw materials and are 

generally characterized by their high hardness and melting point combined with low 

toughness and resistance to fracture. They are the combination of complex oxides and 

silicates, also useful carbide, nitride, and boride ceramics are produced. Their stable 

properties depend on their structurally strong bonding. This stability protect materials 

from the attack of strong acid and high temperature corrosive gases and liquid metals. In 

addition, great hardness and high melting temperatures are led by this strong bonding.  

Refractories are ceramic products that can withstand high-temperature corrosive 

conditions encountered in industrial furnaces and process vessels. Furnace linings, 

crucibles, molten metal ladles, and other special high temperature products are 

manufactured from refractory materials. So, refractories must have good hot strength, 

high melting temperatures, chemical attack resistivity and resistance to abrasion. A flow 

sheet for manufacturing refractories is shown in Figure 1. (Jones et al. 1993).  

Some of the refractories that are used in frit kilns are suffering from excessive 

corrosion. Improper choice of refractories results in production losses and sometimes 

even catastrophic shut-downs (McCauley 1996). A corrosion testing protocol is 

therefore necessary to help ceramics manufacturers to identify the correct type of 

refractories for their furnaces.  

Crucibles are popular materials used in the laboratory for melting different types 

of solid samples at varying high temperatures. Their use cannot be avoided. Oxides are 

ideal materials for such applications because of their inherent thermal and chemical 

stability. In a separate project that was recently started a large number of laboratory 

crucibles were needed. Potential crucible materials that could be produced in-house 

were investigated for their thermodynamic compatibility and speed of manufacture. 

However, choice of the crucible material largely depends on the chemical environment 

and the processing temperature. The high melting points and resistance to chemical 

attack of several pure oxides make them useful as crucible materials. Platinum crucibles 

are generally used for melting soda-lime-silicate glasses (Mazer et al. 1991). They are, 

however, costly and difficult to clean. Leigh et al. state that ceramic crucibles can 



 2 

conveniently be used as a consumable to be replaced after each run (Leigh et al. 1987). 

On the other hand, there is a tendency of ceramic crucible materials to dissolve into the 

processing liquid which is in this study a molten frit bath. This type of dissolution can 

perhaps jeopardize the accuracy of the corrosion test which relies on the chemical 

stability of the frit melt (Dunkl et al. 2003). It is therefore important to use ceramic 

crucibles which will show the least amount of dissolution and chemical interaction with 

the frit melt.  

The goal of this study is to develop laboratory crucibles from different ceramics 

for use in corrosion testing of frit furnace refractories and to investigate interactions 

between frit melt and crucible. So, two types of frits were the melts that were aimed for 

containment. Initially, phase diagram study was performed to name the potential 

crucible materials to resist against these melts and to predict the degree of corrosive 

attack. In addition to the chemical resistance, crucible materials must be free from phase 

transitions that may lead to undesired volume expansions/contractions or perhaps even 

cracking during the heating and cooling cycle of the corrosion test. Obviously the 

crucibles must be completely dense to avoid liquid penetration and to minimize the 

surface area offered for corrosive reactions. Dense ceramics can be produced via 

isostatic pressing, plastic forming, ram pressing or slip casting. Hence, not only the 

above chemical criteria must be met for proper crucible material selection, but also the 

processing technique must be carefully evaluated. In order to achieve full density of the 

crucible, a fine particle size of the starting powder is necessary to produce the desired 

driving force for sintering at practically low temperatures which were in this study 

around 1550oC. 

This thesis includes the following subjects: materials used in the production of 

laboratory crucibles, processing techniques for ceramics, forming rheologically stable 

suspensions and characteristics of frit species are mentioned in Chapter 2. In Chapter 3, 

corrosion phenomena and phase diagrams used in this study are discussed. The 

experimental procedure and the results of this study are given and discussed in Chapters 

4 and 5 whereas the conclusions related to the recent study and the future work 

recommendations are stated in the last chapter.  
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Figure 1. Typical refractories manufacturing flow sheet. 

(Source: Refractories Institute 1993) 
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CHAPTER 2 
 

CRUCIBLES AND FRIT 
 

In this chapter, materials used in the production of laboratory crucibles, forming 

rheologically stable suspensions and processing techniques for ceramics will be briefly 

explained.  

 

2.1.  A General Look at the Materials Used in the Production of 

Crucibles 
  

 Crucibles, one of the most useful laboratory equipments for high temperature 

applications, can be either metallic/alloy or ceramic. The choice of the appropriate 

material mostly dependent on the chemical interaction between the processing liquid 

and the crucible material, meaning that there must be a tolerant dissolution between 

both species. Also the reaction temperature plays an important role in the selection of 

the proper crucible, as the material is expected to withstand to that temperature without 

undergoing phase changes. Table 2.1.1. displays the usual crucible materials and their 

properties. 

 

Table 2.1.1. Usual crucible materials and their properties. 

(Source: R.F. Bunshah 1968) 

 

Material  Melting or softening 
temperature (°C)  Typical charge  Atmosphere  

Quartz  1600 Ge, Si  inert, oxidising, reducing 
Alumina  2050 Al, Fe, Ni, Co, Pd, Pt Ag,  inert, oxidising, reducing 
Magnesia  2800 as in alumina, plus Mn inert, oxidising, reducing 
Stab. zirconia  2200  inert, oxidising, reducing 
Graphite  >3000  Al, Bi, Cd, Au, Ag  inert  
Boron nitride 2100 Zr, Hf inert, oxidising,reducing  
Platinum 1650 oxides, glasses inert, oxidising 
Iridium 2410 oxides inert, oxidising, reducing 
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In the manufacture of technical ceramics, such as in manufacturing crucibles, 

alumina (Al2O3) is used extensively. It is an excellent electrical insulator and abrasive, 

in essentially pure form. And its high melting point (2050 oC, 3722 oF) makes it a 

popular refractory. Graphite is one of the useful material to be used in manufacturing 

crucibles due to its superrefractory properties. It can be used in processes held at the 

highest industrial temperature and generally not wetted by melts and slags, meaning that 

excellent resistance against chemical attack. Zirconia (ZrO2) and zircon (ZrSiO4) are 

important refractory materials acting as excellent thermal insulators. On the other hand, 

possible phase changes through reaction temperature are an issue. For example ZrO2 

change from monoclinic to a tetragonal phase at 950 oC. This phase transition of ZrO2 

results in a 3–5 % change in volume, which causes cracking of the ceramic crucible 

when the temperature of the furnace is kept constant in that temperature region 

(Pretorius 1995). 

Metal crucible use in fast firing applications is frequent depending on the low 

specific heat capacity and high thermal conductivity values. Having high melting points 

above the process temperature is also an advantage whereas the possibility of reacting 

with oxygen or any other medium gases in the furnace is a drawback. 

The processing liquid under study may be a molten metal as well as a molten 

glass. Poirier et al. studied the corrosion of andalusite-based refractories by corrosive 

steel making slags in high-alumina crucibles (Poirier et al. 2004). On the other hand, 

Akamatsu, used a quartz double crucible in the fabrication of a phosphate glass fiber 

(Akamatsu 1983). Where as alumina, tin oxide and zirconia crucibles were tested for 

one of the heavy metal oxide glasses, PbO-Bi2O3-Ga2O3 glasses (Santos et al. 2002) .  

Phase diagrams are of technical significance for sintered ceramic materials, 

traditional porcelains and also for glass ceramics. In this study the selection of the 

crucible material was based on the use of three component phase diagrams that most 

closely covered the composition of the processing liquids and the crucible. Through the 

phase systems in consideration, any presence of liquid phase in the contact area of the 

species was not observed, as this gives noteworthy idea on whether penetration is 

allowed through the grains or not. To sum up, the produced crucible must be: resistant 

to high temperatures, impervious, chemically as inert as possible, mechanically strong 

enough and have large grain size.  

When the composition of the processing liquid and the reaction temperature are 

considered, the best materials to be used to produce crucibles in this study are identified 
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as alumina, zirconia and alumina-zirconia mix material. The next part includes the 

possible processing methods for ceramics. 

 

2.2. Processing Methods for Ceramics 
 

In a particular application, depending on the requirement of the component, 

fabrication methods may vary. The cost of fabrication strongly affects the choice of a 

particular fabrication method. In addition, the forming procedures for advanced 

applications of ceramics require special care in order to ensure minimum defect levels 

(especially microcracks, voids and surface pits). When formation of ceramic parts and 

metal parts are compared, it is obvious that to form ceramics is more diffucult than to 

form metal parts as ceramics have characteristics such as inherent brittleness, hardness, 

and high melting temperatures in general.  

On the other hand, especially in the production of ceramic crucibles, 

homogeneous distribution of the particles is required in order to obtain a high-density 

impervious product. So, this must be the criterion of top priority in the choice of 

processing method to be used in the production of crucibles. The expanded list of 

processing methods used in technical ceramic manufacturing is given below: 

 

2.2.1. Isostatic Pressing 

 
 Pressing can be classified depending on the direction of pressure application, that is 

uniaxial or isostatic. One of the ideal dry forming method in which pressure exerted 

uniformly on all surfaces of the powder mass and throuhgout the formed part is isostatic 

pressing. A dry or semidry granulated ceramic mix is placed in a pliable rubber or 

polymer mold, which is sealed, evacuated, and then sequeezed uniformly by immersion 

in a high pressure oil or water cylinder. Typical pressures are 280MPa. (Ceramics 

Industrial Processing and Testing, Second Edition 1993).  
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2.2.2. Slip Casting 

 
The success of slip casting process depends on two main factors: slip and the 

mold. A slip is slurry of very fine ceramic materials suspended in water (or occasionally 

another liquid) and generally having the consistency of thick cream. Starting with the 

treatment of slip and/or slurry, it can be concluded that the casting behaviour of it, 

depends strongly on gelling behaviour (change of viscosity with time). In order to 

control the flow properties of slips, additives are used for the dispersion of 

agglomerates, in other words, flocs. So, these additives are also named as deflocculants 

as they break up the agglomerates. Sodium silicate, sodium carbonate, sodium 

phosphate, and a number of organic substances such as the polyacrylates are common 

deflocculants used with slips.  

As mentioned above, the preparation and care of plaster molds is another factor 

effective on the success of a slip casting operation. The strenght and porosity of the 

resulting molds are determined with the amount of setting water used in mixing the 

plaster. In slip casting, water is removed from the powder suspension by the water 

suction of the plaster mould and a consolidated layer consisting of packed particles 

builds up. When a desirable thickness has been reached the excess slip is removed 

(drain casting) , or the casting proceeds until the casting fronts approach each other and 

a solid body has been obtained (solid casting), (Figure 2.2.). In this manner a ceramic 

article (cast) can be formed having outer configuration that reproduces the inner 

configuration of the plaster mould (Ceramics Industrial Processing and Testing, Second 

Edition 1993).  

 

     
 

Figure 2.2. Slip casting schematically. 

(Source: WEB_1, 1997) 
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Slip-cast products are less porous than those shaped by plastic processes, but 

their dimensional uniformity is only average. 

 

2.2.3. Ram Pressing  

 
Another plastic forming technique is RAM pressing. It is typically used to form 

large platters such as large floor tile. Modern RAM pressing uses a hydraulic press with 

two porous or permeable dies to form the finished shape. These have typically been 

made of gypsum cement (plaster), sometimes reinforced by metals. A bat of plastic 

material is placed on the lower mold and pressed to shape by the upper mold during 

RAM pressing. In order to remove the part, air is applied behind the lower mold. The air 

passes through the mold material and gently blows the part free. The part stays with the 

upper mold and then, when the upper mold is at its raised position, is released onto a 

tray or holder by application of air pressure behind and through the upper mold (Dry 

Pressing Technical Ceramics, The American Ceramic Society Bulletin 1996). 

 

2.2.4. Pressure Casting 

 
Pressure casting is a generic term to specify a fabrication technique where 

solidification is promoted under high pressure within a re-usable die. This process is 

similar to injection molding, a variant of porous mold casting. The ceramic suspension 

is injected into the mold under high pressure (Ceramics Industrial Processing and 

Testing, Second Edition 1993).  

 

2.2.5. Dry Pressing 

 
This method is particularly well-suited for the rapid production of various 

ceramic parts in which the granulated powder is placed in a steel die under very high 

pressures. The process is sometimes referred as dust-pressing, die-pressing, or uniaxial-

compaction. This is a cheap process used for the production of porcelain tile, cutting 

tools, grinding wheels, chip carriers, refractories, insulators, seal rings and nozzles. 

(Ceramic Microstructures 1994). 
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2.2.6. Gel Casting 
 

One of the useful ways of forming ceramic materials is gelcasting. It is a method 

in which ceramic powders are molded into green products with the presence of a 

monomer solution that is used as a binder vehicle and the controlled polymerization of 

the monomer in solution serves as a setting mechanism. The resulting green product is 

of exceptionally high strength and may be dried to remove water. After drying, the 

product may be further heated to remove the polymer and may also subsequently be 

fired to sinter the product to a high density (Janney et al. 1992). 

 

 2.2.7. Tape Casting or Doctor Blade forming 
 

This process utilizes a suspension of ceramic particles in a liquid. The flow 

ability of the suspension is similar to a slip casting suspension, but the slip used in tape 

casting contains a higher content of an organic binder. A smooth, flat surface is required 

for pouring or spreading the slip in order to form a thin film typically under 2 mm 

thickness. The fluid is removed by heat or flowing air in order to leave a thin tape 

consisting of moderately close-packed ceramic particles bonded together by the organic 

binder. As the tape is flexible, it can be cut, punched, metallized. Machines used in tape 

casting process are called “doctor blades” , those are whether stationary blade/moving 

carrier machines or moving blade/stationary carrier machines (Richerson et al. 1989). 

 

2.2.8. Injection Molding 
 

In this cyclic process known as injection molding, granular ceramic powders are 

first mixed with resin binders and special plasticizers. Then this mix is heated until 

softened and forced into a mold cavity where it cools and resolidifies to produce a part 

of the desired shape. Chemical manufacturers formulate special resins in order to 

optimize the process. Spark plugs, ceramic cores, thread guides, electronic parts, 

welding nozzles, and dental braces are succesfully produced by injection molding 

(Mutsuddy et al. 2000). 
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2.2.9. Extrusion 
 

Materials those having an axis normal to a fixed cross section, such as bricks, 

sewer pipes, hollow tiles, technical ceramics and electrical insulators are produced by 

this method. A stiff plastic mix through a die orifice is extruded. In order to eliminate 

air bubbles, the most widely practiced method is to use a vacuum auger, throughly mix 

the body with 12 to 20 % water and force it through a hardened steel or carbide die. The 

net shape and continous forming competences of the extrusion process are very 

attractive (Kingery 1976).  

 

2.3. Preparation of Stable Ceramic Suspensions 
 

In this study slip-casting method was decided to be used to form one of the most 

widely used technical ceramic type, crucibles, in laboratory conditions after evaluating 

the cost and the convenience through the given methods. 

As mentioned earlier, the slip-casting method has two requirements, first is the 

preparation of a proper plaster mold, second a stable slip as the most undesired situation 

in slips is the thixotrophic behaviour of the system. The best materials to be used to 

produce crucibles were identified as alumina, zirconia and alumina-zirconia mix. So, 

through literature research, priority was given to techniques used in the preparation of 

alumina, zirconia and alumina-zirconia slurry and/or slip. In order to have optimum slip 

compositions, several trial slurries and/or slips of each material (alumina and/or 

zirconia) were prepared to evaluate between the best suspension.  

 

2.3.1. Alumina Suspension Preparation 
 

Most of the literature studies point out the use of Darvan-C as a deflocculant in 

the preparation of alumina suspensions. Singh et al. have investigated the electrokinetic 

and adsorption characteristics of alumina suspensions in the presence of Darvan-C as 

dispersant and as a result of electrokinetic studies they concluded that alumina particles 

are positively charged (Singh et al. 2004). By the adsorption of polyelectrolyte, the 

charge on the particles becomes more negative. On the other hand, Popa et al., claim 

that without base addition, Darvan-C is not completely dissociated (Popa et al. 2006). 
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As ethanol is a slightly acidic solvent, the Al2O3 particles in ethanol are slightly 

positively charged. The adsorption mechanism is developed by electrostatic attraction 

between the –COO- groups and the positively charged surface hydroxyl sites of 

alumina. In this case, according to Tang et al., the adsorption is of the high affinity type 

and the polyelectrolyte will be adsorbed on the surface until saturation (Tang et al. 

1998). All of the mentioned studies show that Darvan-C is a compatible deflocculant in 

the dispersion and stabilization of alumina particles. Whereas, Pradhan suggests that the 

addition of sucrose has an influence on the decrease in the many rheological properties 

of the 35 and 45 vol.% alumina slurries, such as in apparent yield stress, viscosity, 

thixotrophy, and increase in non-Newtonian index as compared with the slurries 

prepared just using the polyacrylate, also creates a weakening in the inter-particle 

network (Pradhan 2005). Zhang’s work, suggests that although polyacrylic acid (PAA) 

is known to be an effective dispersant for Al2O3 powder in aqueous media, its influence 

is insuffient at high solids loading (> 55 vol.%). As the dispersion of the Al2O3 

suspensions becomes difficult when only PAA is used as a dispersant, 

ethylenediamminetetraacetic acid, tetrasodium salt, dihydrate (EDTA-4Na) was 

introduced to improve the dispersion of the Al2O3 suspensions (Zhang et al. 2006). 

Briscoe et al., state that in both rheological and sedimentation studies, the three 

commercial dispersants “Darvan C”, “Aluminon” and “Tiron”, which have been 

investigated with respect to their effect on the stabilization of the alumina AES-11 

suspension were found to be capable (Briscoe et al. 1998). Also, some viscosity 

measurements were conducted by Haake Mars Modular Advanced Rheometer, 

Germany in plate and plate mode in order to see the effect of solids loading. 

 

2.3.2. Zirconia Suspension Preparation 
 

In the case of the preparation of the zirconia slips, according to Zhang et al., the 

slurry stability is achieved by the use of a commercially available dispersant, Triton X-

114 and the results showed that it is an effective dispersant in preparing stable zirconia 

suspensions (Zhang et al. 2006). Leong et al., claim that the rheological properties of 

concentrated ZrO2 suspensions have been shown to be strongly affected by pH and 

anion type. At high pH, the ZrO2 suspensions were dispersed by KOH, while 

hydrochloric or nitric acid can be used for dispersion at low pH (Leong et al. 1990). The 



 12 

study shows that in order to prepare stable zirconia suspensions of the desirable 

rheological properties, a good understanding of surface chemistry is required. Havrda et 

al., state as good dispersion at high solids loading is not only necessary but a pre-

requisite for all slurry based forming techniques, it is critical to be able to increase the 

solids loading in the slurry to as high a level as possible (Havrda et al. 2004). In that 

study for the optimization of rheological properties of a TZ-3Y (by TOSOH Corp. 

Japan) zirconia suspension, 77 wt.% solids loading and different amounts of 

commercial dispersant, Dolapix CE-64, alkali free, carboxylic acid (Zschimmer & 

Schwartz, Germany) were used with the controlled viscosity measurements. Also, in 

order to select the best deflocculant to prepare a stable ZrO2 suspension, an 

experimental design, twelve-run Plackett-Burmann screening design was applied. 

Plackett-Burman designs are a class of screening, two-level fractional factorial designs 

that are often used to study main effects. The advantage of screening designs is that, the 

important factors, main effects, considered are screened out among the other factors and 

the number of experiments made is at minimum. There is obviously tremendous 

reduction in experiments by using a Plackett-Burmann design. In this study, depending 

on the number of factors (deflocculant types), twelve suspensions were prepared. Low 

viscosity and high constant ZrO2 powder use in each suspension with different 

deflocculant volume were the selection criteria. However, Sarraf states that the bulk 

density of high solid content of zirconia slips (77 wt. %) with the addition of 1.4 wt. % 

Dolapix CE-64 is observed to be stable (Sarraf 2004). He also observed lower apparent 

porosity,open porosity and water absorbtion in green state.  

 

2.3.3. Alumina-Zirconia Suspension Preparation 
 

Alumina toughened zirconia ceramics with e.g. 20 wt.% Al2O3 (ATZ) appear to 

be perspective competitors in ceramic industry. High values of mechanical strenght and 

fracture toughness are among the main advantages of these ceramic materials. Kunes et 

al., state that in the case of producing a bioceramic material by slip casting, a stable, 

agglomerate-free suspension with almost newtonian flow behavior is one of the basic 

requirements (Kunes et al. 1999). In this work suspensions of three commercial zirconia 

powders with different alumina admixtures (Tosoh TZ-3Y, TZ-3YE, TZ-3Y20A) were 

investigated.  
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 Rotational viscometry was used in order to determine the rheological behavior. For the 

stabilization of the aqueous suspensions: Dolapix CE64 and Dolapix ET85 (Zschimmer 

& Schwarz, Lahnstein / Germany) and Sokrat 32A (Chemické závody Sokolov / Czech 

Republic) were the three frequently recommended deflocculants. For all the three 

powder types, alkali-free polyelectrolyte Dolapix CE–64 turned out to be the most 

effective deflocculant with an optimum concentration of 0.6 wt.% in all cases.  

Garrido et al., studied powder compositions with different alumina/zircon 

(wt.%) ratios in the mixtures and effect of chemical composition with the addition of 

polyacrylate. Simultaneous dispersion of the powders at pH 9.1–9.2 by addition of  

 0.2–0.24 wt.% polyacrylate resulted in a well-dispersed suspension showing a 

minimum in viscosity (Garrido et al. 2001).  

On the other hand for the production of AZ crucibles, Frederici et al., prepared 

aqueous slips which were slip-cast by direct ball milling of a mixture of the oxides 

Al2O3/ZrO2 for 12h in alumina jars with alumina balls and water and ammonium 

polyacrylate was used as deflocculant in the preparation of slips (Frederici et al. 2000).  

 

2.4. Frit  
 

Frit, solid granules (Figure 2.4.1a-b.) simply termed glass, is obtained by mixing 

two or more raw materials fused together and cooled rapidly in order to be used in the 

preparation of glaze. Frit species are used in glazing porcelain and pottery also in 

enameling iron and steel. Enamels used in porcelain industry are glassy coatings fused 

onto metals in order to avoid corrosion and provide decoration. The other industrial 

applications of frit can be summarized as follows: to lower vitrification temperatures, in 

bonding grinding wheels and as lubricant in steel casting and metal extrusion. (Berard et 

al. 1993). 



 14 

  
(a) transparent frit (b) opaque frit 

 

Figure 2.4.1. Frit (solid granules) 

 

Variety of minerals is fused in a furnace and then the molten material is 

quenched rapidly. The constituents of the feed material changes depending on whether 

the frit is to be used as a ground coat or as a cover coat. The primary constituents of the 

raw material include silica, fluorspar, soda ash, borax, feldspar, zircon, aluminum oxide, 

lithium carbonate, magnesium carbonate, and titanium oxide for cover coats. In the case 

of ground coat, same compounds are included plus smaller amounts of metal oxides 

such as cobalt oxide, nickel oxide, copper oxide, and manganese oxide are present. In 

order to understand the nature of the glaze and its properties, amounts of the various 

oxide molecules making up the glaze must be described.  

 In a given formulation for a frit composition, each oxide present has a contribution to 

make the glaze. The role of the common oxides is summarized as follows: SiO2 is the 

most important oxide, by itself only has the ability to form glass if enough temperature 

is given. It is added in many forms such as quartz, feldspar, or wollastonite into a glaze. 

It mostly acts as a glass former and controls thermal expansion. Na2O is useful flux over 

a wide temperature range. It functions in glaze systems as one of the potent fluxes. But 

its very high coefficient of thermal expansion is a disadvantage as glazes with high soda 

content craze on many bodies. Also, glazes rich in soda content found to be very soft 

and soluble in acids. LiO2 is the most active of alkali fluxes. Because of its high cost, it 

is only used in glaze systems in which it is truly  

needed. K2O is very similar to Na2O. It improves the gloss of the glaze. Alkaline earth  

oxide materials such as CaO, SrO, and BaO as well as MgO are generally added as raw 

materials and more typically added in fritted form. Their use is advantagenous as they 
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act as powerful fluxes without having a major effect on the thermal expansion of the 

glaze. ZnO is another useful flux above 1000oC in smaller amounts. And when used in 

small amounts, acts as a catalyst to improve the fusion of other oxides. On the other 

hand, when added in large amounts it promotes crystalline effects and 

matteness/softness in greater amounts. But too much of it may cause the defects on the 

surface. Also, the presence of ZnO has an extensive effect on the colouring of the glaze. 

Lead oxide is another powerful flux, but besides its many advantageous properties, its 

toxicity limits its use. Al2O3 contributes into the working properties of glaze. It is 

normally added as calcined alumina or alumina trihydrate. It increases the melt 

viscosity. Also in presence of B2O3 or alkaline earths, phase separation is retarded or 

crystallization is observed. However, zirconium silicate is the major opacifier used in 

ceramic glazes, ZrO2 is also primarily used as an opacifying agent. Less than 0.5 wt. % 

additions improve the alkali resistance. Finally, B2O3 is both a glass former and melting 

oxide. Whereas poor glaze durability is inevitable with excessive boron oxide addition. 

(Eppler et al. 2000).  
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CHAPTER 3 
 

CORROSION 
 

 The word corrosion comes from the Latin word ‘corrodere’, means ‘gnaw 

away’. The most well-known form of corrosion is the rusting of iron and steel. Similar 

processes occur in other metals as well as in non-metallic materials, such as plastic, 

concrete and ceramics. According to the definition the term ‘corrosion’ stands for a 

process which takes place via a physicochemical reaction between the material and its 

environment and causes changes in the properties of the material (Mattson 1989). 

It is defined as the destruction or deterioration of a material because of reaction 

with its environment. Although, some insist that the definition should be restricted for 

metals, corrosion engineers often consider non-metallic materials (Fontana 1986).  

 

3.1. Corrosion Types 
 

If different causes of corrosion and their mechanisms are considered, several 

types of corrosion can be thought of and can be classified in many different ways. One 

method divides corrosion as wet and dry corrosion depending on the presence of any 

liquid. A common example for wet corrosion is the corrosion of steel by water while 

attack of steel by furnace gases is an example for dry corrosion. On the other hand it can 

be divided as low temperature corrosion and high temperature corrosion (Fontana 

1986).  

The type of attack (corrosion environment) and the resulting appearance of the 

material also designate the type of corrosion. Water, soil, atmosphere and dry gases are 

considered as corrosion environments. Each type of corrosion can be identified by 

visual observation and for the basis of classification appearance of the corroded material 

is taken into account. Some of the corrosion types are given below (Mattson 1989): 
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3.1.1. Uniform Corrosion (General Attack)  
 

It is the most common form of corrosion that proceeds uniformly at about same 

rate over the entire surface or over a large area when the material is exposed to a 

corrosive environment (Figure 3.1.1.). It is normally characterized by a chemical or 

electrochemical reaction and the extent can be given as the weight loss per unit area or 

by the average penetration (average of the corrosion depth).  

 

 
 

Figure 3.1.1. Uniform corrosion caused by CO2. 

(Source: WEB_2 2007) 

 

3.1.2. Pitting 
 

It is a localized corrosion which results in pits or in holes in the metal surface. 

The pits may have different diameter, but usually they are small in diameter and located 

in very close distance that the surface appears as a rough surface (Figure 3.1.2.). Pitting 

mostly results in worse damage than uniform corrosion, it causes equipment to fail 

because it can lead to perforation in a very short period of time. The number of the pits 

per unit area, the diameter of the pits and the depth of the pits should be taken into 

account in the evaluation of the attack. 
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Figure 3.1.2. Deep pitting in exchanger tubes. 

(Source: WEB_3 2007) 

 

3.1.3. Crevice Corrosion (Deposit or gasket corrosion) 

 
Corrosion which takes place or immediately around the crevice is called, crevice 

corrosion (Figure 3.1.3.) . It is simply caused by the corrosive liquid being held in the 

crevice, while surrounding surfaces dry out or sometimes when the crevice and the 

surrounding metal surfaces are in a solution, the liquid in the crevice can be almost 

stagnant. This type of corrosion can take place in most metals and not only takes place 

in the crevices between surfaces of the same metal, but also when the metal is touching 

a non-metallic corrosion.  

 

 
 

Figure 3.1.3. Aerospace alloy (Ti6Al4V). 

(Source: WEB_4 2007) 
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3.1.4. Deposit Corrosion 
 

This type of corrosion is caused by the moisture being held in or under the 

deposit (Figure 3.1.4.) . As the movement of the water is poor, corrosive conditions can 

be created under the deposit in a similar way described in crevice corrosion. For 

example, deposit corrosion is found under the road-mud in the wheel arch of the car or 

under leaves which have collected in guttering. The result is that a corrosion cell is 

formed with the anode under the deposit and the cathode at, or just outside, the edge. 

 

 
 

Figure 3.1.4. Deposit corrosion on the inside of bare. 

copper sample, (Source: WEB_5 2007) 

 

3.1.5. Selective Corrosion 
 

The removal of the one element from a solid alloy at different corrosion rates 

can be named as selective corrosion (Figure 3.1.5.) . The most well-known example for 

selective corrosion is the dezincification of brass. As common yellow brass consists of 

approximately 30% zinc and 70% copper, on dezincification the zinc is selectively 

dissolved and copper is left as a porous mass having poor structural strength. Other 

similar corroison processes are the dealuminization and graphitic corrosion. 
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Figure 3.1.5. Selective removal of portions of a randomly generated plasma field.  

(Source: WEB_6 2007) 

 

3.1.6. Intergranular Corrosion 
 

Metals are usually built of crystal grains and grain boundries are formed when a 

metal is solidifies or is heattreated. And this corrosion proceeds in or adjacent to grain 

boundries of the metal (Figure 3.1.6.). So, grain boundry region is caused to take on 

other corrosion characteristics that the main mass of the grain. Most well-known 

intergranular corrosion is in stainless steel. When the carbon concentration is too high in 

the precence of an unfavourable heat treatment chromium carbide formation occurs. 

 

 
 

Figure 3.1.6. Rusted metal bolt 

(Source: WEB_7 2007) 
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3.1.7.Layer Corrosion 
 

In layer corrosion, the attack is localized to internal layers in wrought metal. 

This corrosion type is rather unusual and best known among the certain aluminun 

alloys. As a rule the layer is parallel to the direction of processing and to the surface. 

Formation of blisters those swelling the metal surface are observed.  

 

3.1.8. Erosion Corrosion 
 

All types of equipment exposed to moving fluids are subject to erosion corrosion. 

Because of a relative movement between corrosive fluid and metal surface, an 

acceleration in rate of deterioration is observed (Figure 3.1.7.). It involves conjoint 

erosion and corrosion. The attack is dependent on the degree of turbulance. Copper-

bearing materials are particularly sensitive. As a result of this corrosion, pits with shiny 

surfaces free from corrosion products are formed in the direction of flow. Abrasive 

particles and air bubbles in the liquid increase the risk and intensity of erosion corrosion.  

 

 
 

Figure 3.1.7. Water supply system 

(Source: WEB_ 8 2007) 
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3.1.9. Cavitation Corrosion 
 

A special form of erosion corrosion is cavitation corrosion. It occurs on surfaces 

where high-velocity liquid flow and pressure changes are encountered. Its appearance is 

similar to pitting, but the pits are not closely spaced and so the surface is not 

considerably roughened (Figure 3.1.8.). Cavitation corrosion can occur, in rotary 

pumps, on cylinder liners in engines and on ships’ propellers. 

 

 
 

Figure 3.1.8. Cavitation corrosion of deaerator 

(Source: WEB_9 2007) 

 

3.1.10. Fretting Corrosion 
 

This type of corrosion describs the corrosion occuring at contact areas between 

materials under load subjected to slip and vibration. For fretting corrosion of metals in 

air, two considerations may be made: when two metal surfaces glide over eachother 

under pressure, small particles are released with continuous movement and they oxidize 

as a result of contact with oxygen in atmosphere and form finely divided, dark oxide 

powder (Figure 3.1.9.). On the other hand, as metal surface forms an invisible layer of 

oxide coating preventing further oxidation, at the contact points where the metal 

surfaces glide, a continous removal and rebuilt of the oxide is inevitable. So, this 

removed oxide forms discolour the points of contact. 
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Figure 3.1.9. Fretting corrosion of a fence post and wires. 

(Source: WEB_10 2007) 

 

3.1.11. Stress Corrosion Cracking (SCC) 
 

Stress corrosion cracking (SCC) occurs in the presence of simultaneous tensile 

stress and a specific corrosive medium. It is only mechanical tensile stresses above a 

certain level which give rise to stress corrosion cracking while the corrosive media 

specific to the metal concerned, for example ammonia for copper alloys, chloride 

solution for austenitic stainless steel and nitrate solutions for copper alloys. The process 

of SCC, includes two stages, initiation and propagation. Initiation stage occurs before 

any crack becomes visible while propagation implies the growth of crack perhaps 

results in cracking (Figure 3.1.10). 

 

  
 

Figure 3.1.10.  Stress Corrosion Cracking on Mixer Bearing Support - (CSCC) Chloride 

Stress Corrosion Cracking, (Source: WEB_11 2007) 
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In the corrosion of non-metallic materials, for example in this study, ceramic 

materials, mechanisms like, dissolution of a refractory in contact with a liquid, any 

reactions which takes place in vapor, liquid and solid phases, penetration of the vapor or 

liquid phase into the pores, resulting in an altered zone are considered for the definition 

of corrosion (Nishikawa 1984). Type of corrosion in which the solid refractory is 

corroded by a molten glass is called dissolution. In order to find out the significance of 

refractory effect on the melt chemistry, dissolution studies should focus on the interface 

between refractory wall and the melt. Dissolution phenomenon can be classified into 

two, first known as the direct dissolution (also termed as congruent/homogeneous) 

involves the direct solution of the refractory species into the glass phase. In the case of 

selective dissolving of one or more phases, then it is called indirect (also termed as 

incongruent/heterogeneous). In case of indirect dissolution, a crystalline interface is 

formed as corrosion and/or dissolution is an interfacial process, meaning that 

developing due to the contact of species (Pecoraro et al. 1996). 

Akira Nishikawa summarizes the corrosion phenomenon as follows:  

A concentration gradient in refractory composition occurs when a refractory 

comes into contact with molten slag and dissolves. A boundary layer (interfacial film or 

diffusion layer) forms along the refractory wall. Components of the refractory specie, 

are diffused through this layer and dissolved into the liquid. At the same period, 

boundary layer and/or interfacial film resists to diffusion. This influence creates a 

contribution to the dissolution rate, and is called the solution rate controlled by 

diffusion, which is expressed by equation (3.1). : 

 

 dn / dt = DA/ � (ns –n)  (3.1) 

  

n: concentration of the solute in liquid 

ns: saturation concentration of the solid 

D: diffusion coefficient of liquid 

A: contact surface area 

�: thickness of the interfacial film 

t: time 
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The above formulation summarizes that the larger the concentration gradient, the 

faster the rate of dissolution, while thinner the interfacial layer and/or diffusion film, 

refractory dissolves more readily. On the other hand, viscosity of the slag also have an 

effect on the thickness of the interfacial film. Presence of different oxide constituents 

has a significant effect on the viscosity of the slag. In general, viscosity of slag 

increases, when the SiO2 concentration increases. If the basic components are in large 

portions, viscosity of the slag is low. Apart from the composition of the slag, the below 

relation, equation (3.2). points out the effect of temperature on the viscosity of the slag 

that higher temperature results in a decrease in viscosity while an increase in dissolution 

rate, given as follows: 

 

 � = A exp (-E/ RT) (3.2) 

 

� : viscosity coefficient 

A: constant 

E: activation energy of a viscous flow 

R: gas constant 

T: absolute temperature 

 

The second mechanism involved in corrosion, is the reaction corrosion of 

refractories occurring between, solid-solid, solid-liquid or solid-vapour phases. The 

control of the rate of reaction in solid phase reaction is related with the chemical 

reaction takes place at the boundary with respect to Fick’s law or Jander’s equation for 

reaction rate.  

Corrosion of refractories mostly depend on the formation of a liquid phase. In 

this case, control of the rate of reaction is affected by following factors, 

 

- Equation (3.3) defines the diffusion in the reaction layer ,  

 

 α = kt   (3.3) 

 

� : rate of reaction 

t: time 
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- chemical reaction between the refractory and reaction layer given in equation (3.4), 

 

 1-3 (1 – � ) 2/3 + 2 � = kt  (3.4) 

 

- diffusion in interfacial film. 

 

The change in corrosion process with various conditions is defined by so many 

equations points out that very complex factors are governing this phenomenon. 

The third mechanism considers the corrosion due to penetration: as pores exist 

in a refractory structure, liquids feel free to penetrate into refractory through the open 

pores those in contact with liquid. Capillarity is responsible for the main driving force 

for penetration. If the rate of corrosion proceeds due to penetration compared with the 

rate of dissolution or reaction corrosion, it is concluded that it develops at much faster 

rate as molten slag penetrates into relatively greater depths within the refractory 

resulting in a thick penetrated zone. The suction force in capillarity is mostly related 

with the surface tension (surface energy) and contact angle of liquid and refractory 

expressed as follows in equation (3.5).  

 

 	P = 2 
Lcos �/ r  (3.5) 

  

	P : - suction force 


L : surface tension of liquid 

� : contact angle 

r : capillarity radius 

 
According to Jurin’s theorem, equation (3.6) expresses the penetration depth as 

follows:  

 

  l = 2 
Lcos �/ r�g  (3.6)  

 

l : depth of penetration 

� : density of liquid 

g : accelaration due to gravity 
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Hagen- Poiesuille’s equation expresses rate of penetration as follows, 

 

  l2 = (
L r cos �/ 2 � ) t  (3.7) 

 

� : viscosity of liquid 

t : time 

 

 If,           k = 
L r cos �/ 2 �  (3.8) 

 

k: coefficient of penetration 
  

 l2 = kt  (3.9) 

 

Then, Zagar suggested that corrosion due to penetration depends also on the 

porosity and the relation is given in equation in (3.10). : 

 

 
�

V
 = A (1/2 P2

 r 
L t)1/2  (3.10)  

 

V : volume of penetrated liquid 

A : area of the penetrated surface 

P : apparent porosity 

r : average radius of pores 

 

The contact angle is the angle between the solid surface and the tangent to the 

liquid surface at the point of contact. It depends on the specific energies of the 

solid/vapor (
SV), solid/ liquid (
SL), and liquid/vapor (
LV) interface specific energies. 

The condition for the equilibrium of them is given in equation (3.11)., 

 

  
SL + 
LV cos � = 
SV  (3.11) 
 

Figure 3.1.11. summarizes the relation between the contact angle and 

penetration in solid-liquid-vapor phases. If 
SV > 
SL, � < 90 o, the liquid phase wets the 

solid phase, and if 
SV < 
SL, then � > 90, it does not.  
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Figure 3.1.11. Contact angle via penetration. 

(Source: Akira Nishikawa 1984) 

 

If the above given relation is adjusted due to the penetration of liquid phase 

between neighbouring refractory grains, it is expressed in equation 3.12. as follows: 

 

 
SS = 2 
SL cos � / 2  (3.12) 
 

 

If 
SS < 2
SL, � > 0, (Figure 3.1.12.), the liquid phase can not penetrate. 

However, 
SS > 2
SL, the liquid penetrates between the grains. 

 

 
 

Figure 3.1.12. Contact angle via penetration in solid-liquid phases. 

(Source: Akira Nishikawa 1984) 
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To sum up, surface energy of the refractory material, surface tension of the 

molten slag and the interfacial energy between the solid and the liquid are said to be the 

factors responsible for penetration. And the degree of penetration mostly affected by the 

composition of the slag. 

 

3.2. Corrosion Resistance of Refractories to Molten Process Liquid 

(Slag) 
 

Molten liquid responsible for corrosion may vary depending on the industrial 

application of the refractory. Aksel, studied the corrosion of alumina-mullite-zirconia 

refractories those used in glass industry, by standard soda-lime-silicate glass and 

concluded that solubility of alumina was much higher than zirconia, that needle-like 

alumina crystals were observed, while zirconia particles made an effective barrier 

(Figure 3.2.1.a.), (Aksel 2003).  

Fredderici et al. have studied the corrosion of Al2O3-ZrO2-SiO2 (AZS) and Al2O3-

ZrO2 (AZ) by a mixture of blast-furnace slag and cullet (soda-lime glass) and found no 

difference between the corrosion resistance of the two materials with a homogeneous 

observation of alumina and mullite at the interface (Fredderici et al. 2000).  

On the other hand, Leigh et al., tested high-alumina crucible for the corrosion 

behaviour of three types of steelmaking slags on MgO-C ladle refractories, and stated 

that the degree of slag attack was related to the carbon loss (Figure 3.2.1.b.), (Leigh et 

al. 1987).  

Santos et al., conducted corrosion tests in which heavy metal oxide glass was 

used as a process liquid. Depending on their chemically corrosive nature and dissolving 

behaviour during melting step in different degrees, almost all the well-known 

refractories used in making crucibles, and also gold and platinum were damaged (Santos 

et al. 2003). 

Dunkl et al., points out that in the case of a typical virgin fused cast Al2O3-ZrO2-

SiO2 (AZS) structure corroded by soda-lime glass, the resulting microstructure has large 

alumina crystals and their co-precipitated zirconia, zirconia dendrites and the glassy 

phase (Dunkl et al. 2003).  

Lee et al., studied the bottom drilling corrosion in electrocast Al2O3-ZrO2-SiO2 

(AZS) refractories, and reported the examination of the microstructure developed 

around a metal droplet where a continous aluminosilicate glass matrix surrounding pure 
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ZrO2 dentrites and corundum heterogeneous grains made up of pure corundum with the 

Al2O3-ZrO2 eutectic (Lee et al. 1996). 

The influence of liquid phase on the slag corrosion of andalusite-based 

refractories was studied at 1600°C using the crucible method by Poirier et al., like in all 

static crucible tests, four textures were formed: (1) unaffected refractory (2) penetrated 

zone (3) precipitation zone (4) remaining-slag zone. This penetrated zone and/or the 

precipitation zone make up the interface under study and the resistance to slag corrosion 

of andalusite based refractories was observed to be governed by the evolution of the 

liquid-slag composition at service temperature: as the content of SiO2 increases, the 

dissolution rate of mullite decreases (Figure 3.2.1.c.), (Poirier et al. 2004). 

Manfredo et al., tested the corrosion of fusion-cast high zirconia Al2O3-ZrO2-

SiO2 compositions against soda-lime glass. And the result pointed out that this material 

showed no improvement over the corrosion resistance of a typical commercial AZS 

refractory containing 40 wt. % ZrO2 (Figure 3.2.1.d.), (Manfredo et al. 1984). 

Increased corrosion resistance of alumina-zirconia-silica (AZS) refractories used 

in glass melting furnaces is a fact by the interlocking of alumina crystals and the glassy 

matrix by ZrO2 dentrites. However, Asokan has studied the variation in the 

microstructure of AZS upon heat treatment and observed the significant dimensional 

changes (Asokan 1994). 

Dissolution of two different alumina types (commercial white fused and tubular) 

into silicate melt was investigated by Zhang et al. Formation of CA6 and hercynitic 

spinel layers was obvious at all Al2O3-melt interface (Zhang et al. 2006). 
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(a)  Cemail Aksel 2003, microstructure of Alumina-

Mullite-Zirconia bricks, showing the initiation 
of glass penetration in Zone I (scale bar: 100 
mm). 

 

(b)  Leigh et al. 1987, bottom right periclase grain is 
a low-quality sinter with a high proportion of 
low-melting intergranular bond phase. Angular 
silicon and rounded aluminum particles 

 

 
(c)  Poirier et al. 2004, original brick showing the 

mullite-glass composite 
(d)  Manfredo et al. 1984, corrosion interface 

between soda lime glass and a typcial 
commercial A1203-ZrO2-SiO2 fusion-cast 
refractory. 

 

Figure 3.2.1. SEM micrographs of corroded zones and phases formed 
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3.3. Phase Diagrams 
 

Phase diagrams can reduce the need for expensive and time consuming 

experiments. The compatibility between refractories and liquids indicates the corrosion 

resistance of different refractories and assist the selection of the proper refractories for 

specific applications. Phase diagrams can be used to consider the design of refractories 

composition. Therefore, the corrosion of high temperature refractories and other 

ceramics can be evaluated by the information available in existing phase diagrams 

(WEB_11 2007). 

Morelli et al., used Al2O3-ZrO2-SiO2 ternary phase diagram in order to study the 

corrosion resistance of AZS and AZ crucibles against a glass prepared from a blast-

furnace slag and cullet (Morelli et al. 2000). The mentioned phase diagram showed that 

in both compositions the phases in equilibrium were the same and that the first liquid 

formed at about 1380 oC might have been responsible for the corrosive process, 

considering that this temperature was very close to the working temperature.  

 Lecomte et al., experimented the thermal transformations of compounds 

belonging to two vertical sections between mullite and the eutectic point at 985 oC or 

the peritectic at 1140 oC in Al2O3–K2O–SiO2 system. In both sections, results indicate 

the particular shape of liquidus curves, which show accentuated slopes at the vicinity of 

eutectic and peritectic points (Lecomte et al. 2004).  

One can determine the type of dissolution and formed interface constituents, by 

examining the phase diagram related to that system. Osborn et al., studied the CaO-

Al2O3-SiO2 system to mark a selected glass composition at the eutectic 1265 oC, and 

was in contact with alumina at 1500 oC. The dissolution was observed to be indirect and 

the interface was determined to consist of CaAl12O19 (Osborn et al. 1960). 

Manfredo et al., also used Al2O3-ZrO2-SiO2 ternary system in order to test the 

corrosion resistance of nine compositions of prepared glass batches to soda-lime glass. 

Compositions one to nine on the AZS ternary system constituted an experimental design 

that contains the different zirconia volume percent estimations with varying molar ratio 

of Al2O3 to SiO2 (Manfredo et al. 1984). 

In order to understand the compatibility of transparent and/or opaque frit 

composition, with the possible refractory materials, ternary phase systems, Al2O3-K2O-

SiO2 (AKS) and Al2O3-ZnO-SiO2 (AZS) were used. These diagrams were given in 
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Figure 3.3.1. (Schairer 1947) and Figure 3.3.2. (Bunting 1932), respectively. Four major 

constituents in each transparent and/or opaque frit over the total weight percent were 

calculated as follows, for transparent frit composition, the compositions consisting of, 

potassium oxide (K2O) 9 wt. %, alumina (Al2O3) 13.6 wt. % and silica (SiO2) 77.4 wt. 

% on AKS ternary system, while zinc oxide (ZnO) 17.11 wt. %, alumina (Al2O3) 12.43 

wt. % and silica (SiO2) 70.45 wt. % on AZS system were determined. In the case of 

opaque frit, in AKS system, potassium oxide (K2O) 8.26 wt. % , alumina (Al2O3) 6.9 

wt. % and silica (SiO2) 84.8 wt. %, while zinc oxide (ZnO) 16.2 wt. %, alumina (Al2O3) 

6.3 wt. % and silica (SiO2) 77.5 wt. % in AZS system were calculated, respectively. The 

important crystal phases of AKS ternary system were observed to be, potash feldspar 

(K2O.Al2O3.6SiO2), leucite (K2O.Al2O3.4SiO2), mullite (3Al2O3.2SiO2), potassium 

silicates, and SiO2 modifications. Both the calculated transparent and/or opaque frit 

compositions lie in the field of mullite region. When a straight line is drawn from the 

point of composition to the crucible material (Al2O3), presence of any liquidus curve 

that might form low-melting eutectics was not observed for both compositions. 

On the other hand, in Al2O3-ZnO-SiO2 system, crystallization of ZnAl2O4 was 

observed at 1950 oC. In both frit melt- alumina crucible wall interface, this crystal 

structure was formed, which will be mentioned in detail in Chapter 5. However, the frit 

melting temperature was 1500 oC, the presence of other fluxes might reduce the 

ZnAl2O4 formation temperature indicated at the AZS ternary phase diagram. So, study 

of AZS phase diagram resulted in aggrement with the characterization methods in the 

case of observing the formation of ZnAl2O4 crystals. Zirconia on the other hand 

dissolved from the frit composition and reprecipitated during cooling. Clusters and 

chains of small spherical ZrO2 grains grew with a dentritic shape mainly adjacent to the 

interface formed in opaque frit-alumina crucible wall. As, zirconia is a well-known 

nucleating agent for crystallization in glasses, the small crystals of zirconia which 

precipitated in the opaque frit interface promoted the crystallization of ZrSiO4 in opaque 

frit matrix. 

In order to understand the behaviour of ZrO2 against frit compositions, Al2O3-

ZrO2-SiO2 (Figure 3.3.3.) ternary system was studied, as Barbieri et al., state that the 

phase diagram of the system K2O-ZrO2-SiO2 has not yet been reported in literature 

depending on the diffuculty in adaption of the high melting points of ZrO2 and SiO2 

with the high volatility of K2O (Barbieri et al. 2002). Binary phase diagram of ZrO2–

SiO2 is given in Figure 3.3.4. The compositions indicating the calculated percentages of 
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SiO2 present in both transparent and/or opaque frit lie in the ZrSiO4+SiO2 region where 

no liquid was observed to be responsible for corrosion. However, the individual phase 

diagram of ZrO2, points out the phase transformations (Figure 3.3.5). The solid 

zirconium oxide, ZrO2, has three modifications. The low-temperature phase, m-ZrO2, 

has monoclinic crystal symmetry. The intermediate-temperature phase, t-ZrO2, is 

tetragonal, while the high temperature ZrO2 has cubic structure (Chen et al. 2004). In 

this study, in the frit melting temperature of about 1400-1500 oC, monoclinic to 

tetragonal transition occurs upon heating schedule causing extraction and/or contraction 

mismatches during cooling cycle. 

 

 
 

Figure 3.3.1. Al2O3-SiO2-K2O ternary system. Composition of the frit is indicated in 

terms of the major components shown on the diagram (Source: Schairer 

1947). 

 



 35 

 
 

Figure 3.3.2. Al2O3-SiO2-ZnO ternary system. Composition of the frit is indicated in 

terms of the major components shown on the diagram (Source: Bunting 

1932). 
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Figure 3.3.3. Al2O3-SiO2-ZrO2 ternary system 

(Source: Fredericci et al. 2000) 
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Figure 3.3.4. ZrO2-SiO2 binary system. 

(Source:Phase Diagrams for Ceramists 1956) 

 

 
 

Figure 3.3.5. ZrO2 system.  

(Source: Ruh and Rockett 1970) 

 Transparent         Opaque 
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CHAPTER 4 
 

EXPERIMENTAL 
 

In this chapter the production of crucibles from powder raw materials, the 

characterization of frit and the corrosion tests are presented. In the first section, the 

properties of the crucible materials, alumina (A), zirconia (Z) and alumina-zirconia 

(AZ) from powder to sintered ceramic articles are given. The two frit species, mainly 

transparent and opaque frits and their characteristics are also shown. Finally, the high 

temperature treatment of crucibles and frit melt for study of corrosion are explained.  

 

4.1. Crucibles and Frits 
 

In this study, two types of frits were used for corrosion testing of the crucible 

materials (Tamsa Seramik, �zmir-Türkiye). Their chemical composition was given in 

Table 4.1.1. The first frit was opaque frit containing zircon and the second one was a 

transparent frit without the zircon but with higher zinc and aluminum. These were 

commercially used frits that are applied on wall and floor tile glazes. Thermal expansion 

behavior of the frits were analyzed by a horizontal dilatometer (Linseis, Germany). 

In this study, three different types of crucible materials were tested and 

investigated. As mentioned earlier, the selection of the crucible material was based on 

the use of three component phase diagrams that most closely covered the composition 

of the frit and the crucible. The materials to be potentially used for making crucibles 

were identified as Al2O3 and ZrO2. The powder raw materials were determined with 

respect to their availability and cost. Commercial alumina powder (Alcoa CT–3000 SG) 

was obtained from Alcoa Industrial Chemicals, Germany and zirconia (TZ-3YE) from 

TOSOH, Japan having particle sizes of 0.7 µm, specific surface area (BET) 7.0 m2/g 

and 0.5 µm, specific surface area (BET) 16 ± 3 m2/g, respectively.  
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Table 4.1.1. Frit Compositions 

 

  Transparent frit wt% Opaque frit wt% 
Al2O3 9.3  4.1 
B2O3 8.5  7.6 
BaO 0.0   1.8 
CaO 8.4  12.1 
K2O 6.1  4.9 
MgO 2.2  0.0 
Na2O 0.0   0.0 
SiO2 52.7  50.3 
ZnO 12.8  10.5 
ZrO2 0.0  8.7 

 

Slip-casting method was used for the production of crucibles. In this method as 

indicated in the previous chapters, preparation of a stable suspension was a primary 

requirement. So, identifiying the nature of the suspension in other words, a rheological 

study was necessary, hence control of the dispersion was critical. Ranges of shear rate 

encountered in ceramic processing operations are indicated in Figure 4.1.1. (Reed 

1995). The slip to be used in casting should satisfy the pouring behaviour, so depending 

on the given figure the shear rate is kept between 0.1 and 100 sec -1, with analysis 

duration of 100 seconds and 101 data were taken. In order to see the effect of solids 

loading in the preparation of Al2O3 suspensions, viscosity measurements were 

conducted. Figure 4.1.2. pointed out that there was a direct correlation between the 

solids loading and viscosity of the system. 
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Figure 4.1.1. Different processing operations occurring in different ranges of shear rate. 

(Source: Reed 1995) 
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Figure 4.1.2. Al2O3 solids loading effect on viscosity 

 

On the other hand, for the selection of the best deflocculant to be used in the 

preparation of ZrO2 slip, six different commercially available deflocculants were tested 

by preparing mixtures via addition of 7.7 g of ZrO2 (TOSOH-TZ-3YE) and 2.3 mL of 

water in a magnetic stirrer. Measurements of viscosity of different suspensions were 

done in a Haake Mars Modular Advanced Rheometer and the best combination of 

Gravity  
Levelling   Pouring     Mixing   Rolling   Brushing 
                                                                  Spraying  

 Pumping 

      10-1            100    101    102 103    104    105 

  

Shear Rate (sec -1) 
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deflocculants was identified. Added electrolytes and polymers may significantly change 

interparticle forces and the state of dispersion. Taylor et al., classify deflocculants in 

two types: the polyanion complex, salts of sodium and phosphoric acid such as sodium 

tripolyphosphate, tetrasodium pyrophosphate and sodium metaphosphate and the alkali 

cation deflocculants, monovalent salts such as sodium nitrite, borax, sodium aluminate, 

ammonium hydroxide and sodium carbonate or potassium carbonate (Taylor et al. 

1986). In order to achieve stable suspensions, after a literature search, the most effective 

deflocculants for the stabilization of alumina and/or zirconia suspensions were 

determined as Darvan-C (Vanderbilt Co. Norwalk, CT, USA) and Dolapix CE–64 

(Zschimmer&Schwartz Lahnstein /Germany), respectively. Both deflocculants develop 

steric and/or electrical stabilization in the suspensions. Darvan-C is the mixture of 

ammonium polymethacrylate and water whereas Dolapix CE–64 is a carbonic acid 

based synthetic polyelectrolyte. Polyelectrolytes have a double role of particle charging 

and electrosteric stabilisation of the suspension, (Popa et al. 2006). Their mechanism of 

deflocculation is much different than the inorganic salts. As they are made up of many 

carboxyl -COO-, a high adsorption is observed due to electrostatic forces between 

positively charged particles and –COO- groups (Tsetsekou et al. 2001). When the water 

soluble part of the chain is dissolved in the media, the remaining hydrocarbon groups 

lay down on the particle surface, and the COO- moieties remain as far from the particle 

surface as their branch lenght will allow (Dunk and Dinger 1993). The formed layer 

around each particle would create a repulsive force enabling the proper dispersion of the 

system. Whereas, addition of excess amount of the deflocculant and/or electrolyte may 

result in thixotropic behaviour of the suspension, in other words, high-solids coating 

slips exhibit thixotropy. An application process can be both eased and hurt by this 

property (Eppler et al. 2000).           

Plaster is a useful material for use in ceramic forming molds due to its water 

absorption capability. After stable slips for each crucible materials were prepared, 

plaster molds were made by using water/plaster ratio of 1:1.4 (Figure 4.1.3.). Prepared 

slips were poured into plaster molds and when a desirable thickness has been reached 

the excess slip was poured back. Finally the body was removed out of the mold when 

the edges of the cone-shaped crucible were observed to be separated from the mold due 

to drying shrinkage.  
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 Figure 4.1.3. Plaster Moulds. 

 

The green bodies were initially dried at 110oC for an hour in order to prevent 

thermal-shock and evaporate the excess water that might remain in the body. Finally, 

depending on the temperature at which the compacts reached high density, they were 

sintered at 1550 oC with a heating rate of 10 oC/min in a high-temperature box furnace 

(Nabertherm, Germany) for two hours. Archimedes’ method was used in order to 

calculate the percent water absorption of the products and the results confirmed that the 

fired crucibles were found to be fully dense and impervious (Table 4.1.2). As can be 

seen from the data measured for each crucible sample, the products were found to be 

free of pores with a very little portion of water absorption. 

 

Table 4.1.2. Density measurement of Al2O3 (A) and ZrO2 (Z) crucible samples by  

Archimedes’ Method. 
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A1 1.53 1.14 1.53 0.39 0.00 0.39 0.79 0.20 3.93 3.90 98.5 
A2 1.31 0.98 1.31 0.34 0.00 0.34 0.92 0.24 3.93 3.90 98.4 
A3 0.81 0.60 0.81 0.20 0.00 0.20 0.78 0.20 3.94 3.91 98.8 

Average A 1.21 0.91 1.22 0.31 0.00 0.31 0.83 0.21 3.94 3.90 98.6 
Z1 3.05 2.54 3.05 0.52 0. 00 0.51 0.85 0.14 5.96 5.91 97.6 
Z2 2.28 1.89 2.23 0.38 0.00 0.38 0.54 0.09 5.91 5.88 97.2 
Z3 1.72 1.43 1.72 0.29 0.00 0.29 0.38 0.06 5.96 5.93 98.1 

AverageZ 2.35 1.95 2.35 0.39 0.00 0.39 0.59 0.10 5.94 5.91 97.6 
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As both crucible species were obtained free of serious defects and were 

impervious, melting of frits within these crucibles was conducted. The melting of 

species was done between 1400 and 1500oC with a heating rate of 10oC/min for an hour 

of dwell time at target temperature. Crucibles were removed from the furnace after the 

frit melting experiment and sectioned using a diamond saw. As the main purpose of this 

study was to investigate the interface developed between the crucible material and the 

frit species, standard ceromographic grinding and polishing techniques were carried out 

on the glass-crucible wall interface. 

 

4.2. Characterization Tools 

 
The following characterization sequence is followed: 

(i) Both alumina and zirconia powders were analysed by scanning electron 

microscopy (SEM) Philips XL-30S FEG equipped with EDS unit (EDAX). 

(ii) The suspensions from each powder were prepared by addition of the proper 

amounts of required deflocculants. Agglomeration was prevented by well-balanced 

additions of the electrolytes. In order to obtain a stable agglomerate-free suspension, 

mechanical mixing was carried out as presence of any size of the particulate matter 

causes defects during sintering process. 

(iii) Depending on the environmental factors such as the temperature and/or 

humidity of the room, the separation of green bodies from the molds varied. A superior 

care must be taken during and/or after the removal of the wet crucibles as green body 

form of the ceramics are known for their sensitivity. 

(iv) Chemical interactions between the processing liquid (frit) and the crucible 

were investigated in this study by using an optical microscope (OM, Nikon Eclipse 

L150), and a scanning electron microscope (SEM, Philips XL-30S FEG) equipped with 

Energy Dispersive Spectroscopy (EDS) unit. X-ray diffraction (XRD, Philips X’Pert 

Pro) was used in order to confirm the crystalline phases formed at the interface. Frit-

alumina, frit-zirconia and frit- alumina- zirconia mix samples representing the interface 

region were prepared for SEM-EDS, OM and XRD analysis by common ceramographic 

grinding and polishing techniques.  

EDX analysis was conducted on the composition of the melted and original 

transparent and/or opaque frit in Al2O3 crucible in order to indicate any dissolution 
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occurs during melting processes. Comparison of the elemental compositions of both 

original transparent and/or opaque frit and melted (1500 oC) transparent and/or opaque 

frit is given in the following chapter. 

Before conducting dilatometric measurements for the determination of thermal 

expansion coeffiecients of frit species, DTA and TGA analysis for both transparent 

and/or opaque frit were done to define Tg for both of the frit species, under nitrogen gas 

with a flow rate of 200 ml/min and a heating rate of 10 oC/min.  

Dilatometric measurement was done by a horizontal dilatometer, Linseis, 

Germany, for the determination of the thermal expansion coefficient of frit species in 

order to comment on the extraction and/or expansion mismatch of them with the 

crucible materials.  
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CHAPTER 5 
 

RESULTS AND DISCUSSION 
 

In this chapter, microscopic, X-ray diffraction and thermal analysis 

investigations for materials used in the production of crucibles and for transparent 

and/or opaque frit are reported.  

 

5.1. Characterization of Crucibles and Frit 
 

Perfect circular geometry of the ZrO2 granules and cancellous view of the 

Al2O3 powder were observed by SEM as given in Figure 5.1.1. respectively. Also, 

Figure 5.1.2. shows the published particle size distribution of alumina powder from 

which d50 is observed to be as 0.7 µm (Alcoa Industrial Chemicals 2007).  

 

  
(a) ZrO2 granuleTosoh TZ-3YE (b) Al2O3 powder Alcoa CT-3 

 

Figure 5.1.1. SEM micrographs of the studied powders 
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Figure 5.1.2. Particle size distribution of Al2O3. 

(Source: Alcoa Product Data 2007) 

 

The DTA/TGA analysis resulted in an increament in the weight percent of the 

species which might be explained by the sticking of the species on the surface of the 

crucible (Figures 5.1.3. and 5.1.4.).  

 

 
 

Figure 5.1.3. DTA/TGA analysis for transparent frit 
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Figure 5.1.4. DTA/TGA analysis for opaque frit 

 

The coefficient of thermal expansion (CTE), �, of frit species were determined 

by dilatometric analysis from the below T (oC) vs 	L plot Figure 5.1.5. The values 

calculated from the plot with respect to the equation 5.1, were found as 4.0 x 10-6/ 0C 

(150 oC) for transparent frit and 8.2 x 10-6/ 0C (150 oC) for opaque frit, respectively. 

 

 Coefficient of linear thermal expansion =CTEL = 	L / (Lo x 	 T)  (5.1) 
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Figure 5.1.5. CTE determination by dilatometric measurement 

 

Different methods for producing stable ceramic suspensions were given in section 

2.3. Among the studied methods, the optimum slips for each material were prepared 

according to Table 5.1.1. Darvan-C was used as deflocculant in the preparation of alumina 

suspension. Mostly covered in literature, Dolapix CE–64 was used in the preparation of stable 

zirconia slurries. However, the interaction of a number of different surfactants (Dolapix G–10, 

Dolapix SPC–7, Dolaflux SP Neu, Giessfix 162, Dolapix PC 67) with zirconia suspension 

were investigated by the use of Plackett-Burmann Screening Design and finally Dolapix CE–

64 was decided to be used in the preparation of zirconia slurries. 

 

Table 5.1.1. Prepared optimum slip compositions 

 

 

Type of slip Alumina slip Zirconia slip Alumina-zirconia slip 
Solids loading 44.8 vol.%  35.6 vol.% 50 wt.% A + 50 wt.% Z 

Type of 
deflocculant 

Darvan-C 
(Vanderbilt Co. 
Norwalk, CT, USA) 

Dolapix CE-64 
(Zschimmer&Sch
wartz Lahnstein 
/Germany) 

Dolapix CE-64 
(Zschimmer&Schwartz 
Lahnstein /Germany) 

Amount of 
deflocculant  2.6 wt %  1.4 wt % 

 
1.4 wt % 
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X-ray diffraction analysis of transparent and/or opaque frit is given in Figure 

5.1.6. Both frit species displayed amorphous structure as expected. Because frit melts 

have an easy glass forming composition with a lot of SiO2 and are quickly cooled 

during production which further favors glass formation. 

 

 
 

Figure 5.1.6.a XRD pattern of transparent frit 

 

 
 

Figure 5.1.6.b XRD pattern of opaque frit 
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Upon completion of the frit melting experiment, the alumina crucibles and their 

frit content remained intact with minor cracks in the crucible (Figure 5.1.7.a. and 

5.1.7.b.) that probably formed at low temperatures because there was no liquid leaking 

out through the cracks. Zirconia crucibles, however, were fractured significantly (Figure 

5.1.7.c. and 5.1.7.d.) because of thermal expansion mismatch between the frit species 

(CTE= 4-8 x 10-6/0C) and ZrO2 (CTE=9 to 10x10-6/0C, (Subramanian 1987). However, 

mixed alumina-zirconia (AZ) crucibles were observed to be resistant to the frit 

corrosion, due to the continuous nature of the Al2O3 phase in the crucible microstructure 

containing isolated pockets of 2-5 µm ziconia spheres that were probably remnants of 

starting zirconia granules (Figures 5.1.7.e and 5.1.7.f.). 
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(a) transparent frit –Al2O3 interaction 

 
(b) opaque frit –Al2O3 interaction 

 
(c)transparent frit- ZrO2 interaction 

 
(d) opaque frit- ZrO2 interaction. 

 
   

 
(e) transparent frit Al2O3-ZrO2 interaction 

 
(f) opaque frit Al2O3-ZrO2 interaction 

 
 

Figure 5.1.7. Digital images representing the frit melt in each tested crucible 
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5.2. Postmortem Analysis of the Crucible- Frit Interface 
 

Because the crucibles were produced to contain frit melt at high temperature, 

their behavior in contact with molten frit at high temperature and the interactions along 

the frit-crucible interface were important. The investigation of the interface formation 

through Al2O3 , ZrO2 and Al2O3-ZrO2 crucible wall and frit melt was done primarily by 

optical microscopy, in bright field, cross-polars mode with the DIC, Nomarski filter in, 

as this filter provides a colored effect to better see the surface relief. The relief effects 

displayed by the etched surface of the samples are shown in Figure 5.2.1.  
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(a) Al2O3 crucible wall-transparent frit interface 
 

(b) Al2O3 crucible wall-opaque frit interface 
 

  
(b) Al2O3 crucible wall-opaque frit interface 

 
d) ZrO2 crucible wall-opaque frit interface 

 

  
(e)Al2O3-ZrO2 crucible wall-transparent frit interface 

 
(f) Al2O3- ZrO2 crucible wall-opaque frit interface 

 
 

Figure 5.2.1. Optical microscopy images of studied refractory – frit interface 

Al2O3  

frit frit 

ZnAl2O4 ZnAl2O4 

Al2O3  

ZrO2  ZrO2  

frit 

frit 

frit 

Al2O3-ZrO2   

Al2O3-ZrO2   

frit 
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Formation of a new phase was only observed in alumina crucible wall – frit 

interface (Fig 5.2.1.a and b). A continous band of well-crystallized cubic ZnAl2O4 

precipitates was observed along the interface. Alumina from the crucible supplied the 

aluminum while the frit supplied zinc for the formation of ZnAl2O4. The presence of 

this band of ZnAl2O4 crystals could not be confirmed on Fig 5.2.1.e and f. But SEM 

analysis indicated that there were widespread precipitations of this new phase along the 

interface (Fig. 5.2.2. e and f).  

In the case of Al2O3 crucible use, not much dissolution, a mismatch of thermal 

expansion coefficients with frit species, 4-8 x 10 -6 /oC for frit, and CTE = 8 x 10-6/oC 

for alumina "(Subramanian  1987)" respectively and no significant colour change were 

observed along the crucible wall and frit interface after the runs. However, formation of 

a new phase along the interface was detected in the SEM study in both transparent and 

opaque frits (Figures 5.2.2.a and 5.2.2.b). Formed band of new crystals were analyzed 

by EDX from many sections and the chemical composition of the crystals were 

identified as ZnAl2O4 (Figures 5.2.4.a-b). The remaining alumina in this composition 

was entirely dissolved in the glass phase. As alumina dissolves in the glass, it creates an 

alumina-saturated glass interface next to the refractory. The band along which ZnAl2O4 

crystals formed was broader in transparent frit (350µm) compared to that in opaque frit 

(30µm) as the amount of precipitated ZnAl2O4 depends on the amounts of zinc and 

aluminium oxides “(Yekta et al.  2007)”.  

In the case of ZrO2 crucible use, significant amount of dissolution was observed 

along the ZrO2 crucible wall and the frit interface. Frit melts were found to change 

colour after the runs showing a large amount of ZrO2 dissolution into frit. Complete 

wetting of ZrO2 by frit in Figure 5.2.2.c-d occurred. This material contains zirconia 

crystals embedded in a glass matrix. Zirconia goes into phase transformation, on 

cooling ZrO2 from above 1200 oC to room temperature. The tetragonal to monoclinic 

transformation occurs with a 3 to 5% volume expansion, and develops microcracks 

around the ZrO2 particles through which frit penetration becomes easy “(Stevens 

1986)”. The differences between CTE of transparent frit (4.0 x 10-6 /oC) and zirconia (9-

10x 10-6 /oC) led to significant amount of cracks in the lower portion of the crucibles 

that were in contact with the frit melt on cooling (Figure 5.1.7. c-d).  
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Figures 5.2.2.e and f show the interface between frit (left) and AZ crucibles 

(right). The frit consisted of a glassy matrix (gray) in which occasionally ZrO2 crystal 

agglomerates were present due to the poor dispersion of ZrO2 granules in Al2O3 during 

suspension preparation for casting of crucibles. A continous band of ZnAl2O4 Figures 

5.2.2.e and f show the interface between frit (left) and AZ crucibles (right). The frit 

consisted of a glassy matrix (gray) in which occasionally ZrO2 crystal agglomerates 

were present due to the poor dispersion of ZrO2 granules in Al2O3 during suspension 

preparation for casting of crucibles. A continuous band of ZnAl2O4 idiomorphic crystals 

was observed along the interface. Also, EDX analysis confirmed the observed phases 

throughout the microstructure. The SEM images of the interface that was formed by the 

melt of frit at temperatures of 1400 and 1450 oC within the Al2O3 and ZrO2 crucibles 

were given in Figure 5.2.3. where the resulting microstructure was not observed to be 

different from the microstructure developed at 1500 oC.  
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(a) Al2O3 crucible wall-transparent frit nterface(1500oC) (b) Al2O3 crucible wall-opaque frit interface (1500oC) 

 

(c) ZrO2 crucible wall-transparent frit interface(1500oC) (d) ZrO2 crucible wall-opaque frit interface(1500oC) 

  

(e) Al2O3-ZrO2 crucible wall-transparent frit interface 
(1500oC) 

(f)  Al2O3- ZrO2 crucible wall-opaque frit interface 
(1500oC) 

 

Figure 5.2.2. SEM  images of studied refractory – frit interface (1500 oC) 
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 (a)  Al2O3 crucible wall-transparent frit interface 

(1450oC) 
(b)  Al2O3 crucible wall-opaque frit interface       

(1450 oC) 

(c)  Al2O3 crucible wall-transparent frit interface 
(1400oC) 

(d)  Al2O3 crucible wall-opaque frit interface (1400 
oC) 

(e)  ZrO2 crucible wall-transparent frit interface 
(1450oC) 

(f)  ZrO2 crucible wall-opaque frit 
interface(1450oC) 

 

Figure 5.2.3. SEM  images of studied refractory – frit interface (1400-1450 oC) 
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(g)  ZrO2 crucible wall-transparent frit interface 
(1400oC) 

(h)  ZrO2 crucible wall-opaque frit 
interface(1400oC) 

 

Figure 5.2.3. SEM  images of studied refractory – frit interface (1400-1450 oC) (cont.) 

 

 According to Yekta et al., the precipitation of ZnAl2O4 (gahnite) in the Li2O- 

free glazes can produce an increase in hardness when CaO and MgO are gradually 

replaced by ZnO “(Yekta et al. 2007)”. The below given EDX analysis of the interface 

formed between the alumina crucible wall-frit confirms that its composition was 

determined as ZnAl2O4 (Figures 5.2.4.a–b). Formation of ZrO2 crystals in opaque frit 

and incomplete melting of ZrSiO4 away from this interface were also observed (Figures 

5.2.4.c–d). When Figures 5.2.4.e-f were investigated, formation of ZnAl2O4 crystals at 

the interface of alumina-zirconia crucible wall and frit was obvious. Whereas, large 

Al2O3 crystal formation interjacent to the undispersed ZrO2 granules and ZnAl2O4 

crystals were clear (Figures 5.2.4.g–h). 

 

 

 

 

ZrO2 

ZrO2 

frit 
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(a)  Al2O3 crucible wall-transparent frit interface 

Formation of ZnAl2O4 crystals 
 

(b)  Al2O3 crucible wall-opaque frit interface 
Formation of ZnAl2O4 crystals 

 

  

(c)  Al2O3 crucible wall-opaque frit interface 
Formation of ZrSiO4 crystals 

 

(d)  Al2O3 crucible wall-opaque frit interface 
Formation of ZrO2crystals                                 

  

(e) Al2O3-ZrO2 crucible wall-transparent frit 
interface Formation of ZnAl2O4 crystals 

 

(f)  Al2O3- ZrO2 crucible wall-opaque frit interface 
Formation of ZnAl2O4 crystals  

                                         
Figure 5.2.4. EDX  analysis of studied refractory – frit interface 
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(g) Al2O3-ZrO2cruciblewall-transparent frit 
interface, Formation of Al2O3 crystals  

(h)  Al2O3- ZrO2 crucible wall-opaque frit interface 
Formation of Al2O3 crystals 

 

Figure 5.2.4. EDX  analysis of studied refractory – frit interface (cont.) 

 

The proportions of the elements displayed by EDX results helped confirm the 

identity of the newly formed phases at the interface and throughout the frit matrix. 

Alumina and zirconia were tested as potential materials for making crucibles to 

be used for containing transparent and/or opaque frit. Test results indicated that alumina 

could satisfactorily perform well in corrosion tests. Therefore, further tests were 

performed for alumina crucible in order to investigate the nature of the congruity with 

the frit species. 

X-ray diffraction (Phillips X’Pert Pro) was used to determine the crystalline 

phases formed at the interface and to comprehend the mechanisms of dissolution 

between the species. A tested crucible specimen containing a solidified frit melt was 

sectioned and carefully ground to remove frit from the specimen surface in order to 

eliminate the frit part and just leave the interface for analysis of the ZnAl2O4 formation 

by XRD (Figure 5.2.5.). This was done to confirm the initial finding in EDX analysis 

that offered the presence of ZnAl2O4. 
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Figure 5.2.5. XRD pattern of Al2O3-frit interface after removal of excess frit from the    

                      surface of the crucible by grinding.  

 

When designing crucibles for use at elevated temperatures it is important that 

the crucible does not dissolve into the melt to a large extent which might jeapordize the 

quality of the corrosion test. The concentration gradient between the refractory test 

specimen and the frit melt might change during the test. EDX analysis give northworthy 

data about the dissolution and loss of the constituents present in the frit in relation to the 

original frit before testing. Not much change was observed in the composition of the frit 

melted in alumina crucible compared to the original one (Table 5.2.1). The new frit 

composition was not enriched by Al element in huge amounts and this shows that not 

much Al dissolution from Al2O3 crucible in contact with the glass occured. (Figure 

5.2.6.a-d.). 

 

75-1865        Al2O3 

 
82–1538       ZnAl2O4 
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(a) original transparent frit (b) molten transparent frit (1500 oC) 
 

 

 

 
(c) original opaque frit (d) molten opaque composition (1500 oC) 

 

Figure 5.2.6. EDX analysis of original and molten transparent and/or opaque frit species 

 

Table 5.2.1. EDX analysis of original and melted transparent and/or opaque frit 
 

Element 
Original 

transparent frit 
Melted 

transparent frit 
Original 

opaque frit 
Melted 

opaque frit 

 wt% at% wt% at% wt% at% wt% at% 
O 41.2 59.8 40.7 59.5 40.8 60.9 42.0 61.8 
Zn 14.0 5.0 13.7 5.0 10.0 3.6 10.1 3.6 
Mg 2.2 2.1 1.7 1.7 1.8 1.8 1.8 1.7 
Al 6.7 5.8 6.2 5.47 4.2 3.7 4.3 3.7 
Si 26.1 21.6 25.7 21.5 26.0 22.1 26.1 22.0 
K 3.0 1.7 4.1 2.5 4.0 2.5 3.7 2.2 
Ca 7.0 4.0 8.0 4.6 5.8 3.5 6.1 3.6 
Zr 0.0 0.0 0.0 0.0 7.3 1.9 6.0 1.6 
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CHAPTER 6 
 

CONCLUSIONS AND RECOMMENDATIONS 
 

Al2O3 and ZrO2 crucibles were successfully produced. They were chemically 

homogeneous, mechanically sound and free from pores. When in contact with a 

commercial frit melt at high temperature (1400-1500oC) their chemical interaction with 

the frit melt yielded the following findings: 

 

• Zirconia crucibles were not chemically resistant to frit melts contrary to 

expected predictions from phase diagram studies. This was probably due to wetting 

effects that led to complete penetration and ingress of frit into the zirconia crucible wall. 

• Zirconia crucibles were found to fracture upon cooling due to thermal 

expansion mismatch between zirconia (9-10x10-6 /oC) and frit (4-8x10-6 /oC). 

• Zirconia powder of average particle size of 0.5 µm was used in granular form 

and the SEM images pointed out that these granules could not be perfectly dispersed. 

This may perhaps lead to incomplete mixing of the slip. 

• Alumina crucibles were chemically resistant to frit attack and little dissolution 

of alumina was observed into the frit. This small amount of dissolution (<3%) was 

satisfactory as far as the validity of the corrosion test was concerned. 

• Al2O3 - ZrO2 (AZ) crucibles performed successfully, behaving more like the 

alumina crucibles. 

• In the case of Al2O3 crucible use, with both frit species, ZnAl2O4 formation 

was observed at the interface where the width of the band of ZnAl2O4 differed 

significantly mostly dependent on the amount of the two major oxides (ZnO and Al2O3) 

in each frit composition. Also, presence of ZrO2 in opaque frit was observed adjacent to 

the ZnAl2O4 band.  

• Crystallization of ZrSiO4 was another finding in the opaque frit region with 

respect to the natural opaque frit composition.  On the other hand, in Al2O3-ZrO2 

crucible wall-frit interface, beside the presence of ZnAl2O4 crystals, large Al2O3 crystals 

were apparent. Upon incomplete dispersion of ZrO2 in prepared Al2O3-ZrO2 suspension, 

huge granule shaped zirconia crystals were evident.  
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The use of modified frit compositions in melting processes, utilization of 

different types of powder forms of Al2O3 and ZrO2 materials in the production of 

crucibles, experimentation of melting behaviours of other process liquids in the same 

type of ceramic crucibles for evaluating their corrosion resistance can be studied as the 

future work.  Also additional experimental study on the preparation of stable Al2O3-

ZrO2 suspensions for producing AZ crucibles should be conducted.  
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