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ABSTRACT 
 
 

BASIC KEY EXCHANGE PROTOCOLS FOR SECRET KEY 

CRYPTOSYSTEMS UNDER CRYMPIX LIBRARY 

 

 Key exchange protocols are developed in order to overcome the key distribution 

problem of symmetrical cryptosystems. These protocols which are based on various 

algebraic domains are different implementations of public-key cryptography. In this thesis, 

the basic key exchange protocols are reviewed and CRYMPIX1 implementations of them 

are provided. CRYMPIX has a portable structure that provides platform independence for 

generated code. Hence, the implemented key exchange mechanisms are suitable to be used 

on different hardware and software platforms.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
1 CRYMIX is a multiprecision cryptographic library and available at http://crympix.iyte.edu.tr. 
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ÖZET 
 
 

CRYMPIX KÜTÜPHANES� ALTINDA G�ZL� ANAHTAR 

KR�PTOS�STEMLER� �Ç�N TEMEL ANAHTAR DE����M 

PROTOKOLLER� 

 

 Anahtar de�i�im protokolleri simetrik kripto sistemlerdeki anahtar da�ıtım 

problemini çözmek amacıyla geli�tirilmi�tir. Çe�itli matematiksel temeller üzerine 

geli�tirilen bu protokoller, açık anahtar kripto sisteminin farklı uygulamalarıdır. Bu tezde, 

temel anahtar de�i�im protokolleri incelenmi� ve CRYMPIX2 uygulamaları verilmi�tir. 

Ta�ınabilir bir yapıya sahip olan CRYMPIX kütüphanesinin kullanımı platform 

ba�ımsızlı�ı sa�lamı�tır. Böylece olu�turulan anahtar de�i�imi mekanizmaları farklı 

donanım ve yazılımlarla bir arada çalı�maya uygun hale gelmi�tir.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
2 CRYMPIX çok-basamaklı (multiprecision) bir kütüphanesidir ve http://crympix.iyte.edu.tr adresinden 
ula�ılabilinir. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 

Security of information has been a critical issue of mankind for centuries. 

Especially secrecy and authentication are the most common problems of security. Different 

methods have been developed to overcome these two problems. Various encoding and 

decoding schemes have been used to provide secrecy; Caesar’s cipher (substitution cipher) 

is one of the earliest and well known methods in this regard. As for authentication 

signatures have common utilization. 

The science that deals with the security of information, is called “Cryptology”, that 

consist of the words, cryptos (= hidden) and logos (=word). Cryptology is the study of two 

different concepts; cryptography and cryptanalysis. Both of them are actually the study of 

mathematics. Cryptography deals with creating a secure system that is based on 

mathematical problems. Cryptanalysis is the process of breaking this system using 

mathematics, statistics, etc. 

The improvement of communication technologies, especially during World War II 

and past twenty years, led to a revolution in cryptology. Besides, mathematical 

fundamentals which have been studied for centuries accelerated this revolution. Two 

different forms of cryptography; symmetrical and asymmetrical cryptosystems, were 

developed during this revolution. 

1.1. Symmetrical Cryptosystems  

 Symmetrical cryptosystems, also called conventional cryptosystems, encrypt and 

decrypt data using the same key, as shown in Figure 1.1. Sender encrypts the plain text P 

using the key and generates the cipher text C. The cipher text is sent through an insecure 

channel. Receiver, who has the same key with sender, gets the cipher text C and decrypts it 
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using the key to obtain plain text P. The key must be shared before the protocol using a 

secure channel.  

The most common algorithms used for symmetrical cryptography are stream ciphers 

and block ciphers. Stream ciphers, such as RC4, operates on plain text or cipher text as a 

stream of digits (bits, bytes or sometimes 32-bit words). A pseudorandom key stream is 

generated using the key as a seed and the key stream combined with the plain text, one digit 

at a time, typically using an exclusive-or. Same plain text digit generates a different cipher 

text digit every time it is encrypted. Block ciphers, such as DES, AES, operate on fixed-

length bit blocks. Generally 64-bit or 128-bit blocks of plain text are encrypted into same 

sized blocks of cipher text. Unlike stream ciphers, same plain text block generates the same 

cipher text block every time it is encrypted using the same key. Consequently, there exist 

data patterns which lower the confidentiality. Block ciphers use techniques known as 

modes of operation to avoid this problem. 

 

Figure 1.1. Symmetrical Cryptosystems 
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 The security of a symmetric cryptosystem is a function of two parameters: the 

length of the key and the strength of the algorithm (Schneier 1996).  Therefore the selected 

key length must be large enough to resist brute-force attacks. 

1.2. Asymmetrical Cryptosystems  

 Asymmetrical cryptosystems, also known as public key cryptosystems, uses two 

different but mathematically related keys, a private key and a public key, as shown in 

Figure 1.2. Only the owner knows private key, whereas his/her public key is available for 

everyone. Therefore anyone can encrypt data using the public key, but just the owner 

executes the decryption process which requires the private key. Computing the public key 

using the private key must be an easy mathematical process. But calculating the private key 

using the public key must be computationally expensive.  

 Sender encrypts the plain text P using the receiver’s public key and generates the 

cipher text C. The cipher text is sent through an insecure channel. Receiver gets the cipher 

text C and decrypts it using his/her private key to obtain plain text P. 

 The most common cryptosystems using public key are: 

• Diffie-Hellman Key Exchange Protocol, DHKE, invented by Whitfield Diffie and 

Martin Hellman in 1976 (Diffie and Hellman 1976). 

• RSA, invented by Ronald Rivest, Adi Shamir, and Len Adleman in 1978 (Rivest et 

al. 1978). 

• ElGamal algorithm, described by Taher Elgamal in 1984 is based on Diffie-

Hellman key agreement. 

• Elliptic curve cryptography (ECC) based on the algebraic structure of elliptic curves 

over finite fields, suggested by Neal Koblitz and Victor S. Miller in 1985. 
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Figure 1.2. Asymmetrical Cryptosystems 

1.3. Key Management 

Design and implementation of a secure cryptosystem is not an easy procedure. It 

requires extensive mathematical and technical knowledge. But the security of the key (or 

key pair), which operates on the developed system, is more critical and severe as the 

security of the key (or key pair) indicates the security of the cryptosystem, either 

symmetrical or asymmetrical. Therefore, the key operations must be managed separately. 

Key management copes with different operations on key, such as generating, 

destroying, storing, exchanging and publishing (Menezes et al. 1996).  

• Generating, destroying and storing keys are common processes for both 

symmetrical and asymmetrical cryptosystems.  

• Publishing (the public key) is an issue for only asymmetrical cryptosystems. 

• Exchanging key is only required by symmetrical cryptosystems.  
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Publishing key does not cause a secrecy problem, because the published key is 

available for everyone. But it causes authentication problems. The publisher must be the 

person who he/she claims to be. On the other hand exchanging key causes both secrecy and 

authentication problems. The key must be calculable by two sides of the protocol but 

nobody else. And the same as the publisher, people who exchange keys must be the ones 

who they claim to be. 

1.4. Key Exchange Problem for Symmetrical Cryptosystems 

As mentioned earlier, symmetrical cryptosystems use the same secret key for 

encryption and decryption processes. Therefore the key must be distributed to each 

participant in the protocol. A secure method must be specified for key distribution because 

even if the message is encrypted using a hardly breakable algorithm, when the distribution 

method breaks down, encryption process makes no sense. In other words the security of a 

symmetrical cryptosystem depends on the security of the key. 

Cryptanalytic attacks often work on key management as a result of this critical role 

of the key in symmetrical cryptosystems. Recovering the key from a storage mechanism or 

during a key exchange procedure is much easier than breaking a cryptographic algorithm. 

For this reason all cryptosystems, either symmetrical or asymmetrical, should have to 

recreate and distribute the key (or key pair) as frequent as possible. Not only the 

distribution frequency but also the number of the participants in a symmetrical protocol is a 

critical issue for key distribution. In symmetrical cryptosystems, if there are n participants 

in the protocol, the key exchange process is performed k times (where ( .( 1)) / 2k n n= − ). 

When today’s network communication techniques is considered, it is possible to 

communicate hundreds of thousands of nodes simultaneously which requires billions of key 

exchange. 

In early times of cryptography couriers are used as a secure method to distribute 

keys. But using a courier is not an effective choice today in the scope of the parameters; 

frequency and number of nodes. Couriers are not capable of distributing keys among such a 

large number of nodes as frequent as necessary.  
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 Despite the fact that symmetrical cryptosystems are faster than asymmetrical 

cryptosystems, the problem of exchanging key makes them less popular. 

1.5. The Proposed Solution  

 Distributing keys through the same communication channel (an insecure channel) as 

messages is more effective than using a courier. But the mentioned channel is not the 

secure one, which enforces us to encrypt our messages. Therefore the key must be 

exchanged through the channel using some cryptographic methods that provide security. 

 The key distribution problem of the symmetrical cryptosystems was firstly solved 

by Whitfield Diffie and Martin Hellman in 1976 using public key cryptography (Diffie and 

Hellman 1976). The solution method is called Diffie-Hellman Key Exchange Algorithm. It 

is based on a public-private key pair and their mathematical relation. The mathematical 

issue under Diffie-Hellman key exchange algorithm is the discrete logarithm problem.  

 After Diffie-Hellman had proposed using public key cryptosystems for exchanging 

keys, different key exchange protocols were developed similarly. Pretty Good Privacy 

(PGP) Encryption, which was originally created by Philip Zimmermann in 1991, is one of 

those protocols (Zimmermann 1995). The key is encrypted using an asymmetrical 

cryptosystem (using receiver’s public key). So only the receiver can decrypt the encrypted 

key. But using such a protocol requires not only another encryption-decryption process, but 

also the certification of the public key. This protocol is not in the scope of this thesis. 

 As newer cryptosystems had been developed, Diffie-Hellman Key Exchange 

Algorithm mutated over different mathematical problems. Elliptic Curve Diffie-Hellman 

and Elliptic-Curve MQV, which are based on elliptic curve cryptography, are some other 

algorithms for key exchange. These three algorithms are reviewed in the rest of this thesis.  
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CHAPTER 2  

 
 

 KEY EXCHANGE PROTOCOLS 

 
  

As mentioned in Chapter 1, key exchange protocols are applied to solve the key 

distribution problem of symmetrical cryptosystems. The objective of a key exchange 

protocol is that, only the participants at the two ends of the protocol only have the 

possession of the secret key, but nobody else.  

 Similar to asymmetrical cryptosystems, key exchange protocols generate and use 

public-private key pairs. Also like all other cryptosystems they are based on mathematical 

problems. The mathematical background of these protocols makes it easy to compute a 

public key with given domain parameters and a private key. But computing the private key 

using the public key must be hard and infeasible. 

Unlike the asymmetrical cryptosystems, key pairs are not used for encryption and 

decryption processes in key exchange protocols. They are used for the calculation of the 

shared key which is the secret key of the chosen symmetrical cryptosystem. The shared key 

must be calculable for any two key pairs which were generated using the same domain 

parameters. For this reason, designing a mathematical protocol for key exchange is harder 

than designing one for other public-private cryptosystems.  

 Shared key, or secret key, is also known as session key, because it is generally used 

for only one particular communication session. A session key does not exist at the end of 

the communication. The reason of generating a new key for each communication session is 

preventing cryptanalytic attacks. Because when more material that is encrypted with the 

same key is available, several attacks are made easily. 

 Even if each key exchange protocol has a different mathematical background, and 

consequently different parameters to generate keys, all of them have the same fundamental 

structure. This structure consists of domain parameters, public-private key pairs of both 
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participants and a shared key. On top of this structure a generic algorithm is processed for 

each key exchange protocol, as illustrated in Figure 2.1. 

   

Figure 2.1. Fundamental Key Exchange Protocol  
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 When users agree on starting to communicate and specify which key exchange 

protocol to use, the algorithm starts stepping as the following: 

Step 1: User A generates domain parameters for specified key exchange protocol. 

Step 2: User A generates a random private key using domain parameters. 

Step 3: User A calculates public key using domain parameters and private key. 

Step 4: User A sends domain parameters and its own public key to User B. 

Step 5: User B generates a random private key using domain parameters.  

Step 6: User B calculates public key using domain parameters and private key.  

Step 7: User B calculates session key using its own private key and User A’s public 

key.  

Step 8: User B sends its own public key to User A.  

Step 9: User A calculates session key using its own private key and User B’s public 

key.  

 

At the end of this algorithm, it is expected that both participants have the same 

session key. Otherwise, the encrypted material by one participant can not be decrypted by 

the other. This indicates that an error occurred during the key exchange procedure or an 

adversary attacked to the system. 

There are numbers of protocols and their variants for exchanging keys. The 

mathematical improvements lead different types of protocols to be developed. Also 

additional solutions for the problems other than the key exchange, for example 

authentication, create variants of these protocols. Three of these protocols are explained in 

the rest of this chapter. 
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2.1. Diffie-Hellman Key Exchange 

Diffie-Hellman Key Exchange Algorithm was developed by Whitfield Diffie and 

Martin Hellman in 1976 and published in “New Directions in Cryptography”. Actually it 

had been discovered by Malcolm J. Williamson within GCHQ3 a few years earlier than 

Diffie-Hellman, but GCHQ didn’t make it public until 1997. Ralph Merkle’s work on 

public-key cryptography influenced the studies of Diffie and Hellman (Merkle 1978). 

Hence, Martin Hellman proposed calling the algorithm as Diffie-Hellman-Merkle Key 

Exchange Algorithm in 2002. 

2.1.1. Mathematical Background  

Diffie-Hellman Key Exchange Algorithm is based on discrete logarithm problem. In 

other words, security of the protocol depends on the difficulty of calculating discrete 

logarithms in finite fields.  

Discrete logarithm can be considered as group theoretical version of ordinary 

logarithm. Ordinary logarithm is the inverse function of exponential function. Similarly, 

discrete logarithm is the inverse function of discrete exponential function, as shown in 

Figure 2.2.   

 

 

 

 

 

 

                                                 
3 The Government Communications Headquarters (GCHQ) is a British intelligence agency responsible for 

providing signals intelligence (SIGINT) and information assurance to the UK government and armed forces 

as required, under the guidance of the Joint Intelligence Committee. 
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Figure 2.2. Discrete Logarithm 

 

Using a formal definition discrete logarithm can be explained as: 

“Let G is a finite cyclic group of order n. Let α  be a generator of G, and let β ∈G. 

The discrete logarithm of β  to the baseα , which is denoted as logα β , is the unique 

integer x, 0 ≤  x ≤  n-1, such that β  = α x (Menezes et al.1996).”  

Also discrete logarithm problem can be explained as: 

 “Given a prime p, a generator α  of � p
* and an element β ∈  � p

*, find the integer 

x, 0 ≤  x ≤  p-2, such that α x ≡ β (mod p) (Menezes et al. 1996).” 

Calculation of discrete exponentiation is soluble in polynomial time. Firstly, xth 

power of α  is calculated then α x is divided by the prime p and the remainder of the 

division is the result of the function. On the other hand, calculation of the discrete 

logarithm function is not soluble in polynomial time, which means it is an NP complete 

problem4. This attribute of the problem makes it a suitable candidate for use in the 

cryptographic protocols.  

 

                                                 
4 NP (non-deterministic polynomial time) complete problems can not be computed in a polynomial time by a 

deterministic machine. For this reason these problems are insoluble. 

 β = α x  
 

Exponential Function 

inverse function x = logα β   
 

Logarithm Function 

β  ≡  α x (mod p) 
 

Discrete Exponential 
Function in (� p)* 

inverse function 
x ≡ logα β  (mod p)  

 
Discrete Logarithm 
Function in(� p)* 
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2.1.2. Domain Parameters 

The domain parameters include (ANSI X9.42): 

• p: A prime defining the Galois Field5 GF(p), which is used as a modulus in the 

operations of GF(p), where 2(L-1)< p < 2L , for L ≥ 1024, and L is a multiple of 256. 

• q: A prime factor of p-1 such that p = jq+1 and q > 2m-1. GF(p)* has a cyclic 

subgroup of order q. 

• g: A generator of the q-order cyclic subgroup of GF(p)*, that is, an element of order 

q in the multiplicative group of GF(p). 

2.1.3. Keys 

The key pair includes: 

• Ax : A private key which is selected as 1 ≤  x ≤  (q-1). 

• Ay : A public key which is calculated as (mod )A

xAy g p= . 

The shared key is calculated as: 

.
( ) (mod ) ( ) (mod ) (mod )B

A B A A Bx x xx x
K y p g p g p= = =    (2.1) 

.
( ) (mod ) ( ) (mod ) (mod )A

B A B A Bx xx x x
K y p g p g p= = =    (2.2) 

 

 

 

                                                 
5 In abstract algebra, a finite field or Galois field (so named in honor of Évariste Galois) is a field that 

contains only finitely many elements. Finite fields are important in number theory, algebraic geometry, Galois 

theory, cryptography, and coding theory. 
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2.1.4. Algorithm 

 Diffie-Hellman Key Exchange Algorithm steps as the following: 

 

Step 1: User A generates domain parameters p, q and g. 

Step 2: User A generates a random private key Ax . 

Step 3: User A calculates public key as (m od )A

xAy g p= . 

Step 4: User A sends (p, g, Ay ) to user B. 

Step 5: User B generates a random private key Bx .  

Step 6: User B calculates public key (mod )B

xBy g p= . 

Step 7: User B calculates session key as  
.

( ) (mod ) ( ) (mod ) (mod )A
B A B A Bx xx x x

K y p g p g p= = =  

Step 8: User B sends By  to user A.  

Step 9: User A calculates session key as  

 
.

( ) (mod ) ( ) (mod ) (mod )B
A B A A Bx x xx x

K y p g p g p= = =  
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Figure 2.3. Diffie-Hellman Key Exchange Protocol 
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2.2. Elliptic Curve Diffie-Hellman 

Elliptic Curve Diffie-Hellman Key Exchange Algorithm which uses elliptic curve 

cryptography is a variant of Diffie-Hellman Key Exchange Algorithm. Elliptic curve 

cryptography which is denoted as ECC is a new approach to public-key cryptography 

(Hankerson et al. 2004). Using elliptic curves in cryptography was suggested by two 

professors of mathematics, Neal Koblitz and Victor S. Miller, in 1985 separately. ECC has 

been applied in different schemes of cryptology, such as; 

• Elliptic Curve Diffie-Hellman Key Exchange Algorithm (ECDH). 

• Elliptic Curve MQV (ECMQV), for key agreement. 

• Elliptic Curve Digital Signature Algorithm (ECDSA). 

The characteristics of elliptic curves, such as being defined on a finite cyclic group, 

and having operations as addition and doubling for the points on the elliptic curve makes 

these curves suitable for cryptographic protocols. Because when a scalar multiplication, 

which is actually a point addition, of an integer number (n) and a point (P) on curve is 

performed, even if the start and stop points and all other parameters about curve are known, 

it is hard to find the integer n. 

 

Figure 2.4. Examples for Elliptic Curves 

(Source: Atay, 2006) 
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2.2.1. Mathematical Background 

Elliptic Curves: An elliptic curve over a finite field �  is defined by the equation, 

 2 3 2
1 3 2 4 6:   E y a xy a y x a x a x a+ + = + + +       (2.3) 

This equation is known as Weierstrass Equation (Hankerson 2004). Actually, 

elliptic curves are defined over three types of finite fields and Weierstrass Equation is 

simplified differently due to these types of field� q.  

• If the chosen field has a odd characteristic, which is denoted as � p (p>3 is a large 

prime) the equation is simplified as, 

   2 3:E y x ax b= + +                                                                  (2.4) 

where a, b ∈  � p and the discriminant of the curve is ∆ = 16(4a3 + 27b2). 

• If the chosen field has a characteristic of two, which is denoted as � 2
m the equation 

is simplified as, 

   2 3 2:E y xy x ax b+ = + +                                                       (2.5) 

where a, b ∈  � 2
m and the discriminant of the curve is ∆ = b. Such curves are 

called non-supersingular. If in the equation 2.3 a1 = 0, then equation is simplified 

as,  

   2 3:E y cy x ax b+ = + +                                                           (2.6) 

where a, b, c ∈  � 2
m and the discriminant of the curve is ∆ =c4. Such curves are 

called supersingular. 

• If the chosen field has a characteristic of three, which is denoted as � 3 the equation 

is simplified as, 

   2 3 2:E y x ax b= + +                                                                   (2.7) 

where a, b ∈  � 3 and the discriminant of the curve is ∆ = - a3b. Such curves are 

called non-supersingular. If in equation 2.3 a1
2 = -a2, then equation is simplified as,  



17 
 

   2 3:E y x ax b= + +                                                                   (2.8) 

where a, b ∈  � 3 and the discriminant of the curve is ∆ = -a3. Such curves are 

called    supersingular.  

 The chosen elliptic curve must satisfy the rules of being a finite cyclic group. This 

necessity leads some rules and operations to occur.  

 Chord-Tangent Rule: A line which passes through the two different points on an 

elliptic curve must intercept the same curve at a third point. 

 Point at Infinity: An identity element is necessary for elliptic curve group 

operations. Actually Weierstrass Equation, equation 2.3, is defined over a three 

dimensional field such as [ ]3 : :x y z� . But in order to obtain the identity element, it is 

assumed that z coordinates of the field is 0 and the point (0, 1, 0) is chosen as the identity 

element. This point is called as point at infinity and denoted as∞ . The rules that requires 

identity element can be defined for the points P, Q ∈  E(� q) as such; 

• if  then Q P P= ∞ + ∞ =  

• if  then Q P P Q= − + = ∞  

 Point Multiplication: Point multiplication is required for generating key pairs, 

decryption and encryption processes. This operation is known as scalar multiplication, 

because it is multiplication of an integer n by a point P. Scalar multiplication can be 

considered as an n times point addition, such as, 

. .........
n

n P P P P= + + +
�������

 

 Point Addition: In order to add two points, P and Q, on an elliptic curve the chord-

tangent rule is applied. If P and Q are not equal, then the line which passes through the 

points intercepts the curve at a third point –R, as shown in Figure 2.5. If P and Q are equal, 

then a tangent line to the elliptic curve at point P (or Q) intercepts the curve at a second 

point. The result of addition is the symmetrical point of the -R (the third interception point 

in chord-tangent rule) according to x-axis. Addition operation can be denoted as, 

( . )P Q P Q+ = −   
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Figure 2.5. Point Addition on an Elliptic Curve 

(Source: Atay, 2006)  

2.2.2. Domain Parameters 

 The domain parameters include (ANSI X9.63): 

• p:  A prime defining order of the finite field� q , where q = p and p > 3 

• a, b:  Two field elements in � p which define the equation of the elliptic curve  

2 3: (mod  )E y x ax b p= + +                                                                  

• ,G Gx y :  Two field elements in � p which define a point ( , )G GG x y of prime order on 

E ( note that E ≠  ∞  ) 

• n: The order of the point G 

• h: The cofactor defined as # ( ) /ph E F n=   
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2.2.3. Keys 

The key pair includes: 

• Ax :  A private key which is selected in the interval [1, n-1]. 

• AQ : A public key which is a point ( , )Q QQ x y  on elliptic curve and calculated using 

point multiplication .AQ x G=  

The shared key is calculated as: 

. . .A B A BK x Q x x G= =  by User A       (2.9) 

. . .B A A BK x Q x x G= =  by User B      (2.10)  

2.2.4. Algorithm 

Elliptic Curve Diffie-Hellman Key Exchange Algorithm that is shown in Figure 2.6 

steps as the following: 

Step 1: User A generates domain parameters p, a, b, Gx , Gy , n and h. 

Step 2: User A generates a random private key Ax . 

Step 3: User A calculates public key as A AQ = x .G . 

Step 4: User A sends (p, a, b, Gx , Gy , n, h, QA) to User B. 

Step 5: User B generates a random private key Bx .  

Step 6: User B calculates public key as B BQ = x .G . 

Step 7: User B calculates session key B A B AK = x .Q = x .x .G . 

Step 8: User B sends BQ  to User A.  

Step 9: User A calculates session key A B A BK = x .Q = x .x .G  
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Figure 2.6. Elliptic Curve Diffie-Hellman Key Exchange Protocol 
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2.3. Elliptic Curve MQV 

 MQV which stands for Menezes-Qu-Vanstone is based on the Diffie-Hellman 

scheme. It was proposed by Alfred Menezes, Minghua Qu and Scott Vanstone in 1995 

(Hankerson et al. 2004). It is an authenticated key agreement protocol which is developed 

for protection against active attacks6, such as man-in-the-middle attack. 

 The fundamental distinction between MQV and other key exchange protocols is that 

MQV uses two different key pairs. One of these key pairs is called static or long-term key 

pair which is bound to the entity for a certain period of time, typically through the use of 

certificates. The other key pair is called ephemeral or short-term key pair which is 

generated for each run of the protocol (Law et al. 1998).  

MQV protocols vary according to the finite group on which the protocol works. 

Elliptic Curve MQV which works on elliptic curve groups is one of these variants and it is 

denoted as ECMQV. There are also different forms of MQV algorithms, which can be 

applied to any variant. These forms can be summarized as fallows: 

• One Pass Authenticated Key Agreement Protocol can be considered as store and 

forward form. Because it does not require interactive communication. It is used 

when a party sends an encrypted message and the other party decrypts the message 

any time, but does not respond (i.e., can be applied while sending e-mail). Hence, 

just the initiator generates an ephemeral key pair and passes the public key to the 

receiver.  Because the transmission operation through the channel is performed only 

once, the protocol is called One Pass Authenticated Key Agreement Protocol. 

• Two Pass Authenticated Key Agreement Protocol can be considered as an 

interactive form. Because, the each party in the protocol sends and receives 

encrypted messages and each performs decryption processes simultaneously (i.e., 

can be applied during instant messaging). For this reason, both initiator and receiver 

have to generate an ephemeral key pair and send the public key to the other. 

                                                 
6 An active attack is one in which the attacker can modify or delete transmitting messages, or transmit new 

messages. 
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Because the transmission operation is performed twice, one for each party, the 

protocol is called Two Pass Authenticated Key Agreement Protocol.  

• Three Pass Authenticated Key Agreement Protocol is also known as Authenticated 

Key Agreement with Key Confirmation. It provides not only secrecy for the secret 

key but also assurance that each party in the protocol has the possession of the same 

secret key. The protocol uses a message authentication code (MAC) algorithm for 

the key confirmation. MAC is a key dependent one-way hash function (Schneier 

1996). Each party applies the MAC algorithm using domain parameters and obtains 

a secret key. Initially the initiator generates and sends its ephemeral public key, and 

then the receiver generates and sends its ephemeral public key and computes a 

MAC result. Finally the initiator sends the computed MAC result. Because the 

transmission operation is performed three times, the protocol is called Three Pass 

Authenticated Key Agreement Protocol. This protocol also requires a hash 

algorithm as a key derivation function (KDF) to derive one or more keys from the 

secret key. When such a derivation function is applied, even if attackers obtain the 

derived key, they can not learn any useful information about either the input secret 

value or any of the other derived keys. Also deriving keys eliminates the weak keys.  

Typically hash functions, such as SHA-1, are used as key derivation functions. 

2.3.1. Mathematical Background 

 Similar to ECDH protocol, ECMQV is also based on elliptic curve arithmetic. For 

this reason, the operations and structures that are defined in section 2.2.1 are also in use for 

ECMQV. On the other hand ECMQV requires an additional calculation to derive a point on 

a specified elliptic curve, such as: 

 “f denotes the bit length of n, which is the prime order of the base point P; 

i.e 2log 1f n= +� �� � . If Q is point over the elliptic curve, then Q  is defined as follows. Let x 

be the x-coordinate of Q, and let x  be the integer obtained from binary representation of x. 

(The value of x  will depend on the representation chosen for the elements of the field q� .) 



23 
 

Then Q  is defined to be the integer f /2 f/2mod2 2( )x + . Observe that ( mod )Q n ≠ ∞  (Law et 

al. 1998).” 

2.3.2. Domain Parameters 

The domain parameters include (ANSI X9.63): 

• p:  A prime defining the order of the finite field� p , where p > 3 

• a, b: Two field elements in � p which define the equation constants of the elliptic 

curve  

2 3: (mod  )E y x ax b p= + +                                                                  

• ,G Gx y : Two field elements in � p which define a point ( , )G GG x y  of prime order on 

E ( note the E ≠  ∞  ) 

• n: The order of the points over E in� p ; # ( )pE F n=  

• h: The cofactor defined as # ( ) /ph E F n=   

These parameters are specified by assuming that the elliptic curve E is defined on a 

finite field that has odd characteristic (� p). 

2.3.3. Keys 

The static (or long-term) key pair includes: 

• Aw  : A static private key.  

• AW : A static public key.  

It is assumed that static key pairs are exchanged via public key certificates. These 

certificates provide storage, security and authenticity for public keys and they are verified 

by a certification authority (CA). Certification authority is a trusted third party who 
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vouches for the authenticity of the public key. VeriSign (WEB_1 2007), GeoTrust (WEB_2 

2007) and Comondo (WEB_3 2007) are the first three companies in the certification 

authority business. The data partition of the certificate includes not only the static public 

key but also the domain parameters. (Menezes et al. 1996) 

The ephemeral (or short-term) key pair includes: 

• Ar : An ephemeral private key which is selected as a statistically unique and 

unpredictable (random) integer in the interval [1, n-1].  

• AR : An ephemeral public key which is a point ( , )R RR x y  on elliptic curve and 

calculated using point multiplication .A AR r G=  

Static key pairs are shared over a certification authority, so they provide authentication. 

An implicit signature is calculated in order to append the static key pair to the shared key 

calculation. The implicit signature is symbolized as As  (or Bs ) and calculated as: 

( . ) mod    A A A As r R w n= + by User A      (2.11) 

( . ) mod    B B B Bs r R w n= + by User B       (2.12) 

Then the shared key is calculated as:  

. .( . )

.(( . ) mod ).( . )

.((( . ) mod ). (( . ) mod ). . )

.( . . . . . . . . )

.( .( . ) . .( . ) . .( . ) . . .( . ))

. .( .

A B B B

A A A B B B

A A A B A A A B B

A B A A B A B B A A B B

A B A A B A B B A A B B

A

K h s R R W

h r R w n R R W

h r R w n R r R w n R W

h r R R w R r R W R w R W

h r r G R w r G r R w G R w R w G

h G r r

= +
= + +
= + + +
= + + +
= + + +
= . . . . . . . )             by User A           (2.13)B B A A A B B A B A Br w R r w R w w R R+ + +

 

 

. .( . )

.(( . ) mod ).( . )

.((( . ) mod ). (( . ) mod ). . )

.( . . . . . . . . )

.( .( . ) . .( . ) . .( . ) . . .( . ))

. .( .

B A A A

B B B A A A

B B B A B B B A A

B A B B A B A A B B A A

B A B B A B A A B B A A

A

K h s R R W

h r R w n R R W

h r R w n R r R w n R W

h r R R w R r R W R w R W

h r r G R w r G r R w G R w R w G

h G r r

= +
= + +
= + + +
= + + +
= + + +
= . . . . . . . )             by User B           (2.14)B A B B B A A A B A Br w R r w R w w R R+ + +
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2.3.4. Algorithm 

Domain parameters and static keys have been already generated and shared through 

a certification authority when the communication is started. So these operations are not 

included in the following Key Exchange Algorithms. 

One Pass Authenticated Key Agreement Algorithm: Algorithm that is shown in 

Figure 2.7 steps as the following: 

Step 1: User A generates a random private key Ar , computes public key as .A AR r G=  

and sends AR  to User B.  

Step 2: User A computes the implicit signature ( . ) mod    A A A As r R w n= + and the 

shared key . .( . )A B B BK h s W W W= + . If K is equal point at infinity ( K = ∞ ) then 

User A terminates the protocol run with failure. 

Step 3: User B does a key validation of AR . If validation fails then User B terminates 

the protocol run with failure. Otherwise User B computes the implicit signature 

( . ) mod    B B B Bs w W w n= + and the shared key . .( . )B A A AK h s R R W= + . If K is 

equal point at infinity ( K = ∞ ) then User B terminates the protocol run with 

failure. 
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Figure 2.7. One Pass Authenticated Key Agreement Algorithm 

 

Two Pass Authenticated Key Agreement Algorithm: Algorithm that is shown in 

Figure 2.8 steps as the following:  

Step 1: User A generates a random private key Ar , computes public key as .A AR r G=  
and sends AR  to User B.  

Step 2: User B generates a random private key Br , computes public key as .B BR r G=  
and sends BR  to User A.  

Step 3: User A does a key validation of BR . If validation fails then User A terminates 
the protocol run with failure. Otherwise User A computes the implicit signature 

( . ) mod    A A A As r R w n= + and the shared key . .( . )A B B BK h s R R W= + . If K is 
equal point at infinity ( K = ∞ ) then User A terminates the protocol run with 
failure.  

Step 4: User B does a key validation of AR . If validation fails then User B terminates 
the protocol run with failure. Otherwise User B computes the implicit signature 

( . ) mod    B B B Bs r R w n= + and the shared key . .( . )B A A AK h s R R W= + . If K is 
equal point at infinity ( K = ∞ ) then User A terminates the protocol run with 
failure. 
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Figure 2.8. Two Pass Authenticated Key Agreement Algorithm 
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Three Pass Authenticated Key Agreement Algorithm: Algorithm that is shown in 

Figure 2.9 steps as the following:  

Step 1: User A generates a random private key Ar , computes public key as .A AR r G=  

and sends AR  to User B.  

Step 2: User B does a key validation of AR . If validation fails then User B terminates 

the protocol run with failure. Otherwise User B generates a random private 

key Br , computes public key as .B BR r G= . 

Step 3: User B computes the implicit signature ( . ) mod    B B B Bs r R w n= + and the shared 

key . .( . )B A A AK h s R R W= + . If K is equal point at infinity ( K = ∞ ) then User B 

terminates the protocol run with failure. 

Step 4: User B derives the key K and computes a K B AMAC (B, A, R , R ) value for the 

derived key. Then send the MAC value and RB to User A. 

Step 5: User A does a key validation of BR . If validation fails then User A terminates 

the protocol run with failure. Otherwise User A computes the implicit signature 

( . ) mod    A A A As r R w n= + and the shared key . .( . )A B B BK h s R R W= + . If K is 

equal point at infinity ( K = ∞ ) then User A terminates the protocol run with 

failure.  

Step 6: User A derives the key K and computes a K B AMAC (B, A, R , R ) value for the 

derived key and verifies that the computed value equals to the value that was 

sent by User B. 

Step 7: User A computes a K A BMAC (A, B, R , R ) value for the derived key. Then send 

the MAC value to User B. 

Step 8: User B computes a K A BMAC (A, B, R , R ) value for the derived key and 

verifies that the computed value equals to the value that was sent by User A. 
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Figure 2.9. Three Pass Authenticated Key Agreement Algorithm 
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2.4. Key Length of Key Exchange Protocols 

 As mentioned in section 1.4 cryptanalytic attacks often work on the keys. For this 

reason key must be recreated as much as possible. Hence, adversaries can not have much 

data which is encrypted using the same key to analyze. But it is still possible to break the 

cryptographic algorithm using any sniffed data. Therefore some parameters must be 

specified to make key more resistant against cryptanalytic attacks. The bit length of the key 

is the one of these parameters. It is easier to break a cryptosystem which uses smaller key 

lengths. As the key length rises up, the system becomes more resistant against attacks.  

 NIST7 describes some standards to identify security levels for key lengths of each 

cryptographic protocol. There are several publications including FIPS8 and special 

publications 800 series. Special publication 800-57 Recommendation for Key Management 

includes the key lengths of key exchange protocols with corresponding security levels, 

Table 2.1 (Barker et al. 2007).   

 

Table 2.1. Key Lengths with Corresponding Security Levels 

  FFC9 

Bits of security 
Symmetric  Key 

Algorithms 
 

DLP10 (DHKE) 
(N:bit length of private key 
L: bit length of public key) 

ECC11(ECDHKE, ECMQV) 
(f: bit length of the order of 

base point G) 

80 2TDEA12 L = 1024, N = 160  
f = 160 - 223 

112 3 TDEA13 L =2048, N = 224 f = 224 - 255 

128 AES-128 L = 3072, N =256 f = 256 – 383 

192 AES-192 L = 7680, N =384 f = 384 – 511 

256 AES-256 L = 15360, N =512 f = 512 + 

                                                 
7 National Institute of  Standards and Technology, http://www.nist.gov/ 
8 Federal Information Processing Standarts, http://www.itl.nist.gov/fipspubs/ 
9 Finite Field Cryptography 
10 Discrete Logarithm Problem 
11 Elliptic Curve Cryptography 
12 Two Key Triple Data Encryption Algorithm: TDEA uses three 56-bit keys; K1, K2 and    K3. If 

1 3 2K K K= ≠  then TDEA is said as Two Key Triple Data Encryption Algorithm. 
13 Three Key Triple Data Encryption Algorithm: TDEA uses three 56-bit keys; K1, K2 and K3. If 

1 2 3K K K≠ ≠  then TDEA is said Three Key Triple Data Encryption Algorithm. 
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The first column indicates the security strength of a cryptographic algorithm. “Bits 

of security” is a number that associated with the amount of work (that is, the number of 

operations) that is required to break a cryptographic algorithm. The security strength of an 

algorithm for a given key size is traditionally described in terms of the amount of work it 

takes to try all keys for a symmetric algorithm that has no short cut attacks (i.e., the most 

efficient attack is to try all possible keys). In this case, the best attack is said to be the 

exhaustion attack. An algorithm that has a "Y" bit key, but whose strength is comparable to 

an "X" bit key of such a symmetric algorithm is said have a “security strength of X bits” or 

to provide “X bits of security” (Barker et al. 2007). The larger “bits of security” indicates 

the higher key lengths and the more difficultly broken algorithm.  

The second column identifies the symmetric key algorithms that provide the 

indicated level of security (at a minimum) (Barker et al. 2007). 

The third column identifies minimum size of the parameters (L and N) for 

algorithms (e.g., Digital Signature Algorithm (DSA), Diffie-Hellman Key Exchange 

Algorithm (DHKE)) which are based on discrete logarithm problem (DLP). L indicates the 

length of the public key and N indicates the length of the private key.   

The fourth column identifies the range of f (the bit size of n, where n is the order of 

the base point G) for algorithms (Elliptic Curve Digital Signature Algorithm (ECDSA), 

Elliptic Curve Diffie-Hellman Key Exchange Algorithm (ECDHKE)) which are based on 

elliptic curve discrete logarithm problem (ECDLP).  

These key lengths are used to test implemented key exchange protocols in 

CRYMPIX. Execution times of key generation functions for different key lengths are 

placed in Chapter 3. Hence it is possible to compare effectiveness of the protocols with 

respect to execution times.  
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CHAPTER 3 
 
 

PROTOCOL IMPLEMENTATION 
 

3.1. A Cryptographic Library CRYMPIX 

 Computers which have fixed-sized processor architecture are not suitable for 

cryptographic computations, because they are designed for single-precision operations. An 

n-bit processor is able to use numbers up to 2n. On the other hand numbers that are used in 

cryptographic applications can grow up to thousands of bits. This problem can not be 

handled by a hardware solution. Instead, it should be solved in the software layer. 

The large numbers of cryptographic applications are split into small pieces. Each of 

these pieces is called a word, and the length of each word is n-bit for an n-bit processor. 

Implementing large numbers in such words is called multiprecision.  

CRYMPIX is a multiprecision cryptographic library. It was designed and developed 

by Hüseyin Hı�ıl, as the implementation part of the graduate thesis “A Distributed 

Multiprecision Cryptographic Library Design” (Hı�ıl 2005). Development language of 

CRYMPIX is ANSI C which provides portability to the library. So it is suitable for 

different hardware platforms.   

CRYMPIX uses 32-bit words to implement large numbers. It includes various 

structures that are designed for not only mutiprecision integers but also different types of 

mathematical forms that are used in cryptography, such as finite fields, prime numbers and 

elliptic curves.  

A layered structure is applied during the development of the library (Figure 3.1). 

Basic arithmetic operations, such as addition, subtraction, multiplication, division, 

exponentiation, modulus and modular exponentiation, are implemented in the 

multiprecision layer which is placed on top of the kernel layer. Input-output (io) operations 

and some base functions that are used by the multiprecision layer are placed in the kernel 
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layer. Finite layer is structured on the multiprecision layer and implements the finite field 

mathematical forms and operations. Prime numbers and elliptic curves are included in this 

layer. Finally the cryptography layer is placed on the top. The cryptographic protocols such 

as encryption-decryption algorithms are placed in this layer. 

 

 

Figure 3.1. Layered Structure of CRYMPIX 

 
 

 Each layer calls the functions of a lower layer, except the cryptography. It calls both 

the functions of finite and multiprecision layers. Also none of them knows about the upper 

layers.  

 As a cryptographic protocol, each key exchange protocol is placed in the 

cryptography layer. Each protocol was implemented independently from the others. Key 

structures are defined for each protocol with their initializer and finalizer functions. Also 

both structure and function names are specified according to coding conventions of 

CRYMPIX. 
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3.2. Protocols 

 As shown in Figure 3.2, there is a common structure for all implemented key 

exchange protocols. Each of them includes the owner’s public and private keys, the other 

party’s public key and the shared key. The other parameters depend on the selected 

protocol. These structures include both generated and computed values. Despite the fact 

that computed values can be obtained from the generated values anytime, in order to avoid 

the delay that is caused by calculation time in each computed value call, they are also 

placed in the key structures (i.e. owner’s public key). 

 

Figure 3.2. Generic Key Structure 

3.2.1. Diffie-Hellman Key Exchange Protocol 

 Domain parameters and key pairs of Diffie-Hellman Key Exchange Protocol which 

are described in sections 2.1.2 and 2.1.3 are provided with their corresponding conventions 

in CRYMPIX in Table 3.1. 

Table 3.1. Diffie-Hellman Key Structure Comparison 

Protocol 
Description 

CRYMPIX 
Implementation 

p Fp 
g g 
xA x 
yA X 
yB Y 
K key 
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 The implemented key structure of the protocol is shown in Figure 3.3. The name of 

the structure is defined as DH_FP; DH for Diffie-Hellman and FP for the prime finite field 

arithmetic. 

 

 

 

 

 

Figure 3.3. Implemented Key Structure for Diffie-Hellman KE 

 

MI_t types are multiprecision integer values. FP_t fp is a finite field representation 

that indicates prime p. The domain parameter q is not placed in the structure because it is 

required for only generation of g.    

Generation of these domain parameters requires prime number generation, primality 

testing and the generation of generator number. Prime number generation and primality 

testing functions are included in CRYMPIX. However, just these functions are not enough 

to generate the domain parameters of this protocol. There is a prerequisite for the 

generation of p and q primes such that q must be a prime factor of p-1. Such q prime is 

required for the generation of the generator g. But factorization of p-1 is an NP-complete 

problem that this protocol is based on. Consequently, instead of calculating a prime p and 

trying to factorize it, q is generated using CRYMPIX’s prime generation function then 

2q+1 is tested with prime testing functions (Menezes 1996). Until (2q+1) is a valid prime p, 

these two steps are repeated. “2” is selected as the other factor of p in order to make the 

calculation of generator g easy.  

Additionally, modular exponentiation and pseudorandom number generator 

functions of the library are used during domain parameter generation.  

Similar to key structure, functions are also named according to the naming 

convention. Hence, each function starts with dh_fp prefix, as shown in Table 3.2. 

typedef struct{ 
 FP_t fp;  
 FP_t q;  
 MI_t g;  
 MI_t x;  
 MI_t X;  
 MI_t Y;  
 MI_t key;  
}DH_FP_t[1], *DH_FP; 
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Table 3.2. Functions of Diffie-Hellman Key Exchange Protocol 

Function Name Input Process 

dh_fp_init DH_FP new, uni_t rtype to initialize the Diffie-Hellman 
key structure “new” 

dh_fp_kill DH_FP dh to free the Diffie-Hellman key 
structure “dh” 

dh_fp_generate_domain_parameters MI p, MI g, uni_t len, uni_t 
cert, MI seed 

to generate domain 
parameters p and g  with given 
length and certainty using the 
seed 

dh_fp_generate_key_pair DH_FP dh, MI seed 

 to generate a private key and 
calculate a public key using 
given seed and to store these 
keys in the Diffie-Hellman key 
structure “dh” 

dh_fp_calculate_session_key DH_FP dh 

 to calculate session key using 
public and private keys in the 
Diffie-Hellman key structure 
“dh” and to store it in the same 
key structure 

3.2.2. Elliptic Curve Diffie-Hellman Key Exchange Protocol  

 CRYMPIX contains the fundamental structures for elliptic curve cryptography, such 

as an elliptic curve structure which is denoted as EC_FP_t and a point structure which is 

denoted as ECP_FP_t. Also required functions, like point multiplication, are included in the 

library. On the other hand, there is no generation function for an elliptic curve in the library 

because it is an expensive process to create a suitable elliptic curve for the cryptographic 

usage. Instead of generating elliptic curves, pre-defined NIST (WEB_4 2007, WEB_5 

2007) curves are used in implementation. Such predefinition does not cause a security 

problem because elliptic curve structures are public parameters of elliptic curve 

cryptography. Also elliptic curve functions are designed as parametric functions. Hence, the 

function caller does not have to use pre-defined curves in the library. It is possible to define 

a curve outside of the library and pass it through the elliptic-curve functions. In order to 

obey the coding conventions of CRYMPIX (WEB_6 2007), the parametric functions were 

designed to implement this protocol.  
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Domain parameters and key pairs of Elliptic Curve Diffie-Hellman Key Exchange 

Protocol which are described in sections 2.2.2 and 2.2.3 are shown with their corresponding 

conventions in CRYMPIX in Table 3.3. 

Table 3.3. Elliptic Curve Diffie-Helman Key Structure Comparison 

Protocol 
Description 

CRYMPIX 
Implementation 

p ec�fp 
a ec�a 
b ec�b 
xG g�x 
yG g�y 
n ec�n 
xA x 
xQA X�x 
yQA X�y 
xQB Y�x 
yQB X�y 
xK key�x 
yK key�y 

 

 The implemented key structure of the protocol is shown in Figure 3.4. The name of 

the structure is defined as DH_EC_FP; DH for Diffie-Hellman, EC for elliptic curve and 

FP for finite field arithmetic. 

 

 

 

 

 

Figure 3.4. Implemented Key Structure for Elliptic Curve Diffie-Hellman KE 

 

Similar to key structure, functions are also named according to the naming 

convention. Hence, each function starts with dh_ec_fp prefix, as shown in Table 3.4. 

 

typedef struct{ 
 EC_FP_t ec;  
 ECP_FP_t g; 
 MI_t x;  
 ECP_FP_t X;  
 ECP_FP_t Y;  
 ECP_FP_t key;  
}DH_EC_FP_t[1], *DH_EC_FP; 
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Table 3.4. Functions of Elliptic Curve Diffie-Hellman Key Exchange Protocol 

Function Name Input Process 

dh_ec_fp_init DH_EC_FP new 

to initialize the Elliptic Curve 
Diffie-Hellman key structure 
“new” 

dh_ec_fp_kill DH_EC_FP ecdh 
to free the Elliptic Curve Diffie-
Hellman key structure “ecdh” 

dh_ec_fp_generate_key_pair DH_EC_FP ecdh, MI seed 

 to generate a private key and 
calculate a public key using given 
seed and to store these keys in 
the Elliptic Curve Diffie-Hellman 
key structure “ecdh” 

dh_ec_fp_calculate_session_key DH_EC_FP ecdh 

 to calculate session key using 
public and private keys in the 
Elliptic Curve Diffie-Hellman key 
structure “ecdh” and to store it in 
the same key structure 

3.2.3. Elliptic Curve MQV 

As described in section 2.3, Elliptic Curve MQV protocol has three variants as one-, 

two- and three-pass authenticated key exchange protocols. The one-pass authenticated key 

exchange protocol is not suitable for interactive communications. The three-pass 

authenticated key exchange protocol requires hash and MAC algorithms, which are not in 

the scope of this thesis and are not included in CRYMPIX. Therefore in this thesis, it is 

aimed to implement two-pass authenticated key exchange protocol.  

As mentioned earlier, different from the other two protocols, MQV uses an implicit 

signature which is computed to provide authentication. Also an additional long-term key 

pair is used. It is assumed that the long term key pair is shared through a certification 

authority between two parties of the protocol. Actually, there is no structural difference 

between the implementations of Elliptic Curve Diffie-Hellman and Elliptic curve MQV, 

except an additional key pair and an implicit key. On the other hand computations are 

totally different. Elliptic Curve MQV uses not only the point multiplication but also the 

point addition function of the library. Also two extra functions, one for implicit signature 

calculation and one for point derivation (Section 2.3.1) are implemented. 
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Domain parameters and key pairs of Elliptic Curve MQV Key Exchange Protocol 

which are described in sections 2.3.2 and 2.3.3 are shown with their corresponding 

conventions in CRYMPIX in Table 3.5. 

 

Table 3.5. Elliptic Curve MQV Key Structure Comparison 

Protocol 
Description 

CRYMPIX 
Implementation 

p ec�fp 
a ec�a 
b ec�b 
n ec�n 
xG g�x 
yG g�y 
rA x 
wA a 
RA X 
WA A 
RB B 
K key 
h h 

SA S 

 

 The implemented key structure of the protocol is shown in Figure 3.5. The name of 

the structure defined as MQV_EC_FP; MQV for the name of protocol, EC for elliptic curve 

and FP for finite field arithmetic. 

 

 

 

 

 

 

 

Figure 3.5. Implemented Key Structure for Elliptic Curve KE 

typedef struct{ 
 EC_FP_t ec;  
 ECP_FP_t g;  
 MI_t x; 
 MI_t a;  
 ECP_FP_t X;  
 ECP_FP_t Y; 
 ECP_FP_t A;  
 ECP_FP_t B;  
 ECP_FP_t key;  
 MI_t h;  
 MI_t S;  
}MQV_EC_FP_t[1], *MQV_EC_FP; 
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MI_t types are multiprecision integer values. EC_FP_t indicates an elliptic curve 

structure and ECP_FP_t indicates a point on an elliptic curve.  

Similar to key structure, functions are also named according to the naming 

convention. So each function starts with mqv_ec_fp prefix, as shown in Table 3.6. 

 

Table 3.6. Functions of Elliptic Curve MQV Key Exchange Protocol 

Function Name Input Process 

mqv_ec_fp_init MQV_EC_FP new 
to initialize the Elliptic Curve MQV 
key structure “new” 

mqv_ec_fp _kill MQV_EC_FP ecmqv 
to free the Elliptic Curve MQV key 
structure “ecmqv” 

mqv_ec_fp _generate_key_pair 
MQV_EC_FP ecmqv, MI 
seed 

 to generate a private key and 
calculate a public key using given 
seed and to store these keys in the 
Elliptic MQV key structure “ecmqv” 

mqv_ec_fp _calculate_session_key DH_EC_FP ecmqv 

 to calculate session key using public 
and private keys in the Elliptic Curve 
MQV key structure “ecmqv” and to 
store it in the same key structure 

mqv_ec_fp _calculate_implicit_signiture DH_EC_FP ecmqv 

to calculate implicit signature S in the 
Elliptic Curve MQV key structure 
“ecmqv” 

mqv_ec_fp _derive_point MI z, ECP_FP p, MI n 

to derive elliptic curve point “p” 
using the given order n and store the 
multiprecision integer result in “z” 

3.3. Comparison of Protocols 

 At the end of the implementation of three key exchange protocols, the algorithms 

are compared to understand which one is the most effective. But the effectiveness can be 

defined with respect to different parameters. In the scope of this thesis, the execution times 

of the key pair generation and session key calculation are selected as the parameter of 

effectiveness.  

 In order to make an objective comparison, the generated keys must be providing the 

same level of the security. As mentioned in section 2.3, the bits of security, in other words 

the number of operations that is required to break a cryptographic algorithm, indicates the 

security level. Hence, the key lengths must be chosen in the intervals of the same bits of 

security level for the comparison.  
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The execution times of the key pair generations and shared key calculations are 

measured for comparison. A test code for each protocol is implemented in CRYMPIX to 

measure execution times. The configuration of the machine on which the tests run is as the 

following: 

• CPU, Intel Pentium IV 2.99GHz 

• RAM, 2 GB 

• Operating System, Windows XP Professional 

Table 3.7 shows the time measurement results of Diffie-Hellman Key Exchange 

algorithm. The first two columns identify bits of security and corresponding key lengths in 

terms of bits. The third column identifies chosen bit lengths for the public (N) and private 

(L) keys. The minimum bit lengths are chosen for keys; hence the second and the third 

columns have the same values. The forth column indicates the time measurement for 

generating domain parameters, p, q and g.  The fifth column indicates public-private key 

pair generation time and the last one indicates shared key calculation time. 

 

Table 3.7. Time Measurements of Diffie-Hellman Key Exchange 

Bits of 
security 

DHKE 
(N: bit length 
of private key 
L: bit length of 

public key) 

Chosen 
Length 
(bits)  

Domain Parameter 
(p, q, g) Generation 

Time 
(milliseconds) 

Key Pair 
Generation Time 

(milliseconds) 

Shared Key 
Calculation 

Time 
(milliseconds) 

80 L = 1024 
N = 160 

L = 1024 
N = 160 340877,0 11,95 11,86 

112 L =2048  
N = 224 

L =2048  
N = 224 248445,0 58,64 58,42 

128 L = 3072 
N =256 

L = 3072 
N =256 ---- ---- ---- 

192 L = 7680 
N =384 

L = 7680 
N =384 ---- ---- ---- 

256 L = 15360 
N =512 

L = 15360 
N =512 ---- ---- 

 ---- 

 

As shown in 4th column of Table 3.7, generating domain parameters takes to much 

time in order to generate suitable primes as mentioned in 2.1.2. Two prime numbers, q and 

p, are generated as *2kp q= . Bit length of q must be at least equal to bit length of private 
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key. Also bit length of p must be at least equal to bit length of public key. Generating such 

parameters for larger bit lengths (bit length ≥  3072 bits) take hours for CRYMPIX 

implementation of Diffie-Hellman Key Exchange. For this reason, in Table 3.7, the last 

three rows of time measurements are empty. Consequently, corresponding key pair 

generation and shared key generation time cells are empty. Results of time measurements 

for generating domain parameters are not acceptable for cryptographic usage. They must be 

reduced which can be achieved by reducing generation time of larger primes in the library. 

Existing prime generators can be refactored or more effective algorithms can be 

implemented. On the other hand, because these parameters are public and implemented 

functions have parametric structure, it is possible to use predefined domain parameters.   

 

Table 3.8. The Time Measurements of Elliptic Curve Diffie-Hellman Key Exchange 

Bits of 
security 

ECDHKE 
(f: bit length of the 

order of base point G) 

Chosen Length 
(bits) 

Key Pair 
Generation Time 

(milliseconds)  

Shared Key 
Calculation Time 

(milliseconds) 

80 f = 160 – 223 192 33,1 15,07 

112 f = 224 - 255 224 45,57 21,27 

128 f = 256 – 383 256 58,94 27,96 

192 f = 384 – 511 384 163,57 75,6 

256 f = 512 +  521 369,11 169,93 

 

Table 3.8 and Table 3.9 show the time measurement results of Elliptic Curve Diffie-

Hellman Key Exchange and Elliptic Curve MQV Key Exchange algorithms. Both of them 

include the same columns which indicate the same parameters. The first two columns 

identify bits of security and corresponding base point order (n) lengths (f: the bit length of 

n) in terms of bits. The third column identifies the chosen bit lengths for the base point 

order n. Actually, not bit lengths of order n, but NIST curves that have orders in the 

corresponding intervals in the second column, are chosen. There is no time measurement 

for domain parameter generation because predefined curves are used. The forth column 
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identifies public-private key pair generation time and the last one indicates shared key 

calculation time. 

 

Table 3.9. The Time Measurements of Elliptic Curve MQV Key Exchange 

Bits of 
security 

ECMQV 
(f: bit length of the 

order of base point G) 

Chosen Length 
(bits)  

Key Pair 
Generation Time 

(milliseconds) 

Shared Key 
Calculation Time 

(milliseconds) 

80 f = 160 - 223 192 33,57 23,28 

112 f = 224 - 255 224 45,09 31,66 

128 f = 256 – 383 256 59,21 42,37 

192 f = 384 – 511 384 161,52 111,99 

256 f = 512 + 521 371,68 255,44 

 

The results of execution time measurements show larger key lengths causes longer 

execution times for key pair generation and shared key calculation. The execution time 

comparisons of implemented algorithms are shown in the graphics in Figure 3.6 and Figure 

3.7. 
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Figure 3.6. Key Pair Generation Time Comparison Table 
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ECC protocols have not only similar algorithms and implementation but also similar 

results for the same security levels. Key pair generation times are nearly same because the 

same steps are executed in both protocol; a random number generation and a point 

multiplication. Hence, graphics of generation times are on top of each other, Figure 3.6. On 

the other hand the session key calculation times are longer for Elliptic Curve MQV than 

Elliptic Diffie-Hellman because an implicit signature calculation is included, Figure 3.7.  
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Figure 3.7 Session Key Calculation Time Comparison Table 
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CHAPTER 4  
 
 

CONCLUSION AND THE FUTURE WORK 
 
 

Development of the public-key cryptosystems not only became a new perspective in 

encryption and decryption processes but also solved the key distribution problem of the 

symmetrical cryptosystems. Key exchange protocols which are based on public-key 

cryptology make it possible to distribute key over an insecure channel. The aim of this 

study is to review the key exchange protocols and implement them using a multiprecision 

library. 

During this study Diffie-Helman Key Exchange, Elliptic Curve Diffie-Hellman Key 

Exchange and Elliptic Curve MQV Key Exchange protocols were analyzed in detail. These 

protocols are based on different mathematical one way trap functions which are known as 

the discrete logarithm problem and the elliptic curve discrete logarithm problem. Hence, 

these mathematical aspects were also examined. 

The protocol implementations are done at the cryptographic protocol layer of the 

library. In this study the parametric functions are designed and predefined curves are passed 

as parameters in tests.  

Not only the protocols but also the test codes for general utilization plus key 

execution timer codes were implemented for the library. Some bugs in the existing library 

functions were discovered during testing software development. The first problem is the 

increased execution time of the Diffie-Hellman domain parameter generation function 

which was up to hours. The latency observed here is caused by the slowness of prime 

generation function for higher bit lengths. This problem can be solved by implementing the 

faster prime generators. 

The second problem is the pseudorandom number generator which is called by key 

generation functions of all protocols. Test codes call the key generator functions so many 

times in order to obtain more accurate execution time value. But there is only one pseudo-
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random number generator in the library. When the initializer function of the generator is 

called too many times, it causes too many loops. This problem is solved by passing 

initialized pseudo-random number generators to key generation functions instead of 

multiprecision integer seeds. But it is understood that pseudo-random number generator 

does not work correctly.      

In conclusion, these protocols are included in the last release of CRYMPIX. Also 

the documentation of the functions and structures are provided for the benefit of users.  

4.1. Future Work 

 First of all prime number generator should be refactored to get a usable Diffe-

Hellman Key Exchange Protocol. Also pseudo-random generator function must be 

reviewed and after correction of the generator, parameters of key generation functions 

should be refactored.  

As mentioned earlier the Elliptic Curve MQV Key Exchange has three different 

variations. In scope of this study the two-pass authenticated key exchange protocol is 

implemented. Three-pass authenticated key exchange protocol which includes key 

confirmation is left as the future study. It is necessary to implement a message 

authentication code (MAC) algorithm and a hash algorithm such as one in SHA-2 family, 

for the three-pass authenticated protocol. 
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APPENDIX A  
 
 

BASIC STRUCTURES AND TYPE DEFINITIONS 
 IN CRYMPIX 

 
 

1. The type definition of uni_t: 
 
 
 
 
 
 
 
 

2. The type definition of uni: 
 

 
 
 
 
 
 
 

3. Structure for MA_t: 
 
 
 
 
 
 
 
 
 
 

4. Structure for MI_t: 
 
 
 
 
 
 
 

/**  
* Type definition for a single precision variable. 

 **/ 
typedef unsigned long uni_t; 

/**  
* Type definition for a pointer to a single precision variable. 

 **/ 
typedef uni_t *uni; 

/**  
* Type definition for an array.This struct is used for low level    
* integer and polynomial arithmetic. 

 **/ 
typedef struct { 
 uni_t l; /* Number of digits */ 
 uni n; /* Starting address of digits */ 
} MA_t[1], *MA; 

/**  
* Type definition for an integer. A vector is encapsulated with   
* the sign. 

 **/ 
typedef struct { 
 SIGN s; /* Sign of the integer */ 
 MA_t v; /* Vector part of the integer */ 
} MI_t[1], *MI; 
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5. Structure for FP_t: 
 
 
 
 
 
 
 
 
 
 

6. Structure for EC_FP_t: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Structure for ECP_FP_t: 
 
 

 
 
 
 

typedef struct{ 
 MI_t ch; /* Field characteristic */ 
 MI_t nd2; /* n^-1 in montgomery's nresidue system */ 
 uni_t nd; /* n[0]^-1 in montgomery's nresidue system due to 
dusse and kaliski */ 
 uni_t rtype; /* Representation type */ 
}FP_t[1], *FP; 

 

/**  
 * Type definition for an elliptic curve, E(Fp) 
 * Tentatively designed for now. To be modified in the future. 
 **/ 
typedef struct{ 
 FP_t fp; 
 MI_t a; 
 MI_t b; 
 MI_t n; /* #E. */ 
 MI_t t0, t1, t2, t3, t4, t5; /* Temp variables. */ 
 BOOL is_a_3; /* TRUE if a = -3. */ 
}EC_FP_t[1], *EC_FP; 

 
/**  
 * Type definition for an elliptic curve point, P in E(Fp). 
 * The elliptic curve must be defined over Fp. 
 **/ 
typedef struct{ 
 MI_t x; 
 MI_t y; 
 MI_t z; 
 MI_t z2; 
 MI_t z3; 
 MI_t az4; 
 BOOL inf; /* TRUE if point at infinity, FALSE otherwise. */ 
 uni_t ct; /* Coordinate type */ 
}ECP_FP_t[1], *ECP_FP; 

 


