

BASIC KEY EXCHANGE PROTOCOLS
FOR SECRET KEY CRYPTOSYSTEMS

UNDER CRYMPIX LIBRARY

A Thesis Submitted to
The Graduate School of Engineering and Sciences of

�zmir Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In Computer Software

by
Sevgi Uslu

August 2007
�ZM�R

We approve the thesis of Sevgi USLU

 Date of Signature

.. 27 August 2007
Assoc. Prof. Dr. Ahmet KOLTUKSUZ
Supervisor
Department of Computer Engineering
�zmir Institute of Technology

.. 27 August 2007
Prof. Dr. �aban EREN
Department of Computer Engineering
Maltepe University

.. 27 August 2007
Dr. Serap ATAY
Department of Computer Engineering
�zmir Institute of Technology

.. 27 August 2007
Prof. Dr. Sıtkı AYTAÇ
Head of Department
�zmir Institute of Technology

..
Prof. Dr. M.Barı� ÖZERDEM
Head of the Graduate School

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Assoc. Prof. Dr. Ahmet

Koltuksuz, for his guidance, patience and encouragement. He was the one who supported

me when I was in trouble with critical decisions. His valuable support and confidence have

been the driving force of this thesis work.

Furthermore, I had the pleasure of working with Dr. Serap Atay who helped me in

understanding the elliptic curve arithmetic and documentation of the thesis.

I would also like to thank Hüseyin Hı�ıl, Evren Akalp, Ali Mersin, Mutlu Beyazıt

and Selma Tekir who cooperated with me in many studies.

Finally, I should thank to my parents who always supported me throughout my

education as well as in my graduate study.

iv

ABSTRACT

BASIC KEY EXCHANGE PROTOCOLS FOR SECRET KEY

CRYPTOSYSTEMS UNDER CRYMPIX LIBRARY

 Key exchange protocols are developed in order to overcome the key distribution

problem of symmetrical cryptosystems. These protocols which are based on various

algebraic domains are different implementations of public-key cryptography. In this thesis,

the basic key exchange protocols are reviewed and CRYMPIX1 implementations of them

are provided. CRYMPIX has a portable structure that provides platform independence for

generated code. Hence, the implemented key exchange mechanisms are suitable to be used

on different hardware and software platforms.

1 CRYMIX is a multiprecision cryptographic library and available at http://crympix.iyte.edu.tr.

v

ÖZET

CRYMPIX KÜTÜPHANES� ALTINDA G�ZL� ANAHTAR

KR�PTOS�STEMLER� �Ç�N TEMEL ANAHTAR DE����M

PROTOKOLLER�

 Anahtar de�i�im protokolleri simetrik kripto sistemlerdeki anahtar da�ıtım

problemini çözmek amacıyla geli�tirilmi�tir. Çe�itli matematiksel temeller üzerine

geli�tirilen bu protokoller, açık anahtar kripto sisteminin farklı uygulamalarıdır. Bu tezde,

temel anahtar de�i�im protokolleri incelenmi� ve CRYMPIX2 uygulamaları verilmi�tir.

Ta�ınabilir bir yapıya sahip olan CRYMPIX kütüphanesinin kullanımı platform

ba�ımsızlı�ı sa�lamı�tır. Böylece olu�turulan anahtar de�i�imi mekanizmaları farklı

donanım ve yazılımlarla bir arada çalı�maya uygun hale gelmi�tir.

2 CRYMPIX çok-basamaklı (multiprecision) bir kütüphanesidir ve http://crympix.iyte.edu.tr adresinden
ula�ılabilinir.

vi

TABLE OF CONTENTS
LIST OF FIGURES ... vii

LIST OF TABLES.. viii

CHAPTER 1 INTRODUCTION...1

1.1. Symmetrical Cryptosystems ..1
1.2. Asymmetrical Cryptosystems ..3
1.3. Key Management ...4
1.4. Key Exchange Problem for Symmetrical Cryptosystems..5
1.5. The Proposed Solution...6

CHAPTER 2 KEY EXCHANGE PROTOCOLS ...7

2.1. Diffie-Hellman Key Exchange ..10
2.1.1. Mathematical Background...10
2.1.2. Domain Parameters..12
2.1.3. Keys ...12
2.1.4. Algorithm...13

2.2. Elliptic Curve Diffie-Hellman ...15
2.2.1. Mathematical Background...16
2.2.2. Domain Parameters..18
2.2.3. Keys ...19
2.2.4. Algorithm...19

2.3. Elliptic Curve MQV...21
2.3.1. Mathematical Background...22
2.3.2. Domain Parameters..23
2.3.3. Keys ...23
2.3.4. Algorithm...25

2.4. Key Length of Key Exchange Protocols..30

CHAPTER 3 PROTOCOL IMPLEMENTATION ...32

3.1. A Cryptographic Library CRYMPIX ..32
3.2. Protocols ..34

3.2.1. Diffie-Hellman Key Exchange Protocol..34
3.2.2. Elliptic Curve Diffie-Hellman Key Exchange Protocol36
3.2.3. Elliptic Curve MQV...38

3.3. Comparison of Protocols ...40

CHAPTER 4 CONCLUSION AND THE FUTURE WORK...45

REFERENCES ...47

APPENDICES

APPENDIX A. BASIC STRUCTURES AND TYPE DEFINITIONS IN CRYMPIX49

vii

LIST OF FIGURES

Figure Page

Figure 1.1. Symmetrical Cryptosystems...2

Figure 1.2. Asymmetrical Cryptosystems...4

Figure 2.1. Fundamental Key Exchange Protocol ..8

Figure 2.2. Discrete Logarithm...11

Figure 2.3. Diffie-Hellman Key Exchange Protocol ..14

Figure 2.4. Examples for Elliptic Curves ...15

Figure 2.5. Point Addition on an Elliptic Curve ...18

Figure 2.6. Elliptic Curve Diffie-Hellman Key Exchange Protocol.....................................20

Figure 2.7. One Pass Authenticated Key Agreement Algorithm..26

Figure 2.8. Two Pass Authenticated Key Agreement Algorithm ...27

Figure 2.9. Three Pass Authenticated Key Agreement Algorithm29

Figure 3.1. Layered Structure of CRYMPIX..33

Figure 3.2. Generic Key Structure ..34

Figure 3.3. Implemented Key Structure for Diffie-Hellman KE..35

Figure 3.4. Implemented Key Structure for Elliptic Curve Diffie-Hellman KE37

Figure 3.5. Implemented Key Structure for Elliptic Curve KE ..39

Figure 3.6. Key Pair Generation Time Comparison Table ...43

Figure 3.7 Session Key Calculation Time Comparison Table..44

viii

LIST OF TABLES

Table Page

Table 2.1. Key Lengths with Corresponding Security Levels ..30

Table 3.1. Diffie-Hellman Key Structure Comparison...34

Table 3.2. Functions of Diffie-Hellman Key Exchange Protocol...36

Table 3.3. Elliptic Curve Diffie-Hellman Key Structure Comparison37

Table 3.4. Functions of Elliptic Curve Diffie-Hellman Key Exchange Protocol38

Table 3.5. Elliptic Curve MQV Key Structure Comparison...39

Table 3.6. Functions of Elliptic Curve MQV Key Exchange Protocol40

Table 3.7. The Time Measurements of Diffie-Hellman Key Exchange...............................41

Table 3.8. The Time Measurements of Elliptic Curve Diffie-Hellman Key Exchange42

Table 3.9. The Time Measurements of Elliptic Curve MQV Key Exchange.......................43

1

CHAPTER 1

INTRODUCTION

Security of information has been a critical issue of mankind for centuries.

Especially secrecy and authentication are the most common problems of security. Different

methods have been developed to overcome these two problems. Various encoding and

decoding schemes have been used to provide secrecy; Caesar’s cipher (substitution cipher)

is one of the earliest and well known methods in this regard. As for authentication

signatures have common utilization.

The science that deals with the security of information, is called “Cryptology”, that

consist of the words, cryptos (= hidden) and logos (=word). Cryptology is the study of two

different concepts; cryptography and cryptanalysis. Both of them are actually the study of

mathematics. Cryptography deals with creating a secure system that is based on

mathematical problems. Cryptanalysis is the process of breaking this system using

mathematics, statistics, etc.

The improvement of communication technologies, especially during World War II

and past twenty years, led to a revolution in cryptology. Besides, mathematical

fundamentals which have been studied for centuries accelerated this revolution. Two

different forms of cryptography; symmetrical and asymmetrical cryptosystems, were

developed during this revolution.

1.1. Symmetrical Cryptosystems

 Symmetrical cryptosystems, also called conventional cryptosystems, encrypt and

decrypt data using the same key, as shown in Figure 1.1. Sender encrypts the plain text P

using the key and generates the cipher text C. The cipher text is sent through an insecure

channel. Receiver, who has the same key with sender, gets the cipher text C and decrypts it

2

using the key to obtain plain text P. The key must be shared before the protocol using a

secure channel.

The most common algorithms used for symmetrical cryptography are stream ciphers

and block ciphers. Stream ciphers, such as RC4, operates on plain text or cipher text as a

stream of digits (bits, bytes or sometimes 32-bit words). A pseudorandom key stream is

generated using the key as a seed and the key stream combined with the plain text, one digit

at a time, typically using an exclusive-or. Same plain text digit generates a different cipher

text digit every time it is encrypted. Block ciphers, such as DES, AES, operate on fixed-

length bit blocks. Generally 64-bit or 128-bit blocks of plain text are encrypted into same

sized blocks of cipher text. Unlike stream ciphers, same plain text block generates the same

cipher text block every time it is encrypted using the same key. Consequently, there exist

data patterns which lower the confidentiality. Block ciphers use techniques known as

modes of operation to avoid this problem.

Figure 1.1. Symmetrical Cryptosystems

3

 The security of a symmetric cryptosystem is a function of two parameters: the

length of the key and the strength of the algorithm (Schneier 1996). Therefore the selected

key length must be large enough to resist brute-force attacks.

1.2. Asymmetrical Cryptosystems

 Asymmetrical cryptosystems, also known as public key cryptosystems, uses two

different but mathematically related keys, a private key and a public key, as shown in

Figure 1.2. Only the owner knows private key, whereas his/her public key is available for

everyone. Therefore anyone can encrypt data using the public key, but just the owner

executes the decryption process which requires the private key. Computing the public key

using the private key must be an easy mathematical process. But calculating the private key

using the public key must be computationally expensive.

 Sender encrypts the plain text P using the receiver’s public key and generates the

cipher text C. The cipher text is sent through an insecure channel. Receiver gets the cipher

text C and decrypts it using his/her private key to obtain plain text P.

 The most common cryptosystems using public key are:

• Diffie-Hellman Key Exchange Protocol, DHKE, invented by Whitfield Diffie and

Martin Hellman in 1976 (Diffie and Hellman 1976).

• RSA, invented by Ronald Rivest, Adi Shamir, and Len Adleman in 1978 (Rivest et

al. 1978).

• ElGamal algorithm, described by Taher Elgamal in 1984 is based on Diffie-

Hellman key agreement.

• Elliptic curve cryptography (ECC) based on the algebraic structure of elliptic curves

over finite fields, suggested by Neal Koblitz and Victor S. Miller in 1985.

4

Figure 1.2. Asymmetrical Cryptosystems

1.3. Key Management

Design and implementation of a secure cryptosystem is not an easy procedure. It

requires extensive mathematical and technical knowledge. But the security of the key (or

key pair), which operates on the developed system, is more critical and severe as the

security of the key (or key pair) indicates the security of the cryptosystem, either

symmetrical or asymmetrical. Therefore, the key operations must be managed separately.

Key management copes with different operations on key, such as generating,

destroying, storing, exchanging and publishing (Menezes et al. 1996).

• Generating, destroying and storing keys are common processes for both

symmetrical and asymmetrical cryptosystems.

• Publishing (the public key) is an issue for only asymmetrical cryptosystems.

• Exchanging key is only required by symmetrical cryptosystems.

5

Publishing key does not cause a secrecy problem, because the published key is

available for everyone. But it causes authentication problems. The publisher must be the

person who he/she claims to be. On the other hand exchanging key causes both secrecy and

authentication problems. The key must be calculable by two sides of the protocol but

nobody else. And the same as the publisher, people who exchange keys must be the ones

who they claim to be.

1.4. Key Exchange Problem for Symmetrical Cryptosystems

As mentioned earlier, symmetrical cryptosystems use the same secret key for

encryption and decryption processes. Therefore the key must be distributed to each

participant in the protocol. A secure method must be specified for key distribution because

even if the message is encrypted using a hardly breakable algorithm, when the distribution

method breaks down, encryption process makes no sense. In other words the security of a

symmetrical cryptosystem depends on the security of the key.

Cryptanalytic attacks often work on key management as a result of this critical role

of the key in symmetrical cryptosystems. Recovering the key from a storage mechanism or

during a key exchange procedure is much easier than breaking a cryptographic algorithm.

For this reason all cryptosystems, either symmetrical or asymmetrical, should have to

recreate and distribute the key (or key pair) as frequent as possible. Not only the

distribution frequency but also the number of the participants in a symmetrical protocol is a

critical issue for key distribution. In symmetrical cryptosystems, if there are n participants

in the protocol, the key exchange process is performed k times (where (.(1)) / 2k n n= −).

When today’s network communication techniques is considered, it is possible to

communicate hundreds of thousands of nodes simultaneously which requires billions of key

exchange.

In early times of cryptography couriers are used as a secure method to distribute

keys. But using a courier is not an effective choice today in the scope of the parameters;

frequency and number of nodes. Couriers are not capable of distributing keys among such a

large number of nodes as frequent as necessary.

6

 Despite the fact that symmetrical cryptosystems are faster than asymmetrical

cryptosystems, the problem of exchanging key makes them less popular.

1.5. The Proposed Solution

 Distributing keys through the same communication channel (an insecure channel) as

messages is more effective than using a courier. But the mentioned channel is not the

secure one, which enforces us to encrypt our messages. Therefore the key must be

exchanged through the channel using some cryptographic methods that provide security.

 The key distribution problem of the symmetrical cryptosystems was firstly solved

by Whitfield Diffie and Martin Hellman in 1976 using public key cryptography (Diffie and

Hellman 1976). The solution method is called Diffie-Hellman Key Exchange Algorithm. It

is based on a public-private key pair and their mathematical relation. The mathematical

issue under Diffie-Hellman key exchange algorithm is the discrete logarithm problem.

 After Diffie-Hellman had proposed using public key cryptosystems for exchanging

keys, different key exchange protocols were developed similarly. Pretty Good Privacy

(PGP) Encryption, which was originally created by Philip Zimmermann in 1991, is one of

those protocols (Zimmermann 1995). The key is encrypted using an asymmetrical

cryptosystem (using receiver’s public key). So only the receiver can decrypt the encrypted

key. But using such a protocol requires not only another encryption-decryption process, but

also the certification of the public key. This protocol is not in the scope of this thesis.

 As newer cryptosystems had been developed, Diffie-Hellman Key Exchange

Algorithm mutated over different mathematical problems. Elliptic Curve Diffie-Hellman

and Elliptic-Curve MQV, which are based on elliptic curve cryptography, are some other

algorithms for key exchange. These three algorithms are reviewed in the rest of this thesis.

7

CHAPTER 2

 KEY EXCHANGE PROTOCOLS

As mentioned in Chapter 1, key exchange protocols are applied to solve the key

distribution problem of symmetrical cryptosystems. The objective of a key exchange

protocol is that, only the participants at the two ends of the protocol only have the

possession of the secret key, but nobody else.

 Similar to asymmetrical cryptosystems, key exchange protocols generate and use

public-private key pairs. Also like all other cryptosystems they are based on mathematical

problems. The mathematical background of these protocols makes it easy to compute a

public key with given domain parameters and a private key. But computing the private key

using the public key must be hard and infeasible.

Unlike the asymmetrical cryptosystems, key pairs are not used for encryption and

decryption processes in key exchange protocols. They are used for the calculation of the

shared key which is the secret key of the chosen symmetrical cryptosystem. The shared key

must be calculable for any two key pairs which were generated using the same domain

parameters. For this reason, designing a mathematical protocol for key exchange is harder

than designing one for other public-private cryptosystems.

 Shared key, or secret key, is also known as session key, because it is generally used

for only one particular communication session. A session key does not exist at the end of

the communication. The reason of generating a new key for each communication session is

preventing cryptanalytic attacks. Because when more material that is encrypted with the

same key is available, several attacks are made easily.

 Even if each key exchange protocol has a different mathematical background, and

consequently different parameters to generate keys, all of them have the same fundamental

structure. This structure consists of domain parameters, public-private key pairs of both

8

participants and a shared key. On top of this structure a generic algorithm is processed for

each key exchange protocol, as illustrated in Figure 2.1.

Figure 2.1. Fundamental Key Exchange Protocol

9

 When users agree on starting to communicate and specify which key exchange

protocol to use, the algorithm starts stepping as the following:

Step 1: User A generates domain parameters for specified key exchange protocol.

Step 2: User A generates a random private key using domain parameters.

Step 3: User A calculates public key using domain parameters and private key.

Step 4: User A sends domain parameters and its own public key to User B.

Step 5: User B generates a random private key using domain parameters.

Step 6: User B calculates public key using domain parameters and private key.

Step 7: User B calculates session key using its own private key and User A’s public

key.

Step 8: User B sends its own public key to User A.

Step 9: User A calculates session key using its own private key and User B’s public

key.

At the end of this algorithm, it is expected that both participants have the same

session key. Otherwise, the encrypted material by one participant can not be decrypted by

the other. This indicates that an error occurred during the key exchange procedure or an

adversary attacked to the system.

There are numbers of protocols and their variants for exchanging keys. The

mathematical improvements lead different types of protocols to be developed. Also

additional solutions for the problems other than the key exchange, for example

authentication, create variants of these protocols. Three of these protocols are explained in

the rest of this chapter.

10

2.1. Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange Algorithm was developed by Whitfield Diffie and

Martin Hellman in 1976 and published in “New Directions in Cryptography”. Actually it

had been discovered by Malcolm J. Williamson within GCHQ3 a few years earlier than

Diffie-Hellman, but GCHQ didn’t make it public until 1997. Ralph Merkle’s work on

public-key cryptography influenced the studies of Diffie and Hellman (Merkle 1978).

Hence, Martin Hellman proposed calling the algorithm as Diffie-Hellman-Merkle Key

Exchange Algorithm in 2002.

2.1.1. Mathematical Background

Diffie-Hellman Key Exchange Algorithm is based on discrete logarithm problem. In

other words, security of the protocol depends on the difficulty of calculating discrete

logarithms in finite fields.

Discrete logarithm can be considered as group theoretical version of ordinary

logarithm. Ordinary logarithm is the inverse function of exponential function. Similarly,

discrete logarithm is the inverse function of discrete exponential function, as shown in

Figure 2.2.

3 The Government Communications Headquarters (GCHQ) is a British intelligence agency responsible for

providing signals intelligence (SIGINT) and information assurance to the UK government and armed forces

as required, under the guidance of the Joint Intelligence Committee.

11

Figure 2.2. Discrete Logarithm

Using a formal definition discrete logarithm can be explained as:

“Let G is a finite cyclic group of order n. Let α be a generator of G, and let β ∈G.

The discrete logarithm of β to the baseα , which is denoted as logα β , is the unique

integer x, 0 ≤ x ≤ n-1, such that β = α x (Menezes et al.1996).”

Also discrete logarithm problem can be explained as:

 “Given a prime p, a generator α of � p
* and an element β ∈ � p

*, find the integer

x, 0 ≤ x ≤ p-2, such that α x ≡ β (mod p) (Menezes et al. 1996).”

Calculation of discrete exponentiation is soluble in polynomial time. Firstly, xth

power of α is calculated then α x is divided by the prime p and the remainder of the

division is the result of the function. On the other hand, calculation of the discrete

logarithm function is not soluble in polynomial time, which means it is an NP complete

problem4. This attribute of the problem makes it a suitable candidate for use in the

cryptographic protocols.

4 NP (non-deterministic polynomial time) complete problems can not be computed in a polynomial time by a

deterministic machine. For this reason these problems are insoluble.

 β = α x

Exponential Function

inverse function x = logα β

Logarithm Function

β ≡ α x (mod p)

Discrete Exponential
Function in (� p)*

inverse function
x ≡ logα β (mod p)

Discrete Logarithm
Function in(� p)*

12

2.1.2. Domain Parameters

The domain parameters include (ANSI X9.42):

• p: A prime defining the Galois Field5 GF(p), which is used as a modulus in the

operations of GF(p), where 2(L-1)< p < 2L , for L ≥ 1024, and L is a multiple of 256.

• q: A prime factor of p-1 such that p = jq+1 and q > 2m-1. GF(p)* has a cyclic

subgroup of order q.

• g: A generator of the q-order cyclic subgroup of GF(p)*, that is, an element of order

q in the multiplicative group of GF(p).

2.1.3. Keys

The key pair includes:

• Ax : A private key which is selected as 1 ≤ x ≤ (q-1).

• Ay : A public key which is calculated as (mod)A

xAy g p= .

The shared key is calculated as:

.
() (mod) () (mod) (mod)B

A B A A Bx x xx x
K y p g p g p= = = (2.1)

.
() (mod) () (mod) (mod)A

B A B A Bx xx x x
K y p g p g p= = = (2.2)

5 In abstract algebra, a finite field or Galois field (so named in honor of Évariste Galois) is a field that

contains only finitely many elements. Finite fields are important in number theory, algebraic geometry, Galois

theory, cryptography, and coding theory.

13

2.1.4. Algorithm

 Diffie-Hellman Key Exchange Algorithm steps as the following:

Step 1: User A generates domain parameters p, q and g.

Step 2: User A generates a random private key Ax .

Step 3: User A calculates public key as (m od)A

xAy g p= .

Step 4: User A sends (p, g, Ay) to user B.

Step 5: User B generates a random private key Bx .

Step 6: User B calculates public key (mod)B

xBy g p= .

Step 7: User B calculates session key as
.

() (mod) () (mod) (mod)A
B A B A Bx xx x x

K y p g p g p= = =

Step 8: User B sends By to user A.

Step 9: User A calculates session key as

.

() (mod) () (mod) (mod)B
A B A A Bx x xx x

K y p g p g p= = =

14

Figure 2.3. Diffie-Hellman Key Exchange Protocol

15

2.2. Elliptic Curve Diffie-Hellman

Elliptic Curve Diffie-Hellman Key Exchange Algorithm which uses elliptic curve

cryptography is a variant of Diffie-Hellman Key Exchange Algorithm. Elliptic curve

cryptography which is denoted as ECC is a new approach to public-key cryptography

(Hankerson et al. 2004). Using elliptic curves in cryptography was suggested by two

professors of mathematics, Neal Koblitz and Victor S. Miller, in 1985 separately. ECC has

been applied in different schemes of cryptology, such as;

• Elliptic Curve Diffie-Hellman Key Exchange Algorithm (ECDH).

• Elliptic Curve MQV (ECMQV), for key agreement.

• Elliptic Curve Digital Signature Algorithm (ECDSA).

The characteristics of elliptic curves, such as being defined on a finite cyclic group,

and having operations as addition and doubling for the points on the elliptic curve makes

these curves suitable for cryptographic protocols. Because when a scalar multiplication,

which is actually a point addition, of an integer number (n) and a point (P) on curve is

performed, even if the start and stop points and all other parameters about curve are known,

it is hard to find the integer n.

Figure 2.4. Examples for Elliptic Curves

(Source: Atay, 2006)

16

2.2.1. Mathematical Background

Elliptic Curves: An elliptic curve over a finite field � is defined by the equation,

 2 3 2
1 3 2 4 6: E y a xy a y x a x a x a+ + = + + + (2.3)

This equation is known as Weierstrass Equation (Hankerson 2004). Actually,

elliptic curves are defined over three types of finite fields and Weierstrass Equation is

simplified differently due to these types of field� q.

• If the chosen field has a odd characteristic, which is denoted as � p (p>3 is a large

prime) the equation is simplified as,

 2 3:E y x ax b= + + (2.4)

where a, b ∈ � p and the discriminant of the curve is ∆ = 16(4a3 + 27b2).

• If the chosen field has a characteristic of two, which is denoted as � 2
m the equation

is simplified as,

 2 3 2:E y xy x ax b+ = + + (2.5)

where a, b ∈ � 2
m and the discriminant of the curve is ∆ = b. Such curves are

called non-supersingular. If in the equation 2.3 a1 = 0, then equation is simplified

as,

 2 3:E y cy x ax b+ = + + (2.6)

where a, b, c ∈ � 2
m and the discriminant of the curve is ∆ =c4. Such curves are

called supersingular.

• If the chosen field has a characteristic of three, which is denoted as � 3 the equation

is simplified as,

 2 3 2:E y x ax b= + + (2.7)

where a, b ∈ � 3 and the discriminant of the curve is ∆ = - a3b. Such curves are

called non-supersingular. If in equation 2.3 a1
2 = -a2, then equation is simplified as,

17

 2 3:E y x ax b= + + (2.8)

where a, b ∈ � 3 and the discriminant of the curve is ∆ = -a3. Such curves are

called supersingular.

 The chosen elliptic curve must satisfy the rules of being a finite cyclic group. This

necessity leads some rules and operations to occur.

 Chord-Tangent Rule: A line which passes through the two different points on an

elliptic curve must intercept the same curve at a third point.

 Point at Infinity: An identity element is necessary for elliptic curve group

operations. Actually Weierstrass Equation, equation 2.3, is defined over a three

dimensional field such as []3 : :x y z� . But in order to obtain the identity element, it is

assumed that z coordinates of the field is 0 and the point (0, 1, 0) is chosen as the identity

element. This point is called as point at infinity and denoted as∞ . The rules that requires

identity element can be defined for the points P, Q ∈ E(� q) as such;

• if then Q P P= ∞ + ∞ =

• if then Q P P Q= − + = ∞

 Point Multiplication: Point multiplication is required for generating key pairs,

decryption and encryption processes. This operation is known as scalar multiplication,

because it is multiplication of an integer n by a point P. Scalar multiplication can be

considered as an n times point addition, such as,

.
n

n P P P P= + + +
�������

 Point Addition: In order to add two points, P and Q, on an elliptic curve the chord-

tangent rule is applied. If P and Q are not equal, then the line which passes through the

points intercepts the curve at a third point –R, as shown in Figure 2.5. If P and Q are equal,

then a tangent line to the elliptic curve at point P (or Q) intercepts the curve at a second

point. The result of addition is the symmetrical point of the -R (the third interception point

in chord-tangent rule) according to x-axis. Addition operation can be denoted as,

(.)P Q P Q+ = −

18

Figure 2.5. Point Addition on an Elliptic Curve

(Source: Atay, 2006)

2.2.2. Domain Parameters

 The domain parameters include (ANSI X9.63):

• p: A prime defining order of the finite field� q , where q = p and p > 3

• a, b: Two field elements in � p which define the equation of the elliptic curve

2 3: (mod)E y x ax b p= + +

• ,G Gx y : Two field elements in � p which define a point (,)G GG x y of prime order on

E (note that E ≠ ∞)

• n: The order of the point G

• h: The cofactor defined as # () /ph E F n=

19

2.2.3. Keys

The key pair includes:

• Ax : A private key which is selected in the interval [1, n-1].

• AQ : A public key which is a point (,)Q QQ x y on elliptic curve and calculated using

point multiplication .AQ x G=

The shared key is calculated as:

. . .A B A BK x Q x x G= = by User A (2.9)

. . .B A A BK x Q x x G= = by User B (2.10)

2.2.4. Algorithm

Elliptic Curve Diffie-Hellman Key Exchange Algorithm that is shown in Figure 2.6

steps as the following:

Step 1: User A generates domain parameters p, a, b, Gx , Gy , n and h.

Step 2: User A generates a random private key Ax .

Step 3: User A calculates public key as A AQ = x .G .

Step 4: User A sends (p, a, b, Gx , Gy , n, h, QA) to User B.

Step 5: User B generates a random private key Bx .

Step 6: User B calculates public key as B BQ = x .G .

Step 7: User B calculates session key B A B AK = x .Q = x .x .G .

Step 8: User B sends BQ to User A.

Step 9: User A calculates session key A B A BK = x .Q = x .x .G

20

Figure 2.6. Elliptic Curve Diffie-Hellman Key Exchange Protocol

21

2.3. Elliptic Curve MQV

 MQV which stands for Menezes-Qu-Vanstone is based on the Diffie-Hellman

scheme. It was proposed by Alfred Menezes, Minghua Qu and Scott Vanstone in 1995

(Hankerson et al. 2004). It is an authenticated key agreement protocol which is developed

for protection against active attacks6, such as man-in-the-middle attack.

 The fundamental distinction between MQV and other key exchange protocols is that

MQV uses two different key pairs. One of these key pairs is called static or long-term key

pair which is bound to the entity for a certain period of time, typically through the use of

certificates. The other key pair is called ephemeral or short-term key pair which is

generated for each run of the protocol (Law et al. 1998).

MQV protocols vary according to the finite group on which the protocol works.

Elliptic Curve MQV which works on elliptic curve groups is one of these variants and it is

denoted as ECMQV. There are also different forms of MQV algorithms, which can be

applied to any variant. These forms can be summarized as fallows:

• One Pass Authenticated Key Agreement Protocol can be considered as store and

forward form. Because it does not require interactive communication. It is used

when a party sends an encrypted message and the other party decrypts the message

any time, but does not respond (i.e., can be applied while sending e-mail). Hence,

just the initiator generates an ephemeral key pair and passes the public key to the

receiver. Because the transmission operation through the channel is performed only

once, the protocol is called One Pass Authenticated Key Agreement Protocol.

• Two Pass Authenticated Key Agreement Protocol can be considered as an

interactive form. Because, the each party in the protocol sends and receives

encrypted messages and each performs decryption processes simultaneously (i.e.,

can be applied during instant messaging). For this reason, both initiator and receiver

have to generate an ephemeral key pair and send the public key to the other.

6 An active attack is one in which the attacker can modify or delete transmitting messages, or transmit new

messages.

22

Because the transmission operation is performed twice, one for each party, the

protocol is called Two Pass Authenticated Key Agreement Protocol.

• Three Pass Authenticated Key Agreement Protocol is also known as Authenticated

Key Agreement with Key Confirmation. It provides not only secrecy for the secret

key but also assurance that each party in the protocol has the possession of the same

secret key. The protocol uses a message authentication code (MAC) algorithm for

the key confirmation. MAC is a key dependent one-way hash function (Schneier

1996). Each party applies the MAC algorithm using domain parameters and obtains

a secret key. Initially the initiator generates and sends its ephemeral public key, and

then the receiver generates and sends its ephemeral public key and computes a

MAC result. Finally the initiator sends the computed MAC result. Because the

transmission operation is performed three times, the protocol is called Three Pass

Authenticated Key Agreement Protocol. This protocol also requires a hash

algorithm as a key derivation function (KDF) to derive one or more keys from the

secret key. When such a derivation function is applied, even if attackers obtain the

derived key, they can not learn any useful information about either the input secret

value or any of the other derived keys. Also deriving keys eliminates the weak keys.

Typically hash functions, such as SHA-1, are used as key derivation functions.

2.3.1. Mathematical Background

 Similar to ECDH protocol, ECMQV is also based on elliptic curve arithmetic. For

this reason, the operations and structures that are defined in section 2.2.1 are also in use for

ECMQV. On the other hand ECMQV requires an additional calculation to derive a point on

a specified elliptic curve, such as:

 “f denotes the bit length of n, which is the prime order of the base point P;

i.e 2log 1f n= +� �� � . If Q is point over the elliptic curve, then Q is defined as follows. Let x

be the x-coordinate of Q, and let x be the integer obtained from binary representation of x.

(The value of x will depend on the representation chosen for the elements of the field q� .)

23

Then Q is defined to be the integer f /2 f/2mod2 2()x + . Observe that (mod)Q n ≠ ∞ (Law et

al. 1998).”

2.3.2. Domain Parameters

The domain parameters include (ANSI X9.63):

• p: A prime defining the order of the finite field� p , where p > 3

• a, b: Two field elements in � p which define the equation constants of the elliptic

curve

2 3: (mod)E y x ax b p= + +

• ,G Gx y : Two field elements in � p which define a point (,)G GG x y of prime order on

E (note the E ≠ ∞)

• n: The order of the points over E in� p ; # ()pE F n=

• h: The cofactor defined as # () /ph E F n=

These parameters are specified by assuming that the elliptic curve E is defined on a

finite field that has odd characteristic (� p).

2.3.3. Keys

The static (or long-term) key pair includes:

• Aw : A static private key.

• AW : A static public key.

It is assumed that static key pairs are exchanged via public key certificates. These

certificates provide storage, security and authenticity for public keys and they are verified

by a certification authority (CA). Certification authority is a trusted third party who

24

vouches for the authenticity of the public key. VeriSign (WEB_1 2007), GeoTrust (WEB_2

2007) and Comondo (WEB_3 2007) are the first three companies in the certification

authority business. The data partition of the certificate includes not only the static public

key but also the domain parameters. (Menezes et al. 1996)

The ephemeral (or short-term) key pair includes:

• Ar : An ephemeral private key which is selected as a statistically unique and

unpredictable (random) integer in the interval [1, n-1].

• AR : An ephemeral public key which is a point (,)R RR x y on elliptic curve and

calculated using point multiplication .A AR r G=

Static key pairs are shared over a certification authority, so they provide authentication.

An implicit signature is calculated in order to append the static key pair to the shared key

calculation. The implicit signature is symbolized as As (or Bs) and calculated as:

(.) mod A A A As r R w n= + by User A (2.11)

(.) mod B B B Bs r R w n= + by User B (2.12)

Then the shared key is calculated as:

. .(.)

.((.) mod).(.)

.(((.) mod). ((.) mod). .)

.(.)

.(.(.) . .(.) . .(.) . . .(.))

. .(.

A B B B

A A A B B B

A A A B A A A B B

A B A A B A B B A A B B

A B A A B A B B A A B B

A

K h s R R W

h r R w n R R W

h r R w n R r R w n R W

h r R R w R r R W R w R W

h r r G R w r G r R w G R w R w G

h G r r

= +
= + +
= + + +
= + + +
= + + +
=) by User A (2.13)B B A A A B B A B A Br w R r w R w w R R+ + +

. .(.)

.((.) mod).(.)

.(((.) mod). ((.) mod). .)

.(.)

.(.(.) . .(.) . .(.) . . .(.))

. .(.

B A A A

B B B A A A

B B B A B B B A A

B A B B A B A A B B A A

B A B B A B A A B B A A

A

K h s R R W

h r R w n R R W

h r R w n R r R w n R W

h r R R w R r R W R w R W

h r r G R w r G r R w G R w R w G

h G r r

= +
= + +
= + + +
= + + +
= + + +
=) by User B (2.14)B A B B B A A A B A Br w R r w R w w R R+ + +

25

2.3.4. Algorithm

Domain parameters and static keys have been already generated and shared through

a certification authority when the communication is started. So these operations are not

included in the following Key Exchange Algorithms.

One Pass Authenticated Key Agreement Algorithm: Algorithm that is shown in

Figure 2.7 steps as the following:

Step 1: User A generates a random private key Ar , computes public key as .A AR r G=

and sends AR to User B.

Step 2: User A computes the implicit signature (.) mod A A A As r R w n= + and the

shared key . .(.)A B B BK h s W W W= + . If K is equal point at infinity (K = ∞) then

User A terminates the protocol run with failure.

Step 3: User B does a key validation of AR . If validation fails then User B terminates

the protocol run with failure. Otherwise User B computes the implicit signature

(.) mod B B B Bs w W w n= + and the shared key . .(.)B A A AK h s R R W= + . If K is

equal point at infinity (K = ∞) then User B terminates the protocol run with

failure.

26

Figure 2.7. One Pass Authenticated Key Agreement Algorithm

Two Pass Authenticated Key Agreement Algorithm: Algorithm that is shown in

Figure 2.8 steps as the following:

Step 1: User A generates a random private key Ar , computes public key as .A AR r G=
and sends AR to User B.

Step 2: User B generates a random private key Br , computes public key as .B BR r G=
and sends BR to User A.

Step 3: User A does a key validation of BR . If validation fails then User A terminates
the protocol run with failure. Otherwise User A computes the implicit signature

(.) mod A A A As r R w n= + and the shared key . .(.)A B B BK h s R R W= + . If K is
equal point at infinity (K = ∞) then User A terminates the protocol run with
failure.

Step 4: User B does a key validation of AR . If validation fails then User B terminates
the protocol run with failure. Otherwise User B computes the implicit signature

(.) mod B B B Bs r R w n= + and the shared key . .(.)B A A AK h s R R W= + . If K is
equal point at infinity (K = ∞) then User A terminates the protocol run with
failure.

27

Figure 2.8. Two Pass Authenticated Key Agreement Algorithm

28

Three Pass Authenticated Key Agreement Algorithm: Algorithm that is shown in

Figure 2.9 steps as the following:

Step 1: User A generates a random private key Ar , computes public key as .A AR r G=

and sends AR to User B.

Step 2: User B does a key validation of AR . If validation fails then User B terminates

the protocol run with failure. Otherwise User B generates a random private

key Br , computes public key as .B BR r G= .

Step 3: User B computes the implicit signature (.) mod B B B Bs r R w n= + and the shared

key . .(.)B A A AK h s R R W= + . If K is equal point at infinity (K = ∞) then User B

terminates the protocol run with failure.

Step 4: User B derives the key K and computes a K B AMAC (B, A, R , R) value for the

derived key. Then send the MAC value and RB to User A.

Step 5: User A does a key validation of BR . If validation fails then User A terminates

the protocol run with failure. Otherwise User A computes the implicit signature

(.) mod A A A As r R w n= + and the shared key . .(.)A B B BK h s R R W= + . If K is

equal point at infinity (K = ∞) then User A terminates the protocol run with

failure.

Step 6: User A derives the key K and computes a K B AMAC (B, A, R , R) value for the

derived key and verifies that the computed value equals to the value that was

sent by User B.

Step 7: User A computes a K A BMAC (A, B, R , R) value for the derived key. Then send

the MAC value to User B.

Step 8: User B computes a K A BMAC (A, B, R , R) value for the derived key and

verifies that the computed value equals to the value that was sent by User A.

29

Figure 2.9. Three Pass Authenticated Key Agreement Algorithm

30

2.4. Key Length of Key Exchange Protocols

 As mentioned in section 1.4 cryptanalytic attacks often work on the keys. For this

reason key must be recreated as much as possible. Hence, adversaries can not have much

data which is encrypted using the same key to analyze. But it is still possible to break the

cryptographic algorithm using any sniffed data. Therefore some parameters must be

specified to make key more resistant against cryptanalytic attacks. The bit length of the key

is the one of these parameters. It is easier to break a cryptosystem which uses smaller key

lengths. As the key length rises up, the system becomes more resistant against attacks.

 NIST7 describes some standards to identify security levels for key lengths of each

cryptographic protocol. There are several publications including FIPS8 and special

publications 800 series. Special publication 800-57 Recommendation for Key Management

includes the key lengths of key exchange protocols with corresponding security levels,

Table 2.1 (Barker et al. 2007).

Table 2.1. Key Lengths with Corresponding Security Levels

 FFC9

Bits of security
Symmetric Key

Algorithms

DLP10 (DHKE)
(N:bit length of private key
L: bit length of public key)

ECC11(ECDHKE, ECMQV)
(f: bit length of the order of

base point G)

80 2TDEA12 L = 1024, N = 160
f = 160 - 223

112 3 TDEA13 L =2048, N = 224 f = 224 - 255

128 AES-128 L = 3072, N =256 f = 256 – 383

192 AES-192 L = 7680, N =384 f = 384 – 511

256 AES-256 L = 15360, N =512 f = 512 +

7 National Institute of Standards and Technology, http://www.nist.gov/
8 Federal Information Processing Standarts, http://www.itl.nist.gov/fipspubs/
9 Finite Field Cryptography
10 Discrete Logarithm Problem
11 Elliptic Curve Cryptography
12 Two Key Triple Data Encryption Algorithm: TDEA uses three 56-bit keys; K1, K2 and K3. If

1 3 2K K K= ≠ then TDEA is said as Two Key Triple Data Encryption Algorithm.
13 Three Key Triple Data Encryption Algorithm: TDEA uses three 56-bit keys; K1, K2 and K3. If

1 2 3K K K≠ ≠ then TDEA is said Three Key Triple Data Encryption Algorithm.

31

The first column indicates the security strength of a cryptographic algorithm. “Bits

of security” is a number that associated with the amount of work (that is, the number of

operations) that is required to break a cryptographic algorithm. The security strength of an

algorithm for a given key size is traditionally described in terms of the amount of work it

takes to try all keys for a symmetric algorithm that has no short cut attacks (i.e., the most

efficient attack is to try all possible keys). In this case, the best attack is said to be the

exhaustion attack. An algorithm that has a "Y" bit key, but whose strength is comparable to

an "X" bit key of such a symmetric algorithm is said have a “security strength of X bits” or

to provide “X bits of security” (Barker et al. 2007). The larger “bits of security” indicates

the higher key lengths and the more difficultly broken algorithm.

The second column identifies the symmetric key algorithms that provide the

indicated level of security (at a minimum) (Barker et al. 2007).

The third column identifies minimum size of the parameters (L and N) for

algorithms (e.g., Digital Signature Algorithm (DSA), Diffie-Hellman Key Exchange

Algorithm (DHKE)) which are based on discrete logarithm problem (DLP). L indicates the

length of the public key and N indicates the length of the private key.

The fourth column identifies the range of f (the bit size of n, where n is the order of

the base point G) for algorithms (Elliptic Curve Digital Signature Algorithm (ECDSA),

Elliptic Curve Diffie-Hellman Key Exchange Algorithm (ECDHKE)) which are based on

elliptic curve discrete logarithm problem (ECDLP).

These key lengths are used to test implemented key exchange protocols in

CRYMPIX. Execution times of key generation functions for different key lengths are

placed in Chapter 3. Hence it is possible to compare effectiveness of the protocols with

respect to execution times.

32

CHAPTER 3

PROTOCOL IMPLEMENTATION

3.1. A Cryptographic Library CRYMPIX

 Computers which have fixed-sized processor architecture are not suitable for

cryptographic computations, because they are designed for single-precision operations. An

n-bit processor is able to use numbers up to 2n. On the other hand numbers that are used in

cryptographic applications can grow up to thousands of bits. This problem can not be

handled by a hardware solution. Instead, it should be solved in the software layer.

The large numbers of cryptographic applications are split into small pieces. Each of

these pieces is called a word, and the length of each word is n-bit for an n-bit processor.

Implementing large numbers in such words is called multiprecision.

CRYMPIX is a multiprecision cryptographic library. It was designed and developed

by Hüseyin Hı�ıl, as the implementation part of the graduate thesis “A Distributed

Multiprecision Cryptographic Library Design” (Hı�ıl 2005). Development language of

CRYMPIX is ANSI C which provides portability to the library. So it is suitable for

different hardware platforms.

CRYMPIX uses 32-bit words to implement large numbers. It includes various

structures that are designed for not only mutiprecision integers but also different types of

mathematical forms that are used in cryptography, such as finite fields, prime numbers and

elliptic curves.

A layered structure is applied during the development of the library (Figure 3.1).

Basic arithmetic operations, such as addition, subtraction, multiplication, division,

exponentiation, modulus and modular exponentiation, are implemented in the

multiprecision layer which is placed on top of the kernel layer. Input-output (io) operations

and some base functions that are used by the multiprecision layer are placed in the kernel

33

layer. Finite layer is structured on the multiprecision layer and implements the finite field

mathematical forms and operations. Prime numbers and elliptic curves are included in this

layer. Finally the cryptography layer is placed on the top. The cryptographic protocols such

as encryption-decryption algorithms are placed in this layer.

Figure 3.1. Layered Structure of CRYMPIX

 Each layer calls the functions of a lower layer, except the cryptography. It calls both

the functions of finite and multiprecision layers. Also none of them knows about the upper

layers.

 As a cryptographic protocol, each key exchange protocol is placed in the

cryptography layer. Each protocol was implemented independently from the others. Key

structures are defined for each protocol with their initializer and finalizer functions. Also

both structure and function names are specified according to coding conventions of

CRYMPIX.

34

3.2. Protocols

 As shown in Figure 3.2, there is a common structure for all implemented key

exchange protocols. Each of them includes the owner’s public and private keys, the other

party’s public key and the shared key. The other parameters depend on the selected

protocol. These structures include both generated and computed values. Despite the fact

that computed values can be obtained from the generated values anytime, in order to avoid

the delay that is caused by calculation time in each computed value call, they are also

placed in the key structures (i.e. owner’s public key).

Figure 3.2. Generic Key Structure

3.2.1. Diffie-Hellman Key Exchange Protocol

 Domain parameters and key pairs of Diffie-Hellman Key Exchange Protocol which

are described in sections 2.1.2 and 2.1.3 are provided with their corresponding conventions

in CRYMPIX in Table 3.1.

Table 3.1. Diffie-Hellman Key Structure Comparison

Protocol
Description

CRYMPIX
Implementation

p Fp
g g
xA x
yA X
yB Y
K key

35

 The implemented key structure of the protocol is shown in Figure 3.3. The name of

the structure is defined as DH_FP; DH for Diffie-Hellman and FP for the prime finite field

arithmetic.

Figure 3.3. Implemented Key Structure for Diffie-Hellman KE

MI_t types are multiprecision integer values. FP_t fp is a finite field representation

that indicates prime p. The domain parameter q is not placed in the structure because it is

required for only generation of g.

Generation of these domain parameters requires prime number generation, primality

testing and the generation of generator number. Prime number generation and primality

testing functions are included in CRYMPIX. However, just these functions are not enough

to generate the domain parameters of this protocol. There is a prerequisite for the

generation of p and q primes such that q must be a prime factor of p-1. Such q prime is

required for the generation of the generator g. But factorization of p-1 is an NP-complete

problem that this protocol is based on. Consequently, instead of calculating a prime p and

trying to factorize it, q is generated using CRYMPIX’s prime generation function then

2q+1 is tested with prime testing functions (Menezes 1996). Until (2q+1) is a valid prime p,

these two steps are repeated. “2” is selected as the other factor of p in order to make the

calculation of generator g easy.

Additionally, modular exponentiation and pseudorandom number generator

functions of the library are used during domain parameter generation.

Similar to key structure, functions are also named according to the naming

convention. Hence, each function starts with dh_fp prefix, as shown in Table 3.2.

typedef struct{
 FP_t fp;
 FP_t q;
 MI_t g;
 MI_t x;
 MI_t X;
 MI_t Y;
 MI_t key;
}DH_FP_t[1], *DH_FP;

36

Table 3.2. Functions of Diffie-Hellman Key Exchange Protocol

Function Name Input Process

dh_fp_init DH_FP new, uni_t rtype to initialize the Diffie-Hellman
key structure “new”

dh_fp_kill DH_FP dh to free the Diffie-Hellman key
structure “dh”

dh_fp_generate_domain_parameters MI p, MI g, uni_t len, uni_t
cert, MI seed

to generate domain
parameters p and g with given
length and certainty using the
seed

dh_fp_generate_key_pair DH_FP dh, MI seed

 to generate a private key and
calculate a public key using
given seed and to store these
keys in the Diffie-Hellman key
structure “dh”

dh_fp_calculate_session_key DH_FP dh

 to calculate session key using
public and private keys in the
Diffie-Hellman key structure
“dh” and to store it in the same
key structure

3.2.2. Elliptic Curve Diffie-Hellman Key Exchange Protocol

 CRYMPIX contains the fundamental structures for elliptic curve cryptography, such

as an elliptic curve structure which is denoted as EC_FP_t and a point structure which is

denoted as ECP_FP_t. Also required functions, like point multiplication, are included in the

library. On the other hand, there is no generation function for an elliptic curve in the library

because it is an expensive process to create a suitable elliptic curve for the cryptographic

usage. Instead of generating elliptic curves, pre-defined NIST (WEB_4 2007, WEB_5

2007) curves are used in implementation. Such predefinition does not cause a security

problem because elliptic curve structures are public parameters of elliptic curve

cryptography. Also elliptic curve functions are designed as parametric functions. Hence, the

function caller does not have to use pre-defined curves in the library. It is possible to define

a curve outside of the library and pass it through the elliptic-curve functions. In order to

obey the coding conventions of CRYMPIX (WEB_6 2007), the parametric functions were

designed to implement this protocol.

37

Domain parameters and key pairs of Elliptic Curve Diffie-Hellman Key Exchange

Protocol which are described in sections 2.2.2 and 2.2.3 are shown with their corresponding

conventions in CRYMPIX in Table 3.3.

Table 3.3. Elliptic Curve Diffie-Helman Key Structure Comparison

Protocol
Description

CRYMPIX
Implementation

p ec�fp
a ec�a
b ec�b
xG g�x
yG g�y
n ec�n
xA x
xQA X�x
yQA X�y
xQB Y�x
yQB X�y
xK key�x
yK key�y

 The implemented key structure of the protocol is shown in Figure 3.4. The name of

the structure is defined as DH_EC_FP; DH for Diffie-Hellman, EC for elliptic curve and

FP for finite field arithmetic.

Figure 3.4. Implemented Key Structure for Elliptic Curve Diffie-Hellman KE

Similar to key structure, functions are also named according to the naming

convention. Hence, each function starts with dh_ec_fp prefix, as shown in Table 3.4.

typedef struct{
 EC_FP_t ec;
 ECP_FP_t g;
 MI_t x;
 ECP_FP_t X;
 ECP_FP_t Y;
 ECP_FP_t key;
}DH_EC_FP_t[1], *DH_EC_FP;

38

Table 3.4. Functions of Elliptic Curve Diffie-Hellman Key Exchange Protocol

Function Name Input Process

dh_ec_fp_init DH_EC_FP new

to initialize the Elliptic Curve
Diffie-Hellman key structure
“new”

dh_ec_fp_kill DH_EC_FP ecdh
to free the Elliptic Curve Diffie-
Hellman key structure “ecdh”

dh_ec_fp_generate_key_pair DH_EC_FP ecdh, MI seed

 to generate a private key and
calculate a public key using given
seed and to store these keys in
the Elliptic Curve Diffie-Hellman
key structure “ecdh”

dh_ec_fp_calculate_session_key DH_EC_FP ecdh

 to calculate session key using
public and private keys in the
Elliptic Curve Diffie-Hellman key
structure “ecdh” and to store it in
the same key structure

3.2.3. Elliptic Curve MQV

As described in section 2.3, Elliptic Curve MQV protocol has three variants as one-,

two- and three-pass authenticated key exchange protocols. The one-pass authenticated key

exchange protocol is not suitable for interactive communications. The three-pass

authenticated key exchange protocol requires hash and MAC algorithms, which are not in

the scope of this thesis and are not included in CRYMPIX. Therefore in this thesis, it is

aimed to implement two-pass authenticated key exchange protocol.

As mentioned earlier, different from the other two protocols, MQV uses an implicit

signature which is computed to provide authentication. Also an additional long-term key

pair is used. It is assumed that the long term key pair is shared through a certification

authority between two parties of the protocol. Actually, there is no structural difference

between the implementations of Elliptic Curve Diffie-Hellman and Elliptic curve MQV,

except an additional key pair and an implicit key. On the other hand computations are

totally different. Elliptic Curve MQV uses not only the point multiplication but also the

point addition function of the library. Also two extra functions, one for implicit signature

calculation and one for point derivation (Section 2.3.1) are implemented.

39

Domain parameters and key pairs of Elliptic Curve MQV Key Exchange Protocol

which are described in sections 2.3.2 and 2.3.3 are shown with their corresponding

conventions in CRYMPIX in Table 3.5.

Table 3.5. Elliptic Curve MQV Key Structure Comparison

Protocol
Description

CRYMPIX
Implementation

p ec�fp
a ec�a
b ec�b
n ec�n
xG g�x
yG g�y
rA x
wA a
RA X
WA A
RB B
K key
h h

SA S

 The implemented key structure of the protocol is shown in Figure 3.5. The name of

the structure defined as MQV_EC_FP; MQV for the name of protocol, EC for elliptic curve

and FP for finite field arithmetic.

Figure 3.5. Implemented Key Structure for Elliptic Curve KE

typedef struct{
 EC_FP_t ec;
 ECP_FP_t g;
 MI_t x;
 MI_t a;
 ECP_FP_t X;
 ECP_FP_t Y;
 ECP_FP_t A;
 ECP_FP_t B;
 ECP_FP_t key;
 MI_t h;
 MI_t S;
}MQV_EC_FP_t[1], *MQV_EC_FP;

40

MI_t types are multiprecision integer values. EC_FP_t indicates an elliptic curve

structure and ECP_FP_t indicates a point on an elliptic curve.

Similar to key structure, functions are also named according to the naming

convention. So each function starts with mqv_ec_fp prefix, as shown in Table 3.6.

Table 3.6. Functions of Elliptic Curve MQV Key Exchange Protocol

Function Name Input Process

mqv_ec_fp_init MQV_EC_FP new
to initialize the Elliptic Curve MQV
key structure “new”

mqv_ec_fp _kill MQV_EC_FP ecmqv
to free the Elliptic Curve MQV key
structure “ecmqv”

mqv_ec_fp _generate_key_pair
MQV_EC_FP ecmqv, MI
seed

 to generate a private key and
calculate a public key using given
seed and to store these keys in the
Elliptic MQV key structure “ecmqv”

mqv_ec_fp _calculate_session_key DH_EC_FP ecmqv

 to calculate session key using public
and private keys in the Elliptic Curve
MQV key structure “ecmqv” and to
store it in the same key structure

mqv_ec_fp _calculate_implicit_signiture DH_EC_FP ecmqv

to calculate implicit signature S in the
Elliptic Curve MQV key structure
“ecmqv”

mqv_ec_fp _derive_point MI z, ECP_FP p, MI n

to derive elliptic curve point “p”
using the given order n and store the
multiprecision integer result in “z”

3.3. Comparison of Protocols

 At the end of the implementation of three key exchange protocols, the algorithms

are compared to understand which one is the most effective. But the effectiveness can be

defined with respect to different parameters. In the scope of this thesis, the execution times

of the key pair generation and session key calculation are selected as the parameter of

effectiveness.

 In order to make an objective comparison, the generated keys must be providing the

same level of the security. As mentioned in section 2.3, the bits of security, in other words

the number of operations that is required to break a cryptographic algorithm, indicates the

security level. Hence, the key lengths must be chosen in the intervals of the same bits of

security level for the comparison.

41

The execution times of the key pair generations and shared key calculations are

measured for comparison. A test code for each protocol is implemented in CRYMPIX to

measure execution times. The configuration of the machine on which the tests run is as the

following:

• CPU, Intel Pentium IV 2.99GHz

• RAM, 2 GB

• Operating System, Windows XP Professional

Table 3.7 shows the time measurement results of Diffie-Hellman Key Exchange

algorithm. The first two columns identify bits of security and corresponding key lengths in

terms of bits. The third column identifies chosen bit lengths for the public (N) and private

(L) keys. The minimum bit lengths are chosen for keys; hence the second and the third

columns have the same values. The forth column indicates the time measurement for

generating domain parameters, p, q and g. The fifth column indicates public-private key

pair generation time and the last one indicates shared key calculation time.

Table 3.7. Time Measurements of Diffie-Hellman Key Exchange

Bits of
security

DHKE
(N: bit length
of private key
L: bit length of

public key)

Chosen
Length
(bits)

Domain Parameter
(p, q, g) Generation

Time
(milliseconds)

Key Pair
Generation Time

(milliseconds)

Shared Key
Calculation

Time
(milliseconds)

80 L = 1024
N = 160

L = 1024
N = 160 340877,0 11,95 11,86

112 L =2048
N = 224

L =2048
N = 224 248445,0 58,64 58,42

128 L = 3072
N =256

L = 3072
N =256 ---- ---- ----

192 L = 7680
N =384

L = 7680
N =384 ---- ---- ----

256 L = 15360
N =512

L = 15360
N =512 ---- ----

As shown in 4th column of Table 3.7, generating domain parameters takes to much

time in order to generate suitable primes as mentioned in 2.1.2. Two prime numbers, q and

p, are generated as *2kp q= . Bit length of q must be at least equal to bit length of private

42

key. Also bit length of p must be at least equal to bit length of public key. Generating such

parameters for larger bit lengths (bit length ≥ 3072 bits) take hours for CRYMPIX

implementation of Diffie-Hellman Key Exchange. For this reason, in Table 3.7, the last

three rows of time measurements are empty. Consequently, corresponding key pair

generation and shared key generation time cells are empty. Results of time measurements

for generating domain parameters are not acceptable for cryptographic usage. They must be

reduced which can be achieved by reducing generation time of larger primes in the library.

Existing prime generators can be refactored or more effective algorithms can be

implemented. On the other hand, because these parameters are public and implemented

functions have parametric structure, it is possible to use predefined domain parameters.

Table 3.8. The Time Measurements of Elliptic Curve Diffie-Hellman Key Exchange

Bits of
security

ECDHKE
(f: bit length of the

order of base point G)

Chosen Length
(bits)

Key Pair
Generation Time

(milliseconds)

Shared Key
Calculation Time

(milliseconds)

80 f = 160 – 223 192 33,1 15,07

112 f = 224 - 255 224 45,57 21,27

128 f = 256 – 383 256 58,94 27,96

192 f = 384 – 511 384 163,57 75,6

256 f = 512 + 521 369,11 169,93

Table 3.8 and Table 3.9 show the time measurement results of Elliptic Curve Diffie-

Hellman Key Exchange and Elliptic Curve MQV Key Exchange algorithms. Both of them

include the same columns which indicate the same parameters. The first two columns

identify bits of security and corresponding base point order (n) lengths (f: the bit length of

n) in terms of bits. The third column identifies the chosen bit lengths for the base point

order n. Actually, not bit lengths of order n, but NIST curves that have orders in the

corresponding intervals in the second column, are chosen. There is no time measurement

for domain parameter generation because predefined curves are used. The forth column

43

identifies public-private key pair generation time and the last one indicates shared key

calculation time.

Table 3.9. The Time Measurements of Elliptic Curve MQV Key Exchange

Bits of
security

ECMQV
(f: bit length of the

order of base point G)

Chosen Length
(bits)

Key Pair
Generation Time

(milliseconds)

Shared Key
Calculation Time

(milliseconds)

80 f = 160 - 223 192 33,57 23,28

112 f = 224 - 255 224 45,09 31,66

128 f = 256 – 383 256 59,21 42,37

192 f = 384 – 511 384 161,52 111,99

256 f = 512 + 521 371,68 255,44

The results of execution time measurements show larger key lengths causes longer

execution times for key pair generation and shared key calculation. The execution time

comparisons of implemented algorithms are shown in the graphics in Figure 3.6 and Figure

3.7.

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

80 112 128 192 256

Bits of Security

K
ey

 P
ai

r
G

en
er

at
io

n
Ti

m
e

(m
ili

se
co

nd
s)

DHKE

ECDH

ECMQV

Figure 3.6. Key Pair Generation Time Comparison Table

44

ECC protocols have not only similar algorithms and implementation but also similar

results for the same security levels. Key pair generation times are nearly same because the

same steps are executed in both protocol; a random number generation and a point

multiplication. Hence, graphics of generation times are on top of each other, Figure 3.6. On

the other hand the session key calculation times are longer for Elliptic Curve MQV than

Elliptic Diffie-Hellman because an implicit signature calculation is included, Figure 3.7.

0

20

40

60

80

100

120

140

160

180

200

220

240

260

80 112 128 192 256

Bits of Security

S
ha

re
d

K
ey

 C
al

cu
la

tio
n

Ti
m

e
(m

ili
se

co
nd

s)

DHKE

ECDH

ECMQV

Figure 3.7 Session Key Calculation Time Comparison Table

45

CHAPTER 4

CONCLUSION AND THE FUTURE WORK

Development of the public-key cryptosystems not only became a new perspective in

encryption and decryption processes but also solved the key distribution problem of the

symmetrical cryptosystems. Key exchange protocols which are based on public-key

cryptology make it possible to distribute key over an insecure channel. The aim of this

study is to review the key exchange protocols and implement them using a multiprecision

library.

During this study Diffie-Helman Key Exchange, Elliptic Curve Diffie-Hellman Key

Exchange and Elliptic Curve MQV Key Exchange protocols were analyzed in detail. These

protocols are based on different mathematical one way trap functions which are known as

the discrete logarithm problem and the elliptic curve discrete logarithm problem. Hence,

these mathematical aspects were also examined.

The protocol implementations are done at the cryptographic protocol layer of the

library. In this study the parametric functions are designed and predefined curves are passed

as parameters in tests.

Not only the protocols but also the test codes for general utilization plus key

execution timer codes were implemented for the library. Some bugs in the existing library

functions were discovered during testing software development. The first problem is the

increased execution time of the Diffie-Hellman domain parameter generation function

which was up to hours. The latency observed here is caused by the slowness of prime

generation function for higher bit lengths. This problem can be solved by implementing the

faster prime generators.

The second problem is the pseudorandom number generator which is called by key

generation functions of all protocols. Test codes call the key generator functions so many

times in order to obtain more accurate execution time value. But there is only one pseudo-

46

random number generator in the library. When the initializer function of the generator is

called too many times, it causes too many loops. This problem is solved by passing

initialized pseudo-random number generators to key generation functions instead of

multiprecision integer seeds. But it is understood that pseudo-random number generator

does not work correctly.

In conclusion, these protocols are included in the last release of CRYMPIX. Also

the documentation of the functions and structures are provided for the benefit of users.

4.1. Future Work

 First of all prime number generator should be refactored to get a usable Diffe-

Hellman Key Exchange Protocol. Also pseudo-random generator function must be

reviewed and after correction of the generator, parameters of key generation functions

should be refactored.

As mentioned earlier the Elliptic Curve MQV Key Exchange has three different

variations. In scope of this study the two-pass authenticated key exchange protocol is

implemented. Three-pass authenticated key exchange protocol which includes key

confirmation is left as the future study. It is necessary to implement a message

authentication code (MAC) algorithm and a hash algorithm such as one in SHA-2 family,

for the three-pass authenticated protocol.

47

REFERENCES

ANSI (American National Standards Institute) X9.42, 1998. Public Key Cryptography for

the Financial Services Industry: Agreement of Symmetric Keys Using Discrete

Logarithm Cryptography.

ANSI (American National Standards Institute) X9.63, 1999. Public Key Cryptography for

the Financial Services Industry: Key Agreement and Key Transport Using Elliptic

Curve Cryptography.

Atay, S., 2006. “Performance issues of elliptic curve cryptographic implementations”,

Unpublished Ph.D. Dissertation Thesis, Ege University, Graduate School of Natural

and Applied Sciences.

Barker, E., Barker, W., Burr, W., Polk, W. and Smid, M., 2007, NIST Special Publication

800-57: Recommendation for Key Management Part1 - General, NIST (National

Institute of Standards and Technology).

Diffie, W. and Hellman, M.E, 1976. “New Directions in Cryptography”, IEEE

Transactions on Information Theory, Vol.22, pp.644-654.

Hankerson, D., Menezes, A.J. and Vanstone, S., 2004. A Guide to Elliptic Curve

Cryptography (Springer).

Hı�ıl, H., 2005. “A distributed multiprecision cryptographic library design”, Unpublished

MS. Thesis, �zmir Institute of Technology, The Graduate School of Engineering and

Science.

Law, L., Menezes, A., Qu, M., Solinas, S. and Vanstone, S., 1998. “Efficient Protocol for

Authenticated Key Agreement”, Designs, Codes and Cryptography, V.28, pp.119-134.

48

Menezes, A.J., Oorschot, P.C.V. and Vanstone, S.A., 1996. Handbook of Applied

Cryptography (CRC Press).

Merkle, R.C, 1978. “Secure Communications over Insecure Channels”, Communications of

the ACM, V.21, pp.294-299.

Rivest, R., Shamir. A. and Adleman, L., 1978. “A method for obtaining Digital Signatures

and Public Key Cryptosystems”, Communications of the ACM, ACM Press, Vol.21, pp.

120-126.

Schneier, B., 1996. Applied Cryptography, Second Edition: Protocols, Algorithms, and

Source Code in C (Wiley).

WEB_1 2007, VeriSign Official Web Site, http://www.verisign.com

WEB_2 2007, GeoTrust Official Web Site, http://www.geotrust.com/

WEB_3 2007, Commondo Official Web Site, http://www.comodo.com/

WEB_4 2007, National Institute of Standards and Technology, http://nist.gov/

WEB_5 2007, Computer Security Research Center, http://csrc.nist.gov/

WEB_6 2007, CRYMPIX Home Page, http://crympix.iyte.edu.tr

Zimmermann, P., 1995, PGP Source Code and Internals (MIT Press)

49

APPENDIX A

BASIC STRUCTURES AND TYPE DEFINITIONS
 IN CRYMPIX

1. The type definition of uni_t:

2. The type definition of uni:

3. Structure for MA_t:

4. Structure for MI_t:

/**
* Type definition for a single precision variable.

 **/
typedef unsigned long uni_t;

/**
* Type definition for a pointer to a single precision variable.

 **/
typedef uni_t *uni;

/**
* Type definition for an array.This struct is used for low level
* integer and polynomial arithmetic.

 **/
typedef struct {
 uni_t l; /* Number of digits */
 uni n; /* Starting address of digits */
} MA_t[1], *MA;

/**
* Type definition for an integer. A vector is encapsulated with
* the sign.

 **/
typedef struct {
 SIGN s; /* Sign of the integer */
 MA_t v; /* Vector part of the integer */
} MI_t[1], *MI;

50

5. Structure for FP_t:

6. Structure for EC_FP_t:

7. Structure for ECP_FP_t:

typedef struct{
 MI_t ch; /* Field characteristic */
 MI_t nd2; /* n^-1 in montgomery's nresidue system */
 uni_t nd; /* n[0]^-1 in montgomery's nresidue system due to
dusse and kaliski */
 uni_t rtype; /* Representation type */
}FP_t[1], *FP;

/**
 * Type definition for an elliptic curve, E(Fp)
 * Tentatively designed for now. To be modified in the future.
 **/
typedef struct{
 FP_t fp;
 MI_t a;
 MI_t b;
 MI_t n; /* #E. */
 MI_t t0, t1, t2, t3, t4, t5; /* Temp variables. */
 BOOL is_a_3; /* TRUE if a = -3. */
}EC_FP_t[1], *EC_FP;

/**
 * Type definition for an elliptic curve point, P in E(Fp).
 * The elliptic curve must be defined over Fp.
 **/
typedef struct{
 MI_t x;
 MI_t y;
 MI_t z;
 MI_t z2;
 MI_t z3;
 MI_t az4;
 BOOL inf; /* TRUE if point at infinity, FALSE otherwise. */
 uni_t ct; /* Coordinate type */
}ECP_FP_t[1], *ECP_FP;

