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İzmir Institute of Technology

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 July 2007

Prof. Dr. Oğuz YILMAZ
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ABSTRACT

UNIFORMLY CONVERGENT APPROXIMATION ON
SPECIAL MESHES

We consider finite difference methods for the approximation of one−dimensional

convection−diffusion problem with a small parameter multiplying the diffusion term.

An analysis of the centered difference and upwind difference schemes on equidistant

meshes shows that these methods are not uniformly convergent in the discrete maxi-

mum norm. However, we show that the upwind method over a set of suitably dis-

tributed mesh points produce uniformly convergent approximations in the discrete maxi-

mum norm. We further investigate the upwind difference method for the approximation of

the convection−diffusion problem with a point source. Theoretical findings are supported

with the numerical results.
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ÖZET

ÖZEL AĞLAR ÜZEṘINDE DÜZGÜN YAKINSAYAN
ÇÖZÜMLER

Dif üzyon terimi k̈uçük bir parametreyle çarpılmış olan konveksiyon−difüzyon

probleminin bir boyutlu ç̈ozümleri için sonlu fark metodları ele alınmaktadır. Merkez

ve geri fark metotlarının ayrık maksimum normda düzg̈un yakınsak olmadığı bir analizle

gösterilmektedir. Geri fark metodunun yine de, ağ noktalarınınözel bir seçimi ile ayrık

maksimum normda d̈uzg̈un yakınsak oldŭgu g̈osterilmiştir. Ayrıca noktasal bir kaynağa

sahip olan konveksiyon−difüzyon denkleminin geri fark metodu ile yaklaşık sonuçları

üzerinde çalışılmıştır. Teorik sonuçlar sayısal sonuçlarla desteklenmiştir.
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CHAPTER 1

INTRODUCTION

We study the numerical solution techniques on both equidistant and piecewise uni-

form meshes for the following convection−diffusion problem on the intervalΩ = [0, 1].




Find u ∈ C2(Ω) such that u(0) = u0 , u(1) = u1

and for all x ∈ Ω, Lu = −εu
′′
(x) + a(x)u

′
(x) = f(x)



 (1.1)

where ε is a small parameter used to measure the relative amount of diffusion to

convection. a(x) and f(x) are smooth functions and the functiona(x) satisfies the

following strict inequality.

a(x) > α > 0

The convection−diffusion problem (1.1) arises in diverse areas such as the

moisture transport in desiccated soil, the potential function of fluid injection through one

side of a long vertical channel, the potential for a semiconductor device modeling and

steady flow of a viscous, incompressible fluid. Although the problem(1.1) may not be

applied directly to real applications, it is important to find its solution, because it is an

important stage in investigation of many practical applications.

The main difficulty is to obtain a numerical solution which converges

ε− uniformly to the exact solution of the problem(1.1) since it is a singularly perturbed

problem. When the standard finite difference operators are employed on a uniform mesh

to solve this problem, for example the centered difference scheme, then the numerical

solutions oscillate unless the mesh sizeh is chosen sufficiently small compared toε.

Although the upwind difference scheme gives more stable result, Kellog and Tsan (Mal-

ley, 1991) have analyzed the behavior of the error of the standard upwind scheme on a

uniform mesh and they show that it is notε − uniform in the discrete maximum norm

in the layer. Therefore, we need more efficient methods in order to capture numerical

solutions which has the feature ofε − uniform convergence. These methods can be

given on auniform mesh or on anon − uniform mesh. In this thesis, we investigate

the numerical approximations of the convection−diffusion problem both on auniform

andnon− uniform meshes. Thus, it is organized as follows:
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In Chapter2, we illustrate the behavior of the problem in one dimension using

a simple problem and introduce some notations and definitions used in the subsequent

chapters. In Chapter3, we analyze the centered difference and upwind difference methods

using the solutions of the associated difference equations. We present some numerical re-

sults to demonstrate the qualitative behavior of these methods for different configurations

of ε relative toh. In Chapter4, we derive a uniformly convergent method on an equidistant

mesh, called Il’in−Allen−Southwell method and present some numerical results. In

Chapter5, a piecewise uniform mesh so called Shishkin mesh is introduced. We first con-

sider a problem with regular data and whose convective term has a constant coefficient to

obtain some results which are used in the convergence analysis of the problem(1.1) on

this piecewise uniform mesh. We give anε − uniform error estimate in section5.2 and

present two numerical experiments that verify the uniform convergence of the method un-

der investigation. Further, we consider a different type of convection−diffusion problem

with irregular data in section5.3 and use again the upwind finite difference method on

Shishkin mesh for discretization of this problem.

2



CHAPTER 2

OVERVIEW OF THE CONVECTION DIFFUSION

PROBLEM

2.1. The Analytical Behavior of Convection-Diffusion Problem

We begin by explaining where the convection−diffusion phenomenon occurs and

then introduce a convection diffusion equation in one dimension on the interval[0, 1],

together with the behavior of the exact solution.

Mathematical models that involve a combination of convective and diffusive pro-

cesses are among the most widespread in all of science, engineering and other fields where

mathematical modeling is important. Water quality problems, convective heat transfer

problems, simulation of the semiconductor devices can be given as an example of these

models. Also the linearization of the Navier-Stokes equation and drift-diffusion equation

of semiconductor device modeling are important instances.

Very often the dimensionless parameter that measures the relative strength of the

diffusion is quite small; so one often meets with situations where thin boundary and

interior layers are present and singular perturbation problems arise. The following prob-

lem on the unit intervalΩ = (0, 1) leads us to deduce the analytical behavior of the

problem in one−dimension.




Find u ∈ C2(Ω) such that u(0) = u0 u(1) = u1

and for all x ∈ Ω, Lu = −εu
′′
(x) + bu

′
(x) = 0



 (2.1)

whereb is a constant which satisfiesb > 0 andC2(Ω) denotes the space of two times

differentiable functions onΩ. It can be solved exactly:

u(x) = u0 + (u1 − u0)
e−b(1−x)/ε − e−b/ε

1− e−b/ε
(2.2)

Since the exponential function in the solution has the argument(1 − x)/ε , the

solution changes rapidly in the subinterval(1 − ε, 1). That is, there is a boundary layer

3



aroundx = 1 asε tends to zero and it is of widthε . The Figure2.1 is plotted by setting

u0 = 0 , u1 = 1 andb = 1 and for the values ofε = 1, 10
−1, 10−2, 10−3 .
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Figure 2.1. Exact solution of the Problem(2.1) for several values ofε

It shows that the thickness of the boundary layer narrows asε gets smaller. How-

ever, it is difficult to find the numerical solution of the problem. Therefore, it is important

to devise efficient algorithms for the approximation of the convection−diffusion prob-

lems.

2.2. Numerical Methods for The Singularly Perturbed Problems

In this section, we overview the numerical methods used to solve the singularly

perturbed problems and introduce some notations, finite difference operators, function

spaces, norms and seminorms which are used in the subsequent chapters.

Let D be a bounded domain inR. Typically D = Ω or D = Ω where Ω is a

bounded open interval. LetC0(D) denote the space of continuous functions on D with

the norm of anyf ∈ C0(D) defined by

‖f‖D = sup |f(x)| ∀x ∈ D.
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For each integerk ≥ 1 let Ck(D) denote the space of k−times differentiable functions

on D, with continuous derivatives up to and including those of order k. The explicit

reference toD is dropped whenever the domain in question is evident. For any mesh

function V on an arbitrary meshΩ
N

= {xi}N
0 , the discrete maximum norm is defined by

‖V ‖
Ω

N = max |Vi| 0 ≤ i ≤ N.

The linear vector space of all mesh functions defined onΩ
N

, and furnished with the

norm ‖.‖
Ω

N , is denoted byV (Ω
N

). When the meshΩ
N

is evident it may be dropped

from the notation.

In order to construct the numerical methods considered in the following chapters,

we need the following mesh descriptions, finite difference operators and definition:

On the intervalΩ = (0, 1) for each integerN ≥ 2 , the uniform mesh

Ω
N

= {xi}N
0 is defined by taking theN + 1 mesh points

xi = i/N for 0 ≤ i ≤ N

that is they are separated by a uniform distance

h = xi − xi−1 = 1/N for 0 ≤ i ≤ N.

An alternate way of arriving at the same result is to divideΩ into N mesh elements

Ωi = (xi−1, xi) which have the lengthh = 1/N .

First and second order finite difference operators are now defined on these uniform

meshes as follows:

D+Vi =
Vi+1 − Vi

h
D−Vi =

Vi − Vi−1

h

(2.3)

DoVi =
D+ + D−

2
Vi =

Vi+1 − Vi−1

2h

D+ andD− give a first order approximation to the first derivative of any function while

D0 gives a second order. Second order difference operatorD2 is obtained by composing

forward and backward difference operator and gives a second order approximation to the

second derivative of any function:

D2Vi =
(D+ −D−)

h
Vi =

Vi+1 − 2Vi + Vi−1

h2
(2.4)

5



Since in the following chapters the meshes are no longer uniform, we need to

extend the above definition from uniform tonon-uniform meshes. If the mesh points in

an arbitrary non−uniform mesh with N subintervalsΩi = (xi−1, xi) for 1 ≤ i ≤ N

are denoted byΩ
N

= {xi}N
0 , then the mesh points are separated by a distance

hi = xi − xi−1 for 1 ≤ i ≤ N.

First and second order finite difference operator for the non−uniform meshes are given

by

D+Vi =
Vi+1 − Vi

hi+1

D−Vi =
Vi − Vi−1

hi

(2.5)

DoVi =
hi+1D

+ + hiD
−

2hi

Vi D2Vi =
(D+ −D−)

hi

Vi

where

hi =
hi+1 + hi

2

for 1 ≤ i ≤ N − 1.

Early numerical solutions of problems involving singularly perturbed differential

equations were obtained by using a standard finite difference operator defined in(2.3) on a

uniform mesh and then refining the mesh more and more in order to capture the boundary

or interior layers as the singular perturbation parameter decreased in magnitude. Thus,

even for problems in one dimension, the methods were inefficient, and accurate solutions

could not be obtained for problems in higher dimensions. We deal with in the next chapter

why these methods fail to capture the accurate solutions. A natural question then arises:

Is it possible to construct numerical methods that behave uniformly well for all values of

the singular perturbation parameter, no matter how small ?

We need the following definition in the subsequent chapters to say that a numerical

method hasε− uniform convergence.

Definition 2.1 Consider a family of mathematical problems parameterized by a singular

perturbation parameterε, whereε lies in the semi−open interval0 < ε ≤ 1. Assume

that each problem in the family has a unique solution denoted byu, and that eachu is

approximated by a sequence of numerical solutions{(U, Ω
N

)}∞N=1 whereU is defined on

6



the meshΩ
N

and N is a discretization parameter. Then the numerical solution ofu are

said toconvergeε− uniformly to the exact solutionu, if there exist a positive integerN0,

and positive numbers C and p, whereN0, C and p are all independent of N andε, such

that for all N ≥ N0

sup‖U − u‖
Ω

N ≤ CN−p

Here p is called theε− uniform rate of convergence and C is called theε− uniform error

constant.

A finite difference method has two major ingredients: the finite difference operator

LN that is used to approximate the differential operatorL and the meshΩN that replaces

the continuous domainΩ. By standard finite difference methods is meant almost all of

the finite difference methods that have been applied successfully to problems that are

not singularly perturbed. Many of these methods are well known and are named after

some of their inventors. Generally, these methods are stable and accurate, and hence their

solutions converge to the exact solution asN → ∞. It turns out however that none of

these methods isε− uniform, and some new attribute is required.

In the construction ofε− uniform methodstwo approaches have generally been

taken to date. The first of these involves replacing the standard finite difference operator

by a finite difference operator which reflects the singularly perturbed nature of the

differential operator. Such finite difference operators are referred to in general as

fitted finite difference operators. In some cases, for example for linear problems, they

may be constructed by choosing their coefficients so that some or all of the exponential

functions in the null space of the differential operator, or part of it, are also in the null

space of the finite difference operator. In such cases the finite difference operator is re-

ferred to as an exponentially fitted finite difference operator. The corresponding numerical

method is then obtained by applying the fitted finite difference operator to obtain a system

of finite difference equations on a standard mesh, which in practice is often a uniform

mesh. This system is then solved in the useful way to obtain approximate solutions.

Other approaches to constructing fitted finite difference operators are illustrated in (Roos,

1994).

The second successful approach to the construction ofε− uniform numerical

methods involves the use of a mesh that is adapted to the singular perturbation. Such

methods are referred to here asfitted mesh methods. A standard finite difference

7



operator is applied on the fitted mesh to obtain a system of finite difference equations,

which is then solved in the usual way to obtain approximate solutions. It is often sufficient

to construct a piecewise uniform mesh, that is a mesh which is a union of a finite number

of uniform meshes having different mesh parameters. These piecewise uniform fitted

meshes were first introduced by Shishkin ( Shishkin,1988) and corresponding numerical

methods were further developed and shown to beε − uniform in a series of papers

culminating in (Shishkin,1992). The first numerical results using a fitted mesh method

were presented in (Miller et al.1991). Different approaches to adapting the mesh, involv-

ing complicated redistribution of the mesh points, have been taken by other authors, for

example Bakhvalov, Gartland, Liseikin and Vulanovic (Bakhvalov1969, Gartland1988,

Liseikin 1983, Vulanovic1986) but none has the simplicity of the piecewise uniform fitted

meshes.

The above considerations show that both fitted operators and fitted meshes need

to be developed. In the chapters4 and5, examples of each technique are presented. In

practice, methods using fitted meshes are recommended whenever possible because they

are usually simpler to implement than methods using fitted operators. Moreover, they are

easier to generalize to problems in more than one dimension and to nonlinear problems.

8



CHAPTER 3

STANDARD NUMERICAL METHODS

In this chapter, we use the standard numerical methods for the problem(2.1) on

a uniform mesh and explain that why these methods fail to converge to the analytical

solution of the problem. We approximate the first derivative by the centered difference

operatorD0 and the upwind difference operatorD−, respectively. We take fix boundary

conditionsu0 = 0 andu1 = 1.

3.1. Centered Difference Method for the Convection Diffusion Prob-

lem

Consider discrete operator

LN = −εD2 + bD0

for the uniform partitionΩ
N

of theΩ. It approximates the first derivative in the problem

(2.1) with the centered difference operatorD0 and the second derivative with the second

order difference operatorD2





Find U ∈ V (Ω
N

) such that U0 = 0 UN = 1 and for all xi ∈ ΩN ,

LNUi = −εUi+1−2Ui+Ui−1

h2 + bUi+1−Ui−1

2h
= 0, 1 ≤ i ≤ N − 1





(3.1)

whereUi ≈ u(xi). Then, combining terms with the same indices leads to the following

difference equation

(−1 + ρ)Ui+1 + 2Ui + (−1− ρ)Ui−1 = 0 (3.2)

whereρ = bh/2ε. It gives a system of equations withN − 1 unknowns. We can obtain

the approximate solution of the problem(2.1) by solving this system. Some numerical

results are given together with the exact solution in the Figures from3.1 to 3.4 for the

different values ofε with N = 50 andb = 1. They shows that the numerical solution

to be consistent with the exact solution for the large values ofε. But it oscillates for the

ε = 10−3.

9
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Figure 3.1. Exact(−) and Centered Difference solution(∗) for ε = 1
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Figure 3.2. Exact(−) and Centered Difference solution(∗) for ε = 0.1
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Figure 3.3. Exact(−) and Centered Difference solution(∗) for ε = 0.01
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Figure 3.4. Exact(−) and Centered Difference solution(∗) for ε = 0.001
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The situation can be explained by solving the difference equation(3.2) exactly.

SettingUi = ri in the difference equation and dividing the resulting expression withri−1

then leads to the following characteristic equation

(−1 + ρ)r2 + 2r + (−1− ρ) = 0

and its roots are obtained as

r1 = 1 r2 =
1 + ρ

1− ρ
.

Thus, the general solution to the difference equation(3.2) can be given by

Ui = a1r
i
1 + a2r

i
2 = a1 + a2(

1 + ρ

1− ρ
)i (3.3)

Imposing the boundary conditions, i.eU0 = 0 andUN = 1 , we obtain the unique solution

of the difference equation(3.2) as follows

Ui =
1 + (1+ρ

1−ρ
)i

1− (1+ρ
1−ρ

)N
(3.4)

for all i, 0 ≤ i ≤ N .

If ρ < 1, we see that numerical solution gives good results. However, the solution

(3.4) clearly shows that ifρ > 1 (ε < 0.01), then the numerical solution oscillates since

the second rootr2 would be negative in this case. Thus, we can conclude that the centered

difference method is not robust for the problem(2.1).

3.2. Upwind Difference Method for the Convection Diffusion Problem

In this section, we approximate the first derivative with the backward difference

operatorD− . The associated discrete operator is given by

LN = −εD2 + bD−

and discrete problem is obtained as




Find U ∈ V (Ω
N

) such that U0 = 0 UN = 1 and for all xi ∈ ΩN ,

LNUi = −εUi+1−2Ui+Ui−1

h2 + bUi−Ui−1

h
= 0, 1 ≤ i ≤ N − 1





(3.5)
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Combining terms with the same indices we have the difference equation:

−Ui+1 + (2 + ρ)Ui + (−1− ρ)Ui−1 = 0

whereρ = bh/ε. Setting againUi = ri and dividing resulting expression with theri−1

results in

−r2 + (2 + ρ)r + (−1− ρ) = 0

and the roots of this characteristic equation are

r1 = 1 r2 = 1 + 2ρ.

Thus, the general solution can be expressed as follows

Ui = a1r
i
1 + a2r

i
2 = a1 + a2(1 + 2ρ)i (3.6)

The solution satisfying the boundary conditions can be immediately written as in the

following form:

Ui =
1− (1 + 2ρ)i

1− (1 + 2ρ)N
(3.7)

for all i, 0 ≤ i ≤ N .

Sincer2 is always positive, we do not have oscillatory approximation in this case.

Therefore, upwind difference method gives more stable result than the centered difference

method as it can be seen in the Figures from3.5 to 3.8. However, the error at the interior

mesh point closest to the boundaryx = 1 is

(U − u)(xN−1) =
1− 3N−1

1− 3N
− e−1 − e−N

1− e−N

if ρ = h/ε = 1. It follows that

lim
N→∞

(U − u)(xN−1) = −1

3
− 1

e
6= 0.

and the upwind difference method is not convergent in the layer.
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Figure 3.5. Centered(o) and Upwind(∗)Difference solution forε = 1
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Figure 3.6. Centered(o) and Upwind(∗)Difference solution forε = 0.1
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Figure 3.7. Centered(o) and Upwind(∗)Difference solution forε = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x axis

U
P

W
IN

D
−

C
E

N
T

E
R

E
D

−
E

X
A

C
T

Figure 3.8. Centered(o) and Upwind(∗)Difference solution forε = 0.001
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CHAPTER 4

A UNIFORMLY CONVERGENT METHOD ON

EQUIDISTANT MESHES

In this chapter, we deal with a uniformly convergent method, so called

Il’in−Allen−Southwell method as an example of fitted numerical methods on a uniform

mesh. We show that how to construct this method and present its convergence properties

briefly.

Consider the following problem on the unit intervalΩ = (0, 1)





Find u ∈ C2(Ω) such that u(0) = 0 , u(1) = 0

and for all x ∈ Ω, Lu = −εu
′′
(x) + bu

′
(x) = f(x)



 (4.1)

where b is a constant satisfyingb > 0. The formal adjoint operator ofL is defined by

L∗ = −ε
d2

dx2
− b

d

dx

Let gi be the local Green’s function ofL∗ with respect to the discrete pointxi. Then the

associated problem with the pointxi on the local domainΩi∪Ωi+1 can be given as follow:





Find gi ∈ C(Ωi ∪ Ωi+1) ∩ C2(Ωi ∪ Ωi+1) such that

gi(xi−1) = 0 , gi(xi+1) = 0

and for all x∗ ∈ Ωi ∪ Ωi+1, L∗gi = −εg
′′
i (x)− bg

′
i(x) = 0





(4.2)

whereΩi = (xi−1, xi) and with the additional condition

ε(g
′
i(x

−
i )− g

′
i(x

+
i )) = 1. (4.3)

Thus, multiplying the equationLu = f with gi and integrating the resulting expression

from xi−1 to xi+1 we obtain the following equality

∫ xi+1

xi−1

(Lu)gidx =

∫ xi+1

xi−1

fgidx.
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Then, using of integration by parts and the continuity ofu
′
with the boundary conditions

of the problem(4.2) and the condition(4.3) respectively we get the following equation

−εg′i(xi−1)ui−1 + ui + εg′i(xi+1)ui+1 = f

∫ xi+1

xi−1

gidx (4.4)

whereui ≈ u(xi). This gives a difference scheme since we are able to evaluate eachg
′
i ’s

exactly, see[5] for details. The solution of the equation(4.2) is given by

gi(x
−) = c1 + c2

−ε

b
e−bx/ε on (xi−1, xi) (4.5)

gi(x
+) = c3 + c4

−ε

b
e−bx/ε on (xi, xi+1). (4.6)

To determine the coefficientsc1, c2, c3 andc4 we need four equations. These come from

the conditions

gi(xi−1) = 0 gi(xi+1) = 0

ε(g
′
i(x

−
i )− g

′
i(x

+
i )) = 1

and, from the continuity ofgi atx = xi

gi(x
−
i ) = gi(x

+
i ).

Using of these conditions yields the following solution for the problem described by(4.2)

and(4.3)

gi(x
−) =

1

b

eρ − 1

(eρ − e−ρ)
+

eαi

ε

(1− e−ρ)

(eρ − e−ρ)
(
−ε

b
)e

−bx
ε on [xi−1, xi] (4.7)

gi(x
+) =

1

b

e−ρ − 1

(eρ − e−ρ)
+

eαi

ε

(1− eρ)

(eρ − e−ρ)
(
−ε

b
)e

−bx
ε on [xi, xi+1] (4.8)

whereρ = bh
ε

andαi = bxi

ε
. Thus, we obtaing

′
i(x

−
i−1) andg

′
i(x

+
i+1) by taking the deriva-

tives of(4.7) and(4.8), respectively. They are given by

g
′
i(x

−
i−1) =

1

ε

(eρ − 1)

(eρ − e−ρ)
g
′
i(x

+
i+1) =

1

ε

(e−ρ − 1)

(eρ − e−ρ)
. (4.9)

Hence, using(4.7) and(4.8) we evaluate the integral in(4.4) and substituting the result-

ing expression together with(4.9) into the equation(4.4) leads to following fitted finite

difference method

− eρ − 1

eρ − e−ρ
ui−1 + ui − 1− e−ρ

eρ − e−ρ
ui+1 = f

h

b

eρ − 1

eρ + 1
(4.10)
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whereρ = bh
ε

. Its solution is given by

ui =
1− e−iρ

1− eNρ

and it satisfies the following error estimate.

Theorem 4.1 The fitted finite difference method(4.10) with the uniform meshΩN , is

ε−uniform for the problem(4.1). Moreover, the solutionu of (4.1) and the solutionui of

(4.10) satisfy the followingε−uniform error estimate

sup
0<ε≤1

‖ u(xi)− ui ‖Ω
N≤ CN−1 for 0 ≤ i ≤ N

where C is a constant independent ofε.

Proof:(Roos et al.1994, Demirayak2004).¥
Notice that although the Il’in−Allen−Southwell method has first order con-

vergence in the discrete maximum norm, it is based on the exact solution of the local

problem(4.2). This is a disadvantage of the method.

Example: We take f(x) = x, b = 1 in the problem (4.1) and apply the

Il’in−Allen−Southwell method. The numerical solution and exact solution are

plotted on the same window for different values ofε and we also give the error at the

boundary layer for a fixed value ofε whenN increases. The Figures from4.1 to 4.6

indicate that the error decreases in the boundary layer if we refine the uniform meshΩ
N

.
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Figure 4.1. The Uniformly Convergent Method(o) for N = 400, ε = 0.1
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Figure 4.2. Error at the boundary forε = 0.1
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Figure 4.3. The Uniformly Convergent Method(o) for N = 400, ε = 0.01

0 50 100 150 200 250 300 350 400
0

0.005

0.01

0.015

(N)The Number of Mesh Elements

E
rr

o
r−

−
−

>

Figure 4.4. Error at the boundary forε = 0.01
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Figure 4.5. The Uniformly Convergent Method(o) for N = 400, ε = 0.001
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Figure 4.6. Error at the boundary forε = 0.001
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CHAPTER 5

A UNIFORMLY CONVERGENT METHOD ON

PIECEWISE UNIFORM MESHES

In this chapter,ε− uniform fitted mesh method is constructed for the convection

diffusion problem. To introduce the idea of such method the problem(2.1) is considered

here again. A piecewise uniform fitted mesh turns out to be sufficient for the construc-

tion of anε−uniform method for a wide variety of problem configurations. Of course,

more complicated fitted meshes may also be used. However, for simplicity, the piecewise

uniform meshes is considered to be one of the most attractive choices.

A simple example of a piecewise uniform mesh is constructed on the interval

Ω = (0, 1) as follows. Choose a point1 − τ satisfying0 < τ ≤ 1/2 and assume that

N = 2r, for somer ≥ 2. The point1 − τ dividesΩ into the two subintervals(0, 1 − τ)

and (1 − τ, 1). The corresponding piecewise uniform mesh is constructed by dividing

both(0, 1− τ) and(1− τ, 1) into N/2 equal subintervals denoted byΩN
τ . The figure5.1

shows the piecewise uniform meshΩ8
τ

0 1-τ 1

Figure 5.1. The Piecewise Uniform MeshΩ8
τ

where

τ = min{1

2
, ε ln N}.

Notice that, as might be expected,τ depends on bothε andN . This means that locations

of the mesh points change wheneverε or N changes. Note also that wheneverN is

sufficiently largeτ takes the value1/2, and therefore the meshΩN
τ becomes the uniform

mesh withN subintervals. This happens whenN satisfies
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ε ln N ≥ 1

2
or N ≥ e

1
2ε .

For all other permissible values ofτ , 0 < τ ≤ 1/2, the subinterval(1 − τ, 1)

is smaller than the subinterval(0, 1 − τ). In these cases each of theN/2 uniform mesh

elements of(1 − τ, 1) is of length2τ/N which is shorter than the length2(1 − τ)/N of

theN/2 uniform mesh elements of(0, 1− τ). In such cases the global mesh is piecewise

uniform rather than uniform and, because the subintervals in a neighborhood of1 are

small whenτ is close to0, the mesh is said to be condensing in a neighborhood of the

boundary pointx = 1, or more concisely, condensing at the pointx = 1. Notice that,

whatever the value ofτ , all of the meshes consist ofN mesh elements and consequently

the mesh points areΩ
N

τ = {xi}N
0 where the pointsxi are the endpoints of theseN mesh

elements. It is not hard to see that the transition point1− τ coincides with the meshpoint

xN/2 and for the meshΩ
N

τ = {xi}N
0 the following inequalities hold

hi ≤ 2/N for 1 ≤ i ≤ N

hi ≥ 1/N for 1 ≤ i ≤ N/2

hi ≤ 2τ/N for N/2 + 1 ≤ i ≤ N

hi ≥ hi/2 for 1 ≤ i ≤ N − 1. (5.1)

The ε−uniform error analysis of many numerical methods on piecewise uniform

fitted meshes depends on the following basic lemma.

Lemma 5.1 For all integersN ≥ 1

(1 +
2 ln N

N
)−N/2 ≤ 2N−1.

Proof: The inequality is trivial forN = 1, 2, 3. For N ≥ 4 write the inequality in the

form

(1 +
2 ln N

N
)N/2 ≥ N

2
.

Letting x = N/2 this becomes the inequality

(1 +
ln2x

x
)x ≥ x, for all x ≥ 2.

Taking the natural logarithm of both sides and dividing byx, this is equivalent to

ln (1 +
ln2x

x
)x ≥ ln x

x
, for all x ≥ 2.
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Defining

g(x) = ln (1 +
ln2x

x
)x − ln x

x

it is also equivalent tog(x) ≥ 0, for all x ≥ 2. Now, since

lim
x→∞

g(x) = ln 1 = 0

and

g
′
(x) =

1− ln 2x

x2(1 + ln 2x
x

)
− 1− ln x

x2

=
1

x2(1 + ln 2x
x

)
[1− ln 2x− (1 +

ln 2x

x
)(1− ln x)]

=
−1

x3(1 + ln 2x
x

)
(x ln 2 + (1− ln x) ln 2x)

= − h(x)

x3(1 + ln 2x
x

)

where

h(x) = x ln 2 + (1− ln x) ln 2x

if we show thatg
′
(x) < 0, for all x ≥ 2, we can say thatg(x) is a monotone decreasing

function forx ≥ 2 and it follows thatg(x) ≥ 0 for all x ≥ 2. Thus, we need to determine

the sign of the functionh(x) for x ≥ 2. Since

h(2) = 2(2− ln 2) ln 2 > 0

and

h
′
(x) =

1

x
(x ln 2 + 1− ln x− ln 2x) =

k(x)

x

where

k(x) = x ln 2 + 1− ln 2x2,

it is seen that

k(2) = 1− ln 2 > 0

and

k
′
(x) = ln 2− 2

x
, k

′′
(x) =

2

x2
.
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Thus, forx ≥ 2, k has a minimum atx = 2/ ln 2. Its value there is

k(
2

ln 2
) = 3(1− ln 2) + 2 ln ln 2 > 0.

It follows thatk(x) > 0 for all x ≥ 2. This show also thath
′
(x) > 0 andh(x) > 0 for all

x ≥ 2. Thusg
′
(x) < 0 for all x ≥ 2 and sincelimx→∞ g(x) = 0 it follows thatg(x) ≥ 0

for all x ≥ 2 as required.¥
In addition to this Lemma, the following contains two standard results for local

truncation errors on generalnon−uniform meshes.

Lemma 5.2 Letxi ∈ Ω
N

τ . Then for anyϕ ∈ C2(Ω),

| (D− − d

dx
)ϕ(xi) |≤ 1

2
(xi − xi−1) | ϕ |2

and, for anyϕ ∈ C3(Ω),

| (D2 − d2

dx2
)ϕ(xi) |≤ 1

3
(xi+1 − xi−1) | ϕ |3

Proof:Using integration by parts we can show that

1

xi − xi−1

∫ xi

xi−1

(xi−1 − s)ϕ
′′
(s)ds =

1

xi − xi−1

[(xi−1 − s)ϕ
′
(s) |xi

xi−1
+

∫ xi

xi−1

ϕ
′
(s)ds]

=
1

xi − xi−1

[(xi−1 − xi)ϕ
′
(xi) + ϕ(xi)− ϕ(xi−1)]

= [
ϕ(xi)− ϕ(xi−1)

xi − xi−1

− ϕ
′
(xi)]

= (D− − d

dx
)ϕ(xi).

It follows that

| (D− − d

dx
)ϕ(xi) |≤ | ϕ |2

xi − xi−1

∫ xi

xi−1

(s− xi−1)ds

=
| ϕ |2

xi − xi−1

[
s2

2
− xi−1s]xi

xi−1

=
| ϕ |2

xi − xi−1

[
x2

i − x2
i−1

2
− xi−1(xi − xi−1)]

=
| ϕ |2

xi − xi−1

.
(xi − xi−1)

2

2

=
1

2
(xi − xi−1) | ϕ |2

which is the first result. Similarly, using integration by parts twice we see that

1

xi+1 − xi−1

[
∫ xi+1

xi

(xi+1 − s)2ϕ
′′′
(s)

xi+1 − xi

ds−
∫ xi

xi−1

(s− xi−1)
2ϕ

′′′
(s)

xi − xi−1

ds]

= (D2 − d2

dx2
)ϕ(xi)
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and it follows that

| (D2 − d2

dx2
)ϕ(xi) |≤ | ϕ |3

xi+1 − xi−1

[
∫ xi+1

xi

(xi+1 − s)2

xi+1 − xi

ds−
∫ xi

xi−1

(s− xi−1)
2

xi − xi−1

ds]

≤ 1

3
(xi+1 − xi−1) | ϕ |3 .

This completes the proof.¥

5.1. Properties of Upwind Finite Difference Operator on Piecewise

Uniform Fitted Meshes

Next, we overview properties of upwind finite difference operator on the piecewise

uniform meshes to obtain some arguments perform on the convergence analysis of fitted

mesh method related to the convection−diffusion problem with regular data. Consider

the discrete operator

LN = −εD2 + bD−

on the fitted piecewise uniform meshΩ
N

τ defined at beginning of the chapter. Notice that

the finite difference operatorsD2 andD− are used in the form introduced in(2.5). Thus,

discrete problem related to the problem(2.1) is given by




Find U ∈ V (Ω
N

τ ) such that U0 and UN given and for all xi ∈ ΩN
τ ,

LNUi = −ε (D+−D−)

hi
Ui + bD−Ui = 0, 1 ≤ i ≤ N − 1





(5.2)

or equivalently




Find U ∈ V (Ω
N

τ ) such that U0 and UN given and for all xi ∈ ΩN
τ ,

LNUi = −ε(Ui+1−Ui

hi+1
− Ui−Ui−1

hi
) 1

hi
+ bUi−Ui−1

hi
= 0, 1 ≤ i ≤ N − 1





(5.3)

where b is a constant satisfying the strict inequality

b > α > 0 (5.4)

for some constantα. The fitted piecewise uniform meshΩ
N

τ = {xi}N
0 is defined by

xi − xi−1 =





2(1−τ)
N

for 0 < i ≤ N/2

2τ
N

for N/2 < i ≤ N




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where

τ = min{1

2
,
ε

α
ln N}

and it is assumed thatτ ≤ 1/2. In the Figure5.2 the solution of the discrete problem

(5.3) is plotted for the special choicesU0 = 0 andUN = 1.
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Figure 5.2. The mesh functionUi with U0 = 0 , U16 = 1 andN = 16

In the next section, we will show that the mesh functionUi is anε − uniform

approximation of the continuous boundary layer functione−b(1−x)/ε which appears in

the solution(2.2).

It is convenient to introduce the following notation

h1 =
2(1− τ)

N
, h2 =

2τ

N
, h =

h1 + h2

2

λ1 = 1 +
bh1

ε
, λ2 = 1 +

bh2

ε
, λ =

λ1 + λ2

2
. (5.5)

Then, it is clear that

h =
1

N
λ = 1 +

bh

ε

27



and

1 < λ1 ≤ 2λ 1 < λ2 ≤ 2λ. (5.6)

We turn back now to the difference equation in(5.3) and try to obtain its solution.

It can be written separately in each of the subinterval[0, 1− τ ] and[1− τ, 1] as follows:

(−1)Ui+1 + (1 + λ1)Ui + (−λ1)Ui−1 = 0; if 1 ≤ i < N/2

(−h1

h2

)UN/2+1 + (
h1

h2

+ λ)UN/2 + (−λ)UN/2−1 = 0; if i = N/2 (5.7)

(−1)Ui+1 + (1 + λ2)Ui + (−λ2)Ui−1 = 0; if N/2 < i ≤ N − 1

Since the roots of the characteristic polynomial are

r1 = 1 r2 = λ1 for 1 ≤ i < N/2

r1 = 1 r2 = λ2 for N/2 < i ≤ N − 1

we assume that the difference solution are of the form

Ui =





a1 + a2λ
i
1 if 0 ≤ i ≤ N/2

a3 + a4λ
i
2 if N/2 ≤ i ≤ N





. (5.8)

We have four unknown coefficienta1, a2, a3, a4 and need four equations. Two equations

come from the boundary conditionsU0 andUN . One of the other two equations is obtained

by using the difference equation at the discrete nodexN/2 and the other can be obtained

by using continuity condition at the same node. Thus, resulting system of equations can

be given in the matrix form as follows:




1 1 0 0

1 λ
N/2
1 −1 −λ

N/2
2

1 κ −1 −λ
N/2+1
2

0 0 1 λN
2







a1

a2

a3

a4




=




U0

0

0

UN




whereκ = λ
N/2−1
1 (λ1 +λ(λ2−1)). We solve this system and obtain the following results
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a1 =
1

ζ
[λ1λ

−N/2
2 U0 + (1− λ

−N/2
2 )λU0 − λ

−N/2+1
1 λ

−N/2
2 UN ]

a2 =
1

ζ
[λ−N/2+1

1 λ
−N/2
2 (UN − U0)]

a3 =
1

ζ
[λ(U0 − λ

−N/2
2 UN)− λ

−N/2+1
1 λ

−N/2
2 UN + λ1λ

−N/2
2 UN ]

a4 = −1

ζ
[λ(U0 − UN)]

where

ζ = λ1(λ1λ2)
−N/2(λ

N/2
1 − 1) + (1− λ

−N/2
2 )λ.

Substituting these coefficients into the form of the solution(5.8), we get

Ui =





U0 +
(UN−U0)λ1(λ1λ2)−N/2(λi

1−1)

λ1(λ1λ2)−N/2(λ
N/2
1 −1)+(1−λ

−N/2
2 )λ

for 0 ≤ i ≤ N/2

UN +
(U0−UN )λ(1−λi−N

2 )

λ1(λ1λ2)−N/2(λ
N/2
1 −1)+(1−λ

−N/2
2 )λ

for N/2 < i < N





or in a more compact form

Ui =





U0 + (UN − U0)ϕ
N
i for 0 ≤ i ≤ N/2

UN + (U0 − UN)ψN
i for N/2 ≤ i ≤ N



 (5.9)

where

ϕN
i =

µN
i

dN

, ψN
i =

νN
i

dN

with

µN
i = λ1(λ1λ2)

−N/2(λi
1 − 1), νN

i = λ(1− λi−N
2 )

and

dN = µN/2 + νN/2.

The following lemma shows that this solution is monotone increasing.

Lemma 5.3 Assume thatUN > U0, then

U0 < Ui < UN for 1 ≤ i ≤ N − 1

and

D−Ui > 0 for 1 ≤ i ≤ N.
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Proof:From the explicit expression(5.9) for Ui, it is clear that

D−Ui =





(UN − U0)D
−ϕN

i for 1 ≤ i ≤ N/2

(U0 − UN)D−ψN
i for N/2 + 1 ≤ i ≤ N



 .

Since

D−ϕN
i =

ϕN
i − ϕN

i−1

h1

=
λ1(λ1λ2)

−N/2

dN

(λi
1 − λi−1

1 )

h1

=
(λ1λ2)

−N/2

dN

(λi+1
1 − λi

1)

h1

=
(λ1λ2)

−N/2

dN

λi
1(λ1 − 1)

h1

=
λ

i−N/2
1 λ

−N/2
2

dN

bh1

ε

h1

=
b

ε

λ
i−N/2
1 λ

−N/2
2

dN

and

D−ψN
i =

ψN
i − ψN

i−1

h1

=
λ

dN

(−λi−N
2 + λi−N−1

2 )

h2

=
λ

dN

λi−N−1
2 (−λ2 + 1)

h2

= −b

ε

λλi−N−1
2

dN

it follows that

D−ϕN
i > 0 D−ψN

i < 0

sincedN > 0. Therefore, sinceUN > U0, for all i, 1 ≤ i ≤ N

D−Ui > 0

which is the second part of lemma. The first is an immediate consequence of the second.¥
The next lemma shows that the solution is small outside a neighborhood of

the boundary layer, if the boundary condition at the inflow boundary point is chosen

appropriately.

Lemma 5.4 LetU0 = e−b/εUN . Then, for all i,0 ≤ i ≤ N/2,

0 < Ui ≤ CN−1UN

fore some constant C independent ofε.

Proof:Since the hypothesis of the previous lemma are fulfilled for all i,1 ≤ i ≤ N − 1,

it follows thate−b/εUN ≤ Ui ≤ UN and thatUi is monotone increasing. To complete the

proof it suffices therefore to show that for some constant C, independent ofε,

UN/2 ≤ CN−1UN . (5.10)

From the explicit expression(5.9), it follows that for0 ≤ i ≤ N/2

UN/2 = UN [e−b/ε + (1− e−b/ε)ϕN
N/2].
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Sinceτ = ε
b
ln N ≤ 1

2
, it is clear that

e−b/ε ≤ e−α/ε = e−
1
τ

ln N = N−1/τ ≤ N−2

and so

| UN/2 |≤| UN | [N−2+ | ϕN
N/2 | ].

Thus, to establish(5.10), it suffices to prove that

| ϕN
N/2 |≤ 8N−1. (5.11)

Using(5.6) in the explicit expression(5.9) leads to

| ϕN
N/2 |=

λ1λ
−N/2
2 (1− λ

−N/2
1 )

dN

≤ λ1

dN

λ
−N/2
2 . (5.12)

But

λ2 = 1 +
αh2

ε
= 1 +

2ατ

εN
= 1 +

2 ln N

N

and so, by Lemma5.1 , it follows that

λ
−N/2
2 ≤ 2N−1. (5.13)

Then, from the explicit expression in(5.9)

dN = λ1(λ1λ2)
−N/2(λ

N/2
1 − 1) + (1− λ

−N/2
2 )λ

≥ λ(1− λ
−N/2
2 )

≥ λ(1− 2N−1)

≥ λ

2
.

Combining this with(5.6) gives

1

dN

<
λ1

dN

≤ 2
λ

dN

≤ 4. (5.14)

Using(5.13) and(5.14) in (5.12) then leads to(5.11).¥
The next lemma shows that the solutionZi of a discrete problem whose upwind

operator multiplied by a variable coefficient are less thanUi which produced by a discrete

problem whose upwind operator multiplied by a constant coefficientb for all i, 0 ≤ i ≤ N

provided that some conditions are satisfied.
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Lemma 5.5 LetUi be the solution of(5.3) with U0 = e−b/εUN , and let

LN = −εD2 + aiD
−

andZi be the solution of the problem




Find Z ∈ V (Ω
N

τ ) such that Z0 = e−a0/εZN and ZN = UN

and for all xi ∈ ΩN
τ

LNUi = −ε(Ui+1−Ui

hi+1
− Ui−Ui−1

hi
) 1

hi
+ ai

Ui−Ui−1

hi
= 0, 1 ≤ i ≤ N − 1





(5.15)

where it is assumed that for all i,0 ≤ i ≤ N , ai ≥ b. Then, for all i,0 ≤ i ≤ N ,

Zi ≤ Ui

Proof: Let Φi = Ui − Zi. Then, using the assumption,ai ≥ b, for all i, 0 ≤ i ≤ N and

the conditionZN = UN leads

Φ0 = (e−b/ε − e−a0/ε)UN ≥ 0

ΦN = 0.

Using Lemma5.3, it follows that

(−εD2 + aiD
−)Φi = (−εD2 + aiD

−)(Ui − Zi)

= (−εD2 + aiD
−)Ui − (−εD2 + aiD

−)Zi

= −εD2Ui + aiD
−Ui

= −bD−Ui + aiD
−Ui

= (ai − b)D−Ui

> 0.

By the discrete maximum principle for the finite difference operator

LN = −εD2 + aiD
−

in the section5.2, it follows that

Φi ≥ 0

as required.¥
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5.2. Convergence of Fitted Mesh Methods with Regular Data

In this section, theε− uniform convergence of the numerical solutions obtained

by a fitted mesh method for linear convection diffusion problem in one dimension with

smooth dataf(x) is established. The problem considered is the following second order

non self−adjoint problem with a variable coefficient.




Find u ∈ C2(Ω) such that u(0) = u0 u(1) = u1

and for all x ∈ Ω, Lu = −εu
′′
(x) + a(x)u

′
(x) = f(x)



 (5.16)

whereu0, u1 are given constants, the functionsa, f ∈ C3(Ω) and0 < ε ≤ 1. It is assumed

furthermore that the coefficient function satisfies the condition

a(x) > α > 0 for all x ∈ Ω. (5.17)

If the two boundary valuesu0, andu1 depend onε, then it is assumed that| u0 |,| u1 | are

bounded above independently ofε.

The differential operatorL defined in the problem(5.16) satisfies the following

maximum principle onΩ, for all ψ ∈ C2(Ω).

Maximum Principle: Assume thatψ(0) ≥ 0 andψ(1) ≥ 0. Then,Lψ(x) ≥ 0 for all

x ∈ Ω implies thatψ(x) ≥ 0 for all x ∈ Ω.

Proof: (Protter and Weienberger1984) .¥
The reduced problem corresponding to the problem(5.16) is the following first

order problem




Find v0 ∈ C1(Ω) such that v(0) = u0

and for all x ∈ Ω, a(x)v
′
0(x) = f(x)



 . (5.18)

The unique solution of the problem(5.18) is

v0(x) = u0 +

∫ x

0

f(t)

a(t)
dt

and it is clear, from the assumptions ona andf , that for 0 ≤ k ≤ 3

| vk
0(x) |≤ C for all x ∈ Ω.

The following lemma contains bounds on the functionu and its derivatives up to

k − th order, 0 ≤ k ≤ 3.
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Lemma 5.6 Let u be the solution of the problem(5.16). Then, for 0 ≤ k ≤ 3,

| u(k)(x) |≤ C(1 + ε−ke−α(1−x)/ε) for all x ∈ Ω.

Proof:The proof is by induction. A bound on the solutionu of the problem(5.16) is

obtained easily from the maximum principle as follows:

Consider the functions

ψ±(x) = C(1 + x)± u(x)

whereC is a constant chosen sufficiently large that the following inequalities are fulfilled

ψ±(0) ≥ 0, ψ±(1) ≥ 0

and

Lψ±(x) = −ε(±u
′′
(x)) + Ca(x)± a(x)u

′
(x) = L(±u(x)) + Ca(x)

= Ca(x)± f(x)

≥ Cα± f(x)

≥ 0

sincea(x) > α. Then the maximum principle forL givesψ±(x) ≥ 0 and so

| u(x) |≤ C for all x ∈ Ω.

To obtain the required estimates of the derivatives ofu is more difficult. The first step is

to find the differential equation satisfied by these derivatives by differentiatingk times the

original equationLu = f . This gives

Lu(k) = fk

wheref0 = f and for 1 ≤ k ≤ 3

fk = f (k) −
k−1∑
s=0


 k

s


 a(k−s)u(s+1).

Thus, the inhomogeneous termfk of the equation satisfied byu(k) depends on thekth and

lower order derivatives ofu and the coefficienta, and on thekth order derivative off .

This observation suggests that the following induction step:
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Assume that for all j, 0 ≤ j ≤ k, the following estimates hold

| u(j)(x) |≤ C(1 + ε−je−α(1−x)/ε) for all x ∈ Ω.

From the above assumptions it is clear that

Lu(k) = fk

where

| u(k)(x) |≤ C(1 + ε−ke−α(1−x)/ε)

and

| fk(x) |≤ C(1 + ε−ke−α(1−x)/ε).

In particular then

| u(k)(0) |≤ C(1 + ε−ke−α/ε) ≤ C(1 + ε−(k−1))

| u(k)(1) |≤ C(1 + ε−k)

sinceε−1e−α/ε ≤ C. Define the functions

θk(x) =
1

ε

∫ 1

x

fk(t)e
−(A(x)−A(t))dt

u(k)
p (x) = −

∫ 1

x

θk(t)dt

whereA(x) =
∫ 1

x
a(s)ds. Then, it follows that sinceA

′
(x) = −a(x)

Lu(k)
p (x) = −εu(k+2)

p (x) + a(x)u(k+1)
p (x)

= −εθ
′
k(x) + a(x)θk(x)

= −ε
d

dx
[
1

ε
e−A(x)

∫ 1

x

fk(t)e
A(t)dt] + a(x)θk(x)

= −[ − A
′
(x)e−A(x)

∫ 1

x

fk(t)e
A(t)dt + e−A(x) d

dx
(

∫ 1

x

fk(t)e
A(t)dt)] + a(x)θk(x)

= −a(x)

∫ 1

x

fk(t)e
−(A(x)−A(t))dt− e−A(x)(−fk(x)eA(x)) + a(x)θk(x)

= −a(x)θk(x) + fk(x) + a(x)θk(x)

= fk(x)

and sou(k)
p (x) is a particular solution of the equation

Lu(k) = fk

35



Its general solution can therefore be written in the form

u(k) = u(k)
p + u

(k)
h

where the homogeneous solutionu
(k)
h satisfies

Lu
(k)
h = 0, u

(k)
h (0) = u(k)(0)− u(k)

p (0), u
(k)
h (1) = u(k)(1).

Introducing the function

ϕ(x) =

∫ 1

x
e−A(t)/εdt∫ 1

0
e−A(t)/εdt

it is clear thatϕ(0) = 1 , ϕ(1) = 0 and

Lϕ = −εϕ
′′
(x) + a(x)ϕ

′
(x)

=
1∫ 1

0
e−A(t)/εdt

[−ε
d

dx
(−e−A(x)/ε) + a(x)(−e−A(x)/ε)]

=
1∫ 1

0
e−A(t)/εdt

[−ε
1

ε
A
′
(x)e−A(x)/ε − a(x)e−A(x)/ε]

= 0.

Thenu
(k)
h is given by

u
(k)
h (x) = (u(k)(0)− u(k)

p (0))ϕ(x) + u(k)(1)(1− ϕ(x)).

The above leads to the following expression foru(k+1)

u(k+1) = u(k+1)
p + u

(k+1)
h = θk + (u(k)(0)− u(k)

p (0)− u(k)(1))ϕ
′
.

Since

ϕ
′
(x) =

−e−A(x)/ε

∫ 1

0
e−A(t)/εdt

the upper and lower bounds ofa(x) lead to the estimate

| ϕ′
(x) |≤ Cε−1e−α(1−x)/ε.

Furthermore the lower bound on the coefficienta and the estimate forfk lead to

| θk(x) |= 1

ε

∫ 1

x

| fk(t) || e−(A(x)−A(t)) | dt

≤ Cε−1

∫ 1

x

(1 + ε−ke−α(1−t)/ε)e−(A(x)−A(t))dt

≤ Cε−1

∫ 1

x

(1 + ε−ke−α(1−t)/ε)e−α(t−x)/ε.
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Evaluating the integral exactly and estimating the terms in the resulting expression then

gives

| θk(x) |≤ C(1 + ε−(k+1)e−α(1−x)/ε).

Since

| u(k)
p (0) |=| −

∫ 1

0

θk(t)dt | ≤
∫ 1

0

| θk(t) | dt ≤
∫ 1

0

C1(1 + ε−(k+1)e−α(1−t)/ε)dt

=

∫ 1

0

C1dt + C1ε
−(k+1)e−α/ε

∫ 1

0

eαt/ε

= C1 + C1ε
−(k+1)e−α/ε ε

α
(eα/ε − 1)

= C1 + C1ε
−k − C1ε

−ke−α/ε

≤ C1 + C1ε
−k

≤ Cε−k

the above estimates give

| u(k+1) |≤| θk | +(| u(k)(0) | + | u(k)
p (0) | + | u(k)(1) |) | ϕ′ | .

Thus,

| u(k+1) |≤ C(1 + ε−(k+1)e−α(1−x)/ε)

as required.¥
These bounds for the derivatives ofu were first obtained in Kellog[3]. However,

the stronger results of Shishkin[8] are required to obtain theε− uniform convergence

result in this section. To find these solutionu has to be decomposed into smooth and

singular components as follows:

u = v0 + εy1 + w0

wherev0 is the solution of reduced problem(5.18), y1 satisfies

Ly1 = v
′′
0 , y1(0) = −ε−1w0(0), y1(1) = 0

and consequentlyw0 is the solution of the homogeneous problem

Lw0 = 0, w0(0) = w0(1)e−α/ε, w0(1) = u1 − v0(1).
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Since ε−1e−α/ε ≤ C, and | vk
0(x) |≤ C it is clear that| w0(0) |, | w0(1) |, | y1(0) |,

| v
′′
0 | are all bounded by a constant independent ofε. Thereforey1 is the solution of a

problem similar to(5.16). This implies that for 0 ≤ k ≤ 3

| y(k)
1 (x) |≤ C(1 + ε−ke−α(1−x)/ε) for all x ∈ Ω.

Bounds on the singular component of the solution,w0, and on its derivatives are now

obtained as follows. Define the two functions

ψ±(x) =| w0(1) | e−α(1−x)/ε ± w0(x).

Then, since the inequalities

ψ±(0) =| w0(1) | e−α/ε ± w0(0) =| u1 − v0(1) | e−α/ε ± (u1 − v0(1))e−α/ε ≥ 0

ψ±(1) =| w0(1) | ±w0(1) ≥ 0

and

Lψ± =| w0(1) | [−α2ε

e

−α(1−x)/ε

+ a(x)
α

ε
e−α(1−x)/ε] ≥ 0

are fulfilled for allx ∈ Ω, the maximum principle givesψ±(x) ≥ 0 and so

| w0(x) |≤ Ce−α(1−x)/ε for all x ∈ Ω

w0 can also be written in the form

w0 = w0(0)ϕ + w0(1)(1− ϕ)

whereϕ was defined above. Therefore

w
′
0 = (w0(0)− w0(1))ϕ

′

and so

| w′
0(x) |≤ C | ϕ′

(x) |≤ Cε−1e−α(1−x)/ε.

SinceLw0 = 0, the second and third derivatives ofw0 can be estimated immediately from

the estimates ofw0 andw
′
0. Thus, for0 ≤ k ≤ 3,

| w(k)
0 (x) |≤ Cε−ke−α(1−x)/ε.
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Since

u(k) = v
(k)
0 + εy

(k)
1 + w

(k)
0

the above estimates yield, for0 ≤ k ≤ 3, and for allx ∈ Ω,

| (v(k)
0 + εy

(k)
1 )(x) |≤ C(1 + ε−(k−1)e−α(1−x)/ε)

| w(k)
0 (x) |≤ Cε−ke−α(1−x)/ε.

In particular, this shows that the smooth componentv0 + εy1 and its first derivative are

bounded for all values ofε. However,y1 can now be decomposed in the same manner as

wasu, leading immediately toy1 = v1 + εv2 + w1 where, for0 ≤ k ≤ 3, and for all

x ∈ Ω,

| v(k)
1 (x) |≤ C

| v(k)
2 (x) |≤ C(1 + ε−ke−α(1−x)/ε)

| w(k)
1 (x) |≤ Cε−ke−α(1−x)/ε.

Combining these two decompositions gives

u = v + w

where

v = v0 + εv1 + ε2v2

w = w0 + εw1

and the above results are summarized in the following theorem.

Theorem 5.7 The solutionu of the problem(5.16) has the decomposition

u = v + w

where, for all k,0 ≤ k ≤ 3, and allx ∈ Ω, the smooth componentv satisfies

| v(k)(x) |≤ C(1 + ε−(k−2)e−α(1−x)/ε)

and the singular componentw satisfies

| w(k)(x) |≤ Cε−ke−α(1−x)/ε

for some constantC independent ofε.
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Proof:Sincev = v0 + εv1 + ε2v2 andw = w0 + εw1,

| v(k)(x) |≤| v(k)
0 (x) | +ε | v(k)

1 (x) | +ε2 | v(k)
2 (x) |≤ C1 + C1ε + C1ε

2(1 + ε−ke−α(1−x)/ε)

≤ C(1 + ε−(k−2)e−α(1−x)/ε)

and

| w(k)(x) |≤| w(k)
0 (x) | +ε |≤| w(k)

1 (x) |≤ C1ε
−ke−α(1−x)/ε + C1εε

−ke−α(1−x)/ε

≤ Cε−ke−α(1−x)/ε

as required.¥
This theorem shows that the smooth functionv and both its first and second deriva-

tives are bounded for all values ofε, while the singular componentw satisfies the same

estimate as the singular component in the first decomposition. Notice thatv andw satisfy

the following equations

Lv = f, v(0) = u0 − w(0), v(1) = u1 − w(1)

Lw = 0, w(0) = w(1)e−α/ε

wherew(1) is chosen so that the first and the second derivatives ofv are bounded uni-

formly in ε.

The numerical method used to solve(5.16) is the standard upwind finite difference

operator on the piecewise uniform fitted meshΩ
N

τ = {xi}N
0 condensing at the boundary

pointxN = 1. The transition parameterτ is chosen to satisfy

τ = min{1

2
,
ε

α
ln N} (5.19)

and it is assumed thatN ≥ 4, which guarantees that there is at least one point in the

boundary layer. The resulting fitted mesh finite difference method is




Find U ∈ V (Ω
N

) such that U0 = u0 UN = u1

and for all xi ∈ ΩN
τ

LNUi = −εD2Ui + aiD
−Ui = fi, 1 ≤ i ≤ N − 1





. (5.20)

The finite difference operator in(5.20) is defined by

LN = −εD2 + aiD
−
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and it satisfies the following discrete maximum principle onΩN
τ .

Discrete Maximum Principle: Assume that the mesh functionΨi satisfiesΨ0 ≥ 0 and

ΨN ≥ 0. ThenLNΨi ≥ 0 for 1 ≤ i ≤ N − 1 implies thatΨi ≥ 0 for all 0 ≤ i ≤ N .

Proof: Let k be such thatΨk = min Ψi and suppose thatΨk < 0. It is clear thatk 6= 0

or k 6= 1, Ψk+1 −Ψk ≥ 0 and Ψk −Ψk−1 ≤ 0. Therefore

LNΨk = −ε(
Ψk+1 −Ψk

hk+1

− Ψk −Ψk−1

hk

)
1

hk

+ ak
Ψk −Ψk−1

hk

≤ 0

with a strict inequality if Ψk −Ψk−1 < 0. But this is false and so on, leads to

Ψ0 = Ψ1 = ... = Ψk−1 = Ψk < 0

which is false. It follows thatΨk ≥ 0 and thus thatΨi ≥ 0 for all i, 0 ≤ i ≤ N .¥
An immediate consequence of this discrete maximum principle is the following

ε−uniform stability result for the operatorLN .

Lemma 5.8 If Zi is any mesh function such thatZ0 = ZN = 0, then

| Zi |≤ 1

α
max

1≤j≤N−1
| LNZj | for 0 ≤ i ≤ N.

Proof: Introduce

M =
1

α
max

1≤j≤N−1
| LNZj |

and the two mesh functions

Ψ±
i = Mxi ± Zi.

ClearlyΨ±
0 = 0, Ψ±

N ≥ 0 and for1 ≤ i ≤ N − 1

LNΨ±
i = Mai ± LNZi ≥ 0

becauseai > α. The discrete maximum principle then implies thatΨ±
i ≥ 0 for

0 ≤ i ≤ N and the proof is complete.¥
The main result of this chapter is contained in the following theorem.

Theorem 5.9 The fitted mesh finite difference method(5.20) with the standard upwind

finite difference operator and the piecewise uniform fitted meshΩN
τ , condensing at the
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boundary pointx = 1, is ε−uniform for the problem(5.16) provided thatτ is chosen to

satisfy the condition(5.19) above. Moreover, the solutionu of (5.16) and the solutionU

of (5.20) satisfy the followingε−uniform error estimate

sup
0<ε≤1

‖ U − u ‖
Ω

N
τ
≤ CN−1(ln N)2

where C is a constant independent ofε.

Proof: The solutionU of the discrete problem is decomposed in an analogous manner to

the above second decomposition of(5.16). Thus

U = V + W

whereV is the solution of the inhomogeneous problem

LNV = f, V (0) = v(0) V (1) = v(1)

andW is the solution of the homogeneous problem

LNW = 0, W (0) = w(0) W (1) = w(1)

The error can then be written in the form

U − u = (V − v) + (W − w)

and so the errors in the smooth and singular components of the solution can be estimated

separately.

The estimate of the smooth component is obtained by means of the following

classical argument. From the differential and difference equations

LN(V − v) = f − LNv = (L− LN)v = −ε(
d2

dx2
−D2)v + a(

d

dx
−D−)v

Using the two estimates in Lemma5.2 gives

| LN(V − v)(xi) |≤| ε( d2

dx2
−D2)v | +a | ( d

dx
−D−)v |

≤ C1ε(xi+1 − xi−1) | v |3 +C2(xi − xi−1) | v |2
≤ C3(xi+1 − xi−1)(ε | v |3 + | v |2)
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Noting thatxi+1−xi−1 ≤ 2N−1 is always true, the estimates ofv
′′

andv
′′′

obtained above

then yield

| LN(V − v)(xi) |≤ C4N
−1(ε | v |3 + | v |2)

≤ C4N
−1[C5ε(1 + ε−1e−α(1−x)/ε) + C5(1 + e−α(1−x)/ε)]

= C4N
−1[C5ε + C5e

−α(1−x)/ε + C5 + C5e
−α(1−x)/ε]

≤ CN−1

An application of Lemma5.8 to the mesh functionV − v yields the estimate

| (V − v)(xi) |≤ CN−1 (5.21)

To estimate the singular component of the local truncation errorLN(W − w), the

argument depends on whetherτ = 1/2 or τ = (ε ln N)/α.

In the first case the mesh is uniform and(ε ln N)/α ≥ 1/2. The classical

argument, used above to estimateV − v, leads in this case to

| LN(W − w)(xi) |≤ C(xi+1 − xi−1)(ε | w |3 + | w |2)

Sincexi+1 − xi−1 = 2N−1, the estimates forw
′′

andw
′′′

lead to

| LN(W − w)(xi) |≤ Cε−2N−1

But, in this caseε−1 ≤ (2 ln N)/α and so

| LN(W − w)(xi) |≤ CN−1(ln N)2

An application of Lemma5.8 to the mesh functionW − w then gives

| (W − w)(xi) |≤ CN−1(ln N)2

In the second case the mesh is piecewise uniform with the mesh spacing

2(1− τ)/N in the subinterval[0, 1−τ ] and2τ/N in the subinterval[1−τ, 1]. A different

argument is used to bound| W − w | in each of the subintervals.

In the subinterval with no boundary layer[0, 1− τ ] bothW andw are small, and

because| W − w |≤| W | + | w |, it suffices to boundw andW separately. Note first

that

w
′
0(x)

w0(1)
=

(w0(0)− w0(1))

w0(1)
ϕ
′
= −(1− e−α/ε)ϕ

′
(x) > 0 and

w0(0)

w0(1)
= e−α/ε
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Thus, w0(x)
w0(1)

is positive and increasing in the intervalΩ. It follows that for allx in [0, 1−τ ]

0 ≤ w0(x)

w0(1)
≤ w0(1− τ)

w0(1)

and so

| w0(x) |≤| w0(1− τ) |

The same is true ofw1(x) and since

w = w0 + εw1

it follows that for allx ∈ [0, 1− τ ]

| w(x) |≤| w(1− τ) |

Using the estimate given in the Theorem5.7 for | w | and the relationτ = (ε ln N)/α it

follows that forx ∈ [0, 1− τ ]

| w(x) |≤ Ce−α(1−x)/ε ≤ Ce−ατ/ε = CN−1

To obtain a similar bound onW an auxiliary mesh functioñW is defined analogously

to W except that the coefficienta in the difference operatorLN is replaced by its lower

boundα. Then, by Lemma5.5,

| W (xi) |≤| W̃ (xi) | for 0 ≤ i ≤ N

Furthermore Lemma5.4 leads immediately to

| W (xi) |≤ CN−1 for 0 ≤ i ≤ N/2

The above estimates ofW (xi) andw(xi), for 0 ≤ i ≤ N/2, show that in the

interval [0, 1− τ ]

| W (xi)− w(xi) |≤ CN−1

On the other hand in the subinterval[1 − τ, 1] the classical arguments leads as

before to the following estimate of the local truncation error forN/2 + 1 ≤ i ≤ N − 1

| LN(W − w)(xi) |≤ C1(xi+1 − xi−1)(ε | w |3 + | w |2)
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Usingxi+1 − xi−1 = 4τ/N and the estimate given in the Theorem5.7 for w leads to

| LN(W − w)(xi) |≤ Cε−2τN−1

Furthermore

| W (1)− w(1) |= 0

and

| W (xN/2)− w(xN/2) |≤| W (xN/2) | + | w(xN/2) |≤ CN−1

from the result just obtained in the other subinterval. Introducing the barrier function

Φi = (xi − (1− τ))C1ε
−2τN−1 + C2N

−1

it follows that for a suitable choice ofC1 andC2 the mesh functions

Ψ±
i = Φi ± (W − w)(xi)

satisfy the inequalities

Ψ±
N/2 = ΦN/2 ± (W − w)(xN/2) = C2N

−1 ± (W − w)(xN/2) ≥ 0

Ψ±
N = ΦN ± (W − w)(xN) = C1ε

−2τ 2N−1 + C2N
−1 ≥ 0

and forN/2 + 1 ≤ i ≤ N − 1

LNΨ±
i = LNΦi ± LN(W − w)(xi) = C1ε

−2τN−1ai ± LN(W − w)(xi) ≥ 0

The discrete maximum principle on the interval[1− τ, 1] then gives

Ψ±
i ≥ 0, N/2 ≤ i ≤ N

and it follows that

| (W − w)(xi) |≤ Φi ≤ C1ε
−2τ 2N−1 + C2N

−1

But sinceτ = (ε ln N)/α this gives

| (W − w)(xi) |≤ CN−1(ln N)2
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Combining the separate estimates in the two subintervals[0, 1 − τ ] and [1 − τ, 1] then

gives

| (W − w) |≤ CN−1(ln N)2 for 0 ≤ i ≤ N (5.22)

Since

| U − u |≤| V − v | + | W − w |

the inequalities(5.21) and(5.22) then give

| (U − u)(xi) |≤ CN−1(ln N)2

as required.¥
Example 1: We consider the following test problem





Find u ∈ C2(Ω) such that u(0) = 0 u(1) = 1

and for all x ∈ Ω, Lu = −εu
′′
(x) + u

′
(x) = 0





and estimate theε− uniform error by

ηN = max
ε=1,10−1,...,10−9

‖ UN − u ‖

We compute the rate of convergence using the formula

rN = log2(
ηN

η2N
)

and obtain following results.

N 16 32 64 128 256 512 1024 2048 4096

ηN 1.14e-1 6.5e-2 3.59e-2 1.96e-2 1.0e-3 5.823e-3 3.14e-3 1.69e-3 9.08e-4

rN 0.81 0.85 0.86 0.87 0.88 0.88 0.88 0.89 0.89

Example 2: We show some numerical results confirm the Theorem5.9 for the second

test problem




Find u ∈ C2(Ω) such that u(0) = 0 u(1) = 0

and for all x ∈ Ω, Lu = −εu
′′
(x) + u

′
(x) = x





The following figures contains the exact and numerical solutions and also give the error

at the discrete nodexN−1 for each values ofε when the number of mesh elementsN

increases.
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Figure 5.3. The Fitted Mesh Method(o) for N = 400, ε = 0.1
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Figure 5.4. Error at the boundary forε = 0.1
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Figure 5.5. The Fitted Mesh Method(o) for N = 400, ε = 0.01
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Figure 5.6. Error at the boundary forε = 0.01
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Figure 5.7. The Fitted Mesh Method(o) for N = 400, ε = 0.001

0 50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(N)The Number of Mesh Elements

E
rr

o
r−

−
−

>

Figure 5.8. Error at the boundary forε = 0.001
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5.3. Convergence of Fitted Mesh Methods with Irregular Data

In this section, we consider the following convection−diffusion problem with a

concentrated source and show thatε−uniformly convergent methods can be constructed

for problems with irregular data




Find u ∈ C2(Ω) such that u(0) = 0 u(1) = 0

and for all x ∈ Ω, Lu = −εu
′′
(x)− bu

′
(x) = f(x) + δd(x)



 (5.23)

whereδd is the shifteddirac−delta function

δd = δ(x− d)

with d ∈ (0, 1) and0 < ε ≤ 1. The convection coefficientb may also have discontinuity

at x = d, but in this section we assume thatb is a constant satisfyingb > α > 0.

Alternatively to this problem, we may seek a solution which satisfies the problem




Find u ∈ C(Ω) ∩ C2((0, d) ∪ (d, 1)) such that u(0) = 0 u(1) = 0

and for all x ∈ (0, d) ∪ (d, 1), Lu = −εu
′′
(x)− bu

′
(x) = f(x)



 (5.24)

with the additional condition

−ε[u
′
](d)− [b](d)u(d) = 1

where[v](d) = v(d + 0)− v(d− 0) denotes the jump ofv in x = d. Sinceb is a constant,

this condition reduces

u
′
(d−)− u

′
(d+) =

1

ε
. (5.25)

The equivalence of these problems can be seen by integrating the differential equation in

(5.23) from d− ε to d + ε.

The solutionu typically has an exponential boundary layer at the outflow bound-

ary x = 0 and an internal layer atx = d caused by the concentrated source or the

discontinuity of the convective field. Figure5.9 depicts a typical solution of the problem.

Next, we give a theorem which contains bounds on the solutionu of (5.23) and its

derivatives.

Theorem 5.10 Let u be the solution of(5.23), then

uk(x) ≤ C[1 + ε−k(e−bx/ε + Hde
−b(x−d)/ε)] for x ∈ (0, d) ∪ (d, 1) (5.26)
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wherek = 0, 1, ..., q andHd denotes the shifted Heaviside function,

Hd(x) =





0 for x < d

1 for x > d





and the maximal orderq depends on the smoothness ofb andf on (0, d).

Proof: (Linß, 2002) .¥
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Figure 5.9.Lu = δ1/2 with b = 1 andε = 0.1

If we use again Shishkin mesh to solve the problem(5.23) approximately, then

construction of the piecewise uniform mesh is different from the previous one because

there are a boundary and an internal layer atx = 0 andx = d respectively. To construct

such mesh, choose three pointsτ , d andd + τ , this divides the domainΩ into the four

subintervals

I1 = [0, τ ] I2 = [τ, d] I3 = [d, d + τ ] I4 = [d + τ, 1]

whereτ satisfies the condition

τ = min{1

4
,
ε

α
ln N}. (5.27)
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0 τ d τ 1d+

Figure 5.10. Subdomains for the discretization of the problem(5.23)

The corresponding piecewise uniform mesh is established by dividing each

subintervals in the Figure5.10 into N/4 equidistant subintervals. Thus, the resulting

meshΩ
N

τ can be described by

hi = xi − xi−1 =





4τ
N

for 0 < i ≤ N/4 or N/2 < i ≤ 3N/4

4(d−τ)
N

for N/4 < i ≤ N/2 or 3N/4 < i ≤ N



 .

It is convenient now to introduce the following notation before the discretization

of the problem(5.23)

h1 =
4τ

N
h2 =

4

N
(d− τ)

λ1 = 1 +
bh1

ε
λ2 = 1 +

bh2

ε
.

Then, using the upwind operator

LN = −εD2 − bD+

yields the following discretization





Find U ∈ V (Ω
N

τ ) such that U0 = 0 UN = 0

LNUi = −ε 1
hi

(Ui+1−Ui

hi+1
− Ui−Ui−1

hi
)− b(Ui+1−Ui

hi+1
) = fi + ∆d,i





(5.28)

wherei = 1, 2, ..., N − 1 and

∆d,i =





1
hi+1

if d ∈ [xi, xi+1)

0 otherwise




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is an approximation of the shiftedDirac−delta function. For simplicity, setf = 0 and

d = 1/2, then combining the terms having the same indices leads to the following differ-

ence equation

(−λj)Ui+1 + (
hi+1

hi

+ λj)Ui + (−hi+1

hi

)Ui−1 = ∆1/2,i; i = 1, 2, ..., N − 1. (5.29)

whereUi ≈ u(xi) for j = 1, 2 andλj is defined by

λj =





λ1 if 1 ≤ i ≤ N/4 or N/2 < i ≤ 3N/4

λ2 if N/4 < i ≤ N/2 or 3N/4 < i ≤ N − 1.



 .

The difference equation(5.29) can be written explicitly as

(−λ1)UN/4+1 + (
h2

h1

+ λ1)UN/4 + (−h2

h1

)UN/4−1 = 0; if i = N/4.

(−λ2)UN/2+1 + (
h1

h2

+ λ2)UN/2 + (−h1

h2

)UN/2−1 =
h2

ε
; if i = N/2. (5.30)

(−λ1)U3N/4+1 + (
h2

h1

+ λ1)U3N/4 + (−h2

h1

)U3N/4−1 = 0; if i = 3N/4.

(−λj)Ui+1 + (1 + λj)Ui + (−1)Ui−1 = 0; otherwise.

Since the roots of the characteristic polynomial of the last difference equation are

r1 = 1 and r2 = λ−1
j ,

we assume that the difference solution has the form

Ui =





a1 + a2λ
−i
1 if 0 ≤ i ≤ N/4

a3 + a4λ
−i
2 if N/4 ≤ i ≤ N/2

a5 + a6λ
−i
1 if N/2 ≤ i ≤ 3N/4

a7 + a8λ
−i
2 if 3N/4 ≤ i ≤ N





. (5.31)

We have eight unknown coefficients and need to determine them in order to obtain the

difference solution exactly. The boundary conditionsU0 = UN = 0 give us two equations

and also three equations comes from the difference equations related to the nodesxN/4 ,

xN/2 andx3N/4 as they can be seen in(5.9). Finally, the other three equations are obtained

by using the continuity conditions below.

a1 + a2λ
−N/4
1 = a3 + a4λ

−N/4
2

a3 + a4λ
−N/2
2 = a5 + a6λ

−N/2
1

a5 + a6λ
−3N/4
1 = a7 + a8λ

−3N/4
2 .
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The resulting system of equations is given in the matrix form as follows:

LA = B

The matrices in this system are given by

L =




1 1 0 0 0 0 0 0

1 κ−1
1 −1 −κ−1

2 0 0 0 0

λ1 κ−1
1 (1− λ2) −λ1 −κ−1

2 κ3 0 0 0 0

0 0 1 κ−2
2 −1 −κ−2

1 0 0

0 0 λ2 κ−2
2 (1− λ1) −λ2 −κ−2

1 κ−1
3 0 0

0 0 0 0 1 κ−3
1 −1 −κ−3

2

0 0 0 0 λ1 κ−3
1 (1− λ2) −λ1 −κ−3

2 κ3

0 0 0 0 0 0 1 κ−4
2




A = [a1 a2 a3 a4 a5 a6 a7 a8]
T B = [0 0 0 0

h2

ε
0 0 0]T

whereκ1 = λ
N/4
1 , κ2 = λ

N/4
2 andκ3 = λ1λ

−1
2 . We solve this system and obtain the

following solutions

a1 =
h2

η
κ1κ2κ3 a2 = −a1

a3 =
h2

η
(−κ2κ3 + κ1κ2κ3 + κ2) a4 = −h2

η
κ2

2

a5 = −h2

η
(1− κ2 + κ2κ3) a6 =

h2

η
κ3

1κ2κ3

a7 = −h2

η
a8 =

h2

η
κ4

2

whereη = ε(λ1 − 1)(1 + λ
N/4
1 λ

N/4
2 ). To complete the solution we substitute these coeffi-

cients into the solution form(5.31). This results in

Ui =





h2

η
κ1κ2κ3(1− λ−i

1 ) if 0 ≤ i ≤ N/4

h2

η
(κ1κ2κ3 + κ2 − κ2κ3 − λ

−i+N/2
2 ) if N/4 ≤ i ≤ N/2

h2

η
(κ2 − κ2κ3 − 1 + κ2κ3λ

−i+3N/4
1 ) if N/2 ≤ i ≤ 3N/4

h2

η
(−1 + λ−i+N

2 ) if 3N/4 ≤ i ≤ N





(5.32)

and the solutions u of(5.23) and U of(5.28) satisfies the following error estimate in the

discrete maximum norm.
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Theorem 5.11 The finite difference method(5.28) with the piecewise uniform fitted mesh

ΩN
τ is ε−uniform for the problem(5.23) provided thatτ is chosen to satisfy the condition

(5.27) above. Moreover, the solutionu of (5.23) and the solutionU of (5.28) satisfy the

following ε−uniform error estimate

sup
0<ε≤1

‖ U − u ‖
Ω

N
τ
≤ CN−1 ln N

where C is a constant independent ofε.

Proof:(Linß, 2002) .¥

55



CHAPTER 6

CONCLUSION

In this thesis, we mainly investigated the numerical methods which

are ε− uniform on both equidistant and non−equidistant meshes for the

convection−diffusion problem. We observed that the centered and upwind finite

difference method are notε − uniform. That led us to obtain the numerical methods

which areε−uniformly convergent. In order to achieve it we use either a fitted operator

method or a fitted mesh method. We started with derivation of Il’in−Allen−Southwell

method as an example of fitted operator methods on equidistant meshes and saw that

it is first−order uniformly convergent in the discrete maximum norm. But, since it

is based on the exact solution of the problem, we tend to study on the other ideas to

construct anε − uniform method which is not based on the exact solution. Thus, we

used Shishkin mesh, because of its simplicity, to construct a method as an example of

fitted mesh methods. In the last chapter, we considered the problem in two cases to

develop a more efficient method as a further aim. First, we considered a problem with

regular data and proved that the resulting method using upwind operator on Shishkin

mesh isε − uniform. Then, we studied on a problem which has an irregular data and

used again Shishkin mesh. We gave anε − uniform error estimate for this method. We

have observed that theoretical findings are compatible with the numerical results for each

methods.

We intend to study on a more efficient method by using the facts obtained in the

last chapter as a future work. We will try to approximate the local Green’s function and

assemble the resulting solutions into the difference equation discussed in the Chapter4.
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APPENDIX A

MATLAB CODES

EXACT SOLUTION FOR SEVERAL VALUES OFε

% This program plot the figure in Chapter 2 FIGURE 2.1

function chp2(b,U0,U1) e1=1 ; e2=.1 ;

e3=.01 ; e4=.001; x=0:0.01:1;

Y1=U0+[(U1-U0)/(1-exp(-b/e1))]

* [exp((-b * (1-x))/e1)-exp(-b/e1)];

Y2=U0+[(U1-U0)/(1-exp(-b/e2))]

* [exp((-b * (1-x))/e2)-exp(-b/e2)];

Y3=U0+[(U1-U0)/(1-exp(-b/e3))]

* [exp((-b * (1-x))/e3)-exp(-b/e3)];

Y4=U0+[(U1-U0)/(1-exp(-b/e4))]

* [exp((-b * (1-x))/e4)-exp(-b/e4)];

plot(x,Y1,x,Y2,x,Y3,x,Y4) xlabel(’x axis’);

ylabel(’y axis’);

CENTERED DIFFERENCE METHOD IN CHAPTER3

% This program solves the convection diffusion problem below

% approximately using centered difference method on a

% uniform mesh.

% -eUxx + bUx = 0 on (0,1)

% U(0)=U0 and U(1)=UN

% where e and a given constant

% N: the number of mesh elements

function chp3CENT(N,e,b,U0,UN)

% h denotes the width of the mesh elements

h=1/N;

% k1,k2 and k3 denotes the coefficients of the
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% algebraic equation

% produced by centered difference method

k1=-1-h/(2 * e); k2=2; k3=-1+h/(2 * e);

% x(i) denotes the grid points

x(1)=0; x(N+1)=1; for i=2:N

x(i)=x(i-1)+h;

end

%%%% COMPUTATION OF THE EXACT SOLUTION %%%%%

for i=1:N+1

U(i)=U0+[(UN-U0)/(1-exp(-b/e))]

* [exp((-b * (1-x(i)))/e)-exp(-b/e)];

end

%%%% COMPUTATION OF THE NUMERICAL SOLUTION %%%%%

A=zeros(N-1); S=zeros(N-1,1); B=zeros(N-1,1); for i=1:N-1

for j=1:N-1

if i==j

A(i,j)=k2;

elseif i-1==j

A(i,j)=k1;

elseif i+1==j

A(i,j)=k3;

else A(i,j)=0;

end

end

end for i=1:N-1

if i==N-1

B(i)=-k3;

else B(i)=0;

end

end S=A\B; s(1)=U0; s(N+1)=UN; for i=2:N

for j=1:1
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s(i)=S(i-1,j);

end

end plot(x,s,’ * -’,x,U,’-’) xlabel(’x axis’);

ylabel(’CENTERED and

EXACT SOLUTIONS’);

UPWIND DIFFERENCE METHOD IN CHAPTER3

% This program solves the convection diffusion problem

% below approximately using upwind difference method

% and centered difference method on a uniform mesh.

% It gives both the centered difference solutions and

% upwind difference solution on the same window with

% the exact solution.

% -eUxx + bUx = 0 on (0,1)

% U(0)=U0 and U(1)=UN

% where e and a given constant

% N: the number of mesh elements

function chp3UPW(N,e,b,U0,UN)

% h denotes the width of the mesh elements

h=1/N;

% k1,k2 and k3 denotes the coefficients of the

% algebraic equation

% produced by upwind difference method

k1=-1-h/e; k2=2+h/e; k3=-1; p1=-1-h/(2 * e);

p2=2; p3=-1+h/(2 * e);

% x(i) denotes the grid points

x(1)=0; x(N+1)=1; for i=2:N

x(i)=x(i-1)+h;

end

%%%%% COMPUTATION OF THE EXACT SOLUTION %%%%%

for i=1:N+1

U(i)=U0+[(UN-U0)/(1-exp(-b/e))]

* [exp((-b * (1-x(i)))/e)-exp(-b/e)];
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end

%%%% COMPUTATION OF THE NUMERICAL SOLUTION %%%%

A1=zeros(N-1); S1=zeros(N-1,1); B1=zeros(N-1,1);

A2=zeros(N-1);

S2=zeros(N-1,1); B2=zeros(N-1,1);

for i=1:N-1

for j=1:N-1

if i==j

A1(i,j)=k2;

elseif i-1==j

A1(i,j)=k1;

elseif i+1==j

A1(i,j)=k3;

else A1(i,j)=0;

end

end

end for i=1:N-1

if i==N-1

B1(i)=-k3;

else B1(i)=0;

end

end S1=A1\B1; s1(1)=U0; s1(N+1)=UN; for i=2:N

for j=1:1

s1(i)=S1(i-1,j);

end

end

for i=1:N-1

for j=1:N-1
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if i==j

A2(i,j)=p2;

elseif i-1==j

A2(i,j)=p1;

elseif i+1==j

A2(i,j)=p3;

else A2(i,j)=0;

end

end

end for i=1:N-1

if i==N-1

B2(i)=-p3;

else B2(i)=0;

end

end S2=A2\B2; s2(1)=U0; s2(N+1)=UN; for i=2:N

for j=1:1

s2(i)=S2(i-1,j);

end

end

plot(x,s1,’ * -’,x,s2,’o-’,x,U,’-’) xlabel(’x axis’);

ylabel(’UPWIND-CENTERED-EXACT’);

Il’IN −ALLEN−SOUTHWELL METHOD IN CHAPTER4

% PRODUCES FIGURE (4.1), (4.3) and (4.5)

% This program solves the convection diffusion

% problem defined below

% using The Il’in-Allen-Southwell Method.

% -epsU’’ + bU’ = x on (0,1)

% U(0)=0 and U(1)=0

% where eps and b given constant

% N: the number of mesh elements

function chp4alt(N,e,b)
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%SOME COEFFICIENTS and PARAMETERS TO CALCULATE

%THE DIFFERENCE SOLUTION

h=1/N; q=(b * h)/e; k1=-(1-exp(-q))/(1-exp(-2 * q));

k2=-(exp(q)-1)/(exp(2 * q)-1);

k3=[(h/b) * (1-exp(-q))]/(1+exp(-q));

% DEFINITION OF THE DISCRETE NODES

x(1)=0; x(N+1)=1; for i=2:N, x(i)=x(i-1)+h;end;

% COMPUTATION OF THE EXACT SOLUTION

for i=1:N+1, U(i)=x(i)ˆ(2)/2+e * x(i)-(e+1/2) *

[(exp((-b * (1-x(i)))/e)-exp(-b/e))/(1-exp(-b/e))];

end;

%COMPUTATION OF THE NUMERICAL SOLUTION

for i=1:N-1

for j=1:N-1

if i==j

A(i,j)=1;

elseif i-1==j

A(i,j)=k1;

elseif i+1==j

A(i,j)=k2;

else A(i,j)=0;

end

end

end for i=1:N-1

for j=1:1

B(i,j)=x(i) * k3;

end

end S=A\B; s(1)=0; s(N+1)=0; for i=2:N

for j=1:1
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s(i)=S(i-1,j);

end

end

% ERROR BETWEEN NUMERICAL AND EXACT SOLUTION

%E=abs(s-U);

plot(x,s,’o’,x,U,’.-’) xlabel(’x axis’);

ylabel(’NUMERICAL and EXACT

SOLUTION’);

%pause

%plot(x,E,’.-’)

%xlabel(’x axis’); ylabel(’Error’);

Il’IN −ALLEN−SOUTHWELL METHOD IN CHAPTER4

% PRODUCES FIGURE (4.2), (4.4) and (4.6)

% This program solves the convection diffusion problem

% defined below

% using The Il’in-Allen-Southwell Method on a uniform mesh

% -epsU’’ + bU’ = x on (0,1)

% U(0)=0 and U(1)=0

% where eps and b given constant

% N: the number of mesh elements

function chp4alt2(e,b)

N(1)=20; for k=1:20 N(k)=N(1)+(k-1) * 20;

% SOME COEFFICIENTS and PARAMETERS TO CALCULATE

% THE DIFFERENCE SOLUTION

h=1/N(k); q=(b * h)/e k1=-(1-exp(-q))/(1-exp(-2 * q))

k2=-(exp(q)-1)/(exp(2 * q)-1);

k3=[(h/b) * (1-exp(-q))]/(1+exp(-q));

%DEFINITION OF THE DISCRETE NODES

x(1)=0; x(N(k)+1)=1; for i=2:N(k), x(i)=x(i-1)+h;end;
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clear A clear S clear B clear s clear U

%COMPUTATION OF THE EXACT SOLUTION

for i=1:N(k)+1,

U(i)=x(i)ˆ(2)/2+e * x(i)-(e+1/2) *

[(exp((-b * (1-x(i)))/e)-exp(-b/e))/(1-exp(-b/e))];

end;

%COMPUTATION OF THE NUMERICAL SOLUTION

clear A clear S clear B clear s

A=zeros(N(k)-1); S=zeros(N(k)-1,1); B=zeros(N(k)-1,1);

for i=1:N(k)-1

for j=1:N(k)-1

if i==j

A(i,j)=1;

elseif i-1==j

A(i,j)=k1;

elseif i+1==j

A(i,j)=k2;

else A(i,j)=0;

end

end

end for i=2:N(k)

for j=1:1

B(i-1,j)=x(i) * k3;

end

end S=A\B; s(1)=0; s(N(k)+1)=0; for i=2:N(k)

for j=1:1

s(i)=S(i-1,j);
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end

end

%%%% ERROR AT THE LAYER %%%%%

E(k)=abs(s(N(k))-U(N(k)))

end

plot(N,E,’.-’)

xlabel(’(N)The Number of Mesh Elements’);

ylabel(’Error--->’);

FITTED MESH METHOD IN CHAPTER5 (Example1)

% This program solves the boundary value problems

% defined below

% using difference operators on a fitted mesh.

% -eps * u’’ + c * u’ = 0 on (0,1)

% u(0)=0 and u(1)=1

%

% N denotes the number of elements

function upws2(c,N) format long g for j=1:10

eps(j)=10ˆ(-j+1);

clear x ye mu fi yds

%Boundary conditions

u0=0; u1=1;

% tau: the transition parameter

% h1 and h2: the width of the fine and coarse mesh

% elements

tau=min(1./2.,eps(j) * log(N)/c); h2=2 * tau/N; h1=2 * (1.-tau)/N;

if

(h1<1.e-14) | (h2<1.e-14)

(’mesh is too small’)
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stop

end L1=1+c * h1/eps(j); L2=1+c * h2/eps(j); LB=(L1+L2)/2;

% x(i) denotes the grid points

x(1)=0; x(N+1)=1.; for i=2:N/2+1, x(i)=x(i-1)+h1;

end; for

i=N/2+2:N, x(i)=x(i-1)+h2; end;

%plot(x,’-’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Solution of three-point difference equation

muN2=(L2)ˆ(-N/2) * L1* (1-L1ˆ(-N/2)) nuN2=LB * (1-L2ˆ(-N/2)) dN

=(muN2+nuN2); (L1ˆ(N/2)-1) for i=1:N/2+1

mu(i)=(L2)ˆ(-N/2) * L1* (L1ˆ(i-1-N/2)-(L1)ˆ(-N/2));

fi(i)=mu(i)/dN;

yds(i)=u0+(u1-u0) * fi(i);

end for i=N/2+2:N+1

nu(i)=LB * (1-L2ˆ(i-1-N));

psi(i)=nu(i)/dN;

yds(i)=u1+(u0-u1) * psi(i);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Compute the Exact solution at grid points

for i=1:N+1

ye(i)=u0+[(u1-u0)/(1-exp(-c/eps(j)))] *

[exp((-c * (1-x(i)))/eps(j))-exp(-c/eps(j))];

end

ER(j)=max(abs(ye-yds))

end

maxER=max(ER)

FITTED MESH METHOD IN CHAPTER5 (Example2)

68



% This program solves the convection diffusion problem

% using upwind difference operators on a piecewise

% uniform meshes.

% -eUxx + bUx = x on (0,1)

% U(0)=0 and U(1)=0

% where e and a given constant

% N: the number of mesh elements

function chp5alt(N,e,b)

% T denotes the transition parameter

% h1 and h2 denote the width of the fine and coarse

% mesh elements

% L1 and L2 are parameters related to the discrete problem

N(1)=N; for k=1:20 N(k)=N(1)+(k-1) * 20;

T1=[e * log(N(k))]/b; T=min(1/2,T1); h1=(2 * (1-T))/N(k);

h2=(2 * T)/N(k);

h3=(h1+h2)/2; L1=1+(b * h1)/e; L2=1+(b * h2)/e; L3=(L1+L2)/2;

% x(i) denotes the discrete nodes

x(1)=0; x(N(k)+1)=1;

for i=2:N(k)

if i<=N(k)/2+1

x(i)=x(i-1)+h1;

else x(i)=x(i-1)+h2;

end

end

clear U clear S clear B clear s clear Y
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%%%% COMPUTATION OF THE EXACT SOLUTION %%%%

i=1:N(k)+1;

U(i)=x(i)-[exp((-b * (1-x(i)))/e)-exp(-b/e)]/(1-exp(-b/e));

%%%% COMPTATION OF THE NUMERICAL SOLUTION %%%%

p1=-L1;p2=(1+L1); p3=-1; p4=-L3; p5=(h1/h2+L3);

p6=-h1/h2; p7=-L2;

p8=1+L2; p9=p3; p10=h1ˆ(2)/e; p11=h2ˆ(2)/e; p12=h1 * h3/e;

for i=1:N(k)-1

for j=1:N(k)-1

if i<N(k)/2 && i==j

Y(i,j)=p2;

elseif i<N(k)/2 && i-1==j

Y(i,j)=p1;

elseif i<N(k)/2 && i+1==j

Y(i,j)=p3;

elseif i==N(k)/2 && i==j

Y(i,j)=p5;

elseif i==N(k)/2 && i-1==j

Y(i,j)=p4;

elseif i==N(k)/2 && i+1==j

Y(i,j)=p6;

elseif i>N(k)/2 && i==j

Y(i,j)=p8;

elseif i>N(k)/2 && i-1==j

Y(i,j)=p7;

elseif i>N(k)/2 && i+1==j

Y(i,j)=p9;

else Y(i,j)=0;

end
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end

end for i=1:N(k)-1

for j=1:1

if i<N(k)/2

B(i,j)=x(i) * p10;

elseif i==N(k)/2

B(i,j)=x(i) * p12;

elseif i>N(k)/2

B(i,j)=x(i) * p11;

end

end

end S=Y\B; s(1)=0; s(N(k)+1)=0; for i=2:N(k)

for j=1:1

s(i)=S(i-1,j);

end

end

%%%% ERROR AT THE BOUNDARY LAYER %%%%

E(k)=abs(s(N(k))-U(N(k))); end plot(N,E,’.-’)

xlabel(’(N)The Number

of Mesh Elements’); ylabel(’Error--->’);
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