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ABSTRACT

UNIFORMLY CONVERGENT APPROXIMATION ON
SPECIAL MESHES

We consider finite difference methods for the approximation of-ahmensional
convection-diffusion problem with a small parameter multiplying the diffusion term.
An analysis of the centered difference and upwind difference schemes on equidistant
meshes shows that these methods are not uniformly convergent in the discrete maxi-
mum norm. However, we show that the upwind method over a set of suitably dis-
tributed mesh points produce uniformly convergent approximations in the discrete maxi-
mum norm. We further investigate the upwind difference method for the approximation of
the convectior-diffusion problem with a point source. Theoretical findings are supported

with the numerical results.



OZET

OZEL AGLAR UZERi_I_\IDE DUZGUN YAKINSAYAN
COZUMLER

Diftizyon terimi Kigiik bir parametreyle carpiimis olan konveksiyatifiizyon
probleminin bir boyutlu ¢ztiimleri igin sonlu fark metodlari ele alinmaktadir. Merkez
ve geri fark metotlarinin ayrik maksimum normdazdin yakinsak olmadu bir analizle
gosterilmektedir. Geri fark metodunun yine d€, moktalarininbzel bir secimi ile ayrik
maksimum normdaiizgin yakinsak oldgu gosterilmistir. Ayrica noktasal bir kayga
sahip olan konveksiyondifiizyon denkleminin geri fark metodu ile yaklasik sonuglari

tzerinde cahisilmistir. Teorik sonuclar sayisal sonuclarla desteklenmistir.
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CHAPTER 1

INTRODUCTION

We study the numerical solution techniques on both equidistant and piecewise uni-

form meshes for the following convectiewliffusion problem on the interval = [0, 1].

Find u € C*(Q) such that u(0) = ug , u(l) = uy (1.1)
and for all x € (), Lu = —eu'(z) + a(z)u' (z) = f(x)
where ¢ is a small parameter used to measure the relative amount of diffusion to
convection. a(z) and f(z) are smooth functions and the functiaiiz) satisfies the

following strict inequality.
a(x) >a >0

The convectiordiffusion problem(1.1) arises in diverse areas such as the
moisture transport in desiccated soil, the potential function of fluid injection through one
side of a long vertical channel, the potential for a semiconductor device modeling and
steady flow of a viscous, incompressible fluid. Although the problém) may not be
applied directly to real applications, it is important to find its solution, because it is an
important stage in investigation of many practical applications.

The main difficulty is to obtain a numerical solution which converges
e — uni formly to the exact solution of the problefi.1) since it is a singularly perturbed
problem. When the standard finite difference operators are employed on a uniform mesh
to solve this problem, for example the centered difference scheme, then the numerical
solutions oscillate unless the mesh sizés chosen sufficiently small compared ¢o
Although the upwind difference scheme gives more stable result, Kellog and Tsan (Mal-
ley, 1991) have analyzed the behavior of the error of the standard upwind scheme on a
uniform mesh and they show that it is not- uni form in the discrete maximum norm
in the layer. Therefore, we need more efficient methods in order to capture numerical
solutions which has the feature ef— uniform convergence. These methods can be
given on auni form mesh or on aon — uni form mesh. In this thesis, we investigate
the numerical approximations of the convectiatiffusion problem both on aniform

andnon — uni form meshes. Thus, it is organized as follows:



In Chapter2, we illustrate the behavior of the problem in one dimension using
a simple problem and introduce some notations and definitions used in the subsequent
chapters. In Chapt&r; we analyze the centered difference and upwind difference methods
using the solutions of the associated difference equations. We present some numerical re-
sults to demonstrate the qualitative behavior of these methods for different configurations
of e relative toh. In Chaptet, we derive a uniformly convergent method on an equidistant
mesh, called II'in-Allen—Southwell method and present some numerical results. In
Chapter, a piecewise uniform mesh so called Shishkin mesh is introduced. We first con-
sider a problem with regular data and whose convective term has a constant coefficient to
obtain some results which are used in the convergence analysis of the pi@bl¢ron
this piecewise uniform mesh. We give an- uni form error estimate in sectioh2 and
present two numerical experiments that verify the uniform convergence of the method un-
der investigation. Further, we consider a different type of conveetiifusion problem
with irregular data in sectiof.3 and use again the upwind finite difference method on

Shishkin mesh for discretization of this problem.



CHAPTER 2

OVERVIEW OF THE CONVECTION DIFFUSION
PROBLEM

2.1. The Analytical Behavior of Convection-Diffusion Problem

We begin by explaining where the convectiediffusion phenomenon occurs and
then introduce a convection diffusion equation in one dimension on the intérvaJ
together with the behavior of the exact solution.

Mathematical models that involve a combination of convective and diffusive pro-
cesses are among the most widespread in all of science, engineering and other fields where
mathematical modeling is important. Water quality problems, convective heat transfer
problems, simulation of the semiconductor devices can be given as an example of these
models. Also the linearization of the Navier-Stokes equation and drift-diffusion equation
of semiconductor device modeling are important instances.

Very often the dimensionless parameter that measures the relative strength of the
diffusion is quite small; so one often meets with situations where thin boundary and
interior layers are present and singular perturbation problems arise. The following prob-
lem on the unit interval? = (0,1) leads us to deduce the analytical behavior of the

problem in one-dimension.

Find u € C?(Q) such that u(0) = ug u(1) = u,

) , (2.1)
and for all x € Q, Lu=—eu (z) +bu(z)=0

whereb is a constant which satisfiégs> 0 and C*((2) denotes the space of two times

differentiable functions of2. It can be solved exactly:

e—b(l—x)/e —b/e

—e
1 —eb/e

u(x) = wuo+ (ug —ug) (2.2)

Since the exponential function in the solution has the argurtient ) /¢ , the

solution changes rapidly in the subinterval— ¢,1). That is, there is a boundary layer



aroundz = 1 ase tends to zero and it is of width. The Figure2.1 is plotted by setting

uo =0,u; = 1andb =1 and for the valuesof = 1,10 ',1072,1073 .
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Figure 2.1. Exact solution of the Problgm1) for several values of

It shows that the thickness of the boundary layer narrowsgets smaller. How-
ever, it is difficult to find the numerical solution of the problem. Therefore, it is important
to devise efficient algorithms for the approximation of the conveetdiffusion prob-

lems.

2.2. Numerical Methods for The Singularly Perturbed Problems

In this section, we overview the numerical methods used to solve the singularly
perturbed problems and introduce some notations, finite difference operators, function
spaces, norms and seminorms which are used in the subsequent chapters.

Let D be a bounded domain iR. Typically D = or D = where Q) isa
bounded open interval. Le€°(D) denote the space of continuous functions on D with

the norm of anyf € C°(D) defined by

| fllp =sup|f(x)] Va € D.



For each integerk > 1 let C*(D) denote the space of-kimes differentiable functions
on D, with continuous derivatives up to and including those of order k. The explicit
reference taD is dropped whenever the domain in question is evident. For any mesh

function V on an arbitrary mesi®” = {z;}{’, the discrete maximum norm is defined by
[V][gy =max|V;] 0<i<N.

The linear vector space of all mesh functions defined @M, and furnished with the
norm || 5~, is denoted byV(ﬁN). When the mes®” is evident it may be dropped
from the notation.

In order to construct the numerical methods considered in the following chapters,
we need the following mesh descriptions, finite difference operators and definition:

On the intervalQ2 = (0,1) for each integerN > 2 , the uniform mesh

Q' = {z;}{’ is defined by taking théV + 1 mesh points
z;=1/N for 0<i<N
that is they are separated by a uniform distance
h=x;—x;,1=1/N for 0<i<N.

An alternate way of arriving at the same result is to dividlento N mesh elements
Q; = (x;_1, ;) which have the length = 1/N.

First and second order finite difference operators are now defined on these uniform
meshes as follows:

Vin=Vi oy Ve Vi

DtV =
h h

(2.3)

Dt + D~ Vier — Viea
DV, = V, =
2 2h

Dt and D~ give a first order approximation to the first derivative of any function while

D gives a second order. Second order difference opefatdas obtained by composing
forward and backward difference operator and gives a second order approximation to the
second derivative of any function:

(D = D)
h

Vign =2Vi+ Vi

2
DV, = s

(2.4)

‘/’i:




Since in the following chapters the meshes are no longer uniform, we need to
extend the above definition from uniform m@n-uniform meshes If the mesh points in
an arbitrary nor-uniform mesh with N subintervalsQ; = (z;_1,z;) for 1 <i < N

are denoted bﬁN = {z;}{’ , then the mesh points are separated by a distance
hi:(’ﬂi—.fi,l fOT 1§Z§N

First and second order finite difference operator for the-ngnform meshes are given

by

Vi — Vi V.-V
D+‘: 1+1 7 D_‘: 7 1—1
Y =
(2.5)
. + D~ + _ -
DOV;' _ hH—ID i_ th ‘/z DQV; —_ (‘D—_l)>‘/l
where
7 = hit1 + hy
2

forl1 <i< N —1.

Early numerical solutions of problems involving singularly perturbed differential
equations were obtained by using a standard finite difference operator defiges) on a
uniform mesh and then refining the mesh more and more in order to capture the boundary
or interior layers as the singular perturbation parameter decreased in magnitude. Thus,
even for problems in one dimension, the methods were inefficient, and accurate solutions
could not be obtained for problems in higher dimensions. We deal with in the next chapter
why these methods fail to capture the accurate solutions. A natural question then arises:
Is it possible to construct numerical methods that behave uniformly well for all values of
the singular perturbation parameter, no matter how small ?

We need the following definition in the subsequent chapters to say that a numerical

method has — uniform convergence

Definition 2.1 Consider a family of mathematical problems parameterized by a singular
perturbation parametet, wheree lies in the semiopen intervald) < ¢ < 1. Assume
that each problem in the family has a unique solution denoted, land that each: is

approximated by a sequence of numerical solutiffis §N>}§>Vo:1 whereU is defined on



the mest?" and N is a discretization parameter. Then the numerical solutiom afe
said toconverges — uniformly to the exact solutiom, if there exist a positive integéy,,
and positive numbers C and p, whexg, C and p are all independent of N armdsuch
that for all vV > N,

supl|U — ullgvy < CN7P
Here p is called the — uniform rate of convergence and C is called the uniform error

constant.

A finite difference method has two major ingredients: the finite difference operator
LY that is used to approximate the differential operdt@nd the mesk” that replaces
the continuous domaif. By standard finite difference methods is meant almost all of
the finite difference methods that have been applied successfully to problems that are
not singularly perturbed. Many of these methods are well known and are named after
some of their inventors. Generally, these methods are stable and accurate, and hence their
solutions converge to the exact solutionfds— oo. It turns out however that none of
these methods ig— uniform, and some new attribute is required.

In the construction ot— uniform method$wo approaches have generally been
taken to date. The first of these involves replacing the standard finite difference operator
by a finite difference operator which reflects the singularly perturbed nature of the
differential operator. Such finite difference operators are referred to in general as
fitted finite difference operators. In some cases, for example for linear problems, they
may be constructed by choosing their coefficients so that some or all of the exponential
functions in the null space of the differential operator, or part of it, are also in the null
space of the finite difference operator. In such cases the finite difference operator is re-
ferred to as an exponentially fitted finite difference operator. The corresponding numerical
method is then obtained by applying the fitted finite difference operator to obtain a system
of finite difference equations on a standard mesh, which in practice is often a uniform
mesh. This system is then solved in the useful way to obtain approximate solutions.
Other approaches to constructing fitted finite difference operators are illustrated in (Roos,
1994).

The second successful approach to the constructiosn-otiniform numerical
methods involves the use of a mesh that is adapted to the singular perturbation. Such

methods are referred to here fifed mesh methods A standard finite difference



operator is applied on the fitted mesh to obtain a system of finite difference equations,
which is then solved in the usual way to obtain approximate solutions. It is often sufficient
to construct a piecewise uniform mesh, that is a mesh which is a union of a finite number
of uniform meshes having different mesh parameters. These piecewise uniform fitted
meshes were first introduced by Shishkin ( Shishk#®g8) and corresponding numerical
methods were further developed and shown todde uniform in a series of papers
culminating in (Shishkin,992). The first numerical results using a fitted mesh method
were presented in (Miller et al991). Different approaches to adapting the mesh, involv-
ing complicated redistribution of the mesh points, have been taken by other authors, for
example Bakhvalov, Gartland, Liseikin and Vulanovic (Bakhval6g9, Gartland1988,
Liseikin 1983, Vulanovic1986) but none has the simplicity of the piecewise uniform fitted
meshes.

The above considerations show that both fitted operators and fitted meshes need
to be developed. In the chapterand5, examples of each technique are presented. In
practice, methods using fitted meshes are recommended whenever possible because they
are usually simpler to implement than methods using fitted operators. Moreover, they are

easier to generalize to problems in more than one dimension and to nonlinear problems.



CHAPTER 3

STANDARD NUMERICAL METHODS

In this chapter, we use the standard numerical methods for the pr@bléjron
a uniform mesh and explain that why these methods fail to converge to the analytical
solution of the problem. We approximate the first derivative by the centered difference
operatorD? and the upwind difference operatbr-, respectively. We take fix boundary

conditionsuy = 0 andu; = 1.

3.1. Centered Difference Method for the Convection Diffusion Prob-

lem

Consider discrete operator
LY = —eD* +bD°

for the uniform partition(_)N of the (). It approximates the first derivative in the problem
(2.1) with the centered difference operatof and the second derivative with the second

order difference operatdp?

Find U € V(QN) such that Uy =0 Ux =1 and for all z; € QV,
(3.1
LNUi _ _€Ui+1*2}gi+Uifl + bU¢+1

—Ui_1 _ .
5o =0, 1<i<N-1

whereU; ~ u(z;). Then, combining terms with the same indices leads to the following

difference equation
(=14 p)Uip1 +2U; + (=1 = p)U;—1 =0 (3.2)

wherep = bh/2¢. It gives a system of equations wiffi — 1 unknowns. We can obtain
the approximate solution of the problef 1) by solving this system. Some numerical
results are given together with the exact solution in the Figures fadnto 3.4 for the
different values ok with N = 50 andb = 1. They shows that the numerical solution
to be consistent with the exact solution for the large values &ut it oscillates for the

e=1073.
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The situation can be explained by solving the difference equaia) exactly.
SettingU; = r* in the difference equation and dividing the resulting expression mith

then leads to the following characteristic equation
(=14 p)r? +2r+(=1—p)=0

and its roots are obtained as

1+p
7’1:1 ng—l_p-

Thus, the general solution to the difference equatibn) can be given by

1+p

) (3.3)

Ui = arr] + asrsy = ag + as(

Imposing the boundary conditions, L = 0 andUy = 1, we obtain the unique solution

of the difference equatio(s.2) as follows

1+ (1)
Uy=— 1=~ 3.4
(1) (3.4)

foralli,0 <i < N.

If p < 1, we see that numerical solution gives good results. However, the solution
(3.4) clearly shows that ip > 1 (e < 0.01), then the numerical solution oscillates since
the second roat, would be negative in this case. Thus, we can conclude that the centered

difference method is not robust for the problé¢nl ).

3.2. Upwind Difference Method for the Convection Diffusion Problem

In this section, we approximate the first derivative with the backward difference

operatorD~ . The associated discrete operator is given by
LY = —eD* +bD"
and discrete problem is obtained as

Find U € V(QN) such that Uy =0 Uy =1 and for all z; € QV,
(3.5)

LNUi — _EUi+1—2}gi+Ui—l + bUi—Ilji—l =0, 1<i<N-1

12



Combining terms with the same indices we have the difference equation:
Ui+ 2+ Ui+ (=1 =p)Uia =0

wherep = bh/e. Setting agairl/; = r* and dividing resulting expression with thée!

results in
—1? 4+ 2+ pr+(-1-p)=0
and the roots of this characteristic equation are
ri=1 ro =14 2p.
Thus, the general solution can be expressed as follows
Ui = a7 + asry = ay + as(1 + 2p)’ (3.6)

The solution satisfying the boundary conditions can be immediately written as in the
following form:

1—(1+2p)
i = 1—(<1T5))N (3.7)
foralli, 0 <i < N.

Sincer, is always positive, we do not have oscillatory approximation in this case.
Therefore, upwind difference method gives more stable result than the centered difference
method as it can be seen in the Figures frbmto 3.8. However, the error at the interior
mesh point closest to the boundary- 1 is
1 —3N"1 el —eN

1-3V 1—eN

(U —w)(ry) =

if p=h/e = 1. It follows that

lim (U —u)(zn-1) = i é #0

N—oo 3

and the upwind difference method is not convergent in the layer.

13
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CHAPTER 4

A UNIFORMLY CONVERGENT METHOD ON
EQUIDISTANT MESHES

In this chapter, we deal with a uniformly convergent method, so called
II'in —Allen—Southwell method as an example of fitted numerical methods on a uniform
mesh. We show that how to construct this method and present its convergence properties
briefly.

Consider the following problem on the unit inter¢al= (0, 1)

: 2(0) -0, u(l) =
{ Find v € C*(Q) such that u(0) =0, u(1l) =0 } (4.1)

and for all z € (, Lu = —eu”(:}:) + bu/(a:) = f(x)

where b is a constant satisfyibhg> 0. The formal adjoint operator df is defined by

Let g; be the local Green’s function df* with respect to the discrete point. Then the

associated problem with the pointon the local domaif; US2;, can be given as follow:

Find g; € C(Q; U Q1) N C%(; U Qiy1) such that
9i(ri-1) =0, gi(wit1) =0 (4.2)
and for all x* € Q; U Q;11, L*g; = —eg; (z) — bg;(z) =0

where(; = (z;_1, x;) and with the additional condition

e(gi(z7) — gi(af)) = 1. (4.3)

Thus, multiplying the equatiodu = f with g; and integrating the resulting expression

from x;_; tox;,; we obtain the following equality

Tit+1 Ti+1
[ wogds = [ pgar

Ti—1 Ti—1

16



Then, using of integration by parts and the continuity;oWith the boundary conditions

of the problem4.2) and the conditiori4.3) respectively we get the following equation
Ti41
—€g;(Tim1)uioy + u; + €gi(Tip1)uips = f/ gidx (4.4)

whereu; ~ u(x;). This gives a difference scheme since we are able to evaluatgesch

exactly, seé5| for details. The solution of the equatiofh.2) is given by

—bx /e

gi(x7)=c + 02%66 on (xi_1,x;) (4.5)

—¢
gi(x™) = 3+ cg——e /¢

b on (i, Tit1). (4.6)

To determine the coefficients, co, c3 andc, we need four equations. These come from

the conditions

gi(xi-1) =0 gi(wit1) =0
e(gi(x;) — gi(xh)) =1

and, from the continuity of; atz = z;

Using of these conditions yields the following solution for the problem describéd.by
and(4.3)

N 1 er—1 e (1—e?) —€, -
) P S e W 1 4.7
gl(x ) b (Bp _ 67'0) € (6'0 _ e,p)( b )6 on [l’ 1, ] ( )
o Ler—1 e (1—ef) ,—€, -t
gi(z7) = - — —e "« on [z, xi] (4.8)

b(er—er) € (er— e—p)( b )

wherep = 2 andq; = . Thus, we obtainy, (z;_,) andg;(z;,,) by taking the deriva-

€

tives of (4.7) and(4.8), respectively. They are given by

T i Gt MY G ikt (4.9)

€ (er —er) €(er —er)
Hence, usind4.7) and(4.8) we evaluate the integral ifi.4) and substituting the result-
ing expression together witfl.9) into the equatior{4.4) leads to following fitted finite
difference method

e —1 1—e? fhep—l
U; = —
1 b er+1

(4.10)

u. .
erP — e P eP — e P
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wherep = 2. Its solution is given by

1—e7

U = ————
1 —eNe

and it satisfies the following error estimate.

Theorem 4.1 The fitted finite difference methdd.10) with the uniform mesk)?, is
e—uniform for the probleni4.1). Moreover, the solutiom of (4.1) and the solution; of

(4.10) satisfy the following—uniform error estimate

sup || u(a;) —u; |gv< CN™' for 0<i< N
0<e<1

where C is a constant independentof
Proof:(Roos et al1994, Demirayak2004).1

Notice that although the II'irAllen—Southwell method has first order con-
vergence in the discrete maximum norm, it is based on the exact solution of the local

problem(4.2). This is a disadvantage of the method.

Example: We take f(z) = =z, b = 1 in the problem(4.1) and apply the
II'in —Allen—Southwell method. The numerical solution and exact solution are
plotted on the same window for different valuesecnd we also give the error at the
boundary layer for a fixed value efwhen N increases. The Figures froml to 4.6

indicate that the error decreases in the boundary layer if we refine the uniform{Mesh
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NUMERICAL and EXACT SOLUTION
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Figure 4.3. The Uniformly Convergent Meth@d for N = 400, e = 0.01
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NUMERICAL and EXACT SOLUTION
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CHAPTER 5

A UNIFORMLY CONVERGENT METHOD ON
PIECEWISE UNIFORM MESHES

In this chapter¢ — uni form fitted mesh method is constructed for the convection
diffusion problem. To introduce the idea of such method the proljfei) is considered
here again. A piecewise uniform fitted mesh turns out to be sufficient for the construc-
tion of ane—uni form method for a wide variety of problem configurations. Of course,
more complicated fitted meshes may also be used. However, for simplicity, the piecewise
uniform meshes is considered to be one of the most attractive choices.

A simple example of a piecewise uniform mesh is constructed on the interval
2 = (0,1) as follows. Choose a poirit— 7 satisfying0 < 7 < 1/2 and assume that
N = 27, for somer > 2. The pointl — 7 divides(2 into the two subinterval§), 1 — 7)
and (1 — 7,1). The corresponding piecewise uniform mesh is constructed by dividing
both(0,1 — 7) and(1 — 7, 1) into N/2 equal subintervals denoted bY’. The figure5.1

shows the piecewise uniform me&fi

Figure 5.1. The Piecewise Uniform Me§H

where
.1
T = m1n{§,elnN}.

Notice that, as might be expecteddepends on bothand N. This means that locations
of the mesh points change wheneveor N changes. Note also that whenevEris
sufficiently larger takes the valué /2, and therefore the mesk" becomes the uniform

mesh with/V subintervals. This happens whéhsatisfies
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eln N > or NZei.

N | —

For all other permissible values of 0 < 7 < 1/2, the subinterva(l — 7,1)
is smaller than the subintervél), 1 — 7). In these cases each of th&'2 uniform mesh
elements of 1 — 7,1) is of length27 /N which is shorter than the lengf#{l — 7)/N of
the /2 uniform mesh elements @0, 1 — 7). In such cases the global mesh is piecewise
uniform rather than uniform and, because the subintervals in a neighborhdodref
small whenr is close to0, the mesh is said to be condensing in a neighborhood of the
boundary pointc = 1, or more concisely, condensing at the point= 1. Notice that,
whatever the value of, all of the meshes consist 6f mesh elements and consequently
the mesh points arﬁiv = {z;})’ where the points; are the endpoints of thegé mesh
elements. Itis not hard to see that the transition pbintr coincides with the meshpoint

x /2 and for the mesﬁf = {x,;}} the following inequalities hold
hi <2/N for 1<i<N
h; > 1/N for 1<i<N/2
h; <27/N for N/24+1<i<N
hi > hi/2 for 1<i<N—1. (5.1)

The e—uniform error analysis of many numerical methods on piecewise uniform

fitted meshes depends on the following basic lemma.

Lemma 5.1 For all integersN > 1

(14 21]11VN)N/2 <2N7L

Proof: The inequality is trivial forN = 1,2,3. For N > 4 write the inequality in the
form

QIHN)N/2 S N

1 .
<+N -2

Letting x = N/2 this becomes the inequality

In2
(1+M)x2x, for all x> 2.
T

Taking the natural logarithm of both sides and dividing:hyhis is equivalent to

In2 1
ln(l—i——n x)x > =1 for all x> 2.
T T
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Defining
n2x Inz

g(z) =ln(1+—=)" = ——

itis also equivalent tg(x) > 0, for all z > 2. Now, since

lim g(z) =In1=0

r—00

and
(2) 1—1n2z 1—Inzx
T) = —
g xQ(l_i_lnan:) $2
1 In2
[1—In2 — (14 ——
T

(1 - In)]

—1
h(z)

(xIn2+ (1 —Inz)In2x)

where

hz)=2ln2+ (1 —Inz)ln2x

if we show thatg'(z) < 0, for all z > 2, we can say thaj(z) is a monotone decreasing
function forz > 2 and it follows thaty(x) > 0 for all z > 2. Thus, we need to determine
the sign of the functior(x) for x > 2. Since
h(2) =2(2—1n2)In2 >0
and

k(x)

/ 1
h(z) = E(mln2—|— l—Inz—In2z) = .

where

k(r) =2In2+1—In22%

it is seen that

k2)=1-1In2>0

and
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Thus, forz > 2, k has a minimum at = 2/ In 2. Its value there is

2
In2

It follows thatk(x) > 0 for all > 2. This show also that'(z) > 0 andh(z) > 0 for all

k(—)=3(1-In2)+2Inln2 > 0.

x > 2. Thusg'(z) < 0 for all 2 > 2 and sincdim,_.., g(x) = 0 it follows thatg(z) > 0
for all x > 2 as requiredl
In addition to this Lemma, the following contains two standard results for local

truncation errors on generabn—uni form meshes.

Lemma 5.2 Letz; € - . Then for anyp € C%(Q),

and, for anyy € C3(Q),
2
1
| (D? - @)@(ﬂfi) < §($i+1 —zic1) | ¢ ls

Proof:Using integration by parts we can show that

el B R L e CEETICINE T
— (i1 — )¢ (@) + (o) — i)
e B
= (D~ D)l

It follows that

Ty — Ti—1
|ol2 s ;
o $i—1[§ ~ sk
TP — TP
= - | gok 1= S (@— )]
(] 11—
_ lole (zi—xi1)
Z; —337;_1‘ 2
1

which is the first result. Similarly, using integration by parts twice we see that
1 [/gci+1 (it1 — 5)290/”(5)d8 _ /:C (s — wz’fl)%m(s)ds]
T Ti_1 Ty — Ti—1

= (D~ ()

Tit1 — Ti—1 Tit1 — T4
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and it follows that

0= Lot 1< LBl [Ty el

2 =
dx Tit1 — Ti—1 Tip1 — T4 Ti — Ti—1

i

< ($i+1 — ggi—l) ‘ % ’3 .

W =

This completes the prod

5.1. Properties of Upwind Finite Difference Operator on Piecewise

Uniform Fitted Meshes

Next, we overview properties of upwind finite difference operator on the piecewise
uniform meshes to obtain some arguments perform on the convergence analysis of fitted
mesh method related to the convectiahffusion problem with regular data. Consider

the discrete operator
LN = —eD?* +bD™

on the fitted piecewise uniform me@iV defined at beginning of the chapter. Notice that
the finite difference operatoid? and D~ are used in the form introduced (2.5). Thus,

discrete problem related to the problé¢ml) is given by

Find U € V(ﬁf) such that Uy and Uy given and for all z; € QY

(5.2)
LNU; = P20, + DU, = 0, 1<i<N-1
or equivalently
Find U € V(ﬁiv) such that Uy and Uy given and for all z; € QY
(5.3)
LNU; = —e(B=th Ul Ly gl — g 1< <N -1
where b is a constant satisfying the strict inequality
b>a>0 (5.4)

for some constant. The fitted piecewise uniform me?tiv = {z;}{’ is defined by

e 2(11\77) for 0<i<N/2
i~ X1 =
Z for N/2<i<N
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where
1 €
=min{—. —In N
T mln{Q,an }

and it is assumed that < 1/2. In the Figure5.2 the solution of the discrete problem

(5.3) is plotted for the special choicég = 0 andUy = 1.

1

0.9 h

NUMERICAL SOLUTIONS
I I o I I o
w N 3 =2} ~ ©
T T T T T T
| | | | | |

<)
N
T
1

o
-
T
L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X axis

Figure 5.2. The mesh functidi with Uy =0, U;s = 1 andN = 16

In the next section, we will show that the mesh functignis ane — uni form
approximation of the continuous boundary layer functier’ /¢ which appears in
the solution(2.2).

It is convenient to introduce the following notation

_2(1—7‘) _27’ —_h1—|-h2
e he = h=—"3
bh bh — A A
AN=14 Ny =14 22 A S (5.5)
€ € 2
Then, it is clear that
1 _ bh
= — -1+ =
h N A €
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and
1< <2X 1 <X <2) (5.6)

We turn back now to the difference equatior{#3) and try to obtain its solution.

It can be written separately in each of the subintefyal — 7| and[1 — 7, 1] as follows:

(—1)Ui+1 + (1 + )\1)UZ + (—)\1)U¢,1 =0; Zf 1 <1< N/2

<_h_:)UN/2+1 + (h_; +A)Unp+ (=MNUnjpa =0, if  i=N/2 ®.7)

(DU + A+ X)U; + (= X)U;i1 =0;  if N/2<i<N-1
Since the roots of the characteristic polynomial are

rr=1 r9 = A\ fOT1§Z<N/2

rmn=1 ro=MX for N2<i<N-1

we assume that the difference solution are of the form

U, = , (5.8)

We have four unknown coefficient, as, a3, a4 and need four equations. Two equations
come from the boundary conditiob andU y. One of the other two equations is obtained
by using the difference equation at the discrete nagdg, and the other can be obtained
by using continuity condition at the same node. Thus, resulting system of equations can

be given in the matrix form as follows:

1 1 0 0 ay UO
1 AN 1 AP a | | 0
1 k-1 A\ as 0
0 0 1 Y ay Un

wherex = /\f[/?_l()\l + (A2 —1)). We solve this system and obtain the following results
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1. NJoee B B
a1 = =[MA Y20 + (1= AU, — AP0

¢
1. _ _
1y = E[)\l N/Q—H)\2 N/Q(UN i UO)]
1 — _ _ _ _
g = E[A(U0 — N PUN) = AP0 4+ a0 YU

1
ay = —Z[)\(Ug — UN)]
where
C= M) M2 1) 4 (1= AN

Substituting these coefficients into the form of the soluti®s), we get

(UN_UO)/\l()\1)\2)71\]/2()\1_1) ‘
Vot Soma veornra v Jor 0SSN/
U; =
(Uo—Un)A1=2) .
Un + M) NN 1) (1o for N/2<i<N

or in a more compact form

Uy + (Un — Uy or 0<i1<N/2
U — 0+ (Un — Uo)y; f <i< N/ (5.9)
UN+<U0—UN)’¢Z-N fO?“ N/QSZSN

where
N i
dn dy
with
=M (NA) PN 1), N =21 - A0
and

dy = [in/2 + Unja.
The following lemma shows that this solution is monotone increasing.
Lemma 5.3 Assume that/y > U,, then
Ug < U; < Uy for 1<i<N-1
and

D U, >0 for 1< < N.
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Proof:From the explicit expressiof$.9) for U, it is clear that

(Uny —Ug)D=pN  for 1<i<N/2

DU, =
(UO—UN)D—wfv for N/24+1<i<N

Since
ooy Aol M) (4 =AY (ude) Y2 (R - )

i hl d]v hl dN hl

L Oad) VX — 1) AR N N
dN hl dN hl € dN

and
prgy J N XN X T Akl bR

’ hy dn o dy hs e dy

it follows that
D oN>0 DN <0
sincedy > 0. Therefore, sinc&/y > Uy, foralli, 1 <i < N
D U, >0

which is the second part of lemma. The firstis an immediate consequence of the lBecond.
The next lemma shows that the solution is small outside a neighborhood of
the boundary layer, if the boundary condition at the inflow boundary point is chosen

appropriately.

Lemma 5.4 LetU, = e %<Uy. Then, foralli,0 <i < N/2,
0<U; <CN Uy

fore some constant C independent of

Proof:Since the hypothesis of the previous lemma are fulfilled for dll€ i < N — 1,
it follows thate=*/<Uy < U; < Ux and thatl/; is monotone increasing. To complete the

proof it suffices therefore to show that for some constant C, independent of
Unja < CN'Uy. (5.10)
From the explicit expressiof?.9), it follows that for0 < i < N/2

Unja = UN[eib/6 +(1— eib/ﬁ)%]gm]-
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Sincer = £In N < 1, itis clear that
o b/ < e—ale — e—%lnN — Nt < N2
and so
| Uny2 |<I Un [ IN724 | oo |1
Thus, to establiskb.10), it suffices to prove that
| N <8N (5.11)

Using (5.6) in the explicit expressiofb.9) leads to

2 .

N = 5.12
But
ahs 2ot 2In N
=1l+—=1+—=1
2 * € + eN + N
and so, by Lemma.1 , it follows that
A< aNT (5.13)
Then, from the explicit expression (.9)
dy = A(AA) 2N — 1)+ (1= AN
> X1 - A"
> N1 —-2N"1h
A
> .
-2
Combining this with(5.6) gives
I\ A
— < = <2— < 4. 5.14
dy “dy S Cdy (5.14)

Using(5.13) and(5.14) in (5.12) then leads t¢5.11).1

The next lemma shows that the solutighof a discrete problem whose upwind
operator multiplied by a variable coefficient are less thiawhich produced by a discrete
problem whose upwind operator multiplied by a constant coeffigiétall i, 0 <i < N

provided that some conditions are satisfied.
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Lemma 5.5 LetU; be the solution of5.3) with Uy = e~*/Uy, and let
LN = —eD* + a;D™

and Z; be the solution of the problem

Find Z € V(ﬁiv) such that Zy = e/ Zy and Zy = Uy
and for all z; € QY (5.15)
Ui1=Us _ Ui=Ui_ Ui—Usi1 _ :
LVU; = —e(S5 = — =5 ) a5 =t =0, 1<i<N-1

where it is assumed that for all), < : < N, q; > b. Then, foralli,0 <: < N,
Z; < U;

Proof: Let &; = U; — Z;. Then, using the assumptiom, > b, foralli, 0 < i < N and

the conditionZy = Uy leads

D) = ((3_17/E — e‘“O/E)UN >0

Oy =0.
Using Lemmab.3, it follows that

(—eD? + a;D7)®; = (—eD* + a; D~ )(U; — Z;)
= (—eD? + a;D")U; — (—eD? + a; D) Z;
= —eD*U; + a; D™ U;
= —bD U; + a; DU,
= (a; — b)DU;

> 0.
By the discrete maximum principle for the finite difference operator
LN = —eD? 4+ a,D~
in the sectiorp.2, it follows that
P, >0

as requiredl
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5.2. Convergence of Fitted Mesh Methods with Regular Data

In this section, the— uniform convergence of the numerical solutions obtained
by a fitted mesh method for linear convection diffusion problem in one dimension with
smooth dataf (z) is established. The problem considered is the following second order

non self-adjoint problem with a variable coefficient.

Find u € C*(Q) such that u(0) = vy u(l) = u; (5.16)
and for all x € (), Lu= —eu'(z) + a(z)u' (x) = f(x) .

whereuq, u; are given constants, the functiomsf € 03(5) and0 < ¢ < 1. Itisassumed

furthermore that the coefficient function satisfies the condition
a(r)>a>0  for all x €. (5.17)

If the two boundary values,, andu, depend o, then it is assumed that, |,| u; | are
bounded above independentlycof

The differential operatof. defined in the problent5.16) satisfies the following
maximum principle or2, for all v € C*(Q).
Maximum Principle: Assume that)(0) > 0 and(1) > 0. Then,Ly(xz) > 0 for all
z € Q implies thaty(z) > 0 for all z € Q.
Proof: (Protter and Weienbergéps4) .l

The reduced problem corresponding to the prob{émo6) is the following first

order problem

(5.18)

Find vy € C*(Q) such that v(0) = ug
and for all x € Q, a(x)vy(z) = f(z) '

The unique solution of the proble(?.18) is

_ W0
UO(J}) = Ug +/0 %dt

and it is clear, from the assumptions@and f, that for 0 < £ < 3
| vi(z) |<C  for all x € Q.

The following lemma contains bounds on the functioand its derivatives up to

k —thorder, 0 <k < 3.
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Lemma 5.6 Let u be the solution of the proble®.16). Then, for 0 < k£ < 3,
| u®(2) |< C(1 + e Fetimm/e) for all x € Q.

Proof:The proof is by induction. A bound on the solutianof the problem(5.16) is
obtained easily from the maximum principle as follows:

Consider the functions
YE(x) = C(1+ ) £ u(x)
whereC' is a constant chosen sufficiently large that the following inequalities are fulfilled
$F(0) >0, $F(1) >0
and

L*(x) = —e(£u” (2)) + Calz) £ a(x)u (z) = L(+u(x)) + Ca(z)
= Ca(x) £ ()
> Ca+ f(x)

>0
sincea(z) > «. Then the maximum principle fak givesy*(z) > 0 and so
| u(x) |<C for all x € Q.

To obtain the required estimates of the derivatives &f more difficult. The first step is
to find the differential equation satisfied by these derivatives by differentiatimges the

original equation_u = f. This gives
Lu® = Jr

wheref, = fandfor 1 <k <3

Thus, the inhomogeneous terfinof the equation satisfied by* depends on theth and
lower order derivatives ofi and the coefficient, and on thekth order derivative off.

This observation suggests that the following induction step:
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Assume that for all j, 0 < j < k, the following estimates hold
| ul(z) |[< C(1 4 e Temo1=a)/e) for all x € Q.
From the above assumptions it is clear that
Lu® = Tk

where

| u®(z) |< C(1 + e Femeli=n)/e)
and

| ful@) [ C(1+ e Fematm0/),

In particular then
| u®(0) |< C(1 4 e Fem/¢) < O(1 4 e k1)
[uM(1) | CL+e™)

sincee e~/ < (. Define the functions

/fk: D)dt
) =~ [ ooy

whereA(z) = [ a(s)ds. Then, it follows that since!'(z) = —a(x)

LulP) () = —eulf+? (x) + a(z)u <’f“><x>
= —eh, (x)
= e e / Fe)eA0de] + a(z)0y ()
=—[- A (x)e_A(””) fk( ) Ot 4 e=A®) / fr(t) + a(x)0y(x)

= —a(@) [ f(t)e WA g — A (— £ (2)e? @) + a(z) bk (x)
= —a(x)0k(x) + fr(x) + a(x);(x)

and SOu]@’“) (x) is a particular solution of the equation
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Its general solution can therefore be written in the form
u® = u}(}k) + ul(zk)
where the homogeneous solut'rmf() satisfies
Lup? =0, i (0) =u(0) = uf?(0), (1) = (1),

Introducing the function

o(zr) = f01 o Aot
itis clear thatp(0) = 1, ¢(1) = 0 and
Lo = —¢p' () + a(x)¢ (x)

1 d.
2 A e _—Ax)/e
A e*A@)/Gdt[ eo-(—e )+ a(x)(—e )]

1 1 .
= W[—E—A (w)e A — a(z)e 40/

0 € cdt €

=0.
Thenuﬁf) is given by
up? (@) = (@®(0) — u® (0))p(x) + u®(1)(1 — p(z)).

The above leads to the following expressionddit?

uD) — u}(ok—&-l) 4 ungrl) = 0, + (u®(0) — uI(Jk)(()) — u(kz)(l))go’.
Since
—e—A@)/e

L _ €
Jy e Aw/edt

’

o () =
the upper and lower bounds @fz) lead to the estimate
| @’(x) |§ Ce—le—a(l—z)/s.
Furthermore the lower bound on the coefficier#nd the estimate fof, lead to
1 1
o) =2 [ | fult) | 40 | a
€ xr
1
< 06_1/ (1 + ¢ Femall=t/e)e—(A@=Awm) g

1
< CGl/ (1 +efkefa(lft)/e)efa(tfx)/ei
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Evaluating the integral exactly and estimating the terms in the resulting expression then

gives
| () |< C(1 + ¢ kD emali=a)/ey,
Since
1 1 1
| ul?(0) |=| — / Or(t)dt | < / | 0(t) | dt < / Ch(1+ e D emali=0/e) gy
0 0 0

1 1
— / Cldt + Cle—(k+1)6—a/5 / 6odf/e
0 0

=Ch + Cle_(kﬂ)e_a/ei(eo‘/e -1)
a

= Cl + C’1671C - 016716670[/6
S Cl + 016_k

< Ce*
the above estimates give
| D<) 0 | (] P 0) [ + [ug?(0) [+ [u® (1) ) [ ¢ ]
Thus,
| u* D 1< C(1+ 67(k+1)€fa(1fz)/e)

as requiredl

These bounds for the derivativeswofvere first obtained in Kellogg|. However,
the stronger results of ShishkjR| are required to obtain the- uniform convergence
result in this section. To find these solutiorhas to be decomposed into smooth and

singular components as follows:
U = vy + €Y1 + wo
whereuy is the solution of reduced proble(f.18), v, satisfies
Lyp=vy,  31(0) = = Mwo(0),  3(1) =0
and consequenthyy is the solution of the homogeneous problem

Lwy =0, we(0) = wo(l)e_o‘/g, wo(1) = up — vo(1).
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Since e le/c < C, and | v&(x) |[< C itis clear that] wy(0) |, | wo(1) |, | :(0) |,
| v, | are all bounded by a constant independent. of hereforey, is the solution of a

problem similar ta(5.16). This implies that for 0 < £ < 3
| ygk)(x) < C(1+ efke’a(l’“)/e) for all x € Q.

Bounds on the singular component of the solutiag, and on its derivatives are now

obtained as follows. Define the two functions
F(x) =| wo(1) | e £ wg(a).
Then, since the inequalities

E(0) =] wo(1) | e £ wp(0) =] us — vo(1) | e £ (ug — vo(1))e > >0
V(1) =| we(1) | £we(1) >0
and

age—a(l—:p)/e a
L= =] wo(1) | [-— +a(z)—e 179 >0

(& €
are fulfilled for allz € ©, the maximum principle giveg®(z) > 0 and so
| wo(x) |< Ce @0/ for all z €Q
wp can also be written in the form

wherey was defined above. Therefore

’ !

wy = (wo(0) — wo(1))p
and so
| UJE)(ZL’) |S C | (p,(m) ’S Oe—le—a(l—m)/e'

SinceLwy = 0, the second and third derivativesaf can be estimated immediately from

the estimates afy, andw,. Thus, for0 < k < 3,

| w (2) |< Ceremoti=o))e,
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Since
u® = vék) + eygk) + w((]k)
the above estimates yield, for< k& < 3, and for allz € €,

(k)

| (0 + eyt () |< (1 4 e BDemali=/ey

| w[()k)(x) |< CeFemali—o)/e

In particular, this shows that the smooth compongnt ¢y; and its first derivative are
bounded for all values of. However,y; can now be decomposed in the same manner as
wasu, leading immediately tg; = v; + ev, + wy, Where, for0 < k < 3, and for all

x €,

Combining these two decompositions gives
U=v+w
where

UV = Vg + €1 + 621)2

W = Wy + €W,
and the above results are summarized in the following theorem.
Theorem 5.7 The solutionu of the problen(5.16) has the decomposition
U=7v+w
where, for allk,0 < k < 3, and allz € Q, the smooth componentsatisfies
| v®)(2) |< C(1 + e kD emallmn)/e)
and the singular componeant satisfies
| w® (x) |§ Ce Fke—all—)/e

for some constant’ independent of.
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Proof:Sincev = vy + ev; + €2v, andw = wy + ewy,

| o® (@) |<| ol (@) | +e | o (@) | +€2 | 0§ (x) |< C1 + Cre + Cre?(1 + e Femali=al/e)

S 0(1 + E—(k—Z)e—a(l—x)/e)
and

| w® () |<] w (2) | +e |<| Wi (@) |< CreFe U0/ 4 Cpee ke aim0)/e

< Ce—ke—a(l—x)/e

as requiredl

This theorem shows that the smooth functicand both its first and second deriva-
tives are bounded for all values afwhile the singular component satisfies the same
estimate as the singular component in the first decomposition. Notice #makw satisfy

the following equations

Lv=f, v(0) = up — w(0), v(1)=u; —w(l)
Lw=0, w(0)=wl)e *
wherew(1) is chosen so that the first and the second derivativesase bounded uni-
formly in e.
The numerical method used to solel6) is the standard upwind finite difference

operator on the piecewise uniform fitted mé@ﬁ = {z;}{ condensing at the boundary

pointzy = 1. The transition parameteris chosen to satisfy
in{=, £ 1n N} (5.19)
T =1mMiny—, —In .
2"«

and it is assumed that > 4, which guarantees that there is at least one point in the

boundary layer. The resulting fitted mesh finite difference method is

Find U € V(QN) such that Uy =uy Uy = uy
and for all z; € QY . (5.20)
LNUi = —EDQUZ' +a;D"U; = fi7 1<i<N-1

The finite difference operator if%.20) is defined by

LN = —eD?* 4+ ;D™
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and it satisfies the following discrete maximum principlefgh.

Discrete Maximum Principle: Assume that the mesh functidn satisfiesv, > 0 and
Uy > 0. ThenLY¥¥; > 0for1 <i < N — 1implies that¥; > 0forall0 <i < N.
Proof. Let k& be such thatV, = min ¥; and suppose thalt, < 0. Itis clear thatt # 0
ork#1, V), — V¥, >0 and ¥, — ¥, ; <0. Therefore

Wipr =V W =Wy 1 a Uy — Uy

)=+

LNV, = —¢
g ( P D, D, hu,

<0
with a strict inequality if ¥, — W,_; < 0. But this is false and so on, leads to
\110:@1:-'-:‘Pk71:‘1jk<0

which is false. It follows thatv;, > 0 and thus thafr; > Oforalli,0 <: < N.R
An immediate consequence of this discrete maximum principle is the following

e—uniform stability result for the operatdr".

Lemma 5.8 If Z; is any mesh function such thdy = Zy = 0, then

1
| Z; |< — max | LNZ;| for 0 <i¢ < N.
o 1<j<N-1

Proof: Introduce
1 N
M=— max |L"Z;|
a 1<j<N-1
and the two mesh functions
U = Ma; + Z,.
Clearly VU = 0, 0% >0andforl <i< N —1

INVE = Ma; £ LN Z; > 0

becauses; > «. The discrete maximum principle then implies that" > 0 for
0 <14 < N and the proof is completll.

The main result of this chapter is contained in the following theorem.

Theorem 5.9 The fitted mesh finite difference meth®20) with the standard upwind

finite difference operator and the piecewise uniform fitted n§&$hcondensing at the
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boundary pointr = 1, is e—uniform for the problen{5.16) provided thatr is chosen to
satisfy the conditiori5.19) above. Moreover, the solutianof (5.16) and the solutiort/

of (5.20) satisfy the following—uniform error estimate

sup || U —u [gv< CN~'(InN)?
0<e<1 T

where C is a constant independentof

Proof: The solutionU of the discrete problem is decomposed in an analogous manner to

the above second decompositiondfl6). Thus

U=V+W
whereV is the solution of the inhomogeneous problem

LNV =f  V(0)=v(0) V(1) =0v(1)
andW is the solution of the homogeneous problem
LYW =0, W(0)=w0) W()=uw)
The error can then be written in the form
U—u=V—-v)+ (W —-w)

and so the errors in the smooth and singular components of the solution can be estimated
separately.
The estimate of the smooth component is obtained by means of the following

classical argument. From the differential and difference equations

d? d
N N N 2 —
LV —v)=f-LTv=(L-L")v=—e(-7 — D)v+al-——D")u
Using the two estimates in Lemma2 gives
| LYV = v) (i) <] e(—d2 —D*)v | +a| (—d —D7)v |
YT N da? dx

< Cre(xipr —xim) | v |3 +Co(x; — i) | v |2

< O3(@ig1 —xim1)(e | v |3+ | v ]2)
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Noting thatz,,; —z,_; < 2N ! is always true, the estimates@fandv” obtained above

then yield

| LY(V = 0)(2;) [S CuN e | v |s + | v |2)
< OUN7YCse(1 + et 10/e) 4 y(1 + e~o1-0)/e)]
= 4N [Cse + Cre 0™/ 4 C5 4 Cre o=/

<CON!
An application of Lemm&.8 to the mesh functio’ — v yields the estimate
(V= v)(z;) |< ON™? (5.21)

To estimate the singular component of the local truncation gV’ — w), the
argument depends on whether 1/2 or 7 = (eln N)/av.
In the first case the mesh is uniform afdln N)/a > 1/2. The classical

argument, used above to estiméte- v, leads in this case to
| LY (W — w)(2;) |< Claip — i) (e | w s + | w |o)
Sincer,; ;1 — x;_; = 2N ', the estimates fow” andw” lead to
| MW —w)(x;) | Ce 2N
But, in this case ™! < (2In N)/a and so
| LY (W —w)(z;) [< CN}(In N)?
An application of Lemm&.8 to the mesh functioml” — w then gives
| (W —w)(z;) |< CN"H(In N)?

In the second case the mesh is piecewise uniform with the mesh spacing
2(1 — 7)/N in the subinterval0, 1 — 7] and27 /N in the subintervall — 7, 1]. A different
argument is used to bound?” — w | in each of the subintervals.

In the subinterval with no boundary laygr, 1 — 7] both1¥" andw are small, and
because W — w |<| W | + | w |, it suffices to boundv andTV separately. Note first
that

W) _ @ol® —woD) e ()
wo(1) w() ¢ = U el = 0 and Gy
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Thus, Zg—% is positive and increasing in the interal It follows that for allz in [0, 1 —7]

wo(l —7)
U)o(l)

wo(x)
’LUO(l)

0< <
and so
| wo(z) [<[ wo(l —7) |
The same is true af; (x) and since
W = Wy + €W,
it follows that for allx € [0,1 — 7]

| w(z) [<] w(l =) |

Using the estimate given in the Theoréi for | w | and the relation = (eln N)/« it

follows that forz € [0,1 — 7]
| w(z) |< Cem=0/¢ < Cemomle = ONT!

To obtain a similar bound ofl” an auxiliary mesh function’ is defined analogously
to W except that the coefficientin the difference operatat” is replaced by its lower

bounda. Then, by Lemma.5,

| W(a) |<| W(x) | for 0<i< N
Furthermore Lemma.4 leads immediately to

| W(z;) |[KCN™Y for 0<i< N/2

The above estimates & (x;) andw(x;), for 0 < i < N/2, show that in the

interval[0, 1 — 7]
| W) — w(a:) [< CN™

On the other hand in the subintenjal— 7, 1] the classical arguments leads as

before to the following estimate of the local truncation errorfoR +1 <i < N — 1
| LY (W — w)(z;) |< Cr (g1 — zim1) (e | w |3 + [ w o)
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Usingz; 11 — x;—1 = 47/N and the estimate given in the Theorérfi for w leads to
| LYW —w)(z;) |< Ce?r N~

Furthermore

and
| W (ny2) — w(znge) [<| W(engs) |+ [ w(zys) [<ONTY
from the result just obtained in the other subinterval. Introducing the barrier function
Q= (z;— (1 —7))Cre 2rTN~ 1+ CoN !
it follows that for a suitable choice @f; andC, the mesh functions
U =0, £ (W —w)(z)
satisfy the inequalities

+
iy

Ve =0y + (W —w)(zy) = Cre 2PN+ CoNt >0

= CDN/Q + (W — U))(.TN/Q) = CQNil + (W — U))(.TN/Q) Z 0

andforN/2+1<i< N -1
LNUFE = LV, £ LYW — w)(z;) = Cre 2N ta; £ LN (W — w)(2;) > 0
The discrete maximum principle on the interyal- 7, 1] then gives
UFE >0, N/2<i<N
and it follows that
| (W —w)(z;) |< & < Cre ?>r*Nt + C,N !
But sincer = (eIn N)/« this gives

| (W —w)(;) [< CN~H(In N)*
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Combining the separate estimates in the two subintefUals— 7| and[1 — 7, 1] then

gives
| (W —w) |<CN'(InN)?  for 0<i<N (5.22)
Since
(U —ul<|V o]+ |W-w]
the inequalitieg5.21) and(5.22) then give
| (U —u)(z;) |< CN~H(InN)?

as requiredl

Example 1: We consider the following test problem

Find u € C*(Q) such that u(0) =0 u(1) =1
and for all x € Q, Lu=—eu'(z) +u'(x) =0

and estimate the — uni form error by

We compute the rate of convergence using the formula

N N
P = logy( )
2 2N
and obtain following results.
N 16 32 64 128 256 512 1024 2048 4096

nN | 1.14e-1| 6.5e-2| 3.59e-2| 1.96e-2| 1.0e-3| 5.823e-3| 3.14e-3| 1.69e-3| 9.08e-4
N 081 0.85 0.86 0.87 0.88 0.88 0.88 0.89 0.89

Example 2: We show some numerical results confirm the Theobedrfor the second

test problem
Find v € C*(Q) such that u(0) =0 u(1) =0
and for all x € Q, Lu = —eu'(z) +u'(v) = 2

The following figures contains the exact and numerical solutions and also give the error
at the discrete nodey_; for each values o when the number of mesh elements

increases.
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NUMERICAL SOLUTIONS and EXACT SOLUTIONS
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Figure 5.3. The Fitted Mesh Meth@g for N = 400, ¢ = 0.1
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NUMERICAL SOLUTIONS and EXACT SOLUTIONS
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Figure 5.5. The Fitted Mesh Meth@d for N = 400, ¢ = 0.01
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NUMERICAL SOLUTIONS and EXACT SOLUTIONS
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Figure 5.7. The Fitted Mesh Methogd for N = 400, ¢ = 0.001
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5.3. Convergence of Fitted Mesh Methods with Irregular Data

In this section, we consider the following convectiaiffusion problem with a
concentrated source and show thatuni f ormly convergent methods can be constructed

for problems with irregular data

Find v € C%(Q) such that u(0) =0 wu(1) =0 (5.23)
and for all v € Q, Lu= —eu () —bu' (z) = f(z) + 64(2) .

whered, is the shiftediirac—delta function
5d = (5(ZE - d)

with d € (0,1) and0 < e < 1. The convection coefficieritmay also have discontinuity
atx = d, but in this section we assume thats a constant satisfying > « > 0.

Alternatively to this problem, we may seek a solution which satisfies the problem

Find v € C(Q) N C?((0,d) U (d,1)) such that u(0) =0 wu(1) =0 (5.24)
and for all z € (0,d) U (d,1), Lu= —eu'(z) —bu'(z) = f(z) .

with the additional condition
—elu|(d) — [b)(d)u(d) =1

where[v](d) = v(d+ 0) — v(d — 0) denotes the jump af in = d. Sinceb is a constant,

this condition reduces

u(d™) —u'(dY) = L (5.25)

€

The equivalence of these problems can be seen by integrating the differential equation in
(5.23) fromd — etod + .

The solutionu typically has an exponential boundary layer at the outflow bound-
ary x = 0 and an internal layer at = d caused by the concentrated source or the
discontinuity of the convective field. Figube9d depicts a typical solution of the problem.

Next, we give a theorem which contains bounds on the solutioin5.23) and its

derivatives.

Theorem 5.10 Let u be the solution gf.23), then

uF(x) < C[1+ e ¥ (e 4 Hye ?@= /)] for z € (0,d) U (d,1) (5.26)
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wherek = 0, 1, ..., ¢ and H,; denotes the shifted Heaviside function,

0 for x<d
1 for x>d

Hd<l’) =

and the maximal ordeg depends on the smoothnes$ ahd f on (0, d).

Proof: (Linf3, 2002) .1
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Figure 5.9.Lu = 0,0 with b = 1 ande = 0.1

If we use again Shishkin mesh to solve the problgm3) approximately, then
construction of the piecewise uniform mesh is different from the previous one because
there are a boundary and an internal layer at 0 andx = d respectively. To construct
such mesh, choose three pointsd andd + T, this divides the domaif2 into the four

subintervals
]1:[0,7‘] IQZ[T,CZ] [3:[d,d—|—7'] [4:[d+7',1]
wherer satisfies the condition

r= min{i, gln N}. (5.27)
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0 T d d+T 1

Figure 5.10. Subdomains for the discretization of the prokeas)

The corresponding piecewise uniform mesh is established by dividing each
subintervals in the Figuré.10 into N/4 equidistant subintervals. Thus, the resulting

mesh(2. can be described by

ar o -
hi = — 1y = N for 0 <i<N/4 or N/2 <i<3N/4
# for NJ/4<i<NJ/2 or 3N/JA<i<N

It is convenient now to introduce the following notation before the discretization

of the problem(5.23)

4t 4
hl—ﬁ hg—ﬁ(d—’i')
bh bh
AM=1+— Ao =1+ —2.
€ €

Then, using the upwind operator
LN = —eD? —bD*
yields the following discretization

Find U € V() such that Uy =0 Uy =0
(5.28)

Ui —Ui  Ui—Ui_ Uipr Ui
LY = —eq (S5 — == — b(T) = it Ay

wherei =1,2,.... N — 1 and

1 y . .
ANg; = hiv1 if  d€lzitin)
0 otherwise
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is an approximation of the shifteBirac—delta function. For simplicity, sef = 0 and
d = 1/2, then combining the terms having the same indices leads to the following differ-

ence equation

hi hi ,
(_)\j)Ui—I—l + ( h+1 + /\])UvZ + (— h—ijl)Ui_l = Al/gﬂ'; 1= 1, 2, ceey N —1. (529)

whereU; ~ u(x;) for j = 1,2 andJ); is defined by

M if 1<i<N/4A or NJ/2<i<3N/4

A =
"1 x  if NMA<i<N/2 or 3N/A<i<N -1

The difference equatiofb.29) can be written explicitly as

h h e
(=A\)Unjagr + (h_2 + M)Unys + (—h—Q)UN/471 = 0; if i=N/4.
1 1
hl hl h2 . .
(_)\Q)UN/2+1 -+ (h— —+ /\Q)UN/Q + (—h—)UN/Q_l = ?; Zf 1 = N/2 (530)
2 2
h h .
(=A)Usnjag1 + (h_2 + A1) Usnya + (_h_z)USN/ZLfl =0; if i=3N/4.
1 1

(=2\)Uis1 + (1 4+ X)U; + (=1)U;—q = 0; otherwise.
Since the roots of the characteristic polynomial of the last difference equation are

rm=1 and 1ry= )\j_l,

we assume that the difference solution has the form

p

ay + ag\;’ if 0<i<N/4
ag + agAy’ if N/4A<i<N/2
vi=4 o2 foONAsisNZ (5.31)
a5+a6)\1_’ Zf N/2§Z§3N/4
| a7 +ashy’ if 3N/M4<i<N |

We have eight unknown coefficients and need to determine them in order to obtain the
difference solution exactly. The boundary conditiéfgs= Uy = 0 give us two equations

and also three equations comes from the difference equations related to the:ppdes

rn/2 andzsy/4 as they can be seen(n.9). Finally, the other three equations are obtained

by using the continuity conditions below.

a1 + asA] "Vt = ag + a\y !
as + i)y = ag + aghy ™’
as + a6)\1—3N/4 = a7+ ag)\Q_gN/4.
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The resulting system of equations is given in the matrix form as follows:
LA=B

The matrices in this system are given by

[ 1 1 0 0 0 0 0 0 |
1 e —1 — Ky ! 0 0 0 0
Moo= X)) =N —Ky k3 0 0 0 0

I 0 0 1 Ky —1 —kp 2 0 0

0 0 Ao Ky2(1—A) =X —K %Rzt 0 0
0 0 0 0 1 Ky —1  —ry?
0 0 0 0 DV € D VS B S o

| 0 0 0 0 0 0 1 Ryt

h
A:[(Zl ag a3 a4 as Aag ar CLg]T B:[OOOO—OOO]T
€

wherer; = AM* | ky = AY/* andk; = M A;'. We solve this system and obtain the
following solutions

h

2
a1 — —HR1R2K3 o = —aq
n
o h2 . hg 2
as = —(—kak3 + K1KaoK3 + K2) ay = ——K;
h2 h2 3
as = ——(1 — Ko + KaK3) ag = —K]KaK3
n
h2 h2 4
a7y = —— ag — —I€2
n

N

wheren = e(A\; — 1)(1 + AY*A)*). To complete the solution we substitute these coeffi-

cients into the solution forn.31). This results in

};—2&1&2&3(1 — A9 if 0<i<N/4
U — %(/{1/@/{3 + Ko — Kokg — )\Q_HN/Q) if N/4<i<N/2 (5.32)
%(/ﬂz—fsg/{g—1+/§2/<3Afi+3N/4) if N/2<i<3N/4
| BT if 3NJA<i<N |

and the solutions u f5.23) and U of(5.28) satisfies the following error estimate in the

discrete maximum norm.
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Theorem 5.11 The finite difference methdd.28) with the piecewise uniform fitted mesh
QN is e—uniform for the problent5.23) provided thatr is chosen to satisfy the condition
(5.27) above. Moreover, the solutianof (5.23) and the solutiorU of (5.28) satisfy the

following e—uniform error estimate

sup || U —u [[gn< CN'lnN
0<e<1 T

where C is a constant independentof

Proof:(Lin8, 2002) .1
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CHAPTER 6

CONCLUSION

In this thesis, we mainly investigated the numerical methods which
are ¢ —uniform on both equidistant and nemequidistant meshes for the
convection-diffusion problem. We observed that the centered and upwind finite
difference method are net— uniform. That led us to obtain the numerical methods
which aree — uni formly convergent. In order to achieve it we use either a fitted operator
method or a fitted mesh method. We started with derivation of-HAtlen—Southwell
method as an example of fitted operator methods on equidistant meshes and saw that
it is first—order uniformly convergent in the discrete maximum norm. But, since it
is based on the exact solution of the problem, we tend to study on the other ideas to
construct are — uni form method which is not based on the exact solution. Thus, we
used Shishkin mesh, because of its simplicity, to construct a method as an example of
fitted mesh methods. In the last chapter, we considered the problem in two cases to
develop a more efficient method as a further aim. First, we considered a problem with
regular data and proved that the resulting method using upwind operator on Shishkin
mesh ise — uniform. Then, we studied on a problem which has an irregular data and
used again Shishkin mesh. We gavesanuni form error estimate for this method. We
have observed that theoretical findings are compatible with the numerical results for each
methods.

We intend to study on a more efficient method by using the facts obtained in the
last chapter as a future work. We will try to approximate the local Green’s function and

assemble the resulting solutions into the difference equation discussed in the @hapter
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APPENDIX A

MATLAB CODES

EXACT SOLUTION FOR SEVERAL VALUES OF

% This program plot the figure in Chapter 2 FIGURE 2.1
function chp2(b,U0,Ul) el=1 ; e2=.1 ;
e3=.01 ; e4=.001; x=0:0.01:1;
Y1=UO0+[(U1-U0)/(1-exp(-b/el))]
*[exp((-b  *(1-x))/el)-exp(-b/el)];
Y2=U0+[(U1-U0)/(1-exp(-b/e2))]
*[exp((-b  *(1-x))/e2)-exp(-b/e2)];
Y3=UO0+[(U1-U0)/(1-exp(-b/e3))]
*[exp((-b  *(1-x))/e3)-exp(-b/e3)];
Y4=UO0+[(U1-U0)/(1-exp(-b/e4))]
*[exp((-b  *(1-x))/ed)-exp(-b/ed)];
plot(x,Y1,x,Y2,x,Y3,x,Y4) xlabel(’x axis’);
ylabel('y axis’);

CENTERED DIFFERENCE METHOD IN CHAPTER

% This program solves the convection diffusion problem below
% approximately using centered difference method on a
% uniform mesh.

% -eUxx + bUx = 0 on (0,1)

% U(0)=U0 and  U(1)=UN

% where e and a given constant

% N: the number of mesh elements

function chp3CENT(N,e,b,U0,UN)

% h denotes the width of the mesh elements

h=1/N;

% k1,k2 and k3 denotes the coefficients of the
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% algebraic equation
% produced by centered difference method
kl1=-1-h/(2 *e); k2=2; k3=-1+h/(2 *e);
% x(i) denotes the grid points
X(1)=0; x(N+1)=1; for i=2:N
x(i)=x(i-1)+h;
end
%%%% COMPUTATION OF THE EXACT SOLUTION %%%%%
for i=1:N+1
U(i)=U0+[(UN-UO0)/(1-exp(-b/e))]
*[exp((-b *(1-x(i)))/e)-exp(-b/e)];

end

%%%% COMPUTATION OF THE NUMERICAL SOLUTION %%%%%
A=zeros(N-1); S=zeros(N-1,1); B=zeros(N-1,1); for i=1:N-1
for j=1:N-1
if ==
A(i,))=k2;
elseif i-1==j
A(i.j)=K1;
elseif i+1=5j
A(1,j)=k3;
else A(i,j)=0;
end
end
end for i=1:N-1
if i==N-1
B(i)=-k3;
else B(i)=0;
end
end S=A\B; s(1)=UO0O; s(N+1)=UN; for i=2:N
for =1:1
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s(i)=S(i-1.,j);
end
end plot(x,s,’ *-" x,U,’-") xlabel(’x axis’);
ylabel(CENTERED and
EXACT SOLUTIONS);

UPWIND DIFFERENCE METHOD IN CHAPTER

% This program solves the convection diffusion problem
% below approximately using upwind difference method
% and centered difference method on a uniform mesh.
% It gives both the centered difference solutions and
% upwind difference solution on the same window with
% the exact solution.
% -eUxx + bUx = 0 on (0,1)
% U(0)=U0 and  U(1)=UN
% where e and a given constant
% N: the number of mesh elements
function chp3UPW(N,e,b,U0,UN)
% h denotes the width of the mesh elements
h=1/N;
% k1,k2 and k3 denotes the coefficients of the
% algebraic equation
% produced by upwind difference method
kl=-1-h/e; k2=2+h/e; k3=-1; pl=-1-h/(2 *e);
p2=2; p3=-1+h/(2 =*e);
% x(i) denotes the grid points
X(1)=0; x(N+1)=1; for i=2:N

x()=x(i-1)+h;
end
%%%%% COMPUTATION OF THE EXACT SOLUTION %%%%%
for i=1:N+1

U(i)=UO0+[(UN-U0)/(1-exp(-b/e))]

*[exp((-b  *(1-x(i)))/e)-exp(-b/e)];
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end

%%%% COMPUTATION OF THE NUMERICAL SOLUTION
Al=zeros(N-1); Sl=zeros(N-1,1); Bl=zeros(N-1,1);
A2=zeros(N-1);

S2=zeros(N-1,1); B2=zeros(N-1,1);

for i=1:N-1
for j=1:N-1
if i==
Al(i,j)=k2;
elseif i-1==]
Al(i,j)=Kk1;
elseif i+1=5j
Al1(i,j)=k3;
else Al(i,))=0;
end
end
end for i=1:N-1
if i==N-1
B1(i)=-k3;
else B1(i)=0;
end
end S1=A1\B1; s1(1)=UO0O; s1(N+1)=UN; for i=2:N
for j=1:1
s1(i)=S1(i-1,));
end

end

for i=1:N-1
for j=1:N-1

%%%%
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if i==
A2(i,j)=p2;
elseif i-1==j
A2(i,j)=p1;
elseif i+1==j
A2(i,j)=p3;
else A2(i,j)=0;
end
end
end for i=1:N-1
if i==N-1
B2(i)=-p3;
else B2(i)=0;
end
end S2=A2\B2; s2(1)=UO0; s2(N+1)=UN; for i=2:N
for j=1:1
s2(i)=S2(i-1,));
end

end

plot(x,s1, * -’ X,82,'0-",x,U,’-") xlabel(’x axis’);
ylabelC(UPWIND-CENTERED-EXACT’);

II'N —ALLEN —SOUTHWELL METHOD IN CHAPTER4

% PRODUCES FIGURE (4.1), (4.3) and (4.5)
% This program solves the convection diffusion
% problem defined below

% using The Il'in-Allen-Southwell Method.

% -epsU” + bU = x on (0,1)

% U(0)=0 and  U(1)=0

% where eps and b given constant

% N: the number of mesh elements

function chp4alt(N,e,b)
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%SOME COEFFICIENTS and PARAMETERS TO CALCULATE

%THE DIFFERENCE SOLUTION

h=1/N; qgq=(b =*h)/e; kl=-(1-exp(-q))/(1-exp(-2
k2=-(exp(a)-1)/(exp(2 *q)-1);

k3=[(h/b)  * (1-exp(-a))l/(1+exp(-q));

% DEFINITION OF THE DISCRETE NODES
X(1)=0; x(N+1)=1; for i=2:N, x(i)=x(i-1)+h;end;

% COMPUTATION OF THE EXACT SOLUTION
for i=1:N+1, U(i)=x(i)"(2)/2+e * X(i)-(e+1/2)
[(exp((-b  *(1-x(i)))/e)-exp(-ble))/(1-exp(-b/e))];
end;

%COMPUTATION OF THE NUMERICAL SOLUTION

for i=1:N-1
for j=1:N-1
if i==
A(i.j)=1;
elseif i-1==]
A(1,j)=k1;
elseif i+1=5j
A(i.))=k2;
else A(i,j)=0;
end
end
end for i=1:N-1
for =11
B(i.j)=x(i) *K3;
end
end S=A\B; s(1)=0; s(N+1)=0; for i=2:N
for =1:1

*0));
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s(i)=S(i-1,));
end

end

% ERROR BETWEEN NUMERICAL AND EXACT SOLUTION
%E=abs(s-U);

plot(x,s,’0’,x,U,".-") xlabel(’x axis’);

ylabel(NUMERICAL and EXACT

SOLUTION);

%pause

%plot(x,E,".-")

%xlabel(’x axis’); ylabel(Error’);
II'IN —ALLEN —SOUTHWELL METHOD IN CHAPTER4

% PRODUCES FIGURE (4.2), (4.4) and (4.6)

% This program solves the convection diffusion problem

% defined below

% using The Il'in-Allen-Southwell Method on a uniform mesh
% -epsU” + bU = x on (0,1)

% U(0)=0 and  U(1)=0

% where eps and b given constant

% N: the number of mesh elements

function chp4alt2(e,b)

N(1)=20; for k=1:20 N(k)=N(1)+(k-1) * 20;

% SOME COEFFICIENTS and PARAMETERS TO CALCULATE
% THE DIFFERENCE SOLUTION

h=1/N(k); g=(b  *h)/e kl=-(1-exp(-q))/(1-exp(-2 *())
k2=-(exp(q)-1)/(exp(2 *0)-1);

k3=[(h/b)  * (1-exp(-a))l/(1+exp(-a));

%DEFINITION OF THE DISCRETE NODES
X(1)=0; x(N(k)+1)=1; for i=2:N(k), x(i)=x(i-1)+h;end;
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clear A clear S clear B clear s clear U

%COMPUTATION OF THE EXACT SOLUTION

for i=1:N(k)+1,
U(@i)=x(i)"(2)/2+e * X(i)-(e+1/2) *

[(exp((-b  *(1-x(i)))/e)-exp(-ble))/(1-exp(-b/e))];
end;

%COMPUTATION OF THE NUMERICAL SOLUTION

clear A clear S clear B clear s

A=zeros(N(k)-1); S=zeros(N(k)-1,1); B=zeros(N(k)-1,1);

for i=1:N(k)-1

for j=1:N(k)-1

if i==j

A(i,j)=1;
elseif i-1==j
A(i,j)=K1;
elseif i+1==j
A(i,j)=k2;
else A(i,))=0;
end
end
end for i=2:N(k)
for j=1:1
B(i-1,j)=x(i) *k3;
end
end S=A\B; s(1)=0; s(N(k)+1)=0; for i=2:N(k)
for j=1:1
s(i)=S(i-1.,j);
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end

end

%%%% ERROR AT THE LAYER %%% %%
E(k)=abs(s(N(k))-U(N(k)))

end

plot(N,E,".-")

xlabel((N)The Number of Mesh Elements’);
ylabel(Error--->');

FITTED MESH METHOD IN CHAPTER5 (Examplel)

% This program solves the boundary value problems

% defined below

% using difference operators on a fitted mesh.

% -eps*u” + ¢ *u =0 on (0,1

% u(0)=0 and u(l)=1

%

% N denotes the number of elements

function upws2(c,N) format long g for j=1:10
eps(j)=10"(-j+1);

clear x ye mu fi yds

%Boundary conditions
u0=0; ul=1;

% tau: the transition parameter
% hl and h2: the width of the fine and coarse mesh

% elements

tau=min(1./2.,eps(j) * log(N)/c); h2=2 *tau/N; h1=2

if
(h1<l.e-14) | (h2<1l.e-14)

(mesh is too small’)

* (1.-tau)/N;
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stop
end L1l=1+c *~hl/eps(j); L2=1+c *h2/eps(j); LB=(L1+L2)/2;

% x(i) denotes the grid points

X(1)=0; x(N+1)=1.; for i=2:N/2+1, x())=x(i-1)+h1;
end; for

iI=N/2+2:N, X()=x(i-1)+h2; end,;

%plot(x,’-');

%%%%0%0%%%%%%0%0% %% %%0%0% %% %% %% %% %% %% %% %% %% % %% %% %%
%Solution of three-point difference equation
muN2=(L2)"(-N/2)  *L1*(1-L1°(-N/2)) nuN2=LB *(1-L2°(-N/2)) dN
=(muN2+nuN2); (L1°(N/2)-1) for i=1:N/2+1

mu(i)=(L2)"(-N/2) * L1 (L17(i-1-N/2)-(L1)"(-N/2));

fi(i)=mu(i)/dN;

yds(i)=uO+(ul1-u0) *fi(i);
end for i=N/2+2:N+1

nu(i)=LB *(1-L2"(i-1-N));

psi(i)=nu(i)/dN;

yds(i)=ul+(u0-ul) * psi(i);

end

%%%% %% % %% % %% % %% % %% % %% %% %% % %% % %% % %% % %% % %% % %
%Compute the Exact solution at grid points
for i=1:N+1
ye(i)=u0+[(ul-u0)/(1-exp(-c/eps())))] *
[exp((-c  *(1-x()))/eps(j))-exp(-cleps())];
end
ER(j))=max(abs(ye-yds))
end
maxER=max(ER)

FITTED MESH METHOD IN CHAPTERS (Example2)
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%
%
%
%
%
%
%

This program solves the convection diffusion problem
using upwind difference operators on a piecewise
uniform meshes.

-eUxx + bUx = x on (0,1)

U(0)=0 and U(1)=0

where e and a given constant

N: the number of mesh elements

function chpb5alt(N,e,b)

%
%
%
%

T denotes the transition parameter
hl and h2 denote the width of the fine and coarse
mesh elements

L1 and L2 are parameters related to the discrete problem

N(1)=N; for k=1:20 N(K)=N(1)+(k-1) * 20;

T1=[e *log(N(K))]/b; T=min(1/2,T1); h1=(2 * (1-T))IN(K);
h2=(2 * T)IN(K);
h3=(h1+h2)/2; L1=1+(b  =hl)le; L2=1+(b =*h2)/e; L3=(L1+L2)/2;

%

x(i) denotes the discrete nodes

X(1)=0; x(N(k)+1)=1;

for i=2:N(k)

if i<=N(k)/2+1
X()=x(i-1)+h1;
else x(i)=x(i-1)+h2;

end

end

clear U clear S clear B clear s clear Y
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%%%% COMPUTATION OF THE EXACT SOLUTION %%%%

i=L:N(k)+1;
U(i)=x(i)-[exp((-b * (1-x(i)))/e)-exp(-b/e)]/(1-exp(-b/e));

%%%% COMPTATION OF THE NUMERICAL SOLUTION %%%%
pl=-L1;p2=(1+L1); p3=-1; p4=-L3; p5=(h1/h2+L3);
p6=-h1/h2; p7=-L2;

p8=1+L2; p9=p3; pl0=h1l"(2)/e; pll=h2°(2)/e; pl2=hl * h3/e;

for i=1:N(k)-1
for j=1:N(k)-1

if i<N(k)/2 && i==]
Y(i.)=p2;

elseif i<N(k)/2 && i-1==j
Y(i.j)=p1;

elseif i<N(k)/12 && i+1==j
Y(i.))=p3;

elseif i==N(k)/2 && i==j
Y(i.))=p5;

elseif i==N(k)/2 && i-1==j
Y(i.))=p4;

elseif i==N(k)/2 && i+1==j
Y(i.))=p6;

elseif i>N(k)/2 && i==j
Y(i.))=p8;

elseif i>N(k)/2 && i-1==j
Y(i.)=p7;

elseif i>N(k)/2 && i+1==]
Y(i.)=p9;

else Y(i,))=0;

end
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end
end for i=1:N(k)-1
for =1.1
if i<N(k)/2
B(i.j)=x(i) *pl0;
elseif i==N(k)/2
B(i.j)=x(i) *pl2;
elseif i>N(k)/2
B(i.j)=x(i) *pll;
end
end
end S=Y\B; s(1)=0; s(N(k)+1)=0; for i=2:N(k)
for =11
s(i)=S(i-1.,j);
end
end
%%%% ERROR AT THE BOUNDARY LAYER %%%%
E(k)=abs(s(N(k))-U(N(k))); end plot(N,E,".-")
xlabel('(N)The Number

of Mesh Elements’); ylabel(’Error--->’);
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