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ABSTRACT 

 

POLARIZATION EFFECTS OF NONSPHERICAL SCATTERERS IN 

DIELECTRIC OPTICAL FILM 

 

Polarization enhancement in liquid crystal display (LCD) backlighting systems 

comprises important part of works on improvement of the brightness. Optical films 

containing scatterer particles are used in these systems. Therefore, dielectric scatterer 

particles are greatly needed to be analyzed for their optical scattering properties, and 

especially for polarizing effects. 

Depending on the sizes relative to the wavelength and the shape of the particles 

various computation approaches have been developed based on electromagnetic 

scattering theories such as Mie scattering, T-matrix methods etc... Simulation programs 

of these approaches have been examined and applied for spherical and nonspherical 

particles. In general, for the particles those a few times large in size compared to the 

incident wavelength, the polarization differentiation is insignificant for a spherical 

particle compared to a spheroid one. And, the prolate spheroids with higher aspect ratio 

have been able to produce most significant differentiating figures.  

Polarization measurements have been carried on commercially available 

dielectric optical films of two different set and also on the films with/without 

nonspherical zeolite particles prepared in the laboratory. Since the commercial films 

consist of spherical scatters, they show no polarization discrimination at all. On the 

other hand existence of zeolite particles in the film resulted in significant polarization 

discrimination at forward scattering angle.  

The results for polarization discrimination properties of the prolate spheroid 

particles have been compared with the spherical ones. Consequently, the discrepancy 

induced on the polarization that way has a good potential to be used in improvement of 

the brightness. 
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ÖZET 

 

D�ELEKTR�K OPT�K F�LM �ÇER�S�NDEK� KÜRESEL OLMAYAN 

SAÇICILARIN POLAR�ZASYON ETK�LER� 

 
Likit kristal ekran (LCD) gibi birçok görüntüleme sisteminde kullanılan arkaı�ık 

ünitelerinde polarizasyonu arttırma çalı�maları, parlaklık seviyesini iyile�tirme çabaları 

içinde çok önemli bir yer tutmaktadır. Bu nedenle, içerisinde veya üzerinde saçıcı 

partiküllerin bulundu�u optik filmlerin polarizasyona etkisinin çok iyi incelenmesi 

gerekmektedir. 

Farklı biçim ve boyutlara (dalgaboyuna göre) sahip partiküllerin saçılma 

hesaplamaları için elektromanyetik kuramı esaslı çok iyi bilinen (Mie kuramı, T-Matris) 

birçok yakla�ım geli�tirilmi�tir. Bu yakla�ımları kullanan benzetim programları 

incelendi, en uygun biçim ve boyutun bulunması için kullanıldı. Dalgaboyunun bir kaç 

katı büyüklükte olan partiküller ileri yönde saçılma yaparken dar bir saçılma açısı 

içerisinde polarizasyon ayrı�ması yapabilmektedir. Bu uygulama açısından gerek 

duyulan bir durumdur. Genel olarak küresel saçıcılar simetri nedeniyle polarizasyon 

ayrı�ması yapamaz, ancak küresel olmayan, küremsi partiküller bunun tam tersi bir 

özellik gösterebilmektedir. Yayvan küremsi partiküller yüksek boyut oransalıyla en 

fazla polarizasyon ayrı�ması göstermektedir. 

Polarizasyon karakterizasyon ölçümleri, standart olarak bulunan iki farklı sete 

ait optik filmler için gerçekle�tirilmi�tir. Küresel saçıcıların bulundu�u bu filmlerde 

hiçbir polarizasyon ayrı�ması gözlenmedi. Ayrıca içerisinde zeolite (küresel olmayan 

saçıcı) bulunan ve bulunmayan optik filmler üzerinde yapılan ölçümler, ileri yönde 

saçılmalarda önemli bir polarizasyon farklıla�ması oldu�unu göstermi�tir. 

Dielektrik yayvan küremsi saçıcıların polarizasyon ayrı�tırma özelli�i küresel 

saçıcılarınki ile kar�ıla�tırıldı. Polarizasyonda olu�an bu farklıla�ma parlaklık de�erini 

artırmak amacıyla kullanılma potansiyeline sahiptir.  
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CHAPTER 1 

 

INTRODUCTION 

 

Various organic and inorganic materials that showing very diverse optical 

properties have been studied and used in industries related to electronics, optics and 

photonics. Optical thin films as a specialized area find many application opportunities in 

display technologies due to their optical properties those can be altered via infinite 

chemical compositions and morphological structures. Changes induced by optical thin 

films on the polarization properties of an incident light wave depend on morphological 

asymmetry in the structure of the film. This anisotropic structure can change the 

orientation and the polarization state of passing light waves according to purpose. There 

exist many aspects in investigations of light-scattering and polarization properties of 

surfaces and thin films. Mathematical modeling of single scatter and polarization 

properties of the film obtained by these scatters are computational side of the research 

interest. On the other hand production of those polymeric films with suitable scatter 

geometry is another side but not considered in this thesis. Only a few polymeric films 

developed in Chemical Engineering Department with zeolites and commercially 

available ones are tested for polarization characterization. 

Diffuser polymeric films and plates used in most liquid crystal display (LCD) 

backlighting systems have been employed for controlling the unpolarized or partially 

polarized light generated by CCFLs (Cold Cathode Fluorescent Lamb) in order to 

obtain a uniform light intensity (brightness) distribution. This intensity distribution 

should also be uniform in spectral domain for visible range. Moreover, the intensity 

distribution should be within an angle defined by the viewer which is called viewing 

angle. Favored polarization state might be desired in some cases for further increase in 

brightness by recycling orthogonal polarization state instead of wasting this as in usual 

classical systems. In general the films are made of polymeric substrate with various 

scatters which may vary in size, shape and optical properties, namely refractive indices. 

Typically, the diffusing films contain spherical scatters either on the surface or in the 

substrate that show no polarization effect due to symmetric structure. In this study, 

polymeric diffusing films having dielectric nonspherical (spheroid) scatters which are 

expected to show high polarizing discrimination property. Especially those films having 
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scatters 4-5 times large in size compared to the wavelength will be investigated for 

brightness enhancement purposes, at the same time keeping the uniformity at the 

acceptable level. The sizes of the scatters are dictated and required by forward scattering 

needs such as that the most of the light should be within forward direction. Light 

scattered by the substrates consisting of dielectric particles with sizes significantly 

larger than the wavelength exhibit also a polarization discrimination at small scattering 

angles (Yevgen et al. 2006) which is very suitable with the requirement of diffusing 

optical films in display technology applications. 

Theoretical background for polarization optics is given in Chapter 2. Polarized 

or partially polarized light can be represented by vectors (Jones and Stokes vectors) and 

propagation of these vectors for the given medium is characterized by 2x2 or 4x4 

matrices. When polarized light is incident on a sample at an oblique angle of incidence, 

the light scattered by this sample has a polarization that dependent upon the optical 

properties of scattering sources and observation angle. Electromagnetic theory aspects 

of polarization and polarizing devices with special properties are also placed in this 

chapter. 

In Chapter 3, the polarization properties of the scatters are investigated. General 

scattering analysis of spherical scatters is introduced and mathematical model of Mie 

scattering based on stokes vector representation is explained. Mie theory is a complete 

mathematical-physical theory of the scattering of electromagnetic wave by 

homogeneous spherical particles in a non-absorbing medium. The computational 

approach exploited in a number of simulation programs is detailed and some results of 

which will be used for comparison with nonspherical particle case are presented in 

intensity and scattering angle graphics.  

Chapter 4 concentrates on nonspherical geometries of particles, such as 

spheroids and ellipsoids. Scattering by dielectric particles displays a significant 

dependence on shape of particle. Although Mie theory embraces all possible ratios of 

the particle radius to wavelength of incidence light, the theory is restricted to spherical 

particles and it is not convenient to use in nonspherical particles used in this study. 

More advanced scattering theories have been developed after Mie theory for the 

analyzing scattering properties of nonspherical particles. A number of methods 

developed for arbitrarily shaped particles can be classified into two groups: Volume 

base methods generally used for the inhomogeneous particles and surface base methods 

those sufficient to analyze scattering from homogeneous ones. The execution time of 
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the scattering codes based on volume base methods is rather long since the whole 

volume of a particle is needed to be analyzed. In this study, Chapter 4 describes a 

surface base technique called T-matrix method, for computing electromagnetic 

scattering by single, homogenous, and arbitrarily shaped particles. It is considered of 

advantage to perform scattering computations since all information on the polarization 

scattering effects is included in the T-matrix. The simulation results obtained from 

scattering software based on T-matrix method are also included in this chapter. 

In chapter 5, polarization properties of commercially available optical films for 

two different sets of backlight units are experimentally investigated. Also, polarization 

properties of a dielectric optical film deposited with zeolites particles are measured in 

our optical laboratory. Measurements for polarization properties of light and 

characterization of the medium can generally be done by an ellipsometer. Since, our 

experimental works require measurements in small angle of deviation (scattering angle) 

a simple set-up at two wavelengths (632.5 nm and 542 nm) is used with necessary 

optical detectors and components to measure polarization coefficient as explained in the 

chapter. 

Chapter 6 completes with a discussion on how a spheroid particle can help to 

improve brightness of the display system in comparison with a spherical particle. 

Polarization characteristics of optical films containing zeolite particles are also 

discussed and commented for feedback on further studies in production method.   
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CHAPTER 2 

 

POLARIZATION OF LIGHT 

 

2.1. Introduction 

 

Polarization is one property of light waves which can be described by classical 

electromagnetic theory. Light have both particle-like and wave-like properties. 

Polarization deals with the wave-like properties of light.  

Electromagnetic waves have both electric and magnetic fields denoted as E and 

H, respectively. Both are functions of time and space. They are complex and have real 

and imaginary parts.  

The flow of Electromagnetic energy is given by the Poynting vector S: 

 

 ( )HES ×=
4�

c
   (2.1) 

 

The direction of energy flow (polarization) is determined by the S vector. The 

direction of S vector is orthogonal to both E and H according to the (2.1). Polarization 

effects are related to the E vector. That is, the plane of polarization is defined as the 

plane in which the E vector is oscillating.  

 

2.2. State of Polarization 

 

Each vibrating atom or molecule emits linearly polarized light. But the 

individual atoms or molecules generally may not act together, so their vibrations have 

no fixed phase relationships and cannot be added into a single linearly polarized beam. 

Thus, we must call light from natural sources such as the sun, a candle flame, or an 

electric light bulb unpolarized.  

In an unpolarized light beam, the E vector vibrates in all directions 

perpendicular to the direction of propagation. If a snapshot is taken at a particular 

instant of time, different parts of the beam will have E vectors vibrating with different 
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amplitudes and phases at different angles to each other, but all in a plane perpendicular 

to the direction of propagation as shown in Fig.2.1. 

 

  

  

 

 

Real part of a homogeneous harmonic plane wave can be defined as shown in 

Equation (2.2) where r(x, y, z) is a position vector of a point in space and k(kx, ky, kz) a 

unit vector in a fixed position. 

 

 �
�

�
�
�

�
+�
�

	


�

�
−= �

c
tv2�cosEt)(r, 0

r.k
E  (2.2) 

 

Waves can be combined by conventional vector addition methods. So the E 

vector can be separated into two components (Such as Ex and Ey) in mutually 

perpendicular directions that are vibrating in phase. For a monochromatic plane wave 

traveling in the z direction with frequency �  and velocity c, the x and y components of 

the wave are, 

 

 �
�

�
�
�

�
+�
�

	


�

�
= x0x �

c

z
-tv2�cosExE  (2.3a)  

  

 �
�

�
�
�

�
+�
�

	


�

�
= y0y �

c

z
-tv2�cosEyE  (2.3b) 

 

 ŷx̂t)(z, yx EEE +=   (2.3c) 

 

where x� and y�  are the phases respectively. Using conventional vector addition 

methods, the resultant electric field vector E will trace out an ellipse (see Fig. 2.2) that 

is perpendicular to the wave vector k,  

 

Figure 2.1. Unpolarized light 
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where the phase difference xy ��� −= . The intensity I is determines by the size of the 

ellipse as the equation below where η is the impedance of the medium. 

 

 )/2�E(EI 2

0y

2

0x +=   (2.5) 

  

  

 

 

 

 

 

 

 

The state of polarization is, related to shape of the ellipse (Saleh 1991) 

determined by the ratio E0y /E0x and the phase difference� . Generally, at a particular 

time t, E follows a trajectory according to Equation (2.4) lying on the surface of an 

elliptical cylinder.  

A particular light wave can be referred in terms of its specific state of 

polarization. Linearly polarized or plane-polarized light is said to be in a P-state and 

right- or left-circular polarized light is referred as R- and L-state, respectively.  The 

condition of elliptical polarization corresponds to an E-state. 

 

2.2.1. Linearly Polarized Light 

 

For linearly polarized light, if a snapshot of a light beam is taken at a particular 

instant, the E vector will be vibrating at a certain angle in the x–y plane. As time or 

position varies, the amplitude of the E vector will vary in a sinusoidal manner, but the 

vibration will remain at the same angle in the x–y plane. Whit this point of view if one 

of the components vanishes, the light is linearly polarized in the direction of the other 

Figure 2.2. Polarization ellipse 
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component. The wave is again linearly polarized if the phase difference  m�� = for 

(m=0, ± 1, ±2…) since (2.3) gives 

 

 xy EE
0x

0y

E

E
±=   (2.6) 

 

which is the equation of a straight line (the + sign correspond to � = 0 and – sign to 

� = 1)�(2m + ). For 0E0y =  or 0E0x =  the plane of polarization is the x-z plane and y-z 

plane respectively. If � = 1)�(2m +  and 0x0y EE = , the plane of polarization will have an 

angle 45
0 with the x axis. Fig. 2.3 shows the wave representations of the linearly 

polarized light where 0E0y = .  

         

2.2.2. Circularly Polarized Light 

 

For circularly polarized light, if a snapshot of a light beam is taken at a 

particular instant, the E vector sweeps out a circle in the x–y plane. In this case phase 

difference � = �/2±  and the two components Ex and Ey have the same amplitude 

0x0y EE = = E0, so (2.3) gives 

 

 �
�

�
�
�

�
+�
�

	


�

�
= x0 �

c

z
-tv2�cosExE  (2.7a)  

  

 �
�

�
�
�

�
+�
�

	


�

�
±= y0 �

c

z
-tv2�insEyE  (2.7b) 

 

 

 Figure 2.3. An illustration of a linearly polarized light wave where 0E0y =  
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from the circle equation that 2

0

2

y

2

x E=+ EE . In circular polarization state the elliptical 

cylinder in Fig. 2.1 becomes a circular shape as illustrated in Fig. 2.4.  

 

 

 

 

 

 

 

 

In the case� = �/2+  the electric field at a particular position z vibrate in a 

clockwise direction when viewed from the direction toward which the wave is 

approaching. Then the light is said to be right circularly polarized. The other case 

� = �/2−  corresponds to left circularly state with counterclockwise rotation.  

 

2.3. Matrix Representations of Polarization 

 

In order to characterize the propagation of light and the effect of optical devices, 

several matrix methods have been developed (Born and Wolf 1986). In optical systems, 

generally there exist an incident beam (in matrix form) and a device (also in matrix 

form) that alters the state of polarization of the incident beam. The exiting beam will be 

in another state of polarization and also expressed with a third matrix, as product of the 

first and second matrices. The most common matrix representation methods are the 

Jones calculus and the Mueller calculus. 

There is also a visual method called Poincare´ sphere on which vectors represent 

different states of polarization. 

 

2.3.1. The Jones Vector 

 

The Jones vector, developed by Clark Jones in 1941, is a two-component 

column vector that contains information about the amplitude properties of the beam. 

y

x

z
x

    y

Figure 2.4. Circular polarization 
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The Jones calculus is more convenient to handling the phases of light wave problems. 

The Jones vector cannot be used to handle polarization problems (Guenther, 2005). 

The general form of the Jones vector is: 

 ��
�

	



�

�
=

B

A
J     (2.8) 

 

The normalized vector is the terms contained within the bracket, each divided 

by 21 .  

A monochromatic plane wave describing in (2.3) is can be completely 

characterized by the complex envelopes Ax and Ay:  

 

 )exp(j�EA x0xx =    (2.9a) 

 

 )exp(j�EA y0yy =    (2.9b) 

 

It is convenient to write this complex representation with respect to Jones vector as 

 

 ��
�

	



�

�
=

y

x

A

A
J   (2.10) 

 

According to (2.10), the total intensity I and the state of polarization ellipse can 

be determined by using (2.11) and (2.12) respectively. 

 

 
( )

2�

AA
I

2

y

2

x +
=    (2.11) 

 { } { }xyxy

x

y

0x

0y
Aarg-Aarg�-��  and  

A

A

E

E
===   (2.12) 

 

Some examples of Jones vectors representing some special polarization states 

are shown in Table 2.1.  
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Table 2.1. Jones vectors for different states of polarizations 

 

Linearly polarized 
wave making 
angle � with x axis 
 
 
 
 
 
 
Linearly polarized 
wave, in x 

direction 
 

 

��
�

	



�

�

sin�

cos�
 

 

 

 

 

��
�

	



�

�

0

1
 

�

�

�

�

�

 

 

Right circularly 

polarized wave 
��
�

	



�

�

j

1

2

1
 

�

�

 

Left circularly 

polarized wave 
��
�

	



�

�

− j

1

2

1
 

�

�
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2.3.2. Stokes Vector and Mueller Matrix Representation 

 

Stokes vector is a 4 x 1 vector, determined by a set of six intensity 

measurements recorded through a set of various polarizing filters. It is a representation 

of the polarization state of light. It can be shown as below column matrix: 

 

 

��
�
�
�

�

	











�

�

−

−

−

+

=

��
�
�
�

�

	











�

�

=

LR

MP

YX

YX

II

II

II

II

V

U

Q

I

S   (2.13) 

 

where the subscripts X, Y, P, M, R, and L stand for horizontal linear, vertical linear, 

+45
o linear, -45

o linear, right circular, and left circular states of polarization, 

respectively. I is the intensity after the respective polarizing filters. ∗= xxx EEI  and 

∗= yyy EEI  are used instead of I and Q in an alternative system.  

The Stokes parameters can be used in both monochromatic and quasi-

monochromatic waves for characterization of the state of polarization. The vector can 

represent not only polarized 1ight, but also unpolarized or partially polarized light. 

The general Stokes parameters of any light wave may be determined from 

simple experiments as below: 

 

 










�










�

�

=

=

−=

+=

,sin�EE2V

,cos�EE2U

,EEQ

,EEI

0y0x

0y0x

2

0y

2

0x

2

0y

2

0x

 (2.14) 

 

where time average is denoted by ��. . The first element, I, represents the total intensity 

of light. The second element, Q, indicates the tendency of light; if Q>0 to horizontal 

polarization, and if Q< 0 to vertical polarization. Similarly, U shows the tendency of the 
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light to be ±450 linearly polarized and V indicates the tendency to R or L circularly 

polarization (Born and Wolf 1999).  

The interaction of light with optical elements such as lens system, polarizers, 

filters, scattering media etc, changes the polarization state of the light. Typical Stokes 

vectors are shown in Table 2.2. 

 

 Stokes vector provides a computational technique in the form of the Mueller 

matrix methods. Mueller matrix is a transformation matrix which has a capability to 

determine of how an optical sample interacts or transforms the polarization state of an 

incident light beam. This matrix operates directly on an input or incident Stokes vector, 

thus resulting in an output Stokes vector that define the polarization state of the 

emerging beam. This operation can be described by the following equation: 

 

 inout SS  M=   (2.15) 

where, Sout and Sin are the output and incident Stokes vectors, respectively. M is the 

Mueller matrix of the media or optical system: 

Table 2.2. Typical Stokes Vectors 

 

Linearly polarized 
wave making angle 
�=45

0 with x axis 
 
 

 

 

��
�
�
�

�

	











�

�

0

1

0

1

 

 

 

Linearly polarized   
wave making angle       
�=-45

0 with x axis 
 
 

 

 

��
�
�
�

�

	











�

�

−

0

1

0

1

 

 

 
 
 
Linearly polarized 
wave, in x direction 
 

 

  
��
�
�
�

�

	











�

�

0

0

1

1

 

 
 
 

Linearly polarized     
wave, in y direction 

 

 

��
�
�
�

�

	











�

�

−

0

0

1

1

 

Right circularly               
polarized wave 

��
�
�
�

�

	











�

�

1

0

0

1

 Left circularly      
polarized wave 

��
�
�
�

�

	











�

�

−1

0

0

1
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��
�
�
�

�

	











�

�

=

44434241

34333231

24232221

14131211

mmmm

mmmm

mmmm

mmmm

M               (2.16)    

 

An optical system with a cascade of N such samples are described by the 

product of their respective Mueller matrices as below: 

 

 1..M...M.MM k1NNs −=M  (2.17) 

 

Ms and Mk are the Mueller matrices of the optical system and the kth sample of the 

system (Firdous et al. 2004). 

By the use of the Mueller–Stokes matrix calculus, the analysis of the effect of 

different types of polarizers and the effect of retarders is made easier, coupled with the  

use of the Stokes vectors. To determine the Mueller matrices, one must measure the 

 Table 2.3. Typical optical polarizers and their Mueller matrices 

 Polarizer & 
Transmission 

axis    

 
  Mueller Matrix 

 

Polarizer & 
Transmission axis    

 
     Mueller Matrix 

 

 
Linear & 

Horizontal (x) ��
�
�
�

�

	











�

�

0000

0000

0011

0011

2

1
 Linear & Vertical (y) 

��
�
�
�

�

	











�

�

−

−

0000

0000

0011

0011

2

1
 

Linear & 
+45

0 
��
�
�
�

�

	











�

�

0000

0101

0000

0101

2

1
 Linear & -45

0 

��
�
�
�

�

	











�

�

−

−

0000

0101

0000

0101

2

1
 

 
Circular & 

Right 
 ��

�
�
�

�

	











�

�

1001

0000

0000

1001

2

1
 Circular & Left 

��
�
�
�

�

	











�

�

−

−

1001

0000

0000

1001

2

1
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effects of a device on light with typical polarization states (Guenther 2005). Typical 

optical polarizers and their Mueller matrices are listed in Tables 2.3. 

Stokes vectors can be also represented using a Poincare´ sphere, on which 

vectors represent different states of polarization, visually. The incident irradiance I is, 

corresponding to the radius of the Poincare´ sphere (which is usually assumed to be 

unity). The Stokes vectors Q, U, and V are simply the three Cartesian coordinates of a 

point on the Poincare´ sphere (Fig.2.5). 

S0 is related to the other three vectors by the relations (2.18) and (2.19) when the 

beam is completely polarized and partially polarized respectively. 

 

 222
VUQI

2 ++=   (2.18) 

 

 222
VUQI

2 ++>   (2.19) 

 

The effects of various polarizations by samples are determined by displacements 

on the sphere. Each point on the sphere represents different polarization states. Different 

states of polarization are represented on the Poincare´ sphere as follows:  

a) The equator represents various forms of linear polarization 

b) The poles represent right- and left-circular polarization 

c) Other points on the sphere represent elliptically polarized light.  

The Poincare´ sphere is most useful for visualizing problems involving 

nonabsorbing materials and various polarization samples.  

 

 

 

 

 

 

 

 

 

 

Figure 2.5. The Poincare´ sphere 
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2.4. Polarization Properties of Optical Filters 

 

2.4.1. Polarizers 

 

A polarizer is a device that generates polarized light. When the incident light is 

unpolarized, a linear polarizer produces light whose electric vector is vibrating primarily 

in one direction with only a small component vibrating in the direction perpendicular to 

it. Then the transmitted light is linearly polarized. A linear polarizer along x direction 

can be represented by the Jones matrix as 

 

 ��
�

	



�

�

00

01
. (2.20) 

 

The transmittance of the light after the linear polarizer is  

 

 ( )21
2

1
TTT +=   (2.21) 

 

where 1T  and 2T  are the principal transmittance and the weak and perpendicular 

transmittance to the principal transmittance respectively.  

If the incident light is linearly polarized, a linear polarizer produces a maximum 

value 1T and a minimum value 2T  according to 

  

 ( ) 2
2

21 cos TTTT +−= θ  (2.22) 

 

where θ is the angle between the plane of polarization and the transmission axis of the 

polarizer. An ideal linear polarizer acts as an analyzer for the determination of the plane 

of polarization as shown in Fig2.6. When the incident light is linearly polarized, 

according to the Malus’ Law, the intensity of the transmitted light from the analyzer is 

 

 θ2
0 cosII =  (2.23)   
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where I0 is the intensity of the linearly polarized light incident to the analyzer. In the 

case of θ=�/2, I=0 and the transmission axes of the polarizer and the analyzer are 

perpendicular. By rotating the analyzer and obtaining complete extinction of the light, 

p-state of light is can be detected.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

The selective absorption of one of the two orthogonal p-state in incident natural 

light is described as dichroism. Since the dichroic polarizer is physically anisotropic, it  

absorbs the electric field component only in a specific direction known as the optic axis.

  

The electric field component perpendicular to this axis is strongly absorbed by 

the crystal (see Fig.2.7).  The transmitted light becomes linearly polarized along the 

optic axis.   

Figure 2.7. The action of a dichroic crystal as a polarizer  

Figure 2.6. Detecting plane polarized light using polarizer as analyzer (Malus’ Law) 
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A Polaroid H-Sheet used in practice is a dichroic sheet polarizer.  An ideal H-

sheet transmits 50% of the incident natural light.  

 

2.4.2. Retardation Plates (Retarders) 

 

Birefringent materials show two different speeds of propagation in fixed and 

orthogonal directions v// and v⊥ respectively. Therefore a birefringent material displays 

two refractive indices ⊥== vcnvcn oe   and // . The difference oe nnn −=∆  is called 

the birefringence.  If ∆n is negative the crystal is said to be uniaxial negative, 

conversely, if ∆n is positive, the crystal is said to be uniaxial positive.   

 

 

Retardation plates are polarization devices which delays one polarization 

component with respect to the other, so that they can change linearly polarized light into 

circularly or elliptically polarized light. They can also rotate the plane of polarization of 

linearly polarized light (WEB_1 2007).  

In Fig2.8, components of E, those extraordinary (parallel, E//=Ey) and ordinary 

(perpendicular, E⊥=Ex) to the optic axis will propagate through the retarder (a 

Figure 2.8. E// and E⊥ propagate through the wave plate at different speeds, so that 
phase difference altered. The emergent light is therefore in a different state 
of polarization. 
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birefringent material of thickness d) at different speeds and thus emerge with their phase 

difference alteration as 

 

 nd
�

dkndkn oe ∆=−=∆
λ

ϕ
2

)(  (2.24) 

 

The emergent light is therefore in a different state of polarization. Thus the Jones 

matrix of the retarder is 

 

 ��
�

	



�

�

∆ )exp(0

01

ϕ
 (2.25) 
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For ��=�/2 (a retardation of 	/4) the retarder is a quarter-wave plate with Jones 

matrix 

 

 ��
�

	



�

�
=��

�

	



�

�

j� 0

01

)2exp(0

01
. (2.26) 

 

When a wave with linear polarization at ±45° passes through the retarder it gets 

converted to left (right) circular polarization (see Fig.2.9): 

 

 Figure 2.9. A linearly polarized wave at +45° passes through a quarter-wave 
plate gets converted to right circular polarization 
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For ��=� (a retardation of 	/2) the retarder is a half-wave plate with Jones 

matrix 

 

 ��
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�

�
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�

�
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01

)exp(0

01

�
. (2.28) 

 

When a wave with linear polarization at � passes through the retarder it gets 

converted to linear polarization at –�: 
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0

01
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 (2.29) 

 

There are also variable retardation plates whose retardation can be varied in a 

variety of ways. Such devices are allowed a continuous adjustment of the relative phase 

shift, the retardance, and called compensator.  

 

2.4.3. Polarization Rotators 

A Polarization rotator rotates the plane of polarization of a linearly polarized 

wave by an angle θ , while its ones matrix is 

 ��
�

	



�

� −

θθ

θθ

cossin

sincos
 (2.30) 

 

If the incident wave is linearly polarized at angle θ1, then the emerging light 

after rotator is linearly polarized at angle θ2=θ1+θ. 
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2.5. Polarization by Reflection 

  

The reflection of the light incident on an object’s surface is the source of an 

image which would be created. It is important to use an effective reflection model in 

imaging systems in order to obtain realistic images with fine details. In this view, the 

laws of reflection, refraction, and Fresnel equations are needed to be analyzed in this 

section. 

 

2.5.1. The Laws of Reflection and Refraction 

 

If a plane wave of arbitrary polarization incident at a boundary between two 

dielectric media assumed to be linear, homogeneous and isotropic, it is split into two 

waves. The first wave proceeds into the second medium called transmitted or refracted 

wave and the other is a reflected wave propagated back into the first medium (see 

Fig.2.10). These two waves are assumed to be plane, through out of the section. The 

refractive indices of the media are n1 and n2. The incident, refracted, and reflected 

waves are propagated in the directions specified by the unit vectors ki, kt, and kr 

respectively.  

 

  

 

  

 

 

 

 

 

 

 

The plane specified by ki and the normal to the boundary is called the plane of 

incidence. It can be shown that, according to the boundary conditions, the wavefronts of 

these waves are matched at the boundary if the angles of �i and (π -�r) are equal (the 

law of reflection) and the angles of refraction and incidence satisfies Equation 2.31:  

Figure 2.10. Reflection and refraction between two dielectric media 
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 t2i1 sin�nsin�n =   (2.31) 

 

The statement that the reflected wave normal kr is in the plane of incidence, 

together with (2.31) is known as Snell’s law or law of refraction. 

 

2.5.2. Fresnel Formulas 

 

If A, T, R are the complex amplitudes of the incident, transmitted and reflected 

waves, the corresponding components of the electric and magnetic vectors can be 

defined as shown in Table2.4 according to Fig.2.10. Each vector is resolved into 

components parallel (denoted by subscript ||) and perpendicular (denoted by subscript �) 

to the plane of incidence. The magnetic vector’s components are simply obtained from 

(2.32) where magnetic permeability is ignored because of the media conditions. 

Dielectric constant is indicated as �.  

 

 EkH ×= �  (2.32) 

 

The variable parts of the argument of the wave functions are taken as (2.33) 

where c is the velocity of propagation and 
 is the angular frequency: 
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The boundary conditions required that the tangential components of E and H 

should be continuous across the boundary: 
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By substituting all required components from Table 2.4 into (2.34) and using the 

fact that iir cos�)�cos(�cos� −=−= and the Maxwell relation ε=n , the Fresnel 

formulas are obtained in the less general form which have been first derived by Fresnel 

in 1823:  
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Thus, the Fresnel coefficients are obtained as 

Table 2.4. The components of the electric and magnetic vectors of the incident, transmitted and 
reflected waves  
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These equations are described the components of transmitted and reflected 

waves which are parallel to the plane of incidence and the others those perpendicular to 

the plane of incidence in terms of those of the incident wave. These two types of waves 

are independent of one another and separable.  

When the wave is linearly polarized with its electric vector perpendicular to the 

plane of incidence, the polarization mode is called the transverse electric (denoted by 

TE) polarization, orthogonal polarization or E-polarized. If the wave is linearly 

polarized with its magnetic vector perpendicular to the plane of incidence, the 

polarization mode is called the transverse magnetic (denoted by TM) polarization, 

parallel polarization or H-polarized. TE and TM polarizations are also called the s and p 

polarization.  

 

2.5.3. Power Reflectance and Transmittance   

 

To examine how the energy of the incident light is divided among the reflected 

and transmitted fields, It should be used Poynting vectors S which represents the 

amount of energy crossed per second a unit area normal to the directions of E and H. 

The power reflectance Pr and transmittance Pt are defined as the ratios of light 

intensities of the reflected and transmitted light waves to that of the incident light wave. 

Pr and Pt are also called the reflectivity and transmissivity.   

From the (2.1) and (2.32), the light intensity is obtained as 
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Using the amount of energies of the reflected and transmitted wave leaving a unit area 

of the boundary per second and the amount of energy of the incident wave according to 

(2.38), the ratios Pr and Pt are given by (2.39) and (2.40) respectively. 
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The law of conservation of energy requires that  

 

 1=+ tr PP    (2.41) 

 

For normal incidence (�i=0 and consequently �t=0), there is no physical 

distinction between the s and p polarizations, and the transmissivity and reflectivity are 

polarization independent: 
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Using Eqns. (2.41), (2.42) and Fresnel formulas (2.35) and (2.36) 
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As easily seen from (2.43), the smaller the difference in the optical densities of the two 

media, the less power is carried away by the reflection.  
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2.5.4. Polarizing Angle (Brewster Angle)  

 

When the reflected and transmitted rays are perpendicular to each other as 

shown in Fig.2.11, then  
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π
θθ =+  (2.44) 

 

  

 

 

The Snell’s law and (2.44) gives 
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Thus, according to the (2.37) the reflection coefficient for p-polarized light is zero and 

the reflected light is entirely composed of the s- linear polarization. In this case, the 

corresponding angle of incidence light is known as polarizing or Brewster angle. A 

Brewster-angled reflecting surface thus comprises the simplest linear polarizer. 

 

 

 

z 

x 

 �i 

Incident wave 

Transmitted wave 

Reflected wave 

Figure 2.11. An illustration of Polarizing (Brewster’s) Angle 
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2.6. Partial Polarization (Degree of Polarization) 

 

The equality 222
VUQI

2 ++= (Eq. 2.18) is valid for the ideal case of a 

monochromatic plane wave that is completely polarized, where the amplitudes E0x and 

E0y and the phases x� and y�  are fixed and do not vary with time. This means that the 

plane wave is emitted from a coherent source. In the case of a natural radiation, the 

amplitudes and phases fluctuate, since the radiation originates from several sources that 

do not emit radiation coherently, and since the emission from one source usually has 

very short coherence times.  

Real life usually has a superposition of radiation from several incoherent 

sources. The polarization state of such sources fluctuates as well. If these fluctuations 

are random and the different sources emit incoherently while they are not in any way 

oriented, then the state is called unpolarized. The study of random fluctuations of light 

is known as the theory of optical coherence. If the fluctuations are not completely 

random, the radiation is called partially polarized. In these cases the inequality 

222
VUQI

2 ++> (Eq. 2.19) is valid, and the statistical theory of random light is 

needed in order to analysis the effects of polarization.  

 

2.6.1. Statistical Properties of Random Light 

 

An optical wave may be described by a complex wave function such as 

 

 ( ) )2(),( t�vjexpt rEE =r  (2.46) 

 

where E(r) is the time-independent complex amplitude. A monochromatic wave is an 

example of coherent light. Its complex amplitude is a deterministic complex function. 

For random light, the dependence of the wave function on time and position is a random 

function and not totally predictable.  
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I(r) 

I(r,t) 

t 

t 
(a) 

(b) 

Figure 2.12. a) A Statistically stationary wave. The average intensity does not vary with time 

       b) An example for statistically nonstationary wave 

2.6.1.1. Optical Intensity of Random Light 

 

For an arbitrary optical wave, the average intensity is defined as 

 

 ��=
2

)t,()t,(I rEr  (2.47)  

  

where the quantity 
2

)t,( rE  is instantaneous (random) intensity. For coherent light, the 

averaging operation ��.  is unnecessary since all trials produce the same wave function. 

The average intensity in this case is equivalent to 

 

    
2

)t,()t,(I rEr = . (2.48) 

 

Statistically stationary waves have average intensities those do not vary with 

time. In this case, the average intensity I(r) is only a function of distance from the light 

source. However, the instantaneous intensity 
2

)t,( rE  depends on both position and 

time.   On the other hand, a statistically nonstationary wave has a time-varying intensity 

(See Figs.2.12) 

 

 

 

 

 

 

 

 

 

 

 

 

When the light is nonstationary, the average intensity can usually be determined 

by the averaging operation over a long time duration as shown in Eqn. (2.49). 
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rEr  (2.49) 

 

2.6.1.2. Temporal Coherence Function (Autocorrelation Function) 

 

At a fixed position r, a random stationary complex wave function )t,( rE has a 

constant intensity as a function of time as shown in Fig.2.12. (a). Since r is fixed, the 

position dependence may be dropped, so that .I)(I)t()t,( == rErE  and   

A quantitative measure of the temporal behavior of the random fluctuations of 

E( t ) can be obtained by defining a statistical average known as the autocorrelation 

function: 
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In this equations, E*( t ) is the complex conjugate of the random function E( t ) and �  is 

the time delay. Since ( )�G  has a Hermitian symmetry, ( ) ( )�G�-G
*=  and for 0� =  the 

intensity, defined by (2.47) is equal to ( )�G , 

 

 ( )0GI = . (2.51)   

  

2.6.1.3. Degree of Temporal Coherence 

 

Complex degree of temporal coherence is given by the normalized 

autocorrelation function,  
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. (2.52) 

 

The absolute value, which is a measure of the degree of correlation between 

)�t(  )t( +EE and cannot exceed unity,  
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 ( ) 1�g0 ≤≤   .  (2.53) 

 

For a deterministic and monochromatic light such as ( )t�j2exp )t( 0π EE = , the 

amplitude E is a constant, then (2.52) gives ( ) ( )��g 0�j2exp π=  and thus ( ) 1�g =   for 

all times delays �  and )�t(  )t( +EE and  are completely correlated. 

However, in general, for an arbitrary light, ( )  �g  decreases from the largest 

value ( ) 10g =   with time delay � and drops to 1/e  1/2 or  for c�� =  where 

 

 ( ) ��g
2

d  � c �
∞

∞−
=  (2.54) 

 

known as the coherence time and used as a measure of the memory time of the 

fluctuations. The fluctuations have high correlation for c�� < and low correlation for 

longer time delays c�� > (see Fig.2.13).    

   

 

 

 

 

 

 

 

 

The distance cc� is referred as the coherence length. Since the coherence time of 

monochromatic light is infinite its coherence length also infinite. Effectively coherent 

light is the light with long coherent length compared with all optical path-length 

differences belong to it. 

 

2.6.2. Coherency Matrix and Degree Of Polarization 

 

The theory of partial polarization is based on characterizing the components of 

the wave vector by their correlations and cross-correlations. Each component, that is 

  1/e           c�  

0 

Figure 2.13. An example for the relation between the magnitude of temporal coherence ( )  �g  

and coherence time c�  
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generally random, characterized by its temporal coherence function. For light described 

by a p-polarized plane wave traveling in the z-direction, these functions related to 

components Ex(t) and Ey(t) are   

 

 
( )

( ) 
�



�
�

�+�=

�+�=

∗

∗

. )�t()t( 

 , )�t()t( 

yy

xx

yy

xx

EE

EE

�G

�G  
 (2.55) 

 

Similarly, the cross-correlation function of Ex (t) and Ey(t) is given as 

 

 ( ) �+�=
∗

 )�t()t( xy yx EE�G . (2.56) 

 

The normalized function similar to the (2.52), 

 

   ( )
( )

( ) ( )0G0G

�G
�g

yyxx

xy

xy =  (2.57) 

 

is known as the cross-correlation coefficient of Ex
*(t) and Ey(t +�). The magnitude of 

( )�g xy satisfies the inequality, 

 

 ( ) 1�g0 xy ≤≤   . (2.58) 

 

If the two components are completely correlated at all times, then ( ) 1�g xy =  and if 

they are uncorrelated for all times, ( ) 0�g xy =   

For quasi-monochromatic light, all dependences on �  for both correlation and 

autocorrelation functions are approximately of the form )�exp(j2� 0ν , so that the 

polarization properties can be described by their values when 0� = . According to the 

(2.51), ( ) ( ) Yyyxxx I I == 0 and0 GG  are real numbers representing the intensities of the x 

and y components. ( ) ( ) ( )00 and0 ∗= xyyxxy  GGG  are complex numbers. These four 

variables may be written in the form of a 2x2 Hermittian matrix, 
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G is called the coherency matrix, used to describe the polarization of the wave where 

the off-diagonal elements are the cross-correlations values at 0� = . The trace of the 

matrix, TrG=Ix+Iy, is the total intensity I.  

 It is also possible to write the coherency matrix in terms in terms of the Jones 

vectors, ��
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where t denotes the transpose of a matrix.  

The Jones vector of incident light Jin is transformed by the optical system such 

as polarizer with the rule,  

 

 inout TJJ =   (2.61) 

 

where T is a 2x2 Jones matrix characterizing the device. Using (2.60) and (2.61), the 

coherency matrix of partially polarized incident light Gin= �� ∗ t

inin JJ  is transformed to,  
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In the case of unpolarized light, the two components Ex and Ey have the same 

intensity /2II yx I== , and there are no correlation between them, then the coherency 

matrix is, 
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Unpolarized light becomes linearly polarized at the output when passed through 

a polarizer. However, it can be shown that (2.63) is unaffected from the rotation of the 

coordinate system, so that incident unpolarized light to a polarization rotator also 

unpolarized at the output. In such situations, the cross-correlation coefficient 

magnitude 0=xyg  and the intensities always satisfy the equality /2II yx I== . 

When 1=xyg , Ex and Ey are perfectly correlated, then light is said to be 

completely polarized. Using yxxyxy IIGg = , the coherency matrix for polarized light 

is given as, 
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where  ϕ  is the argument of  xyg .  Ex and Ey are may be defined as xI  and ϕj
y eI , 

then the coherency matrix takes the form, 

 

 t

yyxy

yxxx
JJ

EEEE

EEEE
∗

∗∗

∗∗

=�
�
�

	




�

�
=G   (2.65) 

 

which is the form of the coherency matrix of a coherent wave.  

The coherency matrices for different states of polarization can be obtained by 

using the Jones vectors. Some examples are given in Table 2.5. 
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There exist different approaches to estimate the degree of polarization of light. 

One of them is a measurement using the coherency matrices. A quasi-monochromatic 

wave may be defined as the sum of two waves, which are one completely polarized and 

one completely unpolarized. Hence, the coherency matrix of a quasi-monochromatic 

wave may be also expressed as 21 GG +=G , where 21 and G  G are the coherency 

matrices of the polarized and unpolarized waves.  Degree of polarization is may be 

defined as the ratio of the intensity of the completely polarized part Ipol=TrG2 to the 

total intensity I=TrG. The coherency matrix of polarized part G2 is may be given as, 
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which can be calculated from 21 GG +=G (Born and Wolf 1986). The intensity of the 

polarized part then, 
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Thus, now, using yxxyxy IIGg = , (2.64) and (2.67), degree of polarization can 

be calculated in the form as below:  

Table 2.5. Coherency matrices for different states of polarization   
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Since p is a definition in terms of determinant and trace of a matrix which are 

invariant to unitary transformations, it is invariant to rotation of the coordinate system 

(Saleh 1991). 

 Degree of polarization p in (2.68) takes its minimum value p=0 for unpolarized 

light ( 0=xyg , yx II = and then p=0) and maximum value p=1 when the light is 

completely polarized ( 1=xyg , ( )01
2

=− xyg  and then p=1). Thus, as expected, p 

satisfies the inequality 

 

  10 ≤≤ p . (2.69)  

     

For a wave which is mutually incoherent with coherency matrix as, 
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since Gxy= Gyx=0, and then detG=GxxGyy=IxIy, the degree of polarization p takes the 

form, 

 

 
( ) ( )

( )
( )

yx

yx

/

yx

yx

/

II

II

II

II

Tr

det
p

+

−
=


�



�
�


�



�
�

+
−=

�
�
�

�
�
�

−=

21

2

21

2

4
1

4
1

G

G
. (2.71) 

 

One of the expressions of the degree of polarization is used the Stokes vectors. 

The Stokes vector of any quasi-monochromatic light can be separated into two parts: 
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where the left of the sum represents the Stokes vector of a fully unpolarized part and the 

right hand side represents the Stokes vector of completely polarized part of light. Thus, 

the degree of polarization is defined as 
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CHAPTER 3 

 

POLARIZATION BY SCATTERING 

  

3.1. Introduction 

 

A small particle, which is interposed into the light, can cause several effects 

such as absorption, elastic scattering, and extinction. By absorption, the particle 

converts some of the energy contained in the light into other forms of energy. The 

reduction of the incidence energy by an amount equal to the sum of absorption and 

scattering is known as extinction (Van de Hulst 1981). A completely homogeneous 

material can be scattered light only in the direction of incident light wave (Boyd 2003). 

These types of scattering are known as coherent forward scattering. 

 Scattering, generally, is classified into two types, spontaneous and stimulated 

light scattering. If the optical properties of the medium are unaffected from the incident 

light, scattering is called spontaneous light scattering. Stimulated light scattering occurs 

when the intensity of the incident light is sufficiently large to change the optical 

properties of the material system.  

Light scattering occurs only when the medium has inhomogeneous optical 

properties. To get a picture of the physical process, it is useful to subdivide the particle 

of the medium into small regions. Applying an electromagnetic wave induces dipole 

moments in each region, which themselves emit electromagnetic radiation. For 

example, if the volume elements of a material, such as dV1 and dV2 differ in the 

density, so the number of molecules in volume elements not equal, then the fields 

scattered by these two elements will not be interference with incidence light exactly, 

causing scattering in different angles. Scattering can involve change in polarization, and 

can occur in all types of materials. 

Consider an observer (dedector) in the far-field zone, which means that the 

distance to the scattering object r is large compared to the wavelength and any linear 

dimension of the scattering object. The scattering event is depicted conceptually in Fig. 

3.1, where an incident plane wave is transformed, i.e., scattered, by a particle into a 

spherical wave.  
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The intensity I
sca

 of the scattered light measured at a distance r from the 

interaction region, assuming linear positive correlation to the intensity I0 of the incident 

light, is given as, 

 

 
( )

22
0

rk

�,FI
I sca ϕ

=  (3.1) 

 

where ( )ϕ�,F  is a dimensionless function of the direction and k=2�/	 is the wave 

number. When this function is divided by 

 

 

 scaCk
2  (3.2) 

 

the phase function is obtained where 

 ( ) Ω= � dF
k

Csca ϕθ ,
1

2
 (3.3) 

is the cross section of the particle for scattering. ϕθθ ddd   sin=Ω  is the element of 

solid angle and the integral is taken over all directions. 

The law of conservation of energy requires that   

 

 absscaext CCC +=  (3.4) 

 

Figure 3.1. Geometry used to define the scattering  
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where extC and absC are the cross sections of the particle for extinction and absorption 

respectively.  

The constants ACQ extext = , ACQ scasca = ,  and ACQ absabs =  are given as the 

dimensionless efficiency factors for extinction, scattering, and absorption respectively 

where A is the geometrical cross section of the particle. 

In our study, we are interested in diffuse scattering from dielectric nonspherical 

scatterers in optical films those very large in size compared to the wavelength. We 

especially aimed to obtain the polarization effects of scatterers aligned with fixed 

orientation on surfaces of the dielectric film.  

 

3.2. Amplitude Scattering Matrix 

 

Consider an observer (dedector) in the far-field zone, which means that the 

distance to the scattering object r is large compared to the wavelength and any linear 

dimension of the scattering object. 

 The direction of scattered light is parameterized by a polar (in the plane of 

incidence) angle θ  and azimuthal (out-of plane of incidence) angle ϕ  relative to the y-z 

plane. 

As described in previous chapter, the scattered electromagnetic field in the far 

field is can be related to the incident field by the amplitude scattering matrix S as 
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where inc

sE and inc

pE are the amplitudes of the vertical and horizontal components of the 

incident plane parallel wave transformed to the scattering plane, and sca

sE and sca

pE  are 

the vertical and horizontal components of the scattered spherical wave. The amplitude 

scattering matrix provides a complete description of the scattering pattern in the far-

field zone. The elements Sj are the complex amplitude functions described the scattering 

in any direction and all are functions of θ and ϕ. The intensity relationship can be 

expressed using the Stokes-Mueller representation defined by (2.15). 
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Knowledge of the these scattering matrix elements suffices for calculation the 

intensity and polarization of scattered light in addition to absorption, extinction, 

radiation pressure and the total scattering cross sections of the particle.  

 

3.3. Scattering Diagram for Polarized Light 

 

The exact relations indicating how the intensity Isca and state of polarization of 

the scattered light depend on the intensity Iinc and state of polarization of the incident 

light  given by equation, 

 

 ( ) ( ) incscaincscasca
I

rk
rI eee ,

1
22

M= . (3.6) 

 

The phase matrix M describes the transformation of the Stokes vector of the 

incident wave defined in Sec.2.3.2 into that of the scattered wave for scattering 

directions esca away from the incidence direction einc. The transformation matrix M is a 

4x4 matrix and can be written in terms of the amplitude matrix elements having the 

dimension of area. Its elements are real for single particles. The phase matrix also 

depends on esca and  einc for all polar and azimuthal angels of incidence and scattered 

lights. 

Using Eq.2.16, Eq.3.5 becomes 
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where I, Q, U, and V are the Stokes parameters of scattered light, and I0, Q0, U0, and V0 

are the corresponding parameters of the incident light. 
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3.4. Scattering from Dielectric Spheres 

 

Gustav Mie in 1908 published a solution to the problem of light scattering by 

homogeneous spherical particles of any size. Mie theory describes the scattering of light 

by particles. Optical dielectric filters may have particles with refractive index mpar that 

differs from the refractive index of the surrounding medium mmed of the dielectric film. 

Such particles yield a strong net source of scattered radiation. 

Scattering can be divided into surface/interface scattering and volume scattering. 

While surface scattering largely dominates both substrate and thin film scattering losses, 

in particular cases and applications, volume scattering can constitute the main scattering 

source.  

Surface scattering is defined as the scattering which takes place only on the 

border surface between two different but homogeneous media (see Fig.3.3).  

 We are interested in sphere of a non-absorbing material that the electrical 

conductivity is zero (dielectric) and the refractive index mpar is a real constant. A real 

value of mpar means no absorption (Qabs=0), so that Qsca= Qext. 

Mie's classical solution is described in terms of two parameter; the magnitude of 

refractive index expressed as the ratio of the for particle and medium  

  

Figure 3.2.Geometry used to define the scattering from a spherical particle 
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med

par

m

m
m =  (3.8) 

 

and the size of the surface of refractive index mismatch expressed as a size parameter  

 

 
λ

medam�
x

2
= . (3.9) 

 

A Mie theory calculation yields the efficiency of scattering, the scattering 

coefficient related to the product of scatterer number density, and the cross-sectional 

area of scattering, Csca (WEB_7 2007). 

It is assumed that, as illustrated in Fig. 3.2, a spherical particle with radius a 

much larger then the wavelength of incident optical field Einc, located at the origin of a 

coordinate system. Einc is a linear monochromatic plane wave polarized in x- direction 

and propagates in z direction. 

 

The extinction and scattering efficiencies of a sphere may be written as Eqns. 

(3.11) where the coefficients an and bn are referred to as Mie scattering coefficients and 

are functions of x and m. 

 

Figure 3.3. A schematic representation for light scattering from a sphere on a dielectric film   
(An example of surface scattering) 
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The scattering coefficient  

  Cµ scascasca ρ=  (3.11) 

describes a medium containing many scattering particles at a concentration described as 

a volume density scaρ . The scattering coefficient is essentially the cross-sectional area 

per unit volume of medium.  

 

3.5. Reduced Form of the Transformation Matrix 

 

By defining the real numbers for ;4 ,3 ,2 ,1, =kj  
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Figure 3.4. Representation of geometrical cross section and scattering cross section for a 
spherical partice 
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The transformation matrix M has the form, 
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Although M has 16 elements, it contains 7 independent constants, resulting from the 8 

constants in the S’s minus an irrelevant phase. Thus, there are 9 relations between the 

16 coefficients. 

If ∗= sca

p

sca

pp EEI  and ∗= sca

s
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ss EEI  are used instead of I and Q as were 

mentioned in Section 2.3.2., the simpler but less symmetric form can be defined by 
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Here 0pI and 0sI are the intensities of incident light those parallel and perpendicular to 

the plane of scattering and 
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These most general formulas are hardly needed for practical studies. Spherical 

particles, for all types of polarization of the incident light, have ( ) ( ) 043 == θθ SS  in the 

amplitude scattering matrix,  
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By using (3.16) in the (3.5) the relation between components of incident and 

scattered light in the scattering plane for the spherical particle becomes, 
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where θ  is the scattering angle. Eq. (3.17) gives the two relations: 
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Now, the intensities of light can be calculated for parallel and perpendicular to 

the scattering plane as (3.20) and (3.21) respectively. 
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In this case the matrix M’ has very simple form 
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That is only 3 independent parameters yield since there is only one interrelation: 
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2
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2
21 NNDS =+ . (3.23) 

 

In this case, all of the transformation equations for the stokes parameters are  
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where ( ) ( )
ikreSA

zrik −−= θ11 , ( ) ( )
ikreSA

zrik −−= θ22  and δ is the phase difference 

between A1 and A2. When the incident light is linearly polarized in one of the main 

planes, it remains in the same polarization state in the corresponding plane and the two 

upper transformation equations are needed to be analyzed. Now, the scattering 

polarization can be defined as normalized form  
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The polarization variation for scattered light with scattering angle shown in 

Fig.3.5 when the scatterer is a small dielectric sphere (smaller than wavelength of the 

light) and in Fig.3.6 when the scatterer is larger than incident wavelength of the light. 

Figure 3.5. The variation of polarization of scattered light for a 100 nm diameter dielectric 
sphere with a refractive index  m = 1.59  
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In the point ( ϕθ ,,r ), in the far-field (see Fig.3.2), the total scattered intensity 

defined in (3.1) and (3.6), is can be given in the form by 

 

 ( ) ( )[ ]
22

02
2

2
1 cossin

rk

I
iiI sca ϕθϕθ +=  (3.26) 

 

Figure 3.7. The variation of far-field scattered intensities i1 and i2 for a 100 nm diameter 
dielectric sphere with a refractive index  m= 1.59  

    Figure 3.6. The variation of polarization of scattered light for a 2 �m diameter dielectric 
sphere with a refractive index  m = 1.45  
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where ( ) ( ) 2

11 θθ Si = and ( ) ( ) 2

22 θθ Si =  are far-field scattered intensities, for the 

perpendicular and parallel polarization respectively. Fig.3.7. shows an example of the 

far-field scattered intensities i1 and i2 calculated as a function of the scattering angle θ . 

The calculation is based on a 100 nm diameter dielectric sphere with a refractive index 

m = 1.59.  

The variation of the far-field scattered intensities and polarization at small 

scattering angels for a large dielectric sphere with radius 1�m are shown in Fig.3.8 and 

Fig.3.9. respectively. 
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CHAPTER 4 

 

LIGHT SCATTERING FROM NONSPHERICAL 

SCATTERERS 

 

4.1. Introduction 

 

There is a long interest in light scattering computations for nonspherical 

particles in addition to spherical scatterers. The assumption in Mie theory calculations is 

that the particle shape geometry is spherical and the refractive index is isotropic. Since 

these restrictions, Mie theory can not be used for analyzing scattering from the 

nonspherical scatterers.  

The three-dimensional objects can be defined as superellipsoid (superquadratic 

ellipsoid) represented by the product of two superquadratic curves. The exact form, the 

generalization of the ellipsoid, is given by the equation (Wriedt 2002) 
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n and e represent the north-south and the east-west roundedness respectively. For 

convex shapes these two parameters are bounded: { } 2,0 << ne .  The bounds in x, y, z 

are given by the parameters a, b, c.  

There are various methods available to compute light scattering by nonspherical 

particles. In volume-based method the computer time is rather long since the whole 

volume of a scatterer is discretized. The discrete dipole approximation (DDA) (Ayrancı 

et al. 2007), the volume integral equation method (VIEM) and the finite difference time 

domain method (FDTD) (Wriedt 1998) are general volume integral equation techniques 
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used to calculate scattering and absorption of electromagnetic waves by particles of 

arbitrary geometry and composition. 

In surface-based methods, only the surface of a scattering body is discretized. T-

matrix method is one of the surface-based methods and requires less computer demand.  

 T-matrix method is one of the widely used theoretical techniques for the 

computation of scattering by single and composite particles, discrete random media, and 

particles in the vicinity of an interface separating two half-spaces with different 

refractive indices (Mishchenko et al. 2002). 

In this study, to simulate the scattering effects from nonspherical particles, we 

used the T-matrix algorithm included in ScatLab1.2 software developed by Volodymyr 

Bazhan for light scattering investigations (WEB_5 2007). We also used the software 

SScaTT superellipsoid scattering tool (WEB_6 2007) to generate different ellipsoids 

with desired parameters consistent to our samples and analyzing their polarization 

effects.  

 

4.2. T-Matrix Method 

 

This technique also called with different names such as the null-field method 

and extended boundary condition method (Mishchenko et al. 2002). The T-matrix 

method was first developed by Waterman (1965,1971) as a technique for computing 

electromagnetic scattering by single, homogenous, and arbitrarily shaped particles. Each 

field (the incident, transmitted and scattered field) can be expanded into a series of 

spherical vector wavefunctions as will be shown for the scattered field.  

In a three-dimensional space D consisting of a closed surface S, its interior Di 

and its exterior Ds, the transmission boundary-value problem satisfy the Maxwell’s 

equations 
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where Et is denoted for the both interior and exterior electric fields  Ei and Es. Ht 

represents the interior and exterior magnetic fields Hi and Hs.  
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Solving this transmission boundary-value problem using the null-field method 

with discrete sources required the scattering object to be replaced by a set of surface 

current densities e and h. The discrete source can be vector spherical functions, 

magnetic and electric dipoles or Mie potentials. The exact solution can be analyzed by 

the following three steps (Wriedt 2002): 

(I) The null-field method with discrete sources consist in a set of integral 

equations (null-field equations) for the surface current densities e and h. Utilizing the 

boundary conditions, these equations are obtained as following: 
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where 0Ene0 ×= and 0Hnh0 ×=  are the tangential components of the incident 

electric field E0 and incident magnetic field H0. The set { }3

v

3

v �,
  consists of radiating 

solutions to Maxwell equations{ }1

v

1

v �,
 , and related to the used discrete source system 

(vector spherical functions, magnetic and electric dipoles or Mie potentials). The 

localized vector spherical functions { } ( )m1,maxnZ,m
1,31,3 ,

≥∈mnmn NM  are: 
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where  zn represents the spherical Bessel functions jn or the spherical Hankel functions 

of the first kind 1
nh , m

nP  is the related Legendre polynomial of order n and m, Dmn  is a 
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normalization constant dependent to the orders n and m, and  ( )ϕθ eeer  , ,  are the unit 

vectors in spherical coordinates. 

(II) Assuming the system { }∞

=
××

1
,

µµµ φ 11
 nn is a Schauder basis, there exist a 

sequence{ }∞

=1
,

µµµ ba , and then the solution of Eqs.(4.3), surface current densities e and 

h, are can be approximated by fields of discrete sources as following:  

 

 

( ) ( ) ( )

( ) ( ) ( )

S

k
bka
�

j

kbk
a

i

1

i

1

i

i

i

1

i

1

∈








�







�

�

×+×−=

×+×=

�

�

∞

=

∞

=

y

ynynyh

ynynye

 

1

1

µµµ
µ

µ

µµµ
µ

µ

φ
ε

φ

 (4.5) 

 

(III) The scattered field is obtained by using the representation theorem. The 

series expansion of the scattered field into radiating spherical vector wave functions 

given as 
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where  
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In these equations v  is a complex index included both –m and n; ( )nmv ,−= . 

In order to drive the T-matrix, the incident field inside a finite region containing 

S can be also expressed as a series of regular vector spherical functions with analogy to 

the (4.6): 
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The linear relation between the scattered and the incident field coefficients in Eqs. (4.3) 

and (4.8), obtained as  
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where T is the transition matrix (T-matrix) given as 
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1 ABAT −= . (4.10) 

 

A, B, and A0 are are block matrices written in general,  
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where X standing for A, B and A0. The expressions for the elements of these matrices 

are given in the Appendix. 

While the exact infinite T-matrix is independent of the expansion systems used 

on S, there exists such dependence for the truncated matrix  

 

 N0AABT -1

NNN =  (4.12) 

 

computed according to the far field approximation and called approximate truncated 

matrix.  

T-matrix depends on the incident wavelength and particle shape, its refractive 

index and its relation to the coordinate system. To perform scattering computations, the 

T-matrix method is considered of having advantage to the other methods because of the 

all polarization information depended to the scattering effects is included in the T-



 53 

matrix. Thus by computing the T-matrix in a scattering problem under slightly different 

conditions of incident light wave, the orientation or scattering angles can be computed. 

In addition, the orientation-averaged scattering quantities can be obtained with different 

ways using T-matrix (Wriedt 2002).  

A detailed theoretical explanation can be found in the book by Mishchenko et al 

(Mishchenko et al 2002). Mishchenko has developed several public domain programs 

which are available at the internet.  

 

4.3. Normalized Differential Scattering Cross-Section (DSCS)  

 

The normalized differential scattering cross-section (DSCS), is widely used for 

characterization of the scattering intensity computed from the far-field pattern such as 

the efficiency factor Qsca given in the previous chapter.  

DSCS depends on the polarization state of the incident light as well as on the 

incidence and scattering directions. The angle-dependent scattering intensity functions 

for p and s-polarized components of the far-field pattern plotted in Fig.4.1. is DSCS, 
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where N

s0E  is the far field pattern of the unit incident electric field and a is a 

characteristic dimension of the particle.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1. Differential scattering cross-section of spheroid a=b=2400nm, c=4800nm, 

m=1.453, =λ 632,8 nm. 
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4.4. Simulation Results 

 

The software SScaTT superellipsoid scattering tool used to generate different 

ellipsoids, especially spheroid models consistent to polymeric particles deposited to 

optical thin films used in LCD backlight systems. These types of particles are 

nonabsorbing (dielectric) and have large size compared to the wavelength.  

The simulation results are summarized for oblate and prolate spheroids with 

difference size and aspect ratios. The simulations for spherical particles are also 

included in order to represent the difference between polarization effects of 

nonspherical and spherical scatterers. 

 

 

 

 
105372 faces,52688 vertices                                          
(prolate spheroid) 
 
a=1.000000; 
b=1.000000; 
c=4.000000; 
e=1.000000; 
n=1.000000; 
delta=0.053500; 
eps=0.110000; 
wavelength=0.632800; 
refractive_idx_re=1.4539; 
refractive_idx_im=0.000000; 
normalization radius=1.000; 
Nrank=10;   
Mrank=10;    

 

 
33060 faces,16532 
vertices (sphere) 
 
a=1.000000; 
b=1.000000; 
c=1.000000; 
e=1.000000; 
n=1.000000; 
delta=0.053500; 
eps=0.110000; 
wavelength=0.632800; 
refractive_idx_re=1.4539; 
refractive_idx_im=0.000000; 
normalization radius=1.000; 
Nrank=5;   
Mrank=3;    

Figure 4.2. (a) Differential scattering cross-section of  prolate spheroid  a= b=1�m, c=4 �m,  
and (b) Differential scattering cross-section of  sphere a= b= c=1�m and the 

normalization radius r(norm)=1 �m (m=1.453, =λ 632,8 nm) 
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 The incident light in all of these simulations was taken as linearly 450 polarized. 

In order to obtain the relation of polarization effects to the scatterer geometry, the 

refractive index, wavelength and polarization state of incidence light were kept constant 

overall of the simulations. 

Fig.4.2(a) is the simulation result for a dielectric prolate spheroid with refractive 

index m=1.45 and with aspect ratio c/a=4 and Fig.4.2(b) is the simulation result for the 

spherical particle of the same material with �m1=== cba . The differential scattering 

cross-section (DSCS) of prolate spheroid indicated an intensity gain in p-polarized 

component relative to the s- polarized component for almost all scattering regions 

including the interested small scattering angles 030<θ  in forward direction. On the 

other hand the DSCS of spherical particle in Fig.4.2(b) represented polarization 

discrimination only for some backscattering regions. From these results, the 

impossibility of polarization enhancement by forward scattering may be concluded for 

usage of spherical geometries. 

 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.3 is the simulation result for a dielectric oblate spheroid with refractive 

index m=1.45 and with aspect ratio c/a=0.25. The DSCS of oblate spheroid indicated 

less significant polarization discrimination compared to the of prolate one given in 

Fig.4.2(a) for the interested small scattering angles 030<θ .  

 

 
291112 faces, 145558 
vertices (oblate spheroid) 
 
a=4.000000; 
b=4.000000; 
c=1.000000; 
e=1.000000; 
n=1.000000; 
delta=0.05350; 
eps=0.110000; 
wavelength=0.632800; 
refractive_idx_re=1.4539; 
refractive_idx_im=0.000000; 
normalization radius=1.000; 
Nrank=10; 
Mrank=10;  

       Figure 4.3. Differential scattering cross-section of  oblate spheroid  a= b=4�m, c=1�m and 

r(norm)=1 �m  (m=1.453, =λ 632,8 nm) 
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Fig.4.5 and Fig.4.6 are the simulation results for a dielectric prolate spheroid 

with refractive index m=1.45 and with aspect ratio c/a=3.75. The figures of DSCS 

represented more significant polarization discrimination in favour of s-polarization 

compared to of prolate one given in Fig.4.2(a) especially at the forward scattering 

angles (see Fig.4.4). The shift between two results caused from the difference in 

normalization radius defined by (4.13). 

 

 
 
 

1.0 E+05

1.0 E+06

1.0 E+07

1.0 E+08

1.0 E+09

1.0 E+10

0 45 90 135 180

Scattering angle [deg]

s

p

DSCS

 

 
 
 
684 faces,344 vertices 
(prolate spheroid) 
 
a=0.800000; 
b=0.800000; 
c=3; 
e=1.000000; 
n=1.000000; 
delta=0.5; 
wavelength=0.632800; 
refractive_idx_re=1.4539; 
refractive_idx_im=0.000000; 
normalization radius=0.800; 
Nrank=32; 
Mrank=22;  

Figure 4.5.  Differential scattering cross-section of  prolate spheroid  a= b=0.8�m, c=3 �m 

and r(norm)=0.8 �m (m=1.453, =λ 632,8 nm) 
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Figure 4.4. Polarization of scattered light by prolate spheroid  a= b=0.8�m, c=3 �m and 

r(norm)=0.8 �m (m=1.453, =λ 632,8 nm) 
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Fig.4.7 is the simulation result for a dielectric prolate spheroid with refractive 

index m=1.45 and with aspect ratio c/a=2.25. The DSCS of this spheroid indicated a 

gain in favour of p-polarized component for scattering angles 0100 << θ , and in favour 

of s-polarized component at scattering angles 00 4510 << θ in forward direction.   

1.0 E+04

1.0 E+05

1.0 E+06

1.0 E+07

1.0 E+08

1.0 E+09

0 45 90 135 180

Scattering angle [deg]

s

p

DSCS

 

 
 
 
684 faces,344 vertices 
(prolate spheroid) 
 
a=0.800000; 
b=0.800000; 
c=3; 
e=1.000000; 
n=1.000000; 
delta=0.5; 
wavelength=0.632800; 
refractive_idx_re=1.4539; 
refractive_idx_im=0.000000; 
radius_norm=2.000000; 
Nrank=32; 
Mrank=22;  

 

 
476 faces,240 vertices 
(prolate spheroid) 
 
a=0.800000; 
b=0.800000; 
c=1.800000; 
e=1.000000; 
n=1.000000; 
delta=0.5; 
eps=0.110000; 
wavelength=0.632800; 
refractive_idx_re=1.4539; 
refractive_idx_im=0.000000; 
radius_norm=0.800000; 
Nrank=20; 
Mrank=12;  

Figure 4.6.  Differential scattering cross-section of  prolate spheroid  a= b=0.8�m, c=3 �m 

and r(norm)=2 �m  (m=1.453, =λ 632,8 nm) 

Figure 4.7.  Differential scattering cross-section of  prolate spheroid  a= b=0.8�m, c=1.8 �m 

and r(norm)=0.8 �m  (m=1.453, =λ 632,8 nm) 
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The DSCS of spherical particle in Fig.4.8 represented polarization 

discrimination only for some backscattering regions similar to results given in 

Fig.4.2(b). 

  
  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig.4.9 is the simulation result for a dielectric prolate spheroid with refractive 

index m=1.45 and with aspect ratio c/a=3. The DSCS of this spheroid indicated an 

intensity gain in favour of s-polarized component at scattering angles around the region 

00 4520 << θ .  

 

 
6420 faces, 3212 
vertices(sphere) 
 
a=4.000000; 
b=4.000000; 
c=4.000000; 
e=1.000000; 
n=1.000000; 
delta=0.50; 
eps=0.110000; 
wavelength=0.632800; 
refractive_idx_re=1.4539; 
refractive_idx_im=0.000000; 
radius_norm=4.000000; 
Nrank=10; 
Mrank=10;  

 

 
80176 faces, 4090 vertices 
(prolate spheroid) 
 
a=1.000000; 
b=1.000000; 
c=3.000000; 
e=1.000000; 
n=1.000000; 
delta=0.05350; 
eps=0.110000; 
wavelength=0.632800; 
refractive_idx_re=1.4539; 
refractive_idx_im=0.000000; 
radius_norm=1.000000; 
Nrank=10; 
Mrank=10;  

Figure 4.8.  Differential scattering cross-section of  sphere  a= b= c=4�m and r(norm)=4�m  

(m=1.453, =λ 632,8 nm) 

Figure 4.9.  Differential scattering cross-section of prolate spheroid a= b=1�m, c=3�m  and 

r(norm)=1�m  (m=1.453, =λ 632,8 nm) 
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Fig.4.10 is the simulation result for a dielectric oblate spheroid with refractive 

index m=1.45 and with aspect ratio c/a=0.33. The DSCS of this oblate spheroid 

indicated polarization discrimination in forward direction only for a small region around 

00 2015 << θ (see Fig.4.11). 
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Figure 4.10. Differential scattering cross-section of oblate spheroid a= b=3�m, c=1�m  and 

r(norm)=2�m  (m=1.453, =λ 632,8 nm) 
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Figure 4.11. Polarization of scattered light by oblate spheroid a= b=3�m, c=1�m  and 

r(norm)=2�m  (m=1.453, =λ 632,8 nm) 
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Fig.4.12 and Fig.4.13 are the simulation results for a dielectric prolate spheroid 

with refractive index m=1.45 and with aspect ratio c/a=1.2. The figures of DSCS 

represented polarization discriminations in favor of s-polarization for scattering angles 

00 260 << θ and in favor of p-polarization at scattering angles 00 5626 << θ (see 

Fig.4.14) in forward direction. 
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Figure 4.12. Differential scattering cross-section of prolate spheroid a= b=1�m, c=1.2�m  and 

r(norm)=1�m  (m=1.453, =λ 632,8 nm) 

Figure 4.13. Differential scattering cross-section of prolate spheroid a= b=1�m, c=1.2�m  and 

r(norm)=5�m  (m=1.453, =λ 632,8 nm) 
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Fig.4.15 and Fig.4.16 are the simulation results for a dielectric prolate spheroid 

with refractive index m=1.45 and with aspect ratio c/a=1.5. The DSCS of this spheroid 

indicated an intensity gain in favor of p-polarized component at scattering angles around 

the region 00 2010 << θ in forward direction.  
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Figure 4.15. Differential scattering cross-section of prolate spheroid a= b=2�m, c=3�m  

and r(norm)=5�m  (m=1.453, =λ 632,8 nm) 
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Figure 4.14. Polarization of scattered light by prolate spheroid a= b=1�m, c=1.2�m  

and r(norm)=5�m  (m=1.453, =λ 632,8 nm) 
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Figure 4.16. Differential scattering cross-section of prolate spheroid a= b=2�m, c=3�m  

and r(norm)=1.5�m  (m=1.453, =λ 632,8 nm) 
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CHAPTER 5 

 

POLARIZATION MEASUREMENTS 

 

A number of methods exist in order to measure the parameters and polarization 

characteristics of dielectric filters. In the manufacturing of microelectronic and 

microoptic elements, the measurement coefficients of material refraction and absorption 

as well as the layer homogeneity and thickness is an important task (Kalimanova et al. 

2005). The most common optical measurement technique is ellipsometry. Ellipsometry 

is an extremely sensitive used to characterize thin films by observing the relative phase 

change in a polarized light beam reflected from the film surface. 

 

However, the accuracy of this type of measurement suffers from scattering 

losses. In addition, reflection and transmission measurements are not sensitive to small 

phase shifts. Normal ellipsometry measurements are usually not capable of measuring 

characteristics of very complicated samples that may contain depolarization or cross-

polarization (Jellison 2004). 

 

 

 

 

 

                 Figure 5.1. Schematic drawing of ellipsometry 
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5.1.  Ellipsometry Measurements 

 

When linearly polarized light is reflected or transmitted from a surface, a phase 

shift in the both components take place. Since this shift is in general not the same for 

both components, resulting light is in an elliptically polarized state. The name 

ellipsometry is used for the technique of measuring this change in polarization of light.  

The parameters such as refractive index, extinction coefficient and thickness of 

the material are obtainable by correct analysis of the results obtained from the 

ellipsometric measurements. Two most common methods of determining these 

parameters of thin film are single ellipsometric measurements used in our study and 

multiple wavelengths spectroscopic ellipsometry.  

Accessing to full Mueller matrix parameters allows us to have a complete 

picture of the material for the correct characterization. Mueller matrix describes 

perfectly the polarization change due to a sample. Examples of the benefits gained by 

the Mueller matrix formalism are found when characterizing gratings and anisotropic 

samples. 

The basic interest for ellipsometry is the measurement of polarization changes in 

the p- and s-components upon reflection or transmission relative to each other. A known 

polarization is reflected or transmitted from the sample and the output polarization is 

measured. 

 

5.2.  The Fundamental Equation of Ellipsometry 

 

Ellipsometry measures two values, Ψ and ∆ . Ψ  is the angle whose tangent is the 

ratio of the magnitudes of the reflection (or transmission) coefficients and ∆  is the 

change in phase. By using these measured values, the fundamental equations of 

ellipsometry is given as following for the cases reflection and  transmission 

respectively: 
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Ψ vary between 0 and �/2 and ∆  vary between 0 and 2�. These values are related to the 

Fresnel reflection coefficients rp and rs, in the reflection case and vice versa. All Fresnel 

reflection and transmission coefficients are easily can be derived from Fresnel formulas 

as described in Section 2.5.2. 

By using this polarization ratio ρ , the real part of the refractive index n2 and the 

imaginary part (the extinction coefficient) k, can be obtained. In addition, these obtained 

values used to calculate the absorption coefficient,  

 

 
	

k4�
� =  (5.2) 

 

5.3. Spectroscopic Ellipsometry 

 

Spectroscopic measurements require a method of wavelength selection. By 

changing the wavelength of light, ( )∆Ψ, spectra and ρ  are measured for transmission or 

reflection, as a function of wavelength (Fujiwara  2007). 

 Each wavelength will introduce a new unknown refractive index. Spectroscopic 

phase modulated ellipsometers (SPME) use photoelastic devices to perform the 

polarization modulation at each wavelength. This offers the advantage of modulation 

three orders of magnitude faster than the mechanical rotation of the polarizer. The 

photoelastic modulator is typically a time dependent retarder which is able to operate at 

very high rates of up to 50 kHz. Theoretically, very high data acquisition rates (of up to 
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Figure 5.2. The variation of � and �  with incident angle 
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10ms per point) can be obtained. This value is however limited by satisfactory signal-

to-noise ratio levels, which require longer integration times or a very high intensity light 

source. 

In general, the spectroscopic ellipsometry measurement is carried out in the 

visible region, but measurement in the infrared region has also been performed widely. 

 

5.4.  Single Wavelength Ellipsometry 

 

Single wavelength ellipsometry uses a single frequency of light to probe the 

analyzed film. The optical design is simple, low-cost, and accurate. Lasers are ideal 

light sources with well-known wavelength and significant intensity. Single wavelength 

ellipsometry is more suitable for quick measurement of nominally known films. Since 

multiple solutions might be occurred for different film thickness, the interpretation of 

unknown films should be done carefully.  

The refracted light may travel through different thicknesses to emerge in-phase 

with the first reflection, but the returning light is delayed.  

The arrangement of the optical components between the source and detector 

defines the type of the specific ellipsometer. General two types of single wavelength 

ellipsometers are rotating analyzer ellipsometers and null ellipsometers.  There are also 

different configurations where the polarizer (P), system (S), compensator (C) and 

analyzer (A) are may be arranged differently with respect to each other. According to 

such configurations, the PCSA and PSCA ellipsometer arrangements can be taken into 

account. 

In a nulling ellipsometer, the orientation of the polarizer, compensator (or a 

quarter wave plate) and analyzer are adjusted with respect to each other until the light 

incident on the detector is nulled or extinguished. If the signal can be nulled with the 

analyzer, the relative phase shift between the reflected or transmitted components has 

been cancelled.  

An example for the basic configuration of the null ellipsometer is shown in 

Fig.5.4. Unpolarized light passes first through a polarizer with its transmission axis.  
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Next the light reflected from the surface has elliptical state of polarization and 

encounters a quarter-wave plate. The wave plate introduces a �/2 phase difference 

between the field components, and the polarization of the emergent light is linearly 

polarized. The light transmitted from the wave plate passes through a second polarizer 

(the analyzer).  

The orientations of the quarter-wave plate and the analyzer are varied until no 

light passes through the analyzer. Now, the light incident on the analyzer must be 

linearly polarized with its electric vector at angle �/2 to the analyzer's transmission axis. 

So, from these orientations and the direction of polarization of the incident light, the 

relative phase change and the relative amplitude change introduced by reflection from 

the surface can be calculated (WEB_3 2007, WEB_4 2007).  

 

Figure 5.4.  An example of null ellipsometer 

Figure 5.3. When linearly-polarized light is reflected from a material, it generally becomes  
  elliptically polarized. 
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5.5. Experimental Results 

  

In order to obtain the polarization characteristics of the dielectric optical film in 

forward direction, we used an example of the single wavelength ellipsometry as shown 

in Fig.5.5.  

  

 The intensity measurements of scattered light performed on dielectric optical 

films of specific two groups used in LCD technology and on model films with and 

without nonspherical zeolites particles for forward scattering (scattering angle 
=0) 

using two laser sources with wavelengths nm633=λ  and nm542=λ .  

First measurements performed on two optical films deposited with nonspherical 

random shape zeolites (see Figures 5.9), and pure film without zeolites. Measurements 

performed in two positions (named horizontal and perpendicular) of the film to estimate 

the effects of particles orientation on scattering and polarization. The measurements 

results and polarization states are given following.   
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Figure 5.6.  The polarization state of source (	=633nm) 

Figure 5.5.  The experimental setup used in this study 
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Table 5.1.  Forward scattering measurements (
=00) and partial 
polarization of the output [	=633nm, p0=0.97(-8

0
/86

0
)] 
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With zeolites/perpendicular positioned
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Figure 5.7. The partial polarizations of scattered light by optical film. (a) with 
zeolites and horizontal positioned (b) with zeolites and perpendicular 
positioned (c) without zeolites (	=633nm, input polarization 
p0=0.97(-8

0
-86

0
)) 
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Table 5.2. Forward scattering measurements (
=00) and partial  
polarization of the output [	=542nm,  p0=0.97(167

0
/73

0
)] 
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Figure 5.8.  The partial polarizations of scattered light by optical film. (a) with zeolites 
and perpendicular positioned (b) with zeolites and horizontal positioned (c) 
without zeolites (	=542nm, input polarization p0=1(167

0
-73

0
)) 
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Figure 5.9. The microscopic pictures of optical thin films and the 
orientation of zeolites used in polarization measurements. 
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Second measurements performed on dielectric optical films of specific two 

groups used in LCD technology. The measurements results and polarization states given 

in Table 5.3 for the input state and in Table 5.4 for the output measurements.   

 

Table 5.3.Reference (Input) Polarization State (30/1030) 

 

Ip 

 

Is p0=(Ip-Is)/ (Ip+Is) 

4400 380 0.841 
 

 

Table 5.4. Forward scattering measurements (
=00) for different dielectric films [	=633nm] 
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Is Imax Imin p0=(Ip-Is)/ (Ip+Is) 
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S1 30 1 30 1 0.9355 0.9355 P0  

S2 34 1 40 1 0.9429 0.9512 22 

S3 33 1 36 1 0.9412 0.9459 21 

S4 0 0 0 0 x x x 

C1 30 0 30 0 1.0000 1.0000 P0  

C2 0 0 0 0 x x x 

C3 18 3 18 3 0.7143 0.7143 P0  

C4 0 0 0 0 x x x 
 

 

Filters S2 and S3 significantly changed the polarization state of the incident light 

at the output. S1, C1 and C3 remained without change in polarization state, however C1 

filter acting as perfect linear polarizer, obtained an enhancement in degree of linear 

polarization.  Since filters S4, C2 and C4 are excellent diffusers, all forward scattering 

measurements ( 0=θ ) recorded as zero.   
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CHAPTER 6 

 

RESULTS AND CONCLUSION  

 

The main aim of this thesis work is to find out a way of exploiting the 

polarization discrimination properties of scattered light by nonspherical dielectric 

particles in order to improve the brightness in LCD backlight systems. For those 

purposes suitable scatterers such as prolate and oblate spheroids are analyzed and 

percentage improvement, the results are presented below.  A typical LCD backlight 

system is depicted in Fig. 6.1.  
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The light produced by CCF Lamps is incoherent, unpolarized and occupying the 

range of the visible spectrum. In a typical LCD backlight system, the light passes 

through the optical films, which are cascaded in the order of diffusing plate, diffusing 

sheet, BEF and top diffusing sheet, the light is still unpolarized and incoherent with a 

slight change in the spectral distribution.  

In general, dielectric homogeneous spherical particles are used in the diffusing 

Figure 6.1. Shematic picture of typical direct backlight LCD system 
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plate and the diffusing sheets, which do not have a morphological asymmetry and do 

not show any polarization differentiation. However, the films containing nonspherical 

scatterers can exhibit polarization discrimination in a favored direction, and the light is 

characterized as partial polarized in contrast to unpolarized in classical case.  

 

 

In the LCD backlight system the light needs to be mostly scattered in the 

forward direction in order to increase efficiency, and the brightness. In general the 

polarizer is placed in the system at very close to both the films and the cell unit. 

Therefore, a small angle can be considered as the angle of contribution at the pixel 

spacing and the scatterer position, shown in Fig.6.2. As shown in the Fig.6.2 and  

Fig.6.3 most of the light on the polarizer is coming from the nearest (direct) scatterer. 

However, the contribution from the neighbor scatters can simply be added if they are 

polarized in the same direction since the light is still incoherent.  

Figure 6.3.  Intensity distribution percentages of s and p- polarized components  for a 
sphere a=b=c=4µm (	=632.8nm) 
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As a reference the spherical scatterer is simulated for the normal incident, the 

scattering graphic is shown in the Figure 6.3. The most of the power is within the angle 

of a few degree and the polarizations are equal in p (parallel) and s (vertical) states. 

When the scatterer is prolate spheroid in shape and have large aspect ratio 

( ac / ), the simulation results at the normal incident are presented in the Figure 6.4, a 

significant polarization discrimination even at small scattering angles is shown. The 

polarization is dominantly in the favor of s-state (93 %) and the power spreads all over 

for forward scattering angles. On the other hand the simulation results for the oblate 

spheroid shows less significant effects on polarization discrimination compared to the 

results of the prolate one. It is still slightly more polarization discriminating compared 

to the results for the spherical ones. The most significant polarization discrimination is 

obtained for spheroid particles with 75.3/ =ac . The results indicate that the spherical 

and the small prolate particles produce no significant polarization discrimination effects 

at small scattering angles. Therefore, those particles can not be used for polarization 

enhancement purposes.  

As a whole display system a favorable polarization direction of the backlight 

unit can be matched with the orientation of the polarizer such that the maximum power 

will be transmitted. In the case of the spherical particles only 50 % will be transmitted at 

most (on the graphic 40 %) , on the other hand; the spheroid particles having the aspect 

ratio 3.75 will be transmitting 63 % for over all forward scattering direction. Therefore, 

13 % improvement can easily be achieved by replacing the films having spherical 

Figure 6.4.  Intensity distribution percentages of s and p- polarized components  for a prolate 
spheroid c/a=3.75 (	=632.8nm) 
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scatters with the films having spheroid scatters. At this point, uniformity in the 

brightness and spectral distribution should also be considered. In the case of spheroids, 

the brightness distribution over the scattering angles suggests that it is easier to achieve 

uniformity due to higher scattering angles.  

Polarization measurements are performed on optical films of two groups used in 

LCD backlights and on model films with and without nonspherical zeolite particles 

prepared in the laboratory. Two groups of filters exhibit no polarization discrimination 

at all. Existence of zeolite particles in the film resulted in significant polarization 

differentiation at forward scattering angles. This effect is stronger at one polarization 

direction with respect to the orthogonal one. However, SEM pictures of these films 

revealed that zeolite particles are not uniformly distributed and not as homogeneous 

particles. Therefore, it is not possible to obtain a uniform brightness with these films.    

The results obtained for prolate spheroid dielectric particles with sizes 4-5 times 

of the wavelength show that the brightness improvement in LCD backlight units can be 

as high as 13 % or equivalently reducing one of the CCFL number.   
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APPENDIX A 
 

 

BLOCK ELEMENTS OF MATRIX X 

 

The block elements of matrix X given in Equation 4.11   for X =A, X =B and X 
=A0 are given as (A.1), (A.2), and (A.3) respectively. m is the refractive index given by 

sim εε= . 
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APPENDIX B 
 

 

ELLIPSOID 

 

Ellipsoidal particles are characterized by the three semiaxes a - b - c. If two of 
these axes have identical length, the ellipsoid is called spheroid. Generally, the shape of 
an aspherical particle is defined by its aspect ratio, which is the diameter of the particle 
divided by its length. Thus, a particle with an aspect ratio larger than one is a oblate 
particle and a particle with an aspect ratio smaller than one is a prolate particle.  

 

 

 

 

Figure B.1. a)prolate spheroid (a > b = c), b)oblate spheroid (a = b > c) 


