POLICY ANOMALY REPORTING FOR
DISTRIBUTED FIREWALLS

A Thesis Submitted to
The Graduate School of Engineering and Sciences of
Izmir Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by
Fiisun CETIN

December 2007
IZMiR

We approve the thesis of Fiisun CETIN

Assist. Prof. Dr. Tugkan TUGLULAR

Supervisor

Prof. Dr. Saban EREN

Committee Member

Assoc. Prof. Dr. Ahmet KOLTUKSUZ

Committee Member

18.12.2007
Date
Prof. Dr. Sitki AYTAC Prof. Dr. Hasan BOKE
Head of the Computer Engineering Dean of the Graduate School of

of Department Engineering and Sciences

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Assist. Prof. Dr.
Tugkan TUGLULAR, for his guidance, patience and encouragement. He was the one
who supported me when I was in trouble with critical decisions. His valuable support

and confidence have been the driving force of this thesis work.

I would also like to thank Sevgi Uslu, Ezgi Samanli and Oguz Yarimtepe who

cooperated with me in many studies.

Finally, I should thank to my parents who always supported me throughout my

education in my graduate study.

ABSTRACT

POLICY ANOMALY REPORTING FOR DISTRIBUTED FIREWALLS

Firewall is a protective device which is installed between two networks.
Firewall functionality depends on the filtering rules and their order. All rule relations
must be considered in order to determine correct rule order. In this thesis, anomaly
discovery algorithms are implemented for single and distributed firewall environments
in a software tool called “Policy Anomaly Checker”. A number of tests are performed
using different policies and network topologies in order to obtain operational values of

these algorithms.

v

OZET

DAGITIK GUVENLIK DUVARLARI ICIN POLITIKA ANOMALI
RAPORLAMA

Giivenlik duvar iki network arasina kurulan koruyucu bir cihazdir. Giivenlik
duvarinin islevselligi filtreleme kurallarina ve bu kurallarin sirasina baglidir. Dogru
kural sirasimi belirlemek i¢in kurallar arasindaki biitiin iligkiler dikkate alinmalidir. Bu
tezde tek ve dagitik giivenlik duvari ortamlar1 icin anomali bulma algoritmalari
“Politika Anomali Belirleyicisi” adi verilen bir yazilim aracinda uygulanmistir. Bu
algoritmalarin operasyon degerlerinin belirlenmesi icin farkli kural setleri ve ag yapilari

kullanilarak testler yapilmistir.

TABLE OF CONTENTS

LIST OF FIGURESoooiiiiiiiiiteiet ettt viii
LIST OF TABLES ...ttt sttt X
CHAPTER 1. INTRODUCTIONccoiiiiiieiieiesieieeie ettt 1
CHAPTER 2. BACKGROUNDcc.coiiiiiieiieieseeee et 2
2.1 FITEWALLS ..o 2
2.1.1. Types of FIreWallscooviiiiiiiiiiiiiiiiieiceceeeeeeeeee e 3
2.1.1.1. Packet Filter Firewallscccccoiiiniiiiniiniiiiiiiicieceecee 3
2.1.1.2. Stateful Inspection Firewallscccceeriieeniieiniieeiieeieeeeeene 4
2.1.1.3. Application Proxy Gateway Firewalls...........cccccceriiiiniiinnnnnnn. 4

2.2. Distributed FIrewWalls.......c.cccooiiiiiiiiiniiiiieiiecnceeee e 4
2.3. Firewall POLICIEScc.eeiiiiniieiieiiieieeecctetee e 6
2.3.1. Firewall Policy Representation............ccceccveeerieeenieeenieesreeesieeeeneenn 8

2.4. POlICY ANOMAIIES ..ccuuviiiiiiiiiiiieiieeeiteeete ettt 9
2.4.1. Intra-Firewall Policy Anomalies...........cccocueeeriieiniieniieeniieenieeene 11
2.4.2. Inter-Firewall Policy Anomalies...........ccceeveerveeenieeenieeeieeeieeeees 13
CHAPTER 3. DESIGN AND IMPLEMENTATIONccccoooiiiiiinieieeieene 17
3.1. Requirements of Policy Anomaly Checkerccccccoevviiiniiiiniiinniinnns 17
3.1.1. Functional Requirements of Policy Anomaly Checker 17
3.1.1.1. Intra-Firewall Anomaly Checking...........cccccvevvvieircveencieennnnn. 17
3.1.1.2. Inter-Firewall Anomaly Checking...........cccccveevvvieniveencieennnnn. 18
3.1.1.3. Rule Generationcocceerueeoueenieenieenieeieenee e 18

3.2. Design PrinCIPIESeeevuiiiiiiieiiiieeiiieeitee ettt 18

Vi

3.3. Architectural Layers of Policy Anomaly Checker...........ccocceeeviuiennnnenne 19

3.3.1. Domain Layer of Policy Anomaly Checkerccccccoveuieennnnnnne. 19
3.3.2. Service Layer of Policy Anomaly Checkerc..cccccvvvvervrennnennne. 20
3.3.3. User Interface Layer of Policy Anomaly Checker...............c........... 21
3.5, ALOTTERINS .ottt 22
3.5.1. Intra-Firewall Anomaly Discovery Algorithmcccoceeenneennne 22
3.5.2. Inter-Firewall Anomaly Discovery Algorithmcc.ccccvveeneennee. 27
3.6. Implementation of Policy Anomaly Checkerccoccveeveieiniieeninnnnns 30
3.6.1. Application development Environment............ccccceeevvveeniieenneennnne. 30
3.6.2. Scenarios and User Interfaces..........ccocceeveercieenieniieenicniecniecnieeee, 30
3.6.2.1. SCENATIOS ...eueieiieeiteeiie ettt ettt ettt 30
3.6.2.2. User INterfacescoouerviiniieiieniiiieeiceeeeeeeeeee e 32
3.7 TESE CASES ..ottt sttt sttt s 33
3.7.1. Intra-Anomaly Discovery Algorithm Test Casescccceeevueennee. 33
3.7.2. Inter-Anomaly Discovery Algorithm Test Casescccccveerveennnee. 33
CHAPTER 4. EXPERIMENTS AND EVALUATION......cccceoceriiinieiieieene 35
CHAPTER 5. CONCLUSION AND FUTURE WORKcccccocviniiiiniinene 42
REFERENCES ..ottt et s 43
APPENDICES
APPENDIX A. DEFINITIONS OF RELATIONS BETWEEN RULES.......... 44
APPENDIX B. ANOMALY TYPES ...t 46
APPENDIX C. USER INTERFACES OF POLICY ANOMALY...................
CHECKER ..ottt 48
APPENDIX D. FIREWALL CONFIGURATIONScccooiiiiiiinieeeiene 51

Vil

Figure
Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 3.9.
Figure 3.10.
Figure 3.11.
Figure 3.12.
Figure 3.13.
Figure 3.14.
Figure 3.15.

Figure 3.16.

LIST OF FIGURES

Page
A Firewall Usually Separates an Internal Network from the Internet 2
A Sample Policy Configuration Fileccccceviiiiiiiiiiiiiiiiniieeieeeeeeeen 5
A Firewall Policy EXampleccccooouiiiiiiieniieeiiecicecce e 8
Policy Tree for the Firewall Policy in Figure 2.3cccccevviiiiniiiinienne. 9
Cascaded Firewalls Isolating Domains Dy and Dy.cccooiiiiiiinnn. 13
Architectural Layers of Policy Anomaly Checkerc...ccoccovieniinnennn. 19
Domain Layer of Policy Anomaly Checker..........ccccceeevieviieercieennreennne. 20
Service Layer of Policy Anomaly Checker.........c.cccoovvieniiieniiieniiennneen. 21
User Interface Layer of Policy Anomaly Checkerccocceeeviiiinneene 22
Intra-Firewall Anomaly Discovery Algorithmccccevvvieviieennnennnee. 23
State Diagram for Detecting Intra-firewall Anomalies for Rules 23
Modified Anomaly Transition Algorithmc.cccooceeviiiiiiniiinicnieenieene 25
Modified Anomaly Termination Algorithm.........ccccceceeviiniiinicnnieeneenn. 26
Inter-Firewall Anomaly Discovery Algorithm...........cccccceevvveereiieennneennne. 27
Example for a Distributed Firewall Environment............c.ccccceeveveennnen. 28
Modified InterAnomaly Termination Algorithmccccceecveiniinicennenne. 29
Sequence Diagram for Intra-firewall Anomaly Checking 30
Sequence Diagram for Inter-firewall Anomaly Checking 31
Sequence Diagram for Rule Generation without Anomaly....................... 32
Intra-Anomaly Discovery Algorithm Results for Anomaly Cases 33
Inter-Anomaly Discovery Algorithm Results for Anomaly Cases 34

Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.

Figure 4.5.

Figure 4.6

Figure C.1.

Figure C.2.

Figure C.3.
Figure C 4.

Figure C.5.

Processing Time for Intra-firewall Anomaly Discovery Algorithm 36

Inter-firewall Anomaly Discovery Algorithm for One Path 36
Inter-firewall Processing Time.........ccccoeeuveeriieeniiieeiieeieeeeeee e 37
Environment used for eXperimentcccueeeeveeerieeeiieeeiieeeiieeeieeeeieeenns 38
Experiment for Inter-firewall Anomaly Discovery Algorithm..................
Using One Path Only (Total Response Time and Latency Values).......... 40
Experiment for Inter-firewall Anomaly Discovery Algorithm............
Using One Path Only (Discovery Algorithm Process Time).................... 41
User Interface of the Policy Anomaly Checker..........cccoceevviiiniiinnnennnne. 48
User Interface of the Policy Anomaly Checker with Anomaly..................
Detection MENU...........coiiiiiiiiiiiiieiieeeee et 49

User Interface of the Policy Anomaly Checker with Topology Menu....... 49
Anomaly Result FOrm.........coocuiiiiiiiiiiiiiiiiccceeeeee e 50

Rule Generation IMENU........ccooevvveiiiiieiieeeeeeeeieieee e e eeeeteeaeeeee e e e e esesaa s 50

X

LIST OF TABLES

Table Page
Table 2.1. Sample Packet Filter Firewall Rule Set....................oooiiiiiiiiinn, 3

CHAPTER 1

INTRODUCTION

Firewalls are fundamental elements in network security. Most of the dangers of
the Internet may be blocked by installing a firewall. Firewall is installed at a point
where the internal network connects to the Internet. It filters out unacceptable traffic
coming from or going to internal network. Filtering decision is based on a set of

ordered rules. Correct operation of the firewall is dependent on the filtering rules

Administrator must consider all rule relations in order to determine of correct
rule order. Increase in the number of the filtering rules results in the increase the
potential of anomaly occurrence in the firewall policy. In single firewall environment
policy may include intra-firewall anomalies, where the same packet may match more
than one filtering rule. In distributed firewall environments, firewalls might also have
inter-firewall anomalies when individual firewalls in the same path perform different

filtering actions on the same traffic.

The main concern of this study is to implement anomaly discovery algorithms
(Al-Shaer and Hamed 2004) for reporting an anomaly that might exist in any firewall
policy in single and distributed firewall environments. In order to implement these
algorithms a tree-based filtering representation is used. These algorithms are
implemented using Java programming language in a software tool called “Policy

Anomaly Checker”.

This thesis is organized as follows. Chapter 2 describes the single and
distributed firewall environments. Firewall policies and their tree-based representation
are also identified in this chapter. Then in order to determine anomalies among filtering
rules, relations are described as well. Chapter 3 explains anomaly discovery algorithms
for single and distributed firewalls. Design and implementation of “Policy Anomaly
Checker” are also explained in this chapter. Chapter 4 describes experiments and
evaluation which are done using “Policy Anomaly Checker”. Finally, Chapter 5 gives

the conclusion of this thesis work.

CHAPTER 2

BACKGROUND

In this chapter firewalls and firewall policies are explored. In addition,

distributed firewalls and policy anomalies are explained.

2.1. Firewalls

Firewall is a protective device which is installed between two networks. A
firewall usually separates an internal network from the Internet (Figure2.1). Firewall
restricts people to entering or leaving at a controlled point and it prevents attackers
from getting close to other defenses. All traffic between two networks must pass
through the firewall and only authorized traffic, defined by the local security policy,

can be allowed to pass.

y _ _ F y

Figure 2.1. A Firewall Usually Separates an Internal Network from the Internet
(Source: Chapman and Zwicky 1995)

The function of the firewall is to provide secure access to and from the internal

network. Any packet that attempts to enter or leave at the entry point is first examined

by the firewall. Firewall decides either to accept or to discard the packet according to

different fields of the packet.

Firewalls are included in network security approaches to protect internal
networks. Internet firewall prevents the dangers of the Internet from spreading to

internal network.
2.1.1. Types of Firewalls

There are several types of firewalls. Packet filter firewalls, stateful inspection

firewalls, application-proxy gateway firewalls are fundamental types of firewalls.

2.1.1.1. Packet Filter Firewalls

Packet filtering firewalls operate at Layer 3 of the OSI model. Packet filtering
firewalls route IP packets selectively between internal and external hosts. IP packet’s
header contains four information; IP source address, IP destination address, IP protocol
type and some characteristics of layer 4 such as the source and destination port.
Firewall examines packets and allows or blocks them according to a rule set. Table 2.1
shows sample packet filter firewall rule set which blocks all tcp traffic coming from the

network 192.168.1.* except http (Wack, et al. 2002).

Table 2.1. Sample Packet Filter Firewall Rule Set

Order | Protocol Source Source Port | Destination | Destination | Action
Address Address Port
1 tcp 192.168.1.* any any 80 accept
2 tcp 192.168.1.%* any any any deny

The rule set may be much larger and detailed for most firewalls. When a
firewall accepts a packet, it examines source and destination addresses and ports of the

packet. Then it starts at the top of the rule set and works down through the rules. When

a rule that permits or denies the packet is found, firewall passes the packet through the

firewall or drops the packet without passing it through the firewall (Wack, et al. 2002).

2.1.1.2. Stateful Inspection Firewalls

Stateful inspection firewalls are packet filters that incorporate added awareness
of the OSI model data at Layer 4. A stateful firewall is able to hold in memory the state
of the connection. It depends on the three-way handshake of the TCP protocol. When a
client initiates a new connection, it sends a packet with the SYN bit set in the packet
header. All packets with the SYN bit set are considered by the firewall as NEW
connections. If the service which the client has requested is available on the server, the
service will reply to the SYN packet with a packet in which both the SYN and the ACK
bit are set. The client will then respond with a packet in which only the ACK bit is set,
and the connection will enter the ESTABLISHED state. Such a firewall will pass all
outgoing packets through but will only allow incoming packets if they are part of an

ESTABLISHED connection (Wack, et al. 2002).

2.1.1.3. Application Proxy Gateway Firewalls

Application-proxy gateway firewall is an application that runs on a firewall
system. The user's client program talks to this proxy server instead of directly talk to
the "real" server out on the Internet. The proxy server evaluates requests from the client
and decides which to pass on and which to discard. If a request is approved, the proxy
server talks to the real server on behalf of the client and proceeds to relay requests from
the client to the real server and to relay the real server's answers back to the client

(Chapman and Zwicky 1995).

2.2. Distributed Firewalls

Traditionally a firewall is installed as network gateway and same access policy
is enforced for every computer on the network that is protected by the firewall. Same
rule set is applied at the network boundary. This single point of interconnection
between networks has some disadvantages. If the access control policy is incorrect, the

protected network will be at risk. For example if malicious traffic is able to pass

through to firewall then all hosts on the network could be vulnerable to this malicious
traffic. Also traditional firewall will not provide a protection for any attack from the

same network. In addition a network firewall can be a bottleneck (Grant, et al. 2001).

Distributed firewall system is not a single system that acts as a gateway between
two networks. By removing this single choke point, the network bottleneck is
eliminated. In distributed firewall technology, an access control mechanism is
distributed to each host which requires protection. Firewall functionality is removed
from a single system. The unique access control for each of the network systems allows

different levels of security to be implemented on computer system on the same network

(Grant, et al. 2001).

A policy language, a policy distribution scheme and certificates are components
of distributed firewall environment. Policy language defines what sort of connections
are permitted or prohibited. Basically it is equivalent to packet filtering rules. Policy
language should also support credentials, for delegation of rights and authentication
purposes (Ioannidis, et al. 2000). While traditional firewalls usually use the IP address
as an identifier, distributed firewalls use cryptographic certificates as identifier since
distributed firewalls are independent of topology. Certificates enable the making
decisions without knowledge of the physical location of the host. Public-key

cryptography mechanisms are most often applied in contemporary implementations.

A sample policy is shown in Figure 2.2. In this sample if the certificate
identifies the source as mailgw.example.com the packet will be accepted. If the

certificate name is different, the packet will be dropped. (Bellovin 1999)

inside__nat = xS08{nama=""axample.com"}
mail_gw = xS02{namse="mailgw.example.com"};
time_server = |IPva{10.1.2.3};

allow smtpf*, mall_gw);

allow amtp{mail_gw. inside_nest);

allow ntp(time_servar.inside_neat);

allow *(insida__nat, ™);

Figure 2.2. A Sample Policy Configuration File
(Source: Bellovin 1999)

Policy distribution scheme is used to enabling policy control from central point.
Distribution scheme defines type of the security policy delegation to the members of

5

the network. Policies are distributed according to one of the following distribution

scheme:

® Policies as well as credentials can be pushed to every single end point in the
policy domain.

® Policies and credentials can be pulled from a trusted repository during
initialization.

e Policies are pulled during initialization of the policy verifier whereas
credentials for authentication mechanisms remain on a trusted repository
and are requested whenever communication traffic is reaching a node from a

yet unknown host.

In implementation of distributed firewall technology, policy languages are
translated into some internal format by a compiler. This policy file is distributed to all
the protected hosts by the system management software. A mechanism applies the
security policy to incoming packets or connections. And incoming packet accepted or
rejected by each host according to policy and the cryptographically verified identity of
each sender (Ioannidis, et al. 2000).

Different variations can exist in implementation of distributed firewall
technology. These variations are called hybrid firewall that is the combination of
traditional firewall and distributed firewall. Some hybrid firewalls do not make use of
cryptographic credentials and still rely on topological properties of the underlying

network through inspection of the connecting nodes network address.

2.3. Firewall Policies

A firewall policy should describe how the firewall is managed. Before a firewall
policy created, some of the analysis must be performed. The result of the analysis must
identify network applications traffic which the firewall system handles and the details

of which applications can traverse a firewall.
The steps for firewall policy creation are as follows (Wack, et al. 2002):

¢ [dentification of network necessary applications,

e [dentification of vulnerabilities associated with applications,
o Cost-benefits analysis of methods for securing the applications,

e (reation of firewall rule set based on applications traffic.

Most firewalls use rule sets for implementing security controls. The
functionality of a firewall is determined by these rule sets. Nearly all rule sets, contain

the following fields, as a minimum (Wack, et al. 2002):

¢ The source address of the packet, address of the computer system or device
the network packet originated from (an IP address such as 192.168.1.1).

¢ The destination address of the packet, address of the computer system or
device the network packet is trying to reach (e.g., 192.168.1.2).

e The type of traffic, the specific network protocol being used to communicate
between the source and destination systems or devices.

e Possibly some characteristics of the Layer 4, the source and destination
ports of the sessions (e.g., TCP:80 for the destination port belonging to a
web server, TCP:1320 for the source port belonging to a personal computer
accessing the server).

e Sometimes, information pertaining to which interface of the router the
packet came from and which interface of the router the packet is destined
for. Useful for routers with three or more network interfaces.

® An action, such as Deny or Permit the packet (Wack, et al. 2002)

Firewall rule set should be kept as simple as possible and should be building to
be as specific as possible. Unless the traffic type and connections have been specially
permitted, inbound traffic should be blocked by default policy. Common format of a

rule in a firewall policy is as follows:

<order> <protocol> <src_ip> <src_port> <dst_ip> <dst_port> <action>

The order field determines the position of rule in rule set; protocol field
specifies transport protocol of the packet. The IP addresses of the source and
destination are specified respectively by src_ip and dst_ip fields. The port addresses
of the source and destination of the packet are specified by src_port and dst_port fields

(Al-Shaer and Hamed 2002).

2.3.1. Firewall Policy Representation

Policy representation modeling is important for implementing management
techniques and visualizing the firewall policy structure. Al-Shaer and Hamed (2002)
described a policy representation model in their research “Design and Implementation
of Firewall Policy Advisor Tools”. They represented the firewall policy by a single
rooted tree which is called the policy tree. Fields of the rules are represented as nodes
in policy tree. And a possible value of the associated field is represented as a branch of
this node. The protocol field is represented as a root node of a policy tree, and action
field is represented as a leaf node. Every tree path starting at the root and ending at a
leaf represents a rule in the policy. Rules that have the same field value at a specific
node, will share the same branch representing that value. A firewall policy example is

illustrated in Figure 2.3 and policy tree model for this policy example is illustrated in

Figure 2.4.
Source Destination
Protocol Address Port Address Port Action
1: tep, 140.192.37.20, any, * ok % %, 80, deny
2: tep, 140.192.37.%, any, * % % %, 80, accept
33 tep, * % % %, any, 161.120.33.40, 80, accept
4: tcp, 140.192.37.*, any, 161.120.33.40, 80, deny
5z tep:; 140:.192.37.30, any, wom ok w2 deny
6: tcp, 140.192.37.%, any, * % % %, 21, accept
7: tcp, 140.192.37.*, any, 161.120.33.40, 21, accept
82 tep; * ok %k %, any, * ok k%, any, deny
9: udp, 140.192.37.%, any, 161.120.33.40, 53, accept
10: udp, * % % %, any, 161.120.33.40, 53, accept
11: udp, 140.152.38.*%, any, 161.120.35.*, any, accept
12: udp, R W EGR, any; * % %k %, any, deny

Figure 2.3. A Firewall Policy Example
(Source: Al-Shaer and Hamed 2002)

A Shadowing
Protocol
D Redundancy
TR Ug,
Q Comelation
O Ganeralization Srcip Sre ip
- .
[
e
g
=]
e
Sre_part Src_pot Src_part Sic_port Sri_port Sre_port
Dest ip Dest_ip Dest_ip Dest ip Dest_ip Dest ip
£ il B
| | 3 & ¥\
R (L'L‘" B s 161.120.33.40 By e
. , " Lo o Fe
W8 2 | @
Dst_port Dst port Dst port Dst port Dst_port Dst port Dst port Dst port Dst_port
a0 2 & o &, = a0 E 53 53 £
Action Action Action Action Action Action Action Action Action Action Action
dary deny deny aceepl accept aceept acoapt dany aceapl acoap dany
Rula 1 Rule 5 Rule 4 Rule 7 Rula 2 Rule 6 Rule 3 Rule 8 Rule 8 Rule 10 Rule 12
Q& | O AG £\ ® ||F1®

Figure 2.4. Policy Tree for the Firewall Policy in Figure 2.3
(Source: Al-Shaer and Hamed 2002)

Rule 1 to 9 all have the same protocol field value “tcp” and they share the same
branch at protocol node. Rules 1 and 5 have different src_ip field value while rules 2, 4,
6 and 7 share the same src_ip field value. Similarly, rules 3 and 8 share the same src_ip
branch. Rules 9, 10 and 12 share the same branch at protocol node with field value
“udp”. Notice that rules 8 and 4 appear on rules 2 and 3 while they have separate

branches also, because they have superset relations with other rules. Relations between

filtering rules will be introduced later in this chapter.

2.4. Policy Anomalies

Correct operation of the firewall is dependent on the filtering rules. Therefore,

administrator must give special attention to proper rule placement in filtering rule set.

In order to analyze the firewall policy modeling of firewall rule relations is
necessary. The model which is created by Al-Shaer and Hamed (2002) and introduced
in their research “Design and Implementation of Firewall Policy Advisor Tools” is used
to analyze firewall policies. They defined all possible relations between filtering rules
and they proved that there is no other relation exists. Definitions of relations are in

Appendix A.

Exactly matched: Rules R, and R, are exactly matched if every field in Ry is

equal to the corresponding field in Ry (Al-Shaer and Hamed 2002).

For the following rules, they are exactly matched because of all corresponding

fields in both rules are equal.

1: tcp, 192.168.1.3, any, 193.140.248.*, 21, accept
2: tcp, 192.168.1.3, any, 193.140.248.*%, 21, deny

Inclusively matched: Rules R, and R, are inclusively matched if they do not
exactly match and if every field in Ry is a subset or equal to the corresponding field in

Ry (Al-Shaer and Hamed 2002).

For the following rules, every field in rule 1 is subset or equal to corresponding
field in rule 2 and every field in rule 2 is superset or equal to corresponding field in rule

1. In this relation rule 1 is called subset match, rule 2 is called superset match.

1: tcp, 192.168.1.3, any, 193.140.248.*, 21, accept
2: tcp, 192.168.1.%, any, 193.140.248.*, any, deny

Completely disjoint: Rules R, and R, are completely disjoint if every field in
R, is not a subset and not a superset and not equal to the corresponding field in R, (Al-

Shaer and Hamed 2002).

For the following rules, they are completely disjoint. Every corresponding fields

in both rules are not subset and not superset and not equal.

1: tep, 192.168.1.3, 2000, 10.10.1.4, 21, accept
2: tep, 192.168.1.5, 3000, 10.10.1.11, 80, deny

10

Partially disjoint: Rules Ry and R, are partially disjoint (or partially matched)
if there is at least one field in Ry that is a subset or a superset or equal to the
corresponding field in Ry, and there is at least one field in R that is not a subset and not

a superset and not equal to the corresponding field in Ry (Al-Shaer and Hamed 2002).

For the following rules, all fields except destination port field in rule 1 are

subset or equal to corresponding fields rule 2.

1: tcp, 192.168.1.3, any, *.*.* * 21, accept
2: tcp, 192.168.1.%, any, *.*.* * 80, deny

Correlated: Rules R, and R, are correlated if some fields in R, that are subset
or equal to the corresponding field in Ry, and the rest of fields in Rx are supersets of the

corresponding fields in Ry (Al-Shaer and Hamed 2002).

For the following rules, below protocol, source port and destination port fields
in rule 1 are equals to corresponding fields in rule 2 src_ip field in rulel is subset of

src_ip field in rule 2 and dst_ip field in rule 1 is superset of dst_ip field in rule 2.

1: tcp, 192.168.1.3, any, *.*.* * 80, accept
2: tep, *.¥ k¥ any, 192.168.1.%, 80, deny

2.4.1. Intra-Firewall Policy Anomalies

“An intra-firewall policy anomaly is defined as the existence of two or more
filtering rules that may match the same packet” (Al-Shaer, et al. 2005). Anomaly types

which are classified in Appendix B as follows:

Shadowing anomaly: if all the fields in a rule match all the fields in a previous
rule, this rule will never be worked through and shadowing anomaly will be occurred.
If the shadowing rule is removed the security policy will not be affected. (Al-Shaer, et

al. 2005)

Example rules for cases (1) (2) are shown below:

11

Case (1)
1: tcp, 140.192.37.%*, any, 192.168.1.12, 80, accept
2: tep, 140.192.37.%, any, 192.168.1.12, 80, deny

Case (2)
1: tep, *.*.%.* any, 192.168.1.12, 80, accept
2: tep, 140.192.37.%, any, 192.168.1.12, 80, deny

Rule 2 is shadowed by rule 1 in the examples above.

Correlation anomaly: if some fields in first rule match corresponding fields in
second rule and some fields in second rule match corresponding rules in first rule and if
these rules have different action fields these rules have correlation anomaly. (Al-Shaer,

et al. 2005).
Example rule for case (3) is shown below:

Case (3)
1: tcp, 192.168.1.20, any, *.*.*.* 80, deny
2: tcp, *.*¥ k¥ any, 192.168.33.40, 80, accept

Rule 1 is in correlation with rule 2 in example above.

Generalization anomaly: if fields in second rule match all corresponding fields
in first rule and they have different action, second rule is generalization of first rule (Al-

Shaer, et al. 2005).
Example rule for case (4) is shown below:

Case (4)
1: tcp, 192.168.1.20, any, *.*.*.* 80, deny
2: tcp, 192.168.1.%, any, *.*.* * 80, accept

Rule 2 is a generalization of rule 1 in example above.

12

Redundancy anomaly: a redundant rule performs same action on the same
fields as another rule. If the redundant rule is removed policy will not be affected (Al-

Shaer, et al. 2005).
Example rules for cases (5), (6) are shown below:

Case (5)
1: tcp, 192.168.37.%, any, 140.192.33.40, 21, accept
2: tcp, 192.168.37.%, any, 140.192.33.40, 21, accept

Case (6)
1: tcp, 192.168.37.%, any, *.*.*.* 21, accept
2: tcp, 192.168.37.%, any, 140.192.33.40, 21, accept

Rule 2 is redundant to rule 1 in examples above.
2.4.2. Inter-Firewall Policy Anomalies

In distributed firewall environment, if any two firewalls on a network path take
different filtering actions, an inter-firewall anomaly may exist. For example a firewall

might block a traffic that is permitted by another firewall on the same network path.

Al-Shaer, Hamed, Boutaba and Hasan classified anomalies in multi-firewall

environments (Al-Shaer, et al. 2005). And they used network model that is illustrated in

Figure 2.5.
FWx FWy

Flow xtoy

Figure 2.5. Cascaded Firewalls Isolating Domains Dy and D.

13

As it is shown Figure2.5 traffic stream is flowing from subdomain Dy to
subdomain Dy . According to direction of flow, the closest firewall to the flow source
subdomain is called upstream firewall (FWy) while the closest firewall to the flow

destination subdomain is called downstream firewall (FWy).

Shadowing anomaly: if an upstream firewall blocks the network traffic
accepted by a downstream shadowing anomaly occurs. R4 belongs to downstream

firewall’s policy while R, belongs to upstream firewall’s policy (Al-Shaer, et al. 2005).
Example rules for cases (1), (2), (3), (4) are shown below:

Case (1)
Ry: tep, 192.168.%.*, any, 140.192.22.5, 21, deny
Rg: tep, 192.168.%.*, any, 140.192.22.5, 21, accept

Case (2)
Ry: tep, *.% %% any, *.*.* * any, deny

Ry: tep, 192.168.%.*, any, 140.192.22.5, 21, accept

Case (3)
Ry: tep, 192.168.%.*, any, 140.192.22.5, 25, deny
Ry: tep, 192.168.%.*, any, 140.192.* *, 21, accept

Case (4)
Ry: tep, 192.168.1.%, any, 140.192.%.*, 23, accept
Ry: tep, 192.168.%.*, any, 140.192.* *, 23, accept

Spuriousness anomaly: if an upstream firewall permits the network traffic

denied by a downstream, a spuriousness anomaly occurs (Al-Shaer, et al. 2005).
Example rules for cases (5), (6), (7), (8), (9) are shown below:

Case (5)
Ry: tep, 140.192.% *, any, 192.168.*.*, 80, accept
Ry: tep, 140.192.% * any, 192.168.*.*, 80, deny

14

Case (6)
Ry: tep, 140.192.%.*, any, 192.168.*.*, 80, accept

Rg: tep, *.%.%.% any, *.*.** any, deny

Case (7)
Ry: tep, 192.168.1.%, any, 140.192.%.*, 23, accept
Rg: tep, 192.168.1.%, any, 140.192.37.*, 23, accept

Case (8)
Ry: tep, 192.168.%.*, any, 140.192.%.*, 21, accept
Rg: tep, 192.168.%.*, any, 140.192.22.5, 21, accept

Case (9)
Ry tep, 192.168.1.%, any, 140.192.37.1, 23, deny
Rg: tep, 192.168.1.%, any, 140.192.37.*%, 23, deny

Redundancy anomaly: if a down stream firewall denies the network traffic
already blocked by upstream firewall a redundancy anomaly occurs (Al-Shaer, et al.

2005).
Example rules for cases (10), (11) are shown below:

Case (10)
Ry: tep, 192.168.1.%, any, 140.192.37.1, 80, deny
Ry: tep, 192.168.1.%, any, 140.192.37.1, 80, deny

Case (11)
Ry: tep, *.*¥.* % any, *.*.* * any, deny

Rgy: tep, 192.168.1.%, any, 140.192.37.1, 80, deny

Correlation anomaly: as a result of having two correlated rules in upstream

and downstream firewall a correlation anomaly occurs (Al-Shaer, et al. 2005).

15

Case (12)
Ry: tep, 140.192.%.*, any, 192.168.1.*%, 80, accept
Ry: tep, 140.192.37.1, any, 192.168.*.*, 80, accept

In this example, only the traffic coming from 140.192.37.1 and destined to
192.168.1.* will be accepted and other traffic destined to 192.168.*.* will be shadowed

at the upstream firewall

Case (13)
Ry: tep, 140.192.% * any, 192.168.1.%, 80, deny
Rgy: tep, 140.192.37.1, any, 192.168.*.*, 80, deny

In this case, the traffic coming from 140.192.37.1 and destined to 192.168.1.*

will deny at the downstream firewall.

Case (14)
Ry: tep, 140.192.%.*, any, 192.168.1.*%, 80, accept
Rgy: tep, 140.192.37.1, any, 192.168.*.*, 80, deny

In this example upstream firewall permits the traffic which is coming from

140.192.37.1 while same traffic is denied at the downstream firewall

Case (15)
R,: tep, 140.192.*.*, any, 192.168.1.*%, 80, deny
Ry: tep, 140.192.37.1, any, 192.168.*.*, 80, accept

In this example, upstream firewall blocks the traffic which is coming from
140.192.37.1 and destined to 192.168.1.* while same traffic is accepted at the

downstream firewall.

16

CHAPTER 3

DESIGN AND IMPLEMENTATION OF

POLICY ANOMALY CHECKER

Firewall functionality depends on the filtering rules and their order. If there is
an anomaly among rules, correct and efficient operation can not be achieved. In this

chapter, design and implementation of Policy Anomaly Checker is explained.

3.1. Requirements of Policy Anomaly Checker

Policy Anomaly Checker application is developed to discover firewall policy
anomalies. The main requirement is to define anomalies among policy rules by using
firewall rules relations and policy representation model which is introduced by Al-

Shaer and Hamed (2002).
3.1.1. Functional Requirements of Policy Anomaly Checker

The functional requirements of Policy Anomaly Checker are based around three
main use cases which are Intra-firewall anomaly checking, inter-firewall anomaly

checking and rule generation.

3.1.1.1. Intra-Firewall Anomaly Checking

In this requirement rules in the selected policy are checked in order to discover
anomaly. Policy can be selected from either network topology that is already defined or

file system.

Input: Selected policy.
Process: Check intra-firewall anomaly.

Output: Results of the intra-firewall anomaly checking process.

17

3.1.1.2. Inter-Firewall Anomaly Checking

Rules in all policies are checked in order to discover anomaly. In order to
achieve this requirement all network paths between subdomains must be already

defined in the system.

Input: Network paths between subdomains, firewall policies that are
deployed on these paths.
Process: Check inter-firewall anomaly.

Output: Results of the inter-firewall anomaly checking process.

3.1.1.3. Rule Generation

Beside anomaly checking property, rule generation functionality is added to
Policy Anomaly Checker. Rules are generated with or without anomaly according to

user selection.

Input: Number of rules that will be generated, with anomaly or without
anomaly selection
Process: Generate firewall rules

Output: Generated rules with policy tree representation.

3.2. Design Principles

Object oriented development is a development strategy where analysis, design
and programming process are executed to create and apply an object model. The
concepts of application domain are implemented as objects and their interactions in the
model. It is aimed to provide software reusability, extensibility, reliability and

portability using such a development strategy.

Design patterns strategies are applied during object oriented development
process. Design patterns can be considered as pre-defined, repeatable and non-finished
solutions. Similar problems can occur during different software development process.
Instead of generating new solutions each time it is easier to use these pre-defined and

reliable solutions which also generate a common language between developers.

18

Design patterns can be classified as creational, behavioral and structural patterns
depending on the types of problems they are used to solve. During software
development process of this thesis Singleton Pattern is applied. It is a creational pattern

and used to restrict instantiation of a class to one object in the system (Cooper 2000).

3.3. Architectural Layers of Policy Anomaly Checker

Architectural layers of application are illustrated in Figure 3.1. The architecture
consists of three layers which separates application functionality into three distinct

abstractions.

[=

User Interface Layer Respansible for representing
of tha data

Service Layer Responsible for performing
business rules for application

[o

Domain Layer Responsible for representing
concepts of the business

Figure 3.1. Architectural Layers of Policy Anomaly Checker
3.3.1. Domain Layer of Policy Anomaly Checker

Domain layer of the application is designed for the representation of business
concepts (Figure 3.2). A policy consists of rules and their tree representation in model.
Policy also contains its anomaly checker. Each rule has order, protocol, src_ip, dest_ip,
src_port, dest_port and action fields. An interface class which is called Icategorization

provides methods for building policy tree by using fields of the rules in a policy. An

19

abstract class which is called AbstractField provides methods for definition of relation

between rules.

anterfaces
@ ICategorization : © PolicyTree O Palicy
o pohey: Policy o filehlame: String
@ addBranchin ketegor ICalegorzation) PO R . o irbaChecker birafnomslyChecker
@ pelBranches(} Vector s daigs i ' o nama: String
o gelidexOIChA0N chit) Catagorization) it ° m:;;'ﬁﬁam“”} PRI ST T T oo Rociieds
o gettlamed): Sting e i o nuedist R
o gatvalueq) Sting @ setPolcyn polcy; Polley)
@ hasinChildren(in kategari: Categorizaion]: boolean
| i
@ Protacol s |
| |
! © isSuperselfin fld: AbstractFieid) bociesn .
I @ nestfisks] AbstracFie : 1 Rule
& AbstractField 8 acliont Action
o riame Sling . amaﬁf: -y
o re: Rule @lp o destiaionip: Iy
8 vake: St : | destiationFort: Fort
@ iSuperSetin field: AbstractFieid) bodlean - o ordes: it
@ isExacthatchiin f1: AbstraciField, in £ AbstracField): boolsan @ nestfleld); AhstractFled * o polcy: Pobcy
@ iESUbSEn field AbstraciFisd) boolean & predacal Prolocal
& isSuparSat(n fiekd AbstracFisid) boclean | solrcelp: ip
) redField). AbslraciFisd | o goacePar Por
@ Port
@ izSuperSetiin el AbstractFisid): bociean |

-]

nestField), ShelraciFied

& Actlon

@ is5uperSetin field AbstractFleld): boolaan
nesdField]): AbsraciFishd

L]

Figure 3.2. Domain Layer of Policy Anomaly Checker
3.3.2. Service Layer of Policy Anomaly Checker

Service layer of the application is designed for the performing business rules.
(Figure 3.3) An abstract class which is called AnomalyChecker provides methods for
inter and intra-firewall —anomaly checking. IntraAnomalyChecker and

InterAnomalyChecker inherit anomalyTransition method from abstract class.

20

& AnomalyChecker

o aroalyRasull Vactar

o AnomatyChecker()

&' ancealyTerminatian(n rule: Rule, i ik AbstractFisld,in root AbstractField, in relafion: String)

@ anomalyTransiion(n rule: Rule, in field Abstractfisld, in oot AbstractField, inmyey: boolean, i relebion: String)
& checkanomalyin st Vectork Vectar

@ cleafesullLisl)

@ IntraAnomalyChecker © InterAnomalyChecker
o‘ iraknomalyChecker() ¢ Iréer AnamatyChecher()
0 anomaly Terminafion(in rde Rulg, in field AbstractFeld, inroct Abstractfied, in relation: String) @ anomalyTermination(in rule Rule, in field Abstractfisld, in rool AbstractFisld, inrelation String)
0 chetkAnomaliin izl Vedar) Viacler @ checkAnoraldin polizyList Vedler) Veclor
@ getAnomalyResul) Veclor

Figure 3.3. Service Layer of Policy Anomaly Checker
3.3.3. User Interface Layer of Policy Anomaly Checker

User interface layer is designed for the presentation of policy and network
topology trees (Figure 3.4). There are two singleton classes which are called
PolicyTreeFormController and TopologyController. TopologyController class provides
method for creation of the policies using network paths which are defined from the
network topology. In order to discover inter-firewall anomalies, policies must be
defined in system. PolicyTreeFormController class provides methods for presentation
of policy and topology trees in the user interface layer. ReportForm class is used to

show the results of the anomaly checking process to user.

21

9 PolicyTreeFormController © Policy @ TopologyController
o cantroller PalicyTreeFarmController 7 o cantroler: TopalogyController
o form: PolicyTreeForm o pathe Yector
o reportForm: ReportForm o policies: Hashtahle
Q_% getinstance]): PolicyTreeFormContraller @E TopologyController()
A clearTable) 0 ReportForm @ acddPolicy(in policyhiame: String, in policy: Policy)
@ filTable(in ruleList, Yectar) —— 7 @ findinterFirewall&nomalyOfTopalogy(): Vector
i@ MakePolicyTree(in policy: Policy) Q_% getinstance(). TopalogyCortraller
@ getForm(), PolicyTreeForm @ getietworkPaths() Vector
3 discoverinterFireseallAnomaly() @ getPolicies(). Hashtakle
@ getPalicy(in policyiame: String): Policy
S @ PulicyTreeFurm @ getTopologyPaths(), Yectar
T
|
| |
b
I]
] |
© PolicyTreePanel @ TopologyTreePanel

Figure 3.4. User Interface Layer of Policy Anomaly Checker

3.5. Algorithms

Policy anomalies can be determined based on anomaly definitions in chapter 2.
In order to discover policy anomalies for intra and inter-firewall environment, two

algorithms that are introduced by Al-Shaer and Hamed (2004) are implemented.
3.5.1. Intra-Firewall Anomaly Discovery Algorithm

In tree representation of policy, if any two rules share the same tree path
explained in 2.3.1, there is a potential anomaly among these rules. The basic idea of
intra-firewall anomaly discovery algorithm is to determine anomalies while building

the policy tree. This algorithm is shown in Figure 3.5.

22

function IntraAnomalyDiscoveryirule_list)
root = new node
for each rule in rule_list do
AnomalyTransition{rule, PROTOCOL, root, UNDETERMINED)
return root
end function

Figure 3.5. Intra-Firewall Anomaly Discovery Algorithm
(Source: Al-Shaer and Hamed 2004)

Intra-firewall anomaly discovery algorithm invokes main function: an anomaly
transition function which represents the transition states of fields in the state diagram

(Figure 3.6).

det o dst

e
= (redundant? .,
/ _ [4 %y
Py = Y '\\ = ol =d
% . ! + a0
_ - want? | .w o
\ ¥

Figure 3.6. State Diagram for Detecting Intra-firewall Anomalies for Rules Ry and Ry
(Source: Al-Shaer and Hamed 2004)

Anomaly discovery states for any two rules R, and Ry are illustrated in Figure
3.6. R, and Ry are in the same firewall and R, comes after Ry in policy rule set. Source
and destination fields for ips and ports are represented as a one field in diagram for

simplification. State transition starts with protocol field. Each field in Ry is compared to

23

the corresponding field in Ry. Result of subsequent comparison determines the relation
between rules. If every field of Ry is a subset or equal to the corresponding field in Ry
and both rules have the same action, Ry is redundant to Ry, while if the actions are
different, R, is shadowed by R,. If every field of R, is a superset or equal to the
corresponding field in Ry and both rules have the same action, R, is potentially
redundant to Ry, while if the actions are different, Ry is a generalization of R,. If some
fields of R, are subsets or equal to the corresponding fields in Ry, and some fields of Ry
are supersets to the corresponding fields in Ry, and their actions are different, then Ry is

in correlation with Ry (Al-Shaer and Hamed 2004).

AnomalyTransition function 1is invoked for every rule with an
UNDETERMINED relation. This algorithm is modified in order to create separate path
for rule which has anomaly. Since the algorithm does not provide separate rule
placement for rules which also appears on other rule branches. Modified algorithm is

illustrated in Figure 3.7.

If the field of the rule that is added to policy tree matches an already existing
field in the tree then next relation state is determined base on the shown state diagram

in Figure 3.5.

The algorithm is executed recursively to check the remaining fields. Relation
state is updated until the final field is reached. If there is no determined relation, new

branch is created at the current node.

24

function AnomalyTransition{rule, field root, myway relation)
if field = ACTION then
value found = FALSE
for cach branch in node.branch_list do
if branch.value = rule.field.value then
value found = TRUE
if relation = UNDETERMINED then relation = EXACT
AnomalyTransition{rule, field next, branch.node, myway relation)
else il rule.field. value is superset of branch.value then
if relation 15 in {SUBSET, CORRELATED! then
AnomalyTransition(rule, field.next, branch.node, false, CORRELATED)
¢lse
AnomalyTransition{rule, field.next, branch.node, false, SUPERSET)
else if rule field.value is subset of branch, value then
ifrelation is in [SUPERSET, CORRELATED | then
AnomalyTransition{rule. field.next, branch.node, false, CORRELATED)
else
AnomalyTransition{rule, Nield.next, branch.node, false, SUBSET)
end if
end for
end if
if value found = FALSE
if field = ACTION then
AnomalyTermination{ rule.field.root.relation);
if myway=true then
root.addBranch(field);
anomaly Transition(rule, field.nextField(), field, true, DISJOINT);
end if
end il

end function

Figure 3.7. Modified Anomaly Transition Algorithm

When all the fields of rule have been inserted in the tree,
IntraAnomalyTermination function is executed. This algorithm is modified in order to
add action field to the tree. Since the algorithm does not provide addition of action

field. Modified algorithm is illustrated in Figure 3.8.

25

function IntraAnomalyTermination{rule, field, root, relation)
anomaly = NOANOMALY
if root has branch_list then
branch = root.branch_list.first(}
if relation = CORRELATED then
if not rule.action = branch. value then
anomaly =~ CORRELATION
branch.rule.anomaly = CORRELATION
report rule rule.id is in correlation with rule branch.rule.id
root.addbranchificld)
end 1f
else if relanon = SUPERSET and not rule.action = branch.value then
anomaly = GENERALIZATION
branch.rule anomaly = SPECIALIZATION
report rule rule.id is a generalization of rule branch.rule.id
root.addbranchi field)
else if relation = SUPERSET and rule.action = branch.value then
if branch.rnile.anomaly = NOANOMALY then
branch.rule.anomaly = REDUNDANCY
report rule branch.rule.id is redundant to rule rule.id
root.addbranchy field)
end if
¢lse if rule.action = branch. value then
anomaly = REDUNDANCY
report rule rule.ad 1s redundant to rule branch.rule.id
root.addbranchi ficld)
else if not rule.action = branch.value then
aomaly = SHADOWING
report male rule.ad is shadowed by rule branch.muile.id
root.addbranch(field)
end iff
end if
rule_anomaly = anomaly

end function

Figure 3.8. Modified Anomaly Termination Algorithm

In IntraAnomalyTermination function, if the rule action coincides with the
action of another rule on the tree, an anomaly is discovered and rule is inserted in the

rule’s node. At that point the final anomaly state is determined and any anomalies are

reported.

26

3.5.2. Inter-Firewall Anomaly Discovery Algorithm

Inter-firewall anomaly discovery algorithm (Figure 3.9) is implemented in order
to find relations and discover anomalies between rules in two or more connected

firewalls.

function InterAnomalyDiscovery{path_list)
for each path in path_list do
[ntraAnomalyDiscovery(path.firewalls[1].rules)
root = BuildPolicyTree(path.firewalls[1].rules)
for each firewall in path.firewalls except path.firewalls[1] do
IntraAnomaly Discovery{ firewall.rules)
Anomaly Transition{rule, PROTOCOL, root, UNDETERMINED)
end lor
end for

end function

Figure 3.9. Inter-Firewall Anomaly Discovery Algorithm
(Source: Al-Shaer and Hamed 2004)

The inter-firewall anomaly discovery process should be performed on all
firewalls in the path connecting any two sub-domains in the network. The all possible
paths between subdomains in the network must be determined before the execution of
the algorithm. For example in Figure 3.10 there are six distinct paths between
subdomains. Traffic flow from D1.1 to Internet {FW1, FWO0} is one path and {FWI,
FWO0, FW2} is another path for the traffic from D1.2 to D2.2.

Inter-firewall anomaly discovery algorithm takes a path list as parameter. For
every firewall in the path firstly intra-firewall anomaly discovery algorithm (Figure 3.5)
is executed to ensure that every individual firewall is free from intra-firewall
anomalies. Next, for the most upstream firewall policy tree is built and the rules of all

the consecutive firewalls in the path are added into this tree.

27

Figure 3.10. Example for a Distributed Firewall Environment

Same AnomalyTransiton function is used for both Inter-firewall anomaly
discovery algorithm and intra-firewall anomaly discovery algorithm. However,
different AnomalyTermination function is invoked for the inter-firewall anomaly

discovery algorithm.

InterAnomalyTermination function determines the anomaly based on the
discovered relation and the actions of the currently inserted rule with the existing rule
in the upstream policy. This algorithm is also modified in order to add action field to
the tree. Since the algorithm which is introduced by Al-Shaer and Hamed (2004) does

not provide addition of action field. Modified algorithm is illustrated in Figure 3.11

28

function InterAnomaly Terminationirule, field, node, relation)
snomaly = UNDETERMINED
for cach branch in node brasel list do
i mule_firewall = branchorule firewall then
exil for
else if relation = EXACT then
i mule sction = accept aisd branch muleaction = deny then
anomaly = SHADOWING
report mule nile.id is shadowed by rule branch.mleid
oo addbranci field)
else il rulenciion = deny and branch.rsle.ncision = sccept then
branch.rule.anomaly = SPURIDLUSNESS
report mule branchorube.id i= spurious to mbe mieid
rorl addhrarnch feeld)
else if nlenction = deny and bmnchorule.netion = deny then
anomaly = REDUNDANCY
reprort rule rule.id is potentinlly redundont W rube branch.ruleid
oot addhranchy field)
end if
ebse if relation = SUBSET then
if mile.action = secept amd branch.mile.action = deny then
anomaly = SHADODWING
repon mule rule.dd is shadowed by rule branch.mledd
rowst addbramchd fueld b
else if branch.nale actaon = accepd
branch.rule.anomaly = SPFURIOUSNESS
report rule branch rule.id is partially sparious 1o sule rule.id
rowst addbranchd field)
else if rule action = deny and branch.rule.action = deny then
anomaly = REDUNDANCY
repart rule rule id is potemially redundant w rabe branch rule id
rodladdhranchi field)
end if
elie if relation = SUPERSET then
i mulesction = deny then
branch.rulenomaly = SPURIOUSNESS
report mule branchorule.id is spurious to robe e id
ool addhranch field)
else il rule.nction = accept then
anomaly = SHADOWING
report rule ruleid i pameally shadowed by rabe branchruleid
oot addbranchificld)
end if
clse if relation = CORRELATED then
anpmaly = CORRELATION
branch rule.anomaly = CORRELATION
report mile nude.id is in comelation with mbe branchorube.id
rool addbranch field)
end if
end for
rule anomaly = anomaly
end function

Figure 3.11. Modified InterAnomaly Termination Algorithm

3.6. Implementation of Policy Anomaly Checker

Application development environment and main scenario is explained in
implementation of Policy Anomaly Checker. In addition, user interfaces of application

are also described in this section.
3.6.1. Application Development Environment

Policy Anomaly Checker is developed on Java platform using Eclipse. Version

of Java that is used in application development is JDK1.5.0.6
3.6.2. Scenarios and User Interfaces

Scenarios and user interface of Policy Anomaly Checker is described in this

section.

3.6.2.1. Scenarios

Policy Anomaly Checker has three main scenarios. First scenario is the intra-

firewall anomaly checking that is illustrated in Figure 3.12.

(2 : PolicyTreeForh (D : PoicyTresFormController (& - TopolognContr oller (& : Policy

P>

| getDiscover Ftrasnamaydenus) |

|
| & - IntrasnomalyChecker
|
| wetPolicyrSaring): Policy
|
|
|

|

-

|
|
|
D -DI
| MakePolicy TresPolicy)

u L !

F——

! etPolicy Tres() Policy Tres

|
|
I - |
|
checkAnomaly(Vector] Vector
]
|
|
|
|
|
|
[
|
|
|
|
|

I
|
|
|
T
|
I
I
I

Figure 3.12. Sequence Diagram for Intra-firewall Anomaly Checking

30

When user selects a “Discover Intra-firewall Anomaly” menu item from user
interface of the application, firstly related policy object is pulled from
TopologyController class and its PolicyTree object is shown on the user interface’s
tree. If PolicyTree of this object has not built yet, IntraAnomalyChecker object is used

to built PolicyTree and get its anomaly results.

Second scenario is the inter-firewall anomaly checking which is illustrated in
Figure 3.13. When user selects a “Discover Inter-firewall Anomaly” menu item from
user interface of the application, firstly network paths which are defined in a properties
file are pulled from TopologyControl class. For each path in the network paths, policies
which are installed in this path are pulled from TopologyControl class and
InterAnomalyChecker checks the anomaly for these policies’s rule set. Anomaly results

are shown on the report form.

% (3 ; PolicyTreeFong (9 : PolcyTreeFormController (9 TopologyCortroter

Uger

| gelDizcoverinter Anomalydent
-

discoverinterFireswalAnomalyi)

| |
| |
| |
1 |
[: (3 _ InterAnomalyChecker

finbirterFirewall&nomatyOfTopoogy O \I*'eﬂo!"“"”‘m“‘“’fcr‘e':"”g

ae sz g s

J

y— !
] getMetworkPathe(): Vector |
|
|

]

chackAnomaly(Vectory Vector

S o W |51

[|

Figure 3.13. Sequence Diagram for Inter-firewall Anomaly Checking

Last scenario is the rule generation which is illustrated in Figure 3.14. In the
rule generation scenario when user selects a “Generate Rules Without Anomaly” menu

item from the user interface, firstly a service object which is called RuleGenerator is

31

created. Policy which is belonging to generated rules is created by RuleGenerator class.
Generated rules are added to this Policy. In the rule addition process anomaly is
checked between newly added rule and other rules in the policy. If there is an anomaly
between rules, newly added rule is removed and new rule is generated. This process is
repeated until an anomaly free rule is found. In this scenario, generated rules can be

saved to selected files.

F‘“‘. {5 | PolicyTreeFor (= PolcyTreeF ormCoriraler

AN

User (5 : RuleGener.
gelRJeGEn‘Mlamnnmdr\der:ﬂe}(] | RukeGenerator() -

D (3 : Policy

| Policy(Strng, String))
-

:

| InfrainomatyChecker)

HI D 3- . IntraAnomaty Check
|
|
|
|
v

L

gereratefulez(bodkean) - generaiefues{hociean). Pulc;

ardiclFube ZEnd(Fule)

anamahyT rsh:ln:ﬁuh.A-"\':Imc'.l'ch,Ar.\::Iraureh,ncldeL'!ﬂlirg]

Figure 3.14. Sequence Diagram for Rule Generation without Anomaly

3.6.2.2. User Interfaces

User interface of Policy Anomaly Checker consists of three main panels which
are called Topology Tree, Policy Tree and Rule List (Figure C.1). Topology tree is used
to presentation of policies in the network topology. Policy tree is used to presentation
of rules in the selected policy. On the Rule List Panel, rules are shown as a table for
selected policy. Intra-firewall anomaly discovery is achieved by Anomaly Detection
Menu (Figure C.2). It is achieved by Show Rules and Discover Anomaly Menu from
TopologyTree (Figure C.3). As illustrated in Figure C.3 in order to execute Anomaly

Discovery process, a policy must be selected from Topology Tree.

32

For intra-firewall anomaly checking and inter-firewall anomaly checking
scenarios, result of the processes are shown on to Anomalies Form (Figure C.4). In
order to generate random or anomaly free rules Rule Generator Menu is used (Figure

C.95).

3.7. Test Cases

Execution of intra and inter-firewall anomaly discovery algorithm is tested for
all the possible anomaly cases which are explained in Chapter 2. Necessary rules are

generated and algorithms are executed with these rules for cases.
3.7.1. Intra-Anomaly Discovery Algorithm Test Cases

Intra-firewall anomaly algorithm is executed for six cases which are explained

in section 2.4.1. Results for each case are shown in Figure 3.15.

case(l)

1: Protocol - tep; Source [p - 140019237 %; Source Port - any; Destination Ip - 192, 168.1.12; Destination Port - 805 Action - sccept-1 7/ fwl;
2: Protocol - tep: Source Ip - 1400192 37 %; Spurce Port - any; Destination Ip - 192, 168.1.12; Destination Port - 80; Action - deny-2 7 fw;
[Rule? is shadowed by rulel]

cuse]2)

I: Protocol - wp; Source Ip - *** %, Source Port - any: Destination Ip - 1921681, 12;
2: Protocol = tep: Source [p - |400192.37.*; Source Port - any; Destination Ip - 192,168
[Rule? is shadowed by rulel]

cise| 5)

L: Protocol = p: Source Ip = 192,168, 1.20; Source Port - any; Destination IE = ® 00 Destination Port - 80, Action = deny=1 / fivl,

2: Protocol - top; Source Ip - *.* * *; Source Port - any; Destination Ip - 192168 33 40; Destination Port - 80; Action - accept-2 / bl ;
[Rule? is in correlation with rulel]

case(d)

1: Pratocol - tep; Source Ip - 192.168.1.2(Source Port - any; Destination Ip - *.* * *; Destination Port - 80; Action - deny-1 / fwl;

2: Protocol - 1ep; Source Ip - 192,168, 1.%; Source Port - any; Destination Ip - ** %%, Destination Port - 80; Action - secept-2 1 fwl;

[Rule is 4 generalization of rulel]

cuse(5)

I: Protocol - wp; Source Ip - 192.168.37.%; Source Port - any; Destination Ip - 140,192,533 40; Destination Port - 21 Action - aceept-1 7 fwl;
2: Protocol = topd Source Ip = 192.168.37.%; Source Mort - any; Destination Ip - 140,192.33.40; Destination Port - 210 Action = accept=2 / fwl;
[Rule2 ts redundant to rulel |

cise(h)

1 Protocol - tep: Source [p - 192.168,37.*; Source Port - any; Destination Ip - ®.%.%.*%; Destination Port - 212 Action - aceept-1 ¢ fwl;

2: Protocol - tep; Source Ip - 192.168.37.%; Source Port - any; Destination Ip - 140.192.33 40); Destination Port - 21 Action - accept-2 ¢ fwl;
[Rule? s redundumt to ralel]

Drestination Port - 80; Action - accept-1 £ fwl;
1.12; Destination Poat - 80; Action - deny-2 ¢ fwl;

Figure 3.15. Intra-Anomaly Discovery Algorithm Results for Anomaly Cases
3.7.2. Inter-Anomaly Discovery Algorithm Test Cases

Inter-firewall anomaly algorithm is executed for fifteen cases which are
explained in section 2.4.2. Network topology which is used in test has two firewalls;
FW1 and FW2. FW1 is defined as upstream firewall; FW2 is defined as downstream

firewall. Results for each case are shown in Figure 3.16.

33

?

o Source bp = 1611 200%.%; Source Port - sny; Destmation Ip = 140.192.22.5; Destinatson Port = 21; Acoon = deny=1 / fwl;
top: Source Ip - F61_1200%%: Soawce Port - any: Destnation Ip - 14019222 5: Destination Port - 11 Action - sccepl-1 7 (w2
shackrwed warh rubel fwl]

=
=
=
3
a
et

i.
2
5
i

7

: Protoco] = tops Source fp - =%, %% ?usm;:l‘nﬂ-an} Destkmation Ip - *.=.%.*; Destination Port = any. Action = demy=2 / fwl;
Pratoco] - Source bp - 140,192.% %, Soyres Port my'Dn-mmlp-ihl Iﬂl‘i""l.‘lnﬂ'n.tm?u'r-li Action - accept-2 / fwl;
gﬂm;zm in wed wath rule2fwl]

e
e 3) - _— .
3: Protocol « 1o Source Ip = 161.120024.*; Source Purt « uny; Destinution Ip - 140,192 22 5; Destination Paost « 25; Action - demy=3 ¢ fwl;
3: Pratocnl - Source Ip - 161.120.24.%; Sowrce Por - any; Destinution Ip - 140,192.%.%; Destination Port - 25, Action - sccept-3 / fw2;
[Ruledtwl is 5 with rale3/fwi]

hEE R R

case{d)

h}!-\}

(L35 *: Sowarce Pom - an
0%, % Sompoe Port - sy
Rﬂwl-‘l'w'.l is !l-r.lnw:d with raled. fw 1]

e

v Diestination Ip - 140,192 *: Destinaton Port - 25; Action - mnpt—ll-ri'al_
; Destmation Ip - 140.192.%.% Destination Por - 23; Mm-aﬂa.-p!-l# Fwd:

e)

&: Protocol - top; Source kp - LALT92=.%; Seapee Port = any;, Destmnation Ip - 161 12300*. %, Destination Por - 80; Action - accept=3 / fwl;
5: Protocn] - o Source Ip - 14001 92.%.%; Source Port - any: Destination Ip - 160.120.% %, Destination Port - S0: Action - deny-5 / fud:
E.H.u]rj-‘l’wl lh'b?.ll'l.l.lh oo ruale S w2

Lo sl -l I

|)

i Protoool - bop; Source Bp - F40U192 %% Sturoe Porl - any: Destmation [p - 161 12300% *; Destimation Port - 80; Action - auu-pl—ﬂ il
i Protocn] - tep Source fp- =%, %, Sownce Pon - any; Destination Ip - 4% = = Destination Por - amy; Action - demy-h | fw

Ruleti bl is spumious o ml:ﬁl:llr_]

k-
[] T
'|' Protocn] = top: Source bp = 161.120.33.%; Source Pors < sny; Destination bp - 140,192, %, Destmatson Post = 23, Acoion = sccept=7 ¢ fwl;

T: Protocol = tepc Source Bp - I61.120033.*; Sgarce Poat - ony; Destinntion Ip - 140, 19237, *; Destinstion Poet - 23; Action = demy=7 / fwl]

!.Ruﬂe? toel 1s's£urﬁws o rule 7 w2

0 R
[R]
H: Protocn] - 1o Source Ip - 1611 200%.%, Sounce Part - any; Destination Ip - 140.092.% %, Destination Port - 21 Actbon - accept-8 | fwl;
&: Protocol - o Source bp- 161.1200%.%; b-uq.:mrl‘rrrt amy; Destmation I - 140, 192,22 5; Destination Post - 1l Action - sccept-X / fwl;
Elll.l]e&'t'wl ji_lfnml.ll oo ruled fwd]

EsdendEnd s -
Ease(9) . .
% Provoco] - top. Source Ip - FE1120033.%, Soarce Pom - any; Destination Ip - 140, 19237, 1; Destination Poet - 23 Action - demy-2 ¢ fwl;
@ Pratogo] = top Source fp - 161, 120.37.%; Source Pure - - any; Destination Ip - 140, 192,37 *; Destination Poet - 23; Action - deny-5 ./ f2;
[Ruletttwl 15 spumioss o ulefFal]
ek
iy 10}
110: Protocol - top: Sowrce Ip - 161.023024.*: Source Port - any: Destimstion [p - 1400092373 Destimation Pont - 25; Acthon - denw-100/

twrll,
1l1 mecm top; Source Tp - 160, 120.24,%; Source Port - any, Destination: Ip - 140 192,37.%; Destimation Port - 25; Action - deny-10/
&Ru]'.-lo.-mz ks potenizally redunchi o rube HT |]

P e T
| L1}
1I.P'mm:u4- e Source lp - =.%.%.%, Sousce Port - any; Destination [p - *.*.*.* Destination Port - any, Action - demy-11/ fwi;

: Protocol - tep; Souree Ip - 161, 120.*.*; Soarce Por - any; Destination Bp - 140, 192.%.%; Destinaton Port - 22; Acton - demy-11 7 fw2;
M:llaﬂiumﬂuﬂuﬂmmllh]l
- —————
ey 1 2) - o \
12: Protecol - top;: Source Ip « 1400192, *; Soarce Pont - uny; Destination Ip - 161, 12033 *; Destination Poet - B0; Action - pecept=12 /
Tw i,
112:1Fm'uw,iﬂ— top; Souree p - F0OI92.3T % Source Port - any; Destintion [p - 161,120,*,*; Destination Port - RO Action - agoepe-12 7
Wl
[ﬂ.u]rl..'h-z i in comelation with rulel 200w]

ELERLE LS L]
cae| | 3)
J*-P:mmi g Source Ip - 140,192.%.%; Sowee Pon - sny; Destination Ip - 161, 12033 *; Destinntion Post - B0 Action - demy-13

H Protocol - 1ep: Source Ip - 140.192.37.%: Source Port - any: Destination Ip = 161.0120.%.*; Destination Poet - B0 Action - deny=13 |
ulel 362 s in comelation with rubel 3 Twl]

TR
caned |4}
14: Protocol - top; Sowrce Ip - 140.102.% %, Soorce Port - any; Destination Bp - 161, 120.33.%; Destination Port - 80; Action - ncoepe-14

Pwll:
14 l‘m‘lmal tep: Source Ip - 140,192.37.*; Source Port - amy: Destination Ip - 161.120,* *; Destination Poet - 80; Action - demy-14 /

e 14w i in comrelatson with rubel 47w]
ELEE I E L2 1)
oy |5}
‘I'a_ Protocol « wop: Sowrce Ip - 140.092.* % Sowrce Pon - any; Destination Ip - 16 1.020.33.%; Destinstion Poet - B0 Action - peoept-15 7
15 P'mm-cul o Sowee Ip - 140,192.37.%; Source Port - amy; Destimation Ip - 161.120,%*; Destmation Post - 805 Acton - deny-15 /

L‘RLﬂel_'n-mz ks Im coemelation with rulel 5w |

EE e

Figure 3.16. Inter-Anomaly Discovery Algorithm Results for Anomaly Cases

34

CHAPTER 4

EXPERIMENTS AND EVALUATION

In order to obtain operational values of intra and inter-firewall anomaly
discovery algorithms, a number of tests are performed using different policies and
network topologies. These tests are performed on a Pentium IV-M 1.73 GHz. processor

with 1.49 GByte of RAM.

In order to obtain operational values of intra-firewall anomaly discovery
algorithm, four sets of firewall rules are generated. The first set includes rules that have
different destination address only, and the second set includes rules that have distinct
source addresses. These two represent the best case scenario because they require the
minimum policy-tree navigation for analyzing each rule. In the third set, each rule is a
superset match of the preceding rule. This set represents the worst case scenario
because each rule requires complete policy-tree navigation in order to analyze the entire
rule set. The fourth set includes rules that are randomly selected from the three previous
sets in order to represent the average case scenario. Policy Anomaly Checker is used to
execute intra-firewall anomaly discovery algorithm on each set using various sizes of
rule sets (10-100 rules). In each case, processing time is measured. The results are

shown in Figure 4.1.

In order to obtain operational values of the inter-firewall anomaly discovery
algorithm, two different experiments are performed. In the first experiment, the
discovery algorithm is executed on a set of firewalls that exist on one network path.
The rules that are used in each firewall are similar to set 2 rules in the previous test
case. Number of rules in each firewall and the number of firewalls on the path is

increased. The results are shown in Figure 4.2.

35

70

60

50

40 |

—e— setl
30 | —&— set2
set3

20 set4

Processing time (milisecond)

10

20 40 60 80 100 120 140 160 180 200

Number of rules in the firewall

Figure 4.1. Processing Time for Intra-firewall Anomaly Discovery Algorithm

As illustrated in Figure 4.2 the processing time of the inter-firewall anomaly
discovery algorithm is very close to processing time of intra-firewall algorithm for
number of rules. For example, it takes 10 ms to analyze four firewalls each containing
20 rules. This is almost equal to the time required to perform intra-firewall algorithm

on a single firewall having 80 rules.

80
70,8
70 X
5 60
C
3
8 50 —e—10rule
E —=— 20 rule
g 40 30 rule
> 40 rule
(=
g 301 —%— 50 rule
8
& 20 -
10
0
1 2 3 4 5
Number of firewalls on path

Figure 4.2. Inter-firewall Anomaly Discovery Algorithm for One Path

36

In the second experiment, inter-firewall anomaly discovery algorithm is
executed for the different network topologies. Network paths which are used in the
execution of anomaly discovery algorithm are created for three different networks.
These networks are in the form of (1) 2-2-2, (2) 3-2-2 and (3) 3-3-2. For example, the
root node in network 2 has 3 branches, whereas every node on levels two and three has
two branches. For each network, a random set of filtering rules in each firewall are
installed. In each network, the processing time required to produce the final policy

anomaly report is measured. The results are shown in Figure 4.3.

1200
1105
1000
877
=)
c
§ 800
2 657
= 542 —e— network1 (2-2-2)
g 600 —a— network?2 (3-2-2)
= 461 456 . —" network3 (3-3-2)
c
E 352
8 400 306 292 289 302
<) 2
a 199 195 ¥ e
200 ///
158
0
10 20 30 40 50

Number of rules per firewall

Figure 4.3. Inter-firewall Processing Time

These results indicate that inter-firewall anomaly algorithm is dependent on the
total number of paths between sub-domains in the network. Since number of paths in
network 3 is more than in other networks and network 3 has much processing time than

others.

Finally, in order to obtain operational values of the inter-firewall anomaly
discovery algorithm in real distributed environment a number of experiments are

performed. Experiment environment is illustrated in Figure 4.4.

37

fwd
10.2.0.28

fwd
10.2.0.34

fuid
10.2.0.38

fwk
10.2.0.38

clisnt
10.2.0.37

-

Intam &t

smmsnsms rmnnnmmrannnnman |)]

athi
192.168.1.4124

el
oo
athZ
il 10.1.8.1/24
athl
10.2.0,1i24
T T Cr P v ol

ég:rl:llwa.'

gateway

E fareway

Palicy Amom aly
Chesher
10.1.0.30

Figure 4.4. Environment used for experiment

38

Traffic flow from Internet to client machine is through fwl, fw2, fw3, fw4, fw5
and traffic flow from client to Internet is through fw5, fw4, fw3, fw2, fwl. All firewalls
are dual home hosts and connected with Ethernet cable from their standard 10/100Mbs
PCI Ethernet cards to 48 port Cisco switches. Firewall configurations are illustrated in

Appendix C.

Policy Anomaly Checker is deployed on Pentium IV-M 1.73 GHz. processor
with 1.49 GByte of RAM. In order to communicate with Firewall Agent, socket
communication functionality is added to Policy Anomaly Checker. Firewall Agent is
deployed on each firewall on the path. It is developed by using Python. The main
functionality of Firewall Agent is to communicate firewall devices with Policy
Anomaly Checker. Communication between Policy Anomaly Checker and Firewall

Agent has four steps:

Stepl: Firewall Agent sends a new rule to Policy Anomaly Checker which will
be added to its policy.

Step2: Policy Anomaly Checker receives the rule, checks the relation with other
rules and sends the anomaly result to Firewall Agent.

Step3: If there is no anomaly determined, Firewall Agent adds the new rule to
its policy and sends the modified policy to the Policy Anomaly Checker.

Step4: Firewall Agent displays a warning message.

Communication protocol between Policy Anomaly Checker and Firewall Agent

as follows;

Stepl: Firewall Agent sends bor (begin of rule) message.

Step2: Firewall Agent sends the new Rule.

Step3: Firewall Agent sends eor (end of rule) message.

Step4: Policy Anomaly Checker sends a string compiled of anomaly result. If
there is no anomaly sends ok message.

StepS: Firewall Agent sends bof (begin of file) message.

Step6: Firewall Agent sends policy file.

Step7: Firewall Agent sends eof (end of file) message.

39

The test scenario is same with the number of firewalls in one path scenario

which is illustrated in Figure 4.2.

In order to reach Policy Anomaly Checker

from fw2; fw1 must be passed through,

from fw3; fw2 and fw1 must be passed through,
from fw4; fw3, fw2 and fw1 must be passed through,

from fw35; all firewalls on path must be passed through.

First, a new rule is sent by Firewall Agent from the fwl to Policy Anomaly
Checker. When new rule is received, it is added to its policy which is defined in Policy
Anomaly Checker and inter-firewall anomaly discovery algorithm is executed with this
new policy. At the end of the algorithm anomaly results is sent back to Firewall Agent.
This test is repeated for each firewall on the path. Total response time and inter-firewall
anomaly discovery algorithm process time is measured for each firewall. Total response
time is measured by the Firewall Agent, inter-firewall anomaly discovery algorithm
process time is measured by the Policy Anomaly Checker and latency time is measured
using (total response time - discovery algorithm process time) formula. The results are

shown in Figure 4.5 and Figure 4.6.

0,20
0,19
? 0.18 0,175
3 0,171 o : —e— Total Response Time
0,170 '
D 0.17 /’/-’—l 0,172 —a— Latency
’ 0,166 0470 0.170 0,172
0,165
0,16
0,15 ‘ ‘ ‘ ‘
1 2 3 4 5
Number of firewalls on path

Figure 4.5. Experiment for Inter-firewall Anomaly Discovery Algorithm Using One
Path Only (Total Response Time and Latency Values)

40

0,005

0,004

0,0030
0,003 »>

—e—discovery algorithm
process time

(Second)

0,002 +

0,001 ~

1 2 3 4 5

Number of firewalls on path

Figure 4.6 Experiment for Inter-firewall Anomaly Discovery Algorithm Using One
Path Only (Discovery Algorithm Process Time)

These results indicate that inter-firewall anomaly discovery algorithm process
time is very close to process time which is aforementioned in Chapter 3 for inter-
firewall anomaly discovery algorithm process and it depends on the total number of

rules in all firewalls.

41

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis anomaly discovery algorithms for single and distributed
environments are implemented in a software tool called “Policy Anomaly Checker”.
Besides its anomaly discovery functionality, anomaly free rule set generation

functionality is added to this tool.

Correct operation of the firewall is dependent on the filtering rules and their
order. If the same packet matches more than one filtering rule in a policy, an intra-
firewall anomaly may exist. If any two firewalls on a network path take different
filtering actions, an inter-firewall anomaly may exist. All rule relation must be

considered in order to determine correct rule order.

Mathematical background and related algorithms are available in literature.
Although it is implied in (Al-Shaer and Hamed 2004) that an implementation exists and
some experimental results are given, implementation details are not explained. So
Policy Anomaly Checker is implemented using object oriented techniques in Java. Test

cases are created.

Policy Anomaly Checker now only checks anomalies for intra and inter-
firewall environments. Rule addition and rule removal functionality can be added for
policy management. Other algorithms (Cuppens, et al. 2005) can be implemented and
Intra and inter-firewall anomaly algorithms can be compared with other algorithms.
Policy Anomaly Checker can be used in campus environment in order to determine its

usability.

42

REFERENCES

Al-Shaer, E.S. and H.H. Hamed. 2002. Design and Implementation of Firewall Policy
Advisor Tools. DePaul CTI Technical Report CTI-TR-02-006

Al-Shaer, E.S. and H.H. Hamed. 2004. Discovery of Policy Anomalies in Distributed
Firewalls. In Proceedings of the 23rd Annual Joint Conference of the IEEE

Computer and Communications Societies, Hong Kong, China.

Al-Shaer, E.S., Hamed, H.H., Boutaba, R. and H. Masum. 2005. Conflict Classification
and Analysis of Distributed Firewall Policies. IEEE Journal on Selected Areas in
Communications 23(10): 2069-2084.

Bellovin, S. M. 1999. Distributed Firewalls. Login; special issue on security.

Chapman, Brent and Elizabeth Zwicky, eds. 1995. Building Internet Firewalls.
Cambridge: Orielly & Associates Inc.

Cooper, James W. 2000. Java™ Design Patterns: A Tutorial. Boston: Addison

Wesley.

Cuppens, F., Cuppens-Boulahia, N. and J. Garc’1a-Alfaro. 2005. Detection and
Removal of Firewall Misconfiguration. In Proceedings of the International

Conference on Communication, Network and Information Security, Phoenix, USA

Grant, J., Attfield, P. and K. Armstrong. 2001. Distributed Firewall Technology.
EWA,CANADA

Ioannidis, S., Keromytis, A.D., Bellovin, S.M. and J.M. Smith. 2000. Implementing a
Distributed Firewall. In Proceedings of the ACM Conference on Computer and

Communication Security, Athens, Greece.

Wack, J., Cutler, K. and J. Pole. 2002. Guidelines on Firewalls and Firewall Policy.
NIST Special Publication 800-41

43

APPENDIX A

DEFINITIONS OF RELATIONS BETWEEN RULES

R is the universal set of rule relation and R= {Rcp,Rpp,Rem,Rimv,Rc}

Definition 1: Rules R, and R, are exactly matched if every field in R, is equal

to the corresponding field in Ry. Formally:

Rx Rem Ry iff

V i: Ry[i] = Ry[i]

where 1 € {protocol, src_ip, src_port, dst_ip, dst_port} (Al-Shaer and Hamed
2002).

Definition 2: Rules Ry and Ry are inclusively matched if they do not exactly
match and if every field in Ry is a subset or equal to the corresponding field in Ry.

Formally:

R, R Ry iff
V i : Ry[i] € Ry[i] and 3 j such that: Ry[j] # Ry[j]

where i, j € {protocol, src_ip, src_port, dst_ip, dst_port}

In this relation, Ry is called the subset match while Ry is called the superset

match (Al-Shaer and Hamed 2002).

Definition 3: Rules R, and Ry are completely disjoint if every field in Ry is not

a subset and not a superset and not equal to the corresponding field in Ry. Formally:

Ry Rep Ry iff

Vi1 Ry[i] /<1 Ry[i]

where ><{ e {D,c, =}, i € {protocol, src_ip, src_port, dst_ip, dst_port} (Al-
Shaer and Hamed 2002).

44

Definition 4: Rules R, and R, are partially disjoint (or partially matched) if
there is at least one field in Ry that is a subset or a superset or equal to the
corresponding field in Ry, and there is at least one field in R that is not a subset and not

a superset and not equal to the corresponding field in R,. Formally:

Rx Rpp Ry iff

31,j such that : Ri[i] D><I Ry[i] and Ry[j] >/<] Ry[j]

where ><] € {D,c, =}and i,j € {protocol, src_ip, src_port, dst_ip, dst_port}
(Al-Shaer and Hamed 2002).

Definition 5: Rules R, and R, are correlated if some fields in R, that are subset
or equal to the corresponding field in Ry, and the rest of fields in Rx are supersets of the

corresponding fields in Ry. Formally:

Ry Rc Ry iff

Vi: Ry[i] ><IRy[i] and

31,j such that : Ry[i] € Ry[i] and : R[j] © Ry[j]

where ><]| € {o,c,=}and i,j € {protocol, src_ip, src_port, dst_ip, dst_port}
(Al-Shaer and Hamed 2002).

45

APPENDIX B

ANOMALY TYPES

Intra-Firewall Anomaly Types:

Shadowing anomaly: Formally rule Ry is shadowed by rule R, if one of the

following conditions holds:
Ry [order]<Ry [order], Rx Rem Ry, Ry [action] # Ry [action] (1)

Ry[order]<Ry [order], Ry Rim Ry, Ry [action] # Ry [action] (2) (Al-Shaer, et al.
2005)

Correlation anomaly: Formally rule Ry and rule Ry have correlation anomaly

the following condition holds:
Ry Rc Ry, Ry [action] # Ry [action] (3) (Al-Shaer, et al. 2005)

Generalization anomaly: Formally rule R, is generalization of rule Rx if the

following condition holds:

Ry [order] < Ry [order], Ry R Ry, Ry [action] # Ry [action] (4) (Al-Shaer, et
al. 2005)

Redundancy anomaly: Formally rule Ry is redundant to rule R, if one of the

following conditions holds:

R, [order] < Ry [order], Ry Rem Ry, Ry [action] = Ry [action] (5)
R, [order] < Ry [order], Ry R Ry, Ry [action] = Ry [action] (6) (Al-Shaer, et
al. 2005)

46

Inter-Firewall Anomaly Types:

Shadowing anomaly: Formally rule R4 is shadowed by rule R, if one of the

following conditions holds:

R4 Rem Ry, Ry [action] = deny, Ry [action] = accept (1)
R4 R Ry, Ry [action] = deny, Ry [action] = accept (2)
Ry R Ry, Ry [action] = deny, Ry [action] = accept (3)
Ry Rim Ry, Ry [action] = accept, Rq [action] = accept (4) (Al-Shaer, et al. 2005)

Spuriousness anomaly: Formally rule R, allows spurious traffic to rule Ry if

one of the following conditions holds:

Ry Rem Ry, Ry [action] = accept, Rq [action] = deny (5)

Ry R Rd, Ry [action] = accept, Rq [action] = deny (6)

R4 Rm Ry, Ry [action] = accept, Ry [action] = deny (7)

R4 R Ry, Ry [action] = accept, Ry [action] = accept (8)

Ry Rm Ry, Ry [action] = deny, Ry [action] deny (9) (Al-Shaer, et al. 2005)

Redundancy anomaly: Formally rule Ry is redundant to rule R, if one of the

following conditions holds:

R4 Rem Ry, Ry [action] = deny, Ry [action] = deny (10)
R4 R Ry, Ry [action] = deny, Ry [action] = deny (11) (Al-Shaer, et al. 2005)

Correlation anomaly: as a result of having two correlated rules in upstream
and downstream firewall a correlation anomaly occurs. Formally, the correlation

anomaly for rules R, and Ry occurs if one of the following conditions holds:

Ry R Ry, Ry [action] = accept, Ry [action] = accept (12)

Ry Re Ry, Ry [action] = deny, Ry [action] = deny (13)

Ry Re Ry, Ry [action] = accept, Ry [action] = deny (14)

Ry Re Ry, Ry [action] = deny, Ry [action] = accept (15) (Al-Shaer, et al. 2005)

47

APPENDIX C

USER INTERFACES OF POLICY ANOMALY CHECKER

B2 policy Anomaly Checker = |
Anomaly Detection Rule Generator
Topology Tree Policy Tree
g Metwork W» Policy- Fw0
¢ & PO ¢ % Protocol- tep
¢ &g P ¢ Wy Source Ip-161.120""
g P2 ¢ W Source Pot- any
o N9 Destination ip - =***
¢ S Destination Port- 80
Action - accept-1 f FWO
Action - deny-3 7 FWwW0
o A Destination lp - 140.1892.**
o W Source lp-140192**
o= 3 Source [p-*"**
o= Wy Source lp-161 12033
Rule List
| _Policy | oOrder | Protocol | Sourcelp | Source Port Destination . |Destination..] Action |
!FWD 1| tep !IB‘I 12007 jany e 20 accept o
[Fwio 2| tep [140.192 == lany fraws 25 accept
3| tep i'.".'.' any f1-10.‘|92.'." 25 accept
4| tep !i 40192.** lany 161120** |30 derny
5| tep [161.120.33." lany (140.192.37.1|23 deny
6| tcp [181.120%> |any 1401925~ |22 dery
7| tep [161.120~= |any [1an19z2=> |any accept
B tes prangars sy pernzass |SCERES:
g tep e any = any deny
=] 10| tcp i151 1205* |any ?140_192.‘.* any accept
-

Figure C.1. User Interface of the Policy Anomaly Checker

48

Policy Anomaly Checker

Anomaly tion | Rule Generator
Discover Intrafirewall Anomaly Policy Tree
Discover Iimterfirewall Anomakhy T Policy -
Save Current Rules

Rule List

Policy | Qrder | Protocol | Source lp | Source Port [Destination . |Destination] Action

||

Figure C.2. User Interface of the Policy Anomaly Checker with Anomaly Detection
Menu

B policy Anomaly Checker
Ancemaly Detection Rule Generator

Topology Tree Policy Tree
W Metwork © Policy -
v P

v W P

E
< Show Rules and Discower Anormaky

Rule List

Policy | Order | Protocol | Source lp | Source Port [Destination . [Destination | Action

e
-

Figure C.3. User Interface of the Policy Anomaly Checker with Topology Menu

49

g Policy Anomaly Checker
Anomaly Detection Rule Generator

|°I_'f'{1_‘3§f!_’_ !_:_1_3& = Policy Tree
N Metwork W Policy - F\ww0
¢ & PD ¢ % Protocol - fcp
g P Q- Wy Source lp-161.120*"
N P2 & gy Source Port- any

& 49 Destination ip - =*=*
9 S Destination Port- 80
 Action - accept-1 FFWD
" Action - deny-98 7 Fyo

Anamolies

RuleT is a generalization of rules
Rule7 is a generalization of rules
Ruled is a generalization of ruled
RuleS is a generalization of rulet
Ruled is a generalization of rule?
Ruled is a generalization of rule2
Ruled is a ganeralization of ruled
Ruled is a generalization of rule3
FRule1d is a generalization of ruled
Rule10 is redundant to rufe ¥
Rule10 is shadowed by ruleg
Rule10 is a genaralization of rulas

FWvWi0 Gl tcp 161.120.%* (amy 140.192** [22 deny
Fwwio T tep 161.120.** éamr 1401892 =* |any accept
Fwii 83| kep 140.182.*" |any 161.120** |[any accept
Fyvwi =} ;cp o any b e any dery
Fywi 10| tcp 161.120.%* .Eam" 140.192>* |any accept

Figure C.4. Anomaly Result Form

A policy Anomaly Checker

Anomaly Detection

Topology Tree Generate Random Rules ey Tree
% Metwork Generate Rules Without Anomaly |[pooi-
e g Fwo

Rude List

| Policy | Order | Protocol | Source lp | Source Port Destination _.Destinatlon ... Action
|

b4

Figure C.5. Rule Generation Menu

50

APPENDIX D

FIREWALL CONFIGURATIONS

The firewalls are configured via iptables. Route definitions of fwl to fw5 as

follows.

fw1 route tables:
route —n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

10.2.0.34 10.2.0.33 255.255.255.255 UGH 0 O
10.2.0.35 10.2.0.33 255.255.255.255 UGH 0 O
10.2.0.36 10.2.0.33 255.255.255.255 UGH 0 O
10.2.0.37 10.2.0.33 255.255.255.255 UGH 0 O
10.2.0.0 10.2.0.1 255.255.255.0 UG 0 O
10.2.0.0 0.0.0.0 255.255.255.0 U 0 O
192.168.1.0 0.0.0.0 255.255.255.0 U 0 O
10.1.0.0 10.1.0.1 255.255.255.0 UG 0 O
10.1.0.0 0.0.0.0 255.255.255.0 U 0 O
0.0.0.0 192.168.1.3 0.0.0.0 UG 0 O
Fw2 route tables:

route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use
10.2.0.35 10.2.0.34 255.255.255.0UGH 0 0 0
10.2.0.36 10.2.0.34 255.255.255.0UGH O 0 0
10.2.0.37 10.2.0.34 255.255.255.0UGH O 0 0
10.2.0.0 0.0.0.0 255.255.255.0 U 0 0
0.0.0.0 10.2.0.33 0.0.0.0 uGg 0 0 0

0 ethl
0 ethl
0 ethl
0 ethl
0 ethl
0 ethl
0 eth0
0 eth2
0 eth2
0 ethO

Iface
ethO

eth0
eth0
0 eth0
eth0

51

fw3 route tables:
route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
10.2.0.36 10.2.0.35 255.255.255.0UGH 0 0 0 ethO

10.2.0.37 10.2.0.35 255.255.255.0UGH 0 0 0 ethO
10.2.0.0 0.0.0.0 255.255.255.0 U 0 0 0 ethO
0.0.0.0 10.2.0.33 0.0.0.0 uG o0 0 0 ethO

By these route definitions, any package that is sent from client to the anomaly

checker will follow the firewalls from bottom to the fwl.

Fw4 route tables:

route -n

Kernel IP routing table

Destination ~ Gateway Genmask Flags Metric Ref Use Iface
10.2.0.37 10.2.0.36 255.255.255.0UGH 0 0 0 eth0
10.2.0.0 0.0.0.0 255.255.255.0 U 0 0 0 ethO
0.0.0.0 10.2.0.34 0.0.0.0 uG o0 0 0 eth0

52

