

POLICY ANOMALY REPORTING FOR
DISTRIBUTED FIREWALLS

A Thesis Submitted to
The Graduate School of Engineering and Sciences of

İzmir Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by

Füsun ÇETİN

December 2007

İZMİR

We approve the thesis of Füsun ÇETİN

Assist. Prof. Dr. Tuğkan TUĞLULAR

Supervisor

Prof. Dr. Şaban EREN

Committee Member

Assoc. Prof. Dr. Ahmet KOLTUKSUZ

Committee Member

18.12.2007

 Date

Prof. Dr. Sıtkı AYTAÇ

Head of the Computer Engineering

of Department

Prof. Dr. Hasan BÖKE

Dean of the Graduate School of
Engineering and Sciences

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Assist. Prof. Dr.

Tuğkan TUĞLULAR, for his guidance, patience and encouragement. He was the one

who supported me when I was in trouble with critical decisions. His valuable support

and confidence have been the driving force of this thesis work.

I would also like to thank Sevgi Uslu, Ezgi Samanlı and Oğuz Yarımtepe who

cooperated with me in many studies.

Finally, I should thank to my parents who always supported me throughout my

education in my graduate study.

iv

ABSTRACT

POLICY ANOMALY REPORTING FOR DISTRIBUTED FIREWALLS

Firewall is a protective device which is installed between two networks.

Firewall functionality depends on the filtering rules and their order. All rule relations

must be considered in order to determine correct rule order. In this thesis, anomaly

discovery algorithms are implemented for single and distributed firewall environments

in a software tool called “Policy Anomaly Checker”. A number of tests are performed

using different policies and network topologies in order to obtain operational values of

these algorithms.

v

ÖZET

DAĞITIK GÜVENLİK DUVARLARI İÇİN POLİTİKA ANOMALİ

RAPORLAMA

Güvenlik duvarı iki network arasına kurulan koruyucu bir cihazdır. Güvenlik

duvarının işlevselliği filtreleme kurallarına ve bu kuralların sırasına bağlıdır. Doğru

kural sırasını belirlemek için kurallar arasındaki bütün ilişkiler dikkate alınmalıdır. Bu

tezde tek ve dağıtık güvenlik duvarı ortamları için anomali bulma algoritmaları

“Politika Anomali Belirleyicisi” adı verilen bir yazılım aracında uygulanmıştır. Bu

algoritmaların operasyon değerlerinin belirlenmesi için farklı kural setleri ve ağ yapıları

kullanılarak testler yapılmıştır.

vi

TABLE OF CONTENTS

LIST OF FIGURES .. viii

LIST OF TABLES... x

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. BACKGROUND .. 2

2.1. Firewalls.. 2

2.1.1. Types of Firewalls ... 3

2.1.1.1. Packet Filter Firewalls .. 3

2.1.1.2. Stateful Inspection Firewalls .. 4

2.1.1.3. Application Proxy Gateway Firewalls .. 4

2.2. Distributed Firewalls... 4

2.3. Firewall Policies ... 6

2.3.1. Firewall Policy Representation.. 8

2.4. Policy Anomalies .. 9

2.4.1. Intra-Firewall Policy Anomalies.. 11

2.4.2. Inter-Firewall Policy Anomalies.. 13

CHAPTER 3. DESIGN AND IMPLEMENTATION 17

3.1. Requirements of Policy Anomaly Checker .. 17

3.1.1. Functional Requirements of Policy Anomaly Checker 17

3.1.1.1. Intra-Firewall Anomaly Checking .. 17

3.1.1.2. Inter-Firewall Anomaly Checking .. 18

3.1.1.3. Rule Generation .. 18

3.2. Design Principles .. 18

vii

3.3. Architectural Layers of Policy Anomaly Checker.................................. 19

3.3.1. Domain Layer of Policy Anomaly Checker 19

3.3.2. Service Layer of Policy Anomaly Checker 20

3.3.3. User Interface Layer of Policy Anomaly Checker........................... 21

3.5. Algorithms .. 22

3.5.1. Intra-Firewall Anomaly Discovery Algorithm 22

3.5.2. Inter-Firewall Anomaly Discovery Algorithm 27

3.6. Implementation of Policy Anomaly Checker ... 30

3.6.1. Application development Environment ... 30

3.6.2. Scenarios and User Interfaces.. 30

3.6.2.1. Scenarios ... 30

3.6.2.2. User Interfaces .. 32

3.7. Test Cases ... 33

3.7.1. Intra-Anomaly Discovery Algorithm Test Cases 33

3.7.2. Inter-Anomaly Discovery Algorithm Test Cases 33

CHAPTER 4. EXPERIMENTS AND EVALUATION.................................... 35

CHAPTER 5. CONCLUSION AND FUTURE WORK................................... 42

REFERENCES .. 43

APPENDICES

APPENDIX A. DEFINITIONS OF RELATIONS BETWEEN RULES.......... 44

APPENDIX B. ANOMALY TYPES ... 46

APPENDIX C. USER INTERFACES OF POLICY ANOMALY……….………

….................................CHECKER.. 48

APPENDIX D. FIREWALL CONFIGURATIONS ... 51

viii

LIST OF FIGURES

Figure Page

Figure 2.1. A Firewall Usually Separates an Internal Network from the Internet 2

Figure 2.2. A Sample Policy Configuration File .. 5

Figure 2.3. A Firewall Policy Example ... 8

Figure 2.4. Policy Tree for the Firewall Policy in Figure 2.3 9

Figure 2.5. Cascaded Firewalls Isolating Domains Dx and Dy. 13

Figure 3.1. Architectural Layers of Policy Anomaly Checker 19

Figure 3.2. Domain Layer of Policy Anomaly Checker .. 20

Figure 3.3. Service Layer of Policy Anomaly Checker ... 21

Figure 3.4. User Interface Layer of Policy Anomaly Checker 22

Figure 3.5. Intra-Firewall Anomaly Discovery Algorithm ... 23

Figure 3.6. State Diagram for Detecting Intra-firewall Anomalies for Rules 23

Figure 3.7. Modified Anomaly Transition Algorithm ... 25

Figure 3.8. Modified Anomaly Termination Algorithm.. 26

Figure 3.9. Inter-Firewall Anomaly Discovery Algorithm.. 27

Figure 3.10. Example for a Distributed Firewall Environment 28

Figure 3.11. Modified InterAnomaly Termination Algorithm 29

Figure 3.12. Sequence Diagram for Intra-firewall Anomaly Checking 30

Figure 3.13. Sequence Diagram for Inter-firewall Anomaly Checking 31

Figure 3.14. Sequence Diagram for Rule Generation without Anomaly....................... 32

Figure 3.15. Intra-Anomaly Discovery Algorithm Results for Anomaly Cases 33

Figure 3.16. Inter-Anomaly Discovery Algorithm Results for Anomaly Cases 34

ix

Figure 4.1. Processing Time for Intra-firewall Anomaly Discovery Algorithm 36

Figure 4.2. Inter-firewall Anomaly Discovery Algorithm for One Path 36

Figure 4.3. Inter-firewall Processing Time.. 37

Figure 4.4. Environment used for experiment ... 38

Figure 4.5. Experiment for Inter-firewall Anomaly Discovery Algorithm...…………...

Using One Path Only (Total Response Time and Latency Values).......... 40

Figure 4.6 Experiment for Inter-firewall Anomaly Discovery Algorithm…………

Using One Path Only (Discovery Algorithm Process Time).................... 41

Figure C.1. User Interface of the Policy Anomaly Checker ... 48

Figure C.2. User Interface of the Policy Anomaly Checker with Anomaly………...…...

Detection Menu... 49

Figure C.3. User Interface of the Policy Anomaly Checker with Topology Menu...... 49

Figure C.4. Anomaly Result Form.. 50

Figure C.5. Rule Generation Menu... 50

x

LIST OF TABLES

Table Page

Table 2.1. Sample Packet Filter Firewall Rule Set……………………………………..3

1

CHAPTER 1

INTRODUCTION

Firewalls are fundamental elements in network security. Most of the dangers of

the Internet may be blocked by installing a firewall. Firewall is installed at a point

where the internal network connects to the Internet. It filters out unacceptable traffic

coming from or going to internal network. Filtering decision is based on a set of

ordered rules. Correct operation of the firewall is dependent on the filtering rules

Administrator must consider all rule relations in order to determine of correct

rule order. Increase in the number of the filtering rules results in the increase the

potential of anomaly occurrence in the firewall policy. In single firewall environment

policy may include intra-firewall anomalies, where the same packet may match more

than one filtering rule. In distributed firewall environments, firewalls might also have

inter-firewall anomalies when individual firewalls in the same path perform different

filtering actions on the same traffic.

The main concern of this study is to implement anomaly discovery algorithms

(Al-Shaer and Hamed 2004) for reporting an anomaly that might exist in any firewall

policy in single and distributed firewall environments. In order to implement these

algorithms a tree-based filtering representation is used. These algorithms are

implemented using Java programming language in a software tool called “Policy

Anomaly Checker”.

This thesis is organized as follows. Chapter 2 describes the single and

distributed firewall environments. Firewall policies and their tree-based representation

are also identified in this chapter. Then in order to determine anomalies among filtering

rules, relations are described as well. Chapter 3 explains anomaly discovery algorithms

for single and distributed firewalls. Design and implementation of “Policy Anomaly

Checker” are also explained in this chapter. Chapter 4 describes experiments and

evaluation which are done using “Policy Anomaly Checker”. Finally, Chapter 5 gives

the conclusion of this thesis work.

2

CHAPTER 2

BACKGROUND

In this chapter firewalls and firewall policies are explored. In addition,

distributed firewalls and policy anomalies are explained.

2.1. Firewalls

Firewall is a protective device which is installed between two networks. A

firewall usually separates an internal network from the Internet (Figure2.1). Firewall

restricts people to entering or leaving at a controlled point and it prevents attackers

from getting close to other defenses. All traffic between two networks must pass

through the firewall and only authorized traffic, defined by the local security policy,

can be allowed to pass.

Figure 2.1. A Firewall Usually Separates an Internal Network from the Internet
(Source: Chapman and Zwicky 1995)

The function of the firewall is to provide secure access to and from the internal

network. Any packet that attempts to enter or leave at the entry point is first examined

3

by the firewall. Firewall decides either to accept or to discard the packet according to

different fields of the packet.

Firewalls are included in network security approaches to protect internal

networks. Internet firewall prevents the dangers of the Internet from spreading to

internal network.

2.1.1. Types of Firewalls

There are several types of firewalls. Packet filter firewalls, stateful inspection

firewalls, application-proxy gateway firewalls are fundamental types of firewalls.

2.1.1.1. Packet Filter Firewalls

Packet filtering firewalls operate at Layer 3 of the OSI model. Packet filtering

firewalls route IP packets selectively between internal and external hosts. IP packet’s

header contains four information; IP source address, IP destination address, IP protocol

type and some characteristics of layer 4 such as the source and destination port.

Firewall examines packets and allows or blocks them according to a rule set. Table 2.1

shows sample packet filter firewall rule set which blocks all tcp traffic coming from the

network 192.168.1.* except http (Wack, et al. 2002).

Table 2.1. Sample Packet Filter Firewall Rule Set

Order Protocol Source

Address

Source Port Destination

Address

Destination

Port

Action

1 tcp 192.168.1.* any any 80 accept

2 tcp 192.168.1.* any any any deny

The rule set may be much larger and detailed for most firewalls. When a

firewall accepts a packet, it examines source and destination addresses and ports of the

packet. Then it starts at the top of the rule set and works down through the rules. When

4

a rule that permits or denies the packet is found, firewall passes the packet through the

firewall or drops the packet without passing it through the firewall (Wack, et al. 2002).

2.1.1.2. Stateful Inspection Firewalls

Stateful inspection firewalls are packet filters that incorporate added awareness

of the OSI model data at Layer 4. A stateful firewall is able to hold in memory the state

of the connection. It depends on the three-way handshake of the TCP protocol. When a

client initiates a new connection, it sends a packet with the SYN bit set in the packet

header. All packets with the SYN bit set are considered by the firewall as NEW

connections. If the service which the client has requested is available on the server, the

service will reply to the SYN packet with a packet in which both the SYN and the ACK

bit are set. The client will then respond with a packet in which only the ACK bit is set,

and the connection will enter the ESTABLISHED state. Such a firewall will pass all

outgoing packets through but will only allow incoming packets if they are part of an

ESTABLISHED connection (Wack, et al. 2002).

2.1.1.3. Application Proxy Gateway Firewalls

Application-proxy gateway firewall is an application that runs on a firewall

system. The user's client program talks to this proxy server instead of directly talk to

the "real" server out on the Internet. The proxy server evaluates requests from the client

and decides which to pass on and which to discard. If a request is approved, the proxy

server talks to the real server on behalf of the client and proceeds to relay requests from

the client to the real server and to relay the real server's answers back to the client

(Chapman and Zwicky 1995).

2.2. Distributed Firewalls

Traditionally a firewall is installed as network gateway and same access policy

is enforced for every computer on the network that is protected by the firewall. Same

rule set is applied at the network boundary. This single point of interconnection

between networks has some disadvantages. If the access control policy is incorrect, the

protected network will be at risk. For example if malicious traffic is able to pass

5

through to firewall then all hosts on the network could be vulnerable to this malicious

traffic. Also traditional firewall will not provide a protection for any attack from the

same network. In addition a network firewall can be a bottleneck (Grant, et al. 2001).

Distributed firewall system is not a single system that acts as a gateway between

two networks. By removing this single choke point, the network bottleneck is

eliminated. In distributed firewall technology, an access control mechanism is

distributed to each host which requires protection. Firewall functionality is removed

from a single system. The unique access control for each of the network systems allows

different levels of security to be implemented on computer system on the same network

(Grant, et al. 2001).

A policy language, a policy distribution scheme and certificates are components

of distributed firewall environment. Policy language defines what sort of connections

are permitted or prohibited. Basically it is equivalent to packet filtering rules. Policy

language should also support credentials, for delegation of rights and authentication

purposes (Ioannidis, et al. 2000). While traditional firewalls usually use the IP address

as an identifier, distributed firewalls use cryptographic certificates as identifier since

distributed firewalls are independent of topology. Certificates enable the making

decisions without knowledge of the physical location of the host. Public-key

cryptography mechanisms are most often applied in contemporary implementations.

A sample policy is shown in Figure 2.2. In this sample if the certificate

identifies the source as mailgw.example.com the packet will be accepted. If the

certificate name is different, the packet will be dropped. (Bellovin 1999)

Figure 2.2. A Sample Policy Configuration File
 (Source: Bellovin 1999)

Policy distribution scheme is used to enabling policy control from central point.

Distribution scheme defines type of the security policy delegation to the members of

6

the network. Policies are distributed according to one of the following distribution

scheme:

• Policies as well as credentials can be pushed to every single end point in the

policy domain.

• Policies and credentials can be pulled from a trusted repository during

initialization.

• Policies are pulled during initialization of the policy verifier whereas

credentials for authentication mechanisms remain on a trusted repository

and are requested whenever communication traffic is reaching a node from a

yet unknown host.

In implementation of distributed firewall technology, policy languages are

translated into some internal format by a compiler. This policy file is distributed to all

the protected hosts by the system management software. A mechanism applies the

security policy to incoming packets or connections. And incoming packet accepted or

rejected by each host according to policy and the cryptographically verified identity of

each sender (Ioannidis, et al. 2000).

Different variations can exist in implementation of distributed firewall

technology. These variations are called hybrid firewall that is the combination of

traditional firewall and distributed firewall. Some hybrid firewalls do not make use of

cryptographic credentials and still rely on topological properties of the underlying

network through inspection of the connecting nodes network address.

2.3. Firewall Policies

A firewall policy should describe how the firewall is managed. Before a firewall

policy created, some of the analysis must be performed. The result of the analysis must

identify network applications traffic which the firewall system handles and the details

of which applications can traverse a firewall.

The steps for firewall policy creation are as follows (Wack, et al. 2002):

• Identification of network necessary applications,

7

• Identification of vulnerabilities associated with applications,

• Cost-benefits analysis of methods for securing the applications,

• Creation of firewall rule set based on applications traffic.

Most firewalls use rule sets for implementing security controls. The

functionality of a firewall is determined by these rule sets. Nearly all rule sets, contain

the following fields, as a minimum (Wack, et al. 2002):

• The source address of the packet, address of the computer system or device

the network packet originated from (an IP address such as 192.168.1.1).

• The destination address of the packet, address of the computer system or

device the network packet is trying to reach (e.g., 192.168.1.2).

• The type of traffic, the specific network protocol being used to communicate

between the source and destination systems or devices.

• Possibly some characteristics of the Layer 4, the source and destination

ports of the sessions (e.g., TCP:80 for the destination port belonging to a

web server, TCP:1320 for the source port belonging to a personal computer

accessing the server).

• Sometimes, information pertaining to which interface of the router the

packet came from and which interface of the router the packet is destined

for. Useful for routers with three or more network interfaces.

• An action, such as Deny or Permit the packet (Wack, et al. 2002)

Firewall rule set should be kept as simple as possible and should be building to

be as specific as possible. Unless the traffic type and connections have been specially

permitted, inbound traffic should be blocked by default policy. Common format of a

rule in a firewall policy is as follows:

<order> <protocol> <src_ip> <src_port> <dst_ip> <dst_port> <action>

The order field determines the position of rule in rule set; protocol field

specifies transport protocol of the packet. The IP addresses of the source and

destination are specified respectively by src_ip and dst_ip fields. The port addresses

of the source and destination of the packet are specified by src_port and dst_port fields

(Al-Shaer and Hamed 2002).

8

2.3.1. Firewall Policy Representation

Policy representation modeling is important for implementing management

techniques and visualizing the firewall policy structure. Al-Shaer and Hamed (2002)

described a policy representation model in their research “Design and Implementation

of Firewall Policy Advisor Tools”. They represented the firewall policy by a single

rooted tree which is called the policy tree. Fields of the rules are represented as nodes

in policy tree. And a possible value of the associated field is represented as a branch of

this node. The protocol field is represented as a root node of a policy tree, and action

field is represented as a leaf node. Every tree path starting at the root and ending at a

leaf represents a rule in the policy. Rules that have the same field value at a specific

node, will share the same branch representing that value. A firewall policy example is

illustrated in Figure 2.3 and policy tree model for this policy example is illustrated in

Figure 2.4.

Figure 2.3. A Firewall Policy Example

 (Source: Al-Shaer and Hamed 2002)

9

Figure 2.4. Policy Tree for the Firewall Policy in Figure 2.3
(Source: Al-Shaer and Hamed 2002)

Rule 1 to 9 all have the same protocol field value “tcp” and they share the same

branch at protocol node. Rules 1 and 5 have different src_ip field value while rules 2, 4,

6 and 7 share the same src_ip field value. Similarly, rules 3 and 8 share the same src_ip

branch. Rules 9, 10 and 12 share the same branch at protocol node with field value

“udp”. Notice that rules 8 and 4 appear on rules 2 and 3 while they have separate

branches also, because they have superset relations with other rules. Relations between

filtering rules will be introduced later in this chapter.

2.4. Policy Anomalies

Correct operation of the firewall is dependent on the filtering rules. Therefore,

administrator must give special attention to proper rule placement in filtering rule set.

10

In order to analyze the firewall policy modeling of firewall rule relations is

necessary. The model which is created by Al-Shaer and Hamed (2002) and introduced

in their research “Design and Implementation of Firewall Policy Advisor Tools” is used

to analyze firewall policies. They defined all possible relations between filtering rules

and they proved that there is no other relation exists. Definitions of relations are in

Appendix A.

Exactly matched: Rules Rx and Ry are exactly matched if every field in Rx is

equal to the corresponding field in Ry (Al-Shaer and Hamed 2002).

For the following rules, they are exactly matched because of all corresponding

fields in both rules are equal.

1: tcp, 192.168.1.3, any, 193.140.248.*, 21, accept

2: tcp, 192.168.1.3, any, 193.140.248.*, 21, deny

Inclusively matched: Rules Rx and Ry are inclusively matched if they do not

exactly match and if every field in Rx is a subset or equal to the corresponding field in

Ry (Al-Shaer and Hamed 2002).

For the following rules, every field in rule 1 is subset or equal to corresponding

field in rule 2 and every field in rule 2 is superset or equal to corresponding field in rule

1. In this relation rule 1 is called subset match, rule 2 is called superset match.

1: tcp, 192.168.1.3, any, 193.140.248.*, 21, accept

2: tcp, 192.168.1.*, any, 193.140.248.*, any, deny

Completely disjoint: Rules Rx and Ry are completely disjoint if every field in

Rx is not a subset and not a superset and not equal to the corresponding field in Ry (Al-

Shaer and Hamed 2002).

For the following rules, they are completely disjoint. Every corresponding fields

in both rules are not subset and not superset and not equal.

1: tcp, 192.168.1.3, 2000, 10.10.1.4, 21, accept

2: tcp, 192.168.1.5, 3000, 10.10.1.11, 80, deny

11

Partially disjoint: Rules Rx and Ry are partially disjoint (or partially matched)

if there is at least one field in Rx that is a subset or a superset or equal to the

corresponding field in Ry, and there is at least one field in Rx that is not a subset and not

a superset and not equal to the corresponding field in Ry (Al-Shaer and Hamed 2002).

For the following rules, all fields except destination port field in rule 1 are

subset or equal to corresponding fields rule 2.

1: tcp, 192.168.1.3, any, *.*.*.*, 21, accept

2: tcp, 192.168.1.*, any, *.*.*.*, 80, deny

Correlated: Rules Rx and Ry are correlated if some fields in Rx that are subset

or equal to the corresponding field in Ry, and the rest of fields in Rx are supersets of the

corresponding fields in Ry (Al-Shaer and Hamed 2002).

For the following rules, below protocol, source port and destination port fields

in rule 1 are equals to corresponding fields in rule 2 src_ip field in rule1 is subset of

src_ip field in rule 2 and dst_ip field in rule 1 is superset of dst_ip field in rule 2.

1: tcp, 192.168.1.3, any, *.*.*.*, 80, accept

2: tcp, *.*.*.*, any, 192.168.1.*, 80, deny

2.4.1. Intra-Firewall Policy Anomalies

“An intra-firewall policy anomaly is defined as the existence of two or more

filtering rules that may match the same packet” (Al-Shaer, et al. 2005). Anomaly types

which are classified in Appendix B as follows:

Shadowing anomaly: if all the fields in a rule match all the fields in a previous

rule, this rule will never be worked through and shadowing anomaly will be occurred.

If the shadowing rule is removed the security policy will not be affected. (Al-Shaer, et

al. 2005)

Example rules for cases (1) (2) are shown below:

12

Case (1)

1: tcp, 140.192.37.*, any, 192.168.1.12, 80, accept

2: tcp, 140.192.37.*, any, 192.168.1.12, 80, deny

Case (2)

1: tcp, *.*.*.*, any, 192.168.1.12, 80, accept

2: tcp, 140.192.37.*, any, 192.168.1.12, 80, deny

Rule 2 is shadowed by rule 1 in the examples above.

Correlation anomaly: if some fields in first rule match corresponding fields in

second rule and some fields in second rule match corresponding rules in first rule and if

these rules have different action fields these rules have correlation anomaly. (Al-Shaer,

et al. 2005).

Example rule for case (3) is shown below:

Case (3)

1: tcp, 192.168.1.20, any, *.*.*.*, 80, deny

2: tcp, *.*.*.*, any, 192.168.33.40, 80, accept

Rule 1 is in correlation with rule 2 in example above.

Generalization anomaly: if fields in second rule match all corresponding fields

in first rule and they have different action, second rule is generalization of first rule (Al-

Shaer, et al. 2005).

Example rule for case (4) is shown below:

Case (4)

1: tcp, 192.168.1.20, any, *.*.*.*, 80, deny

2: tcp, 192.168.1.*, any, *.*.*.*, 80, accept

Rule 2 is a generalization of rule 1 in example above.

13

Redundancy anomaly: a redundant rule performs same action on the same

fields as another rule. If the redundant rule is removed policy will not be affected (Al-

Shaer, et al. 2005).

Example rules for cases (5), (6) are shown below:

Case (5)

1: tcp, 192.168.37.*, any, 140.192.33.40, 21, accept

2: tcp, 192.168.37.*, any, 140.192.33.40, 21, accept

Case (6)

1: tcp, 192.168.37.*, any, *.*.*.*, 21, accept

2: tcp, 192.168.37.*, any, 140.192.33.40, 21, accept

Rule 2 is redundant to rule 1 in examples above.

2.4.2. Inter-Firewall Policy Anomalies

In distributed firewall environment, if any two firewalls on a network path take

different filtering actions, an inter-firewall anomaly may exist. For example a firewall

might block a traffic that is permitted by another firewall on the same network path.

Al-Shaer, Hamed, Boutaba and Hasan classified anomalies in multi-firewall

environments (Al-Shaer, et al. 2005). And they used network model that is illustrated in

Figure 2.5.

Figure 2.5. Cascaded Firewalls Isolating Domains Dx and Dy.

14

 As it is shown Figure2.5 traffic stream is flowing from subdomain Dx to

subdomain Dy . According to direction of flow, the closest firewall to the flow source

subdomain is called upstream firewall (FWx) while the closest firewall to the flow

destination subdomain is called downstream firewall (FWy).

Shadowing anomaly: if an upstream firewall blocks the network traffic

accepted by a downstream shadowing anomaly occurs. Rd belongs to downstream

firewall’s policy while Ru belongs to upstream firewall’s policy (Al-Shaer, et al. 2005).

Example rules for cases (1), (2), (3), (4) are shown below:

Case (1)

Ru: tcp, 192.168.*.*, any, 140.192.22.5, 21, deny

Rd: tcp, 192.168.*.*, any, 140.192.22.5, 21, accept

Case (2)

Ru: tcp, *.*.*.*, any, *.*.*.*, any, deny

Rd: tcp, 192.168.*.*, any, 140.192.22.5, 21, accept

Case (3)

Ru: tcp, 192.168.*.*, any, 140.192.22.5, 25, deny

Rd: tcp, 192.168.*.*, any, 140.192.*.*, 21, accept

Case (4)

Ru: tcp, 192.168.1.*, any, 140.192.*.*, 23, accept

Rd: tcp, 192.168.*.*, any, 140.192.*.*, 23, accept

Spuriousness anomaly: if an upstream firewall permits the network traffic

denied by a downstream, a spuriousness anomaly occurs (Al-Shaer, et al. 2005).

Example rules for cases (5), (6), (7), (8), (9) are shown below:

Case (5)

Ru: tcp, 140.192.*.*, any, 192.168.*.*, 80, accept

Rd: tcp, 140.192.*.*, any, 192.168.*.*, 80, deny

15

Case (6)

Ru: tcp, 140.192.*.*, any, 192.168.*.*, 80, accept

Rd: tcp, *.*.*.*, any, *.*.*.*, any, deny

Case (7)

Ru: tcp, 192.168.1.*, any, 140.192.*.*, 23, accept

Rd: tcp, 192.168.1.*, any, 140.192.37.*, 23, accept

Case (8)

Ru: tcp, 192.168.*.*, any, 140.192.*.*, 21, accept

Rd: tcp, 192.168.*.*, any, 140.192.22.5, 21, accept

Case (9)

Ru: tcp, 192.168.1.*, any, 140.192.37.1, 23, deny

Rd: tcp, 192.168.1.*, any, 140.192.37.*, 23, deny

Redundancy anomaly: if a down stream firewall denies the network traffic

already blocked by upstream firewall a redundancy anomaly occurs (Al-Shaer, et al.

2005).

Example rules for cases (10), (11) are shown below:

Case (10)

Ru: tcp, 192.168.1.*, any, 140.192.37.1, 80, deny

Rd: tcp, 192.168.1.*, any, 140.192.37.1, 80, deny

Case (11)

Ru: tcp, *.*.*.*, any, *.*.*.*, any, deny

Rd: tcp, 192.168.1.*, any, 140.192.37.1, 80, deny

Correlation anomaly: as a result of having two correlated rules in upstream

and downstream firewall a correlation anomaly occurs (Al-Shaer, et al. 2005).

16

Case (12)

Ru: tcp, 140.192.*.*, any, 192.168.1.*, 80, accept

Rd: tcp, 140.192.37.1, any, 192.168.*.*, 80, accept

In this example, only the traffic coming from 140.192.37.1 and destined to

192.168.1.* will be accepted and other traffic destined to 192.168.*.* will be shadowed

at the upstream firewall

Case (13)

Ru: tcp, 140.192.*.*, any, 192.168.1.*, 80, deny

Rd: tcp, 140.192.37.1, any, 192.168.*.*, 80, deny

In this case, the traffic coming from 140.192.37.1 and destined to 192.168.1.*

will deny at the downstream firewall.

Case (14)

Ru: tcp, 140.192.*.*, any, 192.168.1.*, 80, accept

Rd: tcp, 140.192.37.1, any, 192.168.*.*, 80, deny

In this example upstream firewall permits the traffic which is coming from

140.192.37.1 while same traffic is denied at the downstream firewall

Case (15)

Ru: tcp, 140.192.*.*, any, 192.168.1.*, 80, deny

Rd: tcp, 140.192.37.1, any, 192.168.*.*, 80, accept

In this example, upstream firewall blocks the traffic which is coming from

140.192.37.1 and destined to 192.168.1.* while same traffic is accepted at the

downstream firewall.

17

CHAPTER 3

DESIGN AND IMPLEMENTATION OF

POLICY ANOMALY CHECKER

Firewall functionality depends on the filtering rules and their order. If there is

an anomaly among rules, correct and efficient operation can not be achieved. In this

chapter, design and implementation of Policy Anomaly Checker is explained.

3.1. Requirements of Policy Anomaly Checker

Policy Anomaly Checker application is developed to discover firewall policy

anomalies. The main requirement is to define anomalies among policy rules by using

firewall rules relations and policy representation model which is introduced by Al-

Shaer and Hamed (2002).

3.1.1. Functional Requirements of Policy Anomaly Checker

The functional requirements of Policy Anomaly Checker are based around three

main use cases which are Intra-firewall anomaly checking, inter-firewall anomaly

checking and rule generation.

3.1.1.1. Intra-Firewall Anomaly Checking

In this requirement rules in the selected policy are checked in order to discover

anomaly. Policy can be selected from either network topology that is already defined or

file system.

Input: Selected policy.

Process: Check intra-firewall anomaly.

Output: Results of the intra-firewall anomaly checking process.

18

3.1.1.2. Inter-Firewall Anomaly Checking

Rules in all policies are checked in order to discover anomaly. In order to

achieve this requirement all network paths between subdomains must be already

defined in the system.

Input: Network paths between subdomains, firewall policies that are

 deployed on these paths.

Process: Check inter-firewall anomaly.

Output: Results of the inter-firewall anomaly checking process.

3.1.1.3. Rule Generation

 Beside anomaly checking property, rule generation functionality is added to

Policy Anomaly Checker. Rules are generated with or without anomaly according to

user selection.

Input: Number of rules that will be generated, with anomaly or without

 anomaly selection

Process: Generate firewall rules

Output: Generated rules with policy tree representation.

3.2. Design Principles

Object oriented development is a development strategy where analysis, design

and programming process are executed to create and apply an object model. The

concepts of application domain are implemented as objects and their interactions in the

model. It is aimed to provide software reusability, extensibility, reliability and

portability using such a development strategy.

Design patterns strategies are applied during object oriented development

process. Design patterns can be considered as pre-defined, repeatable and non-finished

solutions. Similar problems can occur during different software development process.

Instead of generating new solutions each time it is easier to use these pre-defined and

reliable solutions which also generate a common language between developers.

19

Design patterns can be classified as creational, behavioral and structural patterns

depending on the types of problems they are used to solve. During software

development process of this thesis Singleton Pattern is applied. It is a creational pattern

and used to restrict instantiation of a class to one object in the system (Cooper 2000).

3.3. Architectural Layers of Policy Anomaly Checker

Architectural layers of application are illustrated in Figure 3.1. The architecture

consists of three layers which separates application functionality into three distinct

abstractions.

Figure 3.1. Architectural Layers of Policy Anomaly Checker

3.3.1. Domain Layer of Policy Anomaly Checker

Domain layer of the application is designed for the representation of business

concepts (Figure 3.2). A policy consists of rules and their tree representation in model.

Policy also contains its anomaly checker. Each rule has order, protocol, src_ip, dest_ip,

src_port, dest_port and action fields. An interface class which is called Icategorization

provides methods for building policy tree by using fields of the rules in a policy. An

20

abstract class which is called AbstractField provides methods for definition of relation

between rules.

Figure 3.2. Domain Layer of Policy Anomaly Checker

3.3.2. Service Layer of Policy Anomaly Checker

Service layer of the application is designed for the performing business rules.

(Figure 3.3) An abstract class which is called AnomalyChecker provides methods for

inter and intra-firewall anomaly checking. IntraAnomalyChecker and

InterAnomalyChecker inherit anomalyTransition method from abstract class.

21

Figure 3.3. Service Layer of Policy Anomaly Checker

3.3.3. User Interface Layer of Policy Anomaly Checker

User interface layer is designed for the presentation of policy and network

topology trees (Figure 3.4). There are two singleton classes which are called

PolicyTreeFormController and TopologyController. TopologyController class provides

method for creation of the policies using network paths which are defined from the

network topology. In order to discover inter-firewall anomalies, policies must be

defined in system. PolicyTreeFormController class provides methods for presentation

of policy and topology trees in the user interface layer. ReportForm class is used to

show the results of the anomaly checking process to user.

22

Figure 3.4. User Interface Layer of Policy Anomaly Checker

3.5. Algorithms

Policy anomalies can be determined based on anomaly definitions in chapter 2.

In order to discover policy anomalies for intra and inter-firewall environment, two

algorithms that are introduced by Al-Shaer and Hamed (2004) are implemented.

3.5.1. Intra-Firewall Anomaly Discovery Algorithm

In tree representation of policy, if any two rules share the same tree path

explained in 2.3.1, there is a potential anomaly among these rules. The basic idea of

intra-firewall anomaly discovery algorithm is to determine anomalies while building

the policy tree. This algorithm is shown in Figure 3.5.

23

Figure 3.5. Intra-Firewall Anomaly Discovery Algorithm
(Source: Al-Shaer and Hamed 2004)

Intra-firewall anomaly discovery algorithm invokes main function: an anomaly

transition function which represents the transition states of fields in the state diagram

(Figure 3.6).

Figure 3.6. State Diagram for Detecting Intra-firewall Anomalies for Rules Rx and Ry
 (Source: Al-Shaer and Hamed 2004)

Anomaly discovery states for any two rules Rx and Ry are illustrated in Figure

3.6. Rx and Ry are in the same firewall and Rx comes after Ry in policy rule set. Source

and destination fields for ips and ports are represented as a one field in diagram for

simplification. State transition starts with protocol field. Each field in Rx is compared to

24

the corresponding field in Ry. Result of subsequent comparison determines the relation

between rules. If every field of Rx is a subset or equal to the corresponding field in Ry

and both rules have the same action, Rx is redundant to Ry, while if the actions are

different, Rx is shadowed by Ry. If every field of Rx is a superset or equal to the

corresponding field in Ry and both rules have the same action, Rx is potentially

redundant to Ry, while if the actions are different, Ry is a generalization of Rx. If some

fields of Rx are subsets or equal to the corresponding fields in Ry, and some fields of Rx

are supersets to the corresponding fields in Ry, and their actions are different, then Rx is

in correlation with Ry (Al-Shaer and Hamed 2004).

AnomalyTransition function is invoked for every rule with an

UNDETERMINED relation. This algorithm is modified in order to create separate path

for rule which has anomaly. Since the algorithm does not provide separate rule

placement for rules which also appears on other rule branches. Modified algorithm is

illustrated in Figure 3.7.

If the field of the rule that is added to policy tree matches an already existing

field in the tree then next relation state is determined base on the shown state diagram

in Figure 3.5.

The algorithm is executed recursively to check the remaining fields. Relation

state is updated until the final field is reached. If there is no determined relation, new

branch is created at the current node.

25

Figure 3.7. Modified Anomaly Transition Algorithm

When all the fields of rule have been inserted in the tree,

IntraAnomalyTermination function is executed. This algorithm is modified in order to

add action field to the tree. Since the algorithm does not provide addition of action

field. Modified algorithm is illustrated in Figure 3.8.

26

Figure 3.8. Modified Anomaly Termination Algorithm

In IntraAnomalyTermination function, if the rule action coincides with the

action of another rule on the tree, an anomaly is discovered and rule is inserted in the

rule’s node. At that point the final anomaly state is determined and any anomalies are

reported.

27

3.5.2. Inter-Firewall Anomaly Discovery Algorithm

Inter-firewall anomaly discovery algorithm (Figure 3.9) is implemented in order

to find relations and discover anomalies between rules in two or more connected

firewalls.

Figure 3.9. Inter-Firewall Anomaly Discovery Algorithm
(Source: Al-Shaer and Hamed 2004)

The inter-firewall anomaly discovery process should be performed on all

firewalls in the path connecting any two sub-domains in the network. The all possible

paths between subdomains in the network must be determined before the execution of

the algorithm. For example in Figure 3.10 there are six distinct paths between

subdomains. Traffic flow from D1.1 to Internet {FW1, FW0} is one path and {FW1,

FW0, FW2} is another path for the traffic from D1.2 to D2.2.

Inter-firewall anomaly discovery algorithm takes a path list as parameter. For

every firewall in the path firstly intra-firewall anomaly discovery algorithm (Figure 3.5)

is executed to ensure that every individual firewall is free from intra-firewall

anomalies. Next, for the most upstream firewall policy tree is built and the rules of all

the consecutive firewalls in the path are added into this tree.

28

Figure 3.10. Example for a Distributed Firewall Environment

Same AnomalyTransiton function is used for both Inter-firewall anomaly

discovery algorithm and intra-firewall anomaly discovery algorithm. However,

different AnomalyTermination function is invoked for the inter-firewall anomaly

discovery algorithm.

InterAnomalyTermination function determines the anomaly based on the

discovered relation and the actions of the currently inserted rule with the existing rule

in the upstream policy. This algorithm is also modified in order to add action field to

the tree. Since the algorithm which is introduced by Al-Shaer and Hamed (2004) does

not provide addition of action field. Modified algorithm is illustrated in Figure 3.11

29

Figure 3.11. Modified InterAnomaly Termination Algorithm

30

3.6. Implementation of Policy Anomaly Checker

Application development environment and main scenario is explained in

implementation of Policy Anomaly Checker. In addition, user interfaces of application

are also described in this section.

3.6.1. Application Development Environment

Policy Anomaly Checker is developed on Java platform using Eclipse. Version

of Java that is used in application development is JDK1.5.0.6

3.6.2. Scenarios and User Interfaces

Scenarios and user interface of Policy Anomaly Checker is described in this

section.

3.6.2.1. Scenarios

 Policy Anomaly Checker has three main scenarios. First scenario is the intra-

firewall anomaly checking that is illustrated in Figure 3.12.

Figure 3.12. Sequence Diagram for Intra-firewall Anomaly Checking

31

When user selects a “Discover Intra-firewall Anomaly” menu item from user

interface of the application, firstly related policy object is pulled from

TopologyController class and its PolicyTree object is shown on the user interface’s

tree. If PolicyTree of this object has not built yet, IntraAnomalyChecker object is used

to built PolicyTree and get its anomaly results.

Second scenario is the inter-firewall anomaly checking which is illustrated in

Figure 3.13. When user selects a “Discover Inter-firewall Anomaly” menu item from

user interface of the application, firstly network paths which are defined in a properties

file are pulled from TopologyControl class. For each path in the network paths, policies

which are installed in this path are pulled from TopologyControl class and

InterAnomalyChecker checks the anomaly for these policies’s rule set. Anomaly results

are shown on the report form.

Figure 3.13. Sequence Diagram for Inter-firewall Anomaly Checking

Last scenario is the rule generation which is illustrated in Figure 3.14. In the

rule generation scenario when user selects a “Generate Rules Without Anomaly” menu

item from the user interface, firstly a service object which is called RuleGenerator is

32

created. Policy which is belonging to generated rules is created by RuleGenerator class.

Generated rules are added to this Policy. In the rule addition process anomaly is

checked between newly added rule and other rules in the policy. If there is an anomaly

between rules, newly added rule is removed and new rule is generated. This process is

repeated until an anomaly free rule is found. In this scenario, generated rules can be

saved to selected files.

Figure 3.14. Sequence Diagram for Rule Generation without Anomaly

3.6.2.2. User Interfaces

User interface of Policy Anomaly Checker consists of three main panels which

are called Topology Tree, Policy Tree and Rule List (Figure C.1). Topology tree is used

to presentation of policies in the network topology. Policy tree is used to presentation

of rules in the selected policy. On the Rule List Panel, rules are shown as a table for

selected policy. Intra-firewall anomaly discovery is achieved by Anomaly Detection

Menu (Figure C.2). It is achieved by Show Rules and Discover Anomaly Menu from

TopologyTree (Figure C.3). As illustrated in Figure C.3 in order to execute Anomaly

Discovery process, a policy must be selected from Topology Tree.

33

 For intra-firewall anomaly checking and inter-firewall anomaly checking

scenarios, result of the processes are shown on to Anomalies Form (Figure C.4). In

order to generate random or anomaly free rules Rule Generator Menu is used (Figure

C.5).

3.7. Test Cases

Execution of intra and inter-firewall anomaly discovery algorithm is tested for

all the possible anomaly cases which are explained in Chapter 2. Necessary rules are

generated and algorithms are executed with these rules for cases.

3.7.1. Intra-Anomaly Discovery Algorithm Test Cases

Intra-firewall anomaly algorithm is executed for six cases which are explained

in section 2.4.1. Results for each case are shown in Figure 3.15.

Figure 3.15. Intra-Anomaly Discovery Algorithm Results for Anomaly Cases

3.7.2. Inter-Anomaly Discovery Algorithm Test Cases

Inter-firewall anomaly algorithm is executed for fifteen cases which are

explained in section 2.4.2. Network topology which is used in test has two firewalls;

FW1 and FW2. FW1 is defined as upstream firewall; FW2 is defined as downstream

firewall. Results for each case are shown in Figure 3.16.

34

Figure 3.16. Inter-Anomaly Discovery Algorithm Results for Anomaly Cases

35

CHAPTER 4

EXPERIMENTS AND EVALUATION

In order to obtain operational values of intra and inter-firewall anomaly

discovery algorithms, a number of tests are performed using different policies and

network topologies. These tests are performed on a Pentium IV-M 1.73 GHz. processor

with 1.49 GByte of RAM.

In order to obtain operational values of intra-firewall anomaly discovery

algorithm, four sets of firewall rules are generated. The first set includes rules that have

different destination address only, and the second set includes rules that have distinct

source addresses. These two represent the best case scenario because they require the

minimum policy-tree navigation for analyzing each rule. In the third set, each rule is a

superset match of the preceding rule. This set represents the worst case scenario

because each rule requires complete policy-tree navigation in order to analyze the entire

rule set. The fourth set includes rules that are randomly selected from the three previous

sets in order to represent the average case scenario. Policy Anomaly Checker is used to

execute intra-firewall anomaly discovery algorithm on each set using various sizes of

rule sets (10–100 rules). In each case, processing time is measured. The results are

shown in Figure 4.1.

In order to obtain operational values of the inter-firewall anomaly discovery

algorithm, two different experiments are performed. In the first experiment, the

discovery algorithm is executed on a set of firewalls that exist on one network path.

The rules that are used in each firewall are similar to set 2 rules in the previous test

case. Number of rules in each firewall and the number of firewalls on the path is

increased. The results are shown in Figure 4.2.

36

0,57
2,05

5,18

8,83

14,81

20,53

27,33

36,18

46,49

56,96

39,94

60,37

49,75

32,65

25,04

17,62

12,18

7,56

2,32
4,39

58,73

47,41

28,09

22,33

10,27

5,84

0,69
2,44

38,01

15,87

0

10

20

30

40

50

60

70

20 40 60 80 100 120 140 160 180 200

Number of rules in the firewall

P
ro

c
e

s
s
in

g
 t
im

e
 (

m
il
is

e
c
o

n
d

)

set1

set2

set3

set4

Figure 4.1. Processing Time for Intra-firewall Anomaly Discovery Algorithm

As illustrated in Figure 4.2 the processing time of the inter-firewall anomaly

discovery algorithm is very close to processing time of intra-firewall algorithm for

number of rules. For example, it takes 10 ms to analyze four firewalls each containing

20 rules. This is almost equal to the time required to perform intra-firewall algorithm

on a single firewall having 80 rules.

0,3 0,70,6

1,4 2,1
3,12

4,1

7,5

11,4

1,1

4,3

10,4

18

26,2

2,1

8,2

17,7

30,9

45,4

3,9

12,5

27,5

48,1

70,8

0

10

20

30

40

50

60

70

80

1 2 3 4 5

Number of firewalls on path

P
ro

c
e
s
s
in

g
 t
im

e
 (
m

il
is

e
c
o
n
d
)

10 rule

20 rule

30 rule

40 rule

50 rule

Figure 4.2. Inter-firewall Anomaly Discovery Algorithm for One Path

37

In the second experiment, inter-firewall anomaly discovery algorithm is

executed for the different network topologies. Network paths which are used in the

execution of anomaly discovery algorithm are created for three different networks.

These networks are in the form of (1) 2-2-2, (2) 3-2-2 and (3) 3-3-2. For example, the

root node in network 2 has 3 branches, whereas every node on levels two and three has

two branches. For each network, a random set of filtering rules in each firewall are

installed. In each network, the processing time required to produce the final policy

anomaly report is measured. The results are shown in Figure 4.3.

158

195
253

289 302

199

292

352

456

542

306

461

657

877

1105

0

200

400

600

800

1000

1200

10 20 30 40 50

Number of rules per firewall

P
ro

c
e

s
s
in

g
 t
im

e
 (

m
il
li
s
e

c
o

n
d

)

network1 (2-2-2)

network2 (3-2-2)

network3 (3-3-2)

Figure 4.3. Inter-firewall Processing Time

These results indicate that inter-firewall anomaly algorithm is dependent on the

total number of paths between sub-domains in the network. Since number of paths in

network 3 is more than in other networks and network 3 has much processing time than

others.

Finally, in order to obtain operational values of the inter-firewall anomaly

discovery algorithm in real distributed environment a number of experiments are

performed. Experiment environment is illustrated in Figure 4.4.

38

Figure 4.4. Environment used for experiment

39

Traffic flow from Internet to client machine is through fw1, fw2, fw3, fw4, fw5

and traffic flow from client to Internet is through fw5, fw4, fw3, fw2, fw1. All firewalls

are dual home hosts and connected with Ethernet cable from their standard 10/100Mbs

PCI Ethernet cards to 48 port Cisco switches. Firewall configurations are illustrated in

Appendix C.

Policy Anomaly Checker is deployed on Pentium IV-M 1.73 GHz. processor

with 1.49 GByte of RAM. In order to communicate with Firewall Agent, socket

communication functionality is added to Policy Anomaly Checker. Firewall Agent is

deployed on each firewall on the path. It is developed by using Python. The main

functionality of Firewall Agent is to communicate firewall devices with Policy

Anomaly Checker. Communication between Policy Anomaly Checker and Firewall

Agent has four steps:

Step1: Firewall Agent sends a new rule to Policy Anomaly Checker which will

 be added to its policy.

Step2: Policy Anomaly Checker receives the rule, checks the relation with other

 rules and sends the anomaly result to Firewall Agent.

Step3: If there is no anomaly determined, Firewall Agent adds the new rule to

 its policy and sends the modified policy to the Policy Anomaly Checker.

Step4: Firewall Agent displays a warning message.

 Communication protocol between Policy Anomaly Checker and Firewall Agent

as follows;

Step1: Firewall Agent sends bor (begin of rule) message.

Step2: Firewall Agent sends the new Rule.

Step3: Firewall Agent sends eor (end of rule) message.

Step4: Policy Anomaly Checker sends a string compiled of anomaly result. If

 there is no anomaly sends ok message.

Step5: Firewall Agent sends bof (begin of file) message.

Step6: Firewall Agent sends policy file.

Step7: Firewall Agent sends eof (end of file) message.

40

The test scenario is same with the number of firewalls in one path scenario

which is illustrated in Figure 4.2.

In order to reach Policy Anomaly Checker

from fw2; fw1 must be passed through,

from fw3; fw2 and fw1 must be passed through,

from fw4; fw3, fw2 and fw1 must be passed through,

from fw5; all firewalls on path must be passed through.

First, a new rule is sent by Firewall Agent from the fw1 to Policy Anomaly

Checker. When new rule is received, it is added to its policy which is defined in Policy

Anomaly Checker and inter-firewall anomaly discovery algorithm is executed with this

new policy. At the end of the algorithm anomaly results is sent back to Firewall Agent.

This test is repeated for each firewall on the path. Total response time and inter-firewall

anomaly discovery algorithm process time is measured for each firewall. Total response

time is measured by the Firewall Agent, inter-firewall anomaly discovery algorithm

process time is measured by the Policy Anomaly Checker and latency time is measured

using (total response time - discovery algorithm process time) formula. The results are

shown in Figure 4.5 and Figure 4.6.

0,175
0,174

0,171
0,170

0,166

0,172

0,1700,170

0,165

0,172

0,15

0,16

0,17

0,18

0,19

0,20

1 2 3 4 5

Number of firewalls on path

(S
e
c
o
n
d
)

Total Response Time

Latency

Figure 4.5. Experiment for Inter-firewall Anomaly Discovery Algorithm Using One
 Path Only (Total Response Time and Latency Values)

41

0,0004

0,0008

0,0013

0,0030

0,0017

0

0,001

0,002

0,003

0,004

0,005

1 2 3 4 5

Number of firewalls on path

(S
e
c
o
n
d
)

discovery algorithm

process time

Figure 4.6 Experiment for Inter-firewall Anomaly Discovery Algorithm Using One
 Path Only (Discovery Algorithm Process Time)

These results indicate that inter-firewall anomaly discovery algorithm process

time is very close to process time which is aforementioned in Chapter 3 for inter-

firewall anomaly discovery algorithm process and it depends on the total number of

rules in all firewalls.

42

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis anomaly discovery algorithms for single and distributed

environments are implemented in a software tool called “Policy Anomaly Checker”.

Besides its anomaly discovery functionality, anomaly free rule set generation

functionality is added to this tool.

 Correct operation of the firewall is dependent on the filtering rules and their

order. If the same packet matches more than one filtering rule in a policy, an intra-

firewall anomaly may exist. If any two firewalls on a network path take different

filtering actions, an inter-firewall anomaly may exist. All rule relation must be

considered in order to determine correct rule order.

Mathematical background and related algorithms are available in literature.

Although it is implied in (Al-Shaer and Hamed 2004) that an implementation exists and

some experimental results are given, implementation details are not explained. So

Policy Anomaly Checker is implemented using object oriented techniques in Java. Test

cases are created.

Policy Anomaly Checker now only checks anomalies for intra and inter-

firewall environments. Rule addition and rule removal functionality can be added for

policy management. Other algorithms (Cuppens, et al. 2005) can be implemented and

Intra and inter-firewall anomaly algorithms can be compared with other algorithms.

Policy Anomaly Checker can be used in campus environment in order to determine its

usability.

43

REFERENCES

Al-Shaer, E.S. and H.H. Hamed. 2002. Design and Implementation of Firewall Policy

Advisor Tools. DePaul CTI Technical Report CTI-TR-02-006

Al-Shaer, E.S. and H.H. Hamed. 2004. Discovery of Policy Anomalies in Distributed

Firewalls. In Proceedings of the 23rd Annual Joint Conference of the IEEE

Computer and Communications Societies, Hong Kong, China.

Al-Shaer, E.S., Hamed, H.H., Boutaba, R. and H. Masum. 2005. Conflict Classification

and Analysis of Distributed Firewall Policies. IEEE Journal on Selected Areas in

Communications 23(10): 2069-2084.

Bellovin, S. M. 1999. Distributed Firewalls. Login; special issue on security.

Chapman, Brent and Elizabeth Zwicky, eds. 1995. Building Internet Firewalls.

Cambridge: Orielly & Associates Inc.

Cooper, James W. 2000. Java™ Design Patterns: A Tutorial. Boston: Addison

Wesley.

Cuppens, F., Cuppens-Boulahia, N. and J. Garc´ıa-Alfaro. 2005. Detection and

Removal of Firewall Misconfiguration. In Proceedings of the International

Conference on Communication, Network and Information Security, Phoenix, USA

Grant, J., Attfield, P. and K. Armstrong. 2001. Distributed Firewall Technology.

EWA,CANADA

Ioannidis, S., Keromytis, A.D., Bellovin, S.M. and J.M. Smith. 2000. Implementing a

Distributed Firewall. In Proceedings of the ACM Conference on Computer and

Communication Security, Athens, Greece.

Wack, J., Cutler, K. and J. Pole. 2002. Guidelines on Firewalls and Firewall Policy.

NIST Special Publication 800-41

44

APPENDIX A

DEFINITIONS OF RELATIONS BETWEEN RULES

ℜ is the universal set of rule relation and ℜ= {RCD,RPD,REM,RIM,RC}

Definition 1: Rules Rx and Ry are exactly matched if every field in Rx is equal

to the corresponding field in Ry. Formally:

Rx ℜEM Ry iff

∀ i: Rx[i] = Ry[i]

where i ∈ {protocol, src_ip, src_port, dst_ip, dst_port} (Al-Shaer and Hamed

2002).

Definition 2: Rules Rx and Ry are inclusively matched if they do not exactly

match and if every field in Rx is a subset or equal to the corresponding field in Ry.

Formally:

Rx ℜIM Ry iff

∀ i : Rx[i] ⊆ Ry[i] and ∃ j such that: Rx[j] ≠ Ry[j]

where i, j ∈ {protocol, src_ip, src_port, dst_ip, dst_port}

In this relation, Rx is called the subset match while Ry is called the superset

match (Al-Shaer and Hamed 2002).

Definition 3: Rules Rx and Ry are completely disjoint if every field in Rx is not

a subset and not a superset and not equal to the corresponding field in Ry. Formally:

Rx ℜCD Ry iff

∀ i : Rx[i] �/� Ry[i]

where �� ∈ {⊃,⊂, =}, i ∈{protocol, src_ip, src_port, dst_ip, dst_port} (Al-

Shaer and Hamed 2002).

45

Definition 4: Rules Rx and Ry are partially disjoint (or partially matched) if

there is at least one field in Rx that is a subset or a superset or equal to the

corresponding field in Ry, and there is at least one field in Rx that is not a subset and not

a superset and not equal to the corresponding field in Ry. Formally:

Rx ℜPD Ry iff

∃ i,j such that : Rx[i] �� Ry[i] and Rx[j] �/� Ry[j]

where �� ∈ {⊃,⊂, =}and i,j ∈ {protocol, src_ip, src_port, dst_ip, dst_port}

(Al-Shaer and Hamed 2002).

Definition 5: Rules Rx and Ry are correlated if some fields in Rx that are subset

or equal to the corresponding field in Ry, and the rest of fields in Rx are supersets of the

corresponding fields in Ry. Formally:

Rx ℜC Ry iff

∀ i : Rx[i] �� Ry[i] and

∃ i,j such that : Rx[i] ⊂ Ry[i] and : Rx[j] ⊃ Ry[j]

where �� ∈ {⊃,⊂,=}and i,j ∈{protocol, src_ip, src_port, dst_ip, dst_port}

 (Al-Shaer and Hamed 2002).

46

APPENDIX B

ANOMALY TYPES

Intra-Firewall Anomaly Types:

Shadowing anomaly: Formally rule Ry is shadowed by rule Rx if one of the

following conditions holds:

Rx [order]<Ry [order], Rx ℜEM Ry, Rx [action] ≠ Ry [action] (1)

Rx[order]<Ry [order], Ry ℜIM Rx, Rx [action] ≠ Ry [action] (2) (Al-Shaer, et al.

2005)

Correlation anomaly: Formally rule Rx and rule Ry have correlation anomaly

the following condition holds:

Rx ℜC Ry, Rx [action] ≠ Ry [action] (3) (Al-Shaer, et al. 2005)

Generalization anomaly: Formally rule Ry is generalization of rule Rx if the

following condition holds:

Rx [order] < Ry [order], Rx ℜIM Ry, Rx [action] ≠ Ry [action] (4) (Al-Shaer, et

al. 2005)

Redundancy anomaly: Formally rule Ry is redundant to rule Rx if one of the

following conditions holds:

Rx [order] < Ry [order], Rx ℜEM Ry, Rx [action] = Ry [action] (5)

Rx [order] < Ry [order], Ry ℜIM Rx, Rx [action] = Ry [action] (6) (Al-Shaer, et

al. 2005)

47

Inter-Firewall Anomaly Types:

Shadowing anomaly: Formally rule Rd is shadowed by rule Ru if one of the

following conditions holds:

Rd ℜEM Ru, Ru [action] = deny, Rd [action] = accept (1)

Rd ℜIM Ru, Ru [action] = deny, Rd [action] = accept (2)

Ru ℜIM Rd, Ru [action] = deny, Rd [action] = accept (3)

Ru ℜIM Rd, Ru [action] = accept, Rd [action] = accept (4) (Al-Shaer, et al. 2005)

Spuriousness anomaly: Formally rule Ru allows spurious traffic to rule Rd if

one of the following conditions holds:

Ru ℜEM Rd, Ru [action] = accept, Rd [action] = deny (5)

Ru ℜIM Rd, Ru [action] = accept, Rd [action] = deny (6)

Rd ℜIM Ru, Ru [action] = accept, Rd [action] = deny (7)

Rd ℜIM Ru, Ru [action] = accept, Rd [action] = accept (8)

Ru ℜIM Rd, Ru [action] = deny, Rd [action] deny (9) (Al-Shaer, et al. 2005)

Redundancy anomaly: Formally rule Rd is redundant to rule Ru if one of the

following conditions holds:

Rd ℜEM Ru, Ru [action] = deny, Rd [action] = deny (10)

Rd ℜIM Ru, Ru [action] = deny, Rd [action] = deny (11) (Al-Shaer, et al. 2005)

Correlation anomaly: as a result of having two correlated rules in upstream

and downstream firewall a correlation anomaly occurs. Formally, the correlation

anomaly for rules Ru and Rd occurs if one of the following conditions holds:

Ru ℜC Rd, Ru [action] = accept, Rd [action] = accept (12)

Ru ℜC Rd, Ru [action] = deny, Rd [action] = deny (13)

Ru ℜC Rd, Ru [action] = accept, Rd [action] = deny (14)

Ru ℜC Rd, Ru [action] = deny, Rd [action] = accept (15) (Al-Shaer, et al. 2005)

48

APPENDIX C

USER INTERFACES OF POLICY ANOMALY CHECKER

Figure C.1. User Interface of the Policy Anomaly Checker

49

Figure C.2. User Interface of the Policy Anomaly Checker with Anomaly Detection
 Menu

Figure C.3. User Interface of the Policy Anomaly Checker with Topology Menu

50

Figure C.4. Anomaly Result Form

Figure C.5. Rule Generation Menu

51

APPENDIX D

FIREWALL CONFIGURATIONS

The firewalls are configured via iptables. Route definitions of fw1 to fw5 as

follows.

fw1 route tables:

route –n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
10.2.0.34 10.2.0.33 255.255.255.255 UGH 0 0 0 eth1
10.2.0.35 10.2.0.33 255.255.255.255 UGH 0 0 0 eth1
10.2.0.36 10.2.0.33 255.255.255.255 UGH 0 0 0 eth1
10.2.0.37 10.2.0.33 255.255.255.255 UGH 0 0 0 eth1
10.2.0.0 10.2.0.1 255.255.255.0 UG 0 0 0 eth1
10.2.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
10.1.0.0 10.1.0.1 255.255.255.0 UG 0 0 0 eth2
10.1.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth2
0.0.0.0 192.168.1.3 0.0.0.0 UG 0 0 0 eth0

Fw2 route tables:

route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
10.2.0.35 10.2.0.34 255.255.255.0 UGH 0 0 0 eth0

10.2.0.36 10.2.0.34 255.255.255.0 UGH 0 0 0 eth0

10.2.0.37 10.2.0.34 255.255.255.0 UGH 0 0 0 eth0

10.2.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

0.0.0.0 10.2.0.33 0.0.0.0 UG 0 0 0 eth0

52

fw3 route tables:
route -n

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
10.2.0.36 10.2.0.35 255.255.255.0 UGH 0 0 0 eth0

10.2.0.37 10.2.0.35 255.255.255.0 UGH 0 0 0 eth0

10.2.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

0.0.0.0 10.2.0.33 0.0.0.0 UG 0 0 0 eth0

By these route definitions, any package that is sent from client to the anomaly

checker will follow the firewalls from bottom to the fw1.

Fw4 route tables:

route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
10.2.0.37 10.2.0.36 255.255.255.0 UGH 0 0 0 eth0

10.2.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

0.0.0.0 10.2.0.34 0.0.0.0 UG 0 0 0 eth0

