
 

 

 

DETERMINATION OF EFFECTIVE 

PARAMETERS FOR DRYING OF APPLES 

 

 

 

 

 

 

 

 
A Thesis Submitted to 

the Graduate School of Engineering and Sciences of 

İzmir Institute of Technology 

In Partial Fulfillment of the Requirements for the Degree of 

 

MASTER OF SCIENCE 

 

in Energy Engineering 

 

 

 

 

by 

Tarık DİKBASAN 

 

 

 

 

 

 

 

December 2007 

İZMİR 



We approve the thesis of Tarık DİKBASAN 

 

 

____________________________                                                             

Assoc.Prof.Dr. Gülden GÖKÇEN AKKURT 

Supervisor 

 

 

_____________________________                                                             

Prof.Dr. Sacide ALSOY ALTINKAYA 

Co-Supervisor 

 

 

_____________________________ 

Prof.Dr. Necdet ÖZBALTA 

Committee Member 

 

 

_____________________________ 

Prof.Dr. Ahmet YEMENİCİOĞLU 

Committee Member 

 

 

_____________________________ 

Asst.Prof.Dr. Sevgi KILIÇ ÖZDEMİR 

Committee Member 

 

 

26 December 2007 

           Date 

 

 

 

 

_________________________                                            _______________________ 

Asst.Prof.Dr. Ünver ÖZKOL                                                Prof.Dr. Hasan BÖKE 

Head of the Energy Engineering Program                        Dean of the Graduate School of 

                                                                                                Engineering and Science 



ACKNOWLEDGEMENTS 

 

 

I would like to express my sincere gratitude to my supervisor Assoc.Prof.Dr. 

Gülden Gökçen Akkurt and co-supervisor Prof.Dr. Sacide Alsoy Altınkaya for their 

support and guidance. I also wish to thank to Prof.Dr. Necdet Özbalta, Prof. Dr. Ahmet 

Yemenicioğlu and Assist.Prof.Dr. Sevgi Kılıç Özdemir for their valuable suggestions 

and comments which helped to improve the Thesis. 

I express my special thanks to Assoc.Prof.Dr. Metin Tanoğlu and Assist.Prof.Dr. 

Figen Korel for giving me the opportunity to use their laboratory equipment. 

I am grateful to the Scientific Research Fund of IYTE for substantial support in 

realizing this study. 

Special thanks to my colleagues for their friendship and support during my hard 

times. 

Finally I would like to thank to my family for their excellent support and try to 

keep me high-spirited throughout the MSc. Programme.  



 iv 

ABSTRACT 

 

DETERMINATION OF EFFECTIVE PARAMETERS FOR DRYING OF 

APPLES 

 

Drying is one of the oldest methods for the preservation of agricultural products 

such as fruits and vegetables. Apple has a significant share in fruit production both in 

the World and in Turkey. It is also an important raw material for many food products. 

Temperature, velocity and relative humidity of drying air are important 

parameters for hot air drying process. To determine the drying kinetic of agricultural 

products, drying and drying rate curves should be plotted.  

Experiments are conducted in a tunnel dryer using cubic shaped (10x10x10mm) 

red delicious (Malus Domestica) apple for various drying air temperature (40.1-65.3
o
C), 

velocity (1.1, 1.4, 1.9, 2.3 and 2.5 m/s) and relative humidity (4.6-20.5%) values. The 

temperature and relative humidity are measured and recorded every 1 min. at fan inlet, 

upstream and downstream of the tray, the velocity is measured only at the tunnel exit. 

The measured data is used to obtain drying and drying rate curves. The curves indicate 

that drying process takes place in the falling rate period except very short unsteady-state 

initial and constant rate periods. Thus, effective diffusion coefficients are calculated 

using the data collected during the falling rate period and the experimental data are 

fitted to fourteen thin layer drying models which are found in the literature. Rehydration 

time and colour are used as parameters for the dried apple quality. 

The effective diffusion coefficients are obtained within the range of 0.486x10
-9

 -

5.63x10
-9

 m
2
/s Regarding with drying time, rehydration time and colour data, the best 

results are obtained at 2.5 m/s velocity, 20.5% relative humidity and a temperature 

range of 53.5-65.3
o
C under experimental conditions. Midilli and Kucuk model is the 

best fitted model with a minimum R
2
 of 0.9991 and a maximum RMSE of 0.0087976. 
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ÖZET 

 

ELMA KURUTMADA ETKİN PARAMETRELERİN BELİRLENMESİ 

 

Kurutma, meyva ve sebzelerin saklanmasında kullanılan en eski yöntemlerden 

biridir. Hem çiğ olarak tüketilen hem de birçok gıda ürününde hammadde olarak 

kullanılan elma, Dünya ve Türkiye‟nin meyva üretiminde önemli bir paya sahiptir. 

Konvansiyonel sıcak hava ile kurutma işlemlerinde; kurutma havası sıcaklığı, 

hızı ve bağıl nemi en önemli parametreler arasındadır. Tarımsal ürünlerin kurutma 

kinetiğinin belirlenmesi için kurutma ve kurutma hızı eğrilerinin elde edilmesi 

gerekmektedir. 

Bu çalışmada; tasarlanan tünel kurutucuda küp şeklinde kesilmiş kırmızı elma 

(Malus Domestica)  kullanılarak, çeşitli sıcaklık (40.1-65.3
o
C), hava hızı (1.1, 1.4, 1.9, 

2.3, 2.5 m/s) ve bağıl nem değerlerinde (%4.6-20.5) kurutma deneyleri 

gerçekleştirilmiştir. Sıcaklık ve bağıl nem değerleri; fan girişi, tepsi öncesi ve 

sonrasında birer dakika aralıklarla ölçülmüştür. Hava hızı ise sadece tünel kurutucunun 

çıkışında ölçülmüştür. Elde edilen veriler kurutma ve kurutma hızı eğrilerinin 

çizilmesinde kullanılmıştır. Eğriler,  kurutmanın çoğunlukla azalan kuruma hızı (falling 

rate) bölgesinde gerçekleştiğini göstermektedir. Difüzyon kontrollü olan bu bölge için 

efektif difüzyon katsayıları, Fick difüzyon denklemi kullanılarak hesaplanmıştır. 

Deneysel veriler literatürdeki 14 farklı kurutma modeline uygulanmıştır. Kurutulmuş 

elmanın kalitesini belirlemek için rehidrasyon süresi ve renk parametreleri 

belirlenmiştir. 

Efektif difüzyon katsayıları 0.486x10
-9

 ile 5.63x10
-9

 m
2
/s aralığında 

bulunmuştur. Kurutma hızı, rehidrasyon süresi ve renk verileri göz önünde 

bulundurularak, kurutmanın en iyi 53.5-65.3
o
C sıcaklık aralığı ile 2.5 m/s hava hızı ve 

%20.5 bağıl nemde gerçekleştiği belirlenmiştir. Midilli ve Küçük Modeli deneysel 

verilere en iyi uyum sağlayan model olup korelasyon katsayısı 0.9991 ve kök ortalama 

kare hatası 0.0087976 olarak bulunmuştur. 
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CHAPTER 1  

 

INTRODUCTION 

 

 

 Drying involves the application of heat to vaporize the volatile substances 

(moisture) and some means of removing water vapor after its separation from the solid 

(Jayamaran and Gupta 2006). The drying process is a heat and mass transfer 

phenomenon where water migrates from the interior of the drying product on to the 

surface from which it evaporates. Heat is transferred from the surrounding air to the 

surface of the product. A part of this heat is transferred to the interior of the product, 

causing a rise in temperature and formation of water vapor, and the remaining amount is 

utilized in evaporation of the moisture from the surface (El-Ghetany 2006).  

Drying is one of the oldest methods known for the preservation of agricultural 

products such as fruits and vegetables. Drying of agricultural products enhances their 

storage life, minimizes losses during storage, and save shipping and transportation costs 

(Doymaz 2005).  

  The main objectives of drying are summarized as follows (Sokhansanj and 

Jayas 2006); 

 A dry food product is less susceptible to spoilage caused by the growth of 

bacteria, molds, and insects. The activity of many microorganisms and 

insects is inhibited in an environment in which the equilibrium relative 

humidity is below 70%. Likewise, the risk of unfavorable oxidative and 

enzymatic reactions that shorten the shelf life of food is reduced. 

 Many favorable qualities and nutritional values of food may be enhanced by 

drying. Palatability is improved, and likewise digestibility and metabolic 

conversions are increased. Drying also changes color, flavor, and often the 

appearance of a food item. The acceptance to that change varies by the end 

user. 

 Packaging, handling and transportation of a dry product are easier and 

cheaper because the weight and volume of a product are less in its dried 
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form. A dry product flows easier than a wet product; thus gravity forces can 

be utilized for loading and unloading and short-distance hauling. 

 Food products are dried for improved milling, mixing or segregation. A dry 

product takes far less energy than a wet product to be milled. A dry product 

mixes with other materials uniformly and is less sticky compared with a wet 

product. 

 Drying has also been used as a means of food sanitation. Insects and other 

microorganisms are destroyed during the application of heat and moisture 

diffusion. 

 

Fruits and vegetables play an important role in human nutrition. Apart from 

providing flavor and variety to human diet, they serve as important sources of vitamins 

and minerals. The celluloses, hemicelluloses, pectic substances and lignin characteristic 

of plant products together form dietary fiber, the value of which in human diet is 

increasingly realized in recent years. 

Most fruits and vegetables contain more than 80% water and therefore highly 

perishable. Water loss and decay account for most of their losses, which are estimated 

to be more than 30% in the developing countries due to inadequate handling, 

transportation and storage (Jayaraman and Gupta 2006, Kaya, et al. 2007). Apart from 

these losses, serious losses do occur in the availability of essential nutrients, vitamins 

and minerals.     

 World production of fruit and vegetables are increasing substantially as a result 

of demand and developments in agricultural technologies.   

 World fruit production was reported to be 484 million metric tons annually 

between the years of 2001-2004. Figure 1.1 exhibits the World fruit production 

breakdown for the year of 2004. Banana, grape, orange and apple were the most widely 

grown fruits with a total share of approximately 51%. The leading fruit producers of the 

World are China, India, Brazil, Italy, Spain, Mexico, Indonesia, Iran, Philippines, 

France and Turkey. 

 Turkey‟s fruit production reached to 10.9 million tons in the year of 2004. 

During the 2001-2004 periods, grape is the most widely grown fruit with approximately 

32% share in total production as given in Figure 1.2. Apple occupies second position 

with approximately 22%. (Gül and Akpınar 2006, FAO 2007). 
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Figure 1.1. World Fruit Production in 2004 

 

 

 

 
Figure 1.2. Turkey‟s Fruit Production between 2001-2004 

 

 

As it can be seen from the Figures 1.1 and 1.2, apple has a significant share in 

fruit production both in the World and in Turkey. Apple is also an important raw 

material for many food products. Defining the optimal preservation and storage 

11.96% Apple

14.2% Banana

12.93% Grape
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conditions for fresh apple is beneficial since unsuitable preservation and storage 

methods cause losses of fruits and vegetables that range from 10% to 30% (Kaya, et al. 

2007). 

 The main objective of this study is to determine effective drying parameters for 

apples in a tunnel dryer and examine the effects of these parameters on the drying 

kinetics. Drying parameters and models derived using these parameters are very useful 

for the design and optimization of industrial dryers.  

 

 In Chapter 2, a literature survey comprising the previous studies on the drying 

kinetics of apple is given. 

 Chapter 3, describes the principles and mechanisms of drying process. 

Furthermore dryers and drying methods are summarized. 

 In Chapter 4, experimental unit and procedure of experiments are given. 

 In Chapter 5, the experimental results are presented. Experimental data is fitted 

to some models available in the literature and diffusion coefficients are obtained for 

each experimental condition.   

 Finally, the conclusions are stated in Chapter 6. 
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CHAPTER 2  

 

LITERATURE SURVEY 

 

 

 Literature survey is classified into three groups with respect to drying processes; 

atmospheric dehydration, sub-atmospheric dehydration and sun and solar drying.  

The most widely studied process is atmospheric dehydration process which is 

used in many experimental studies. 

Akpınar and Biçer (2003) investigated the single layer drying behavior of apple 

slices in a convective type cyclone dryer and performed the mathematical modeling by 

using single layer drying models. The experiments were conducted at drying air 

temperatures of 60, 70 and 80
o
C and drying air velocities of 1 and 1.5 m/s. The 

mathematical model describing the single layer drying curves was determined by 

nonlinear regression analysis. Considering the parameters such as drying time, drying 

rate, moisture transfer and velocity and drying air temperature it is suggested that the 

apple slices be dried at the above optimum processing conditions. The Logarithmic 

model could adequately describe the single layer drying behavior of apple samples, 

when the effect of the drying air, velocity and sample area on the constant and 

coefficients of the logarithmic model were examined. The moisture transfer from the 

apple slices occurring during the falling rate period of drying was characterized by 

determining the diffusion coefficient into the air experimentally. 

Andrés et al. (2003) dried apple cylinders in a combined hot air-microwave 

system. Drying experiments were carried out at various temperatures combined with 

different levels of microwave incident power until 0.11 dry basis (d-b) moisture content 

was observed. Vacuum impregnation with isotonic solution was used as a pretreatment 

before drying. Microstructural changes were investigated on the drying kinetics. An 

empirical model was proposed to estimate the drying kinetic constants as a function of 

the air temperature and the microwave power level for both sorts of samples, fresh 

apples and impregnated apples. As a result of the study, microwave power effect was 

higher than air temperature, decreasing significantly the drying time. The higher density 
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and lower porosity of vacuum impregnated samples implied slower kinetics and higher 

volume reduction. 

Mandala et al. (2004) investigated the influence of different osmotic pre-

treatments on apple air drying kinetics and their physical characteristics during drying. 

Apple samples were immersed in glucose or sucrose solution of 30%, 45% (w/w) at 

different times. Sugar gain and water loss were calculated. Samples were further air-

dried and the experimental data were fitted successfully using the Page model. Porosity, 

compressive fracture stress and colour were measured. Samples osmosed in high sugar 

concentration had better physical characteristics than those treated at lower 

concentration. Among them, osmosed samples in glucose had even better characteristics 

and additionally had a higher drying rate. The only disadvantage of these samples was 

the firmness increase during drying. 

Velic et al. (2004) investigated airflow velocity influence on the kinetics of 

convection drying of apples, heat transfer and average effective diffusion coefficients. 

Drying was conducted in a convection tray drier at drying temperature of 60
o
C using 

regtangle-shaped (20x20x5mm) apple samples. Rehydration ratio was used as a 

parameter for the dried sample quality. Kinetic equations were estimated by using an 

exponential mathematical model. The result of calculations corresponded well with 

experimental data. Two well-defined falling rate periods and a very short constant rate 

period at lower air velocities was observed. With an increase of airflow velocity an 

increase of heat transfer coefficient and effective diffusion coefficient was found. 

During rehydration, about 72% of water removed by the drying process was returned. 

Schultz et al. (2005) studied the effects of different pre-treatments on convective 

drying of apple slices and compared to drying without pre-treatments. An impregnation 

with starch, an HTST (High Temperature Short Time) process, and a combination of the 

two were used. When HTST applied, air drying at mild temperature was used to finish 

the drying process. The apparent density was also investigated and showed lower values 

for several conditions applied. ANOVA indicated which factors are significant to the 

observed decrease in apparent density. The Duncan test highlights experimental 

situations where these variables have an influence. Apparent density is almost constant 

as dimensionless moisture content diminishes, but it decreases when values are below 

around 0.2. Volume variations showed a linear behavior with the moisture content 

changes at the studied conditions. 
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Srikiatden and Roberts (2005) determined effective moisture diffusivity of apple 

during convective hot air drying and isothermal drying and compared moisture loss 

predicted from the diffusion and first-order kinetic models to experimental data. The 

prediction of moisture loss obtained from Fick‟s diffusion model failed to follow 

experimental drying curves. Temperature profiles during convective hot air drying 

showed temperature gradients. This lack of isothermal conditions may lead to 

inaccurate prediction of moisture loss. Therefore, a combined microwave-convection 

hot air apparatus, capable of providing isothermal drying conditions, was used to 

quantify the drying kinetics. Using effective diffusivities obtained under isothermal 

conditions, the Fickian model still did not predict during drying, it was hypothesized 

that drying of a hygroscopic porous materials is limited by evaporation of water to 

water vapor. Therefore, an irreversible first-order kinetic model was proposed to predict 

isothermal drying of apple. Using the rate constant calculated from the slope of the 

normalized drying curves, the model predicted accurate moisture loss at each 

temperature throughout the entire moisture range. 

Bialobrzewski (2006) determined the influence of drying shrinkage on the 

kinetics of convection apple slab drying. The arbitrary Lagrange-Eulerian (ALE) 

method was used to enter a problem with moving boundaries. It was found that drying 

shrinkage had a major influence on the both simulated temperature and water content in 

the material. The lower moisture content in particles during drying, the more 

pronounced the effect of shrinkage on simulation of heat and mass transfer. 

Stawczyk et al. (2006) investigated the effect of Atmospheric Freeze-Drying 

kinetics on the quality of apple cubes. The experimental data are compared with the 

result of convective and vacuum freeze-drying processes, and suitable operating 

parameters are determined. The experiments were carried out in an internet controlled, 

fully automated heat pump assisted drying system. The atmospheric freeze-drying 

process of apple dewatering run at temperature around -10
o
C leads to a highly porous 

product structure. The same process performed at temperatures around 0
o
C results in 

deterioration of product quality. The quality evaluation of apple cubes shows that dried 

products of atmospheric freeze-drying at lower temperature have similar characteristic 

of rehydration kinetics and hygroscopic properties to the product obtained from vacuum 

freeze-drying. The atmospheric freeze-drying product results have a statistically higher 

value of antioxidant activity and polyphenol content compared with convective drying 

result. The optimum drying trajectories for apple cubes were found for the ascending 
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temperature drying mode, where a middle melting region and constant drying rate 

occur. 

Kaya et al. (2007) investigated drying kinetics of apple slice experimentally for 

varying values of the drying air parameters including temperature, velocity and relative 

humidity. Experiments were conducted using air temperatures at 35, 45 and 55
o
C, 

velocities at 0.2, 0.4 and 0.6m/s and relative humidity values at 40%, 55% and 70%. 

The experimental moisture data were fitted to Henderson and Pabis model, the Newton 

model and the term exponential models. The values of the moisture diffusivity Deff were 

obtained from Fick‟s diffusion model. The objectives of the study was to examine the 

influence of the relative humidity as well as the effects of temperature and the velocity 

of the drying air on the drying kinetics of the red delicious apple.  A static gravimetric 

method was used to determine the sorption isotherms of apple slice at 35, 45, and 55
o
C. 

As a result of the experiment following conclusion were a constant relative humidity, 

equilibrium moisture content decreases with increasing temperature. At a constant 

temperature, equilibrium moisture content increases with increasing equilibrium relative 

humidity. Increasing the temperature or velocity of the drying air decreases the total 

drying time, while decreasing the relative humidity decreases it. An increase either in 

velocity or temperature or decrease in relative humidity, increases effective diffusivity 

coefficient. 

Wang et al. (2007a) evaluated the hot air convective drying characteristics of 

thin layer apple pomace in a laboratory scale dryer. The drying experiments were 

carried out at different air temperatures. Different mathematical models were tested with 

the drying behavior of apple pomace in the dryer. The results indicated that the 

Logarithmic model can present better predictions for the moisture transfer than others. 

The drying time of apple pomace decreases and the effective diffusivity increases as the 

drying temperature increases. The whole drying process of apple pomace took place in a 

falling rate period. 

Wang et al. (2007b) evaluated characteristics of thin layer microwave drying of 

apple pomace with and without hot air pre-drying in a laboratory scale microwave 

dryer. The drying experiments were carried out at 150, 300, 450 and 600 W, and the hot 

air pre-drying was performed at 105
o
C. Ten commonly used mathematical models were 

evaluated with the experimental data. The results indicated that the Page model was 

most adequate in predicting moisture transfer for fresh and pre-dried apple pomace; the 
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drying time of apple pomace decreases and the effective diffusivity increases as the 

microwave output power increases. 

 There are few experimental studies in the literature on determining the drying 

characteristics of apple under subatmospheric dehydration process. 

Mavroudis et al. (1998) studied the significance of the initial structure on mass 

transfer rates of two apple varieties, Kim (Sweden) and Granny Smith (Argentina) when 

subjected to osmotic dehydration. Results verified the importance of the initial structure 

for osmotic processing responses. Shrinkage properties such as volume changes, bulk 

density, particle density and porosity, have been studied macroscopically for both 

structures, inner (close to core) and outer (close to skin) and presented as a function of 

water content in a manner similar to air drying practice. A comparison with shrinkage 

properties observed in air drying is attempted. A strong linear relationship between 

volume changes and water removal was found in osmotic dehydration, similar to 

findings in air drying. The bulk density depends on the initial structure, variety and 

drying conditions in contrast with reported findings on air drying. The porosity of the 

outer tissue was found to increase with time in contrast with the inner tissue, indicative 

of the more pronounced solution penetration in the inner tissue parenchyma. 

 Falade et al. (2003) evaluated the osmotic pretreatment stage, and sensory 

attributes of osmotically dehydrated oven dried and osmotically dehydrated vacuum 

dried cashew apple products. Matured ripe cashew apples were transversely cut into 

10mm, 15mm and 20mm slices and immersed in sugar solution of 52
o
Brix, 60

o
Brix and 

68
o
Brix, for 10 h. The osmotic temperature was maintained at 27

o
C in a water bath. 

Osmosed samples were subsequently dried in either an air oven (50
o
C) or a vacuum 

drier (50
o
C) both for 6 h. The instantaneous moisture content of cashew apples 

decreased with increasing immersion time and osmotic solution concentration, but also 

increased with increasing slice thickness. The water loss, solid gain and percentage 

weight reduction increased with increasing osmotic solution concentration and 

immersion time, but decreased with increasing slice thickness. Sample pre-osmosed in 

60
o
Brix and 68

o
Brix solutions were significantly better than pre-osmosed in a 51

o
Brix 

solution. A significant difference between the osmo-oven and osmo-vacuum dried 

cashew apples could not be ascertained. 

Tortoe et al. (2007) studied the kinetics involved in osmotic dehydration of 

apple, banana and potato. Osmotic dehydration rate constant were established for the 

rate constant k1, k2 and k3 for the first, second and third falling rate periods of osmotic 
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dehydration of Golden delicious, Cox, banana and potato by the method of slopes from 

the rate of water loss curves of the various materials. The rate constants k1, k2 and k3 

were identified in Golden Delicious and Cox and k1 and k2 were identified in banana 

and potato. The Arrhenius equation was applied to evaluate the reaction rate (k) and its 

temperature dependence. The coefficient of determination (R
2
) for the rate constant k3 

for Golden Delicious in 60% sucrose solution was 0.99. Similar values of R
2
 were 

obtained for Cox, banana and potato. The rate constant k1 of the plant materials 

produced the highest activation energies and good coefficient of determination was 

recorded for the rate constant. 

 Dehydration of apple with sun and solar drying is rarely used. 

Eliçin and Salçılık (2005) carried out the thin layer solar drying experiment 

under the conditions of Ankara, Turkey. During the experiments, apples were dried to 

the final moisture content of 11% from 82% w.b. in 1.5 days (28h) of drying in the solar 

tunnel dryer as compared to 2 days (32h) of drying in the open sun drying. The 

experimental data were used to fit the Page, logarithmic and Wang and Singh models 

and constant of drying models tested were determined by non-linear regression analysis. 

Among the various models tested to represent the solar tunnel drying behavior of 

organic apple, one was selected which presented best statistical indicators. Depending 

on the weather conditions, solar tunnel dryer resulted in a reduction in the drying time 

to an extent of 14.28% in comparison to open sun drying. 

 Most of the above studies examined the influence of temperature, velocity, 

moisture of the drying air, shrinkage and pre-treatments on the drying kinetics.  Only 

one of the studies included the effect of the temperature, velocity and moisture of the 

drying air at the same study. On that study (Kaya, et al. 2007), moisture content is 

ranging between 40% and 70%. The objective of the thesis is to examine the effect of 

temperature, velocity and moisture of the drying air on the drying kinetic of the red 

delicious (Malus Domestica) apples. Influence of velocity is studied on wider range and 

lower values of relative humidity are studied compared to above studies. 
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CHAPTER 3  

 

DRYING 

 

 

3.1 General Principles 

 

Drying can be described as the process of thermally removing moisture to yield 

a solid product. Moisture can be found as bound or unbound in the solid. Moisture, 

which exerts a vapor pressure less than that of pure liquid, is called bound moisture 

while moisture in excess of bound moisture is called unbound moisture. 

When a wet solid is subjected to thermal drying, two processes occur 

simultaneously: 

1. Transfer of energy (mostly as heat) from the surrounding environment to 

evaporate the surface moisture. 

2. Transfer of internal moisture to the surface of the solid and its subsequent 

evaporation due to process 1. 

Energy transfer as heat from the surrounding environment to the wet solid can 

occur as a subsequence of convection, conduction, or radiation and in some case as a 

result of a combination of these effects. In most cases heat is transferred to the surface 

of the wet solid and then to the interior. However, in dielectric, radio frequency (RF), or 

microwave freeze drying, energy is supplied to generate heat internally within the solid 

and flows to the exterior surface. 

Process 1, the removal of water as vapor from the material surface, depends on 

the external conditions of temperature, humidity and velocity of the air, area of exposed 

surface, and pressure. 

Process 2, the movement of moisture internally within the solid is a function of 

the physical nature of the solid, the temperature, and its moisture content. In a drying 

operation, any one of these processes may be the limiting factor governing the rate of 

drying, although they both proceed simultaneously throughout the drying cycle. 
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Drying is a complex operation involving transient transfer of heat and mass 

along with several rate processes, such as physical or chemical transformations which, 

in turn, may cause changes in product quality as well as the mechanisms of heat and 

mass transfer. Physical changes that may occur include shrinkage, puffing, 

crystallization, and glass transitions. In some cases, desirable or undesirable chemical or 

biochemical reactions may occur, leading to changes in color, texture, odor, or other 

properties of the solid product. Drying occurs by affecting vaporization of the liquid by 

supplying heat to the wet feedstock. Heat may be supplied by convection (direct dryers), 

by conduction (contact or indirect dryers), radiation or volumetrically by placing the 

wet material in a microwave or RF electromagnetic field. 

Transport of moisture within the solid may occur by any one or more of the 

following mechanisms of mass transfer: 

 Liquid diffusion, if the wet solid is at a temperature below the boiling point 

of the liquid, 

 Vapor diffusion, if the liquid vaporizes within material, 

 Knudsen diffusion, if drying takes place at very low temperatures and 

pressures, e.g., in freeze drying, 

 Surface diffusion (possible although not proven), 

 Hydrostatic pressure differences, when internal vaporization rates exceed 

the rate of vapor transport through the solid to the surroundings, 

 Combinations of the above mechanisms.  

Since the physical structure of the drying solid is subject to change during 

drying, the mechanisms of moisture transfer may also change with elapsed time of 

drying. 

 

Process 1: External Conditions 

 

The essential external variables are temperature, humidity, velocity and direction 

of air, the physical form of the solid, the desirability of agitation, and the method of 

supporting the solid during the drying operation.  

External drying conditions are especially important during the initial stages of 

drying when unbound surface moisture is removed. In certain cases, for example, in 

materials like ceramics and timber in which considerable shrinkage occurs, excessive 
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surface evaporation after the initial free moisture has been removed sets up high 

moisture gradients from the interior to the surface. This is liable to cause over drying 

and excessive shrinkage and consequently high tension within the material, resulting in 

cracking and warping. In these cases surface evaporation should be retarded through the 

employment of high air relative humidities while maintaining the highest safe rate of 

internal moisture movement by heat transfer.  

Surface evaporation is controlled by the diffusion of vapor from the surface of 

the solid to the surrounding atmosphere through a thin film of air in contact with the 

surface. Since drying involves the inter-phase transfer of mass when a gas is brought in 

contact with a liquid in which it is essentially insoluble, it is necessary to be familiar 

with the equilibrium characteristics of the wet solid. Also, since the mass transfer is 

usually accompanied by the simultaneous transfer of heat, due consideration must be 

given to the enthalpy characteristics. 

 

Process 2: Internal Conditions 

 

As a result of heat transfer to a wet solid, a temperature gradient develops within 

the solid while moisture evaporation occurs from the surface. This produces a migration 

of moisture from within the solid to the surface, which occurs through one or more 

mechanisms, namely, diffusion, capillary flow, internal pressures set up by shrinkage 

during drying, and, in the case of indirect (conduction) dryers, through a repeated and 

progressive occurring vaporization and recondensation of moisture to the exposed 

surface. An appreciation of this internal movement of moisture is important when it is 

the controlling factor, as it occurs after the critical moisture content, in a drying 

operation carried to low final moisture contents. Variables such as air velocity and 

temperature, which normally enhance the rate of surface evaporation, are of decreasing 

importance except to promote the heat transfer rates. Longer residence times, and, 

where permissible, higher temperatures become necessary. The temperature gradient set 

up in the solid will also create a vapor–pressure gradient, which will in turn result in 

moisture vapor diffusion to the surface; this will occur simultaneously with liquid 

moisture movement. 
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3.2 Drying Mechanism 

 

 Moisture in solid may be either unbound or bound. There are two methods of 

removing unbound moisture: evaporation and vaporization. Evaporation occurs when 

the vapor pressure of the moisture on the solid surface is equal to atmospheric pressure. 

This is done by raising the temperature of the moisture to the boiling point. 

The boiling point where evaporation occurs is the temperature which could be 

lowered by lowering the pressure; if the dried material is sensitive to heat. Further, in 

vaporization, convection drives the drying by the mean of the heat transfer from passing 

warm air through the product. While the temperature of warm air decreases, the specific 

humidity increases because of moisture content of the product. 

 Drying behavior of solids can be described by measuring the function of 

moisture content loss versus time. Continuous weighing, humidity difference and 

intermittent weighing are the used methods (Mujumdar 2006). 

 In air drying processes, two drying periods generally occurs as an initial 

constant-rate period and falling rate period. Constant rate drying occurs with 

evaporation of pure water. Moisture movement is controlled by internal resistances in 

the falling rate period.  Moisture content as a function of drying time is shown in Figure 

3.1. At zero time the initial moisture content is shown at point A. If the beginning the 

solid is usually at a colder temperature than its ultimate temperature. Alternatively, if 

the solid is quite hot to start with, the rate may start at point A . Segment AB represents 

the initial unsteady-state, warming-up period. This initial unsteady-state adjustment 

period is usually quite short and it is often ignored in the analysis of times of drying 

(Geankoplis 1993). BC is the constant rate period. The same points are marked in 

Figure 3.2, where the drying rate is plotted against the moisture contents (Rizvi 1995). 

During the constant rate period, the surface of the solid is initially very wet and a 

continuous film of water exists on the drying surface. This water is entirely unbound 

water and the water acts as if the solid were not present. The rate of evaporation under 

the given air conditions is independent of the solid and essentially the same as the rate 

from a free liquid surface (Geankoplis 1993). The transition moisture content at which 

the departure from constant rate drying is first noticed is termed the critical moisture 

content, indicated by point C. At this point there is insufficient water on the surface to 

maintain a continuous film of water. In food systems, where liquid movement is likely 
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to be controlled by capillary and gravity forces, a measurable constant rate period is 

found to exist. With structured foods, liquid movement is by diffusion, and therefore the 

water that is evaporated from the surface is not immediately replenished by movement 

of liquid from the interior of the food. Such foods are likely to dry without exhibiting 

any constant rate period. Hot air drying of apples, tapioca, sugar beet root and avocado 

are such foods without exhibiting any constant rate period (Rizvi 1995, Kaya et al. 

2007, Akpinar and Bicer 2003).Between point C and D is termed the first falling rate 

period. During this period the rate of liquid movement to the surface is less than the rate 

of evaporation from the surface, and the surface becomes continually depleted in liquid 

water. The entire surface is no longer wetted, and the wetted area continually decrease 

in the first falling rate period until the surface is completely dry at point D. Beyond 

point D, the path for transport of both the heat and mass becomes longer and more 

tortuous as the moisture content continues to decrease. This period is called the second 

falling rate period. Finally, the vapor pressure of the solid becomes equal to the partial 

vapor pressure of the drying air and no longer further drying takes place. The limiting 

moisture content at this stage to which a material can be dried under a given drying 

condition is referred to as the equilibrium moisture content (Me) (Rizvi 1995).  

 

3.3 Drying Techniques and Dryers 

 

 Several types of dryers and drying methods, each better suited for a particular 

situation, are commercially used to remove moisture from a wide variety of fruits and 

vegetables. Conventional drying process ranges from natural sun drying to industrial 

drying (Leon et al. 2002). Some of the most common types of drying processes and 

dryers are introduced in the following sections. 
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Figure 3.1 - Drying Curve, Showing Moisture Content as a Function of Drying Time  

(Source: Geankoplis 1993, Rizvi 1995) 

 

 

 
Figure 3.2 - Drying Rate as a Function of Moisture Content  

(Source: Geankoplis 1993, Rizvi 1995) 
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3.3.1 Sun Drying  

 

Sun drying has the advantages of simplicity and the small capital investment. On 

the other hand, there are many technical problems which are uncertainties like rain and 

cloudiness, contamination from outer sources and lack of control over drying 

conditions. It requires large areas and long drying time. The final product may be 

contaminated from dust and insects and suffer from enzyme and microbial activity. It is 

limited to climates with hot sun and dry atmosphere with strong winds. In any case of 

drying, economically feasible drying should be fast. (Jayaraman and Gupta 2006, 

Mujumdar 2006).  

 

3.3.2 Hot Air Drying 

 

 In this method, heated air is brought into contact with the wet material to be 

dried to facilitate heat and mass transfer; convection is mainly involved. Two important 

aspects of mass transfer are the transfer of water to the surface of the material that is 

dried and the removal of water vapor from the surface. 

 The hot air dryers generally used for the drying of piece-form fruits and 

vegetables are cabinet, kiln, tunnel, belt-trough, bin, pneumatic and conveyor dryers. 

Energy source to heat the air would be electricity or a renewable energy resource such 

as solar and geothermal energy. At solar dryers, solar radiation is consumed by air and 

heated air is ducted to the drying chamber.  

 

3.3.2.1 Cabinet Dryer 

 

 A cabinet dryer can be a small batch tray dryer. Heat from the drying medium to 

the product is transferred by convection. The convection current passes over the 

product, not through the product. It is suitable for drying of fruits, vegetables, and meat 

and its product. The main feature of a cabinet dryer is its small size and versatility. The 

main problem with cabinet dryer is difficulty in even distribution of heated air over or 

through the drying material. 
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3.3.2.2 Tunnel Dryer 

 

 The tunnel dryers are of many different configurations in general having 

rectangular drying chambers. Tunnel dryers are basically a group of truck and tray 

dryers widely used due to their flexibility for the large-scale commercial drying of 

various types of fruits and vegetables. Truckloads of the wet material are moved at 

intervals into one end of the tunnel. The whole string of trucks is periodically advanced 

through the tunnel until these are removed at the other end of the tunnel. Air movement, 

circulation, and heating methods vary in tunnel dryers. Three different flow 

arrangements are counter-flow, parallel flow, and combined flow. These dryers are 

simple and versatile in comparison with other types of dryers. Food pieces of any shape 

and size can be handled. If solid trays are incorporated, fluids can also be dried. 

 

3.3.2.3 Belt-Trough Dryers 

 

 Belt-trough dryers are agitated bed, through flow dryers used for the drying of 

cut vegetables of small dimensions. They consist of metal mesh belts supported on two 

horizontal rolls; a blast of hot air is forced through the bed of material on the mesh. The 

belts are arranged in such a way to form an inclined trough so that the product travels in 

a spiral path and partial fluidization is caused by an upward blast of air. 

 

3.3.2.4 Pneumatic Conveyor Dryers 

 

 Pneumatic conveyor dryers are generally used for the finish drying of powders 

or granulated materials and are extensively used in the making of potato granules. The 

feed material is introduced into a fast moving stream of heated air and conveyed 

through ducting of sufficient length to bring about desired drying. The dried product is 

separated from the exhaust air by a cyclone or filter. 
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3.3.3 Fluidized Bed Dryer 

 

 The fluidized bed type of dryer was originally used for the finish drying of 

potato granules. In fluidized bed drying, hot air is forced through a bed of food particles 

at a sufficiently high velocity to overcome the gravitational forces on the products. A 

major limitation is the limited range of particle that can effectively be fluidized. 

 

3.3.4 Microwave Drying 

 

 In microwave drying, the product is exposed to very high-frequency 

electromagnetic waves. The transfer of these waves to the product is similar to the 

transfer radiant heat. The advantages of using microwave energy are penetrating quality, 

which effects a uniform heating of materials upon which radiation impinges; selective 

absorption of the radiation by liquid water; and capacity for easy control so that heating 

may be rapid if desired. 

 

3.3.5 Spray Drying 

 

 The spray drying method is most important for drying liquid food products and 

has received much experiment study. Spray drying by definition is the transformation of 

a feed from a liquid state into a dried form by spraying into a hot, dry medium. In 

general it involves atomization of the liquid into a spray and contact between the spray 

and the drying medium, followed by separation of dried power from the drying medium. 

 

3.3.6 Freeze-Drying 

 

 Freeze-drying, which involves a two-stage process of first freezing of water of 

the food materials followed by the application of heat to the product so that ice can be 

directly sublimed to vapor, is already a commercially established process. The 

advantages of freeze-drying are; shrinkage is minimized; movement of soluble solid 
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minimized; the porous structure of the product facilitates rapid dehydration; and 

retention of volatile flavor compounds is high. 

 

3.3.7 Osmotic Dehydration 

 

 Osmotic dehydration is a water removal process that consists of placing foods, 

such as pieces of fruits or vegetables, in a hypertonic solution. As this solution has 

higher osmotic pressure and hence lower water activity, a driving force for water 

removal arises between solution and food, whereas the natural cell wall acts as a semi 

permeable membrane. Direct osmotic dehydration is therefore a simultaneous water and 

solute diffusion process (Jayaraman and Gupta 2006). 

 

3.4 Modeling of Drying Curves 

 

 The drying curves can be processed for drying rates to find the most convenient 

model for the drying process under given conditions. There are many statistical-based 

models correlating experimentally obtained moisture ratio values in terms of time (t) in 

the literature. The most common models used for food drying processes are tabulated in 

Table 3.1. In these models, the moisture ratio (MR) is termed as; 

 

                                            (-)     (3.1) 

 

The values of Me are relatively small when compared with M and Mo values for long 

drying times. Therefore the Equation 3.1 can be simplified to MR= M/Mo. 
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Table 3.1 - Thin Layer Drying Models 

(Source: Wang, et al. 2007, Diamante and Munro 1993, Akpınar and Bicer 2003, Toğrul and 

Pehlivan 2002, Midilli, et al. 2002) 

 

No: Model Name Model 

1 Lewis MR = exp(-kt) 

2 Page MR = exp(-kt
n
) 

3 Modified Page MR = exp[-(kt)
n
] 

4 Henderson&Pabis MR = aexp(-kt) 

5 Logarithmic MR = aexp(-kt)+c 

6 Two Term MR = aexp(-k0t)+bexp(-k1t) 

7 Two Term Exponential MR = aexp(-kt)+(1-a)exp(-kat) 

8 Wang&Singh MR = 1+at+bt
2
 

9 Approximation of diffusion MR = aexp(-kt)+(1-a)exp(-kbt) 

10 Verma et al. MR = aexp(-kt)+(1-a)exp(-gt) 

11 Modified Henderson&Pabis MR = aexp(-kt)+bexp(-gt)+    cexp(-ht) 

12 Simplified Fick‟s Diffusion MR = aexp[-c(t/L
2
)] 

13 Modified Page II MR = exp[-k(t/L
2
)

n
] 

14 Midilli&Kucuk MR = aexp(-kt
n
)+bt 

 

 

 The correlation coefficient (R
2
) is one of the primary criteria for selecting the 

best equation to define the drying curves. In addition to R
2
, the reduced chi-square (

2
) 

and the root mean square error (RMSE) are used to determine the quality of the fit. 

These parameters can be calculated using Equations 3.2 and 3.3 (Wang, et al. 2007a, 

Wang, et al. 2007b, Eliçin and Saçılık 2005, Toğrul and Pehlivan, 2002). 
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3.5 Determination of Effective Diffusion Coefficients 

 

 Drying characteristics of biological products in the falling rate period can be 

described by using Fick‟s diffusion equation (Wang, et al. 2007a). The solution of this 
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equation is developed by Crank (1975) with assumptions of moisture migration only by 

diffusion, negligible shrinking, constant temperature and diffusion coefficient and long 

drying times. It can be used for various regularly shaped bodies such as rectangular, 

cylindrical and spherical products. The solution of Fick‟s diffusion equation for 

rectangular geometry is shown in equation 3.4. 
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For long drying time, equation 3.4 can be simplified to only first term of the 

series as given in Equation 3.5. 
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 Then, equation 3.5 is written in a logarithmic form as follows: 
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 Effective diffusion coefficient is typically determined by plotting experimental 

drying data in terms of ln MR versus drying time t. As it can be seen from the equation 

3.6, the plot gives a straight line with a slope as (π
2
Deff)/(4

2

0L ) (Wang, et al. 2007a, 

Wang, et al. 2007b). 
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CHAPTER 4  

 

MATERIALS AND METHODS 

 

4.1 Experimental set-up 

 

 A tunnel dryer with a height of 500 mm, a width of 400 mm and a total length of 

3307 mm is constructed to study the drying behavior of apple cubes. The dryer is 

composed of two major parts; an air preparation unit and a drying tunnel. A picture and 

a schematic diagram of the dryer are given in Figure 4.1 and 4.2, respectively. 

Air preparation unit consists of a centrifugal fan, a heater and a humidifier. The 

air is sucked by the centrifugal fan, passed through a filter to remove the contaminants 

prior to the heater. The centrifugal fan has a 5-step velocity controller, whereas the 

heater has a 4-step temperature controller, each of which has a power of 12 kW. After 

passing through the heater, the air reaches the humidification section in which the 

moisture is added manually to reach the specified relative humidity. The humidified air 

is subsequently introduced to the drying tunnel.  

The drying tunnel is a modular unit with a length of 1700 mm. It is divided into 

two parts: 

 First part is evacuation channel with a length of 700 mm. The dried yield 

is taken out using the lateral cover. 

 The second part consists of two modules with the same length of 500 

mm. Each module has 3 racks inside. 

The drying unit is insulated to prevent heat loss to the surroundings by fiber glass panels 

covered with thin layer aluminum sheet. 

 The apples (cv. red delicious = malus domestica) are brought from the market 

and stored in the refrigerator at 4
o
C. They are peeled and divided into four parts, taken 

their cores out and then cut into 1000 mm
3
 via mechanical cutter. 
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Figure 4.1. A View of the Tunnel Dryer 

  

4.2. Experimental Procedure 

 

4.2.1 Determination of dry matter of apple 

  

 Dry matter of apple is determined according to AOAC 37.1.10 (AOAC Official 

Method 934.06 Moisture in Dried Fruit) and TS 3688 ISO 7701. The only difference 

between two standards is that AOAC uses glass fiber, whereas TS does dry sand. 

 First, steel dishes in 10 cm diameter used in determination of dry matter are 

subjected to constant weighing process. The dishes are cleaned with ethyl alcohol and 

placed in the temperature controlled oven in which the temperature is hold at 70±1
o
C. 

The steel dishes are taken out from the oven at every 30 minutes and then weighed. 

Prior to weighing, the steel dishes are allowed to cool down to the room temperature 

within desiccators for 5 minutes. 300g CaCl2 is added into desiccators to prevent 

moisture. It is supposed that steel dishes possess a stable weight value when the change 

in their weight is about less than 2x10
-4 

g.  
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Figure 4.2. A Schematic Diagram of the Tunnel Dryer 
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Afterwards, the glass fiber is put into the steel dish to prevent skin of apples 

from sticking on the steel surface by losing their own moisture. The amount of glass 

fiber is obtained by a sensitive level balance.  

 The apples utilized in determination of dry matter are randomly selected. The 

cores and skin of the apples are taken out by using a knife. Then, apples are 

homogeneously spread over the steel dishes that contain glass fiber. To see the system 

accuracy, various amounts of apples are used.  

Fruits containing high amount of sugar are immersed into water bath until they 

barely evaporate to dryness prior to vacuum oven (AOAC 37.1.10). The reason for 

using water bath is to prevent the dissolution of sugar. The temperature of the water 

bath is set to around 100
o
C and the steel dishes are put into beaker glasses to make sure 

that no water contact occurred. This process can be regarded as a pre-drying process. 

The apples are indicated to dry in 2 hours, based upon the decrease in their volumes and 

the change in their colour observed. Steel dishes are subsequently taken out of the water 

bath and placed into vacuum oven at 70
o
C for 6 hours under a pressure of about 100 

mbar. During drying process, the air flows continuously into the oven with 2 bubble/s, 

firstly passes through a 500 ml glass trap containing H2SO4 with a purity of 25%, which 

keeps the air dry at the level necessary for the process. During air flow, pressure is kept 

between 45-100 mbar. The moisture caused by apples is trapped in the membrane of the 

oven and the process is stopped every 2 hours to get the moisture away from the oven. 

After six hours vacuuming is completed and steel dishes are taken into desiccators to 

cool down the samples into room temperature at which they are weighed with a 

sensitive balance. Moisture contents are reported as wet-basis (w-b) percentages. The 

amount of moisture is calculated using Equation 4.1.  

 

i

fi

T

TT

m

mm
M       (-)                                        (4.1) 

 

  

The change in the moisture amount is calculated using randomly selected data 

for eight apples to reveal characteristics of all the yield groups.  
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4.2.2 Drying Experiments 

 

Apple cubes are dried as single layer at various temperature, relative humidity 

and velocity values of drying air. Drying of apple cubes started with an initial moisture 

content of approximately 85% (w-b) and continued until no further changes in their 

mass were observed e.g. to the final moisture content of about 11% (w-b) (Eliçin and 

Saçılık 2005). 

The apples used in the experiments are kept two hours in room temperature for 

stabilization prior to the experiments. The stabilized apples are peeled; the cores are 

taken out and then cut into 10
3
 mm

3
 cubes with a mechanical cutter. The tray is loaded 

as a single layer. Apple cubes are approximately 0.95 g each and approximately 200 

pieces are placed on the tray.  

During the experiments; temperature, velocity and relative humidity of drying 

air is recorded every 1 minute. The temperature and relative humidity sensors are 

located at the inlet of the fan (T1, RH1), upstream (T2, RH2) and downstream of the 

tray (T3, RH3). The velocity sensor (v) is located at the exit of the tunnel.  

The samples taken from five different locations of the tray as shown in Figure 

4.2, are weighed at every 10 minutes. Drying is terminated when the moisture content 

dropped to 11% (w-b). 

 

 

Figure 4.3. Specified Sampling Points on the Tray 
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4.3 Rehydration 

 

 Dried samples are allowed to stabilize at room temperature prior to rehydration 

experiment. Rehydration of samples is performed in 1000 mL glass beaker containing 

600 mL distilled water. Glass beaker is placed on a temperature controlled stirrer. A 

perforated lid is used to keep the samples at the bottom of the glass beaker during 

rehydration. The experiments are performed at various temperatures including 30
o
C, 

50
o
C, and 70

o
C. The weight of the samples is measured using a sensitive balance at 10 

min intervals. The rehydration process is terminated once the samples gain about 40% 

of the moisture removed during drying. The rehydration curve is formed by plotting 

total moisture over dry matter of sample versus rehydration time (min). Smaller 

rehydration times better the quality of the products. 

 

4.4 Colour Measurements 

 

 The visual appearance of raw, dry and rehydrated apple cubes is evaluated by a 

colour-difference meter technique using a chromameter. A chromameter measures 3 

parameters which are L, a and b. L indicates brightness, a chromaticity on a green (-) to 

red (+) axis and b chromaticity on a blue (-) to yellow (+) axis. The chromameter was 

calibrated automatically before each colour measurements with the standard white plate 

having “L”, “a” and “b” values of 97.55, 0.09 and 1.8 respectively.  

 The measurements are taken for raw, dried and rehydrated apple cubes. In each 

measurement, 15 samples are selected and for each sample, measurements are repeated 

four times. Colour difference ∆E, hue angle H
o
 and colour saturation C is determined by 

using following equations; 

 

222 )()()( baLE                    (4.2) 

 

)(tan 1

a

b
H o         (4.3) 
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22 baC         (4.4) 

 

The raw apple cubes are taken as the reference and a higher ∆E stands for 

greater colour change from the reference material. The hue angle values of 0
o
, 90

o
, 180

o
 

and 270
o
 represents the red, yellow, green and blue colour respectively (Eliçin and 

Saçılık 2005). Lower ∆E and higher hue angle and colour saturation show good quality 

of the apple cubes while the raw apples data are taken as the reference. 
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CHAPTER 5  

 

RESULTS AND DISCUSSION 

 

 

Experiments are conducted to determine the influence of temperature, velocity 

and the relative humidity of drying air on the kinetics of apple drying. Under various 

drying air conditions; moisture ratio and drying rate is determined depending on drying 

time.  Using these data, the mechanism of drying process is evaluated determining the 

periods and controlling parameters like diffusion coefficients. Furthermore, the moisture 

ratio values are fitted to 14 thin layer drying models and the model constants and the 

comparison criteria such as correlation coefficient (R
2
), the reduced chi-square (

2
) and 

the root mean square error (RMSE) are obtained. Then, to determine the quality of dried 

product, rehydration experiments for various rehydration temperatures and colour 

measurements are conducted for each experimental condition.  

 

5.1 Influence of Temperature 

 

Three set of experiments are conducted to exhibit the temperature effect. The 

velocity and relative humidity values are kept constant and temperature is the only 

variable as given in Table 5.1. Each group consists of three experiments. First of which 

is conducted without humidification while the second and third experiments are 

conducted with humidification. Initial moisture content of apple cubes for each group is 

determined as 6.19±1.04 g water/g dry matter. 
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Table 5.1. Experimental Conditions of Temperature Influence 

 

Group 

No. 

Exp 

No. 

RH1 

(%) 

RH2 

(%) 

v 

(m/s) 

T1 

(
o
C) 

T2 

(
o
C) 

Drying 

time 

(min) 

1 

1.1 33.3 

20.5 0.8 

31.2 40.1 290 

1.2 35.8 33.0 48.1 230 

1.3 47.4 31.6 57.3 210 

2 

2.1 40.8 

12.6 1.1 

32.1 55.3 160 

2.2 38.7 30.6 60.5 160 

2.3 49.1 30.0 65.3 140 

3 

3.1 38.4 

17.0 1.4 

29.6 45.6 240 

3.2 45.2 28.3 53.4 230 

3.3 47.6 26.6 56.1 160 

 

 

 As it can be noticed from Table 5.1, the relative humidity at the dryer inlet 

(RH1) is not constant, because of the uncontrolled laboratory environment. 

Distributions of the relative humidity at the dryer inlet (RH1) and drying air (RH2) are 

plotted in Figure 5.1 for Experiment 1.1. As it can be seen from the Figure, relative 

humidity values at the dryer inlet change drastically during the experiment. While 

keeping the average relative humidity of drying air (RH2) around 20.5%, RH1 changes 

between 25-42.5%. Therefore, during the experiments, it is difficult to keep the relative 

humidity of drying air constant.  
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Figure 5.1. Relative Humidity at Dryer Inlet (RH1) and Drying Air (RH2) versus Drying Time 

of Experiment 1.1 

 

 

Distributions of the temperature at the dryer inlet (T1) and drying air (T2) are 

plotted in Figure 5.2 for Experiment 1.1. When temperature values are compared with 

relative humidity values, the change of temperature values at the dryer inlet and at the 

drying air is smaller. 
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Figure 5.2. Temperature at Dryer Inlet (T1) and Drying Air (T2) versus Drying Time of 

Experiment 1.1 

 

 

5.1.1. Group No. 1 

 

 For the Group No. 1, while the relative humidity and velocity of drying air is 

kept constant at 20.5% and 0.8 m/s, three experiments are conducted for the drying air 

temperatures of 40.1, 48.1 and 57.3
o
C, respectively. Drying time with respect to 

temperature is shown in Figure 5.3.  

As it can be seen from the Figure 5.3, at constant relative humidity and velocity, 

increasing the temperature decreases the drying time as expected. Drying time is 

decreased about 21% with a temperature increase of 8°C from Experiment 1.1 to 1.2. 

But further increase in temperature at Experiment 1.3 which is 9.2
o
C, causes only 8.7% 

decrease in drying time. The relation between the temperature and drying time is not 

linear which proves the exponential characteristic of drying curves (Mujumdar 2006, 

Brennan 2006). 
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Figure 5.3. Drying Time versus Drying Air Temperature at 20.5% Drying Air Relative 

Humidity and 0.8 m/s Drying Air Velocity 

 

  

 The variation of the moisture content of the apple cubes with time is plotted in 

Figure 5.4. The results indicate that although at the first 20 minutes of the drying 

process decrease of moisture of the product is the same at each temperature, for the rest 

of the drying process decrease of moisture changes with temperature. Increasing drying 

air temperature increases moisture loss of the product non-linearly as shown in Figure 

5.3. Initial moisture content of the apples is determined as 85.8%. When it is reduced to 

11%, the experiment is terminated. The collapse of the drying curves at the beginning of 

the process indicates that drying is controlled by external conditions. When the curves 

deviate from each other, drying is mainly controlled by internal mass transfer resistance. 

Figure 5.5 exhibits the distribution of drying rate with respect to moisture 

content. Drying rate is calculated using Equation 5.1. High drying rates at the first 10 

minutes is related to the difference between temperature of apple cubes and drying air.  
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Figure 5.4. Moisture Ratio versus Drying Time at 20.5% Drying Air Relative Humidity and  

0.8 m/s Drying Air Velocity for Various Drying Air Temperatures 

 

 

 

 
Figure 5.5. Drying Rate versus Moisture Content at 20.5% Drying Air Relative Humidity and  

0.8 m/s Drying Air Velocity for Various Drying Air Temperatures 
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Drying process generally occurs in two different periods; namely constant rate 

period and falling rate period as it is given in Chapter 3.2.  

It is seen from Figure 5.4 and 5.5 that constant drying rate period is very short 

and falling rate period can be divided into two parts. First falling rate period is 

continued till moisture content of apples reach to approximately 33% (w-b) which is 

longer than second falling rate period. Duration of the periods is given in Table 5.2. 

Since the falling rate period is diffusion controlled, the effective diffusion 

coefficients (Deff) are calculated using Equation 4.4 and are given in the Table 5.3.  

 

 

Table 5.2. Duration of Drying Periods for the Group No.1 

 

Temperature 

(
o
C) 

1
st
 Falling Rate 

(min) 

2
nd

 Falling Rate 

(min) 

Total Drying Time 

(min) 

40.1 180 100 290 

48.1 140 80 230 

57.3 140 60 210 

 

 

Table 5.3. Effective Diffusion Coefficients of Apple Cubes at 20.5% Drying Air Relative  

Humidity and 0.8 m/s Drying Air Velocity for Various Drying Air Temperatures 

 

Temperature 

(
o
C) 

Effective diffusion coefficient 

(m
2
/s) 

1st Falling Rate Period 2nd Falling Rate Period 

40.1 1.4x10
-9 

5.78x10
-10

 

48.1 1.7x10
-9

 7.78x10
-10

 

57.3 1.84x10
-9

 8.33x10
-10

 

 

 

The effective diffusion coefficients increase with increasing drying air 

temperature.  

The moisture ratio (MR) values are fitted to 14 thin layer drying models listed in 

Table 3.1 and the model constants and the comparison criteria are given in Table A.1, 

A.2 and A.3. Correlation coefficient (R
2
), the reduced chi-square (

2
) and the root mean 

square error (RMSE) are used to evaluate the best fit. The best fit for the three 

experiments is obtained by Modified Henderson&Pabis and Midilli&Kucuk models. 

The results of the best fits are given in Table 5.4. 
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Table 5.4. Results of Best Fitted Models for Group No.1 

 

Group 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

1.1 

11 
a=0.051264  k=0.398272  b=0.791639  

g=0.012236  c=0.157377  h=0.000421 
0.9999 0.0024311 0.0000077 

14 
a=0.996915  k=0.019533  n=0.861378  

b=0.000300 
0.9999 0.0028697 0.0000097 

1.2 

11 
a=0.011563  k=-0.008395  b=0.150377  

g=0.042220  c=0.836498  h=0.009621 
0.9998 0.0030616 0.0000125 

14 
a=0.999525  k=0.018040  n=0.905952  

b=0.000368 
0.9998 0.0031640 0.0000120 

1.3 

11 
a=0.303005  k=0.023503  b=0.012740         

g=-0.008155  c=0.681873  h=0.009340 
0.9997 0.0041414 0.0000236 

14 
a=0.999325  k=0.015751  n=0.952684  

b=0.000435 
0.9997 0.0040944 0.0000205 

 

 

Rehydration curve of dried apples for rehydration temperatures of 30, 50 and 

70°C at various drying air temperatures can be seen in Figures 5.6, 5.7 and 5.8. The 

time required to gain 40% moisture back that is lost in drying process is 23.6, 17.6, and 

17.5 min for Experiment 1.1, 27.6, 23.2 and 17.5 min for Experiment 1.2, 24.4, 18.7 and 

15.9 min for Experiment 1.3 for rehydration temperatures of 30, 50 and 70
o
C, 

respectively. Rehydration time decreases with increasing rehydration temperatures. 

 

 
Figure 5.6. Rehydration Curve of Dried Apples for Rehydration Temperature of 30

o
C for  

Group No.1 
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Figure 5.7. Rehydration Curve of Dried Apples for Rehydration Temperatures of 50

o
C for  

Group No.1 

 

 

 
Figure 5.8. Rehydration Curve of Dried Apples for Rehydration Temperatures of 70

o
C for  

Group No.1 
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The change of colour of raw apples could be attributed to darkening reactions 

that takes place during the drying and rehydration process. „L‟, „a‟, „b‟, „∆E‟, „H
o
‟ and 

„C‟ values of apples are given in Table 5.5. 

„L‟,„b‟, „H
o
‟ and „C‟ values usually decreased during drying and rehydration 

process when values of the raw apple are considered. „a‟ values increased during drying 

and decreased during rehydration. Colour difference (∆E) values at the temperatures of 

40.1
o
C, 48.1

o
C and 58.3

o
C are 25.53, 26.12 and 24.11, respectively. Colour difference 

values increases at rehydration process comparing with dried apple. 

 

 

Table 5.5. Colour Values of Apples for Drying Temperatures of 40.1, 48.1 and 57.3
o
C 

 

Exp 

no: 
 L A b ∆E H

o
 C 

1.1 

Raw apple 69.27 -2.18 52.82  92.36 52.86 

Dried Apple 73.77 8.61 30.11 25.53 74.05 31.32 

Rehydrated Apple at 30°C 54.81 8.34 25.23 32.87 71.71 26.57 

Rehydrated Apple at 50°C 61.17 5.45 23.78 31.09 77.10 24.40 

Rehydrated Apple at 70°C 59.16 6.52 23.84 31.90 74.70 24.71 

1.2 

Raw apple 69.27 -2.18 52.82  92.36 52.86 

Dried Apple 67.51 8.29 28.95 26.12 74.03 30.11 

Rehydrated Apple at 30°C 63.37 3.41 20.63 33.20 80.61 20.91 

Rehydrated Apple at 50°C 62.09 4.14 21.21 33.02 78.95 21.61 

Rehydrated Apple at 70°C 59.86 3.95 20.75 33.97 79.23 21.12 

1.3 

Raw apple 69.27 -2.18 52.82  92.36 52.86 

Dried Apple 64.68 8.10 31.49 24.11 75.58 32.51 

Rehydrated Apple at 30°C 57.72 5.59 24.13 31.89 76.95 24.76 

Rehydrated Apple at 50°C 62.81 4.24 24.67 29.58 80.26 25.03 

Rehydrated Apple at 70°C 60.16 2.90 21.48 33.02 82.31 21.68 

  

 

5.1.2. Group No.2&3 

 

Experimental conditions for Group No. 2 and 3 are given in Table 5.1. Drying 

time as a function of temperature is shown in Figures 5.9 and 5.10 for Group No. 2 and 

3, respectively.  
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Figure 5.9. Drying Time versus Temperature at 12.6% Relative Humidity and 1.1 m/s Airflow 

Velocity 

 

 

 

 
Figure 5.10. Drying Process Time Respect to Temperature at 17% Relative Humidity and  

1.4 m/s Airflow Velocity 
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Figures 5.9 and 5.10 shows the similar trend as Figure 5.3, increasing the 

temperature, decreases the drying time for constant relative humidity and velocity 

conditions. For Group No. 2, drying time is not changed with a temperature increase of 

5.2°C from Experiment 2.1 to 2.2. However, further increase in temperature in 

Experiment 2.3 which is 4.8
o
C, results in a decrease about 12.5% in drying time. For 

Group No. 3, drying time is decreased about 4% with a temperature increase of 7.8°C 

from Experiment 3.1 to 3.2. But further increase in temperature at Experiment 3.3 

which is 2.7
o
C, causes 30% decrease in drying time. 

The moisture ratio and drying rate as a function of time and moisture content are 

shown in Figures 5.11 and 5.12 for Group No.2 and Figures 5.13 and 5.14 for Group 

No.3, respectively. Both Groups exhibit the same trend and a short constant drying rate 

period is followed by falling rate period as observed in Group No.1 experiments.  

 

 

 
Figure 5.11. Moisture Ratio versus Drying Time at 12.6% Relative Humidity and 1.1 m/s   

Airflow Velocity and Different Temperatures 
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Figure 5.12. Drying Rate versus Moisture Content at 12.6% Relative Humidity and 1.1 m/s  

Airflow Velocity and Different Temperatures 

 

 

 
Figure 5.13. Moisture Ratio versus Drying Time at 17% Relative Humidity and 1.4 m/s Airflow  

Velocity and Different Temperatures 
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Figure 5.14. Drying Rate versus Moisture Content at 17% Relative Humidity and 1.4 m/s  

Airflow Velocity and Different Temperatures 

 

 

Duration of the falling rate periods and effective diffusion coefficients are given 

in Table 5.6 and 5.7. 

 

 

Table 5.6. Duration of Drying Periods for Group No.2&3 

 

Group 

No. 

Temperature 

(
o
C) 

1
st
 Falling Rate 2

nd
 Falling Rate 

Total Drying Time 

(min) 

2 

55.3 90 60 290 

60.5 90 60 230 

65.3 80 50 210 

3 

45.6 140 90 240 

53.4 140 80 230 

56.1 80 70 160 
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Table 5.7. Effective Diffusion Coefficients of Apple Cubes for Group No.2&3 

 

Group 

No. 

Temperature 

(
o
C) 

Effective diffusivity (m
2
/s) 

1st Falling Rate 

Period 

2
nd

 Falling Rate 

Period 

2 

55.3 2.11x10
-9 

1.19x10
-9 

60.5 2.1x10
-9

 1.35x10
-9 

65.3 2.45x10
-9 

1.42x10
-9

 

3 

45.6 1.44x10
-9 

7.7x10
-10

 

53.4 1.59x10
-9 

6.3x10
-10

 

56.1 2.16x10
-9 

1.12x10
-9

 

 

 

The effective diffusion coefficients increase with the temperature except a 

decrease observed in the second falling rate period between the Experiments 3.1 and 3.2 

of Group No.3. 

The results of the models applied to the experimental data are given in Table 

A.4-A.6 for Group No.2, Table A.7-A.9 for Group No.3. Similar to Group No.1, the 

best fits obtained by Modified Henderson & Pabis and Midilli & Kucuk models. The 

best fitted model constants and comparison criteria are given in Table 5.8. 

Rehydration curves are plotted as moisture gain of dried product with respect to 

time. Rehydration curves for 30, 50 and 70°C temperatures are given in Figures 5.15-

5.17 for Group No.2 and Figures 5.18-5.20 for Group No.3.  
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Table 5.8. Results of Best Fitted Models for Group 2&3 

 

Group 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

2.1 

11 
a=0.327671  k=0.017067  b=0.228609  

g=0.003179  c=0.435977  h=0.021748 
0.9994 0.0058290 0.0000525 

14 
a=0.997375  k=0.020498  n=0.927146  

b=0.000443 
0.9996 0.0046842 0.0000287 

 

2.2 

11 
a=0.426265  k=0.006169  b=0.026533  

g=0.198568  c=0.546518  h=0.025307 
0.9996 0.0048133 0.0000358 

14 
a=1.000542  k=0.026695  n=0.868224  

b=0.000377 
0.9995 0.0052510 0.0000361 

2.3 

11 
a=0.369707  k=0.015885  b=0.469939  

g=0.027958  c=0.155806  h=0.001842 
0.9998 0.0039016 0.0000254 

14 
a=0.999056  k=0.024544  n=0.925582  

b=0.000569 
0.9998 0.0031221 0.0000133 

3.1 

11 
a=0.680982  k=0.015899  b=0.043128  

g=0.210691  c=0.275955  h=0.002282 
0.9999 0.0026105 0.0000097 

14 
a=1.000175  k=0.022344  n=0.850934  

b=0.000351 
0.9998 0.0034770 0.0000151 

3.2 

11 
a=0.203864  k=0.001315  b=0.770087  

g=0.017048  c=0.026050  h=2.166648 
0.9999 0.0028552 0.0000116 

14 
a=1.000707  k=0.021671  n=0.887668  

b=0.000450 
0.9998 0.0039072 0.0000191 

3.3 

11 
a=0.728427  k=0.019678 b=0.174929  

g=0.001495  c=0.096684  h=0.111054 
0.9999 0.0022544 0.0000079 

14 
a=1.000772  k=0.033339  n=0.838954  

b=0.000473 
0.9999 0.0024400 0.0000078 
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Figure 5.15. Rehydration Curve of Dried Apples for Rehydration Temperatures of 30

o
C for  

Group No.2 

 

 

 

 
Figure 5.16. Rehydration Curve of Dried Apples for Rehydration Temperatures of 50

o
C for  

Group No.2 
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Figure 5.17. Rehydration Curve of Dried Apples for Rehydration Temperatures of 70

o
C for  

Group No.2 

 

 

 

 
Figure 5.18. Rehydration Curve of Dried Apples for Rehydration Temperatures of 30

o
C for  

Group No.3 

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25

Rehydration Time (min)

M
o

is
tu

re
 C

o
n

te
n

t 
(g

 w
at

er
 /

 g
 d

m
)

T = 55.3°C T = 60.5°C T = 65.3°C

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35

Rehydration Time (min)

M
o

is
tu

re
 C

o
n

te
n

t 
(g

 w
at

er
 /

 g
 d

m
)

T = 45.6°C T = 53.4°C T = 56.1°C



 48 

 
 

Figure 5.19. Rehydration Curve of Dried Apples for Rehydration Temperatures of 50
o
C for  

Group No.3 

 

 
 

Figure 5.20. Rehydration Curve of Dried Apples for Rehydration Temperatures of 70
o
C for  

Group No.3 
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Time required to gain 40% moisture back that is lost in drying process is given 

in Table 5.9 for both Groups. Rehydration time generally increases with increasing 

drying air temperatures. 

 

 

Table 5.9. Rehydration Time for Group No.2&3 

 

Group 

No. 
Exp. No. 

Rehydration time 

(min) 

30°C 50°C 70°C 

2 

2.1 27.4 22.8 18.0 

2.2 30.0 24.0 17.5 

2.3 30.0 23.0 18.3 

3 

3.1 25.3 16.9 16.4 

3.2 27.1 18.4 19.6 

3.3 30.0 21.6 24.2 

 

 

The colour change values of apple cubes are given in Table 5.10. Colour 

difference values increases at rehydration process comparing with dried apple.  
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Table 5.10. Colour Values of Apples for Group No.2&3 

 

Exp 

No: 
 L a B ∆E H

o
 C 

2.1 

Raw apple 69.3 -2.2 52.8  92.4 52.86 

Dried Apple 57.8 10.7 28.3 30.01 69.2 30.22 

Rehydrated Apple at 30°C 55.2 7.1 25.3 32.28 74.3 26.26 

Rehydrated Apple at 50°C 57.0 6.0 24.6 31.85 76.3 25.28 

Rehydrated Apple at 70°C 56.5 6.8 24.8 32.11 74.6 25.68 

2.2 

Raw apple 69.3 -2.2 52.8  92.4 52.86 

Dried Apple 61.7 9.6 28.5 28.12 71.3 30.06 

Rehydrated Apple at 30°C 56.9 6.6 23.9 32.64 74.5 24.81 

Rehydrated Apple at 50°C 60.1 5.0 22.0 32.97 77.2 22.53 

Rehydrated Apple at 70°C 59.0 5.4 24.3 31.23 77.4 24.92 

2.3 

Raw apple 69.27 -2.18 52.82  92.4 52.86 

Dried Apple 59.48 10.44 29.85 27.97 70.7 31.62 

Rehydrated Apple at 30°C 60.18 5.72 21.89 33.19 75.3 22.62 

Rehydrated Apple at 50°C 57.73 5.95 23.25 32.77 75.7 23.99 

Rehydrated Apple at 70°C 59.12 3.80 19.88 34.98 79.2 20.24 

3.1 

Raw apple 69.27 -2.18 52.82  92.36 52.86 

Dried Apple 58.77 11.12 32.52 26.44 71.13 34.37 

Rehydrated Apple at 30°C 59.09 6.77 25.79 30.24 75.28 26.66 

Rehydrated Apple at 50°C 59.61 6.34 26.08 29.68 76.33 26.84 

Rehydrated Apple at 70°C 58.06 6.13 24.78 31.32 76.10 25.52 

3.2 

Raw apple 69.27 -2.18 52.82  92.36 52.86 

Dried Apple 61.06 9.84 32.29 25.17 73.05 33.75 

Rehydrated Apple at 30°C 57.83 4.73 24.30 31.49 78.98 24.76 

Rehydrated Apple at 50°C 62.88 3.21 22.75 31.21 81.98 22.97 

Rehydrated Apple at 70°C 59.44 5.22 26.01 29.49 78.66 26.53 

3.3 

Raw apple 69.27 -2.18 52.82  92.36 52.86 

Dried Apple 60.45 12.77 30.43 28.32 67.24 33.00 

Rehydrated Apple at 30°C 58.19 5.11 22.39 33.19 77.15 22.96 

Rehydrated Apple at 50°C 58.32 6.14 23.75 32.16 75.49 24.53 

Rehydrated Apple at 70°C 54.17 4.63 20.14 36.63 77.06 20.67 

 

 

5.2 Influence of Velocity 

 

Five experiments are conducted for the velocities of 1.1, 1.4, 1.9, 2.3 and 2.5 

m/s, respectively, while the temperature and relative humidity of drying air is kept 

constant at 44.1
o
C and 17.7% as given in Table 5.11. 
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Table 5.11. Experimental Conditions of Velocity Influence 

 

Group No. Exp No. RH1 (%) 
RH2 

(%) 

T1 

(oC) 

T2 

(oC) 

v 

(m/s) 

Drying time 

(min) 

4 

4.1 64.06 

17.7 

19.65 

44.1 

1.1 270 

4.2 62.4 22.6 1.4 290 

4.3 56.34 20.78 1.9 270 

4.4 49.89 24.95 2.3 260 

4.5 61.66 21.53 2.5 250 

 

 

 Initial moisture content of apple cubes is determined as 4.73±1.46 g water/g dry 

matter.  Drying time with respect to velocity is shown in Figure 5.21.  

 

 

 
Figure 5.21. Drying Time versus Drying Air Velocity at 44.1

o
C Drying Air Temperature and  

17.7% Drying Air Relative Humidity 
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velocity increase of 0.4 m/s from Experiment 4.1 to 4.2. Further increase in the values 

for drying air velocity decreased the drying time. 

The moisture content of the apple cubes as a function of time and drying rate 

with respect to moisture content are shown in Figures 5.22 and 5.23, respectively. Both 

exhibit the same trend and a short constant drying rate period is followed by falling rate 

period as observed in first 3 groups.  

 

 

 
Figure 5.22. Moisture Ratio versus Drying Time at 44.1

o
C Temperature and 17.7% Relative  

Humidity and Different Velocities 
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Figure 5.23. Drying Rate versus Moisture Content at 44.1

o
C Temperature and 17.7% Relative  

Humidity and Different Velocities 

 

 

The falling rate period can be divided into two parts. First falling rate period is 

continued till moisture content of apples reach to approximately 39% (w-b) which is 

longer than second falling rate period. Duration of the periods is given in Table 5.12. 

 

 

Table 5.12. Duration of Drying Periods for the Group No.4 

 

Velocity 

(v) 

1
st
 Falling Rate 

(min) 

2
nd

 Falling Rate 

(min) 

Total Drying Time 

(min) 

1.1 170 90 270 

1.4 180 100 290 

1.9 170 90 270 

2.3 170 80 260 

2.5 170 70 250 

 

 

The calculated effective diffusion coefficients which are given in the Table 5.13, 

shows a decreasing trend with increasing drying air velocities lower than 2.3 m/s.  
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Table 5.13. Effective Diffusion Coefficient of Apple Cubes at 44.1
o
C Drying Air Temperature 

and 17.7% Drying Air Relative Humidity for Various Drying Air Velocities 

 

Velocity 

(m/s) 

Effective diffusion coefficient 

(m
2
/s) 

1st Falling Rate Period 2nd Falling Rate Period 

1.1 2.15x10
-9

 2.58x10
-9 

1.4 1.77x10
-9

 2.19x10
-9

 

1.9 1.68x10
-9

 1.95x10
-9

 

2.3 1.51x10
-9

 3.34x10
-9

 

2.5 2x10
-9

 2.75x10
-9 

 

 

The results of the thin layer models which are fitted to experimental results are 

given in Table A.10-A.14. The best fit for the five experiments is obtained by 

Midilli&Kucuk model. The results of the best fit model are given in Table 5.14. 

 

 

Table 5.14. Results of Best Fitted Model of Group No.4 

 

Group 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

4.1 14 
A=0.993926  k=0.015552  n=0.946653  

b=-0.000110 
0.9995 0.004004 0.0000187 

4.2 14 
A=0.998112  k=0.020103  n=0.869039  

b=-0.000105 
0.9999 0.002390 0.0000066 

4.3 14 
A=0.996316  k=0.024728  n=0.808218  

b=-0.000224 
0.9996 0.0044461 0.0000231 

4.4 14 
A=1.003597  k=0.033486  n=0.706251  

b=-0.000586 
0.9995 0.0048685 0.0000278 

4.5 14 
A=0.998414  k=0.040506  n=0.744268  

b=-0.000253 
0.9997 0.00315 0.0000117 

 

 

Rehydration curves are plotted in Figures 5.24-5.26 and rehydration times are 

listed in Table 5.15. Rehydration time decreases with increasing rehydration 

temperature. 
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Figure 5.24. Rehydration Curve of Dried Apples for Rehydration Temperatures of 30

o
C for  

Group No.4 

 

 

 
Figure 5.25. Rehydration Curve of Dried Apples for Rehydration Temperatures of 50

o
C for  

Group No.4 
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Figure 5.26. Rehydration Curve of Dried Apples for Rehydration Temperatures of 70

o
C for 

Group No.4 

 

 

Table 5.15. Rehydration Time for Group No.4 

 

Exp. No. 
Rehydration time 

(min) 

30°C 50°C 70°C 

4.1 28.1 24.4 20.0 

4.2 41.6 28.2 17.8 

4.3 29.6 25.2 18.2 

4.4 45.0 40.0 38.7 

4.5 28.2 23.0 17.9 

 

 

The colour change values are given in Table 5.16. Colour difference values 

increases at rehydration process comparing with dried apple. Colour saturation values 

decreases at drying and rehydration process comparing with raw apple. 
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Table 5.16. Colour Values of Apples for Different Drying Air Velocities 

 

Exp 

No: 
 L a B ∆E H

o
 C 

4.1 

Raw apple 69.27 -2.18 52.82  92.36 52.86 

Dried Apple 59.32 7.28 30.61 26.11 76.63 31.46 

Rehydrated Apple at 30°C 43.56 11.84 26.43 39.42 65.86 28.96 

Rehydrated Apple at 50°C 51.32 8.22 26.85 33.24 72.98 28.08 

Rehydrated Apple at 70°C 50.95 7.46 26.91 33.16 74.50 27.93 

4.2 

Raw apple 69.27 -2.18 52.82  92.36 52.86 

Dried Apple 60.00 5.38 33.78 22.48 80.95 34.20 

Rehydrated Apple at 30°C 43.35 11.84 23.84 41.33 63.58 26.62 

Rehydrated Apple at 50°C 44.84 10.66 20.97 42.14 63.06 23.53 

Rehydrated Apple at 70°C 50.74 6.88 27.05 33.01 75.72 27.91 

4.3 

Raw apple 69.27 -2.18 52.82  92.36 52.86 

Dried Apple 56.48 10.42 30.71 28.48 71.26 32.42 

Rehydrated Apple at 30°C 45.35 10.20 27.38 37.05 69.57 29.21 

Rehydrated Apple at 50°C 50.67 9.86 28.87 32.62 71.14 30.51 

Rehydrated Apple at 70°C 48.05 8.24 27.53 34.62 73.34 28.73 

4.4 

Raw apple 69.27 -2.18 52.82  92.36 52.86 

Dried Apple 54.35 8.04 25.43 32.82 72.45 26.67 

Rehydrated Apple at 30°C 49.24 8.39 21.76 38.44 68.91 23.32 

Rehydrated Apple at 50°C 50.86 7.89 21.64 37.58 69.97 23.04 

Rehydrated Apple at 70°C 47.96 6.62 19.93 40.16 71.63 21.00 

4.5 

Raw apple 69.27 -2.18 52.82  92.36 52.86 

Dried Apple 59.03 4.85 30.65 25.41 81.01 31.03 

Rehydrated Apple at 30°C 51.05 9.86 26.43 34.25 69.55 28.21 

Rehydrated Apple at 50°C 48.97 9.14 27.17 34.61 71.41 28.66 

Rehydrated Apple at 70°C 54.27 5.76 24.67 32.87 76.86 25.33 

 

 

5.3 Influence of Relative Humidity 

 

Three sets of experiments are conducted for the relative humidities of 4.6%, 

9.8% and 20.5%, respectively, while the temperature and velocity of drying air is kept 

constant at 59.8
o
C and 0.8 m/s as given in Table 5.17. 
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Table 5.17. Experimental Conditions of Relative Humidity Influence 

 

Group No. Exp No. RH1 (%) 
T1 

(oC) 

T2 

(oC) 

v 

(m/s) 

RH2 

(%) 

Drying time 

(min) 

5 

5.1 32.21 19.47 

59.8 0.8 

4.6 180 

5.2 66.23 23.17 9.8 140 

5.3 47.38 31.57 20.5 210 

 

 

Initial moisture content of apple cubes is determined as in Section 5.2. Drying 

time change with relative humidity is shown in Figure 5.27.  

 

 

 
Figure 5.27. Drying Time versus Drying Air Relative Humidity at 59.8

o
C Drying Air  

Temperature and 0.8 m/s Drying Air Velocity 
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falling rate period. Duration of the falling rate periods and effective diffusion 

coefficients are given in Tables 5.18 and 5.19, respectively. 

 

 

 
Figure 5.28. Moisture Ratio versus Drying Time at 59.8

o
C Temperature, 0.8 m/s Velocity and  

Different Relative Humidities 

 

 

Table 5.18. Duration of Drying Periods for the Group No.5 

 

RH 
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1
st
 Falling Rate 
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2
nd

 Falling Rate 

(min) 

Total Drying Time 

(min) 

4.6 100 70 180 

9.8 70 60 140 

20.5 160 40 210 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200 220

Drying Time (min)

M
o

is
tu

re
 R

at
io

 (
-)

RH = 4.6% RH = 9.8% RH = 20.5%



 60 

 

 
Figure 5.29. Drying Rate versus Moisture Content of Apple Cubes at 59.8

o
C Temperature,  

0.8 m/s Velocity and Different Relative Humidities 

 

 

Table 5.19. Effective Diffusion Coefficient of Apple Cubes at 59.8
o
C Drying Air Temperature  

and 0.8 m/s Drying air Velocity for Various Drying Air Relative Humidities 

 

RH 

(%) 

Effective diffusion coefficient 

(m
2
/s) 

1st Falling Rate Period 2nd Falling Rate Period 

4.6 2.84x10
-9

 3.92x10
-9

 

9.8 3.37x10
-9

 5.63x10
-9

 

20.5 2.85x10
-9

 4.37x10
-9

 

  

 

Similar to the minimum obtained in Figure 5.27, diffusion coefficients give a 

peak at 9.8% relative humidity.  

The results of models applied to the experimental data are given in Table A.15, 

A.16 and A.17. The best fit obtained by Midilli & Kucuk model and the results are 

given in Table 5.20. 
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Table 5.20. Results of Best Fitted Model of Group No.5 

 

Group 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

5.1 14 
a=1.001524  k=0.032611  

n=0.855091  b=-0.000201 
0.9998 0.0028044 9.962E-06 

5.2 14 
a=0.996846  k=0.023473  

n=0.946054  b=-0.000483 
0.9991 0.0087976 0.0001055 

5.3 14 
a=0.999325  k=0.015751  

n=0.952684  b=0.000435 
0.9997 0.0040944 0.0000205 

 

 

Rehydration curves and rehydration times are given in Figures 5.30-5.32 and 

Table 5.21, respectively. Rehydration time decreases with increasing rehydration 

temperatures. 

 

 

 

 
Figure 5.30. Rehydration Curve of Dried Apples for Rehydration Temperatures of 30

o
C  

for Group No.5 
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Figure 5.31. Rehydration Curve of Dried Apples for Rehydration Temperatures of 50

o
C  

for Group No.5 

 

 

 

 
Figure 5.32. Rehydration Curve of Dried Apples for Rehydration Temperatures of 70

o
C  

for Group No.5 
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Table 5.21. Rehydration Time for Group No.5 

 

Exp. No. 
Rehydration time 

(min) 

30°C 50°C 70°C 

5.1 33.0 27.0 24.5 

5.2 34.6 29.3 26.5 

5.3 24.4 18.7 15.9 

 

 

The colour change values are given in Table 5.22. Colour difference values 

increases at rehydration process comparing with dried apple. Colour saturation values 

decreases at drying and rehydration process comparing with raw apple. 

 

 

Table 5.22. Colour Values of Apples for Different Drying Air Relative Humidities 

 

Exp 

No: 
 L a b ∆E H

o
 C 

5.1 

Raw apple 69.27 -2.18 52.82  92.36 52.86 

Dried Apple 60.30 3.32 26.12 28.70 82.75 26.33 

Rehydrated Apple at 30°C 50.22 8.59 23.30 36.74 69.76 24.84 

Rehydrated Apple at 50°C 52.37 6.57 23.76 34.74 74.55 24.65 

Rehydrated Apple at 70°C 57.24 1.87 23.28 32.15 85.41 23.35 

5.2 

Raw apple 69.27 -2.18 52.82  92.36 52.86 

Dried Apple 61.64 4.39 28.37 26.44 81.20 28.70 

Rehydrated Apple at 30°C 48.90 9.15 23.64 37.34 68.85 25.35 

Rehydrated Apple at 50°C 53.72 7.52 28.33 30.58 75.15 29.31 

Rehydrated Apple at 70°C 54.40 2.85 19.44 36.89 81.66 19.64 

5.3 

Raw apple 69.27 -2.18 52.82  92.36 52.86 

Dried Apple 64.68 8.10 31.49 24.11 75.58 32.51 

Rehydrated Apple at 30°C 57.72 5.59 24.13 31.89 76.95 24.76 

Rehydrated Apple at 50°C 62.81 4.24 24.67 29.58 80.26 25.03 

Rehydrated Apple at 70°C 60.16 2.90 21.48 33.02 82.31 21.68 
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CHAPTER 6  

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 Five groups of apple drying experiments are performed in a tunnel dryer to 

investigate the effects of temperature, velocity and relative humidity of air on the drying 

kinetics of apples. The first three groups are tested to investigate the effect of drying air 

temperature (40.1-65.3
o
C), and the next two groups are conducted to evaluate the effect 

of drying air velocity (1.1-2.5 m/s) and relative humidity (4.6-20.5%), respectively. 

 The duration of the drying experiments are obtained between 140-290 min. The 

results indicate that increasing air temperature and velocity and decreasing relative 

humidity of air reduces drying time.  This result is in agreement with the literature 

(Kaya, et al. 2007, Mandala, et al. 2005, Velić, et al. 2004, Akpınar and Bicer 2003).  

 Drying rate curves indicated that drying process takes place mostly in the falling 

rate period except very short unsteady-state initial and constant rate periods. Two well-

defined falling rate periods are observed. When the temperature is increased and the 

velocity is decreased, effective diffusion coefficients generally increase. The range of 

effective diffusion coefficients is obtained as 0.486x10
-9

 to 5.63x10
-9

 m
2
/s which is in 

agreement with the data in the literature (10
-8

-10
-11

 m
2
/s) (Kaya, et al. 2007, Akpınar 

and Bicer 2003, Srikiatden and Roberts 2005, Velić, et al. 2004).  

 With increasing drying air temperature and velocity; hue angle and colour 

saturation are decreased. Rehydration time is decreased with increasing drying air 

temperature or decreasing drying air velocity. Rehydration time, colour difference and 

hue angle are generally decreased with increasing relative humidity of air. On the 

contrary, color saturation is increased with increasing drying air relative humidity. As 

quality measures, lowest rehydration time and ∆E, highest hue angle and colour 

saturation is desired. 

 In consequence, with a view of drying time and product quality, drying air 

temperatures of 55.3-65.3
o
C, velocity of 2.5 m/s and relative humidity of 20.5% are 

determined as the best experimental conditions among the others investigated in this 



 65 

study. It should be noticed that the best values obtained are the upper limits of the 

experimental conditions. To be able to evaluate the wider range, the upper limit should 

be extended for further experiments.   

 The moisture content data observed during the experiments are converted into 

the moisture ratio (MR) and fitted to the fourteen thin layer drying models listed in 

Table 3.1. The Midilli and Kucuk model is the best descriptive model, suggested by the 

highest value of R
2
, the lowest value of RMSE and 

2
, namely, 0,9999, 2.39x10

-3
 and 

6.6x10
-6

, respectively. In order to take into account the effect of drying air temperature, 

velocity and relative humidity on constants of the Midilli and Kucuk model, the linear 

regression analysis is used. 

 

tbtkaMR n *)*exp(*   

 

Where 

 

a = 0.892822+0.001309*T+0.24266*RH+0.001885*v                                   R
2
 = 0.8682 

k = 0.023789+0.000031*T-0.051162*RH+0.003042*v       R
2
 = 0.8909 

n = 0.795895+0.001952*T+0.337614*RH-0.084011*v                 R
2
 = 0.9116 

b = 0.00365+0.000057*T-0.005423*RH-0.000232*v                                     R
2
 = 0.9575 

 

The consistency of the model is evident but R
2
 values for constants are low. The 

regression analysis of constants should be improved trying another regression methods 

and increasing the number of experiments. 

 During the experiments, it was difficult to keep the drying air conditions 

constant because of uncontrolled laboratory environment. For further experiments, 

control units should be included to the experimental set-up. In order to eliminate errors 

associated with moisture gain during the weight measurements outside the dryer, on 

extension of the set-up for online measurements should be considered. 

Finally, to determine the optimum dryer length, the number of the tray should be 

increased.
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APPENDIX A 

 

STATISTICAL RESULTS OBTAINED FROM DIFFERENT THIN LAYER 

DRYING MODELS 

 

Table A.1. Results of Fitted Models for Experiment 1.1 

 

 

  

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

1.1 

1 k=0.008554 0.9513 0.0526864 0.0028869 

2 k=0.030778  n=0.736375 0.9964 0.0142361 0.0002196 

3 k=0.008852  n=0.736385 0.9964 0.0142361 0.0002196 

4 a=0.897733  k=0.007480 0.9737 0.0387589 0.0016274 

5 a=0.827331  k=0.012637  c=0.145606 0.9989 0.0078517 0.0000697 

6 
a=0.297747  k0=0.002370,  b=0.683962  

k1=0.015475 
0.9993 0.0065089 0.0000501 

7 a=0.222298  k=0.030117 0.9879 0.0262503 0.0007465 

8 a=-0.007519  b=0.000017 0.9550 0.0506867 0.0000000 

9 a=0.626699  k=0.017755  b=0.175695 0.9989 0.0078161 0.0000691 

10 a=0.624254  k=0.017817  g=0.003143 0.9989 0.0078165 0.0000691 

11 
a=0.051264  k=0.398272  b=0.791639  

g=0.012236  c=0.157377  h=0.000421 
0.9999 0.0024311 0.0000077 

12 a=0.897715  c=0.039796  L=2.306639 0.9737 0.0387589 0.0016982 

13 c=0.000186  L=0.012178  n=0.636299 0.9872 0.0270796 0.0008290 

14 
a=0.996915  k=0.019533  n=0.861378  

b=0.000300 
0.9999 0.0028697 0.0000097 
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Table A.2. Results of Fitted Models for Experiment 1.2 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

1.2 

1 k=0.010073 0.9704 0.0402090 0.0016871 

2 k=0.027237  n=0.786561 0.9968 0.0132841 0.0001925 

3 k=0.010245  n=0.786562 0.9968 0.0132841 0.0001925 

4 a=0.926967  k=0.009196 0.9817 0.0316493 0.0010927 

5 a=0.848930  k=0.014130  c=0.136775 0.9994 0.0056073 0.0000359 

6 
a=0.739624  k0=0.016173  b=0.251050  

k1=0.002357 
0.9995 0.0050453 0.0000305 

7 a=0.236082  k=0.032824 0.9951 0.0164224 0.0002942 

8 a=-0.009037  b=0.000025 0.9740 0.0376794 0.0015488 

9 a=0.692426  k=0.017543  b=0.177403 0.9994 0.0055271 0.0000349 

10 a=0.689466  k=0.017602  g=0.003151 0.9994 0.0055276 0.0000349 

11 
a=0.011563  k=-0.008395  b=0.150377  

g=0.042220  c=0.836498  h=0.009621 
0.9998 0.0030616 0.0000125 

12 a=0.927067  c=0.000923  L=-0.316787 0.9817 0.0316493 0.0011448 

13 c=0.062312  L=1.692271  n=0.786561 0.9968 0.0132841 0.0002017 

14 
a=0.999525  k=0.018040  n=0.905952  

b=0.000368 
0.9998 0.0031640 0.0000120 

 

 

Table A.3. Results of Fitted Models for Experiment 1.3 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

1.3 

1 k=0.010827 0.9787 0.0349382 0.0012788 

2 k=0.024794  n=0.819095 0.9962 0.0147234 0.0002385 

3 k=0.010958  n=0.819126 0.9962 0.0147234 0.0002385 

4 a=0.943395  k=0.010100 0.9853 0.0290082 0.0009256 

5 a=0.866791  k=0.014864  b=0.128195 0.9997 0.0043851 0.0000223 

6 
a=0.136152  k0=0.00025  b=0.859189  

k1=0.015004 
0.9997 0.0043814 0.0000235 

7 a=0.263191  k=0.030954 0.9966 0.0138989 0.0002125 

8 a=-0.009709  b=0.000029 0.9818 0.0323290 0.0011497 

9 a=0.840452  k=0.015520  b=0.055734 0.9996 0.0045452 0.0000239 

10 a=0.838750  k=0.015547  g=0.000910 0.9996 0.0045455 0.0000239 

11 
a=0.303005  k=0.023503  b=0.012740  g=-

0.008155  c=0.681873  h=0.009340 
0.9997 0.0041414 0.0000236 

12 a=0.943766  c=0.000984  L=-0.312028 0.9853 0.0290085 0.0009744 

13 c=0.943384  L=0.048424  n=2.189665 0.9853 0.0290082 0.0009743 

14 
a=0.999325  k=0.015751  n=0.952684  

b=0.000435 
0.9997 0.0040944 0.0000205 
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Table A.4. Results of Fitted Models for Experiment 2.1 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

2.1 

1 k=0.013235 0.9827 0.0317402 0.0010704 

2 k=0.028301  n=0.825455 0.9981 0.0106054 0.0001275 

3 k=0.013318  n=0.825458 0.9981 0.0106054 0.0001275 

4 a=0.947540  k=0.012400 0.9889 0.0254619 0.0007348 

5 a=0.863973  k=0.017644  b=0.124943 0.9994 0.0060660 0.0000447 

6 
a=0.760738  k0=0.019702  b=0.230933  

k1=0.003121 
0.9994 0.0058417 0.0000446 

7 a=0.252071  k=0.039642 0.9981 0.0103965 0.0001225 

8 a=-0.012035  b=0.000045 0.9847 0.0298559 0.0010102 

9 a=0.689849  k=0.021668  b=0.209712 0.9993 0.0062479 0.0000474 

10 a=0.687707  k=0.021715  g=0.004580 0.9993 0.0062481 0.0000474 

11 
a=0.327671  k=0.017067  b=0.228609  

g=0.003179  c=0.435977  h=0.021748 
0.9994 0.0058290 0.0000525 

12 a=0.947538  c=0.175205  L=3.758933 0.9889 0.0254619 0.0007872 

13 c=0.035484  L=1.146815  n=0.825453 0.9981 0.0106054 0.0001366 

14 
a=0.997375  k=0.020498  n=0.927146  

b=0.000443 
0.9996 0.0046842 0.0000287 

 

 

Table A.5. Results of Fitted Models for Experiment 2.2 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

2.2 

1 k=0.013580 0.9740 0.0383712 0.0015644 

2 k=0.034124  n=0.787753 0.9983 0.0097346 0.0001074 

3 k=0.013735  n=0.787767 0.9983 0.0097346 0.0001074 

4 a=0.933666  k=0.012494 0.9840 0.0301233 0.0010284 

5 a=0.844864  k=0.018885  b=0.138773 0.9987 0.0087435 0.0000928 

6 
a=0.507289  k0=0.007082  b=0.488171  

k1=0.029910 
0.9995 0.0053793 0.0000378 

7 a=0.222526  k=0.047320 0.9968 0.0133625 0.0002024 

8 a=-0.012320  b=0.000047 0.9739 0.0384088 0.0016719 

9 a=0.473961  k=0.031181  b=0.233825 0.9995 0.0055104 0.0000369 

10 a=0.526913  k=0.007303  g=0.031217 0.9995 0.0055104 0.0000369 

11 
a=0.426265  k=0.006169  b=0.026533  

g=0.198568  c=0.546518  h=0.025307 
0.9996 0.0048133 0.0000358 

12 a=0.933660  c=0.766505  L=-7.83271 0.9840 0.0301233 0.0011019 

13 c=0.026593  L=-0.853636  n=0.787757 0.9983 0.0097346 0.0001151 

14 
a=1.000542  k=0.026695  n=0.868224  

b=0.000377 
0.9995 0.0052510 0.0000361 
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Table A.6. Results of Fitted Models for Experiment 2.3 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

2.3 

1 k=0.015636 0.9798 0.0348313 0.0012999 

2 k=0.034723  n=0.810210 0.9977 0.0118421 0.0001618 

3 k=0.015804  n=0.810218 0.9977 0.0118421 0.0001618 

4 a=0.946259  k=0.014633 0.9861 0.0288707 0.0009618 

5 a=0.860144  k=0.021506  b=0.131686 0.9997 0.0045546 0.0000259 

6 
a=0.243975  k0=0.003738  b=0.751108  

k1=0.024310 
0.9997 0.0039533 0.0000213 

7 a=0.248721  k=0.047723 0.9975 0.0123672 0.0001765 

8 a=-0.014133  b=0.000061 0.9819 0.0329245 0.0012508 

9 a=0.723430  k=0.025390  b=0.175237 0.9997 0.0041892 0.0000219 

10 a=0.722081  k=0.025426  g=0.004479 0.9997 0.0041893 0.0000219 

11 
a=0.369707  k=0.015885  b=0.469939  

g=0.027958  c=0.155806  h=0.001842 
0.9998 0.0039016 0.0000254 

12 a=0.946254  c=0.029948  L=-1.43058 0.9861 0.0288707 0.0010419 

13 c=0.009896  L=0.460812  n=0.810168 0.9977 0.0118421 0.0001753 

14 
a=0.999056  k=0.024544  n=0.925582  

b=0.000569 
0.9998 0.0031221 0.0000133 

 

 

Table A.7. Results of Fitted Models for Experiment 3.1 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

3.1 

1 k=0.009851 0.9550 0.0501142 0.0026436 

2 k=0.032131  n=0.743278 0.9971 0.0127773 0.0001814 

3 k=0.009800  n=0.743283 0.9971 0.0127773 0.0001814 

4 a=0.911258  k=0.008688 0.9741 0.0380284 0.0016068 

5 a=0.817691  k=0.014447  b=0.159568 0.9987 0.0085841 0.0000867 

6 
a=0.419282  k0=0.003846  b=0.570316  

k1=0.020548 
0.9995 0.0052413 0.0000343 

7 a=0.215269  k=0.035280 0.9903 0.0233359 0.0006051 

8 a=-0.008905  b=0.000024 0.9592 0.0477720 0.0025357 

9 a=0.542347  k=0.022311  b=0.188465 0.9994 0.0058925 0.0000408 

10 a=0.540757  k=0.022364  g=0.004221 0.9994 0.0058927 0.0000409 

11 
a=0.680982  k=0.015899  b=0.043128  

g=0.210691  c=0.275955  h=0.002282 
0.9999 0.0026105 0.0000097 

12 a=0.911240  c=0.001171  L=-0.367195 0.9741 0.0380285 0.0017014 

13 c=0.006673  L=-0.347380  n=0.743276 0.9971 0.0127773 0.0001921 

14 
a=1.000175  k=0.022344  n=0.850934  

b=0.000351 
0.9998 0.0034770 0.0000151 
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Table A.8. Results of Fitted Models for Experiment 3.2 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

3.2 

1 k=0.010804 0.9512 0.0555698 0.0032505 

2 k=0.035984  n=0.739249 0.9942 0.0192279 0.0004108 

3 k=0.011138  n=0.739249 0.9942 0.0192279 0.0004108 

4 a=0.907398  k=0.009609 0.9690 0.0443083 0.0021814 

5 a=0.832873  k=0.016312  b=0.152391 0.9994 0.0059978 0.0000423 

6 
a=0.264895  k0=0.002340  b=0.727209  

k1=0.018996 
0.9997 0.0043200 0.0000233 

7 a=0.235689  k=0.035397 0.9870 0.0287429 0.0009180 

8 a=-0.009581  b=0.000027 0.9576 0.0517856 0.0029797 

9 a=0.708917  k=0.019921  b=0.136642 0.9996 0.0047951 0.0000271 

10 a=0.291146  k=0.002723  g=0.019923 0.9996 0.0047951 0.0000271 

11 
a=0.203864  k=0.001315  b=0.770087  

g=0.017048  c=0.026050  h=2.166648 
0.9999 0.0028552 0.0000116 

12 a=0.907427  c=0.001786  L=-0.431168 0.9690 0.0443083 0.0023097 

13 c=0.039834  L=-1.07117  n=0.739248 0.9942 0.0192279 0.0004350 

14 
a=1.000707  k=0.021671  n=0.887668  

b=0.000450 
0.9998 0.0039072 0.0000191 

 

 

Table A.9. Results of Fitted Models for Experiment 3.3 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

3.3 

1 k=0.014666 0.9567 0.0488386 0.0025343 

2 k=0.045644  n=0.735725 0.9976 0.0114304 0.0001481 

3 k=0.015060  n=0.735725 0.9976 0.0114304 0.0001481 

4 a=0.913947  k=0.013151 0.9731 0.0384878 0.0016788 

5 a=0.826060  k=0.021842  b=0.153923 0.9984 0.0094827 0.0001092 

6 
a=0.538386  k0=0.033479  b=0.455802  

k1=0.006520 
0.9996 0.0048334 0.0000306 

7 a=0.219328  k=0.052269 0.9905 0.0229189 0.0005953 

8 a=-0.013171  b=0.000052 0.9602 0.0468443 0.0024870 

9 a=0.526312  k=0.034929 b=0.193619 0.9995 0.0050563 0.0000310 

10 a=0.526284  k=0.034930  g=0.006763 0.9995 0.0050563 0.0000310 

11 
a=0.728427  k=0.019678  b=0.174929  

g=0.001495  c=0.096684  h=0.111054 
0.9999 0.0022544 0.0000079 

12 a=0.913949  c=0.015652  L=-1.09096 0.9731 0.0384878 0.0017987 

13 c=0.038650  L=0.893119  n=0.735725 0.9976 0.0114304 0.0001587 

14 
a=1.000772  k=0.033339  n=0.838954  

b=0.000473 
0.9999 0.0024400 0.0000078 
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Table A.10. Results of Fitted Models for Experiment 4.1 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

4.1 

1 k=0.012859 0.9986 0.005932 0.0000365 

2 k=0.013344  n=0.991891 0.9987 0.006437 0.0000446 

3 k=0.012882  n=0.991949 0.9987 0.006431 0.0000445 

4 a=0.988229  k=0.012707 0.9988 0.006489 0.0000453 

5 a=0.997730  k=0.012030  c=-0.018215 0.9993 0.003161 0.0000112 

6 
a=0.494108  k0=0.012707  b=0.494112  

k1=0.012707 
0.9988 0.006490 0.0000491 

7 a=0.019605  k=0.642972 0.9989 0.006922 0.0000516 

8 a=-0.009120  b=0.000021 0.9733 0.027140 0.0007932 

9 a=0.019607  k=0.632888  b=0.019917 0.9989 0.006922 0.0000537 

10 a=0.019590  k=42.96369  g=0.012606 0.9989 0.006921 0.0000537 

11 
a=0.301929  k=0.012705  b=0.301991  

g=0.012705  c=0.384301  h=0.012709 
0.9988 0.006490 0.0000536 

12 a=0.988220  c=0.473561  L=6.104806 0.9988 0.006490 0.0000472 

13 c=0.038367  L=1.703141  n=0.991953 0.9987 0.006432 0.0000463 

14 
a=0.993926  k=0.015552  n=0.946653  b=-

0.000110 
0.9995 0.004004 0.0000187 

 

 

Table A.11. Results of Fitted Models for Experiment 4.2 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

4.2 

1 k=0.011466 0.9964 0.007423 0.0000570 

2 k=0.016944  n=0.916406 0.9992 0.005778 0.0000358 

3 k=0.011681  n=0.916435 0.9992 0.005776 0.0000357 

4 a=0.961093  k=0,011000 0.9984 0.004614 0.0000228 

5 a=0.957254  k=0.011268  c=0.007670 0.9985 0.005263 0.0000308 

6 
a=0.076186  k0=0.109823  b=0.923871  

k1=0.010584 0.9997 0.004042 0.0000188 

7 a=0.071826  k=0.147881 0.9997 0.003970 0.0000169 

8 a=-0.008333  b=0.000018 0.9605 0.031024 0.0010312 

9 a=0.076135  k=0.109752  b=0.096438 0.9997 0.004042 0.0000182 

10 a=-0.014342  k=0.011466  g=0.011466 0.9964 0.007422 0.0000612 

11 
a=0.789477  k=0.010584  b=0.134392  

g=0.010584  c=0.076187  h=0.109817 0.9997 0.004042 0.0000204 

12 a=0.961080  c=0.053671  L=2.208913 0.9984 0.004612 0.0000236 

13 c=0.022310  L=1.162039  n=0.916441 0.9992 0.005776 0.0000371 

14 
a=0.998112  k=0.020103  n=0.869039  b=-

0.000105 0.9999 0.002390 0.0000066 
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Table A.12. Results of Fitted Models for Experiment 4.3 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

4.3 

1 k=0.011128 0.9927 0.009070 0.0000853 

2 k=0.018442  n=0.892137 0.9977 0.008769 0.0000828 

3 k=0.011379  n=0.892200 0.9977 0.008765 0.0000827 

4 a=0.947645  k=0.010507 0.9968 0.006120 0.0000403 

5 a=0.944447  k=0.010683  c=0.005611 0.9968 0.006633 0.0000493 

6 
a=0.089086  k0=0.167075  b=0.910913  

k1=0.010088 
0.9992 0.006391 0.0000476 

7 a=0.093476  k=0.107600 0.9991 0.006475 0.0000452 

8 a=-0.008417  b=0.000019 0.9614 0.028108 0.0008508 

9 a=0.089090  k=0.167060  b=0.060383 0.9992 0.006391 0.0000457 

10 a=0.089087  k=0.167077  g=0.010088 0.9992 0.006391 0.0000457 

11 
a=0129080  k=0.089642  b=0.887623  

g=0.009021  c=-0.017823  h=-0.002128 
0.9997 0.003862 0.0000190 

12 a=0.947633  c=0.049094  L=2.161612 0.9968 0.006119 0.0000419 

13 c=0.001426  L=0.238402  n=0.892260 0.9977 0.008778 0.0000863 

14 
a=0.996316  k=0.024728  n=0.808218  b=-

0.000224 
0.9996 0.004446 0.0000231 

 

 

Table A.13. Results of Fitted Models for Experiment 4.4 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

4.4 

1 k=0.010577 0.9883 0.017168 0.0003061 

2 k=0.016702  n=0.903174 0.9924 0.019319 0.0004031 

3 k=0.010770  n=0.903174 0.9924 0.019319 0.0004031 

4 a=0.948528  k=0.009993 0.9925 0.016711 0.0003016 

5 a=0.971343  k=0.009103  c=-0.035001 0.9933 0.013026 0.0001909 

6 
a=0.475783  k0=0.009993  b=0.472745  

k1=0.009993 
0.9925 0.016711 0.0003278 

7 a=0.086718  k=0.110963 0.9947 0.017428 0.0003280 

8 a=-0.008083  b=0.000018 0.9590 0.029782 0.0009579 

9 a=0.084595  k=0.178978  b=0.053793 0.9949 0.017397 0.0003405 

10 a=0.084593  k=0.178995  g=0.009628 0.9949 0.017397 0.0003405 

11 
a=0.361164  k=0.009993  b=0.360726  

g=0.009993  c=0.226638  h=0.009993 
0.9925 0.016711 0.0003591 

12 a=0.948541  c=0.001446  L=-0.380334 0.9925 0.016711 0.0003142 

13 c=0.002553  L=0.353428  n=0.903108 0.9924 0.019323 0.0004200 

14 
a=1.003597  k=0.033486  n=0.706251  b=-

0.000586 
0.9995 0.004868 0.0000278 
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Table A.14. Results of Fitted Models for Experiment 4.5 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

4.5 

1 k=0.014177 0.9851 0.012839 0.0001714 

2 k=0.029466  n=0.836971 0.9970 0.010172 0.0001121 

3 k=0.014831  n=0.836978 0.9970 0.010171 0.0001121 

4 a=0.925111  k=0.013050 0.9929 0.007502 0.0000610 

5 a=0.917297  k=0.013806  c=0.016642 0.9933 0.008989 0.0000913 

6 
a=0.850600  k0=0.012007  b=0.149254  

k1=0.139765 
0.9990 0.006706 0.0000531 

7 a=0.152980  k=0.078981 0.9982 0.006634 0.0000477 

8 a=-0.009959  b=0.000026 0.9262 0.036631 0.0014536 

9 a=0.149395  k=0.139862  b=0.085848 0.9990 0.006706 0.0000508 

10 a=0.149394  k=0.139864  g=0.012007 0.9990 0.006706 0.0000508 

11 
a=0.149258  k=0.139778  b=0.373121  

g=0.012002  c=0.477473  h=0.012010 
0.9990 0.006706 0.0000585 

12 a=0.925111  c=0.041440  L=1.781997 0.9929 0.007502 0.0000636 

13 c=0.079916  L=1.814955  n=0.836976 0.9970 0.010172 0.0001170 

14 
a=0.998414  k=0.040506  n=0.744268  b=-

0.000253 
0.9997 0.003150 0.0000117 

 

 

Table A.15. Results of Fitted Models for Experiment 5.1 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

5.1 

1 k=0.018806 0.9965 0.0160432 0.0002717 

2 k=0.026658  n=0.916616 0.9990 0.0084996 0.0000807 

3 k=0.019170  n=0.916638 0.9990 0.0084996 0.0000807 

4 a=0.968849  k=0.018198 0.9978 0.0127311 0.0001811 

5 a=0.964292  k=0.018682  c=0.008419 0.9979 0.0124360 0.0001837 

6 
a=0.912087  k0=0.017193  b=0.088424  

k1=0.124999 
0.9994 0.0064054 0.0000520 

7 a=0.074399  k=0.233604 0.9993 0.0069319 0.0000537 

8 a=-0.013457  b=0.000047 0.9595 0.0544932 0.0033189 

9 a=0.087930  k=0.124511  b=0.138083 0.9994 0.0064065 0.0000487 

10 a=0.087916  k=0.124523  g=0.017193 0.9994 0.0064065 0.0000487 

11 
a=0.413701  k=0.017192  b=0.498377  

g=0.017194  c=0.088430  h=0.124969 
0.9994 0.0064054 0.0000600 

12 a=0.968847  c=4.078574  L=-14.9706 0.9978 0.0127311 0.0001925 

13 c=0.000301  L=-0.047156  n=0.807377 0.9937 0.0214531 0.0005465 

14 
a=1.001524  k=0.032611  n=0.855091  b=-

0.000201 
0.9998 0.0028044 0.0000100 
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Table A.16. Results of Fitted Models for Experiment 5.2 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

5.2 

1 k=0.021164 0.9958 0.0189416 0.0003844 

2 k=0.016860  n=1.056192 0.9967 0.0168101 0.0003261 

3 k=0.020950  n=1.056261 0.9967 0.0168100 0.0003261 

4 a=1.005566  k=0.021282 0.9958 0.0188462 0.0004098 

5 a=1.049156  k=0.018152  c=-0.062953 0.9989 0.0098573 0.0001215 

6 
a=0.363830  k0=0.021282  b=0.641735  

k1=0.021282 
0.9958 0.0188462 0.0004843 

7 a=0.005394  k=3.901124 0.9957 0.0191642 0.0004238 

8 a=-0.015597  b=0.000064 0.9887 0.0309943 0.0011084 

9 a=-146.570  k=0.028855  b=0.997699 0.9972 0.0153939 0.0002962 

10 a=0.067813  k=0.021163  g=0.021165 0.9958 0.0189416 0.0004485 

11 
a=0.335189  k=0.021281  b=0.335188  

g=0.021282  c=0.335187  h=0.021282 
0.9958 0.0188462 0.0005920 

12 a=1.005564  c=3.902765  L=-13.5421 0.9958 0.0188462 0.0004440 

13 c=0.107780  L=-2.40682  n=1.056261 0.9967 0.0168100 0.0003532 

14 
a=0.996846  k=0.023473  n=0.946054  b=-

0.000483 
0.9991 0.0087976 0.0001055 

 

 

Table A.17. Results of Fitted Models for Experiment 5.3 

Exp. 

No. 

Model 

No. 
Model Constants R

2 
RMSE 2

 

5.3 

1 k=0.010827 0.9787 0.0349382 0.0012788 

2 k=0.024794  n=0.819095 0.9962 0.0147234 0.0002385 

3 k=0.010958  n=0.819126 0.9962 0.0147234 0.0002385 

4 a=0.943395  k=0.010100 0.9853 0.0290082 0.0009256 

5 a=0.866791  k=0.014864  b=0.128195 0.9997 0.0043851 0.0000223 

6 
a=0.136152  k0=0.00025  b=0.859189  

k1=0.015004 
0.9997 0.0043814 0.0000235 

7 a=0.263191  k=0.030954 0.9966 0.0138989 0.0002125 

8 a=-0.009709  b=0.000029 0.9818 0.0323290 0.0011497 

9 a=0.840452  k=0.015520  b=0.055734 0.9996 0.0045452 0.0000239 

10 a=0.838750  k=0.015547  g=0.000910 0.9996 0.0045455 0.0000239 

11 
a=0.303005  k=0.023503  b=0.012740  g=-

0.008155  c=0.681873  h=0.009340 
0.9997 0.0041414 0.0000236 

12 a=0.943766  c=0.000984  L=-0.312028 0.9853 0.0290085 0.0009744 

13 c=0.943384  L=0.048424  n=2.189665 0.9853 0.0290082 0.0009743 

14 
a=0.999325  k=0.015751  n=0.952684  

b=0.000435 
0.9997 0.0040944 0.0000205 

 

 


