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ABSTRACT

THE HIGGS SECTOR OF THE MSSM WITH GENERAL SOFT

BREAKING TERMS

This thesis is basically established upon an analysis of determining the effects of

the non-holomorphic soft supersymmetry breaking terms on the mass spectrum of the

minimal supersymmetric Standard Model (MSSM). We give an overview concerning the

fundamental concepts of supersymmetry (SUSY) after providing a brief discussion about

the problems of Standard Model (SM) of particle physics. Then we discuss in detail that

SUSY is not the exact symmetry of nature and it must be broken. In general, the break-

down of the global supersymmetry is parameterized by a set of operators. These operators

could be both holomorphic or non-holomorphic in structure. Hence, in theories like the

(MSSM) that do not contain any gauge singlets, these non-holomorphic supersymmetry

breaking terms are soft and do not pose any problem for gauge hierarchy.

In this thesis, in particular we study the impacts of the non-holomorphic soft-

breaking terms on the Higgs sector of the MSSM. We analyze Higgs sector in conjunc-

tion with the chargino sector so as to single out the effects of non-holomorphic trilinear

couplings from theµ parameters. Since the aforementioned sectors are two of the prime

concerns of experiments at the LHC, we expect that our results will be testable in near

future.
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ÖZET

GENEL YUMUŞAK KIRICI TERİMLERE SAHİP MSSM’DE HIGGS

SEKTÖRÜ

Bu tez, holomorf olmayan yumuşak kırıcı terimlerin Minimal Süpersimetrik

Standard Model’in k̈utle spektrumlarındaki etkilerini g̈osteren analize dayanmak-

tadır. Parçacık Fiziği’nin Standart Modeli’ndeki sorunlardan kısaca bahsettikten sonra,

süpersimetrinin (SUSY) temel̈ozeliklerini içeren birözet verdik. Ardından, neden

süpersimetrinin evrenin tam bir simetrisi olamayacağını ve kırılmış olması gerektiğini

ayrıntılı bir şekilde tartıştık. Genel olarak, global süpersimetri kırılması bir grup op-

eraẗorle parametrize edilir. Bu operatörler hem holomorf hem de holomorf olmayan

yapılarda olabilirler. Dahası, MSSM gibi ayar singletleri içermeyen teorilerde bahsi geçen

holomorf olmayan s̈upersimetri kırıcı terimler yumuşak olmalıdır ve herhangi bir ayar

hiyerarşisine yol açmamaları gereklidir.

Bu tez çalışmasında, yumuşak kırıcı terimlerin MSSM’deki Higgs sektörü

üzerindeki etkilerini inceledik. Holomorf olmayan trilinear kuplajlarınµ parame-

trelerinden yola çıkarak, Higgs sektörünü chargino sekẗorü ile birlikte analiz ettik.

Bu sek̈orler LHC’ deki deneylerdëuzerinde durulan temel iki sektör olduklarından,

sonuçlarımızın gelecek zamanlarda test edilebileceklerini düş̈unüyoruz.
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CHAPTER 1

INTRODUCTION

Over the second half of the twentieth century, the Standard Model (SM) of particle

physics has opened a new era in understanding of the elementary particles and explana-

tion of three of four fundamental interactions of Nature the so–called electromagnetic,

weak and strong interactions. The Standard Model incorporates these three fundamental

interactions that must obey certain gauge symmetries. Thus, the SM basically depends on

a certain gauge principle according to which all the forces of Nature are mediated by the

exchange of the gauge fields of the corresponding local gauge symmetry group. Hence

the gauge group of the Standard Model is represented asSU(3)C ⊗ SU(2)L ⊗ U(1)Y

whereSU(3)C , SU(2)L andU(1)Y stand for strong, weak and electromagnetic interac-

tions respectively.

In the Standard Model, this gauge symmetry forbids particles to gain their mass

terms. That is why, we need to break the symmetry and allows particles to have their

masses. Hence, in the SM, the origin of both gauge and fermion masses is explained with

the help of the electroweak symmetry breaking (EWSB). This spontaneous symmetry

breaking is implemented by means of the Higgs mechanism. According to Higgs mecha-

nism, all particles have their masses depending on their Yukawa couplings by interacting

with Higgs field, whereas the Higgs potential describes the self interactions ofH. Thus,

the particle responsible for this Higgs mechanism (Higgs1964), is called the Higgs boson.

Although this mechanism is a very elegant theory, the Higgs boson has not been observed

yet at any high energy experiments and it remains as the most important motivation for

construction of the future colliders. In Chapter2, we will examine the properties of Higgs

particle and we will point out the serious problem about the radiative correction to the

Higgs boson mass in detail.

Although, the SM has also been confirmed in numerous high energy experiments

with extreme good precision in the past decades, it can not provide any explanation con-

cerning the unification of fundamental forces including gravity , the hierarchy problem

between the electroweak and gravity scale, cold dark matter and so on. In Chapter2,

we will give a brief overview about these unanswered problems and we focus on the
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hierarchy problem that is the main inspiration of the new physics beyond the Standard

Model. Then, we will introduce an elegant solution as a further symmetry for stabilizing

the dangerously large radiative corrections to Higgs mass. This new symmetry is called

as supersymmetry (SUSY) whose basic concepts will be discussed in detail in Chapter3.

Supersymmetry (SUSY) is a space–time symmetry that relates fermions to bosons

by means of the supersymmetric transformation. It provides for fermions and bosons to be

represented in a single representation so–called superfield (Wess, et al.1969). However,

if supersymmetry were an exact symmetry of Nature, each fermion and each boson would

have a superpartner with the same mass and the same quantum numbers except their spins.

However, there is no experimental evidence to prove these kind of degeneracy in masses, it

is concluded that the supersymmetry must be broken at low energies. In the Chapter2, we

will give the reasons why supersymmetry must be broken in a safe way not regenerating

the hierarchy problem as well as we will therein introduce the minimal supersymmetric

extension of the Standard Model (MSSM) by giving its particle spectrum, gauge structure,

superpotential.

In general, the breakdown of global supersymmetry is parameterized by a set of

operators with dimensionality less than four. Each operator thus comes with an associated

mass scale, which must fall in the TeV domain if supersymmetry is the correct descrip-

tion of Nature beyond Fermi energies. In Chapter4, we will discuss in detail that the

operators which break the supersymmetry must be softi.e. quadratic divergences must

not be regenerated. These soft breaking terms include some trilinear contributions which

are usually a replica of the superpotential with superfields being replace by their scalar

components. Hence, the mass terms for scalars as well as their trilinear couplings are soft

operators (Chung, et al. 2003).

However, the most general list of supersymmetry breaking operators involve novel

structures beyond these aforementioned holomorphic trilinear symmetry breaking terms

which are gauge invariant and do not consist of any conjugated fields (Girardello and

Grisaru 1982). Indeed, trilinear couplings, for example, can have bothAφφφ type holo-

morphic structure as well asA′φ?φφ type non-holomorphic structure. There is nothing

wrong in considering the non-holomorphic structures since they are perfectly soft if there

are no gauge singlets in the theory like the MSSM (Girardello and Grisaru 1982). In this

sense, MSSM provides a perfect arena for analyzing the important consequences of the
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non-holomorphic soft-breaking terms as will be discussed in Chapter4.

Furthermore, the last section of Chapter4 is devoted to analyse the impact of the

non–holomorphic soft–breaking terms on the Higgs sector of the MSSM. In this sence,

we will analyze Higgs sector in conjunction with the chargino sector so as to single out the

effects of non-holomorphic trilinear couplings from theµ parameters. It is clear that an

independent knowledge ofµ can be obtained from chargino sector via certain observable

called asb → s γ whose branching ratio is expected to place rather strict on the sparticle

contribution. The consequence of this restriction, it provides a unique way of determin-

ing the allowed range of non-holomorphic trilinear coupling. Since, Higgs and chargino

sectors are also two of the prime concerns of experiments at the LHC, we expect that our

results will be testable in near future.

In the last Chapter, we will conclude the thesis with the discussion of the result of

our analysis as well as implying the impact of non-holomorphic terms on various observ-

ables.
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CHAPTER 2

PROBLEMS IN THE STANDARD MODEL (SM)

Throughout the history, some crucial questions asked to understand the structure

of universe have been of significance for scientists.e.g.: What is the fundamental struc-

ture of matter forming the universe? What are the fundamental particles and how do they

interact with each other? All these questions point to a theory of particle physics is called

as “Standard Model ”. The Standard Model(SM) (Salam 1967, Glashow 1961, Wein-

berg 1967) gives an elegant and successful description for explaining the strong, weak

and electromagnetic interactions of the fundamental particles.These interactions can be

represented in terms of unitary gauge groups, so the gauge group of the SM is

SU(3)C ⊗ SU(2)L ⊗ U(1)Y (2.1)

in which, SU(3)c stands for the strong interactions,SU(2)L for weak interactions and

U(1)Y for electromagnetic interactions. Each gauge group possesses a number of gauge

bosons according to their number of generators which are,

8 gauge bosons (gluons; Ga
µ) −→ SU(3)c

3 gauge bosons (W∓, Z0) −→ SU(2)L

1 gauge boson (γ) −→ U(1)Y (2.2)

The main properties of the vector gauge bosons are as follows. The gluonsGa
µ are

electrically neutral and carry color quantum number. The consequence of being colorful

characteristic of the gluons, they interact not only with quarks but also with themselves.

The photon is electrically neutral and non-self interacting spin-1 boson. The intermediate

vector bosons of the strong and electromagnetic interactions are massless. However, be-

cause of the very short range of the weak force, the self-interacting gauge bosons of the

weak interactions must be very heavy. That’s why, we need an explanation concerning
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why gluons and photons stay massless while the weak gauge bosons gain their masses.

Due to the fact that the symmetry which is responsible for weak interactions must be bro-

ken, associated gauge bosonsW∓ , Z0 gain their mass terms. Thus, the SM comes up

with a successful method which gives masses to both fermions and gauge bosons without

violating the gauge invariance. This method is called theElectroweak Symmetry Break-

ing (EWSB) or theSpontaneous Symmetry Breaking(SSB) which can be demonstrated

with gauge symmetry groups;

SU(3)C ⊗ SU(2)L ⊗ U(1)Y −→ SU(3)C ⊗ U(1)em (2.3)

The spontaneous symmetry breaking is implemented by means of a mechanism,

the so-called “Higgs Mechanism ” (Higgs 1964). This mechanism establishes on adding

a new extraSU(2) doublet

Φ ≡

 H+

H0

 (2.4)

is such that the neutral component of the Higgs fieldH0 acquires a non-zero vacuum

expectation valuev ∼ 〈Φ〉. Every fermion gains its mass which is determined bye the

strength of its coupling (Yukawa coupling) to the Higgs field. Due to the different strength

couplings, all fermions have different masses. The successful consequences of the Higgs

mechanism, whileW∓ andZ0 get their mass terms according to their couplings to the

Higgs field both the photon and gluons remain massless because they have no couplings

to the Higgs field. (SU(3)C ⊗ U(1)em is protected. ) Thus, the outcome of the self

interaction of the Higgs field, the Higgs mechanism also provides a new particle so–called

theHiggs bosonabout which we have not had any evidence to prove its existence in the

high energy experiments up to now.

Even though the Standard Model (SM) has an impressive theoretical framework

to explain the basic constituents of matter (leptons and quarks ) and their interactions

(strong, weak, electromagnetic ) being quite precise agreement with experimental data, it

is not a full description of nature on account of the some unsolved problems in the theory.

These problems can be listed as follows:
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• Hierarchy Problem: The hierarchy problem in the SM is a significant desta-

bilization issue on the Higgs mass. In other words, when the radiative correc-

tions to Higgs mass are taken into account, it is easily recognized that Higgs

mass is quadratically divergent (high dependence on the ultraviolet cutoff scale

Λ ∼ 1019GeV ). It is implied that tree level Higgs mass is in102 (GeV ) order

while the quantum corrections are in1019 (GeV ).

• Electroweak Symmetry Breaking: Although the electroweak symmetry breaking

gives an answer how the elementary particles gain their masses by interacting with

the Higgs field, the Higgs sector is not constrained by any symmetry. It is just put

into theory by hand for satisfying symmetry breaking and it is not clear whether

it is fundamental or not. Another issue about symmetry breaking is that the scalar

particle, Higgs boson, which is required by the theory has not been observed yet.

• Matter-Antimatter Asymmetry : The SM does not give any information concern-

ing the fact that why the universe is made of matter instead of antimatter or both.

More seriously, although the fundamental equations demonstrate the equivalence

the amounts of matter and antimatter, we can’t observe antimatter as much as mat-

ter. The SM also can not give any reasonable answer this asymmetry between matter

and antimatter.

• Gauge Coupling Unification: The idea of the gauge coupling unification is

based on that all symmetries have the same gauge coupling at the high energies

(ΛGUT ' 1015 − 1016GeV ) and they diversify at the low energies according to the

renormalization group evolution. The gauge unification is the basic motivation of

the gauge unification theory (GUT) and the string theories which attempt to incor-

porate all fundamental interactions including gravity. However the experimental

results of the values of the low energy gauge couplings show that the SM can not

unify the gauge couplings accurately.

Some other unanswered questions can be added to this liste.g.: cold dark matter

problem, cosmological constant problem, neutrino mass problem. Furthermore, the SM

gives no information concerning gravitational interaction. All these serious issues need

to clarify to construct a fundamental theory of the universe. Especially the hierarchy

problem is the main inspiration to believe that the standard model must be a low energy
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limit of an extended fundamental theory giving solution all these mentioned problems

properly. That’s why, it is useful to discuss the hierarchy problem in detail to motivate the

new physics beyond the standard model.

2.1. Hierarchy Problem

As it has been discussed in the previous section, the SM is not a full story of Na-

ture because it includes several theoretical shortcomings. The ultraviolet sensitivity of

the higgs mass,known as hierarchy problem, can be given an useful example for these

conceptual problems. If one tries to calculate to radiative correction to Higgs mass, re-

sulting from its self couplings, Yukawa couplings to fermions and its coupling to gauge

bosons, bring about a quadratic dependency to the ultraviolet cutoff scale (ΛUV ). This

quadratic divergence problem are present only in the scalar Higgs sector in the SM be-

cause the mass of Higgs is not protected by any symmetry while fermions (gauge bosons)

are protected by chiral (gauge) symmetry and quantum corrections to their masses are

only logarithmically dependent on the cutoff scale (ΛUV ) .

Figure 2.1. The figure in top row corresponds to the Yukawa interaction contribution,

the first figure in the second row is the scalar self-interaction contribution,

the other corresponds to the gauge interaction contributions to the quadratic

divergence.
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δf m
2
H ∼ −

λ2
f

16π2
Λ2

UV

δg m
2
H ∼ g2

16π2
Λ2

UV

δH m
2
H ∼ λ

16π2
Λ2

UV (2.5)

All loop contributions to Higgs mass shown in (2.5), whereλf is the Yukawa cou-

plingsλ is the quadratic higgs coupling andg the gauge couplings, have the ultraviolet

sensitivity at the high energies. In other words, the mass squared of higgs is expected to

be of order(100GeV )2 which is the energy scale of the electroweak symmetry breaking

(EWSB). However, the radiative corrections to the higgs massm2
H are of order(ΛUV )2

which can be chosen(ΛUV ) ∼ MPlanck ' 1019GeV . The consequences of the contri-

butions of fermion, gauge and higgs loops, the quantum corrections tom2
H can be nearly

thirty order of magnitude greater thanm2
H itself. (δ m2

H � m2
H)

It is obvious that we need new physics theories beyond the standard model in order

to tame the higgs mass. These attractive theories come up recent decades which are called

“ Large Extra dimensions (Arkani, et al. 1998, Antoniadis, et al. 1998), Technicolor (Hill

and Simmons 2003) and Supersymmetry (SUSY) (Wess, et al. 1969, Drees 1996, Martin

1997)”. We prefer to analyze this stabilization problem under the technic of supersymme-

try which introduces a new symmetry to stabilize the Higss mass. In this symmetry, we

couple fermion (boson) loop contribution by introducing a new boson (fermion) contribu-

tion with same Yukawa (gauge) coupling such that by means of the spin-statistic theorem,

the sign of standard fermion loop is opposite to that of boson loop and these contributions

cancel exactly each other if they have the same masses.

As it seen in figure (2.2), we design new boson (a partner) for fermion, a new

partner for gauge boson called “gaugino”. If partners have the same mass as well as

same quantum numbers except their spins, the loop contributions then vanish identically.

If they do not, in other words, the supersymmetry is broken, then theδm2
H is proportional

to the mass-squared difference of partnersi.e: for fermion and its partner contribution is

proportional to

8



Figure 2.2. Cancellation of the quadratic divergence caused by fermion and boson loops

with same couplings to Higgs mass.

δfm
2
h ∝| m2

f −m2
b | (2.6)

mf is the mass of the fermion whilemb stand for the related boson mass. It is crucially

important to mention that, the cancellation of quadratic divergence remains intact as long

as the new particles coming from SUSY or known assuperpartnersappear at an energy

scale not too far above TeV scale. Otherwise, huge mass difference between particles

and their superpartners would regenerate the hierarchy problem. Thus, if the supersym-

metry existed as a exact symmetry of nature then the Standard Model particles and their

superpartners would be have the same masses, same quantum numbers except their spins.

However, We haven’t observed any supersymmetric partners of the particles, that’s why

SUSY must, of course, be a broken symmetry and the masses of supersymmetric particles

differ with those of their SM particles.

Supersymmetry (SUSY) is the one of the most accepted theory beyond the Stan-

dard Model and is thought to give an answer not only hierarchy problem (as discussed

above) but several problems in SM as well. These important topics explained by SUSY

are:

9



• The gauge coupling unification (de Boer, et al. 1991)

• The explanation of the baryon asymmetry of the universe

• Cold dark matter

• The description how the electroweak symmetry is broken.

Together all these successful predictions, SUSY is believed to be a part of the

correct description of the universe. In the next chapter we will discuss the structure and

algebra of this elegant symmetry, determine the properties of the theory. Then, we will

introduce the minimal extension of supersymmetry and its particle content.

10



CHAPTER 3

SUPERSYMMETRY

3.1. General Feature of the Supersymmetry

3.1.1. SUSY Algebra

The supersymmetry (SUSY) is a space-time symmetry which relates particles

of integer spin with those of half-integer spin. In other words, supersymmetry gives a

connection between fermions and bosons. For this aim, SUSY requires a transformation

known assupersymmetric transformationwhich turns a bosonic state into a fermionic

state and vice versa. An operatorQ is represented as a generator of the supersymmetric

transformation and it must be a form like

Q|Boson >= |Fermion >

Q|Fermion >= |Boson > (3.1)

The possible forms of such symmetries are strictly forbidden by the Coleman-

Mandula theorem ( Coleman and Mandula 1967 ) with using tensor charges. ( it means

that there is no other charge with non-trivial transformation properties underPoincáre

transformations. More clearly, no non-trivial combination of external ( Lorentz transfor-

mations ) and internal ( such as flavor SU(2) or SU(3) ) symmetries can be achieved by

using just bosonic charges ). One can find useful example about the Coleman-Mandula

Theorem in Ellis (2002) and Aitchison (2005). However the Coleman-Mandula theorem

gives no restriction for using spinor charges which carry spin angular momentum–1/2 .

For constructing a consistent algebraic scheme, it is necessary to combine the

spinorial chargeQα with the energy momentum operatorP µ and the angular momentum

operatorMµν ( whereP µ is the momentum generator of space time translation andMµν

is the generator of the Lorentz transformation ).
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The spinoral charge is a symmetry operator so, it must commute with the Hamil-

tonian ( the temporal component of theP µ ) of the system (Golfand and Likthman 1971);

[Qα , H] = 0 (3.2)

It emphasizes that the SM particles and their partners have same masses and the anticom-

mutator of two different components must be

[{Qα , Qβ} , H] = 0 (3.3)

The relation (3.3) guarantees that the anticommutation relation of the charges must be

proportional to the energy momentum four vectorP µ (Aitchoson 2005) because all com-

ponents ofP µ must commute with each other. ([P µ , P ρ] = 0 )

{Qα , Qβ} ∝ P µ (3.4)

The basic commutation and anticommutation relations amongP µ, Mµν andQα can be

settled with enlarging Poincaré algebra (Kazakov 2000)

{Qi
α , Q̄

j

β̇
} = 2 δij(σµ)αβ̇ Pµ (3.5)

[
Pµ , Q

i
α

]
= [Pµ , Q̄

i
α̇] = 0 (3.6)

{Qα , Qβ} = {Q̄α̇ , Q̄β̇} = 0 (3.7)

[
Qi

α ,M
µν
]

=
1

2
(σµν)β

αQ
i
β (3.8)

[
Q̄i

α̇ ,M
µν
]

= −1

2
Q̄i

β̇
(σ̄µν)β̇

α̇ (3.9)

[P µMσρ] = i (gµσ P ρ − gµρ P σ) (3.10)

i , j = 1, 2, ..., N ;α , α̇ , β , β̇ = 1, 2

12



with using the relations(4σµν = i(σµ σ̄ν − σν σ̄µ)) and introducingσµ = (1, ~σ) and

σ̄µ = (1,−~σ) where~σ represents the Pauli matrices ( see Appendix A ),α , α̇ , β , β̇ are

the spinorial indices,µ , ν = 0, .., 3 are spacetime indices. The algebra(3.5) is called

“SuperPoincaŕe algebra ”. This SUSY algebra is only possible way to mix integer and

half-integer spins and changes statistics. Thus, it is the only non-trivial extension of the

set of the spacetime symmetries. This means that it is consistent with the symmetries of

the S-Matrix. (Haag, et al. 1975). The simplest case isi = j = 1 which is called “N = 1

SUSY ” corresponds one spinor generatorQα and its conjugatēQα̇. In this thesis, we

consider only unextendedN = 1 supersymmetry ( with minimal particle content). It

is useful to mention that with increasing N, the theory also must contain particles with

spin greater than1. This theories are not renormalizable, thus the theories consisting of

particles with spin greater than5/2 do not have consistent coupling to gravity.

N ≤ 4 for renormalizable theories

N ≤ 8 for (super) gravity

In N = 1 (global) supersymmetry all particle states fall into irreducible repre-

sentations of supersymmetry algebra so-called “supermultiplets”. Each supermultiplet

contains both fermionic and bosonic states which are called as “superpartners” of each

other. As mentioned before, the Equation 3.2 emphasizes that the particles which occupy

the same irreducible supermultiplets ( particles and their superpartners ) must have equal

masses and have the same representation of the gauge group, so they must have same

color, electric charge, weak isospin degrees of freedom.

Another aspect of the supermultiplets is that the fermionic degrees of freedom and

the bosonic degrees of freedom in the same supermultiplet must be equal. (Martin 1997)

nF = nB (3.11)

wherenF andnB represent fermionic and bosonic degrees of freedom respectively.

In the next section, we will state the minimal extension of the Standard Model
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which is called as the Minimal Supersymmetric Standard Model (MSSM) and its particle

content as well as the Lagrangian representing these particle interactions.

3.2. The Minimal Supersymmetric Standard Model (MSSM)

The simplest supersymmetric extension of the Standard Model is the so-called

Minimal Supersymmetric Standard Model (MSMM) which contains minimal number of

superpartners and interactions. In the supersymmetric extension of the Standard Model,

every known fundamental particle falls into either chiral or gauge (vector) supermultiplet

representation with the associated superpartner. It is very instructive to discuss the prop-

erties of these supermultiplets in order to construct the supersymmetric model properly.

• Chiral (Matter) Supermultiplets : It is the supermultiplet which is nothing but

the combination of a two component Weyl fermion, a complex scalar field. Chiral

supermultipltes classifies fermions whose left-handed parts transform differently

under the gauge groups than the right-handed parts, Higgs bosons and their bosonic

superpartners.

• Gauge (Vector) Supermultiplets: The vector bosons (spin-1) of the Standard

Model and their fermionic superpartners (spin-1
2
) are placed in gauge (vector) su-

permultiplets which have equal fermionic and bosonic degrees of freedom.

3.2.1. The Particle Content of the MSSM

The supermultiplets whether chiral or gauge, consist of ordinary particles and

their superpartners with spin differing by1/2 unit. The superpartners (spin-0) of the SM

fermions (quarks and leptons) are constructed by adding “s” which stands for “scalar”.

Thus they are generically calledsquarksandsleptonsrepresented with the same symbols

with their SM particles but with a tilde using to denote the superpartners of the Standard

Model particles. Due to the chirality (the left-handed or right-handed) of the fermions,

their superpartners have different representation (as seen in Table3.1) i.e: left-handed

selectronẽL and right-handed selectroñeR. It is important to keep in mind that the

handedness of the superparticles do not refer to the helicity of them but to that of their

SM fermions. Moreover in the SM neutrinos are always left-handed, so the superpartners
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of the neutrinos (sneutrinos) mus be left-handed denoted asν̃.

Table 3.1. Chiral Supermultiplets of the MSSM

Superfield Bosons (spin 0) Fermions (spin 1/2) SU(3)C SU(2)L U(1)Y

Q̂ (ũL d̃L ) (uL dL) 3 2 1/6

Û ũR uc
R 3̄ 1 −2/3

D̂ d̃R dc
R 3̄ 1 1/3

L̂ (ν̃ ẽL) ( ν eL) 1 2 −1/2

Ê ẽR ec
R 1 1 1

Ĥu (H+
u H0

u ) (H̃+
u H̃0

u ) 1 2 1/2

Ĥd (H0
d H−

d ) (H̃0
d H̃−

d ) 1 2 −1/2

One important feature of Table (3.1) deserves clear explanation. In contrast to the

SM, the MSSM requires two Higgs doubletsHu =

 H+
u

H0
u

 andHd =

 H0
d

H−
d

 with

opposite hypercharge (Y = 1
2

andY = −1
2

respectively). The decisive reasons why we

need two Higgs doublets in the SUSY theories can be given as follows:(Dawson 1996

and Kazakov 2000)

• Due to the fact that Higgs is a scalar particle, it can only reside in a chiral super-

multiplet with a fermionic superpartner the so-calledHiggsinowhich would have

hypercharge eitherY = 1
2

or Y = −1
2
. It is important to mention that all the Stan-

dard Model fermions, with the third components of their weak isospinsT3, uphold

a delicate balance where the tracesTr(Y 3) andTr(T3T3Y ) are both zero when all

left-handed fermions are taken consideration. For instance,

Tr(Y 3) = 3
(

1
27

+ 1
27

−64
27

+ 8
27

)
−1 −1 +8 = 0.

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

colour uL dL uR dR νL eL eR
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This elegant feature protects the theory from anomalies (Martin 1997). However,

introducing a new particle with non-zero hypercharge (Higgsino) destroys these

relations (these traces have non-zero values) and gives rise to triangleSU(2)L and

U(1) gauge anomalies which would lead to unphysical divergences of the theory. If,

however, two Higgs doublets are introduced with opposite hypercharge, the above-

mentioned cancelations are reestablished. That’s why, we need to add a new Higgs

doublet to spoil this anomaly problem and make the SUSY theories sensible.

• Two Higgs doublets are also necessary to provide the mass terms of both down and

up-type quarks.Hu whose hypercharge isY = 1
2

gives mass to up-type quarks

with electric charge2
3

whenHd with Y = −1
2

gives mass to down-type quarks with

electric charge−1
3
.

The vector bosons of the SM are accomodated in gauge supermultiplets with their

fermionic superpartners which are called asgauginos(shown in table (3.2)).

Table 3.2. Gauge Supermultiplets of the MSSM

Superfield Bosons (spin 1) Fermions (spin 1/2) SU(3)C SU(2)L U(1)Y

Ĝa ga g̃a 8 1 0

Ŵ W∓ W̃∓ 1 3 0

B̂ B0 B̃0 1 1 0

The mediator of theSU(3) color gauge interactions is gluonga whose color-octet

superpartner thegluino g̃a. Thus, the electroweak symmetrySU(2)L ⊗ U(1)Y has

spin-1 gauge bosonsW+, W−, W 0 andB0 while their spin-1
2

superpartners arẽW+,

W̃−, W̃ 0 andB̃0 calledwinosandbino. After the electroweak symmetry breaking, the

eigenstates ofW 0 andB0 mix to give mass toZ0 andγ whose superpartners̃Z0 and γ̃

the so-calledzinoandphotinorespectively. Furthermore, the spin–1
2

superpartners of the

Higgs bosons, the higgsinos, will mix with winos and the bino to give mass eigenstates:

2 charginosχ±1,2 and4 neutralinosχ0
i with i = 1, 2, 3, 4.
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3.3. The Lagrangian of the MSSM

The MSSM lagrangian can be considered as two different fundamental parts which

are given as

L = LSUSY + LSoft. (3.12)

LSoft is the soft breaking lagrangian term which will be discussed in detail in the next

chapter, needs for breaking supersymmetry and giving mass terms to the supersymmet-

ric particles. First term ofL is considered as the supersymmetric Lagrangian denoted as

LSUSY which consists of the gauge invariant kinetic terms corresponding to the SU(3)C ,

SU(2)L and U(1)Y gauge groups, the same gauge interactions terms as the SM, the

Yukawa interaction terms and the scalar potential are derived from thesuperpotential

which is an analytic function containing terms with just2 and3 chiral superfields. The

superpotential must not contain terms with more than3 chiral superfields because these

kind of terms would yield non-renormalizable interaction in the lagrangian. It is impor-

tant to mention that SUSY does not allow to superpotential to consist of the complex

conjugates of the chiral superfields. The most general form of the superpotential is given

as explicitly:

ŴMSSM = −µĤd · Ĥu + Q̂ · ĤuYuÛ + Ĥd · Q̂YdD̂ + Ĥd · L̂YeÊ (3.13)

where the gauge and family indices have been suppressed andYu, Yd and Ye are

the Yukawa coupling3 × 3 matrices of u-type quarks, down-type quarks and leptons

respectively. The first three terms in the superpotential are nothing but a superspace

generalization of the Yukawa interaction in the SM. These are necessary for determin-

ing the masses and CKM (Cabibbo-Kobayashi-Maskawa) mixing angles of the SM

fermions after the neutral component of Hu and Hd get their VEV’s (vacuum expectation

value). Theµ term in the superpotential is just the supersymmetric version of the

Higgs mass in the Standard Model. The dot “.” notation corresponds to, for instance,
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Q̂ · Ĥu ≡ Q̂T (iσ2) Ĥu = εijQ̂
iĤj

u with ε12 = −ε21 = 1. Since the superpotential must

be holomorphic, the (̂Q · ĤuYuÛ ) Yukawa terms can not be replaced by something like

(Q̂ · Ĥ∗
dYuÛ ) and (Ĥd · Q̂YdD̂) terms can not be replaced by (Ĥ∗

u · Q̂YdD̂), because

these terms with the complex conjugate of the superfields are forbidden by the structure

of the supersymmetry.

In principle the superpotential can consist of other terms like

Ŵ ′ = µ
′
L̂ · Ĥd + L̂ · Q̂YLÊ + L̂ · Q̂Y

′

LD̂ + Û · D̂YBD̂ (3.14)

which are forbidden in the SM by Lorentz invariance. The first three terms imply the

lepton-number (L) violating interactions. The latter is the baryon-number (B) violating

interaction in the lagrangian. Since both effects are not observed in nature, these terms

must be suppressed or be excluded. Therefore, in the MSSM, one imposes a new discrete

and multiplicative symmetry so–calledR-Parity which enforces the baryon and lepton

number conservation in the superpotential. For each particle R-Parity is defined as

PR = (−1)3(B−L)+2S (3.15)

where B and L stand for baryon number and lepton number respectively while S represents

the spin of the particle. The R-parity assignment requires that all Standard Model particles

and the Higgs bosons have even R-parity (PR = +1) while all supersymmetric particles

have odd R-parity (PR = −1). If R-parity is exactly conserved, then the interactions

of superpartners are essentially same as in the SM, two of three particles at any vertex

are replaced by superpartners. It is also affirmative to mention the extremely important

consequences of R-parity conservation:

• There is no mixing between the Standard Model particles and supersymmetric par-

ticles.

• Sparticles are created in pairs in particle collisions. In other words, every interaction

vertex in the theory contains even number of sparticles. These particles are heavy

and highly unstable and decay quickly into lighter states.
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• The lightest sparticle called as “lightest supersymmetric particle orLSP” must ab-

solutely be stable and must eventually be produced at the end of a decay chain initi-

ated by the decay of a heavy unstable supersymmetric particle. The LSP should be

electrically and color neutral and weakly interacting in order to be consistent with

cosmological constraints and therefore it can be an attractive candidate for “cold

dark matter” (Jungman, et al. 1996), an important component of the non-baryonic

dark matter required in several models of cosmology.

We will take into account only the R-parity conserved case for superpotential.

However, one can consider R-parity broken case in which either L or B are not conserved.

(In R-parity violating case, the LSP is not stable and will decay into the SM particles.

So the collider signatures of R-violating case can be very different from the R-parity

conserved case.) Moreover, both L and B is broken, then proton would decay very rapidly.

In order to avoid this kind of inconsistencies all couplings in (Equation 3.14) are almost

zero. In other words, one or the other (or both) of the interactions is assumed absent (see

Haber, et al. 1995 for further discussions of the theory where the R-parity broken).

In the next subsection, we will discuss in detail that what kind of interactions the

supersymmetric lagrangian of the MSSM contains and how the Yukawa interaction terms

and the so-calledF-termsare derived from the superpotential.

3.3.1. Supersymmetric Part of the MSSM Lagrangian

In order to constitute a gauge invariant SUSY lagrangian, we have to collect all

terms not only consisting of the Yukawa and gauge interactions but also interaction terms

which are invariant under the supersymmetric transformations. Hence we expect that

all scalar and fermion fields must be in the same representation of the gauge group. In

renormalization limit, the mass dimension of any term in the lagrangian must be less than

or equal to4. Then the SUSY lagrangian takes form as

LSUSY = LKinetic + LGauge − LY ukawa − VF . (3.16)
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where the lagrangian of the kinetic terms and gauge interactions terms are given

respectively,

LKinetic =
∑

i

(Dµφi)
†(Dµφi)−

1

4

∑
a

(Fµν)a F
µν
a

+
i

2

∑
i

ψ̄i /D ψi +
i

2

∑
a

λ̄a /D λa (3.17)

LGauge = −
√

2
∑

a

ga φ
†
i (T a)ij ψ̄j PLλ̄

a

− 1

2

∑
a

DaDa (3.18)

where D terms are determined asDa = φ†iga(T
a)ijφj. “LGauge ” and “LKinetic” represent

all interactions of all MSSM particles with gauge bosons and fermions.φi (ψi) is the

scalar (Majorana fermion) component of the chiral superfieldΨ̂ while λa is the Majorana

gauge superpartner of the corresponding gauge boson andFµν is the gauge boson field

strength. The derivativeDµ andDµ are gauge invariant derivatives appropriate to the

particle representation which the fields belong and the relation between/D andDµ is

determined as/D = γµDµ whereγµ represent the Dirac matrices (Appendix A).

The terms inLKinetic determine how particles interact with gauge bosons. The lat-

ter lagrangian part describes the interactions of gauginos with matter particles and Higgs

multiplets whereT a represent the appropriate dimensional matrix representation of the

gauge symmetry generators andga are the SM gauge couplings.PL is the one of the

helicity operators and it is defined as

PL =
1− γ5

2
=

 1 0

0 0

 . (3.19)

Last two terms of the supersymmetric lagrangian the so-calledLY ukawa and VF are

obtained by the superpotential. In order to obtain the interactions come from the

superpotential, we take the derivatives of the W with respect to the scalar components of

the superfields and, for Yukawa interaction termLY ukawa, we multiply with fermionic
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part of the two superfieldψi andψj for the aim of giving mass terms of the quarks and

leptons of the SM.

LY ukawa = εij

[
E Ye L

iHj
d +DYdQ

iHj
d + U YuQ

iHj
u + µ H̃ i

u H̃
j
d

]
+ εij

[
Ẽ Ye L

i H̃j
d + D̃ YdQ

i H̃j
d + Ũ YuQ

i H̃j
u

]
+ εij

[
E Ye L̃

i H̃j
d +DYd Q̃

i H̃j
d + U Yu Q̃

i H̃j
u

]
+ h.c

=
∑
i,j

∂2W

∂φi∂φj

ψiψj + h.c (3.20)

Finally, the last term in the supersymmetric lagrangian, theVF term, gives the Higgs

masses and describes scalar mass terms and scalar interactions.VF is introduced by the

square of the so-calledF-termsgiven asFi ≡ ∂W (φ)/∂φi.

VF =
∑

i

∣∣∣∣∂W (φ)

∂φi

∣∣∣∣2 = |Fi|2 (3.21)

Then the total supersymmetric lagrangian is;

LSUSY =
∑

i

(Dµφi)
†(Dµφi)−

1

4

∑
a

(Fµν)a F
µν
a

+
i

2

∑
i

ψ̄i /D ψi +
i

2

∑
a

λ̄a /D λa

−
√

2
∑

a

ga φ
†
i (T a)ij ψ̄j PLλ̄

a − 1

2

∑
a

[
φ†iga(T

a)ijφj

]2
−

[∑
i,j

∂2W

∂φi∂φj

ψiψj + h.c

]
− |Fi|2 (3.22)
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In the next chapter, we will discuss the soft supersymmetry breaking in the MSSM

in detail. We will focus on both the holomorphic and non-holomorphic terms in the soft

breaking lagrangian so we will have a chance to obtain the whole picture regarding the

supersymetry breaking. Thus, we will analyse the importance of the non-holomorphic

terms in the Higgs sector in comparison with other sectors are not affected by the general

breaking terms in the MSSM.
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CHAPTER 4

SOFT SUPERSYMMETRY BREAKING IN THE MSSM

So far, we have considered just the supersymmetry conserving part of the la-

grangian. As mentioned in Chapter-2, in the unbroken supersymmetry, every SM particle

is degenerate in mass with its corresponding superpartner comes from SUSY. However,

if the particles and their superpartners had had the same masses, they would have already

been discovered. Hence, we haven’t have any evidence about superpartners, it is con-

cluded that the supersymmetry must be broken at low energies. From the theoretical per-

spective, it is excepted that SUSY is broken spontaneously analogous to the electroweak

symmetry in the SM. However, none of the field in the MSSM can have non-zero expec-

tation value (v.e.v) needed for SUSY breaking without destroying the gauge invariance.

The most common thought is that the supersymmetry breaking occurs in a sec-

tor which is called ashidden sectorand the with the help of the messenger fields (dif-

fer depending on the scenario we consider. The most popular ones are gauge-mediated,

gravity-mediated, anomaly mediated and gaugino mediated), supersymmetry breaking is

mediated to thevisible sectorby flavor blind interactions and the lagrangian terms which

are belong to the particles of the MSSM are generated. These effective breaking terms

are incorporated with the lagrangian in such a way that they must not spoil the excellent

cancelation of the quadratic divergence in the Higgs mass in order not to regenerate the

dangerous UV divergences, the so-called hierarchy problem (as discussed in Chapter-2).

That’s why, the masses of the superpartners differ with those of their SM particles at the

scale not too far from the TeV scale. It means that we need to break supersymmetrysoftly

to prevent the theory from this kind of divergences.

The part of the lagrangian contains all scale dependent soft breaking terms are

generically denoted as LSoft in which all terms are consistent with gauge symmetries

of the SM and do not cause any quadratic divergences. The supersymmetry breaking

terms are often assumed to be flavor-independent and/or gauge independent at the high

energy scale and split as they evolve to low energy scale under the renormalization group

equations-RGEs (Falck 1985).

23



We will firstly deal with the soft breaking terms which do not contain any hermi-

tian conjugates of any scalar fields. Then, we will discuss the additional non-holomorphic

terms which respect gauge invariance and R-parity but violate the holomorphicity of the

soft breaking lagrangian part.

4.1. The Holomorphic Soft Breaking Terms

Even though we do not know the origin and dynamical mechanism of the super-

symmetry breaking, fortunately, it is possible to write the effective soft breaking terms

that have mass dimension two or three by means of the restriction of both gauge and

Lorentz invariance. The terms of soft SUSY breaking are categorized by Grisaru and

Girardello (1982) and listed as follows:

• Soft scalar mass square terms:m2
ij φ

†
i φj

• Soft gaugino mass terms:1
2
Ma λ̄

a λa,+h.c

• Soft bilinear scalar interactions:bij φi φj + h.c

• Soft trilinear scalar interactions terms:Aijkφi φj φk + h.c

Besides, the terms having mass dimension four and more or the terms likeφ3, ψ̄ ψ

can not added to the soft breaking lagrangian because they lead the quadratic divergences

in the theory (Chung, et al. 2005). Finally, the supersymmetric breaking lagrangian Lsoft

takes the form explicitly,

−Lsoft = Q̃†m2
Q̃
Q̃+ Ũ †m2

Ũ
Ũ + D̃†m2

D̃
D̃ + L̃†m2

L̃
L̃+ Ẽ†m2

Ẽ
Ẽ

+ m2
Hu
H†

uHu +m2
Hd
H†

dHd + [−µBHd ·Hu + h.c.]

+
[
Q̃ ·HuY

A
u Ũ + Q̃ ·HdY

A
d D̃ + L̃ ·HdY

A
e Ẽ + h.c.

]
− 1

2

[
mg̃λ

a
g̃λ

a
g̃ +M2λ

i
W̃
λi

W̃
+M1λB̃λB̃ + h.c.

]
. (4.1)

Herem2
Q̃,··· ,Ẽ are the soft mass-squares of the scalar fermions,YA

u,d,e are their associated

holomorphic trilinear couplings, and finally,mg̃, M2, M1 are, respectively, the masses of

color, isospin and hypercharge gauginos which are called as the gluino, wino and bino.
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Thus, a term in gluino labelsSU(3)C the gauge group and runs from1 to 8 while i

term in the wino terms stands forSU(2)L gauge group and runs from1 to 3. The Higgs

sector is described by soft massesm2
Hu

, m2
Hd

andB term that mixes the scalar compo-

nent of two Higgs doublets. In the space of fermion flavors,m2
Q̃,··· ,Ẽ are mass squared

hermitian matrices in family space whereasYA
u,d,e, like Yukawa matrices themselves, are

non-hermitian matrices. Thus, the bilinearB term and trilinear soft breaking termsYA
u,d,e

have forms like those of the superpotential in (Equation3.14).

It is crucial to mention that these soft breaking terms have holomorphicity which

means that any trilinear interaction term in the soft lagrangian does not include the hermi-

tian conjugate of any fields. Indeed, as we will discuss the next section, some other terms

can be devised with respecting the gauge invariance but violating the holomorphicity of

the lagrangian. However, they are necessary to obtain both the more general feature of the

supersymmetry breaking and the complete understanding of the MSSM phenomenology

as well as its astrophysical and cosmological implications.

4.2. The Non-Holomorphic Soft Breaking Terms

As discussed in the previous section, the Equation 4.1 has been believed to in-

clude all possible soft supersymmetry breaking terms without violating R-parity as well

as gauge invariance and not regenerating the quadratic divergences in many supersym-

metric theories which do not have pure gauge singlets in their particle spectrum.

However, as has been shown explicitly in (Bagger and Poppitz 1993), in super-

symmetric theories without pure gauge singlets (like the MSSM), the holomorphic su-

persymmetry breaking terms do not necessarily represent the general set of soft-breaking

operators. Indeed, one may consider some additional non-holomorphic terms which re-

spect the gauge symmetries. These terms are also “soft”, which do not cause any quadratic

divergences and do not violate the R-parity (Frere, et al. 2000). Thus, such terms have

shown to occur among flux-induced soft terms within intersecting brane models (Camara,

et al. 2004).

In the sense, for constructing a complete picture of the MSSM phenomenology,

we must add these non-analytic (non-holomorphic) terms include the hermitian conjugate

of at least one MSSM scalar field. Indeed, one may consider, for instance, triscalar cou-

plings with the hermitian conjugates of the Higgs fields, so the soft breaking sector must
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necessary include

−L′
soft = Q̃ ·HC

d Y′A
u Ũ + Q̃ ·HC

u Y′A
d D̃ + L̃ ·HC

u Y′A
e Ẽ + h.c. (4.2)

in addition to those in (Equation 4.1). HereY′A
u,d,e are non-holomorphic trilinear

couplings which do not need to bear any relationship to the holomorphic ones inYA
u,d,e

in (Equation 4.1). These two classes of trilinear couplings are perfectly soft and must

be taken into account when confronting the MSSM predictions with experimental data.

Being 3 × 3 complex non-hermitian flavor matrices, the non-holomorphic trilinears

Y′A
u,d,e, like Y′A

u,d,e, contribute to various phenomena ranging from flavor-changing LR

(s)currents to electric dipole moments. The general analysis of these ofY′A
u,d,e in regard

to MSSM phenomenology have also been studied in Çakır et al. (2005).

It is very important to analyse the effects of these non-holomorphic terms to be

added to the lagrangian in order to understand whole MSSM phenomenology. As a re-

sult of the soft supersymmetry breaking, there are32 mass eigenstates:2 charginos,4

neutralinos,4 Higgs bosons,6 charged sleptons,3 sneutrinos,12 squarks and the gluino

in addition to the new phases and mixing angles in comparison with the SM. The afore-

mentioned non-holomorphic soft breaking terms result in inserting new parameters to the

mass eigenstates of this MSSM mass spectrum. However, some mass eigenstates are

not affected by the existence of new non-holomorphic parameters because these mass

eigenstates do not have both holomorphicYA
u,d,e and non-holomorphicY′A

u,d,e trilinear

couplings. In other words, they do not contain any trilinear interaction terms (for in-

stance, the terms represent the Higgs-sfermion-sfermion interactions). However, as will

discussed in the following sections, it is crucial to mention that, the signals of these mass

eigenstates without non-holomorphic soft terms must be compared with the others which

include the effects of non-holomorphic trilinear couplings. Hence, this comparison has

an affirmative role to reveal the distinctive features of these non-analytic soft breaking

terms in collider experiments. For this purpose, in the following sections, we will take

into consideration the chargino, sfermion and higgs sector in the MSSM with general soft

breaking terms.
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4.3. The Neutralino Sector

As a result of the electroweak symmetry breaking, fields which have different

SU(2)L ⊗ U(1)Y quantum numbers can mix if they have the same representation in

the gauge groupSU(3)C ⊗ U(1)EM with the same baryon, lepton and color quantum

numbers. In this sense, the neutral higgsinos (H̃0
u andH̃0

d ) and the neutral gauginos (B̃

andW̃ 0) combine to form mass eigenstates calledneutralinos.

Before the electroweak symmetry breaking, theB̃0 andW̃ 0 have their mass terms

given by just the soft SUSY breaking which are given in (Ellis, et al.1984)

−1

2

(
M1 B̃

0 · B̃0 +M2 W̃
0 · W̃ 0

)
. (4.3)

whereM1 represents the mass of bino whileM2 stands for the mass of wino. In addition

of these terms, the mixing terms must occur between one of higgsinos (H̃0
u, H̃0

d ) with

one of the gauginos (̃B0, W̃ 0). These terms coming from interactions are given explicitly

(Gunion and Haber1984 )

Lint = −
√

2 g
[
(φ†i T

a ψi) · λa + h.c
]
− 1

2

(
∂2W

∂φi∂φj

ψiψj + h.c

)
(4.4)

whereT a = σa/2 andσa (a = 1, 2, 3) are usual Pauli matrices (given in Appendix A)

andλa stands for chiral superfields for gauginos. The first term presents the couplings

of a Higgs boson to a gaugino and a higgsino when the neutral Higgs fieldsH0
u andH0

d

acquire their vacuum expectation values denoted as〈H0
u〉 ≡ ( vu√

2
) and 〈H0

d〉 ≡ ( vd√
2
)

respectively. Besides, the second term which is the mixing terms betweenH̃0
u andH̃0

d

must be added to construct the mass terms of neutralinos. Finally, in the gauge basis

ψ0 = (B̃0, W̃ 0, H̃0
u, H̃

0
d), the part of the lagrangian represents the neutralino mass terms

is

Lneutralino = −1

2
(ψ0)TMÑ ψ

0 (4.5)

where the neutralino mass matrixMÑ is given as,
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
M1 0 −MZ cβ sW MZsβ sW

0 M2 MZ cβ cW −MZ sβ cW

−MZ cβ sW MZ cβ cW 0 −µ

MZ sβ sW −MZ sβ cW −µ 0

 (4.6)

The entriessW = sin θW and cW = cos θW (where θW is defined as the elec-

troweak mixing angle as well assβ = sin β andcβ = cos β (wheretan β = vu/vd) are

introduced as

sin θW ≡ gY√
g2

Y + g2
2

; cos θW ≡ g2√
g2

Y + g2
2

cos β ≡ vd√
v2

d + v2
u

; sin β ≡ vu√
v2

d + v2
u

(4.7)

whereg2 andgY are the gauge couplings of the two gauge groupsSU(2)L andU(1)Y

respectively. The mass eigenstates (a linear combination of the four neutralino states) and

mass eigenvalues are found by diagonalizing the mass matrix (4.6). The corresponding

neutralino eigenstates are usually denoted byχ̃0
i (i = 1, ..., 4) and by convention, these

are labeled in ascending order, so thatmχ̃1 < mχ̃2 < mχ̃3 < mχ̃4. In the special limit, if

M1 andM2 are small compared toMZ and|µ|, then the lightest neutralinõχ0
1 would be

nearly a pure photinõγ. Thus, ifM1 andM1 are small comparison withM2 and|µ|, then

the lightest neutralino would be nearly a pure binoB̃0. (for detail analysis see Giudice, et

al. 1996)

4.4. Chargino Sector

The charged analogues of neutralinos are calledcharginoswhich are nothing but

the mixtures of the charged higgsinos (H̃+
u andH̃−

d ) and the chargedSU(2)L gauginos

(W̃− andW̃+). In order to construct the mass matrix of the charginos, all interactions

terms coming from the interaction lagrangian (4.4), the mixing between two charged hig-

gsinos and interactions among the higgs bosons and a charged gaugino and a charged
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higgsino must be considered. Then, the lagrangian that determines the chargino mass

terms is given as

Lchargino −
1

2
(ψ±)T Mχ̃±1,2

ψ± + h.c

(4.8)

whereψ+ =
(
W̃+, H̃+

u

)
, ψ− =

(
W̃−, H̃−

d

)
, and

Mχ̃±1,2
=

 0 XT

X 0

 ; X =

 M2

√
2MW sβ

√
2MW cβ µ

 (4.9)

SinceX 6= XT, two distinct2 × 2 matrices are needed for the diagonalization. Thus,

the charginos̃χ+
1,2 are the linear combination comes from the diagonalization ofX†X

and the charginos̃χ−1,2 are the combination that diagonalize the matrixXX†. After the

diagonalization, the two chargino massesMχ̃±1,2
are found to be

M2
χ̃±1,2

=
1

2

[
M2

2 + µ2 + 2M2
W ∓

√
(M2

2 − µ2)2 + 4M4
W cos2 2β + 4M2

W ∆χ̃±1,2

]
(4.10)

where∆χ̃±1,2
= (M2

2 +µ2+2M2 µ sin 2β) and the states are ordered such thatMχ̃1 ≤Mχ̃2.

In the special limit in whichM2 andµ are taken real, the eigenvalues of charginos are

then given approximately byMχ̃±1
≈ M2 andMχ̃±2

≈ |µ|. In this limit, we have the

approximate degeneraciesMχ̃±1
≈Mχ̃0

2
. (for detail analysis, see Peskin1997)

It is extremely important to emphasize that both the neutralino and the chargino

sector in the MSSM do not influenced by the non-holomorphic supersymmetry breaking

terms. By means of this independency, we can analyze the chargino or/and neutralino

sector in conjunction with different sector with general trilinear interaction terms to de-

termine the impacts of these additional symmetry breaking parameters successfully.

4.5. The Sfermion Sector

As discussed in the previous sections, any scalar fields with same electric charge,

R-parity, lepton and quantum numbers can mix each other. This means that, the mass

29



eigenstates of the squarks and sleptons of the MSSM should be obtained by the diagonal-

ization of three6× 6 squared-mass matrices for up-type squarks, down-type squarks and

charged sleptons and one3 × 3 matrix for sneutrinos. Fortunately, this mixing problem

is overcome with the phenomenological constraints implying very small mixing angles.

It is useful to keep in mind that the Yukawa couplings are proportional to the associated

fermion masses. Hence, only terms involving the Yukawas of the third generation parti-

cles and their soft breaking couplings can contribute significantly to the sfermion masses.

The first and the second family squarks and sleptons have negligible Yukawa couplings

when the scale expected for the mass of the sfermion is considered.

Because of this reason, we take into account just the particles of the third family.

For instance, the top squark mass terms are determined by the presence ofVF and the D-

terms in the supersymmetric lagrangian as well as the soft-breaking terms are given both

in (Equation 4.1) and (Equation 4.2). Moreover, the trilinear interactions (including both

holomorphic and non-holomorphic terms) allow the scalar partners of the left and right

handed fermions with notationally simplifying definitions
(
m2

Q̃

)
33
≡ m2

t̃L
,
(
m2

Ũ

)
33
≡

m2
t̃R

to mix in order to form the mass eigenstates. Here, the Yukawa coupling is given for

top squark(Yu)33 ≡ ht and the squared-mass of top quark ism2
t (H) = h2

t | H0
u |2 while

the holomorphic trilinear coupling is
(
YA

u

)
33
≡ htAt, and the non-holomorphic ones

is
(
Y′A

u

)
33
≡ htA

′
t. Here proportionality of

(
YA

u

)
33

and
(
Y′A

u

)
33

to the top Yukawa

coupling is no more than an assumption; in full generality of the soft-breaking sector

there is no reason to expect such relations to hold. Putting all terms together, we have a

squared-mass matrix for the top squarks which is;

M2
t̃

=

 m2
LL m2

LR

m2
RL m2

RR

 (4.11)

with m2
LL,m2

LR,m2
RL andm2

RR terms given explicitly,

m2
LL = m2

t̃L
+m2

t −
1

4

(
g2
2 −

1

3
g2

Y

)(
| H0

u |2 − | H0
d |2
)

(4.12)

m2
LR = htA

?
tH

0 ?
u − htµH

0
d − htA

′?
tH

0
d (4.13)

m2
RL = htAtH

0
u − htµ

?H0 ?
d − htA

′
tH

0 ?
d (4.14)

m2
RR = m2

t̃R
+m2

t −
1

3
g2

Y

(
| H0

u |2 − | H0
d |2
)
. (4.15)
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where top mass is determined asm2
t (H) = h2

t | H0
u |2 and note that the off-

diagonal terms are proportional to top massmt. The hermitian top squark mass matrix

can be diagonalized by a unitary matrix to give two different eigenvalues due to them2
LR

andm2
RL terms. The mass terms of two top squarks are;

m2
t̃1,2

=
1

2

[
m2

t̃L
+m2

t̃R
+ 2m2

t +
1

2
cos 2βM2

Z

±

√(
m2

t̃L
−m2

t̃R
+

(
1

2
− 4

3
s2

W

)
cos 2βM2

Z

)2

+ 4m2
t (At − cot β(µ+ A′

t))
2

]
.

so thatm2
t̃1
< m2

t̃2
with givensW andcot β in (Equation 4.7).

The same procedure for getting mass terms can be fulfilled for bottom squarkb̃

and staũτ with different mass matrix terms which are determined as;

(mLL)2
b̃,τ̃ = m2

b̃L,τ̃L
+m2

b,τ + ∆2
bL,τL

(4.16)

(mLR)2
b̃,τ̃ = hb,τA

?
b,τH

0 ?
d − hb,τµH

0
u − hb,τA

′?
b,τH

0
u (4.17)

(mRL)2
b̃,τ̃ = hb,τAb,τH

0
d − hb,τµ

?H0 ?
u − hb,τA

′
b,τH

0 ?
u (4.18)

(mRR)2
b̃,τ̃ = m2

b̃R,τ̃R
+m2

b,τ + ∆2
bR,τR

(4.19)

where∆2
τL

, ∆2
bL

, ∆2
τR

and∆2
bR

are given

∆2
τL

=
1

4
(g2

2 − g2
Y )
(
| H0

u |2 − | H0
d |2
)

∆2
bL

=
1

4
(g2

2 +
1

3
g2

Y )
(
| H0

u |2 − | H0
d |2
)

∆2
τR

=
1

2
g2

Y

(
| H0

u |2 − | H0
d |2
)

∆2
bL

=
1

4
g2

Y

(
| H0

u |2 − | H0
d |2
)

(4.20)

respectively withAb,τ (A′
b,τ ) being holomorphic (non-holomorphic) trilinear couplings

of the associated sfermion. Here, it is necessary to remark thetan β dependency of the
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mixing in the sbottom and stau sectors. Iftan β is not too large, the sbottoms and staus

do not get a very large effect from the mixing so the mass eigenstates are nearly the same

as the gauge eigenstatesb̃L, τ̃L, b̃R andτ̃R (Martin 1997).

It is important to emphasize that, in the limit of flavor-blind soft terms, as in Equa-

tions4.12 and4.14, the net effect of the non-holomorphic soft terms is seen to replaceµ by

µ+A′?
f . This shift alone tells us that theµ parameter seen in the mass terms of charginos

(Equation 4.10) and the mass matrix of the neutralinos equation 4.6 is completely different

than what is felt by the scalar fermions. Hence, all effects of the non-holomorphic terms

reveal in the mass spectrum of particles like sfermions and Higgs bosons that include

these general symmetry breaking terms.

In the next section, we will discuss in detail the Higgs sector as a testing ground

for examining such general soft breaking terms and show the effects of these terms on

expanding the limits of the Higgs boson masses in the collider experiments.

4.6. The Higgs Sector

The Higgs sector in the MSSM is quite complicated due to the fact that there are

two complex Higgs doublets which are denoted as

Hu =

 H+
u

H0
u

 =
1√
2

 H+
u

vu + φu + iϕu



Hd =

 H0
d

H−
d

 =
1√
2

 vd + φd + iϕd

H−
d

 (4.21)

whereHu andHd have the hypercharge(YHu = 1
2
) and (YHd

= −1
2
) respectively.

Therefore, in order to determined the Higgs bosons in the MSSM, we introduce the

(clasical) tree-level scalar potential that includes all interaction terms belonging the Higgs

bosons come from|F |2 term and(1
2

∑
aD

aDa) term in the lagrangian both equations

3.17 and 3.22 as well as soft breaking terms fromLSoft. Then, the scalar potential

becomes;
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Vtree = VF + VD + VSoft

= m2
1H

†
d Hd +m2

2H
†
uHu − µB (Hd ·Hu + h.c)

+
1

8
(g2

2 + g2
Y )
(
H†

uHu −H†
dHd

)2

+
1

2
g2
2 | Hd ·Hu |2 (4.22)

with givenm2
1 = m2

Hd
+ |µ|2, m2

2 = m2
Hu

+ |µ|2 and B are the soft breaking parameters

coming fromLSoft. Note that, in the MSSM, because of the presence of a second Higgs

doublet, the quartic scalar coupling inVtree are related to the electroweak gauge couplings

in contrast, the strength of the Higgs self interaction is an unknown free parameter in the

SM.

For preserving the charge conservation in the absolute minimum of the poten-

tial, we first must investigate under what condition the minimal of this scalar potential

breaks theSU(2)L ⊗ U(1)Y gauge symmetry while preserving the electroweak symme-

try U(1)em. More clearly, there must not be any breaking in the charge directions so

the charged components of the Higgs doublets can not develop non-vanishing vacuum

expectation value (v.e.v). In this sence, by the freedom to make theSU(2)L gauge trans-

formations, one can always choose vacuum expectation value of one the charged field

i.e 〈H+
u 〉 = 0 without loss of the generality. Therefore, at(∂Vtree/∂H

+
u = 0), one can

obtain automatically〈H−
d 〉 = 0, so the electromagnetism remains unbroken. After setting

〈H+
u 〉 = 0 and〈H−

d 〉 = 0, the scalar potential simply becomes;

V = m2
1 | H0

d |2 +m2
2 | H0

u |2 −µB
(
H0

dH
0
u + h.c

)
+

1

8
(g2

2 + g2
Y )
(
| H0

u |2 − | H0
d |2
)2
. (4.23)

where〈H0
u〉 = vu/

√
2 and 〈H0

d〉 = vd/
√

2 so that one can easily write the conditions

obtaining from∂Vtree/∂H
0
u = ∂Vtree/∂H

0
d = 0

m2
1 +m2

3 tan β +
1

4
M2

Z cos 2β = 0

m2
2 +m2

3 cot β − 1

4
M2

Z cos 2β = 0
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where our convention is determined asvu/vd ≡ tan β, m2
3 = B µ andM2

Z = 1
4
(v2

u +

v2
d)(g

2
2 + g2

Y ). These results show that at tree level, supersymmetry imposes strong con-

straints on the Higgs sector and also indicate some important remarks need to be signified.

For a special case|H0
u| = |H0

d |, the quartic contributions to V are identically zero. An-

other case requires that one linear combination ofH0
u andH0

d has a negative squared mass

nearH0
u = H0

d = 0. V is bounded from the relations in order to be stable and independent

parameters of V must satisfy the minimization conditions

m2
1 +m2

2 ≥ 2m2
3

m2
3 > m2

1m
2
2 (4.24)

As long as these relations must be satisfied the neutral components of the Higgs doublets

get their vacuum expectation value (v.e.v) and the electroweak symmetry breaking occur.

It is affirmative to compute the mass terms of the Higgs bosons in the MSSM.

After symmetry breaking in the SM, single Higgs doublet leads to one real scalar Higgs

boson, as the other three components are eaten by the massive electroweak gauge bosons.

In the supersymmetric version, three components of eight degrees of freedom are “eaten”

by the longitudinal modes of theW± andZ0 gauge bosons. The five degrees of freedom

result in two CP-even neutral real scalar (h0,H0), one CP-odd pseudo-scalar (A0) and

two different charged Higgs (H±). The tree-level mass matrices of the Higgs states can

readily be computed from the matrix of second derivatives of the higgs potential (4.23)

taken at absolute minimum (Kazakov2000). Then, the tree-level matrices are;

1. CP-odd componentsϕu andϕd:

Modd =
∂2V

∂ϕi∂ϕj

∣∣∣∣
Hi=vi

=

 m2
3 tan β m2

3

m2
3 m2

3 cot β

 (4.25)

While computing the eigenvalues ofModd, one can easily find that one eigenvalue

is equal to zero and this eigenvalue corresponds to the mass of the Goldstone boson
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while other non-zero eigenvalue corresponds to the mass of the pseudoscalar Higgs

boson denoted asA0. Mass of theA0 is then,

M2
A0 = − 2m2

3

sin 2 β
= m2

1 +m2
2. (4.26)

2. CP-even neutral componentsφu andφd:

Meven =
∂2V

∂φu∂φj

∣∣∣∣
Hi=vi

=

 m2
3 tan β +M2

Z cos2 β −m2
3 −M2

Z cos β sin β

−m2
3 −M2

Z cos β sin β m2
3 cot β +M2

Z sin2 β

 (4.27)

The corresponding non-zero mass terms of neutralh0 andH0 can be found readily

after the diagonalization of the CP-evenMeven matrix. The mass terms are then,

m2
h0,H0 =

1

2
{m2

A0 +M2
Z ∓

[
(m2

A0 +M2
Z)2 − 4m2

A0 M2
Z cos2 2β

]1/2} (4.28)

3. Charged componentsH− andH+:

Mcharged =
∂2V

∂H+
i ∂H

−
j

∣∣∣∣∣
Hi=vi

=

 m2
3 tan β m2

3 +MW cos β sin β

m2
3 +MW cos β sin β m2

3 cot β

 (4.29)

After completing the diagonalization process one can easily find two Goldstone

bosonsG± and two massive charged Higgs bosons whose mass terms are,

m2
H± = M2

A0 +M2
W (4.30)

whereM2
W is defined asM2

W = g2
2 (v2

u + v2
d)/2.
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These mass terms fulfill the following relations at tree level;

mH± ≥ MW (4.31)

mh0 ≤ Mz| cos 2β| ≤ MZ (4.32)

m2
h0 +m2

H0 = M2
A0 +M2

Z (4.33)

If one takes into consideration the inequality (4.32), it is obviously recognized that

at tree level, the lightest Higgs boson,h0, turns out to be lighter than theZ boson. If this

inequality were robust the lightest Higgs boson of the MSSM would have been discovered

at LEP2. However, fortunately, the radiative corrections to Higgs sector in the MSSM are

not negligible and give important contribution to the Higgs boson masses. Furthermore,

sizeable radiative corrections are needed to satisfy the LEP bound ofmh0 & 114 GeV.

The radiative corrections (Haber and Hempfling1991, Espinosa and Quiros1991, Drees

and Nojiri 1992) are dominated by loops of the top (s)quark, and to a lesser extent, by

those of the (s)tau lepton, (s)bottom quark (Choi, et al.2000; Ibrahim and Nath2001).

Furthermore, at lowtan β (tan β ≤ 30), radiative effects in the Higgs sector drive mainly

from the top (s)quarks since other fermions are too light to have significant Yukawa in-

teractions (as discussed in the previous section). A particularly useful framework for

computing the radiative corrections in the Higgs sector is effective potential approach

(Demir 1999, Pilaftsis and Wagner1999, Ibrahim and Nath2002) by considering the top

quark and scalar top quark loops. The effective potential including both tree-level and

radivative corrections is then given as (Weinberg and Coleman 1973);

VHiggs = Vtree +
6

64π2

[
2∑

i=1

m4
t̃i
(H)

(
log

m2
t̃i
(H)

Q2
− 3

2

)
− 2m4

t (H)

(
log

m2
t (H)

Q2
− 3

2

)]

whereVtree is determined as in (Equation 4.22) andQ is the renormalization scale while

(s)top massesmt̃i are given clearly in sfermion sector. It is necessary to keep in mind that

stop masses include the effects of the non-holomorphic trilinear couplingA′
t which causes

to shift theµ parameter asµ → µ + A′
t. This shift implies that all effects of scalar top

quarks on the Higgs sector, as described in detail in (Haber, et al.1991, Choi, et al.2000)

for holomorphic soft terms, remain intact except thatµ parameter is not theµ parameter

in the superpotential.
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Leaving aside possibility of CP violation, (i.e. by takingµ, triscalar couplings and

gaugino masses all real) via the effective potential, one enables to compute Higgs boson

masses. After the including the loop correction terms, the mass-squared term of CP-odd

pseudoscalar Higgs bosonM2
A0, then becomes

M2
A0 =

µB

sin β cos β

[
1 +

3h2
t

32π2

At (µ+ A′
t)

µB
F
(
Q2,m2

t̃1
,m2

t̃2

)]
(4.34)

whereF
(
Q2,m2

t̃1
,m2

t̃2

)
is introduced by

F
(
Q2,m2

t̃1
,m2

t̃2

)
= −2 + ln

(
m2

t̃1
m2

t̃2

Q4

)
+
m2

t̃1
+m2

t̃2

m2
t̃1
−m2

t̃2

ln

(
m2

t̃1

m2
t̃2

)
(4.35)

Second term in (Equation 4.34) comes from the radiative corrections. This addi-

tional term includes both holomorphic and non-holomorphic trilinear couplings. Notice

that by setttingAt′ → 0 then, the MSSM result is recovered.

Similarly, by adding radiative correction terms to the CP–even Higgs boson

masses, the mass-squared matrix of the CP-even components ofH0
u,d becomes

M2 =

 M2
Z cos2 β +M2

A sin2 β + ∆2
dd − (M2

A +M2
Z) sin β cos β + ∆2

du

− (M2
A +M2

Z) sin β cos β + ∆2
du M2

Z sin2 β +M2
A cos2 β + ∆2

uu

(4.36)

where ∆2
uu, ∆2

du and ∆2
dd stand for radiative corrections to that particular combina-

tion of the Higgs fields. These correction terms are given by;

∆2
dd =

3α2

4π

m4
t

M2
W sin2 β

µ′ (At − µ′ cot β)(
m2

t̃2
−m2

t̃1

)2

×

[{
µ′ (At − µ′ cot β)−

(
1

4
− 2

3
s2

W

)
sin 2β

M2
Z

m2
t

(
m2

t̃L
−m2

t̃R

)}
G
(
m2

t̃1
,m2

t̃2

)
− sin 2β

M2
Z

4m2
t

(
m2

t̃2
−m2

t̃1

)
log

m2
t̃2

m2
t̃1

]
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∆2
uu =

3α2

4π

m4
t

M2
W sin2 β

At (At − µ′ cot β)(
m2

t̃2
−m2

t̃1

)2

×

[{
At (At − µ′ cot β)−

(
1

2
− 4

3
s2

W

)
sin2 β

M2
Z

m2
t

(
m2

t̃L
−m2

t̃R

)}
G
(
m2

t̃1
,m2

t̃2

)
+

(
2− M2

Z

2m2
t

sin2 β

)(
m2

t̃2
−m2

t̃1

)
log

m2
t̃2

m2
t̃1

]

+
3α2

4π

m4
t

M2
W sin2 β

[
log

(
m2

t̃2
m2

t̃1

m4
t

)
− M2

Z

2m2
t

sin2 β log

(
m2

t̃2
m2

t̃1

Q4

)

−
(

1

2
− 4

3
s2

W

)
sin2 β

M2
Z

m2
t

(
m2

t̃L
−m2

t̃R

m2
t̃2
−m2

t̃1

)
log

m2
t̃2

m2
t̃1

]

∆2
du =

3α2

4π

m4
t

M2
W sin2 β

[
M2

Z

8m2
t

sin 2β log

(
m2

t̃2
m2

t̃1

Q4

)

+
1

m2
t̃2
−m2

t̃1

{
− µ′ (At − µ′ cot β) +

(
1

8
− 1

3
s2

W

)
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where we have introduced a scale–independent loop functionG
(
m2

t̃1
,m2
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)
is in-

troduced by
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(4.37)

As mentioned before, the higgs boson masses depend onµ+At′ notAt′ in isola-

tion. In fact, the lightest Higgs boson mass reads as (Demir1999, Choi, et al.2000)
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where the mean stop mass-squared is given as

M2
S =

1

2
(m2

t̃1
+m2

t̃2
) (4.39)

is independent ofA′
t while the left-right mixing termX ′

t = At − (µ+ A′
t) cot β.

Notice that the MSSM result is recovered by settingA′
t → 0. Thus, in the MSSM

limit, X ′
t = Xt. For a clearer view of the impact ofA′

t on the Higgs boson mass, one

notes that the upper bound of the lightest Higgs boson mass is shifted by

∆m2
h ∼

3g2
2m

4
t

8π2M2
WM

2
S

[
X ′2

t −X2
t +

X4
t −X ′ 4

t

12M2
S

]
(4.40)

in the presence of the non-holomorphic soft breaking termA′
t. This shift may vary from a

few MeVs (for low values of|A′
t| ) up to tens of GeVs depending on the input parameters.

This is an important aspect since it modifies the upper bound of the Higgs boson mass,

and in case a Higgs signal below130 GeV is not observed at the LHC, it provides an

explanation for higher values ofmh already in the MSSM (without resorting to NMSSM

or U(1)′ models which generically yield higher values formh).

4.7. Effects of General Soft Breaking Terms on Higgs Sector

As mentioned in section (4.4), the effects of the non-holomorphic trilinear cou-

plingA′ parameter can be disentangled from those of theµ parameter ifµ is known from

an independent source. Clearly, an independent knowledge ofµ can be obtained from

neutralino or chargino sectors given in section (4.3) and (4.4) either via direct searches

or via indirect bounds from certain observables. A readily recalled observable isb → sγ

decay ( Ciuchini, et al.1998, Ciuchini1998, Demir and Olive2001). In addition one can

consider bounds from EDMs or muong − 2 and suchlike but for purposes of obtaining a

simple yet direct constraint onµ–A′
t relationshipb→ sγ decay suffices.
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The rare radiative decayb → sγ provides an excellent arena for hunting the new

physics model because it is accurately measured and its theoretical determination is rather

clean (Hewett1994). Since its characteristic mass scale, theb quark massmb, admits di-

rect application of perturbative QCD ( Ciuchini, et al.1998, Kagan and Neubert1999,

Demir and Olive2001, Misiak, et al. 2007). Moreover, experimental precision has in-

creased over the years at the level of essentially confirming the SM result (Misiak, et al

2007, Barberio, et al.2005). Therefore, the branching ratio of this decay is expected to

place rather stringent limits on the sparticle contributions, and thus, provide an almost

unique way of determining the allowed ranges ofA′
t. The reason behind this observation

is thatb → sγ decay is sensitive to bothµ (via chargino exchange) andµ + A′
t (via the

stop exchange) as illustrated in Figure4.1. Therefore, one has bothµ andµ+ A′
t at hand

simultaneously and thus it becomes possible to disentangleA′
t effects from rest of the soft

masses.

Figure 4.1. The stop–chargino exchange contribution tob → sγ decay (photon can be

coupled to any charged line). While the stop mixing is directly sensitive to

µ + A′
t the chargino exchange involves mass of the charged Higgsino, theµ

parameter. This process thus involves bothµ itself andµ + A′
t leading thus

disentangling ofA′
t from rest of the parameters.
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In fact, from the form of the chargino mass matrix given in (4.9), one observes

that wino and higgsino components mix as a result of the electroweak symmetry breaking

(denoted by a cross on the horizontal line inside the loop), and higgsino massµ enters the

branching ratio in isolation. Unlike chargino sector, as suggested by Figure4.1, the stop

left-right mixing (denoted by a cross on the dashed arc in the loop) depends explicitly

onµ + A′
t as seen also from matrix 4.11. The simultaneousµ andµ + A′

t dependencies

of b → sγ decay, as depicted in Figure4.1, results thus in a distinction betweenµ and

µ+ A′
t, which would not be possible by an analysis of the Higgs sector alone.

Depicted in Figure4.2 is the dependence of the lightest Higgs boson mass on

certain parameters asA′
t takes on a set of values in the negative direction. The numerical

results herein correspond to a specific choice of the parameters

M1 = 140, M2 = 280, M3 = 1000, MA = 500, (4.41)

At = −1600, mtL = 1000, mtR = 200,

all in GeV. We fix tan β = 5 and do not consider highertan β values since in this regime

A′
t effects are reduced as can be seen from the left-right mixing entry of (4.11). These

parameter values are chosen judiciously in thatmh agrees with the LEP II lower bound

of mh ≥ 114 GeV andtan β > 2 whenA′
t vanishes (Schael, et al 2006). This choice will

help in revealing the effects ofA′
t in a transparent way. We will see that typically large

negative values ofA′
t leads to observable changes where how large it should be depends,

of course, on the characteristic scale of soft mass parameters in matrix 4.11.

Figure4.2a shows howmh depends onA′
t. It is seen thatmh just agrees with the

LEP bound whenA′
t is small in magnitude. However, as it grows in negative direction up

to−2.5 TeV the Higgs boson mass gets gradually shifted towards the135 GeV borderline.

This clearly shows that a measurement of the Higgs boson mass can imply strikingly

different parameter space than one would expect naively from a restricted set of soft-

breaking terms given in equation (4.1). In addition, the horizontal behavior of the curves

in Figure 4.2.(a) is due to the allowed range of theµ parameter by theb → s γ bound.

That is,µ parameter takes on different values of each selectionpf theA′
t determined via

theb→ s γ restriction. This is also reflected in Figure4.2c.

Shown in Figure4.2b is the mass splitting between the CP–odd and CP–even

Higgs bosons vs. the lightest Higgs boson mass. In the MSSM, due to the radiative

correctionsA0 andH0 degenerate in mass. However, the contributions stemming from
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Figure 4.2. The lightest Higgs boson mass vs. certain model parameters after taking into

account theb→ sγ constraint.

the existence ofAt′, the mass splitting could be occur between CP–odd and CP–even

Higgs bosons. It is clear that, for each value ofA′
t a respectable splitting∼ 3.5 GeV can

exist. For small values ofA′
t, theµ parameter falls in a rather narrow band, that is, bigger

theA′
t in the negative direction large the range ofµ parameter. This increase in the mass

splitting can be measured at the ILC if not at the LHC.

Depicted in Figure4.2c is the dependence ofmh on µ parameter for different

values ofA′
t. At low A′

t theµ parameter is preferred to be−1 TeV for mh to agree with

the experiment. However, asA′
t grows to large negative values theµ parameter goes to

its mirror symmetric value;µ = 1TeV. This large swing in the allowed range ofµ stems

solely from the dependence of the stop masses in (Equation 4.11) onµ andA′
t where

b → sγ does not allow their sum to exceed a certain threshold due to the rather narrow

band of values left to new physics contributions (Misiak, et al. 2006, Barberio, et al.

2006).

Finally, shown in Figure4.2d is the variation ofmh with the lighter chargino

massmχ± asA′
t varies. One notices how their relationship is modified at large negative
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A′
t via especially the region at largemh. Indeed, asA′

t grows to large negative values

the Higgs boson mass is shifted towards130 GeV border wherein change ofmχ± with

mh is rather sharp. It is clear that both these masses are measurable at the LHC, and

their interdependence can guide one if the model under concern is a minimal one based

on (Equation 4.1) or a more general one based on (Equation 4.1) and (Equation 4.2)

especially after a fit to model parameters.

In principle, a full experiment on chargino and neutralino masses must determine

M2, M1, µ andtan β in a way independent of what happens in the sfermion sector. Ex-

perimentally, however, realization of this statement can be quite non-trivial; in particular,

one might need to determine final states containing only neutralinos or only charginos or

neutralinos and charginos (Brhlik and Kane1998). An extraction ofA′
t then follows from

constructing relations like the ones illustrated in Figure4.2.
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CHAPTER 5

CONCLUSION

In this thesis work, we examined the impact of the non-holomorphic soft terms on

the different sectors in the MSSM in detail. We also gave the main concepts of the super-

symmetry as well as the minimal supersymmetric standard model (MSSM) after pointing

out the problem in the SM. Then, we focused on the breakdown of the global supersym-

metry. We showed explicitly that the soft symmetry breaking sector of the MSSM must in

general include the supersymmetry-breaking terms in (4.1) as well as in (4.2). Hence, the

presence of these non–holomorphic trilinear couplings given in (4.2) result in several im-

portant impacts on various observables. In particular, holomorphic and non–holomorphic

soft breaking terms influence radiative corrections to Higgs boson masses, and their size

can be examined within the LHC data by forming a cross correlation among Higgs boson

mass and other observables.

In this sense, we showed explicitly that the upper bound on the lightest Higgs

boson mass is shifted by means of the existence of the non-holomorphic breaking term

A′
t. This shift could be as large as 10 GeV depending on the input parameters. This is a

vitally important aspect for modifying the upper bound on the Higgs boson mass in the

MSSM without introducing extended models like NMSSM orU(1)′ that generically yield

higher values ofmh.

Furthermore, we showed explicitly that the analysis of the Higgs sector in con-

junction with the chargino sector disentangles the effects of non–holomorphic trilinear

couplings fromµ parameters. As mentioned before, the independent knowledge can be

obtained from the chargino sector by means of certain observables like rare radiativeB

meson decay,b → s γ. It is important to emphasize that branching ratio of the rare ra-

diative decayb → s γ is expected to restrict the sparticle contributions. This restriction

plays a crucial role to determine the allowed range of the non–holomorphic trilinear cou-

pling. In particular, as illustrated in Figure 4.2d, a simultaneous knowledge of chargino

and Higgs boson masses enables one to search forA′
t effects after a fit to the model param-

eters. The results advocated here could have important implications for a global analysis

of the LHC data.
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APPENDIX A

NOTATIONS AND CONVENTIONS

In this thesis, we will use the standard relativistic units which are

~ = c = 1. (A.1)

A general covariant or contravariant four vector will be symbolized by

Aµ = (A0;A1, A2, A3) = (A0; A)

Aµ = (A0;−A1,−A2,−A3) = (A0;−A) (A.2)

and the compact “Feymann slash” given as

/A = γµAµ. (A.3)

The metric tensor (gµν), which connects convariant four vector with contravariant vector,

is defined by

gµν = diag(1,−1,−1,−1) (A.4)

A.1. Pauli Matrices

The well known Pauli matrices are defined as

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 (A.5)

and satisfy the commutator relation

[σi, σj] = 2iεijkσk , {σi, σj} = 2δij , T r(σiσj) = 2δij (A.6)
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whereεijk is antisymmetricεijk = εijk = 1 for i, j, k = 1, 2, 3.

It is useful to define the anti-symmetric matricesσµν andσ̄µν

σµν =
i

4
(σµ σ̄ν − σν σ̄µ)

σ̄µν =
i

4
(σ̄µ σν − σ̄ν σµ)

Tr(σµν) = Tr(σ̄µν) = 0

Tr(σµν σρλ) =
1

2
(gµρgνλ − gµλgνρ) +

i

2
εµνρλ

Tr(σ̄µν σ̄ρλ) =
1

2
(gµρgνλ − gµλgνρ)− i

2
εµνρλ (A.7)

A.2. Dirac Matrices

The Diracγ matrices are defined by anti–commutation relation

{γµ, γν} = 2gµν (A.8)

whereγ5 given as

γ5 ≡ γ5 ≡ iγ0γ1γ2γ3 = −iγ0γ1γ2γ3. (A.9)

which is satisfied the relations

{γ5, γµ} = 0 , (γ5)2 = 1 (A.10)

It is useful to state three different representations of theγ-matrices which are

Dirac, Majorana, and Chiral representation.

A.2.1. Dirac Representation

Theγ-matrices are demonstrated as
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γ0 =

 1 0

0 −1


γi =

 0 σi

σi 0

 i = 1, 2, 3.

γ5 =

 0 σ0

σ̄0 0

 (A.11)

A.2.2. Majorana Representation

In this representation theγ-matrices are pure imaginary and given as

γ0 =

 0 σ2

−σ̄2 0

 γ1 =

 iσ3 0

0 iσ3



γ2 =

 0 −σ2

−σ̄2 0

 γ3 =

 −iσ1 0

0 iσ1

 (A.12)

and

γ5 =

 σ2 0

0 σ2

 (A.13)

A.2.3. The Chiral Representation

Theγ matrices under Chiral representation or Weyl basis, which are very impor-

tant for SUSY calculations, are

γµ =

 0 σµ

σ̄µ 0

 γ0 =

 0 1

1 0

 (A.14)

and

γ5 =

 −1 0

0 1

 (A.15)
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