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ABSTRACT

THE HIGGS SECTOR OF THE MSSM WITH GENERAL SOFT
BREAKING TERMS

This thesis is basically established upon an analysis of determining the effects of
the non-holomorphic soft supersymmetry breaking terms on the mass spectrum of the
minimal supersymmetric Standard Model (MSSM). We give an overview concerning the
fundamental concepts of supersymmetry (SUSY) after providing a brief discussion about
the problems of Standard Model (SM) of particle physics. Then we discuss in detail that
SUSY is not the exact symmetry of nature and it must be broken. In general, the break-
down of the global supersymmetry is parameterized by a set of operators. These operators
could be both holomorphic or non-holomorphic in structure. Hence, in theories like the
(MSSM) that do not contain any gauge singlets, these non-holomorphic supersymmetry
breaking terms are soft and do not pose any problem for gauge hierarchy.

In this thesis, in particular we study the impacts of the non-holomorphic soft-
breaking terms on the Higgs sector of the MSSM. We analyze Higgs sector in conjunc-
tion with the chargino sector so as to single out the effects of non-holomorphic trilinear
couplings from the: parameters. Since the aforementioned sectors are two of the prime
concerns of experiments at the LHC, we expect that our results will be testable in near

future.



OZET

GENEL YUMUSAK KIRICI TERIMLERE SAHIP MSSM'DE HIGGS
SEKTORU

Bu tez, holomorf olmayan yumusak kirici terimlerin Minimaliggrsimetrik
Standard Model'in ktle spektrumlarindaki etkilerini dgpteren analize dayanmak-
tadir. Parcacik Figi'nin Standart Modeli'ndeki sorunlardan kisaca bahsettikten sonra,
sipersimetrinin (SUSY) temebzeliklerini iceren birdzet verdik. Ardindan, neden
slipersimetrinin evrenin tam bir simetrisi olamaygoa ve kirilmis olmasi gerekjini
ayrintili bir sekilde tartistik. Genel olarak, globalpersimetri kirilmasi bir grup op-
erabrle parametrize edilir. Bu opekater hem holomorf hem de holomorf olmayan
yapilarda olabilirler. Dahasi, MSSM gibi ayar singletleri icermeyen teorilerde bahsi gecen
holomorf olmayan @persimetri kirici terimler yumusak olmalidir ve herhangi bir ayar
hiyerarsisine yol agmamalari gereklidir.

Bu tez calismasinda, yumusak kirici terimlerin MSSM’deki Higgs @@kt
Uzerindeki etkilerini inceledik. Holomorf olmayan trilinear kuplajlarin parame-
trelerinden yola cikarak, Higgs séktini chargino sekir ile birlikte analiz ettik.

Bu selorler LHC’ deki deneylerddizerinde durulan temel iki seakt olduklarindan,

sonuclarimizin gelecek zamanlarda test edilebilecekletigiirilyoruz.
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CHAPTER 1

INTRODUCTION

Over the second half of the twentieth century, the Standard Model (SM) of particle
physics has opened a new era in understanding of the elementary particles and explana-
tion of three of four fundamental interactions of Nature the so—called electromagnetic,
weak and strong interactions. The Standard Model incorporates these three fundamental
interactions that must obey certain gauge symmetries. Thus, the SM basically depends on
a certain gauge principle according to which all the forces of Nature are mediated by the
exchange of the gauge fields of the corresponding local gauge symmetry group. Hence
the gauge group of the Standard Model is representétl/d8)c ® SU(2), @ U(1)y
whereSU (3)¢, SU(2), andU(1)y stand for strong, weak and electromagnetic interac-
tions respectively.

In the Standard Model, this gauge symmetry forbids particles to gain their mass
terms. That is why, we need to break the symmetry and allows particles to have their
masses. Hence, in the SM, the origin of both gauge and fermion masses is explained with
the help of the electroweak symmetry breaking (EWSB). This spontaneous symmetry
breaking is implemented by means of the Higgs mechanism. According to Higgs mecha-
nism, all particles have their masses depending on their Yukawa couplings by interacting
with Higgs field, whereas the Higgs potential describes the self interactiols dhus,
the particle responsible for this Higgs mechanism (Hig@kl), is called the Higgs boson.
Although this mechanism is a very elegant theory, the Higgs boson has not been observed
yet at any high energy experiments and it remains as the most important motivation for
construction of the future colliders. In Chapfemve will examine the properties of Higgs
particle and we will point out the serious problem about the radiative correction to the
Higgs boson mass in detail.

Although, the SM has also been confirmed in numerous high energy experiments
with extreme good precision in the past decades, it can not provide any explanation con-
cerning the unification of fundamental forces including gravity , the hierarchy problem
between the electroweak and gravity scale, cold dark matter and so on. In Chapter

we will give a brief overview about these unanswered problems and we focus on the



hierarchy problem that is the main inspiration of the new physics beyond the Standard
Model. Then, we will introduce an elegant solution as a further symmetry for stabilizing
the dangerously large radiative corrections to Higgs mass. This new symmetry is called
as supersymmetry (SUSY) whose basic concepts will be discussed in detail in Chapter

Supersymmetry (SUSY) is a space—time symmetry that relates fermions to bosons
by means of the supersymmetric transformation. It provides for fermions and bosons to be
represented in a single representation so—called superfield (Wess] ®%l. However,
if supersymmetry were an exact symmetry of Nature, each fermion and each boson would
have a superpartner with the same mass and the same quantum numbers except their spins.
However, there is no experimental evidence to prove these kind of degeneracy in masses, it
is concluded that the supersymmetry must be broken at low energies. In the Chaper
will give the reasons why supersymmetry must be broken in a safe way not regenerating
the hierarchy problem as well as we will therein introduce the minimal supersymmetric
extension of the Standard Model (MSSM) by giving its particle spectrum, gauge structure,
superpotential.

In general, the breakdown of global supersymmetry is parameterized by a set of
operators with dimensionality less than four. Each operator thus comes with an associated
mass scale, which must fall in the TeV domain if supersymmetry is the correct descrip-
tion of Nature beyond Fermi energies. In Chapterwe will discuss in detail that the
operators which break the supersymmetry must beisofguadratic divergences must
not be regenerated. These soft breaking terms include some trilinear contributions which
are usually a replica of the superpotential with superfields being replace by their scalar
components. Hence, the mass terms for scalars as well as their trilinear couplings are soft
operators (Chung, et al. 2003).

However, the most general list of supersymmetry breaking operators involve novel
structures beyond these aforementioned holomorphic trilinear symmetry breaking terms
which are gauge invariant and do not consist of any conjugated fields (Girardello and
Grisaru 1982). Indeed, trilinear couplings, for example, can have hothy type holo-
morphic structure as well ad’¢*¢¢ type non-holomorphic structure. There is nothing
wrong in considering the non-holomorphic structures since they are perfectly soft if there
are no gauge singlets in the theory like the MSSM (Girardello and Grisaru 1982). In this

sense, MSSM provides a perfect arena for analyzing the important consequences of the



non-holomorphic soft-breaking terms as will be discussed in Chdpter

Furthermore, the last section of Chaptas devoted to analyse the impact of the
non-holomorphic soft-breaking terms on the Higgs sector of the MSSM. In this sence,
we will analyze Higgs sector in conjunction with the chargino sector so as to single out the
effects of non-holomorphic trilinear couplings from thegarameters. It is clear that an
independent knowledge gf can be obtained from chargino sector via certain observable
called a9 — s~ whose branching ratio is expected to place rather strict on the spatrticle
contribution. The consequence of this restriction, it provides a unique way of determin-
ing the allowed range of non-holomorphic trilinear coupling. Since, Higgs and chargino
sectors are also two of the prime concerns of experiments at the LHC, we expect that our
results will be testable in near future.

In the last Chapter, we will conclude the thesis with the discussion of the result of
our analysis as well as implying the impact of non-holomorphic terms on various observ-

ables.



CHAPTER 2

PROBLEMS IN THE STANDARD MODEL (SM)

Throughout the history, some crucial questions asked to understand the structure
of universe have been of significance for scientistg.: What is the fundamental struc-
ture of matter forming the universe? What are the fundamental particles and how do they
interact with each other? All these questions point to a theory of particle physics is called
as “Standard Model ”. The Standard ModéM) (Salam 1967, Glashow 1961, Wein-
berg 1967) gives an elegant and successful description for explaining the strong, weak
and electromagnetic interactions of the fundamental particles.These interactions can be

represented in terms of unitary gauge groups, so the gauge group of the SM is

SU(?))C &® SU(?)L ® U(l)y (2.1)

in which, SU(3).. stands for the strong interactionS{/(2), for weak interactions and
U(1)y for electromagnetic interactions. Each gauge group possesses a number of gauge

bosons according to their number of generators which are,

8 gauge bosons (gluons; G.) —  SU(3).
3 gauge bosons (W¥, 2% — SU(2),

1 gauge boson (y) — U(1l)y (2.2)

The main properties of the vector gauge bosons are as follows. The gijcare
electrically neutral and carry color quantum number. The consequence of being colorful
characteristic of the gluons, they interact not only with quarks but also with themselves.
The photon is electrically neutral and non-self interacting dgoson. The intermediate
vector bosons of the strong and electromagnetic interactions are massless. However, be-
cause of the very short range of the weak force, the self-interacting gauge bosons of the

weak interactions must be very heavy. That's why, we need an explanation concerning



why gluons and photons stay massless while the weak gauge bosons gain their masses.
Due to the fact that the symmetry which is responsible for weak interactions must be bro-
ken, associated gauge bosohigT , Z° gain their mass terms. Thus, the SM comes up
with a successful method which gives masses to both fermions and gauge bosons without
violating the gauge invariance. This method is calledElectroweak Symmetry Break-

ing (EWSB) or theSpontaneous Symmetry Break{{85B) which can be demonstrated

with gauge symmetry groups;

SUB)e @ SU2)L® Ul)y — SU®B)e @ U(L)em (2.3)

The spontaneous symmetry breaking is implemented by means of a mechanism,
the so-called “Higgs Mechanism ” (Higgs 1964). This mechanism establishes on adding

a new extrasU (2) doublet

H+
o= 10 (2.4)

is such that the neutral component of the Higgs fifltl acquires a non-zero vacuum
expectation value ~ (®). Every fermion gains its mass which is determined bye the
strength of its coupling (Yukawa coupling) to the Higgs field. Due to the different strength
couplings, all fermions have different masses. The successful consequences of the Higgs
mechanism, whiléV T and Z° get their mass terms according to their couplings to the
Higgs field both the photon and gluons remain massless because they have no couplings
to the Higgs field. §U(3)¢ ® U(1).,, is protected. ) Thus, the outcome of the self
interaction of the Higgs field, the Higgs mechanism also provides a new particle so—called
the Higgs bosonabout which we have not had any evidence to prove its existence in the
high energy experiments up to now.

Even though the Standard Model (SM) has an impressive theoretical framework
to explain the basic constituents of matter (leptons and quarks ) and their interactions
(strong, weak, electromagnetic ) being quite precise agreement with experimental data, it
is not a full description of nature on account of the some unsolved problems in the theory.

These problems can be listed as follows:



e Hierarchy Problem: The hierarchy problem in the SM is a significant desta-
bilization issue on the Higgs mass. In other words, when the radiative correc-
tions to Higgs mass are taken into account, it is easily recognized that Higgs
mass is quadratically divergent (high dependence on the ultraviolet cutoff scale
A ~ 10"%GeV). Itis implied that tree level Higgs mass is i0? (GeV) order

while the quantum corrections areif'? (GeV).

e Electroweak Symmetry Breaking Although the electroweak symmetry breaking
gives an answer how the elementary particles gain their masses by interacting with
the Higgs field, the Higgs sector is not constrained by any symmetry. It is just put
into theory by hand for satisfying symmetry breaking and it is not clear whether
it is fundamental or not. Another issue about symmetry breaking is that the scalar

particle, Higgs boson, which is required by the theory has not been observed yet.

e Matter-Antimatter Asymmetry : The SM does not give any information concern-
ing the fact that why the universe is made of matter instead of antimatter or both.
More seriously, although the fundamental equations demonstrate the equivalence
the amounts of matter and antimatter, we can’t observe antimatter as much as mat-
ter. The SM also can not give any reasonable answer this asymmetry between matter

and antimatter.

e Gauge Coupling Unification The idea of the gauge coupling unification is
based on that all symmetries have the same gauge coupling at the high energies
(Agur ~ 10" — 10'° GeV) and they diversify at the low energies according to the
renormalization group evolution. The gauge unification is the basic motivation of
the gauge unification theory (GUT) and the string theories which attempt to incor-
porate all fundamental interactions including gravity. However the experimental
results of the values of the low energy gauge couplings show that the SM can not

unify the gauge couplings accurately.

Some other unanswered questions can be added to thesgistcold dark matter
problem, cosmological constant problem, neutrino mass problem. Furthermore, the SM
gives no information concerning gravitational interaction. All these serious issues need
to clarify to construct a fundamental theory of the universe. Especially the hierarchy

problem is the main inspiration to believe that the standard model must be a low energy



limit of an extended fundamental theory giving solution all these mentioned problems
properly. That's why, it is useful to discuss the hierarchy problem in detail to motivate the

new physics beyond the standard model.

2.1. Hierarchy Problem

As it has been discussed in the previous section, the SM is not a full story of Na-
ture because it includes several theoretical shortcomings. The ultraviolet sensitivity of
the higgs massnown as hierarchy problentan be given an useful example for these
conceptual problems. If one tries to calculate to radiative correction to Higgs mass, re-
sulting from its self couplings, Yukawa couplings to fermions and its coupling to gauge
bosons, bring about a quadratic dependency to the ultraviolet cutoff scale.( This
guadratic divergence problem are present only in the scalar Higgs sector in the SM be-
cause the mass of Higgs is not protected by any symmetry while fermions (gauge bosons)
are protected by chiral (gauge) symmetry and quantum corrections to their masses are

only logarithmically dependent on the cutoff scalg;() .

H H

Figure 2.1. The figure in top row corresponds to the Yukawa interaction contribution,
the first figure in the second row is the scalar self-interaction contribution,
the other corresponds to the gauge interaction contributions to the quadratic

divergence.
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All loop contributions to Higgs mass shown in (2.5), whares the Yukawa cou-
plings A is the quadratic higgs coupling agdhe gauge couplings, have the ultraviolet
sensitivity at the high energies. In other words, the mass squared of higgs is expected to
be of order(100 GeV')? which is the energy scale of the electroweak symmetry breaking
(EWSB). However, the radiative corrections to the higgs ma¥sare of order(A)?
which can be chose\yy) ~ Mpi. =~ 102 GeV. The consequences of the contri-
butions of fermion, gauge and higgs loops, the quantum corrections;toan be nearly
thirty order of magnitude greater thar, itself. (§ m?, > m%)

Itis obvious that we need new physics theories beyond the standard model in order
to tame the higgs mass. These attractive theories come up recent decades which are called
“ Large Extra dimensions (Arkani, et al. 1998, Antoniadis, et al. 1998), Technicolor (Hill
and Simmons 2003) and Supersymmetry (SUSY) (Wess, et al. 1969, Drees 1996, Martin
1997)". We prefer to analyze this stabilization problem under the technic of supersymme-
try which introduces a new symmetry to stabilize the Higss mass. In this symmetry, we
couple fermion (boson) loop contribution by introducing a new boson (fermion) contribu-
tion with same Yukawa (gauge) coupling such that by means of the spin-statistic theorem,
the sign of standard fermion loop is opposite to that of boson loop and these contributions
cancel exactly each other if they have the same masses.

As it seen in figure (2.2), we design new boson (a partner) for fermion, a new
partner for gauge boson calleddugino”. If partners have the same mass as well as
same guantum numbers except their spins, the loop contributions then vanish identically.
If they do not, in other words, the supersymmetry is broken, themitgis proportional
to the mass-squared difference of partrexrsfor fermion and its partner contribution is

proportional to
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Figure 2.2. Cancellation of the quadratic divergence caused by fermion and boson loops

with same couplings to Higgs mass.

Spmy o<| mi —mj | (2.6)

my is the mass of the fermion while,, stand for the related boson mass. It is crucially
important to mention that, the cancellation of quadratic divergence remains intact as long
as the new particles coming from SUSY or knownsaperpartnerappear at an energy
scale not too far above TeV scale. Otherwise, huge mass difference between particles
and their superpartners would regenerate the hierarchy problem. Thus, if the supersym-
metry existed as a exact symmetry of nature then the Standard Model particles and their
superpartners would be have the same masses, same quantum numbers except their spins.
However, We haven't observed any supersymmetric partners of the particles, that’'s why
SUSY must, of course, be a broken symmetry and the masses of supersymmetric particles
differ with those of their SM patrticles.

Supersymmetry (SUSY) is the one of the most accepted theory beyond the Stan-
dard Model and is thought to give an answer not only hierarchy problem (as discussed
above) but several problems in SM as well. These important topics explained by SUSY

are.



The gauge coupling unification (de Boer, et al. 1991)

The explanation of the baryon asymmetry of the universe

Cold dark matter

The description how the electroweak symmetry is broken.

Together all these successful predictions, SUSY is believed to be a part of the
correct description of the universe. In the next chapter we will discuss the structure and
algebra of this elegant symmetry, determine the properties of the theory. Then, we will

introduce the minimal extension of supersymmetry and its particle content.
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CHAPTER 3

SUPERSYMMETRY

3.1. General Feature of the Supersymmetry

3.1.1. SUSY Algebra

The supersymmetry (SUSY) is a space-time symmetry which relates particles
of integer spin with those of half-integer spin. In other words, supersymmetry gives a
connection between fermions and bosons. For this aim, SUSY requires a transformation
known assupersymmetric transformatiomhich turns a bosonic state into a fermionic
state and vice versa. An operafQris represented as a generator of the supersymmetric

transformation and it must be a form like

Q|Boson >= |Fermion >

Q|Fermion >= |Boson > (3.1)

The possible forms of such symmetries are strictly forbidden by the Coleman-
Mandula theorem ( Coleman and Mandula 1967 ) with using tensor charges. ( it means
that there is no other charge with non-trivial transformation properties uRdercare
transformations. More clearly, no non-trivial combination of external ( Lorentz transfor-
mations ) and internal ( such as flavor SU(2) or SU(3) ) symmetries can be achieved by
using just bosonic charges ). One can find useful example about the Coleman-Mandula
Theorem in Ellis (2002) and Aitchison (2005). However the Coleman-Mandula theorem
gives no restriction for using spinor charges which carry spin angular momentam-—

For constructing a consistent algebraic scheme, it is necessary to combine the
spinorial charge&),, with the energy momentum operatBf and the angular momentum
operatorM " ( where P* is the momentum generator of space time translation\drd

is the generator of the Lorentz transformation ).

11



The spinoral charge is a symmetry operator so, it must commute with the Hamil-

tonian ( the temporal component of th¥ ) of the system (Golfand and Likthman 1971);

[Qu, H] =0 (3.2)

It emphasizes that the SM particles and their partners have same masses and the anticom-

mutator of two different components must be

[{Qaa@ﬁ}7H] =0 (33)

The relation (3.3) guarantees that the anticommutation relation of the charges must be
proportional to the energy momentum four vecktst (Aitchoson 2005) because all com-

ponents ofP* must commute with each other[ ", P’ =0

{Qa,Qp} o< P" (3.4)

The basic commutation and anticommutation relations amféhg\/#” and@,, can be

settled with enlarging Poincaalgebra (Kazakov 2000)

{Q4, Q) =248(0") 4 P, (3.5)
[P., Q4] =[Py, Qi) =0 (3.6)
{Qa,Qs} ={Qa,Qs} =0 (3.7)
Qe M| = % (0")5 Qf (3.8)
Qi 3] = =3 Gy (o) 39)
[PH M) =i (g"" PP — g"" P?) (3.10)

i,j=1,2,..N ;a,&,3,=1,2

12



with using the relationg4c*” = i(c" 3" — o” a*)) and introducings* = (1,5) and

o* = (1,—3d) whered represents the Pauli matrices ( see Appendix A ), B, are

the spinorial indicesy., v = 0, ..,3 are spacetime indices. The algelfsa) is called
“SuperPoincaf algebra ”. This SUSY algebra is only possible way to mix integer and
half-integer spins and changes statistics. Thus, it is the only non-trivial extension of the
set of the spacetime symmetries. This means that it is consistent with the symmetries of
the S-Matrix. (Haag, et al. 1975). The simplest caseds; = 1 whichis called'N =1

SUSY ” corresponds one spinor generafy and its conjugat&),. In this thesis, we
consider only unextendetf = 1 supersymmetry ( with minimal particle content). It

is useful to mention that with increasing N, the theory also must contain particles with
spin greater than. This theories are not renormalizable, thus the theories consisting of

particles with spin greater than'2 do not have consistent coupling to gravity.

N < 4 forrenormalizabletheories

N < 8 for(super)gravity

In N = 1 (global) supersymmetry all particle states fall into irreducible repre-
sentations of supersymmetry algebra so-callggpermultiplets Each supermultiplet
contains both fermionic and bosonic states which are called@setpartnersof each
other. As mentioned before, the Equation 3.2 emphasizes that the particles which occupy
the same irreducible supermultiplets ( particles and their superpartners ) must have equal
masses and have the same representation of the gauge group, so they must have same
color, electric charge, weak isospin degrees of freedom.

Another aspect of the supermultiplets is that the fermionic degrees of freedom and

the bosonic degrees of freedom in the same supermultiplet must be equal. (Martin 1997)

wheren andn g represent fermionic and bosonic degrees of freedom respectively.

In the next section, we will state the minimal extension of the Standard Model

13



which is called as the Minimal Supersymmetric Standard Model (MSSM) and its particle

content as well as the Lagrangian representing these particle interactions.

3.2. The Minimal Supersymmetric Standard Model (MSSM)

The simplest supersymmetric extension of the Standard Model is the so-called
Minimal Supersymmetric Standard Model (MSMM) which contains minimal number of
superpartners and interactions. In the supersymmetric extension of the Standard Model,
every known fundamental particle falls into either chiral or gauge (vector) supermultiplet
representation with the associated superpartner. It is very instructive to discuss the prop-

erties of these supermultiplets in order to construct the supersymmetric model properly.

e Chiral (Matter) Supermultiplets : It is the supermultiplet which is nothing but
the combination of a two component Weyl fermion, a complex scalar field. Chiral
supermultipltes classifies fermions whose left-handed parts transform differently
under the gauge groups than the right-handed parts, Higgs bosons and their bosonic

superpartners.

e Gauge (Vector) Supermultiplets The vector bosons (spih» of the Standard
Model and their fermionic superpartners (sémare placed in gauge (vector) su-

permultiplets which have equal fermionic and bosonic degrees of freedom.

3.2.1. The Particle Content of the MSSM

The supermultiplets whether chiral or gauge, consist of ordinary particles and
their superpartners with spin differing By2 unit. The superpartners (spin-of the SM
fermions (quarks and leptons) are constructed by adding “s” which stands for “scalar”.
Thus they are generically callsduarksandsleptongepresented with the same symbols
with their SM particles but with a tilde using to denote the superpartners of the Standard
Model particles. Due to the chirality (the left-handed or right-handed) of the fermions,
their superpartners have different representation (as seen in Jablee: left-handed
selectroné;, and right-handed selectraiy. It is important to keep in mind that the
handedness of the superparticles do not refer to the helicity of them but to that of their

SM fermions. Moreover in the SM neutrinos are always left-handed, so the superpartners

14



of the neutrinos (sneutrinos) mus be left-handed denoteéd as

Table 3.1. Chiral Supermultiplets of the MSSM

Superfield| Bosons (spin0) Fermions(spin1/2) SU(3)¢ | SU(2). | U(1)y
Q (@ dp) (ug, dy) 3 2 1/6
U iR us, 3 1| -2/3
D dr ds, 3 1 1/3
L (7 &) (v er) 1 2 ~1/2
E En e, 1 1 1
H, (H, Hy) (HF HY) 1 2 1/2
H, (HY H; ) (A H7) 1 2 | —1/2

One important feature of Table3.() deserves clear explanation. In contrast to the
H+ 0

SM, the MSSM requires two Higgs doubleis, = “ | andH,; = ¢ ] with
HY H;

opposite hyperchargéd’(= % andY = —% respectively). The decisive reasons why we

need two Higgs doublets in the SUSY theories can be given as follows:(Dawson 1996
and Kazakov 2000)

e Due to the fact that Higgs is a scalar particle, it can only reside in a chiral super-

multiplet with a fermionic superpartner the so-calldiygsinowhich would have

hypercharge eithey’ = % ory = —%. It is important to mention that all the Stan-

dard Model fermions, with the third components of their weak isospinsiphold

a delicate balance where the trad@ggY?) andT'r(1373Y) are both zero when all

left-handed fermions are taken consideration. For instance,

_ 64
27

Tr(Y?) = 3 (% +3

+2&) -1 -1 +8

rrTr 1t 1*r 1 1 11

colour wur dr ug dp v er

€Rr

= 0.
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This elegant feature protects the theory from anomalies (Martin 1997). However,
introducing a new particle with non-zero hypercharge (Higgsino) destroys these
relations (these traces have non-zero values) and gives rise to triglrigte,; and

U (1) gauge anomalies which would lead to unphysical divergences of the theory. If,
however, two Higgs doublets are introduced with opposite hypercharge, the above-
mentioned cancelations are reestablished. That's why, we need to add a new Higgs

doublet to spoil this anomaly problem and make the SUSY theories sensible.

e Two Higgs doublets are also necessary to provide the mass terms of both down and
up-type quarks.H, whose hypercharge i5 = % gives mass to up-type quarks
with electric charg§ whenH, ; with Y = —% gives mass to down-type quarks with

H 1
electric charge- .

The vector bosons of the SM are accomodated in gauge supermultiplets with their

fermionic superpartners which are calledgasiginos(shown in table §.2)).

Table 3.2. Gauge Supermultiplets of the MSSM

Superfield| Bosons (spinl) Fermions(spin1/2) SU(3)c | SU((2). | U(1)y
Ga g° e 8 1 0
W W W 1 3 0
B B° B° 1 1 0

The mediator of theSU(3) color gauge interactions is gluogf whose color-octet
superpartner th@luino g*. Thus, the electroweak symmetSU(2), ® U(1l)y has
spin-1 gauge bosongV*, W~, W° and B° while their spin-%— superpartners arg/ ",

W, W° and B° calledwinosandbino. After the electroweak symmetry breaking, the
eigenstates ofi’® and B° mix to give mass ta@Z® and~ whose superpartnetg® and5

the so-calle&inoandphotinorespectively. Furthermore, the spgwsuperpartners of the
Higgs bosons, the higgsinos, will mix with winos and the bino to give mass eigenstates:

2 charginos;df2 and4 neutralinosy? withi = 1,2, 3, 4.
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3.3. The Lagrangian of the MSSM

The MSSM lagrangian can be considered as two different fundamental parts which

are given as

L = Lsysy + Lsoj:- (3.12)

Lsos: Is the soft breaking lagrangian term which will be discussed in detail in the next
chapter, needs for breaking supersymmetry and giving mass terms to the supersymmet-
ric particles. First term of. is considered as the supersymmetric Lagrangian denoted as
Lsusy Which consists of the gauge invariant kinetic terms corresponding to tl&)SU
SU(2), and U1)y gauge groups, the same gauge interactions terms as the SM, the
Yukawa interaction terms and the scalar potential are derived fronsuperpotential
which is an analytic function containing terms with j@sand3 chiral superfields. The
superpotential must not contain terms with more tBarhiral superfields because these
kind of terms would yield non-renormalizable interaction in the lagrangian. It is impor-
tant to mention that SUSY does not allow to superpotential to consist of the complex
conjugates of the chiral superfields. The most general form of the superpotential is given

as explicitly:

—~ ~ ~

Wirssayr = —pHy - Hy + Q - HyY WU + Hy - QY4D + Hy- LY E (3.13)

where the gauge and family indices have been suppressegnd’y and Y, are

the Yukawa couplingd x 3 matrices of u-type quarks, down-type quarks and leptons
respectively. The first three terms in the superpotential are nothing but a superspace
generalization of the Yukawa interaction in the SM. These are necessary for determin-
ing the masses and CKM (Cabibbo-Kobayashi-Maskawa) mixing angles of the SM
fermions after the neutral component of Bnd H; get their VEV's (vacuum expectation
value). Theyu term in the superpotential is just the supersymmetric version of the

Higgs mass in the Standard Model. The ddtriotation corresponds to, for instance,
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@ CH, = @T (i02) H, = eij@iﬁg with €15 = —ey; = 1. Since the superpotential must
be holomorphic, the@ . ﬁuYuﬁ) Yukawa terms can not be replaced by something like
(Q - H3Y,U) and H, - QY4D) terms can not be replaced b] - QY4D), because
these terms with the complex conjugate of the superfields are forbidden by the structure
of the supersymmetry.

In principle the superpotential can consist of other terms like

—

W =4 L-Hiy+L-QYLE+L-QY,D+U-DYgD (3.14)

which are forbidden in the SM by Lorentz invariance. The first three terms imply the
lepton-number (L) violating interactions. The latter is the baryon-number (B) violating
interaction in the lagrangian. Since both effects are not observed in nature, these terms
must be suppressed or be excluded. Therefore, in the MSSM, one imposes a new discrete
and multiplicative symmetry so—callég-Parity which enforces the baryon and lepton

number conservation in the superpotential. For each particle R-Parity is defined as

Pp = (—1)*B-1)+28 (3.15)

where B and L stand for baryon number and lepton number respectively while S represents
the spin of the particle. The R-parity assignment requires that all Standard Model particles
and the Higgs bosons have even R-parity & +1) while all supersymmetric particles

have odd R-parity #r = —1). If R-parity is exactly conserved, then the interactions

of superpartners are essentially same as in the SM, two of three particles at any vertex
are replaced by superpartners. It is also affirmative to mention the extremely important

consequences of R-parity conservation:

e There is no mixing between the Standard Model particles and supersymmetric par-

ticles.

e Sparticles are created in pairs in particle collisions. In other words, every interaction
vertex in the theory contains even number of sparticles. These particles are heavy

and highly unstable and decay quickly into lighter states.
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e The lightest spatrticle called as “lightest supersymmetric particleSét” must ab-
solutely be stable and must eventually be produced at the end of a decay chain initi-
ated by the decay of a heavy unstable supersymmetric particle. The LSP should be
electrically and color neutral and weakly interacting in order to be consistent with
cosmological constraints and therefore it can be an attractive candidate for “cold
dark matter” (Jungman, et al. 1996), an important component of the non-baryonic

dark matter required in several models of cosmology.

We will take into account only the R-parity conserved case for superpotential.
However, one can consider R-parity broken case in which either L or B are not conserved.
(In R-parity violating case, the LSP is not stable and will decay into the SM patrticles.
So the collider signatures of R-violating case can be very different from the R-parity
conserved case.) Moreover, both L and B is broken, then proton would decay very rapidly.
In order to avoid this kind of inconsistencies all couplings in (Equation 3.14) are almost
zero. In other words, one or the other (or both) of the interactions is assumed absent (see
Haber, et al. 1995 for further discussions of the theory where the R-parity broken).

In the next subsection, we will discuss in detail that what kind of interactions the
supersymmetric lagrangian of the MSSM contains and how the Yukawa interaction terms

and the so-calle#&-termsare derived from the superpotential.

3.3.1. Supersymmetric Part of the MSSM Lagrangian

In order to constitute a gauge invariant SUSY lagrangian, we have to collect all
terms not only consisting of the Yukawa and gauge interactions but also interaction terms
which are invariant under the supersymmetric transformations. Hence we expect that
all scalar and fermion fields must be in the same representation of the gauge group. In
renormalization limit, the mass dimension of any term in the lagrangian must be less than

or equal to4. Then the SUSY lagrangian takes form as

LSUSY - LKinetic + LGauge - LYukawa - VF (316)
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where the lagrangian of the kinetic terms and gauge interactions terms are given

respectively,

1
LKinetic = Z(DMQSZ)T(DMQSZ) - Z_l Z(FMV)Q F(;“/

+ §;¢zﬂwi+§; Mo DA, (3.17)
LGauge = - \/§Z Ga QSI (Ta)ij &j PLS\a
1 a
- 52 DD (3.18)

where D terms are determined 2% = gbfga(Ta)ijgbj. “LGauge " @Nd “Lgineric” represent

all interactions of all MSSM particles with gauge bosons and fermiang(y;) is the
scalar (Majorana fermion) component of the chiral superfielahile A\ is the Majorana
gauge superpartner of the corresponding gauge bosoitand the gauge boson field
strength. The derivativ®),, and D* are gauge invariant derivatives appropriate to the
particle representation which the fields belong and the relation bet#eand D,, is
determined a#) = +* D,, wherey* represent the Dirac matrices (Appendix A).

The terms inL ;.,...; determine how particles interact with gauge bosons. The lat-
ter lagrangian part describes the interactions of gauginos with matter particles and Higgs
multiplets wherel™ represent the appropriate dimensional matrix representation of the
gauge symmetry generators aggdare the SM gauge couplings?;, is the one of the

helicity operators and it is defined as

P, = - . (3.19)

Last two terms of the supersymmetric lagrangian the so-cdlieg..... and Vx are
obtained by the superpotential. In order to obtain the interactions come from the
superpotential, we take the derivatives of the W with respect to the scalar components of

the superfields and, for Yukawa interaction teff,;...., we multiply with fermionic
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part of the two superfielg, and+; for the aim of giving mass terms of the quarks and

leptons of the SM.

Lyukava = € |EYe L' H} + DYa Q' Hj+ U Y, Q' H] + p I, 11}
+ e [EYeLiﬁg+Dinﬁlg+0YuQiﬁg]
+ oy [EYEZ'HHDnQ"ﬂ%UYuQ"Hi]+h-c

Z 96:00, bl + (3.20)

Finally, the last term in the supersymmetric lagrangian, theterm, gives the Higgs
masses and describes scalar mass terms and scalar interatlidasntroduced by the

square of the so-callde-termsgiven asF; = 0W (¢)/0¢;.

I3k (3.21)

VF_ZI 8@

Then the total supersymmetric lagrangian is;

Lsysy = Z(Du@)T(D“@) - EZ(FW)“ E3
+ gzwwgz fo DA,
- \/_Z Ga &} (T")i5 05 PLA" = lz [d)jga(T“)ijqu 2

a

—|Fif? (3.22)

_ Z (‘3@3% wzwj + h.c
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In the next chapter, we will discuss the soft supersymmetry breaking in the MSSM
in detail. We will focus on both the holomorphic and non-holomorphic terms in the soft
breaking lagrangian so we will have a chance to obtain the whole picture regarding the
supersymetry breaking. Thus, we will analyse the importance of the non-holomorphic
terms in the Higgs sector in comparison with other sectors are not affected by the general

breaking terms in the MSSM.
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CHAPTER 4

SOFT SUPERSYMMETRY BREAKING IN THE MSSM

So far, we have considered just the supersymmetry conserving part of the la-
grangian. As mentioned in Chapteér-in the unbroken supersymmetry, every SM particle
is degenerate in mass with its corresponding superpartner comes from SUSY. However,
if the particles and their superpartners had had the same masses, they would have already
been discovered. Hence, we haven't have any evidence about superpartners, it is con-
cluded that the supersymmetry must be broken at low energies. From the theoretical per-
spective, it is excepted that SUSY is broken spontaneously analogous to the electroweak
symmetry in the SM. However, none of the field in the MSSM can have non-zero expec-
tation value (v.e.v) needed for SUSY breaking without destroying the gauge invariance.

The most common thought is that the supersymmetry breaking occurs in a sec-
tor which is called asidden sectorand the with the help of the messenger fields (dif-
fer depending on the scenario we consider. The most popular ones are gauge-mediated,
gravity-mediated, anomaly mediated and gaugino mediated), supersymmetry breaking is
mediated to th&isible sectotby flavor blind interactions and the lagrangian terms which
are belong to the particles of the MSSM are generated. These effective breaking terms
are incorporated with the lagrangian in such a way that they must not spoil the excellent
cancelation of the quadratic divergence in the Higgs mass in order not to regenerate the
dangerous UV divergences, the so-called hierarchy problem (as discussed in Qhapter-
That's why, the masses of the superpartners differ with those of their SM particles at the
scale not too far from the TeV scale. It means that we need to break supersyraaityry
to prevent the theory from this kind of divergences.

The part of the lagrangian contains all scale dependent soft breaking terms are
generically denoted asgl,;; in which all terms are consistent with gauge symmetries
of the SM and do not cause any quadratic divergences. The supersymmetry breaking
terms are often assumed to be flavor-independent and/or gauge independent at the high
energy scale and split as they evolve to low energy scale under the renormalization group
equations-RGEs (Falck 1985).
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We will firstly deal with the soft breaking terms which do not contain any hermi-
tian conjugates of any scalar fields. Then, we will discuss the additional non-holomorphic
terms which respect gauge invariance and R-parity but violate the holomorphicity of the

soft breaking lagrangian part.

4.1. The Holomorphic Soft Breaking Terms

Even though we do not know the origin and dynamical mechanism of the super-
symmetry breaking, fortunately, it is possible to write the effective soft breaking terms
that have mass dimension two or three by means of the restriction of both gauge and
Lorentz invariance. The terms of soft SUSY breaking are categorized by Grisaru and

Girardello (1982) and listed as follows:

e Soft scalar mass square terms;%j gzﬁj ok
e Soft gaugino mass termg, A* \?, +h.c
e Soft bilinear scalar interactions;; ¢; ¢; + h.c

e Softtrilinear scalar interactions termst; ;. ¢; ¢; ¢r. + h.c

Besides, the terms having mass dimension four and more or the terms like
can not added to the soft breaking lagrangian because they lead the quadratic divergences
in the theory (Chung, et al. 2005). Finally, the supersymmetric breaking lagrangian L

takes the form explicitly,

~Loope = Qm%Q+U'miU + D'm}D + L'm? L + E'm%E
+ m¥y HIH, +m3 H\H,+ [-uBH, - H, + h.c]
+ (@ mYEU + Q- HiYSD + L HiYAE + ho
— % [mgAgAG + MoXip Ay + MidgAs +h.c). (4.1)

Herem% .. are the soft mass-squares of the scalar fermiifs, . are their associated
holomorphic trilinear couplings, and finally,;, M, M, are, respectively, the masses of

color, isospin and hypercharge gauginos which are called as the gluino, wino and bino.
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Thus, a term in gluino labelsSU(3)s the gauge group and runs fromto 8 while i
term in the wino terms stands féiU (2) , gauge group and runs froito 3. The Higgs
sector is described by soft masse$ , m7;, and B term that mixes the scalar compo-
nent of two Higgs doublets. In the space of fermion flavm%.._ﬁ are mass squared
hermitian matrices in family space wheredg,, ., like Yukawa matrices themselves, are
non-hermitian matrices. Thus, the bilindaterm and trilinear soft breaking teri¥s?; .
have forms like those of the superpotential in (Equatida).

It is crucial to mention that these soft breaking terms have holomorphicity which
means that any trilinear interaction term in the soft lagrangian does not include the hermi-
tian conjugate of any fields. Indeed, as we will discuss the next section, some other terms
can be devised with respecting the gauge invariance but violating the holomorphicity of
the lagrangian. However, they are necessary to obtain both the more general feature of the
supersymmetry breaking and the complete understanding of the MSSM phenomenology

as well as its astrophysical and cosmological implications.

4.2. The Non-Holomorphic Soft Breaking Terms

As discussed in the previous section, the Equation 4.1 has been believed to in-
clude all possible soft supersymmetry breaking terms without violating R-parity as well
as gauge invariance and not regenerating the quadratic divergences in many supersym-
metric theories which do not have pure gauge singlets in their particle spectrum.

However, as has been shown explicitly in (Bagger and Poppitz 1993), in super-
symmetric theories without pure gauge singlets (like the MSSM), the holomorphic su-
persymmetry breaking terms do not necessarily represent the general set of soft-breaking
operators. Indeed, one may consider some additional non-holomorphic terms which re-
spect the gauge symmetries. These terms are also “soft”, which do not cause any quadratic
divergences and do not violate the R-parity (Frere, et al. 2000). Thus, such terms have
shown to occur among flux-induced soft terms within intersecting brane models (Camara,
et al. 2004).

In the sense, for constructing a complete picture of the MSSM phenomenology,
we must add these non-analytic (non-holomorphic) terms include the hermitian conjugate
of at least one MSSM scalar field. Indeed, one may consider, for instance, triscalar cou-

plings with the hermitian conjugates of the Higgs fields, so the soft breaking sector must
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necessary include

L =Q-HSY U+ Q -HSY'SD+ L -HSY'2E +he. (4.2)

in addition to those in (Equation 4.1). Hef%’ﬁ(ie are non-holomorphic trilinear
couplings which do not need to bear any relationship to the holomorphic orﬁgljg

in (Equation 4.1). These two classes of trilinear couplings are perfectly soft and must
be taken into account when confronting the MSSM predictions with experimental data.
Being 3 x 3 complex non-hermitian flavor matrices, the non-holomorphic trilinears
Y2, . like Y2

u,d,e’ u,d,e’

contribute to various phenomena ranging from flavor-changing LR
(s)currents to electric dipole moments. The general analysis of théﬁéj’gfe in regard
to MSSM phenomenology have also been studied in Cakir et al. (2005).

It is very important to analyse the effects of these non-holomorphic terms to be
added to the lagrangian in order to understand whole MSSM phenomenology. As a re-
sult of the soft supersymmetry breaking, there 3temass eigenstate® charginos4
neutralinos4 Higgs bosonsg charged sleptons, sneutrinos,12 squarks and the gluino
in addition to the new phases and mixing angles in comparison with the SM. The afore-
mentioned non-holomorphic soft breaking terms result in inserting new parameters to the
mass eigenstates of this MSSM mass spectrum. However, some mass eigenstates are

not affected by the existence of new non-holomorphic parameters because these mass

A
u,d,e

eigenstates do not have both hoIomorprﬁQ,(Le and non-holomorphi&”’ trilinear
couplings. In other words, they do not contain any trilinear interaction terms (for in-
stance, the terms represent the Higgs-sfermion-sfermion interactions). However, as will
discussed in the following sections, it is crucial to mention that, the signals of these mass
eigenstates without non-holomorphic soft terms must be compared with the others which
include the effects of non-holomorphic trilinear couplings. Hence, this comparison has
an affirmative role to reveal the distinctive features of these non-analytic soft breaking
terms in collider experiments. For this purpose, in the following sections, we will take
into consideration the chargino, sfermion and higgs sector in the MSSM with general soft

breaking terms.
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4.3. The Neutralino Sector

As a result of the electroweak symmetry breaking, fields which have different
SU(2), ® U(1)y quantum numbers can mix if they have the same representation in
the gauge groupU(3)c ® U(1)gy with the same baryon, lepton and color quantum
numbers. In this sense, the neutral higgsing8 and H9) and the neutral gaugino(
and1V?) combine to form mass eigenstates caheditralinos

Before the electroweak symmetry breaking, Bfeandi1® have their mass terms

given by just the soft SUSY breaking which are given in (Ellis, et al.1984)
1 R0 0 170 770
—§<M1B B +M2W-W>. (4.3)

whereM; represents the mass of bino whilé, stands for the mass of wino. In addition
of these terms, the mixing terms must occur between one of higgsﬁ’lgbsf(g) with
one of the gauginos®, 1W°). These terms coming from interactions are given explicitly

(Gunion and Habel984 )

2
Lins = _\/59 (gbj T ¢Z) NG hCi| — % <8?b—aw;¢z¢3 + hc) (44)

whereT* = ¢%/2 ando® (a = 1,2,3) are usual Pauli matrices (given in Appendix A)

and \® stands for chiral superfields for gauginos. The first term presents the couplings
of a Higgs boson to a gaugino and a higgsino when the neutral Higgs fi€lds\d /9
acquire their vacuum expectation values denotedrsy = (f/—%) and (HY) = (%)
respectively. Besides, the second term which is the mixing terms betﬁ%&md ﬁg

must be added to construct the mass terms of neutralinos. Finally, in the gauge basis
Y0 = (B°, W°, HY, HY), the part of the lagrangian represents the neutralino mass terms

is
1
Lneutralino - _5 (wO)TMN ¢O (45)

where the neutralino mass matiif 5 is given as,
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M1 0 _MZCBSW Mzsgsw

0 M. My cge —Mz sgc
2 Z CgCw zZ S Cw (4.6)
—Myzcgsw Mzcgew 0 — i
Mzsgsw —MzsﬁCW — K 0
The entriessyy = sinfy and ¢y = cosby (where 0y, is defined as the elec-

troweak mixing angle as well as; = sin § andcg = cos § (wheretan 8 = v, /v,) are

introduced as

sinfy = %;COSGWE 292 -
V9 T 93 9y t 93
Vd . Vu
cosff = —— ;sinff= —— 4.7)
V2 4 v2 V3 + 2

whereg, and gy are the gauge couplings of the two gauge gro8p%2), andU(1)y
respectively. The mass eigenstates (a linear combination of the four neutralino states) and
mass eigenvalues are found by diagonalizing the mass matéx (The corresponding
neutralino eigenstates are usually denotedibyi = 1, ...,4) and by convention, these

are labeled in ascending order, so that < my, < my, < my,. In the special limit, if

M, and M, are small compared td/; and|u|, then the lightest neutraling) would be

nearly a pure photing. Thus, if M/; andM; are small comparison with/, and|x|, then
the lightest neutralino would be nearly a pure biit (for detail analysis see Giudice, et

al. 1996)

4.4. Chargino Sector

The charged analogues of neutralinos are calletginoswhich are nothing but
the mixtures of the charged higgsindé’;( and ﬁd‘) and the chargedU (2), gauginos
(W~ andW). In order to construct the mass matrix of the charginos, all interactions
terms coming from the interaction lagrangian (4.4), the mixing between two charged hig-

gsinos and interactions among the higgs bosons and a charged gaugino and a charged
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higgsino must be considered. Then, the lagrangian that determines the chargino mass

terms is given as

1
Lchargino - 5(1/):|:)T M;d% l/Ji + h.c

(4.8)
wherey™ = (W*,ﬁj), YT = (W_,ﬁdf), and
0 XT M 2 My s
M — X = 2 V2Mwsg (4.9)
b2 X 0 V2 My cg 1

SinceX # XT, two distinct2 x 2 matrices are needed for the diagonalization. Thus,
the charginosﬁj2 are the linear combination comes from the diagonalizatio®X tX
and the charginog; , are the combination that diagonalize the mabiX'. After the

diagonalization, the two chargino ma\ss\ﬂf%:2 are found to be

1
M2 = o | M3+ + 205 F \/ (M2 — p2)2 + 4M2 cos? 23 + AMZ, AmJ (4.10)

WhereAﬁ2 = (M3+p*+2M, p sin 23) and the states are ordered such fhiat < My,.

In the special limit in whichM; and . are taken real, the eigenvalues of charginos are
then given approximately by/;. ~ M, and M+ ~ || In this limit, we have the
approximate degeneracié@f[ ~ My. (for detail analysis, see Peskif97)

It is extremely important to emphasize that both the neutralino and the chargino
sector in the MSSM do not influenced by the non-holomorphic supersymmetry breaking
terms. By means of this independency, we can analyze the chargino or/and neutralino
sector in conjunction with different sector with general trilinear interaction terms to de-

termine the impacts of these additional symmetry breaking parameters successfully.

4.5. The Sfermion Sector

As discussed in the previous sections, any scalar fields with same electric charge,

R-parity, lepton and quantum numbers can mix each other. This means that, the mass
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eigenstates of the squarks and sleptons of the MSSM should be obtained by the diagonal-
ization of threes x 6 squared-mass matrices for up-type squarks, down-type squarks and
charged sleptons and ofex 3 matrix for sneutrinos. Fortunately, this mixing problem
is overcome with the phenomenological constraints implying very small mixing angles.
It is useful to keep in mind that the Yukawa couplings are proportional to the associated
fermion masses. Hence, only terms involving the Yukawas of the third generation parti-
cles and their soft breaking couplings can contribute significantly to the sfermion masses.
The first and the second family squarks and sleptons have negligible Yukawa couplings
when the scale expected for the mass of the sfermion is considered.

Because of this reason, we take into account just the particles of the third family.
For instance, the top squark mass terms are determined by the preséfncanaf the D-
terms in the supersymmetric lagrangian as well as the soft-breaking terms are given both
in (Equation 4.1) and (Equation 4.2). Moreover, the trilinear interactions (including both
holomorphic and non-holomorphic terms) allow the scalar partners of the left and right
handed fermions with notationally simplifying definitimﬁs«%)33 = mtEL, <m2z7>33 =
mth to mix in order to form the mass eigenstates. Here, the Yukawa coupling is given for
top squarkY,),, = h; and the squared-mass of top quarki& H) = 17 | HY |* while
the holomorphic trilinear coupling i§Y#),, = hA;, and the non-holomorphic ones
is <Y’ﬁ>33 = h,A';. Here proportionality of Y2),, and (Y’ﬁ)gg to the top Yukawa
coupling is no more than an assumption; in full generality of the soft-breaking sector
there is no reason to expect such relations to hold. Putting all terms together, we have a

squared-mass matrix for the top squarks which is;

m2 m2
M2 = b TLE (4.11)
m%%L WQRR

with m3 ,, m? 5, m%, andm3,, terms given explicitly,

why = o et g (s gt ) (HEP -1 HEP)  (@a2)
min, = hATHY — hyuHY — hA'THS (4.13)
my;, = hAHY — hyp*HY* — b A HY* (4.14)
b = mi ot~ g (| B~ | HY ). (4.15)
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where top mass is determined @$(H) = h? | H? |*> and note that the off-
diagonal terms are proportional to top mass The hermitian top squark mass matrix
can be diagonalized by a unitary matrix to give two different eigenvalues due to%he

andm?, terms. The mass terms of two top squarks are;

1 4 2
+ \/(mi — thR + (5 — 5312,‘,) cos QﬁMg) +4m? (A — cot B(p + A2)>2 :

o) thatm% < mt% with given sy, andcot 3 in (Equation 4.7).
The same procedure for getting mass terms can be fulfilled for bottom sguark

and staur with different mass matrix terms which are determined as;

(mLL)%V; = m%LfL—i_mg:T—i_AlQ’LyTL (4.16)
(mer)iz = horAj H* = byl — hy ATy HY) (4.17)
(mpp)is = hor Ay HY — hyopi" HO* — by Ay HO (4.18)
(mar)yz = mi . +mp + A7 (4.19)
whereA? , A} , A2 andAj_ are given

N, = (@) (HP - HP)

Nj, = 3+ 50b) (| HO P — | HY P)

A, = S (L HDP - HYP)

N, = ok ()P~ HYP)

(4.20)

respectively with4, , (4’ ;) being holomorphic (non-holomorphic) trilinear couplings

of the associated sfermion. Here, it is necessary to remarkthe dependency of the
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mixing in the sbottom and stau sectorstdfi 3 is not too large, the sbottoms and staus
do not get a very large effect from the mixing so the mass eigenstates are nearly the same
as the gauge eigenstafgs 7., br and7x (Martin 1997).

It is important to emphasize that, in the limit of flavor-blind soft terms, as in Equa-
tions4.12 and4.14, the net effect of the non-holomorphic soft terms is seen to replage
1+ A%, This shift alone tells us that theparameter seen in the mass terms of charginos
(Equation 4.10) and the mass matrix of the neutralinos equation 4.6 is completely different
than what is felt by the scalar fermions. Hence, all effects of the non-holomorphic terms
reveal in the mass spectrum of particles like sfermions and Higgs bosons that include
these general symmetry breaking terms.

In the next section, we will discuss in detail the Higgs sector as a testing ground
for examining such general soft breaking terms and show the effects of these terms on

expanding the limits of the Higgs boson masses in the collider experiments.

4.6. The Higgs Sector

The Higgs sector in the MSSM is quite complicated due to the fact that there are

two complex Higgs doublets which are denoted as

HY 1 HY
H, = ==
H? V2 Uy + Gy + 00y
HY 1 [ vat+gati
7R B N L (4.21)
H; V2 Hy
where H, and H,; have the hypercharg€ly;, = 3) and (Yy, = —3;) respectively.

Therefore, in order to determined the Higgs bosons in the MSSM, we introduce the
(clasical) tree-level scalar potential that includes all interaction terms belonging the Higgs
bosons come from#'|* term and(3 >°, D D,) term in the lagrangian both equations
3.17 and 3.22 as well as soft breaking terms frag,. Then, the scalar potential

becomes;
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V;free = VF + VD + VSoft
= m?H! Hy+m2H!H, — 1B (Hy- H, + h.c)

1 > 1
+ S+ (HgHu . H;Hd) + 598 | Ha Ho P (4.22)

with givenmi = m3; + |

>, m3 = my_ + |u|* and B are the soft breaking parameters
coming fromLg,s. Note that, in the MSSM, because of the presence of a second Higgs
doublet, the quartic scalar coupling¥f... are related to the electroweak gauge couplings

in contrast, the strength of the Higgs self interaction is an unknown free parameter in the
SM.

For preserving the charge conservation in the absolute minimum of the poten-
tial, we first must investigate under what condition the minimal of this scalar potential
breaks theSU (2), @ U(1)y gauge symmetry while preserving the electroweak symme-
try U(1).,. More clearly, there must not be any breaking in the charge directions so
the charged components of the Higgs doublets can not develop non-vanishing vacuum
expectation value (v.e.v). In this sence, by the freedom to makgHle), gauge trans-
formations, one can always choose vacuum expectation value of one the charged field
i.e (H) = 0 without loss of the generality. Therefore, @V},../0H;" = 0), one can
obtain automaticallyH ;) = 0, so the electromagnetism remains unbroken. After setting

(H,f) =0and(H;) = 0, the scalar potential simply becomes;

V. = mi|Hy|?+m}| H)|* —uB (HJH] + h.c)

1
+ g+ ad) (HL P~ HP) (4.23)

where (H?) = v,/v/2 and (HY) = v,/+/2 so that one can easily write the conditions
obtaining fromoV;,.../0H? = OVyee/OHY = 0

1
mi +m; tanﬁ+1M§ cos2f = 0

1
m3 +m3 cotﬁ—é—lMé cos2B = 0
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where our convention is determined @gv, = tan, m3 = Bpand M2 = 1(v2 +

v2)(g5 + ¢%). These results show that at tree level, supersymmetry imposes strong con-
straints on the Higgs sector and also indicate some important remarks need to be signified.
For a special casg??| = |H?|, the quartic contributions to V are identically zero. An-
other case requires that one linear combinatioFpand H? has a negative squared mass
neard? = H} = 0. V is bounded from the relations in order to be stable and independent

parameters of V must satisfy the minimization conditions

2 2 2
mi+ms > 2m;

mi > mimj (4.24)

As long as these relations must be satisfied the neutral components of the Higgs doublets
get their vacuum expectation value (v.e.v) and the electroweak symmetry breaking occur.

It is affirmative to compute the mass terms of the Higgs bosons in the MSSM.
After symmetry breaking in the SM, single Higgs doublet leads to one real scalar Higgs
boson, as the other three components are eaten by the massive electroweak gauge bosons.
In the supersymmetric version, three components of eight degrees of freedom are “eaten”
by the longitudinal modes of thé’* and Z° gauge bosons. The five degrees of freedom
result in two CP-even neutral real scalaf,{d"), one CP-odd pseudo-scalat®) and
two different charged Higgsi{™). The tree-level mass matrices of the Higgs states can
readily be computed from the matrix of second derivatives of the higgs potential (4.23)

taken at absolute minimum (Kazake®v00). Then, the tree-level matrices are;

1. CP-odd components, andy,:

T . (4.29
00i00;j | g _,, mi  m3 cotf3

While computing the eigenvalues &f .4, one can easily find that one eigenvalue

is equal to zero and this eigenvalue corresponds to the mass of the Goldstone boson

34



while other non-zero eigenvalue corresponds to the mass of the pseudoscalar Higgs

boson denoted a4’. Mass of theA® is then,

2 2
T2+ ml. (4.26)

M3, = — =
A0 sin 2 3

2. CP-even neutral components and¢,:

0*V

Meven
a¢“8¢3 H;=v;

_ m3tan § + M2 cos* 3 —mj — M% cos 3 sin 3 4.27)
—m2 — MZcosfsin3 m2cot 3+ MZsin? 3

The corresponding non-zero mass terms of neutrand 7° can be found readily

after the diagonalization of the CP-evén.,.,, matrix. The mass terms are then,

1
m207H0 = E{mi‘o + M7 F [(m%0 + M3)* — 4m’o M} cos® 23] 1/2} (4.28)

3. Charged componenfd~ andH™:

0%V
Mc arge R T R——
il OHOH; |
_ m3 tan 3 m3 + My cos 3sin 3 (4.29)
m3 + My cos 3sin 3 m3 cot 3

After completing the diagonalization process one can easily find two Goldstone

bosonsG* and two massive charged Higgs bosons whose mass terms are,

my. = M3+ M, (4.30)

whereM3, is defined as\i, = g2 (v2 + v3)/2.
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These mass terms fulfill the following relations at tree level;

mys > My (4.31)
mpo < M,|cos2[| < My (4.32)
mio +mio = M3, + M3 (4.33)

If one takes into consideration the inequality (4.32), it is obviously recognized that
at tree level, the lightest Higgs bosdt, turns out to be lighter than thé boson. If this
inequality were robust the lightest Higgs boson of the MSSM would have been discovered
at LERP2. However, fortunately, the radiative corrections to Higgs sector in the MSSM are
not negligible and give important contribution to the Higgs boson masses. Furthermore,
sizeable radiative corrections are needed to satisfy the LEP boumg.ofP 114 GeV.

The radiative corrections (Haber and Hempflirg§1, Espinosa and Quiro®91, Drees

and Nojiri 1992) are dominated by loops of the top (s)quark, and to a lesser extent, by
those of the (s)tau lepton, (s)bottom quark (Choi, et2ah0; Ibrahim and Natt2001).
Furthermore, at lowan  (tan 5 < 30), radiative effects in the Higgs sector drive mainly
from the top (s)quarks since other fermions are too light to have significant Yukawa in-
teractions (as discussed in the previous section). A particularly useful framework for
computing the radiative corrections in the Higgs sector is effective potential approach
(Demir 1999, Pilaftsis and Wagner999, Ibrahim and Nat2002) by considering the top
quark and scalar top quark loops. The effective potential including both tree-level and

radivative corrections is then given as (Weinberg and Coleman 1973);

6 : m%(H) 3 ? H 3
VHiggs = V;tree + m [Z m%(H) (log é?Z — 5) _ Qm?(H) (log méQ ) . 5)]

=1

whereV;,.. is determined as in (Equation 4.22) afyds the renormalization scale while
(s)top masses; are given clearly in sfermion sector. Itis necessary to keep in mind that
stop masses include the effects of the non-holomorphic trilinear cougfimdnich causes

to shift thep parameter ag — 1 + Aj. This shift implies that all effects of scalar top
guarks on the Higgs sector, as described in detail in (Haber, 8%, Choi, et al.2000)

for holomorphic soft terms, remain intact except thgiarameter is not the parameter

in the superpotential.
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Leaving aside possibility of CP violation, . by takingy, triscalar couplings and
gaugino masses all real) via the effective potential, one enables to compute Higgs boson
masses. After the including the loop correction terms, the mass-squared term of CP-odd

pseudoscalar Higgs bosadt?,, then becomes

2
MAOZ

puB 307 Ai (n+ AY) 2 2 2
sin (3 cos (3 [ + 3272 uB 4 (Q My mf?) (4.34)

whereF (Q{mé,mi) is introduced by

ms ms m2 +m?2 m2
F (QQ,m%I,mt%) =—-2+1In ( 224 t2> + mgl t; In (m?) (4.35)

< —m2 :

Second term in (Equation 4.34) comes from the radiative corrections. This addi-
tional term includes both holomorphic and non-holomorphic trilinear couplings. Notice
that by setttingd,, — 0 then, the MSSM result is recovered.

Similarly, by adding radiative correction terms to the CP—even Higgs boson

masses, the mass-squared matrix of the CP-even compone‘ﬂiig tlecomes

2 M2 cos? B+ M3sin? 3+ A2, — (M2 + M32)sinBcos 3+ A2,

(4.36)
— (M2 + M32)sinBcos B+ A2, M2sin® 3+ M3 cos? 3+ A2,

where A2 | A? and A?, stand for radiative corrections to that particular combina-

tion of the Higgs fields. These correction terms are given by;

Az Boe  my (A cot )
dd 4t M3, sin? 3 2
3 (o)

t1

/ / 1 2 . M?2
[{u (A — p' cot B) — (4_1 - 5312,1,) sin Qﬁﬁg (m%L - mth) } g (m%,mi)

) M2 mg
— sin 254—mZQ (m%2 - m%) log mt;]
t

X
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w dm ME, sin® 3 (m% m2)2

30[2 m4 M2 mg mg
NG, = ! 261 -
du 4w M3, sin® 3 [8mt sin2flog ( Q*

ms m=
to t1

1 1 1 ) M?
+ ﬁ{ — 1 (A — i cot B) + <§ — §8‘24’) sm2ﬁm—t§ (m%L — m%R>

2

M
+ 8_mZ2 sin20 (A, 4+ p' tan 8) (A, — 1 cot 3) }

t

(2 2> — WA (A — 1l cot B)?

(2, m2)

1 1, Mz 2\ (4 1y A
+ <§—§sw) stﬁE( ;L—m;R>( ¢+ 4 tan B) (A, — ' cot 3)

where we have introduced a scale—independent loop fun(gitém%l,mta is in-

troduced by

2 2 mzl + th mﬁ
G (m~ ,m~) —2- B Llog (4.37)

As mentioned before, the higgs boson masses depepdtoAt’ not At’ in isola-

tion. In fact, the lightest Higgs boson mass reads as (D&paiy, Choi, et al.2000)
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3g2m4 M2 X/2 X/Q
2~ M2 2t [ —2 Y ) [ — 4.38
Mh= Mzt e M\ ) Tz 12032 (4.38)

where the mean stop mass-squared is given as

M2 = —(mtg1 + mth) (4.39)

is independent oft;, while the left-right mixing termX; = A, — (u + A’;) cot .
Notice that the MSSM result is recovered by settitjg— 0. Thus, in the MSSM
limit, X; = X;. For a clearer view of the impact of; on the Higgs boson mass, one

notes that the upper bound of the lightest Higgs boson mass is shifted by

3gsm;

X4 — X4
82 M2, M3

X? - X2+ TIVE
S

Am3 ~ (4.40)

in the presence of the non-holomorphic soft breaking téfnirhis shift may vary from a

few MeVs (for low values of A;| ) up to tens of GeVs depending on the input parameters.
This is an important aspect since it modifies the upper bound of the Higgs boson mass,
and in case a Higgs signal belo0 GeV is not observed at the LHC, it provides an
explanation for higher values af,, already in the MSSM (without resorting to NMSSM

or U(1)Y models which generically yield higher values foy,).

4.7. Effects of General Soft Breaking Terms on Higgs Sector

As mentioned in sectioni(4), the effects of the non-holomorphic trilinear cou-
pling A’ parameter can be disentangled from those ofitparameter if. is known from
an independent source. Clearly, an independent knowledgecah be obtained from
neutralino or chargino sectors given in sectidr8) and ¢.4) either via direct searches
or via indirect bounds from certain observables. A readily recalled observable isy
decay ( Ciuchini, et al1998, Ciuchini1998, Demir and Olive2001). In addition one can
consider bounds from EDMs or mugn- 2 and suchlike but for purposes of obtaining a

simple yet direct constraint gm-A; relationshiph — s+ decay suffices.
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The rare radiative decay— s provides an excellent arena for hunting the new
physics model because it is accurately measured and its theoretical determination is rather
clean (Hewetti994). Since its characteristic mass scale, Glggiark massn,,, admits di-
rect application of perturbative QCD ( Ciuchini, et dl998, Kagan and Neubeft999,

Demir and Olive2001, Misiak, et al. 2007). Moreover, experimental precision has in-
creased over the years at the level of essentially confirming the SM result (Misiak, et al
2007, Barberio, et al.2005). Therefore, the branching ratio of this decay is expected to
place rather stringent limits on the sparticle contributions, and thus, provide an almost
unique way of determining the allowed rangesAyf The reason behind this observation

is thatb — sy decay is sensitive to botfa (via chargino exchange) and+ A; (via the

stop exchange) as illustrated in Figuré. Therefore, one has bothandy + A} at hand
simultaneously and thus it becomes possible to disentatjgéfects from rest of the soft

masses.

Ay — (u+ A Cot

EJH E.IL 'ﬁ'— }:-]T'f' 8L

Figure 4.1. The stop—chargino exchange contributioh te sy decay (photon can be
coupled to any charged line). While the stop mixing is directly sensitive to
w + A the chargino exchange involves mass of the charged Higgsing, the
parameter. This process thus involves betitself andyu + A; leading thus

disentangling ofd} from rest of the parameters.
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In fact, from the form of the chargino mass matrix given in (4.9), one observes
that wino and higgsino components mix as a result of the electroweak symmetry breaking
(denoted by a cross on the horizontal line inside the loop), and higgsino.nesers the
branching ratio in isolation. Unlike chargino sector, as suggested by Figyréhe stop
left-right mixing (denoted by a cross on the dashed arc in the loop) depends explicitly
onu + A} as seen also from matrix 4.11. The simultanepasd .. + A, dependencies
of b — sv decay, as depicted in Figu#el, results thus in a distinction betwegnand
u + A}, which would not be possible by an analysis of the Higgs sector alone.

Depicted in Figuret.2 is the dependence of the lightest Higgs boson mass on
certain parameters a§ takes on a set of values in the negative direction. The numerical

results herein correspond to a specific choice of the parameters
M, = 140, M, = 280, M3 = 1000, M4 = 500, (4.41)
A, = —1600, m;, = 1000, m,, = 200,

allin GeV. We fixtan # = 5 and do not consider higheé#in 5 values since in this regime
A} effects are reduced as can be seen from the left-right mixing entry of (4.11). These
parameter values are chosen judiciously in thatagrees with the LEP Il lower bound
of m;, > 114 GeV andtan 8 > 2 when A} vanishes (Schael, et al 2006). This choice will
help in revealing the effects of; in a transparent way. We will see that typically large
negative values ofl; leads to observable changes where how large it should be depends,
of course, on the characteristic scale of soft mass parameters in matrix 4.11.

Figure4.2a shows hown, depends od;. It is seen thatn, just agrees with the
LEP bound wher!; is small in magnitude. However, as it grows in negative direction up
to —2.5 TeV the Higgs boson mass gets gradually shifted towardsifhé:eV borderline.
This clearly shows that a measurement of the Higgs boson mass can imply strikingly
different parameter space than one would expect naively from a restricted set of soft-
breaking terms given in equation (4.1). In addition, the horizontal behavior of the curves
in Figure 4.2.(a) is due to the allowed range of thparameter by thé — s~ bound.
That is, . parameter takes on different values of each selectionpfifigetermined via
theb — s~y restriction. This is also reflected in Figutec.

Shown in Figure4.2b is the mass splitting between the CP—odd and CP—even
Higgs bosons vs. the lightest Higgs boson mass. In the MSSM, due to the radiative

correctionsA® and H° degenerate in mass. However, the contributions stemming from
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Figure 4.2. The lightest Higgs boson mass vs. certain model parameters after taking into

account thé — sv constraint.

the existence ofd;, the mass splitting could be occur between CP—odd and CP-even
Higgs bosons. It is clear that, for each valuedpfa respectable splitting 3.5 GeV can
exist. For small values od;, the. parameter falls in a rather narrow band, that is, bigger
the A; in the negative direction large the range.gbarameter. This increase in the mass
splitting can be measured at the ILC if not at the LHC.

Depicted in Figuret.2c is the dependence of;, on i parameter for different
values ofA;}. At low A} the i parameter is preferred to bel TeV for m,, to agree with
the experiment. However, a§ grows to large negative values theparameter goes to
its mirror symmetric valuey = 1TeV. This large swing in the allowed range pfstems
solely from the dependence of the stop masses in (Equation 4.11)amwl A; where
b — sy does not allow their sum to exceed a certain threshold due to the rather narrow
band of values left to new physics contributions (Misiak, et al. 2006, Barberio, et al.
2006).

Finally, shown in Figuret.2d is the variation ofm, with the lighter chargino

massm,+ asA; varies. One notices how their relationship is modified at large negative
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A} via especially the region at large,. Indeed, as4; grows to large negative values
the Higgs boson mass is shifted towaid® GeV border wherein change of,~ with
my, 1S rather sharp. It is clear that both these masses are measurable at the LHC, and
their interdependence can guide one if the model under concern is a minimal one based
on (Equation 4.1) or a more general one based on (Equation 4.1) and (Equation 4.2)
especially after a fit to model parameters.

In principle, a full experiment on chargino and neutralino masses must determine
M, M, p andtan § in a way independent of what happens in the sfermion sector. Ex-
perimentally, however, realization of this statement can be quite non-trivial; in particular,
one might need to determine final states containing only neutralinos or only charginos or
neutralinos and charginos (Brhlik and Kart®8). An extraction ofA; then follows from

constructing relations like the ones illustrated in Figuze
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CHAPTER 5

CONCLUSION

In this thesis work, we examined the impact of the non-holomorphic soft terms on
the different sectors in the MSSM in detail. We also gave the main concepts of the super-
symmetry as well as the minimal supersymmetric standard model (MSSM) after pointing
out the problem in the SM. Then, we focused on the breakdown of the global supersym-
metry. We showed explicitly that the soft symmetry breaking sector of the MSSM must in
general include the supersymmetry-breaking terms in (4.1) as well as in (4.2). Hence, the
presence of these non—holomorphic trilinear couplings given in (4.2) result in several im-
portant impacts on various observables. In particular, holomorphic and non—holomorphic
soft breaking terms influence radiative corrections to Higgs boson masses, and their size
can be examined within the LHC data by forming a cross correlation among Higgs boson
mass and other observables.

In this sense, we showed explicitly that the upper bound on the lightest Higgs
boson mass is shifted by means of the existence of the non-holomorphic breaking term
Aj. This shift could be as large as 10 GeV depending on the input parameters. This is a
vitally important aspect for modifying the upper bound on the Higgs boson mass in the
MSSM without introducing extended models like NMSSM 1)’ that generically yield
higher values ofn,,.

Furthermore, we showed explicitly that the analysis of the Higgs sector in con-
junction with the chargino sector disentangles the effects of non—holomorphic trilinear
couplings fromu, parameters. As mentioned before, the independent knowledge can be
obtained from the chargino sector by means of certain observables like rare raffiative
meson decayy — s+. Itis important to emphasize that branching ratio of the rare ra-
diative decay — s+ is expected to restrict the sparticle contributions. This restriction
plays a crucial role to determine the allowed range of the non—holomorphic trilinear cou-
pling. In particular, as illustrated in Figure 4.2d, a simultaneous knowledge of chargino
and Higgs boson masses enables one to searel] &ffects after a fit to the model param-
eters. The results advocated here could have important implications for a global analysis
of the LHC data.
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APPENDIX A

NOTATIONS AND CONVENTIONS

In this thesis, we will use the standard relativistic units which are

h=c=1. (A.1)

A general covariant or contravariant four vector will be symbolized by

A= (A% AL AL A = (A%A)
AH = (AO;_Ala_AQa_A?)) = (A07_A) (AZ)

and the compact “Feymann slash” given as

A=A, (A.3)

The metric tensor ¢, ), which connects convariant four vector with contravariant vector,

is defined by
G = diag(1,—1,—-1,—1) (A.4)

A.1. Pauli Matrices

The well known Pauli matrices are defined as

(o 1) (o 1) (1 0)
ot = , oY= , 0= (A.5)
10 i 0 0 —1

and satisfy the commutator relation

[0, 07] = 2ie* ey, | {0,097} =269 | Tr(c'o?) =207 (A.6)
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wherec/* is antisymmetrie’* = ¢, = 1 fori, j,k = 1,2,3.

It is useful to define the anti-symmetric matriegs ando .,

o = —(d'a
o = — ("o —a"d")

Tr(c") = Tr(@")=0

1 .
Tr(a" UpA) = 5(9"’)9”A - Q”AQV’)) + %GWM

1 :
Tr(a" 5m) = 5(9“@“ - gukgyp) - %GW’)A (A7)

A.2. Dirac Matrices

The Diracy matrices are defined by anti—-commutation relation

{97} = 29" (A.8)
wherey® given as
75 = 7° = i7" = —iven e (A.9)
which is satisfied the relations
{¥’,7"r=0 , (=1 (A.10)

It is useful to state three different representations of-hmatrices which are

Dirac, Majorana, and Chiral representation.

A.2.1. Dirac Representation

The~-matrices are demonstrated as
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70 1 0
0 -1
A 0 o
~ ' 1=1,2,3.
O.Z
5 0 o°
y (A.11)
a0

A.2.2. Majorana Representation

In this representation thematrices are pure imaginary and given as

) 10 0
Y Y
—52 0 io?
) 0 —o? 5 —ioct 0
gl gt (A.12)
52 0 0 io!
and
5 a2 0
V= 0 ) (A.13)
o

A.2.3. The Chiral Representation

The~ matrices under Chiral representation or Weyl basis, which are very impor-
tant for SUSY calculations, are

., [01
ol gl (A.14)
ot 0 10
and
~1 0
o (A.15)
0 1
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