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İZM İR
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I am very grateful to Kerem Cankoçak for his numerical help and guidance at various

stages of this work.

My colleagues at the institute and my friends also deserve many thanks. I would

like to thank all of them for their friendship and providing funny environment.

I also thank to participants of Ankara Winter Workshop, January 2007, for dis-

cussions and criticisms about this work. I gratefully acknowledge Turkish Academy of

Sciences for financial support through the GEBIP grant (through D. A. Demir).

Finally, I would like to express my gratitude to my family fortheir constant, end-

less moral support and love.



ABSTRACT

FAMILY NON-UNIVERSAL U(1) ′ MODEL

This thesis work is devoted to an analysis of dilepton signatures of family non-

universal U(1)′ model. We first provide a brief overview of Standard Model of particle

physics and Supersymmetry then we give an introduction to basic concepts of Minimal

Supersymmetric Standard Model (MSSM) and necessities to extend the MSSM with addi-

tional symmetry groups. Later we review various existing U(1)′ models, then we discuss

the effects and results of family non-universality in current and future colliders.

The supersymmetric models extending the MSSM by an additional Abelian gauge

factor U(1)′ in order to solve theµ problem do generically suffer from anomalies disrupt-

ing the gauge coupling unification found in the MSSM. The anomalies are absent if the

minimal matter content necessitated by theµ problem is augmented with exotic matter

species having appropriate quantum numbers. Recently, it has been shown that anomaly

cancellation can also be accomplished by introducing family non-universal U(1)′ charges

and non-holomorphic soft-breaking terms (Demir, et al. 2005) and keeping the matter

content minimal without exotic particles.

We discuss collider signatures of anomaly-free family non-universal U(1)′ model

by analyzing dilepton production in future colliders. We notice that, both at LHC and

NLC, one can establish existance (or absence) of such a Z′ boson by simply comparing

the number of dilepton production events for electron, muonand tau lepton (Hayreter

2007).
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ÖZET

AİLEYE BAG̃IMLI U(1) ′ MODELİ

Bu tez çalışması aileye bag̃ımlı U(1)′ modelinin gelecek nesil parçacık

çarpıştırıcılarında dilepton sinyallerinin incelenmesi olarak hazırlanmıştır. İlk olarak

kısaca Parçacık Fizig̃inde Standard Model ve Süpersimetri’yi anlattık ve Minimal

Süpersimetrik Standard Model (MSSM)’in temel kavramlarından bahsettik ve ek simetri

grupları ile MSSM’i genişletmenin gereklilig̃ini anlattık. Sonra varolan çeşitli U(1)′ mod-

ellerini inceledik ve son olarak şimdiki ve gelecek nesil parçacık çarpıştırıcılarında aileye

bag̃ımlılıg̃ın etkilerini ve sonuçlarını tartıştık.

MSSM’in bir handikapı olanµ sorununu çözmek için MSSM’i ek bir Abelian

ayar faktörü ile genişleten süpersimetrik modeller MSSM’in öngördüg̃ü ayar kuplajlarının

birleşimini bozan anomaliler gibi başka bir sorunla kars¸ılaşırlar. Bu anomaliler,µ soru-

nunun gerektirdig̃i minimal madde içerig̃inin uygun kuantum numaralarına sahip egzotik

madde türleri ile genişletimesiyle ortadan kaldırılabilirler. Son zamanlarda, aileye bag̃ımlı

U(1)′ yüklerinin ve holomorfik olmayan yumuşak kırıcı termilerin tanımlanması ile ve

egzotik parçacıklara gerek olmadanda bu anomalilerin ortadan kalktıg̃ı gösterilmiştir

(Demir, et al. 2007).

Aileye bag̃ımlı anomalisiz U(1)′ modelinin gelecek nesil çarpıştırıcılarda dilepton

üretimini analiz ederek çarpıştırıcı sinyallerini inceledik. Ve hem LHC’de hemde NLC’de

basitçe elektron, moun ve tau leptonların dilepton üretim sayılarının karşılaştırılmasıyla

Z′ bozonunun varlıg̃ı (yada yoklug̃u) hakkında bilgi edinebileceg̃imizi gösterdik

(Hayreter 2007).

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1 . INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. The Standard Model . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1. Hierarchy Problem . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 . MINIMAL SUPERSYMMETRIC STANDARD MODEL . . . . 6

2.1. Gauge Couplings Unification . . . . . . . . . . . . . . . . . . 7

2.2. Why do we need to extend the MSSM ? . . . . . . . . . . . . 7

CHAPTER 3 . WHAT IS U(1)′ MODEL ? . . . . . . . . . . . . . . . . . . . . . 10

3.1. Anomaly Cancellation and Charge Assignment . . . . . . . . 11

3.2. Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 4 . DILEPTON SIGNATURES OF U(1)′ . . . . . . . . . . . . . . . 15

4.1. Transition Amplitude of the Scattering Process . . . . . .. . 15

4.2. The Linear Collider Signatures . . . . . . . . . . . . . . . . . 20

4.3. The Hadron Collider Signatures . . . . . . . . . . . . . . . . 24

CHAPTER 5 . CONCLUSION AND OUTLOOK . . . . . . . . . . . . . . . . . 29

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

APPENDIX A. CONVENTIONS AND FEYNMAN RULES . . . . . . . . . . 36

A.1. Gamma Matrices . . . . . . . . . . . . . . . . . . . . . . . . 36

A.2. Trace Theorems and Tensor Contractions . . . . . . . . . . . 37

A.3. Dirac Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.4. Feynman Rules for Tree Graphs . . . . . . . . . . . . . . . . 38

A.5. Cross Sections and Decay Rates . . . . . . . . . . . . . . . . 40

A.6. Physical Constants and Conversion Factors . . . . . . . . . .40

vi



 
 

vii 

                               LIST OF FIGURES 

 

Figure                                                                                                                          Page 

Figure 1.1.  Feynman diagrams of fermionic and bosonic one-loop quantum  

                    corrections to Higgs mass-squared . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    5 

Figure 2.1.  Evaluation of  SU(3)C x SU(2)L x U(1)Y  guage couplings to high  

                    energy scale in Standard Model (left panel) and Supersymmetry  

                    (right panel)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     9 

Figure 4.1.  A generic scattering process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   17  

Figure 4.2.  Contributions of three vector bosons   . . . . . . . . . . . . . . . . . . . . . . . . . . .   18 

Figure 4.3.  Electron-positron annihilation into lepton-antilepton pair  in line- 

                    ar collider  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    23 

Figure 4.4.  Z-axis is the direction of longitudinal momentum  . . . . . . . . . . . . . . . . .    24 

Figure 4.5   The                 and                productions at a future               colli- 

                    der with                               for family universal U(1)′ (in the left) 

                    and family  non-universal  U(1)′ (in the right panel)  models. The 

                    ratio between family  non-universal  and  family  universal  cross 

                    sections varies with model parameters . . . . . . . . . . . . . . . . . . . . . . . . . .    25 

Figure 4.6.   Family non-universal Z′ at LEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    26 

Figure 4.7.   A generic two-body parton scattering process . . . . . . . . . . . . . . . . . . . .    27 

Figure 4.8.   The unpolarized              and               productions at the LHC for 

                     family universal (left panel) and non-universal (in the right panel) 

                     U(1)′ models. The ratio between family non-universal and family  

                     universal cross sections varies with model parameters . . . . . . . . . . . . .    30 

Figure 4.9.   Family non-universal Z′ at Tevatron  . . . . . . . . . . . . . . . . . . . . . . . . . . .    30 

 

 

 

  

 



 
 

viii 

                                         LIST OF TABLES 

 

Table                                                                                                                           Page 

Table 1.1.   Standard Model Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      1 

Table 1.2.   Standard Model Bosons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      2 

Table 2.1.   Chiral and gauge superfields of the MSSM  . . . . . . . . . . . . . . . . . . . . . .      7 

Table 3.1.   The gauge quantum numbers of chiral superfields of i-th family . . . . . .    12 

Table 3.2.   Specific U(1)′ models with α1 = (3 / 8)1/2 and α2 = -(5 / 8)1/2 . . . . . . . . .    13 

Table 3.3.   The  vector  boson  couplings  to fermions with family universal  

                    U(1)′. The  U(1)′ couplings here are those of  U(1)η  descending  

                    from E(6) supersymmetric GUT (Source: Kang and Langacker  

                    2005)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    16 

Table 3.4.   The   vector   boson   couplings   to   fermions  with  family  non- 

                    universal  U(1)′ . The  U(1)′  charges  are  determined  by  using  

                    (Equation 3.2)   and   by    the   normalization    condition    that                                             

                                            to  be equal  to  the  same  quantity  computed  in   

                    U(1)η  model  and  the  normalization  factor           is  evaluated  

                    as               . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   16 

 

 

 
 
 
 
 
 

 



CHAPTER 1

INTRODUCTION

Constructed in 1964 by Salam, Glashow and Weinberg The Standard Model (SM)

of particle physics was seen to be a perfect structure and an elegant theoretical frame-

work in explaining the particle interactions and the fundamental forces of nature. Passing

through several precision experiments in various colliders, the SM became a base struc-

ture in phenomenology of particle physics. All the known elementary and force carrier

particles with their masses, spins and charges were clearlyidentified and the further pre-

dictions of new elementary and composite particles were testified through upcoming col-

lider experiments. The success of the SM has encouraged physicists to go through deeper

investigations and led them ask the ultimate questions; were all the known elementary

particles really elementary? and what is the origin of matter?

1.1. The Standard Model

The SM covers three generations of leptons and quarks as elementary particles.

Electron (e), muon (µ) and tau (τ ) lepton with their associated neutrinos in lepton sector

and up (u), down (d), charm (c), strange (s), top (t) and bottom (b) quarks in quark sector,

having half-integer spin (s=1/2) all the leptons and quarksobey to Fermi-Dirac statistics

and therefore they are called asfermions. Besides gravity, which appears to be the first

handicap of the SM, all the fundamental forces of nature are described by the exchange of

force carrier particles, that is, photon (γ) is responsible for electromagnetic forces, weak

forces are transmitted byZ0, W∓ and gluons (g) mediate the strong forces. Since all

Table 1.1. Standard Model Fermions

1st. Generation 2nd. Generation 3rd. Generation

Fermions

Leptons

Electron e Muon µ Tau τ

Electron − Neutrino νe Muon − Neutrino νµ Tau − Neutrino ντ

Quarks

Up u Charm c Top t

Down d Strange s Bottom b

1



these force carrier particles have integer spin (s=1) they obey to Bose-Einstein statistics

and thus called asbosons.

Table 1.2. Standard Model Bosons

Electromagnetism Weak Interaction Strong Interaction Gravity ???

Bosons Photon γ Weak bosons W±, Z0 Gluons g Graviton G

The SM is based on a gauge principle in which the exchanged bosons are gauge

fields of corresponding symmetry groups. The symmetry structure of the SM is,

SU(3)C × SU(2)L × U(1)Y (1.1)

where all the gauge bosons are related with the number of generators of corresponding

gauge groups. There are 8 gluonsGa
µ of SU(3)C color (with 32 − 1 = 8 generators),

3 weak bosonsW i
µ of SU(2)L isospin (with22 − 1 = 3 generators) andBµ boson of

U(1)Y hypercharge (with a single generator). At high energies these 12 gauge bosons

were mathematically seen to be virtual massless gauge bosons, however at low energies

the spontaneous breakdown of symmetries

SU(2)L × U(1)Y → U(1)EM (1.2)

give rise to physical massive gauge bosonsi.e. Z0 (neutral) andW∓ (charged). The

mechanism behind this symmetry breakdown is so called the Higgs Mechanism, thus SM

predicts the existence of a scalar (spin=0) Higgs boson by which all fermions and vector

bosons gain their masses.

The gauge structure of SM is chiral sensitive, that is it exhibits a built-in left-

right asymmetry which means that left and right handed fermion fields are treated in a

completely different manner. In addition to left handed lepton and quark doublets there

are also right handed leptons and quarks in singlet structure, therefore the complete matter

content of SM becomes,

2



Li =



 e

νe





L

,



 µ

νµ





L

,



 τ

ντ





L

; Ec
i = eR, µR, τR

(1.3)

Qi =



 u

d





L

,



 c

s





L

,



 t

b





L

; U c
i = uR, cR, tR ; Dc

i = dR, sR, bR

wherei = 1, 2, 3 is generation index, notice that there is no room for right handed neutri-

nosνeR , νµR , ντ R in SM.

The scalar Higgs sector of the SM consists of a single Higgs doublet whose com-

ponents are neutral (H0) and charged (H−) complex scalar Higgs fields,

H =



 H0

H−



 (1.4)

with the classical potential;

V = m2
H | H |2 +λ | H |4 (1.5)

The non-vanishing vacuum expectation value (VEV) of neutral Higgs component

〈H0〉 =

√
−m2

H

2λ
(1.6)

triggers the electroweak symmetry breaking and generates masses to fermions and mass-

less vector bosons. Since it is known experimentally that〈H〉 is approximately 174 GeV,

from measurements of the properties of weak interactions, it must be thatm2
H is roughly

of order−(100 GeV )2. However the Higgs mass-squared receives enormous quantum

corrections from the virtual effects of every particle thatcouples, directly or indirectly, to

the Higgs field. This problem is called as Gauge Hierarchy Problem of the SM.

Even though the SM succeeds in explaining almost all the known phenomena of

particle physics, it is insufficient of being a complete theory of fundamental interactions,

primarily because of its lack of inclusion of gravity which is one of the fundamental forces

of nature and also of reserving no room for right handed neutrinos and finally because of

Gauge Hierarchy problem arises in Higgs mass calculations.

3



1.2. Supersymmetry

Basically Supersymmetry (SUSY) is a symmetry that relates fermions to bosons.

A supersymmetric transformation turns a fermionic state into a bosonic one, and vice

versa.

Q |Fermion〉 = |Boson〉 , Q |Boson〉 = |Fermion〉 (1.7)

whereQ is a supersymmetric transformation operator. Therefore inSUSY every particle

has a supersymmetric partner and they are called as superpartners. Thus, matter content

of the SM is doubled in SUSY and each superpartner is represented by a (∼) sign above

its counter particle representation in SM, i.e. superpartner of a left-handed electron is

demonstrated bỹeL and named asselectron. Each particle differs from its superpartner

only by its spin, in the exact symmetry case every particle must be present with their

superpartners in nature, since there is no such particles being candidate for superpartners

it is said that SUSY is a broken symmetry in nature, and therefore all the superpartners

have to be heavier than ordinary particles.

When physicists were struggling with the Gauge Hierarchy Problem of the SM in

the early 1970’s supersymmetric field theories were being developed for quite different

reasons. After a while they realized that if SUSY exists nearto the TeV energy scale,

it provides the solution for two major puzzles in particle physics. One is the Hierarchy

problem of the SM and the other is the unification of weak, strong and electromagnetic

interactions.

1.2.1. Hierarchy Problem

In SM, the Higgs boson mass (mH ) was calculated to be near to the mass of

Z boson (mZ) and even less than it in tree level, however, quantum corrections from

every particle that couples to the Higgs field yield enormouscontributions to its mass.

For example, in Figure 1.1.a there is a correction tom2
H from a loop containing a Dirac

fermionf with massmf .

If this Dirac fermionf couples to the Higgs field with a term in Lagrangian

−λfHf̄f , then the Feynman diagram in Figure 1.1.a yields a correction

∆m2
H = −| λf |2

8π2
Λ2
UV + . . . (1.8)

4



f

f

(a)

H λf Hλf S S

H H

(b)

λS

Figure 1.1. Feynman diagrams of fermionic and bosonic one-loop quantum corrections

to Higgs mass-squared

whereΛUV is an ultraviolet momentum cutoff used to regulate the loop integral and it

is interpreted as the energy scale at which new physics enters to alter the high-energy

behavior of the theory. The problem is that ifΛUV is of order Planck Mass (MP ), then

this quantum correction tom2
H is some 30 orders of magnitude larger than the required

value of m2
H ∼ −(100GeV )2. This is only directly a problem for corrections to the

Higgs scalar boson mass-squared, because quantum corrections to fermion and gauge

boson masses do not have the direct quadratic sensitivity toΛUV found in (Equation 1.8).

However the quarks and leptons and electroweak gauge bosonsof the SM all obtain their

masses from〈H〉, so that the entire mass spectrum of the SM is directly or indirectly

sensitive to the cutoffΛUV .

However, suppose there exists a heavy complex scalar particle S with massmS

that couples to the Higgs field with a Lagrangian term−λS |H|2|S|2. Then the Feynman

diagram in Figure 1.1.b gives a correction

∆m2
H =

λS
16π2

[
Λ2
UV − 2m2

S ln

(
ΛUV

mS

)
+ . . .

]
(1.9)

whereS is nothing but a bosonic superpartner of Dirac fermionf with a reduced spin

(s = 0). It is clear that if a SM fermion is accompanied by two complex scalars withλS =|
λf |2, then the quadratic contributions (Λ2

UV ) of Figures 1.1.a and Figure 1.1.b will neatly

cancel because of relative minus sign of fermionic and bosonic loops. Consequently,

Supersymmetry introduces us two complex scalar fields to enable a cancellation of the

quadratically divergent (Λ2
UV ) pieces of (Equation 1.8) and (Equation 1.9). And hence,

SUSY seems to offer a well cure for the Hierarchy problem of the SM.
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CHAPTER 2

MINIMAL SUPERSYMMETRIC STANDARD MODEL

The Minimal Supersymmetric Standard Model (MSSM), containing minimal

number of fields and parameters required to construct a realistic model of leptons and

quarks, is the minimal extension to the Standard Model (SM) that realizes Supersym-

metry. The gauge group of the MSSM is SU(3)C×SU(2)L×U(1)Y which is the same in

the SM. But the particle content as is seen from the table (2.1) is enlarged to cover three

generations of leptons and quarks, twelve gauge bosons, twoHiggs doublets and super-

symmetric partners of all these particles. All the chiral and guage fields of the SM now

resides in superfields with their associated superpartnersin the MSSM.

Table 2.1. Chiral and guage superfields of the MSSM

Superfields Spin0 Spin1/2 Spin1 SU(3)C,SU(2)L,U(1)Y

Squarks, Quarks

Qi (ũi

L
, d̃i

L
) (ui

L
, di

L
) - 3 , 2 , 1/6

ūi ˜̄ui

L
(ũi

R
) ūi

L
∼ (ui

R
)c - 3̄ , 1 , -2/3

d̄i ˜̄di

L
(ũi

R
) d̄i

L
∼ (di

R
)c - 3̄ , 1 , 1/3

Sleptons, Leptons
Li (ẽi

L
, ν̃i

L
) (ei

L
, νi

L
) - 1 , 2 , -1/2

ēi ˜̄ei

L
(ẽi

R
) ēi

L
∼ (ei

R
)c - 1 , 1 , 1

Higgs, Higgsinos
Hu (H+

u
, H0

u
) (H̃+

u
, H̃0

u
) - 1 , 2 , 1/2

Hd (H0
d
, H−

d
) (H̃0

d
, H̃−

d
) - 1 , 2 , -1/2

Gluinos, Gluons g - g̃ g 8 , 1 , 0

Wino, W boson W - W̃±, W̃ 0 W±, W 0 1 , 3 , 0

Bino, B boson B - B̃ B 1 , 1 , 0

All the SM fermions with Higgs fields and their superpartners(scalar fermions and

fermionic Higgsinos) are members of chiral supermultiplets and vector bosons of the SM

with associated superpartners (fermionic gauginos) are placed in gauge supermultiplets in

the MSSM.

The MSSM is specified by the choice of superpotential,

ŴMSSM = hije Êc
j L̂i · Ĥd + hiju Û c

j Q̂i · Ĥu + hijd D̂c
jQ̂i · Ĥd + µĤu · Ĥd (2.1)

6



where the first three terms are Yukawa interactions of leptons and quarks, and the last

term is self interaction of Higgs fields.

The MSSM was first proposed in 1981 to stabilize the electroweak scale solving

the Hierarchy problem of the SM. The Higgs mass of the SM is quadratically divergent

(Λ2
UV , whereΛUV is the scale of new physics) and unstable to quantum corrections leading

to a weaker electroweak scale than what is observed to be. In the MSSM, the existence

of superpartners provide the Higgs boson to inherit stability from its superpartner Hig-

gsino by cancelling the huge contribution coming from quantum corrections. When the

Supersymmetry is broken the divergentΛ2
UV is replaced byg2(m̃2−m2), wherem̃ is a su-

perpartner mass,m is a typical SM mass andg is the electroweak coupling strength. This

also implies that, for not regenerating the quadratic divergency, superpartners must not

weigh much larger than the SM particles (roughly below TeV).Therefore the Supersym-

metry must rather be softly broken, and consequently soft symmetry breaking operators

are introduced in the MSSM.

2.1. Gauge Couplings Unification

In analogy with the unification of electricity and magnetisminto electromagnetism

in 19th century and especially with the success of electroweak theory which utilizes

spontaneous symmetry breaking to unify electromagnetism with weak interaction, people

wondered if it might be possible to unify all three groups in asimilar manner. This idea

became one of the most attractive and strongest predictionsof the MSSM. The three ex-

trapolated energy dependent (running) coupling constantsof the electroweak and strong

forces seem to unify at high energies (∼ 1016 GeV.) near Planck scale. This phenomena

also gives rise to the idea of a common origin of all fundamental forces of nature. In the

SM, such a unification can not be observed at any energy scale.

2.2. Why do we need to extend the MSSM ?

The Minimal Supersymmetric Standard Model (MSSM), devisedto solve the

gauge hierarchy problem of the standard model of electroweak interactions (SM), suf-

fers from a serious naturalness problem associated with theDirac mass of Higgsinos in

7



Figure 2.1. Evaluation ofSU(3)C × SU(2)L × U(1)Y gauge couplings to high energy

scales in Standard model (left panel) and Supersymmetry (right panel)

the superpotential.

Ŵ ⊃ µĤu · Ĥd (2.2)

Theµ parameter here is nested in the supersymmetric sector of thetheory, and its scale

is left completely arbitrary as it is not related to the soft supersymmetry-breaking terms

(Kim and Nilles 1984, Suematsu and Yamagishi 1995, Jain and Shrock 1995, Nir 1995,

Cvetic and Langacker 1996). Having a mass dimension, theµ parameter generates a

naturalness problem, since all the natural coefficients have to be dimensionless parame-

ters. A way out of this problem is to generateµ parameter dynamically via the vacuum

expectation value (VEV) of some SM-singlet chiral superfield. The extension by a non-

SM chiral superfield may or may not involve gauge extension. Concerning the former,

the most conservative approach is to extend the gauge structure of the MSSM by an ex-

tra Abelian group factor U(1)′ along with an additional chiral superfield̂S whose scalar

component generates an effectiveµ parameter upon spontaneous U(1)′ breakdown. The

new superpotential then becomes;

ŴNEW = hije Êc
j L̂i · Ĥd + hiju Û c

j Q̂i · Ĥu + hijd D̂c
jQ̂i · Ĥd + hsŜĤu · Ĥd (2.3)

where theµ parameter is replaced by the SM singletŜ, coupled to SM doubletŝHu and

Ĥd, whose vacuum expectation value (VEV) along the breakdown of U(1)′ generates an

effectiveµ term, that isµs = hs〈Ŝ〉. This provides a dynamical solution to theµ problem

when〈Ŝ〉 ∼ O (TeV). What this additional gauge symmetry actually does isto forbid

the presence of a bareµ parameter as in (Equation 2.1) (Hewett and Rizzo 1989, Cvetic

and Langacker 1996, Hill and Simmons 2002). An important property of U(1)′ models is
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that the lightest Higgs boson weighs significantly heavier thanMZ even at tree level with

smalltanβ. Hence the existing LEP bounds (LEP Coll. 2003 , ALEPH Coll. 2005) are

satisfied with almost no need for large radiative corrections (Cvetic, et al. 1997, Demir

and Pak 1998, Demir and Everett 2004, Han, et al. 2004, Amini 2003). Besides, they

offer a rather wide parameter space for facilitating the electroweak baryogenesis (Kang,

et al. 2004).

An important problem in U(1)′ models concerns the cancellation of anomalies.

Indeed, for making the theory anomaly–free the usual approach to U(1)′ models is to add

several exotics to the spectrum (Erler 2000). This naturally happens in U(1)′ models fol-

lowing from SUSY GUTse.g. E6 unification. However, this not only causes a significant

departure from the minimal structure but also disrupts the gauge couplings unification –

one of the fundamental predictions of the MSSM with weak scale soft masses. There-

fore, it would be of greatest interest to keep gauge couplings unification with minimal

matter content. This has been accomplished in (Demir, et al.2005) by introducing fam-

ily non-universal U(1)′ charges in a way solving all anomaly conditions, including the

gravitational one.

In this work, we will discuss dilepton signatures of U(1)′ models with universal as

well as non-universal U(1)′ charges in a comparative fashion. Our discussion will include

both lepton (the ILC) and hadron (the LHC) colliders. At the Born level the cross sections

are sensitive to Z′exchange only. Therefore, our analysis will have examined Z′properties

via dilepton signal. The collider signatures of various U(1)′ models have already been

analyzed in the literature (Fiandrino and Taxil 1991, Aguila, et al. 1993, Aguila and

Cvetic 1994, Leike 1997, Taxil, et al. 2002, Appelquist, et al. 2003, Carena, et al. 2004,

Kang and Langacker 2005, ). In addition, the U(1)′ models have also been tested under

electroweak precision bounds (Amaldi, et al. 1987, Langacker, et al. 1992, Erler and

Langacker 1999, Erler and Langacker 2000).
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CHAPTER 3

WHAT IS U(1) ′ MODEL ?

In U(1)′ models the MSSM gauge group is extended to include an extra Abelian

group factor at the weak scale: SU(3)C×SU(2)L×U(1)Y×U(1)′ with respective gauge

couplingsg3, g2, g1 andg′
1. The particle spectrum of the model is that of the MSSM

plus a SM gauge singletS charged under only the U(1)′ invariance. We employ a rather

general U(1)′ charge assignment as tabulated in Table 3.1.

Table 3.1. The gauge quantum numbers of chiral superfields ofi-th family

SU(3)c SU(2)L U(1)Y U(1)′

Qi 3 2 1/6 Q′
Qi

U c
i 3̄ 1 −2/3 Q′

Uc
i

Dc
i 3̄ 1 1/3 Q′

Dc
i

Li 1 2 −1/2 Q′
Li

Ec
i 1 1 1 Q′

Ec
i

Hu 1 2 1/2 Q′
Hu

Hd 1 2 −1/2 Q′
Hd

S 1 1 0 Q′
S

There are several sources of U(1)′, mainly from Superstrings, Grand Unified The-

ories (GUT), Extra Dimensions, Dynamical Symmetry Breaking, Little Higgs Models

and Stuckelberg Mechanism. Basically U(1)′ models are low energy manifestations of

these theories. At low energies ,however ,gauge and gravitational triangle anomalies ap-

pear in the theory, cancellation of which requires the existence of exotic matter. This

not only causes a significant departure from the minimal structure but also disrupts the

unification of gauge couplings. Therefore, keeping the theory anomaly-free with mini-

mal matter content and allowing the gauge couplings unification we will focus on family

non-universality of charges under U(1)′ invariance.

In this work we will study on family non-universal U(1)′ model in comparison

with models from GUTs . As an example, E(6) ,descending from supersymmetric GUTs,
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can be broken down to SM gauge structure with an additional U(1),

E(6) → SO(10) × U(1)ψ → SU(5) × U(1)χ × U(1)ψ → GSM × U(1)′

where U(1)′ is a linear combination ofU(1)χ andU(1)ψ symmetries,

U(1)′ = cos(θ)U(1)ψ − sin (θ)U(1)χ (3.1)

with mixing angleθ. Depending on the value of mixing angle there are various models.

Table 3.2. Specific U(1)′ models withα1 = (3/8)1/2 andα2 = −(5/8)1/2

θ 0 -π/2 arcsin (α1) arcsin (α2)

U(1)′ U(1)ψ U(1)χ U(1)η U(1)I

In analyzing the collider signatures of dilepton productions at lepton and hadron

colliders we will takeU(1)η model to compare with family non-universal U(1)′.

3.1. Anomaly Cancellation and Charge Assignment

One of the most important issues in U(1)′ models is the cancellation of gauge

and gravitational triangle anomalies. In fact, it has been shown that (Cheng, et al. 1998,

Cheng, et al. 1999, Erler 2000) a number of exotics have to be added to the minimal spec-

trum for making the theory anomaly-free. However the presence of these additional fields

usually destroys the unification of gauge couplings. In thissection we will briefly dis-

cuss the family dependency of charges under U(1)′ in canceling those triangle anomalies

without additional fields preserving the unification of gauge couplings.

As shown in (Demir, et al. 2005), the general U(1)′ charge assignment suffices to

solve all anomaly cancellation conditions in a way respecting the gauge invariance of the

superpotential. In fact, one finds the solutions (Demir, et al. 2005)

Q′
Q1

= Q′
Q2

= Q′
Q3

=
1

9
(3Q′

Ec
2

+ 3Q′
L2

+ Q′
S) ,

Q′
Dc

1

= Q′
Dc

2

= Q′
Dc

3

=
1

9
(6Q′

Ec
2

+ 6Q′
L2

− Q′
S) ,

Q′
Uc

1

= Q′
Uc

2

= Q′
Uc

3

=
1

9
(−12Q′

Ec
2

− 12Q′
L2

− Q′
S) ,

Q′
L1

= −2Q′
Ec

2

− 3Q′
L2

, Q′
L3

= −Q′
Ec

2

− Q′
L2

,

Q′
Ec

1

= 3Q′
Ec

2

+ 4Q′
L2

, Q′
Ec

3

= 2Q′
Ec

2

+ 2Q′
L2

+ Q′
S ,

Q′
Hd

= −Q′
Ec

2

− Q′
L2

− Q′
S , Q′

Hu
= Q′

Ec
2

+ Q′
L2

(3.2)
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in terms of the three free charges:

Q′
L2

= 2 , Q′
Ec

2

= −3 , Q′
S = 3 , (3.3)

In this charge assignment it can easily be seen that family non-universality re-

sides only in leptonic sector, that is hadronic part is kept family universal. It is known

that different U(1)′ charges for different families lead to a large Z′mediated flavor chang-

ing neutral currents (FCNC) (Langacker and Plumacher 2000,Barger, et al. 2004), in

hadronic sector FCNCs are suppressed by keeping quark charges family universal under

U(1)′;

Q′
Q1

= Q′
Q2

= Q′
Q3

Q′
Dc

1

= Q′
Dc

2

= Q′
Dc

3

Q′
Uc

1

= Q′
Uc

2

= Q′
Uc

3

However, in leptonic sector U(1)′ charges are assigned in such a way that they forbid off-

diagonal terms in leptons mass matrix. Hence, with identical mass and gauge eigenstates,

FCNCs will automatically be absent.

In above charge assignment there is one more aspect needs to be mentioned which

is quite important. Family dependence of charges under U(1)′ invariance forbids certain

Yukawa couplings in the superpotential, leading to massless fermions in the theory. How-

ever, the requisite fermion masses can be induced at loop level by non-holomorphic oper-

ators in the soft breaking sector (Hall and Randall 1990, Borzumati, et al. 1999, Demir,

et al. 2005). In certain cases, some fermions can not gain their masses neither at tree

level nor at any loop level with holomorphic operators, therefore non-holomorphic soft

supersymmetry breaking operators necessarily be introduced. Depending on the choice

of three free charges the structure of non-holomorphic operators changes, that is which

fermions, whose masses are induced by non-holomorphic operators, are decided by the

selection of three free charges. A recent work on ”Higgs Boson and Neutrino masses with

non-holomorphic operators” is in (Demir, et al. 2007).

3.2. Parametrization

The theory consists of three gauge bosons: the photon, the Z boson and the

Z′boson. We parameterize couplings of these vector bosons to fermions via the effec-

tive lagrangian (Aguila, et al. 1987):
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Table 3.3. The vector boson couplings to fermions with family universal U(1)′. The U(1)′

couplings here are those of U(1)η descending from E(6) supersymmetric

GUT (Source: Kang and Langacker 2005)

γ Z Z′

v a v a v a

νe, νµ, ντ 0 0 1 1 − sin θW/3 − sin θW/3

e−, µ−, τ− −1 0 −1 + 4 sin2 θW −1 − sin θW sin θW/3

u, c, t 2/3 0 1 − 8 sin2 θW/3 1 0 4 sin θW

d, s, b −1/3 0 −1 + 4 sin2 θW/3 −1 sin θW sin θW/3

Table 3.4. The vector boson couplings to fermions with family non-universal U(1)′.

The U(1)′ charges are determined by using (Equation 3.2) and by the

normalization condition thatg′ 2
1 Tr[Q′ 2] to be equal to the same quantity

computed in U(1)η model and the normalization factorCZ′ is evaluated

as
√

5
52

γ Z Z′

v a v a v a

νe 0 0 1 1 2 sin θW CZ′ −2 sin θW CZ′

νµ 0 0 1 1 10 sin θW CZ′ −2 sin θW CZ′

ντ 0 0 1 1 0 4 sin θW CZ′

e− −1 0 −1 + 4 sin2 θW −1 2 sin θW CZ′ −2 sin θW CZ′

µ− −1 0 −1 + 4 sin2 θW −1 10 sin θW CZ′ −2 sin θW CZ′

τ− −1 0 −1 + 4 sin2 θW −1 0 4 sin θW CZ′

u, c, t 2/3 0 1 − 8 sin2 θW/3 1 −2 sin θW CZ′ 2 sin θW CZ′

d, s, b −1/3 0 −1 + 4 sin2 θW/3 −1 2 sin θW CZ′ −2 sin θW CZ′
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Leff =
g2

4 cos θW

∑

i

f̄iγ
µ
(
vfV − afV γ5

)
fiVµ (3.4)

whereV = γ, Z, Z′, andfi stands for any of the quarks or leptons. The U(1)′ gauge

couplingg′
1 is included in the vector couplingsvfV and axial-vector couplingsafV via the

relations

vfZ′ = 2 cos θW
(
Q′
fL

− Q′
fR

) g′
1

g2
, afZ′ = 2 cos θW

(
Q′
fL

+ Q′
fR

) g′
1

g2
(3.5)

whereθW is the Weinberg angle, andQ′
fL

andQ′
fR

are U(1)′ charges of left– and right–

handed fermions, respectively.

In writing (Equation 3.2) we have neglected the mixing between Z and Z′bosons.

This mixing can stem from kinetic mixing or can be induced after electroweak breaking

(Cvetic, et al. 1997, Babu, et al. 1998).In this work we neglect such mixings in accord

with the experimental bounds thatαZ−Z′ cannot exceed a few10−3. This smallness of the

mixing puts stringent bounds on the ranges of the soft-breaking masses as it was analyzed

in detail in (Cvetic, et al. 1997, Demir, et al. 2005).
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CHAPTER 4

DILEPTON SIGNATURES OF U(1) ′

In this section we will analyze the family non-universal U(1)′ model by consider-

ing its signatures for dilepton production at lepton and hadron colliders, separately. We

will investigate distinctive signatures of the U(1)′ model under concern with respect to

a typical family universal U(1)′ model which we choose to be the U(1)η model follow-

ing from E(6) GUT. The requisite vector and axial-vector couplings of photon, Z and

Z′bosons are tabulated in Table 3.3 and Table 3.4 for family universal and non-universal

models, respectively.

4.1. Transition Amplitude of the Scattering Process

In general, the2 → 2 scattering processf f̄ → ℓ+ℓ− is

γ , Z , Z ′

f̄(k2)

f(k1) l(q1)

l̄(q2)

Figure 4.1. A generic scattering process

wheref stands for quarks (hadron colliders) or leptons (lepton colliders) carrying mo-

mentumsk1, k2 andℓ for any of the charged leptons with momentumsq1, q2. This process

proceeds withγ, Z and Z′exchanges in thes-channel whenℓ is not identical tof , and in

boths andt channels whenf ≡ ℓ. If center of mass energy of the collider is high enough

then Z′effects can be disentangled from those ofγ and Z.
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γ

f̄

f l

l̄

+

Z

f̄

f l

l̄

+

Z ′

f

f̄ l̄

l

Figure 4.2. Contributions of three vector bosons

The transition amplitude of each processes is labeled asAγ,AZ andAZ′ respec-

tively.

Aγ = f̄γµ (i Qf e) f ·
( −i gµν

s − m2
γ + imγΓγ

)
· l γν (i Ql e) l̄

AZ = G2f̄γµ[vfZ − afZγ5]f ·
(

i gµν

s − m2
Z + imZΓZ

)
· lγν [vlZ − alZγ5] l̄ (4.1)

AZ′ = G2f̄γµ[vfZ′ − afZ′γ
5]f ·

(
i gµν

s − m2
Z′ + imZ′ΓZ′

)
· lγν [vlZ′ − alZ′γ5] l̄

whereG = g2/4cos θW , s is invariant mass,mγ = 0 andΓγ = 0 since photon is massless

and totally stable andgµν is the metric tensor. Vector and axial-vector couplings of Zand

Z′ bosons are parameterized as in Table 3.3 and Table 3.4.

Switching to spinor representation;

Aγ = v̄(k2)γ
µ (i Qf e) u(k1) ·

( −i gµν

s − m2
γ + imγΓγ

)
· ū(q1) γν (i Ql e) v(q2)

AZ = G2v̄(k2)γ
µ[vfZ − afZγ5]u(k1) ·

(
i gµν

s − m2
Z + imZΓZ

)
· ū(q1)γ

ν [vlZ − alZγ5] v(q2)

AZ′ = G2v̄(k2)γ
µ[vfZ′ − afZ′γ

5]u(k1) ·
(

i gµν

s − m2
Z′ + imZ′ΓZ′

)
· ū(q1)γ

ν [vlZ′ − alZ′γ5] v(q2)

(4.2)
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The total transition amplitude including the contributions of all these three vector bosons

and its squared are;

A
(
f f̄ → ℓ+ℓ−

)
= Aγ + AZ + AZ′ (4.3)

|A
(
f f̄ → ℓ+ℓ−

)
|2 = A

(
f f̄ → ℓ+ℓ−

)
×A

(
f f̄ → ℓ+ℓ−

)⋆
(4.4)

with conjugate transposed of each amplitude being;

A†
γ = v̄(q2)γ

α (−i Ql e) u(q1) ·
(

i gαβ

s − m2
γ − imγΓγ

)
· ū(k1) γβ (−i Qf e) v(k2)

A†
Z = G2v̄(q2)γ

α[vlZ + alZγ5]u(q1) ·
( −i gαβ

s − m2
Z − imZΓZ

)
· ū(k1)γ

β[vfZ + afZγ5] v(k2)

A†
Z′ = G2v̄(q2)γ

α[vlZ′ + alZ′γ5]u(q1) ·
( −i gαβ

s − m2
Z′ − imZ′ΓZ′

)
· ū(k1)γ

β[vfZ′ + afZ′γ
5] v(k2)

(4.5)
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Then, using the projection operators the amplitude-squared becomes;

|A|2 =

(
Q2
lQ

2
fe

4

s2

)
Tr[( /k2 − mf)γ

µ( /k1 + mf )γα]Tr[( /q1 + ml)γµ( /q2 − ml)γ
α]

+ G2

(
QlQfe

2

s(s − m2
Z − imZΓZ)

)

× Tr[( /k2 − mf )γ
µ( /k1 + mf )[v

f
Z + afZγ5]γα]Tr[( /q1 + ml)γµ]( /q2 − ml)[v

l
Z + alZγ5]

+ G2

(
QlQfe

2

s(s − m2
Z′ − imZ′ΓZ′)

)

× Tr[( /k2 − mf )γ
µ( /k1 + mf )[v

f
Z′ + afZ′γ

5]γα]Tr[( /q1 + ml)γµ]( /q2 − ml)[v
l
Z′ + alZ′γ5]

+ G2

(
QlQfe

2

s(s − m2
Z + imZΓZ)

)

× Tr[( /k2 − mf )γ
µ[vfZ − afZγ5]( /k1 + mf )γα]Tr[( /q1 + ml)γµ[v

l
Z − alZγ5]( /q2 − ml)γ

α]

+ G4

(
1

(s − m2
Z + imZΓZ)(s − m2

Z − imZΓZ)

)

× Tr[( /k2 − mf )γ
µ[vfZ − afZγ5]( /k1 + mf )[v

f
Z + afZγ5]γα]

× Tr[( /q1 + ml)γµ[v
l
Z − alZγ5]( /q2 − ml)[v

l
Z + alZγ5]γα]

+ G4

(
1

(s − m2
Z + imZΓZ)(s − m2

Z′ − imZ′ΓZ′)

)

× Tr[( /k2 − mf )γ
µ[vfZ − afZγ5]( /k1 + mf )[v

f
Z′ + afZ′γ

5]γα]

× Tr[( /q1 + ml)γµ[v
l
Z − alZγ5]( /q2 − ml)[v

l
Z′ + alZ′γ5]γα]

+ G2

(
QlQfe

2

s(s − m2
Z′ + imZ′ΓZ′)

)

× Tr[( /k2 − mf )γ
µ[vfZ′ − afZ′γ

5]( /k1 + mf )γα]Tr[( /q1 + ml)γµ[v
l
Z′ − alZ′γ5]( /q2 − ml)γ

α]

+ G4

(
1

(s − m2
Z′ + imZ′ΓZ′)(s − m2

Z − imZΓZ)

)

× Tr[( /k2 − mf )γ
µ[vfZ′ − afZ′γ

5]( /k1 + mf )[v
f
Z + afZγ5]γα]

× Tr[( /q1 + ml)γµ[v
l
Z′ − alZ′γ5]( /q2 − ml)[v

l
Z + alZγ5]γα]

+ G4

(
1

(s − m2
Z′ + imZ′ΓZ′)(s − m2

Z′ − imZ′ΓZ′)

)

× Tr[( /k2 − mf )γ
µ[vfZ′ − afZ′γ

5]( /k1 + mf )[v
f
Z′ + afZ′γ

5]γα]

× Tr[( /q1 + ml)γµ[v
l
Z′ − alZ′γ5]( /q2 − ml)[v

l
Z′ + alZ′γ5]γα] (4.6)

Since we are studying at very high energies we can count all fermions as massless (k2
1 =

k2
2 = q2

1 = q2
2 = 0). Then, by the help of trace theorems and identities of gammamatrices
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the amplitude-squared becomes;

|A|2 =

(
8Q2

lQ
2
fe

4

s2

)
(u2 + t2)

+ G2

(
QlQfe

2

s(s − m2
Z − imZΓZ)

)
8
[
vfZvlZ(u2 + t2) + afZalZ(u2 − t2)

]

+ G2

(
QlQfe

2

s(s − m2
Z′ − imZ′ΓZ′)

)
8
[
vfZ′v

l
Z′(u2 + t2) + afZ′a

l
Z′(u2 − t2)

]

+ G2

(
QlQfe

2

s(s − m2
Z + imZΓZ)

)
8
[
vfZvlZ(u2 + t2) + afZalZ(u2 − t2)

]

+ G4

(
1

(s − m2
Z + imZΓZ)(s − m2

Z − imZΓZ)

)

× 8
[
(vfZ

2vlZ
2 + vfZ

2alZ
2 + afZ

2vlZ
2 + afZ

2alZ
2)(u2 + t2) + 4(vfZafZvlZalZ)(u2 − t2)

]

+ G4

(
1

(s − m2
Z + imZΓZ)(s − m2

Z′ − imZ′ΓZ′)

)

× {8[(vfZvfZ′v
l
ZvlZ′ + vfZvfZ′a

l
ZalZ′ + afZafZ′v

l
ZvlZ′ + afZafZ′a

l
ZalZ′)(u2 + t2)]

+ 8[(vfZafZ′v
l
ZalZ′ + vfZafZ′a

l
ZvlZ′ + afZvfZ′v

l
ZalZ′ + afZvfZ′a

l
ZvlZ′)(u2 − t2)]}

+ G2

(
1

s(s − m2
Z′ + imZ′ΓZ′)

)
8
[
vfZ′v

l
Z′(u2 + t2) + afZ′a

l
Z′(u2 − t2)

]

+ G4

(
1

(s − m2
Z′ + imZ′ΓZ′)(s − m2

Z − imZΓZ)

)

× {8[(vfZ′v
f
ZvlZ′vlZ + vfZ′v

f
ZalZ′alZ + afZ′a

f
ZvlZ′vlZ + afZ′a

f
ZalZ′alZ)(u2 + t2)]

+ 8[(vfZ′a
f
ZvlZ′alZ + vfZ′a

f
ZalZ′vlZ + afZ′v

f
ZvlZ′alZ + afZ′v

f
ZalZ′vlZ)(u2 − t2)]}

+ G4

(
1

(s − m2
Z′ + imZ′ΓZ′)(s − m2

Z′ − imZ′ΓZ′)

)

× 8
[
(vfZ′

2vlZ′

2 + vfZ′

2alZ′

2 + afZ′

2vlZ′

2 + afZ′

2alZ′

2)(u2 + t2) + 4(vfZ′a
f
Z′v

l
Z′alZ′)(u2 − t2)

]

We need to take average over initial-state polarizations because of unpolarized incoming

beams and sum over final-state ones since our detectors can probe final-state polarizations,

then the amplitude-squared of the generic proceess (Equation 4.4) takes the form

〈 |A
(
f f̄ → ℓ+ℓ−

)
|2〉polar. = F (s; v, a) [(s + t)2 + t2]

+ G(s; v, a) [(s + t)2 − t2] (4.7)

whereF (s; v, a) andG(s; v, a) are given by (Aguila, et al. 1987)

F (s; v, a) = 2
∑

α,β

(vfα vfβ + afα afβ) (vlα vlβ + alα alβ)

(s − M2
α + iMαΓα)(s − M2

β − iMβΓβ)

and

G(s; v, a) = 2
∑

α,β

(vfα afβ + vfβ afα) (vlα alβ + vlβ alα)

(s − M2
α + iMαΓα)(s − M2

β − iMβΓβ)
. (4.8)
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With the invariant kinematical variables;

s = (k1 + k2)
2 = (q1 + q2)

2

u = (k1 − q2)
2 = (k2 − q1)

2

t = (k1 − q1)
2 = (k2 − q2)

2 (4.9)

In these expressionsα andβ label intermediate vector bosonsi.e. γ, Z and Z′. TheΓα

designates widths of the vector bosons:Γγ = 0 (absolutely stable) andΓZ = 2.4952 GeV.

The Z′width ΓZ′ is a model-dependent quantity, and while making numerical estimates

in what follows we will takeΓZ′ = ΓZ. Moreover, in accord with the U(1)η model

parameter space, we takeg′
1 = g1.

4.2. The Linear Collider Signatures

We first examine U(1)′ model at a high-energy linear collider (such as the Inter-

national Linear Collider (ILC) project under preparation)running at
√

s = 500 GeV.

The basic processes we consider aree+e− → µ+µ− ande+e− → τ+τ− where we dis-

carde+e− final states simply for avoiding thet-channel contributions. Since leptons do

not interact strongly there is only QED contributions. The differential cross section of

lepton-antilepton pair production is simply given by

dσ(e+e− → ℓ+ℓ−) =
1

2EA2EB|vA − vB|
d3~q1

(2π)32E1

d3~q2

(2π)32E2

× |A(e+e− → ℓ+ℓ−)|2(2π)4δ(4)(k1 + k2 − q1 − q2) (4.10)

wherek1, k2, q1 andq2 are four momenta, and with some basic assumptions;

EA = k1 , EB = k2 , E1 = q1 , E2 = q2 ,

EA = EB and ~Q = ~k1 + ~k2

the differential cross section is;

dσ(e+e− → ℓ+ℓ−) =
1

32π2s

d3~q1

q0
1

d3~q2

q0
2

× |A(e+e− → ℓ+ℓ−)|2δ3( ~Q − ~q1 − ~q2)δ(Q
0 − q0

1 − q0
2)
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Figure 4.3. Electron-positron annihilation into lepton-antilepton pair in linear collider

At the center of mass frame;

~k1 = −~k2 , ~q1 = −~q2

k0
1 = k0

2 , q0
1 = q0

2

Q0 = k0
1 + k0

2 = 2k0
1 = 2k0

2

it becomes

dσ(e+e− → ℓ+ℓ−) =
1

64π2s

d3~q1

(q0
1)

2
|A(e+e− → ℓ+ℓ−)|2δ(k0

1 − q0
1) (4.11)

the volume element then can be written in the form;

d3~q1 = |~q1|2d|~q1| sin θdθdϕ

= q0
1
2dq0

1 sin θdθdϕ (4.12)

Thus, the differential cross section is;

dσ(e+e− → ℓ+ℓ−) =
1

64π2s
dq0

1 sin θdθdϕ|A(e+e− → ℓ+ℓ−)|2δ(k0
1 − q0

1) (4.13)
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Figure 4.4. Z-axis is the direction of longitudinal momentum

Finally, the cross section of lepton-antilepton production through electron-positron anni-

hilation is;

σ(e+e− → ℓ+ℓ−) =
1

32πs

∫
sin θdθ|A(e+e− → ℓ+ℓ−)| (4.14)

Rearranging the kinematical variables in (Equation 4.9) wecan get the relation;

t = −s

2
(1 − cos θ) , and , dt =

s

2
d(cos θ) = −s

2
sin θdθ (4.15)

Then substituting into (Equation 4.14), the cross section is;

σ(e+e− → ℓ+ℓ−) =
1

16πs2

∫ 0

−s

dt|A(e+e− → ℓ+ℓ−)|2 (4.16)

Depicted in Figure 4.5 are unpolarizedµ+µ− andτ+τ− production cross sections

at a futuree+e− machine for family universal U(1)′ (in the left panel) and family non-

universal U(1)′ (in the right panel) models. For family universal U(1)′ it is seen that

σ(e+e− → µ+µ−) andσ(e+e− → τ+τ−) completely overlap. The main reason behind

this coincidence is thatµ andτ leptons do have identical gauge quantum numbers (in-

cluding those of under the U(1)′ gauge symmetry) and their mass difference causes only

a tiny deviation at such high energies (LEP Coll. 2003, ALEPHColl. 2005). Conse-

quently, from the left panel of Figure 4.5 one concludes thatnumbers of muons and tau

leptons produced at ane+e− collider will be identical (up to systematic and statistical er-

rors in analyzing the experimental data) if the new gauge symmetry, the U(1)′ symmetry

under concern, exhibits identical Z′couplings for each fermion (at least lepton) family as

happens in the standard electroweak theory.
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In clear contrast to the left-panel of Figure 4.5, one observes thatµ+µ− andτ+τ−

differ by an order of magnitude if the U(1)′ symmetry possesses non-universal couplings

to fermions (at least leptons). Indeed,σ(e+e− → µ+µ−) is larger thanσ(e+e− → τ+τ−)

by a factor of6.5, and this factor is related to U(1)′ charges listed in Table 3.1 and vector

and axial-vector couplings in Table 3.4. Therefore, the right-panel of Figure 4.5 alone is

sufficient for concluding that the number ofµ+µ− andτ+τ− events will significantly dif-

fer from each other if the new gauge symmetry, the U(1)′ gauge symmetry under concern,

exhibits different Z′couplings to different fermion (at least lepton) families.
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Figure 4.5. The µ+ µ− and τ+ τ− productions at a futuree+ e− collider with
√

s = 500 GeV for family universal U(1)′ (in the left panel) and family

non-universal U(1)′ (in the right panel) models. The ratio between family

non-universal and family universal cross sections varies with model

parameters

Additionally we analyze the U(1)′ model at the Large Electron-Positron (LEP)

collider which is closed at 2000 with
√

s = 209 GeV and 140pb−1 luminosity. Figure

4.6 is the production cross sections of muon and tau lepton final states with family non-

universal U(1)′. It is clear in Figure 4.6 that family non-universal U(1)′ signal is quite

clean and distinguishable as the muon and tau lepton production cross sections are as

much as several hundreds of picobarns. However, these productions are observed to be

around few picobarns in various analysis (Aguila, et al. 1993, Aguila and Cvetic 1994,

Leike 1997, Appelquist, et al. 2003, LEP Coll. 2003, Carena,et al. 2004, ALEPH Coll.

2005) and since such a clear and distinct signal has not been observed in LEP (LEP Coll.

2003, ALEPH Coll. 2005), it can easily be said that family non-universal Z′lies beyond

the discovery limit of LEP.
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Figure 4.6. Family non-universal Z′at LEP

In conclusion, at linear colliders, which provide a perfectarena for precision mea-

surements, one can determine if the new gauge symmetry, if any, which extends the SM

gauge group exhibits family universal or non-universal couplings by simply counting

the number of lepton pairs produced. This aspect is quite important since family non-

universality might signal anomaly cancellation in Abelianextended models as shown in

(Demir, et al. 2005).

4.3. The Hadron Collider Signatures

The most important hadron machine to come up is the Large Hadron Collider

(LHC) which is a proton-proton collider running at
√

s = 14 TeV center of mass en-

ergy. At the parton level dilepton production processes arestarted by quark–anti-quark

annihilation into lepton pairs vias-channelγ, Z and Z′exchanges. Since hadrons inter-

act strongly, QCD contributions must be included in calculations thus the hadronic cross

section is related to the partonic one via

σ
(
pp → ℓ+ℓ−

)
=
∑

q,q̄

Cqq̄

∫
dxq dxq̄ Pq/A(xq)Pq̄/B(xq̄) σ

(
qq̄ → ℓ+ℓ−

)
(4.17)

with the partonic cross-section,

σ(qq̄ → ℓ+ℓ−) =
1

16πŝ2

∫ 0

−ŝ

dt|A(qq̄ → ℓ+ℓ−)|2 (4.18)

wherePq/A(xq) is Parton Distribution Function (PDF) standing for probability of finding

parton (quark)q within the hadronA with a longitudinal momentumxq time that of the

hadron. Moreover,Cqq̄ stands for color averaging over initial-state partons and it equals

1/9 for q q̄ annihilation. In numerical analysis we used CTEQ5 Mathematica package for

PDF’s.
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Figure 4.7. A generic two-body parton scattering process

It should be noticed that the partonic cross-sections of up-type and down-type

quarks differ by their charges. Therefore the hadronic cross-section can be written in

detail

σ
(
pp → ℓ+ℓ−

)
=

1

9

∫
dxu dxū Pu/A(xu) Pū/B(xū) σ

(
uū → ℓ+ℓ−

)

+
1

9

∫
dxc dxc̄ Pc/A(xc) Pc̄/B(xc̄) σ

(
cc̄ → ℓ+ℓ−

)

+
1

9

∫
dxt dxt̄ Pt/A(xt) Pt̄/B(xt̄) σ

(
tt̄ → ℓ+ℓ−

)

+
1

9

∫
dxd dxd̄ Pd/A(xd) Pd̄/B(xd̄) σ

(
dd̄ → ℓ+ℓ−

)

+
1

9

∫
dxs dxs̄ Ps/A(xs) Ps̄/B(xs̄) σ

(
ss̄ → ℓ+ℓ−

)

+
1

9

∫
dxb dxb̄ Pb/A(xb) Pb̄/B(xb̄) σ

(
bb̄ → ℓ+ℓ−

)
(4.19)

At the parton level the kinematical variables are denoted asŝ, û, t̂ and expressed as

ŝ = (k1 + k2)
2 = (xAPA + xBPB)2 = (q1 + q2)

2

û = (k1 − q2)
2 = (xAPA − q2)

2 = (k2 − q1)
2 = (xBPB − q1)

2

t̂ = (k1 − q1)
2 = (xAPA − q1)

2 = (k2 − q2)
2 = (xBPB − q2)

2 (4.20)

for massless initial and final statesP 2
A = 0, P 2

B = 0, q2
1 = 0, q2

2 = 0 ;

ŝ = 2xAxBPA · PB = xAxBs

û = 2xAPAq2 = 2xBPBq1

t̂ = 2xAPAq1 = 2xBPBq2 (4.21)
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Here,xA andxB determine what fraction of the hadron momentum is carried bythe parton

inside the hadron, thus their values are between 0 and 1,

0 < xA < 1 and 0 < xB < 1 (4.22)

substituting (Equation 4.21) and (Equation 4.22) into (Equation 4.18) and (Equation 4.19)

σ
(
pp → ℓ+ℓ−

)
=

1

9

∫ 1

0

dxu

∫ 1

0

dxū Pu/A(xu) Pū/B(xū) σ
(
uū → ℓ+ℓ−

)

+
1

9

∫ 1

0

dxc

∫ 1

0

dxc̄ Pc/A(xc) Pc̄/B(xc̄) σ
(
cc̄ → ℓ+ℓ−

)

+
1

9

∫ 1

0

dxt

∫ 1

0

dxt̄ Pt/A(xt) Pt̄/B(xt̄) σ
(
tt̄ → ℓ+ℓ−

)

+
1

9

∫ 1

0

dxd

∫ 1

0

dxd̄ Pd/A(xd) Pd̄/B(xd̄) σ
(
dd̄ → ℓ+ℓ−

)

+
1

9

∫ 1

0

dxs

∫ 1

0

dxs̄ Ps/A(xs) Ps̄/B(xs̄) σ
(
ss̄ → ℓ+ℓ−

)

+
1

9

∫ 1

0

dxb

∫ 1

0

dxb̄ Pb/A(xb) Pb̄/B(xb̄) σ
(
bb̄ → ℓ+ℓ−

)
(4.23)

Depicted in Figure 4.8 areσ (pp → e+e−) andσ (pp → µ+µ−) for family univer-

sal (in the left panel) and non-universal (in the right panel) models. From the left-panel

it is clear that the two cross sections coincide, that is, an additional U(1)′ symmetry with

universal couplings to fermion (at least lepton) families is expected to lead equal numbers

of e+e− andµ+µ− pairs at the LHC. This observation is similar to what we foundwhile

analyzing ILC signatures in Section 4.1 above because of thefact that U(1)η model pos-

sesses family universal couplings and mass difference between muon and electron cannot

induce an observable effect on cross sections at such a high-energy collider (LEP Coll.

2003, ALEPH Coll. 2005).

Similar to the right-panel of Figure 4.5, the right-panel ofFigure 4.8 showse+e−

andµ+µ− production cross sections at the LHC with family non-universal U(1)′ model.

The panel manifestly shows thatσ (pp → e+e−) is approximately13 times smaller than

σ (pp → µ+µ−) because of unequal U(1)′ charges of electron and muon tabulated in Table

3.1 as well as their vector and axial-vector couplings givenin Table 3.4. Therefore, a

family non-universal U(1)′, if any, can have observable signatures at the LHC via dilepton

production processes.
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Figure 4.8. The unpolarizede+e− andµ+µ− productions at the LHC for family universal

(left panel) and non-universal (in the right panel) U(1)′ models. The ratio

between family non-universal and family universal cross sections varies

with model parameters

We also examine the family non-universal U(1)′ model atp − p̄ collisions with

current bounds from Tevatron (
√

s = 2 TeV). Figure 4.9 shows muon and electron

production cross sections at Tevatron with family non-universal U(1)′. Nevertheless the

CDF (Abe, et al. 1992, Abe, et al. 1995, Abe, et al. 1997) and D0(Abachi, et al. 1996,

Abbott, et al. 1998, Abazov, et al. 2001) experiments are expected to probe Z′roughly

in the range of 200-800 GeV masses for various models, thus Tevatron experiments put

strong limits on Z′masses in agreement with the limits set by the LEP experiments. As

it is understood in Figure 4.9, family non-universal U(1)′ by being out of the limits is

excluded at Tevatron with current bounds.
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Figure 4.9. Family non-universal Z′at Tevatron
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Before closing this section, we put strong emphasis on the fact that family non-

universal U(1)′ offers observable signatures in dilepton signal in both linear and hadron

colliders. In this sense, the LHC, which is expected to startoperation in coming years,

will be able to establish existence/absence of an additional U(1)′ symmetry in general

and a family non-universal U(1)′ in particular. The latter will have easier observational

characteristics because all that matters is the measurement of the ratios of events with

different lepton flavors.
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CHAPTER 5

CONCLUSION AND OUTLOOK

In this work we have contrasted family universal and non-universal U(1)′ models

via their dilepton signatures in future linear (the ILC) andhadron (the LHC) colliders.

These production signatures are also observable in currentcolliders, and there are more

stringent bounds on Z′from precision electroweak experiments and from direct searches

in LEP (LEP Coll. 2003, ALEPH Coll. 2005) and Tevatron (Abe, et al. 1992, Abe, et al.

1995, Abachi, et al. 1996, Abe, et al. 1997, Abbott, et al. 1998, Abazov, et al. 2001. The

limits are model dependent because of the different couplings to fermions but typically

the mass of a light Z′is comparable with Z (∼ 200 GeV) and the heavy one is around

500-800 GeV with small mixings (Cvetic, et al. 1997, Langacker 2004, LEP Coll. 2003,

ALEPH Coll. 2005).

Figure 4.6 and Figure 4.9 can be used in comparison between current and future

colliders. Similar to ILC analysis Figure 4.6 indicates a family non-universal U(1)′ model

with current bounds in LEP and Figure 4.9 is family non-universal U(1)′ at Tevatron in

a similar fashion with LHC analysis. And again the family non-universality is at the dif-

ference in production cross sections of different flavors. As a result, family non-universal

Z′is out of limits set by various experiments in LEP and Tevatron.

From discussions in Section 4.1 and Section 4.2 we conclude that in both col-

liders (depending on systematic and statistical error barsin experimental data) one can

establish existence/absence of a family non-universal U(1)′ model. This search is actually

easier than direct Z′search since all that matters is the ratio of production cross sections

of different lepton flavors.

For having a clearer sense of Z′search at colliders, it would be useful to analyze

decay patterns of Z′boson into different flavors of matter. In general, a Z′boson of mass

MZ′ decays into a fermionf and anti-fermionf̄ with a rate

ΓZ′→ff̄ = MZ′

(
g2

4 cos θW

)2
(

vfZ′

2
+ afZ′

2

12π

)
(5.1)

directly proportional toMZ′ . Therefore, if a certain number of Z′bosons are produced
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(Z′bosons can be copiously produced at the LHC) then their decays into different fermion

pairs gives information about the underlying structure of the U(1)′ model.

Indeed, one expects at all grounds

ΓZ′→µ+µ−

ΓZ′→τ+τ−

= 1 ;
ΓZ′→µ+µ−

ΓZ′→e+e−

= 1 (5.2)

in any U(1)′ model (may it follow from E(6) or from strings) in which Z′couples to each

lepton family in a universal fashion.

However, the same ratios of the decay rates become

ΓZ′→µ+µ−

ΓZ′→τ+τ−
= 6.5 ;

ΓZ′→µ+µ−

ΓZ′→e+e−
= 13 (5.3)

in the U(1)′ model of (Demir, et al. 2005) in which Z′couples to different lepton families

differently (as listed in Tables 3.1 and 3.4). That the decayrates can significantly (de-

pending on the model parameters) deviate from unity is a highly interesting signature for

collider searches for a family non-universal U(1)′ gauge symmetry.

From the analyzes presented above we conclude that a U(1)′ gauge symmetry

with non-universal couplings to lepton families offers unique observational signatures for

collider searches via dilepton production.
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APPENDIX A

CONVENTIONS AND FEYNMAN RULES

A.1. Gamma Matrices

Anticommutation relations:

{γµ, γν} = γµγν + γνγµ = 2gµν , {γ5, γµ} = 0 (A.1)

Definitions ofγ5:

γ5 ≡ γ5 ≡ iγ0γ1γ2γ3 = −iγ0γ1γ2γ3 (A.2)

Hermitian conjugates:

γ0† = γ0 , γk
†
= −γk , γ5† = γ5 , γµ† = γ0γµγ0 (A.3)

Squares:

(γ0)2 = −(γk)2 = (γ5)2 = I (A.4)

Dirac representaion:

γ0 =



 I 0

0 −I



 , ~γ =



 0 ~σ

−~σ 0



 , γ5 =



 0 I

I 0



 (A.5)

I is a 2×2 identity matrix, and the 2×2 Pauli matrices are

σx =



 0 1

0 1



 , σy =



 0 −i

i 0



 , σz =



 1 0

0 −1



 (A.6)

which satisfy

[σi, σj] = 2iǫijkσk , {σi, σj} = 2δij , T r(σiσj) = 2δij (A.7)

whereǫijk is totally antisymmetric;ǫijk = ǫijk = 1 for an even permutation of 1, 2, 3.
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A.2. Trace Theorems and Tensor Contractions

Some useful relations involving gamma matrices:

γ · k = γµk
µ , Tr(I ) = 4 , Tr(γµ) = 0 , Tr(odd #of γmatrices) = 0 (A.8)

Tr(γµγν) = 4gµν , T r(γµγνγργσ) = 4[gµνgρσ − gµρgνσ + gµσgνρ] (A.9)

Tr(γ5) = 0 , T r(γ5γµ) = 0 , T r(γ5γµγν) = 0 , T r(γ5γµγνγρ) = 0 ,

T r(γ5γµγνγργσ) = −4iǫµνρσ = 4iǫµνρσ (A.10)

ǫµνρσ = −ǫµνρσ =






1 for even permutations of 0,1,2,3 ;

−1 for odd permutations ;

0 otherwise

(A.11)

ǫµνρσǫµνρσ = −24 , ǫµνρσǫµνρ
α = 6gσα ,

ǫµνρσǫµν
αβ = −2(gραgσα − gρβgσβ) (A.12)

Summation of polarization states for real vector bosons:

massless,
∑

σ ǫ⋆µ(p, σ)ǫν(p, σ) = −gµν

massive,
∑

σ ǫ⋆µ(p, σ)ǫν(p, σ) = −gµν + pµpν

M2

V

A.3. Dirac Spinors

Positive energy spinoru(p):

(/p − m)u(p) = 0 , ū(p)(/p − m) = 0 (A.13)

with adjoint spinor:ū(p) = u†(p)γ0 ,

Negative energy spinorv(p):

(/p + m)v(p) = 0 , v̄(p)(/p + m) = 0 (A.14)
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with adjoint spinor :̄v(p) = v†(p)γ0 .

Projection operators:

∑

λ

uλ(p)ūλ(p) = /p + m (A.15)

∑

λ

vλ(p)v̄λ(p) = /p + m (A.16)

∑

λ,σ

ūλ(p)γµvσ(k)γν v̄σ(k)uλ(p) = Tr[(/p + m)γµ(/k − m)γν ] (A.17)

A.4. Feynman Rules for Tree Graphs

External Fermion Lines

incoming

u(p)

outgoing

ū(p)

External Antifermion Lines

incoming

v̄(p)

outgoing

v(p)

Propagators

Photon: −igµν
p2

(A.18)µ

γ

ν

Massive Boson: −igµν
p2 − m2 + iǫ

(A.19)µ

Z, Z ′

ν
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Vertices

Photon - Fermion :

f

µ

f

−iQfeγ
µ (A.20)

Z boson - Fermion :

f

Zµ

f

− ig2γ
µ

4 cos θW
(vfZ − afZγ5) (A.21)

Z′ boson - Fermion :

f

Z ′µ

f

− ig2γ
µ

4 cos θW
(vfZ′ − afZ′γ

5) (A.22)
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A.5. Cross Sections and Decay Rates

The differential cross section of a scattering process is given by;

dσ =
1

2EA2EB|vA − vB|

(
∏

f

d3pf
(2π)3

1

2Ef

)

× |A(pA, pB → {pf})|2(2π)4δ(4)
(
pA + pB −

∑
pf

)
(A.23)

The differential decay rate of an unstable particle to a given final state is;

dΓV =
1

2mV

(
∏

f

d3pf
(2π)3

1

2Ef

)
|A(pV → {pf})|2(2π)4δ(4)

(
pV −

∑
pf

)
(A.24)

whereEA andEB are incident beam energies,vA andvB are incoming beam velocities,

pA andpB are incoming beam momentums,Ef ’s are final state fermion energies,pf ’s are

final state fermion momentums andmV is the mass of intermediate vector boson.

A.6. Physical Constants and Conversion Factors

Physical constants

c = 2.998 × 1010 cm/s

~ = 6.582 × 10−22 MeV s

e = −1.602 × 10−19 C

α =
e2

4π~c
=

1

137

sin θW
2 = 0.23

g1 =
e

cos θW

g2 =
e

sin θW

gZ =
g2

cos θW
ΓZ = 2.4952GeV

Conversion factors

1barn = 10−24 cm2

(1GeV )−2(~c)2 = 0.3894 × 10−27 cm2 = 0.3894 mbarn
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