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ABSTRACT

ACCESS MONITORING SYSTEM FOR DISTRIBUTED FIREWALL 

POLICIES

Internet has provided several benefits in terms of information sharing. However, 

Internet is an insecure environment that can cause threats to private networks. As a result, 

network security becomes a critical issue. One of the important tools used in network 

security is firewall. Firewalls protect a private network from external threats by restricting 

network traffic according to predefined security rules. Basically, firewalls apply these rules 

to each packet that passes over them. Distributed firewalls are a new approach to firewall to 

overcome some drawbacks of traditional firewalls. Distributed firewall design is based on 

the idea of enforcing the policy rules at the endpoints rather than a single entry point to 

network. Management of policy rules is a critical issue in both traditional and distributed 

firewalls. We propose a monitoring application for distributed firewall policies to keep 

track of actions (create, read. update, delete) performed on policy rule set. The resulting 

data produced by the monitoring application will be very helpful in policy management 

process.



v

ÖZET

DA ITIK GÜVENL K POL T KALARI Ç N ER M TAK P S STEM

nternet bilgi payla ımı açısından birçok faydalar sa lamaktadır. Fakat nternet özel 

a ları tehdit edebilecek, güvenlik açısından eksiklikleri olan bir ortamdır. Ate  duvarları a

güvenli ini sa lamada kullanılan önemli bir araçtır. Ate  duvarları önceden belirlenmi

güvenlik kurallarına göre a  trafi ini düzenleyerek özel a ları dı arıdan gelebilecek 

saldırılara kar ı korur. Temel olarak bir ate  duvarı güvenlik kurallarını üzerinden geçen 

her a  paketine uygular. Da ıtık ate  duvarları geleneksel ate  duvarlarının birtakım

eksikliklerini gidermek için ortaya atılmı  bir yakla ımdır. Da ıtık ate  duvarı tasarımı

güvenlik kurallarını a a giri  noktasında uygulamak yerine a ın içindeki bilgisayar 

üzerinde uygulama esasına dayanır. Güvenlik kurallarının yönetimi hem geleneksel hem de 

da ıtık ate  duvarları için çok önemli bir konudur. Bu çalı mada da ıtık ate  duvarı

güvenlik politikaları için bir takip sistemi geli tirmek amaçlanmaktadır. Bu uygulama 

tarafından üretilecek sonuçlar güvenlik kurallarının do ru bir ekilde yönetilmesinde 

yardımcı olacaktır.
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

As a result of rapid developments in computer networks, nowadays it is possible to 

share and collect information for business, personal or academic purposes across different 

networks. Especially, the introduction of Internet made the information sharing possible in 

the worldwide. It is a fact that Internet has so many benefits and made the life very easy. 

On the other hand, it should be kept in mind that Internet also has some threats. Basically, 

these threats come from the Internet attacks.  

The aim of these attacks is basically to gain access to private information and 

resources, which are inside a personal computer or private network, in an unauthorized 

way. In the past, where Internet is not so widespread, network security is not so critical 

issue. However, today network security should be handled very carefully.  

Today, there are several techniques and tools that are used to provide a secure 

network environment. Firewalls are one of the well-known tools that are very helpful in 

network security. Basically, a firewall separates the private network from the external and 

non-secure environment. A firewall that is located between the private network and Internet 

enforces a predefined network security policy by controlling network traffic passing over it. 

A network security policy is composed of a set of rules that defines what types of 

connections are allowed between internal and external networks. Additionally, a security 

policy defines the action that should be performed when a violation of policy is detected. 

 To be sure that security policy is managed correctly, the whole traffic between 

internal and external networks must travel through the firewall. In other words, firewall 

should be at the entry point of the private network.  

 Although the traditional firewalls have played very critical roles in the network 

security, they have some drawbacks. There are several researches on the firewall 

technologies to overcome these drawbacks. One of the recent approaches in this field is the 

concept of distributed firewall. Basically, a distributed firewall aims to provide the same 

functionality as the traditional ones in terms of network security. However, their way of 
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working is a bit different. In a distributed firewall, security policy is enforced at the each 

individual network endpoints rather than at a single place (which is the case for traditional 

ones). 

 This thesis introduces a monitoring application that is running on a distributed 

environment to keep track of some certain events performed on policy rules. The thesis is 

composed of six chapters. Chapter 2 gives some background information about firewalls 

and distributed firewalls, their types, roles in network security, comparison to each other, 

etc. Chapter 3 defines the details of proposed distributed firewall architecture on which the 

monitoring application will run. The details of monitoring application are explained in 

chapter 4. Chapter 5 explains the experimental firewall setup that is used to test and verify 

the monitoring application is explained. Additionally, the results that are created by the 

monitoring application on the experimental setup are presented in this chapter.  
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CHAPTER 2 
 
 

DISTRIBUTED FIREWALLS 
 
 

In this chapter, an overview of firewall concept and the role of firewalls in network 

security will be explained. In addition, the idea of distributed firewalls will be examined. 

 

2.1. Firewall Overview 
 
 As a result of rapid developments in Internet technologies, it has become really easy 

to access, share and publish information in both personal and business level. It is a fact that 

Internet provides several benefits for information sharing, however it should be taken into 

account that there are significant risks in the Internet world. Connecting a private PC or 

network to Internet allows the ones inside that network to access external resources and 

Internet services. On the other hand, it also allows outsiders to access that private PC or 

network’s internal resources and private information. In order to deal with such kind of 

problems efficiently, managing network security is a really key point.  

Firewalls are important network elements that have an important role for network 

security. Basically, a firewall is a secure and trusted machine that separates the private 

network and public network (Linux Network Administrators Guide 2007).  

Firewalls are the separation point between the Internet and private network. 

Basically, they examine the incoming network traffic in order to prevent the harmful traffic 

and Internet attacks. They can also detect and prevent unauthorized outgoing traffic. This 

situation emerges when an intruder from the internal network generates non-legitimate 

traffic. Firewalls can detect such kind of malicious activities of intruders (Kurose and Ross 

2003).  

A firewall can be implemented on different hardware platforms. A router, a personal 

computer or a collection of routers / personal computers can be configured to be used as a 

firewall. Whatever the hardware is, all network traffic should be managed in a way that it 

will pass over the firewall so that it will be possible to force predefined security policy 

(Chapman and Zwicky 2000).  
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Figure 2.1. A firewall’s location in the network  

(Source: Chapman and Zwicky 2000) 
 

When defining a network security policy, first the procedures to protect the network 

and its contents should be defined. From this point of view, a network security policy has 

an important role in enforcing the whole security policy defined by an organization.  

As stated, a firewall’s fundamental functionality is to regulate the network traffic 

between different computer networks having different trust levels to enforce the predefined 

security policy. A very common example for this situation is Internet (having no trust level) 

and a private network (has a higher trust level). It is also possible to have another network 

between Internet and private network having an intermediate trust level. Generally, such 

kind of networks is called as perimeter network or Demilitarized Zone (DMZ). Perimeter 

networks or DMZs are useful since they provide an additional layer of security (Wikipedia 

2007). 

 

2.1.1. Perimeter Networks 
 

Each network can contain several perimeter networks. In order to have a successful 

network security perimeter, the firewall server must act as the gateway for all 

communications between trusted and untrusted / unknown networks. In general, it is 
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possible to talk about three types of perimeter networks: the outmost perimeter, internal 

perimeters and the innermost perimeter (Cisco Documentation 2007). 

 

 
Figure 2.2. Perimeter networks  

(Source: Cisco Documentation 2007) 
 

The outmost perimeter network is the border between the controllable zone and the 

zone out of control. In general, this border is the place where the router, which is to 

separate the private network from the Internet service providers network, is deployed. 

Internal perimeter networks are additional boundaries in which any other security 

mechanisms are placed. Intranet firewalls, filtering routers, etc. are examples of these 

security mechanisms. The outmost perimeter network is the most insecure part of the 

network structure. In general, this area is the place where routers, firewall servers and 

public servers like HTTP, FTP, etc. are located. From an external network’s point of view, 

this area is the key point on which all traffic between two networks should pass. Since this 

area is the easiest one to access for outsiders, it is the main attack point to gain access to 

internal networks (Cisco Documentation 2007). 

 

2.1.2. Trusted Networks 

 
Trusted networks are the ones inside the network security perimeter, meaning that 

these are the ones that need to be protected from external world. After configuring the 
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firewall server, the trusted networks contain the firewall server and all networks behind the 

firewall server. An exceptional case to this situation is virtual private networks (VPNs), 

which allows data transmission over an untrusted network (Cisco Documentation 2007). 

 

2.1.3. Untrusted Networks 

 
The networks that fall outside of the security parameter and external to firewall 

server are known as untrusted networks. It is possible to control trusted networks but you 

cannot control untrusted networks since you do not have any control over the 

administration or security policies for these networks. A private network wants to 

communicate with untrusted networks but there should be a protection against the threats 

that can come from the untrusted world (Cisco Documentation 2007).  

 While configuring the firewall server, it is important to identify untrusted networks 

from which incoming requests are accepted (Cisco Documentation 2007).  

 

2.1.4. Unknown Networks 
 
 The networks that are not trusted or untrusted are defined as unknown networks. 

Since it is not possible to explicitly tell the firewall server that this networks is trusted or 

untrusted, they are unknown to firewall. Unknown networks fall outside of the security 

perimeter. All non-trusted networks are treated as unknown by default and firewall applies 

the security policy that is applied to Internet node. However, it is possible to identify 

unknown networks below the Internet node and apply more specific policies to those (Cisco 

Documentation 2007). 

 

2.2. Firewall Technologies 
 

Firewall technology is a recent but rapidly developing area. The first firewall 

architecture, which is called packet filters, has appeared in 1985. After that there has been 

several studies on this field and new architectures / designs have been introduced.  
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Figure 2.3. Time Line of Firewall Architectures  

(Source: Cisco Documentation 2007) 
 
 The evolution of firewall technologies is examined in the rest of this section. 
 

2.2.1. Packet Filters 
 

Packet filter firewall technology is known as the first-generation firewall 

technology. A packet filter firewall basically analyzes network traffic at the transport 

protocol layer. Packet filtering is based on the some predefined rules that define what kind 

of data flow is allowed via the firewall. Each incoming network packets are examined 

whether to find out that they match one of the rules in the filtering rule set or not. If the 

packet matches one of the rules, than an appropriate action will be performed: The packet 

may be silently discarded without informing the source or an error message may be sent to 

the source. Alternatively, the packet filter may allow the packet to pass through. The action 

that will be performed is specified while defining the filtering rules. This type of packet 

filtering does not care whether a packet belongs to an existing traffic stream / connection. 

In other words, it does not store information on connection state. The only criteria to filter 

packets are the information stored in the packet itself. Basically, this information includes 

packets source and destination addresses, its protocol, the protocol type (TCP, UDP), or the 

port number (Cisco Documentation 2007). 

Obviously, packet filter firewalls have some certain advantages. First of all, since 

they perform fewer and less complicated operations, they are generally faster than other 

firewall technologies. Additionally, with the help of a simple set of filtering rules, it is 

possible to protect whole network by denying connections between specific outside sources 

and internal computers. And finally, it is not needed to configure client computers in a 

specific way for packet filters. All of the work is handled by the packet filter itself (Cisco 

Documentation 2007). 
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On the other hand, besides the advantages mentioned above, packet-filtering 

firewalls have some insufficiencies. First of all, they do not understand application layer 

protocols. For even most basic services (like PUT and GET commands of FTP), they 

cannot restrict access to protocol subsets. Because of these reasons, they cannot provide 

security for higher levels of network protocol stack. In addition, since they are stateless, 

they do not store any information about a session or application derived information. 

Another disadvantage of packet filters is that they cannot restrict what type information is 

passed from internal computers to outside services on the firewall server. They only restrict 

what information can go to inside of the private network. Therefore, they cannot restrict 

intruders’ accesses to the services on the firewall server. They also do not have audit event 

generation and alerting mechanisms. And finally, it might be difficult to test and verify 

“access” and “deny” rules are working properly (Cisco Documentation 2007). 

 

2.2.2. Stateful Filters 
 

Opposing to first generation firewalls, the second-generation firewalls do not simply 

control the contents of each packet individually by ignoring their placement in the packet 

series. Instead, they store all connections passing through the firewall, and can determine 

whether a packet is the start of a new connection, or part of an existing connection. If a 

packet is not a part of existing connection or does not belong to a start of new connection, 

then it is refused by the firewall. Since they keep information about the state of 

connections, this type of firewalls are generally called as stateful firewall filters. 

Alternatively, they are called as dynamic packet filters since they can adopt their packet 

handlings dynamically according to network traffic passing though them (Wikipedia 2007). 

As mentioned, stateful filters controls that a packet is either a connection request or 

a data packet belonging to an existing connection. In order to validate a connection session, 

a stateful firewall examines each connection request to guarantee that it follows a 

reasonable handshake for the transport layer protocol that is in use (TCP is the most widely 

used protocol that has an handshake mechanism). Additionally, data packets are not 

forwarded until the handshake is completed successfully (Cisco Documentation 2007). 
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 Stateful firewalls maintain a table of valid connections including complete session 

state and sequencing information. This state table is used to validate network traffic and 

removed when the connection is terminated.  

The state table generally includes the following information that identifies a 

connection: 

- A unique session identifier for the connection 

- The state of the connection (handshake, established, closing, etc.) 

- The sequencing information 

- The source IP address 

- The destination IP address 

- The physical network interface through with the packet arrives 

- The physical network interface through which the packet goes out 

With the help of this information, the stateful filters control the header information 

for each network packet in order to decide whether the source machine has permission to 

send data to the destination machine or whether the destination machine has permission to 

receive that data (Cisco Documentation 2007). 

As an enhancement to packet filters, stateful firewalls share advantages and 

disadvantages of packet filters. However, the addition of state table to the system makes 

stateful firewalls more secure that the ordinary packet filters. 

 

2.2.3. Application Layer Firewalls 
 

Basically, an application layer firewall, known as third generation firewall 

technology, operates at the application layer of a protocol stack. It controls the data carried 

in network packets at the application layer and manages the whole connection state and 

sequencing information. Besides, an application layer firewall can also validate other 

security items, like user passwords, service requests, etc, that are only available in 

application layer data (Cisco Documentation 2007). 

 Generally, application layer firewalls make use of proxy services. Proxy services 

are specialized applications or server programs that take users’ request for Internet services 

and forward them to the actual services. Proxy services are specific to the protocol that they 
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are designed to forward. They can provide enhanced access control, detailed checks for 

valid data and generate audit records for the traffic they are transferring (Cisco 

Documentation 2007).    

 Proxy services are developed on top of the firewall host machine’s network stack 

and operate in the application space of the operating system. Therefore, each network 

packet should travel through the low-level protocols in the kernel before reaching to the 

application space for a inspection of the packet headers and packet data by the proxies. 

Then, each packet should travel back to kernel and stack for distribution. As a result of this 

process, proxy services are a bit slower (Cisco Documentation 2007).  

 Application proxies are generally implemented as a single executable composed of 

two main components: proxy server and proxy client. A proxy server is the end server for 

all connection requests coming from a trusted network. In other words, internal users are 

not allowed to directly communicate to other services on the Internet. Instead, all traffic 

between internal users and outside world (Internet) goes over the proxy server. Once a 

connection request comes from an internal user for an external service, proxy server 

evaluates the request and decides to allow or refuse it. This decision is performed using 

some predefined set of rules for the individual network service. Proxy servers know about 

the protocol of the service they are evaluating, so they only allow packets that suit the 

definitions of that protocol. Additionally, proxy servers can provide some more advantages 

including detailed audit records of session information, user authentication, and caching 

(Cisco Documentation 2007). 

A proxy client is the part of an application that talks to the real server on the 

external network on behalf of the real client. When a request comes from a real client to 

proxy server, the proxy server either accepts or refuses the request. If the request is 

accepted, then proxy server forwards it to the proxy client. Then it is responsibility of the 

proxy client to communicate with the real server on behalf of the real client (Cisco 

Documentation 2007). 
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2.2.4. Dynamic Packet Filters 
 

Dynamic packet filters, which is known as fourth generation firewall technology, 

allows dynamic change of security policy while running. This type of firewall technology is 

most useful for UDP transport protocol, which is generally used for limited information 

requests and queries in the application layer protocol exchanges. All UDP packets that 

cross the security perimeter are associated with a virtual connection. If a response packet is 

sent to the original requester, then the setup of virtual connection is completed and the 

packet is allowed to pass over the firewall server. If no response packet is created for a 

certain period of time, the virtual connection becomes invalid (Wikipedia 2007). 

Dynamic packet filters shares the advantages and disadvantages of first generation 

firewalls. The only exceptional case is that they do not allow unsolicited UDP packets onto 

the internal network. Once a UDP request packet is send from the internal network to an 

untrusted host, the firewall server only allows packets that are a response to that request to 

the source of request. The response packet that is coming back to internal network should 

contain some certain information. This information includes a destination address matching 

to the source address of the request, a transport layer destination port that matches to source 

port number and the same transport layer protocol type. With the help of this feature, it is 

possible to allow application layer protocols like DNS to operate across the networks’ 

security perimeter. An internal DNS server can communicate to other DNS servers on the 

Internet to gather address information for unknown hosts. DNS servers make use of TCP 

connection or UDP virtual connection to make such kind of requests (Cisco Documentation 

2007). 

 

2.2.5. Network Address Translation 
 

 Network address translation (NAT in short) is a technique of computer networking 

that allows using two different sets of IP addresses for internal and external networks. 

Basically, it involves a process of re-writing the source and destination IP addresses of IP 

packets while they are passing through a router. When an external host sends a packet to 

internal network, the NAT system converts the destination address that refers to a valid 
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address for internal network. Similarly, the source address of the network packet going 

from inside to outside is modified so that it contains a valid source address for the external 

world. This functionality makes NAT an effective technology to hide the network-

addressing schema of the internal network that is located behind the firewall. Besides, NAT 

forces firewall’s control over outbound connections. This is because the addresses of hosts 

will not work on the external network, so they need to pass through the NAT system. Any 

connection that bypasses the NAT system will not work (Kurose and Ross 2003). 

 On the other hand, NAT have some drawbacks. One of the major drawbacks of 

NAT is that it is not possible to make an end-to-end IP tracing. Additionally, embedded IP 

addresses (used by FTP for example) require special handling. The hidden addresses 

located in different part of packet header should be processed and converted to valid 

addresses by NAT system. To perform such an operation, NAT system should have enough 

knowledge of protocol (Kurose and Ross 2003). 

   

2.2.6. Virtual Private Networks 
 

 Virtual private network (VPN) is a technique to use employ and integrity protection 

that allows using a public network as if it is a private network. The VPN is based on the 

idea of combining the benefits of a public network (cheap, widely available, etc.) with the 

benefits of a private network.  The network traffic running over a VPN is encrypted, 

integrity protected and encapsulated into new packets. At the opposing site, the 

encapsulation is reversed, the integrity is controlled and the packets are decrypted back to 

original. The encryption can be done in two ways. The first one is to perform encryption as 

a transport method meaning that the traffic is encrypted when it is generated at host. The 

second approach is using a tunnel mechanism meaning that the encryption and decryption 

is performed at a location between source and destination (Chapman and Zwicky 2000). 

 VPNs are not exactly a firewall technology but they affect the firewalls way of 

working in some ways. While using a VPN, one should be careful about its interaction with 

firewall. There are some cases in which the firewall cannot control the traffic coming 

through the VPN.  Additionally, firewalls can be convenient places to add VPN features 

(Chapman and Zwicky 2000).  
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2.3. Firewalls Role in Network Security 
 

There is several attack types that a private machine or network can face on the 

Internet world. Firewalls can play an important role in detecting and preventing such kind 

of attacks if they are configured properly. Within this section, the type of attacks and 

firewalls role in detection / prevention of these attacks will be examined.  

 

2.3.1. Types of Attacks 

 

2.3.1.1. Mapping 
 

Attackers would like to know some certain information about that network before 

attacking to it. The information that an attacker interested in could be IP addresses of 

machines on the network, the operating system running on that machines, the services that 

they offer, etc. With the help of such information, the attacks can be designed in a way such 

that they are more focused and less likely to cause alarm. The process of collecting this 

information is called as mapping (Kurose and Ross 2003).  

A simple way of detecting the IP addresses on the network is to use ping program to 

find out whether a machine responds to ping message or not.  

Port scanning can be used to find out the services (HTTP, FTP, etc.) offered by the 

machine. Simply, this technique includes sequentially contacting port numbers on a 

machine and analyzing the responses coming from it. The contact can be performed via 

TCP connection request or via simple UDP datagram. Nmap that is a well-known tool for 

network exploration and security auditing can perform port scanning. Firewalls have an 

important role in detecting mapping and port scanning activities. Many firewalls available 

in the market can find out such kind of harmful activity (Kurose and Ross 2003). 
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2.3.1.2. Packet Sniffing 
 

 Packet sniffer is a program running on a machine that is attached to a network and 

monitors all data link-layer frames passing over the machine’s network adapter. In an 

Ethernet LAN, packet sniffer receives all of frames that are transmitted from / to all hosts 

on the LAN. Any machine with an Ethernet card can behave as a packet sniffer if the 

Ethernet adapter is configured as promiscuous mode to receive all passing Ethernet frames. 

Packet sniffing can be both a very beneficial and harmful tool for the network security. It 

can be beneficial for network administrators in network monitoring and management. On 

the other hand, hackers can use packet-sniffing tools to extract user accounts and passwords 

from the network traffic (Kurose and Ross 2003). 

 

2.3.1.3. Intrusion 
 

Another common attack type is intrusion. Basically, with the help of intrusions, 

external users can use a computer as if they are legitimate users. There are several ways of 

getting access to a machine: a straightforward guesswork (try to guess account information 

necessary to login to the target machine), or to intricate ways to get in without knowing the 

account information, etc. Firewalls are beneficial in preventing intrusions in several ways. 

Basically, they can block all connection requests to the system without knowing an account 

name and password. If a firewall is configured properly, it can reduce the number of 

accounts that can be accessible from the outside so that the risk of social engineering or 

guesswork is decreased. Alternatively, firewalls can be configured to use one-time 

passwords that prevent guessing attacks. Even if these passwords are not used, a firewall 

will create the log of attempts of connection to the system and these logs will be helpful in 

detection of attacks (Chapman and Zwicky 2000). 

   

2.3.1.4. Spoofing 
 

A machine that is connected to Internet inevitably sends to IP datagrams into the 

network that contains information about sender’s IP address and some upper-layer data. A 
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user that has a full control of device’s software and operating system can change the 

device’s protocols to put an arbitrary IP address into datagrams source address field. This 

action is known as IP spoofing. In general, IP spoofing is used in denial-of-service attacks 

in order to hide the source of attack. It becomes really difficult to find the host that sent the 

datagram if the IP address of that datagram is spoofed. Spoofing can easily be prevented by 

using routers that can perform ingress filtering. Ingress filtering is to check the IP addresses 

of incoming datagrams and detect if the source address is in the network address range. It is 

possible to perform such a check at the edge of network that is a corporate gateway or 

firewall (Kurose and Ross 2003). 

 

2.3.1.5. Denial-of-Service Attacks 
 

Denial-of-service (DoS) attacks involve a large variety of threats. As its name 

indicates, the main aim of a DoS attack is to prevent a network, host or another network 

element being used by legitimate users. Basically, a DoS attack creates so much workload 

on the network infrastructure that is being attacked so that the legitimate tasks cannot be 

performed on that network (Kurose and Ross 2003). 

A DoS attack can have several versions. One of the well-known attack types is 

called as flooding or SYN flooding. In SYN flooding, the attacker sends a heavy load of 

TCP SYN packets to a server. Each of these packets contains a spoofed source IP address. 

Since the spoofed SYN packets contains a reasonable source address, the server cannot 

differentiate between a real SYN and spoofed SYN. Therefore, the server continues to 

second step of the TCP handshake, allocates necessary data structures and updates state 

accordingly. However, the attacker cannot complete the third step of the three-way 

handshake, so that the number of partially open connections increase. As a result, the load 

of SYN packets that need to be processed consumes all of the memory available in the 

server and server stuck (Kurose and Ross 2003). 

The smurf attack is another type of DoS attack. It again creates very heavy network 

traffic on the target site by using spoofed broadcast of ping messages. In a smurf attack, the 

attacker floods a large number of ICMP echo (ping) messages to IP broadcast addresses. 

Each ping message contains a spoofed source IP address that is the IP address of the target 
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machine. If the routing device delivers the IP broadcast to all hosts, hosts receiving the ping 

message on that IP network will reply to it and send a reply message to the spoofed IP 

address. These reply messages will create a heavy load of traffic on the victim machine so 

that it is not available for the legitimate operations (CERT Advisory 2007). 

Another form of DoS attacks is distributed DoS attack. In a distributed DoS attack, 

the attacker first gains access to several user accounts on the Internet. Then, by using that 

accounts, the attacker installs and runs a slave program that waits the commands of a 

master program at each site. At the next step, the master programs triggers the slave 

programs to start a denial-of-service attack to the same target (Kurose and Ross 2003). 

It is not so easy to avoid DoS attacks since it is difficult to differentiate between a 

valid datagram and a spoofed one. Additionally, it is difficult to find out the attack source 

because of the IP spoofing. However, a well-designed firewall will not be prone to DoS 

attacks and will prevent them reaching to the internal sources.  

 

2.4. Drawbacks of Conventional Firewalls 
 

Although they provide several benefits for network security, traditional firewalls 

have some drawbacks as stated in (Bellovin 1999, Li 2000, Ioannidis, et al. 2000, Gatus, et 

al. 2004). These drawbacks can be summarized as follows.  

 

2.4.1. Topological Dependence 
 

In order to define an efficient security policy for conventional firewalls, it is 

necessary to know network topology including location of all network egress points and 

internal network topology. If network topology is changing so frequently, then this may 

introduce scalability issues since the system administrator must update firewall policies 

constantly (Gatus, et al. 2004). 

Additionally, knowledge of topological dependence is necessary while dividing a 

network as trusted and untrusted. To detect whether a machine is trusted or untrusted 

depends on whether that machine is physically attached to that network or not. For 

instance, consider a laptop that has carried out of a company’s internal network. Since the 
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machine is not physically attached to internal network, then the company’s firewall cannot 

protect that machine. On the other hand, a visitors laptop that is physically attached to 

company’s network may be considered as insider and may have a chance to access some 

internal resources and information (Li 2000). 

At the moment, it is possible to produce solutions both of the cases mentioned 

above. In the first case, with the help of a connection through a secure channel like VPN or 

SSH, it is possible to connect the laptop to company’s network. This solution may add extra 

cost and connection overhead. In the second case, multiple firewalls can be used to divide 

the network into smaller parts that have different security levels. But this solution increases 

the network complexity and makes network administration more difficult (Li 2000). 

 

2.4.2. Single Point of Failure 
 

All the incoming and outgoing traffic should pass over a single point in order to 

enforce security policies. Although the speed of CPUs has increased dramatically in recent 

years, the speed of networks does not change as rapid as CPU. In addition to this gap 

between network and CPU speed, protocols like IPSec, which requires some computational 

power, become quite widely used in recent years. Since such kind of protocols increase the 

amount of traffic, the filtering of that traffic can cause processing overheads for the 

firewall. This congestion on a single point can significantly affect network throughput 

(Gatus, et al. 2004, Li 2000). 

 

2.4.3. Implicit Trust of Insiders 
 

 As mentioned, traditional firewalls divide network into two artificial parts as trusted 

and untrusted. This division is based on the idea that all of the hosts that is inside the 

trusted network can be trusted. However, this idea has been invalidated quite some time 

since it may be desired to allow some specific individuals or remote networks to access to 

the protected network. As a result, the classical notion of security perimeter mentioned in 

the previous sections cannot stay unmodified (Ioannidis, et al. 2000). 
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2.4.4. Multiple Entry Points 
 

 Nowadays, large networks are designed to have several entry points for some 

reasons like performance, failover, etc. In addition, many networks contain internal 

firewalls to construct different security levels. Such kind of cases makes network 

administration more challenging and threats the policy consistency.  

 Apart from these, it is possible to construct an unauthorized network entry point 

without the knowledge of network administrator. With the use of various types of tunnels, 

wireless, or dial-up connections, one can establish an access point that bypasses all security 

mechanisms provided by conventional firewalls (Li 2000). 

 

2.4.5. End-to-End Encryption  
 

 End-to-end encryption can threat conventional firewalls since it prevents them 

checking packet fields that are necessary to perform a packet filtering. End-to-end filtering 

can be allowed in conventional firewalls in case of existence considerable trust on the users 

on behalf of network administrator (Ioannidis, et al. 2000). 

  

2.5. A Distributed Approach to Firewall Design 
  

 As a result of dramatic increase in network complexity and development of new 

technologies like wireless networks and VPNs, it is not easy to maintain a fixed network 

topology anymore. Additionally, there are increasing user demands like mobility, security, 

performance and reliability. As a result of these and the disadvantages mentioned above, 

conventional firewalls have started to become inadequate.  

 In order to remove such kind of problems, Bellovin and Ioannidis, et al. introduced 

the concept of distributed firewall. The distributed firewall design is based on the idea of 

enforcing the policy rules at the endpoints rather than a single entry point to network. The 

security policies are still defined centrally. The aim with this approach is to retain the 

advantages of firewalls while resolving the disadvantages mentioned above (Bellovin 1999, 

Ioannidis, et al. 2000).  
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Figure 2.4. A distributed firewall architecture  

(Source: Li 2000) 
 

 There are three notions on which distributed firewalls based.  

- Policy language: This is necessary to define what kind of connections are allowed 

or rejected. 

- System management tools like Microsoft’s SMS or ASD.  

- Network level encryption mechanisms for TCP/IP such as IPSEC. 

Basically, using these notions a distributed firewall system works as follows. The 

policy language is converted into an internal format using tool or a compiler. The system 

management tool distributed this policy data to all of the hosts that are protected by the 

firewall. Then at each host, the incoming packets are accepted or rejected according to both 

the security policy and cryptographic verification of each sender (Bellovin 1999). 

One of the critical points in a distributed firewall design is centralized management 

of the security policies. For such a large and complex system, centralized management is 

very important to provide consistency across all firewall devices in the system for enhanced 

security. Another critical point is to distribute policies in a secure way. To provide this, 
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there is a need to use security services that guarantee the integrity, confidentially, 

authenticity of security policies (Gatus, et al. 2004).  

Policy Based Network Management (PBNM) is a new network management 

approach that abstracts the task of network management by providing a system wide 

approach to management and configuration. Opposing to traditional management systems 

that focus on device characteristics, PBNM treats the network as a whole and attempt to 

manage network as a single entity. PBNM performs this abstraction with the help of 

centralized storage, creation and management of network policies. This is very helpful to 

provide consistency, efficiency, reliability and a dynamic approach to system wide device 

configuration. Such kinds of things are very essential when managing security policies in a 

distributed firewall (Gatus, et al. 2004).  

 
Figure 2.5. Architectural model of a PBNM system  

(Source: Gatus, et al. 2004) 
  

2.6. Advantages and Disadvantages of Distributed Firewalls 
  

 The introduction of distributed firewalls offered some solutions to the problems 

cannot be easily handled by conventional firewalls. The advantages of distributed firewalls 

can be stated as follows (Ioannidis, et al. 2000): 

• Topological independence is one of the main advantages of distributed firewalls. 

Since network security no longer depends on network topology, it provides 
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more flexibility in defining the security perimeter. Security perimeter can easily 

be extended to cover remote hosts and networks whenever required.  

• Opposing to conventional firewalls, network security is no more dependent on 

the single firewall so that problems like performance bottleneck and traffic 

congestion are resolved. Besides, the load on the traditional firewall is reduced 

since a large amount of filtering is performed at the end hosts.  

• As mentioned earlier, filtering of certain protocols such as FTP are not so easy 

on a conventional firewall. Such kind of a process is much easier on distributed 

firewalls since all of the required information is available at the decision point, 

which is the end host in general.  

• The number of outgoing connections does not create so many difficulties in 

terms of network administration. Adding new links or removing existing links 

does not affect the network security. Similarly, backdoor connections that are 

created by insiders intentionally or inadvertently do not create new threats to 

network security in distributed firewalls. 

• As mentioned, in conventional firewalls there is an assumption on that insiders 

are trustable. However, this assumption is source of several problems. With the 

distributed firewall architectures, the insiders are no longer treated as 

“unconditionally trusted”. Dividing network into parts having different security 

levels is much easier with distributed firewalls.   

• Security policy rules are distributed and established on an as-needed basis. Only 

the host that needs to communicate with the external network should determine 

the relevant policy. This approach dramatically eases the policy updating 

process and does not require each firewall to maintain the complete policy set. 

Note that especially for very large networks, the policy rule set may be quite 

big.  

• End-to-end encryption is possible without affecting the network security in 

distributed firewall systems. In conventional firewalls, the use of end-to-end 

encryption was causing some problems in network security. On the other hand, 

end-to-end encryption significantly improves the security of the distributed 

firewall. 
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 On the other hand, there are some drawbacks of distributed firewalls that can be 

summarized as follows (Li 2000). 

• Compliance of security policy for insiders is one of the major issues of 

distributed firewalls. This problem especially occurs when each ending host 

have the right of changing security policy. There can be some techniques to 

make modifying policies harder but it is not totally impossible to prevent it. 

• It is not so easy to implement an intrusion detection system in a distributed 

firewall environment. It is possible to log suspicious connections on local server 

but these logs need to be collected and analyzed by security experts in central 

services.  

 

2.7. Performance of Distributed Firewalls 
 

 As mentioned, distributed firewalls have some advantages and disadvantages 

compared to traditional firewalls from the architectural point of view. Additionally, it 

would be better to compare these two in terms of their performance against network 

attacks. 

 

2.7.1. Service Exposure and Port Scanning 
 

 Both the conventional and traditional firewalls are very successful in rejecting 

requests for inappropriate services. Conventional firewalls reject the request at the network 

entry point whereas distributed firewalls do it at the host (Bellovin 1999).  

 

2.7.2. Denial of Service Attacks 
  

 Policy distributions in distributed firewalls are based on some protocols like IKE or 

ISAKMP that are used by IPSec. As a result of this, distributed firewalls are prone to DoS 

attacks. On the other hand, conventional firewalls are also prone to DoS attacks because of 

their “single point of entry” characteristics. 
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 Both of the firewall types will not be able to offer an effective defense against the 

smurf attack. If it is possible to change the network topology, both of then can offer some 

sort of support. It can be possible to locate conventional firewalls at the ISP’s POP in which 

case the attack can be blocked before it reaches the low-bandwidth access line. Distributed 

firewalls allow a host to have several outgoing connections so that the problem is a bit 

finessed (Bellovin 1999).  

 

2.7.3. Insider Attacks 
 

 Since every host performs their own packet filtering, there may occur serious 

problems when a host changes its local security settings. However, misbehavior of insiders 

can also cause problems for conventional firewalls. For example, a host can use SSH to 

tunnel TCP ports or can use end-to-end encryption to hide the traffic. Overall, it is possible 

to say that insiders that want to violate security policy can do it for both types of firewalls 

(Bellovin 1999). 

 However, in some cases of insider attacks, distributed firewalls can have some 

advantages over conventional ones. With the distributed firewall architecture it is easier to 

create smaller groups of users. By this way, it is possible to allow only the authorized user 

groups to access a resource on the network (Bellovin 1999). 
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CHAPTER 3 
 

 
PROPOSED ARCHITECTURE 

 
 
  

In this chapter, the distributed firewall architecture on which the proposed 

monitoring application will run is clarified. Additionally, the database design that each 

node in the architecture needs to maintain is explained in details. 

 

3.1. Proposed Distributed Firewall Architecture 
 

As proposed by Bellovin and Ioannidis et al, who are the pioneers of the distributed 

firewall concept, the basic idea on which distributed firewall systems are based is to 

decentralize policy enforcement to several nodes in the overall system rather that enforcing 

the policy at a central location (Bellovin 1999, Ioannidis, et al 2000). By keeping this 

fundamental idea in mind, we propose a hierarchically organized distributed firewall 

system.  

The suggested architecture, as indicated by figure 3.2, is hierarchically organized 

and has a tree-like structure. Each domain has a firewall node at the domain entrance point 

to control the traffic going inside / outside the domain (domain firewall). Similarly, each 

subnet in the domain also has a firewall node located at the subnet entrance point for the 

same purpose (subnet firewall). Each subnet may contain several hosts that are connected to 

subnet firewall. These hosts (for example PCs) can also manage a firewall to control the 

network traffic only on that host. It is possible to say that there are three types of firewall 

and these firewalls are organized in a hierarchical manner. Domain firewalls are the ones 

that are at the highest level of hierarchy. Subnet firewalls are connected to a domain 

firewall and located at the lower levels of the hierarchy. Finally, firewalls running on the 

hosts inside a subnet  (leaf firewalls) are the lowest level of the distributed firewall 

architecture.  
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Figure 3.1. Proposed Distributed Firewall architecture 

 

There is a strictly defined communication scheme between these firewall nodes 

inside the system. Each firewall node in the system can only communicate to another 

firewall node that sits at a lower level of the hierarchy with one exceptional case, which is 

explained in the next paragraph. A leaf firewall at the lowest level cannot communicate to 

any other node in the system. A subnet firewall can communicate to all of the nodes inside 

that subnet but it cannot communicate to another subnet firewall at the same level. 

Similarly, a domain firewall can communicate to any other nodes in that domain. The 

communication between a domain firewall and leaf firewall is possible with the help of the 

subnet firewalls. Communication request of the domain firewall is received by the leaf 

level firewall via the subnet firewall.  

As mentioned, there is an exceptional case where a firewall node can communicate 

to other nodes at the higher levels of the hierarchy. This is only possible when the higher-
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level nodes are on the path that connects a lower level node the Internet as indicated by the 

figure 3.3. Note that in this case this case a lower level node (for example leaf firewall) 

sends the communication request to the node that is located at the next level of the 

hierarchy (for example subnet firewall) until the request reaches to the domain firewall.  

 

 
Figure 3.2. Communication on the Internet Path 

 
As expected, each node in the system is responsible for enforcing corresponding 

security rules that are a subset of overall security policy. In addition to this, each firewall 

node should also perform some extra jobs to meet our monitoring purposes. First of all, we 

propose that every node is responsible for storing firewall rules, which are to be applied, in 

a local database system. Besides, this local database will be responsible for storing the 

necessary information for the use of monitoring application. And finally, each firewall node 

has to execute the monitoring application whenever requested.  

The details of the monitoring application are explained in Chapter 4. Through the 

rest of this chapter, the focus is on database design and the data stored in the database.  
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3.2. The Database Design 

  
As mentioned above, each firewall node has to maintain a local rulebase to store 

rules that will be used in the monitoring application. Basically, the monitoring application 

is interested in to keep track of the following operations that are performed on firewall 

policy rules: creating a new rule, reading, updating and deleting an existing rule inside the 

rule set. In order to meet this requirement, the following tables will be stored in each local 

database of every single node.   

- ActiveRules: This table maintains the policy rules that are actively applied by the 

firewall at a certain time.  

- DeletedRules: This table contains rules that are removed from ActiveRules table 

and is not valid any more.  

- UpdatedRules: This table is to keep track of updated rules.  

- CRUD: This table maintains the CRUD (Create, Read, Update, Delete) operation 

and relevant information like who made the action, when, etc. 

The detailed explanation of these tables is given below. 

 

3.2.1. Active Rules Table  
 

Basically, this table contains the necessary information to define a firewall policy 

rule that is actively applied by the firewall node. The database table contains the following 

fields, which are used to describe a firewall policy rule.  

• Rule ID: A unique rule id to identify each policy rule within the overall system.  

• Protocol: The network protocol of the traffic to which this rule will be applied.   

• Source IP Address: The IP address of the source that has produced the network 

traffic. 

• Source Port Number: Port number of the source that has created the network traffic.  

• Destination IP Address: IP address of the target machine to which source is trying 

to connect.  

• Destination Port: Port number on the target machine.  



 28

• Action: The action, such as accept, deny; that will be performed by the firewall 

when a matching network packet is found for this rule. 

• Ingoing/Outgoing: This field specifies whether network packet belongs to an 

incoming or outgoing traffic.  

• Ethernet Card ID: The identity (ID) of the physical interface though which the 

network traffic passes.  

 

3.2.2. Deleted Rules Table 
 

 This table is to store the policy rules that are removed from the security policy rule 

set. The structure of the table is same as the Active Rules table.  

 

3.2.3. Updated Rules Table 
 

 It may become necessary to update policy times in time as a result of changing 

requirements, etc. Monitoring application needs to keep track of updated rules and their 

original versions. This table helps to implement this feature by using the information stored 

in the following fields.   

• Original Rule ID: The ID of the rule before the update operation. 

• Date: The date when the rule is updated. 

• Updated Rule ID: Once the update operation is completed, the new rule is inserted 

into the Active Rules table with this new rule ID. The former rule is removed from 

the Active Rules table and inserted into Deleted Rules table. 

 

3.2.4. CRUD Table 
 

This is the main table that the monitoring application is mainly interested in. It 

basically stores the data to represent the Create, Read, Update and Delete operations 

performed on the rule set. The fields in the table are as follows:  
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• User Name: Every user that has the right to edit the policy rules should have a 

unique user name. This will allow the monitoring application to query who made 

the specified operation. 

• Domain: The domain ID inside which the specified operation is performed. As 

mentioned above, each node in the system belongs to a domain.  

• Operation: The type of the operation (Create, Read, Update, Delete) performed on 

the rule set. 

• Date: Time of the operation.  

• Rule ID: The ID of the rule on which the operation is performed.  

 

3.2.5. Query Table 
 

 This table is used to store data that is necessary to keep the history of queries that 

are performed by the users in the system. The fields in the table are as follows: 

• User Name: User that has performed the query. 

• Query Type: Type of the query that has been performed.  

• Date: Date when the query is performed.  

 

The ER diagram in Figure 3.3 explains the relationships between the database 

elements. CRUD table contains the information about the active, deleted and updated rules. 

As a result of an update operation, the existing rule is deleted and a new rule containing the 

updated information is added to the system. Therefore, Updated Rules table refers to the 

deleted rule and active rule that are the results of an update operation. 
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Figure 3.3. ER diagram for the local database managed in each firewall node. 
 

3.3. Scenarios Related to Database Tables 
 
3.3.1. Create a New Rule 
 

Assume that a new rule called R will be created. Once the necessary data to define 

the rule is entered, R will be inserted into Active Rules table. After insertion to Active 

Rules table is completed successfully, the CRUD table will be updated with the 

corresponding data. Figure 3.4 indicates the sequence of operations performed on the 

corresponding database tables. 

 

Active Rules

Deleted Rules

Updated Rule

CRUD
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Src IP

Src Port

Rule ID
Dst IP

Dst Port

Action

In / OutEth card ID

new rule ID

Data

org rule ID
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Date Rule ID
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Figure 3.4. Tables that are used when creating a new rule. 

 

3.3.2. Read a Rule 
 

As indicated by Figure 3.5, once a request comes to read an active rule, the required 

data will be extracted from Active Rules table. After data has been gathered successfully, 

CRUD table will be updated with the corresponding data.   

 

 
Figure 3.5. Tables that are used when reading a rule. 

 

3.3.3. Delete a Rule 
 

While deleting a rule R from the system, first rule R is removed from the Active 

Rules table. Then, R is inserted into DeletedRules table so that it is possible to retrieve old 
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data whenever required in the future. Finally, the CRUD table is updated accordingly. 

Figure 3.6 summarizes the sequence of operations that are performed when deleting a rule. 

 

 
Figure 3.6. Tables that are used when deleting a rule. 

 

3.3.4. Update a Rule 
 

As stated in Figure 3.7, assume that the rule R1 is updated into the new rule R2. 

First, R1 is deleted from ActiveRules table and the deleted rule data is inserted into 

DeletedRules table. Then, the new rule R2 is added to ActiveRules table. At the next step, 

UpdatedRules table is updated with the corresponding data to keep track of the updated 

rules for later use. Then the final step is to update CRUD table.   

 
Figure 3.7. Tables that are used when updating a rule 
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CHAPTER 4 
 

 
THE MONITORING APPLICATION 

 
 

As a result of increasing threat of network attacks, network security has become a 

very hot topic for both industrial and research activities. As stated at the beginning, one of 

the important elements of network security is firewall. There are several practical and 

theoretical studies on this area of network security. Firewalls play a critical role for a secure 

network by controlling / filtering incoming and outgoing traffic according to a predefined 

set of policy rules. The definition and management of policy rules is very crucial because 

any inconsistency or insufficiency may dramatically decrease the efficiency and 

effectiveness of the firewall performance (El-Shaer and Hamed 2003). The conflicts 

between firewall rules or incorrect ordering of firewall rules may produce incorrect actions 

performed on network traffic. These conflicts/inconsistencies in filtering rules are named as 

policy anomalies (El-Shaer and Hamed 2004).  

Policy anomalies can be divided into two categories according to the type of 

firewall architecture. For conventional firewalls it is possible to talk about intra-firewall 

anomalies, which can basically emerge when a packet may match more than one filtering 

rule. For distributed firewalls, on which the policy rules are distributed and applied at 

several firewall nodes instead of a single one, the problem becomes more complicated. 

Besides the intra-firewall anomalies, it is also possible to have inter-firewall anomalies. 

Basically, inter-firewall anomalies occur when individual firewalls in the same path 

perform different filtering actions on the same traffic (El-Shaer and Hamed 2004). 

To have a fully and correctly functioning firewall system (either conventional or 

distributed), the elimination of anomalies from the filtering rule set and resolving any other 

inconsistencies becomes very important issue. In order to meet this demand, it would be 

very helpful to have tools/applications that can be used to detect or analyze such kind of 

problems in a firewall system to have a more secure network. In this chapter, a firewall 

monitoring application working on a distributed firewall environment is presented.  
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4.1. Functionality Offered by Monitoring Application 

 

The proposed application is a monitoring system, which works on a distributed 

firewall environment. The details of the distributed firewall architecture on which the 

application will run are explained in Chapter 3. As stated in that section, the firewall system 

contains several nodes that are distributed into different domains and subnets organized in a 

hierarchical manner. Each node in the system is responsible for applying the subset of 

overall policy rules that are defined for the corresponding domain / subnet. As a result of 

changes in the security policy or detection of the problems in the existing rule set, it may be 

required to make some changes on the existing rule set. The major changes that can be 

performed on the rule set can be listed as follows: 

- Creating a new firewall policy rule. 

- Reading a policy rule from the existing rule set. 

- Updating an existing rule. 

- Deleting a rule from the existing rule set. 

 Basically, the monitoring system is responsible for displaying the detailed 

information about these major operations that are performed on the filtering rules. For 

short, these operations will be called as CRUD in this document. The content of displayed 

data includes enough information that reflects the details of performed operation. For 

example, it will be possible to answer easily to the following questions by using the 

presented data: “When a certain rule is created / read / updated / deleted?”, “Who has 

created / read / updated / deleted a certain rule?”,  “What are the currently active rules 

that are applied?”, “What is the list of deleted rules from the system?”, and so on.   

Note that the application does not intend to make a detailed analysis on the queried 

data, such as to discover the anomalies or inconsistencies within the overall rule set, etc. So 

it is important to emphasize that the application is not an anomaly detection or similar kind 

of tool. It’s just a monitoring tool to present data that falls into the area of interest. 

However, it may play a critical to design and implement more sophisticated tools like 

mentioned above.  
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4.2. Working Principles of Monitoring Application 
 
 

As mentioned while describing the distributed firewall architecture for which the 

application is designed, each node in the system has to maintain a local database to store 

the data containing the CRUD actions performed on policy rules. These actions can be 

performed by different users like network administrator, another application that manages 

the firewall policy rules automatically. Once a node detects that one of the CRUD actions 

are performed in its internal rule set, the required data to represent this action is stored in 

the nodes local database. The stored data contains enough information to represent the 

corresponding operation and to answer the questions mentioned in the previous section. 

The detailed information about the stored data and database design can be found in Chapter 

3.  

The application is composed of two main parts as indicated by Figure 4.1: 

Monitoring Agent and Database Agent. It is the responsibility of the monitoring agent to 

manage the data query request and presentation. To be able to perform this, it is necessary 

to run a sequence of database queries on the overall database system. The monitoring agent 

is responsible for retrieving incoming request from external world (i.e. from the user). Once 

the user request is retrieved, it is converted to a query request by monitoring agents and 

sent to the database agent of the same node. The database agents are responsible for 

handling incoming query requests to them. One of the main functionality of the database 

agent is to perform the incoming database query request on the local database and to send 

the resulting data to the monitoring agent. Note that the application is working on a 

distributed environment and the required data is stored in distributed manner, so the data 

gathered from the local database of a node is not enough to reflect the whole. Thus, it 

becomes quite important to run the database queries correctly on the overall architecture to 

cover all of the required data in the system.  

Besides, it may also be important to hide the distributed characteristics of the 

system from the application. The database agents have an important role while hiding the 

distributed characteristics of the database system from the application. To perform this, 

database agents have another responsibility, which is to pass the incoming query requests to 

the other nodes in the system whenever needed. This feature of the database agent lets the 
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application not to know anything about the distributed database architecture lying in the 

background. The monitoring agent will only need to deal with its local database agent. It 

will just send the query request to the local database agent and get resulting data from it. In 

the background, active database agents will communicate to each other to extract the 

necessary data, but all of these operations are hidden to monitoring agent. Querying only 

the local database or the whole database is not different from the each other from the 

application’s point of view.  

 

 
Figure 4.1. The parts of monitoring application running on a single firewall node. 

 

 

4.2.1. Design and Implementation Details of Monitoring Application 

 
 As mentioned, monitoring agent and database agent are two main components of 

the application. The main responsibility of the monitoring agent is to get request from a 
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user and to post it the database agent. Additionally, monitoring agent is responsible for the 

presentation of resulting data to the user. To be able to perform those tasks, two different 

versions monitoring agents is implemented. The first version is a command line interface 

that reads user inputs from command line and display the resulting data to the command 

line. The second version is a graphical user interface that is implemented using the 

graphical widgets provided by the Java. In either way, the underlying communication 

between monitoring agent and database agent is the same. 

 Database agent is responsible for handling the incoming query requests and 

preparing the resulting data.  

 

QueryResult

-result_set: ResultSet
-succesful: boolean

+isSuccesful(): boolean
+getResultSet(): ResultSet

DatabaseIF

-db_address: String

+executeSQLQuery(): QueryResult
+getActiveRules(): QueryResult
+getCRUDActions(): QueryResult
+getRuleHistory(): QueryResult

DBQueryManager

-database_if: DatabaseIF

+terminateDBConnection()
+getActiveRules(): Vector<ActvieRuleResult>
+getRuleHistory(): Vector<RuleHistoryResult>
+getCRUDActions(): Vector<CRUDResult>

DBAgentSocketClient

-child_list: Vector

+initialise()
+terminate()
+getActiveRulesFromChildren(): Vector<ActiveRuleResult>
+getActiveRulesFromParent(): Vector<ActiveRuleResult>
+getCRUDActionsFromChildren(): Vector<CRUDResult>
+getRuleHistoryFromChildren(): Vector<RuleHistoryResult>

DBAgent

-db_query_manager: DBQueryManager
-socket_client: DBAgentSocketClient
-socket_server: DBAgentSocketServer
-db_agent_instance: DBAgent

+getDBAgentInstance(): DBAgent
+getActiveRules(): Vector<ActvieRuleResult>
+getActiveRulesOnInternetPath(): Vector<ActvieRuleResult>
+getRuleHistory(): Vector<RuleHistoryResult>
+getRuleHistory(): Vector<RuleHistoryResult>

DBAgentSocketServer

+db_agent: DBAgent

+run()
+initialise()
+terminate()

Thread

 
Figure 4.2. Class Diagram for Database Agent. 

 

Figure 4.2 indicates the details of database agent. As it can be seen from the figure, 

database agent contains a couple of classes. The responsibilities of each class is as follows: 
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DatabaseIF: DatabaseIF is responsible for the management of primitive database 

operations. This class basically performs simple database queries and returns the raw data 

containing the query result.  

DBQueryManager: DBQueryManager uses a DatabaseIF instance to perform database 

queries and prepares resulting data in a more compact format. 

DBAgentSocketClient: As stated earlier, a database agent is responsible for forwarding 

query request to the database agents of other nodes whenever required and collecting the 

resulting data from them. The DBAgentSocketClient class performs these operations. 

DBAgentSocketClient maintains an internal child list to which it can communicate. When 

an incoming request comes, it connects to children in the child list, forwards the request to 

them and gets the resulting data from them.  

DBAgentSocketServer: When request received from the DBAgentSocketClient of another 

node, it is the responsibility of the DBAgentSocketServer to answer that request.  

DBAgent: It is the responsibility of the DBAgent to manage all of the classes mentioned 

above. Basically, monitoring agent just knows about DBAgent, it does not need to know 

about the underlying structure. DBAgent provides the necessary functionality to handle 

necessary requests and to gather required data. 

 Figure 4.3 explains how these classes interact with each other during the processing 

of a “retrieve active rules” request for an architecture having two nodes (Node1 and 

Node2). Monitoring Agent of Node1 makes a request to the database agent of the Node 1. 

Database agent of Node1 first queries its local database and then forwards the request to 

Node2. Node 2 gets the resulting data from its local database and sends back to Node1. 

DBAgent of Node1 collects the whole data and sends it the monitoring agent.  
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Figure 4.3. Sequence diagram to retrieve active rules. 

 

The implementation of the application is done by using Java programming language 

and facilities on Windows operating system. The communication between different nodes 

in the system is based on the Java sockets. Besides, as a database engine, JavaDB is used. 

Java DB is a SQL based lightweight database engine that is provided by the Sun 

Microsystems as a free utility. It is possible to configure JavaDB in either embedded mode 

or client/server mode. In our case, each node needs to maintain its own local database, so 

we preferred to use JavaDB in embedded mode. 

 

4.2.2. Communication Between Firewall Nodes 
 

The flow of communication between the firewall nodes during a database query 

request depends on the node that has triggered the query. Besides, it may be requested to 

query just the local database rather than the whole distributed database in the corresponding 

domain. The flow of communication in each of these cases is explained below.  
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Case 1: The monitoring application is running on a leaf firewall 

 

As mentioned the application may want to query the information stored in the local 

database of the node on which the application is running. This is the case when a leaf 

firewall has executed the application. The monitoring agent of the leaf firewall will send 

the query request to the local database agent and database agent will return the data to the 

monitoring agent after extracting it from local database. Such a query does not require an 

inter-nodes communication so the database agent does not need to communicate with any 

other nodes.  Although there may be some cases in which this type of monitoring is useful, 

it provides data just for a subset of the overall rules.  

 

Case 2: The monitoring application is running on a subnet firewall 
 

The application may also want to monitor the data for whole domain or subnet 

instead of a single node. As expected, this case is more complicated than the previous one 

since it contains communication and data sharing between database agents on different 

nodes. Additionally, it is also needed to spend some extra effort to query the data stored in 

the distributed database system. However, as stated earlier, these extra tasks resulting from 

the distributed characteristic of the database system will be hidden from the monitoring 

agent. Let’s look at how this will be handled in more details. 

If the node that has started the monitoring application is a subnet firewall, then it 

can query the whole distributed database inside that subnet.  

In such a case, the database agent of the node will send the query request to all other 

nodes in the corresponding subnet as shown by Figure 4.4. 

When each node in the subnet receives the query request, database agent on that 

node will query the local database and will send the resulting data to the node that has 

triggered query (subnet firewall). The flow of the communication for this case is indicated 

in Figure 4.4. Once the operation is completed successfully, the overall data will be 

collected at the subnet firewall that has triggered the request.   
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Subnet FW
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Subnet FW
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M1

M1
M2M2

 
Figure 4.4. Communication between firewall nodes: M1 is request, M2 is result. 

 
Case 3: The monitoring application is running on a domain firewall 

 

If the node that has executed the monitoring application is a domain firewall, then it 

is possible to query data from the whole distributed database system within that domain. 

The domain firewall will send the query request to the subnet firewalls inside that domain 

(Figure 4.5). Then each subnet firewall will forward the request to the leaf firewalls that are 

connected to them. Once leaf firewalls receive the query request, they will query their local 

database and gather the required data. Each subnet firewall will wait till the all of the leaf 

firewalls inside that subnet collects the necessary data.                                                          

Once the data is collected at the subnet firewall, it will be forwarded to the domain 

firewall (Figure 4.5). Domain firewall will present the data to the user when all of the 

subnet firewalls sends the required data.   
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Subnet FW

Domain FW

Subnet FW

Leaf FW Leaf FW Leaf FW Leaf FW

M1
M1

M2
M2 M3 M3

M4 M4 M5 M5

M6 M6

 
Figure 4.5. Communication between firewall nodes: M1, M2, M3 are request, M4, M5, M6                 

are result. 
 
Case 4: The monitoring application has requested the policy rules that are active on   

firewall nodes on the path to the Internet 
 
 As stated, the monitoring application cannot make a query request to another node 

that is in a different domain / subnet or that has located at a higher level of the hierarchy. 

However, there is an exceptional case for this. In some cases, the monitoring application 

may need to query data stored in the nodes, which are located in the path that connects a 

node to the Internet. For example, consider the case when a leaf firewall wants to make a 

query on the firewall nodes that are on the Internet path. As indicated by Figure 4.6, in this 

case, the leaf firewall will send the request to the subnet firewall, which is at the next 

higher level of hierarchy. This process will continue till the request reached to domain 

firewall. Similarly, the resulting data for the requested query will travel back to the firewall 

node that has triggered the query.   
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Figure 4.6. Communication on the path to the Internet: M1, M2, M3 are request, M4, M5, 

M6 are result. 
 

4.3. Possible Scenarios 
 
4.3.1. Listing All of the Active Rules for a Firewall Node / for a Set of 

Nodes 

 
1) User starts the application. 

2) The services that are offered by the application are listed to the user.  
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Figure 4.7. Active Rules option. 

 

3) User selects the “active rules” option by using the menu shown in Figure 4.7. 

Additionally, this menu allows user to specify a single node or a set of nodes (nodes 

in the lower level of hierarchy), or nodes on the Internet path.  

4) Once the user completes the selection of the search parameters, the request should 

be submitted. Pressing the “Display” button does submission.  

5) Once the user submits the request, the Monitoring Agent running on that node sends 

the request to a Database Agent.  

6) If the user selected to view active rules for a single node, then the Database agent 

executes the query on the local database. The active rules for a node are stored in 

the Active Rules table, so the query is simply to retrieve the required data from the 

Active Rules table. Other database tables are not used in this case. If the user 

requested to see the active rules for a set of nodes, then the Database Agent 

forwards the query to the Database Agents of the other nodes in that domain. In this 

case, each Database Agent executes the query and retrieves the data from the Active 

Rules tables of their local database. Then each Database agent sends the resulting 

data back to the original node that has started the query.  



 45

7) Once the Monitoring Agent gathers the required data either from the local databse 

or from the specified domain, it forwards the data to the Monitoring Agent. The 

data is presented to the user. The resulting output window is shown in Figure 4.8. 

 

 
Figure 4.8. Resulting menu for list of active rules. 

 

8) Once the output is listed, it is possible to filter specified data from the output. Once 

the output window is “right clicked”, the filter window in Figure 4.9 is displayed: 
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Figure 4.9. Filtering on active rules result. 

 

9) Once the filtering data is filled and submitted, the application will perform the 

requested filter operation and the output window will be updated.  

 

4.3.2. Listing All of the CRUD Actions [Performed by a Specific User] for 

a Firewall Node / for a Set of Nodes 
 

1) User starts the application. 

2) The services that are offered by the application are listed to the user. 
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Figure 4.10. CRUD Actions option. 

 

3) User selects “CRUD actions” option as shown in Figure 4.10. Once this option is 

selected, the search menu is displayed. Additionally this menu allows user to select 

whether the request is just for a single node or for that node and its children (nodes 

in the lower level of hierarchy). 

4)  Once the selections are complete, the request should be submitted to the system.  

5) Once the request is submitted, the Monitoring Agent creates the corresponding 

requests and forwards them to the Database Agent. 

6) Database Agent is responsible for gathering data either from the local database or 

from the databases distributed over the specified domain. After data is ready, the 

Database Agent will forward it to the Monitoring Agent.  

7) Once the Monitoring Agents gets the resulting data for the user request, it will be 

presented to the user in the format displayed in Figure 4.11.  
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Figure 4.11. Result menu for CRUD actions. 

 
8) The user can perform further filtering on the resulting data as in the previous case. 

 

4.3.3. Listing Modified (Created/Updated/Deleted) Policy Rules [by a 

Specific User] for a Firewall Node / for a Set of Nodes 
 

1) User starts the application. 

2) The services that are offered by the application are listed to the user. 
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Figure 4.12. Modified Rules option. 

 

3) User selects “modified rules” option as shown in Figure 4.12. Modified means that 

the content of a rule is changed, so this selection includes the created, updated and 

deleted rules. Additionally, as in the previous cases, the system allows user to 

perform node selection. 

4) Once the search request is submitted, the Monitoring Agent gets the request and 

forwards it to the Database Agent. 

5) Database Agent queries the local database / or sends the request to the specified 

nodes to retrieve the resulting data. Once the data is ready, Database Agent 

forwards it to the Monitoring Agent.  

6) Once the resulting data is ready at Monitoring Agent, it will be presented to the user 

in the format shown in Figure 4.13.  
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Figure 4.13. Result menu for modified rules. 

 
7) The user can perform further filtering on the resulting data as in the previous case, 

which is indicated in Figure 4.14. 

 
Figure 4.14. Filtering on modified rules output. 
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4.3.4. Listing History of a Rule [by a Specific User] for a Firewall Node / 

for a Set of Nodes 

 
1) User starts the application. 

2) The services that are offered by the application are listed to the user. 

3) User selects “Active Rules” option and active rules are listed to the user. 

 
Figure 4.15. Rule history option. 

 

4) When right-clicked on a selected rule as shown by Figure 4.15, “History” option 

will appear.  

5) Once the request is submitted, the Monitoring Agent will get the request and 

forward it to the Database Agent. Database agent will get the required result from 

the firewall nodes.  

6) Once the Database Agent gathers the data, it will be forwarded to Monitoring Agent 

and will be displayed to the user as shown by Figure 4.16. 
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Figure 4.16. Rule History result. 

 

4.3.5. Listing all of the Queries Performed [by a Specific User]  
 

1) User starts the application. 

2) The services that are offered by the application are listed to the user. 

3) User selects “list of queries” option. Then, the corresponding search menu is 

displayed. This menu allows specifying a user and a domain as a search option if 

desired.  

4) Once the search is submitted, Monitoring Agent interprets the request and sends a 

query request to the Database Agent. Database Agent performs the query on the 

local database of the specified node or on the database that is distributed over the 

specified domain. 

5) Once the Database Agent gathers the required data, it forwards the data to the 

Monitoring Agent. Then the Monitoring Agent will present the data in an 

appropriate format. 
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4.3.6. Adding New Policy Rules to a Firewall Node 

 
1) User enters the application. 

2) Open the CRUD operations menu as shown in Figure 4.17. 

 

 
Figure 4.17. Create a new rule option. 

 

3) The window to create a new rule will be displayed (Figure 4.19). Once the required 

fields to define a policy rule are filled, it should be submitted to the system. 
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Figure 4.18. New rule definition menu. 

 

4) Once the submission is successful, the rule will be added to the internal rule set. 

 
4.3.7. Updating / Deleting an Existing Policy Rule. 

 
1) User starts the application. 

2) Select a rule to update / delete from the active rules list. 
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Figure 4.19. Update / Delete option. 

 
3) The content of the selected rule will be displayed to the user. Once the specified 

fields are updated and submission is completed, the rule will be updated / deleted. 

 

 
Figure 4.20. Update / Delete menu. 
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CHAPTER 5 
 
 

EXPERIMENTS AND EVALUATION 
 
 
5.1. Experimental Setups and Obtained Results 
 
 

Different experimental topologies that fulfill the requirements of the proposed 

architecture are constructed to test and verify the monitoring application. Basically, the 

experiment is to retrieve active rules running on each node and calculate the amount of time 

to complete this operation. These experimental topologies and obtained results are as 

follows: 

 

5.1.1. Single Node 
 

The first experimental setup is just a single node. The monitoring application has 

been exercised on the rule set of this single node. Five different versions of rule set that 

contains 20, 20, 60, 80 and 100 rules are used in the experiment.   

Since the application is running on a single node using the local database of that 

node, there is no inter-node communication. The average time values for the corresponding 

number of rules in the rule set is observed after 100 trials. The extraction of the current 

active rules varies between 99.76 milliseconds (when there are 20 active rules in the rule 

set) and 111.24 milliseconds (when there are 100 rules in the rule set). The graph in Figure 

5.1 indicates the obtained results in a more compact way. 
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Figure 5.1. Execution times of the retrieving active rules on a single node. 

 

5.1.2. Experimental Setups For Emulation 
 

The experimental topologies are emulated on a PC that has Windows XP operating 

system running on it. The PC used for emulation has 512 MB of RAM and Intel Pentium 

Core Duo T2060 processor running at 1.60 GHz.   

 

5.1.2.1. Experimental Setup I 
 

This experimental setup (Figure 5.2) is composed of 7 nodes and 2 levels of 

hierarchy. Each node in the each level of hierarchy has two children except the ones in the 

leaf level. The leaf nodes do not have any children. Each node in the tree maintains a local 

database to store the data that are mentioned in the previous chapters. Additionally, each 

node is responsible for executing the monitoring application. Node 1, which is at the 

highest level of the hierarchy, is chosen as the one on which the monitoring request has 

been performed.  
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Figure 5.2. Experimental setup I. 

 
Basically, the request is to get all of the active rules from all of the nodes in the 

topology. The experiment has been performed several times with different number of rules 

(20, 40, 60, 80, and 100 rules) in the rule set of each node. The average time values to 

complete the requested query are gathered after 15 trials. The results vary between 963.1 

milliseconds (for 20 rules in each node’s rule set), and 1268.6 milliseconds (for 100 rules in 

each node’s rule set). As different from the single node case, inter-node communication to 

share requests and resulting data is performed for this case. The overall results are indicated 

by the graph in Figure 5.3.   
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Figure 5.3. Execution times of the retrieving active rules on experimental setup I. 
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5.1.2.2. Experimental Setup II 
 

The second experimental architecture (Figure 5.4) is composed of 10 nodes and 2 

levels of hierarchy. Experimental steps mentioned for the previous cases are also valid for 

this architecture. 

 

 
Figure 5.4. Experimental setup II. 

 

The average values are calculated after 15 trials for each case. The results vary 

between 1897.4 milliseconds (for 20 rules in each node’s rule set) and 3004.2 milliseconds 

(for 20 rules in each node’s rule set). The overall results are indicated by the graph in 

Figure 5.5.   
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Figure 5.5. Execution times of the retrieving active rules on experimental setup II. 
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5.1.2.3. Experimental Setup III  
 
  The third experimental architecture (Figure 5.6) is composed of 13 nodes and 2 

levels of hierarchy. Experimental steps mentioned for the previous cases are also valid for 

this architecture.  

 

 
Figure 5.6. Experimental setup III. 

 

The average values are calculated after 15 trials for each case. The results vary 

between 6414 milliseconds (for 20 rules in each node’s rule set) and 12542.9 milliseconds 

(for 20 rules in each node’s rule set). The overall results are indicated by the graph in 

Figure 5.7.   
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Figure 5.7. Execution times of the retrieving active rules on experimental setup III. 
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5.1.2.4. Experimental Setup IV 

  
The third experimental architecture (Figure 5.8) is composed of 15 nodes and 3 

levels of hierarchy. Experimental steps mentioned for the previous cases are also valid for 

this architecture.  

 

 
Figure 5.8. Experimental setup IV. 

 

As in the previous cases, the average values are gathered after 15 trials for each 

case. The results vary between 12209.8 milliseconds (for 20 rules in each node’s rule set) 

and 44917.4 milliseconds (for 20 rules in each node’s rule set). The overall results are 

indicated by the graph in Figure 5.9. 
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Figure 5.9. Execution times of the retrieving active rules on experimental setup IV. 

 
 
5.1.2.4. Experimental Setup V 
 

This experimental topology is composed of four nodes. As indicated by Figure 5.10, 

one of the nodes is configured to be the domain firewall; one is configured as a leaf firewall 

and the remaining two are configured as subnet firewalls. This topology is also used as a 

reference to compare the results found on emulation and on laboratory experiment.  

 

 
Figure 5.10. Experimental Setup V 
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As presented by Figure 5.11, the results are between 650.27 milliseconds for 20 

rules case and 815.76 milliseconds for 100 rules. 
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Figure 5.11. Execution times of the retrieving active rules on experimental setup V. 

 
 
5.1.3. Experimental Setups For Laboratory 

 
In addition to emulations, the same experiment was held on the laboratory on three 

different architectures. These architectures are described below. Each node in the 

architecture is a PC that has monitoring application is installed and running on it. As in the 

other cases, the experiment is retrieval of the current active firewall policy rules from the 

whole architecture by the domain firewall. 

 

5.1.3.1. Experimental Setup VI 

 
 The first experimental setup shown by Figure 5.12 is constructed at the laboratory 

and composed of two nodes. One of the nodes is configured to be the domain firewall 

whereas the other one is a leaf firewall.  
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Figure 5.12. Experimental setup VI. 

 

The results of the experiments performed on experimental setup VI with different 

number of policy rules (20, 40, 60, 80, 100) on each node is presented by the Figure 5.13. 

The results are between 313.2 milliseconds for 20 rules case and 385.6 milliseconds for 100 

rules.  
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Figure 5.13. Execution times of the retrieving active rules on experimental setup VI. 

 

5.1.3.2. Experimental Setup VII 

 
The second experimental setup shown by Figure 5.14 composed of three nodes. One 

of the nodes is configured to be the domain firewall, one is configured as a subnet firewall 

and the last one is a leaf firewall.  
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Figure 5.14. Experimental setup VII. 

 

The results of the experiments performed on experimental setup VII with different 

number of policy rules (20, 40, 60, 80, 100) are between 605.2 milliseconds for 20 rules 

case and 638.5 milliseconds for 100 rules. Figure 5.15 indicates the overall measurements. 
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Figure 5.15. Execution times of the retrieving active rules on experimental setup VII. 
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5.1.3.3. Experimental Setup VIII 

 
As mentioned previously, this topology is same as the one in Figure 5.10 used in 

emulation.  

As presented by Figure 5.16, the results are between 703.5 milliseconds for 20 rules 

case and 838.2 milliseconds for 100 rules. 
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Figure 5.16. Execution times of the retrieving active rules on experimental setup VIII. 

 
 
5.1.4. Comparison of Emulation and Laboratory Results  
 
 
 Topology on Figure 5.10 is used both for emulation and laboratory experiments. As 

indicated by Figure 5.17, the obtained execution times on both environments are very close 

to each other. The results vary between 650.27 – 815.76 milliseconds for emulation and 

between 703.5 – 838.22 milliseconds on real topology. 
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Figure 5.17. Comparison of emulation and laboratory results. 
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CHAPTER 6 
 

CONCLUSION 
 
 

The main objective of this thesis is to implement a monitoring application for a 

distributed firewall environment in order to keep track of some certain actions (Create, 

Read, Update, Delete) that are performed on the policy rule set. In order to accomplish this 

aim, first traditional firewalls are examined. Type types of firewalls, their role in network 

security, their advantages and disadvantages are presented. Then distributed firewall 

concept is explained and the comparison of two firewall designs is presented in terms of 

their performance in network security. The next stage is to give the details of distributed 

firewall environment for which the proposed monitoring application is designed. Once the 

architecture of the distributed firewall system is clarified, the details of monitoring 

application are explained. The last stage is to test and verify the monitoring application on 

an experimental setup that is constructed at the laboratory. The monitoring application is 

responsible for monitoring the CRUD actions that are performed on the policy rule sets of 

each individual firewall node on the experimental setup. Such an application will be very 

helpful in network security management in protecting the consistency among the overall 

security policy. The data provided by the application can be used to implement more 

advanced tools like policy anomaly detections tools.  
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