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ABSTRACT

PROPER CLASS GENERATED BY SUBMODULES
THAT HAVE SUPPLEMENTS

In this thesis, we study the class S of all short exact sequences

0 A—>B C 0 where Ima has a supplement in B, i.e. a minimal
element in the set {V € B | V + Ima = B}. The corresponding elements of
Extg(C, A) are called k-elements. In general k-elements need not form a subgroup
in Extz(C, A), but in the category 7 of torsion R-modules over a Dedekind do-
main R, § is a proper class; there are no nonzero S-projective modules and the
only S-injective modules are injective R-modules in 7%. In this thesis we also

give the structure of S-coinjective R-modules in 7z. Moreover, we define the

class S8 of all short exact sequences 0 A—>B C 0 where Im a has
a supplement V in B and V N Ima is bounded. The corresponding elements of
Extgr(C, A) are called p-elements. Over a noetherian integral domain of Krull di-
mension 1, f-elements form a proper class. In the category 7 over a Dedekind
domain R, 88 is a proper class; there are no nonzero SB-projective R-modules
and SB-injective R-modules are only the injective R-modules. In the category 7z,

reduced SB-coinjective R-modules are bounded R-modules.
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OZET

TUMLEYENI OLAN ALTMODULLERIN URETTIGI OZ SINIF

Bu tezde, Im a " nin B’de bir tiimleyeni, yani {V C B|[V+Im a = B} kiimesinin

minimum elemani bulunacak sekilde tim 0 A—">B C 0 kisa tam
dizilerinin S smifini inceliyoruz. Extg(C, A)’ nin bu dizilere karsilik gelen eleman-
larina k-elemanlar denir. Genelde x-elemanlar bir 6z sinif olusturmayabilir, fakat
R Dedekind bélgesi tizerindeki burulma modiillerinin 7 kategorisinde S bir 6z
smiftir; sifirdan farkli S-projektif modiiller bulunmaz, S-injektif modiiller sadece
injektif modtillerdir. Tezde 7% kategorisinde S-esinjektif modtillerin yapisini da

verdik. Ayrica Ima’nin B’de V diye bir tiimleyeninin bulundugu ve VN Ima’

nm smurh oldugu 0 A—>B C 0 kisa tam dizilerinin S8 simifim
tanimladik. Extz(C, A)" nin bu dizilere karsilik gelen elemanlarina f-elemanlar
denir. Krull boyutu 1 olan Noether tamlik bolgesi tizerinde S8’ nin bir 6z smnuf
olusturdugunu gosterdik. R Dedekind bolgesi iizerinde burulma modiillerinin 7
kategorisinde S8 bir 6z siniftir; sifirdan farkli SB-projektif modiiller bulunmaz,
SB-injektif modiiller sadece injektif modiillerdir. 7 kategorisinde indirgenmis

SB-esinjektif modiiller tam olarak sinirli modiillerdir.
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NOTATION

an associative ring with unit unless otherwise stated
the localization of a ring R at a prime ideal p of R
the ring of integers, the set of all positive integers

for a group G and integer n, G[n] = {g € G| ng = 0}

[o0]

the first Ulm subgroup of abelian group G: G' = ﬂ nG

n=1

the field of rational numbers

the Priifer (divisible) group for the prime p (the p-primary part
of the torsion group Q/Z)

left R-module

the category of left R-modules

the category of abelian groups (Z-modules)

all R-module homomorphisms from M to N

the tensor product of the right R-module M and the left R-
module N

the kernel of the map f

the image of the map f

the torsion submodule of the module M: T(M) = {m € M |
rm = 0 for some 0 # r € R}

the socle of the R-module M

the radical of the R-module M

the category of torsion R-modules

the class of bounded R-modules

the smallest proper class containing the class & of short exact
sequences

a proper class of R-modules

the set {E | 7E € P for some 0 # r € R} for a proper class

all P-projective modules

the proper class of R-modules projectively generated by a class

M of R-modules
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(M)

(P)
T (M)

k(M)

kM)

Extg(C, A) = Extx(C, A)

Textr(C, A)

Pext(C, A)

Next(C, A)

Purezmod

Neatz pmoa

all P-injective modules

the proper class of R-modules injectively generated by
a class M of R-modules

all P-flat right R-modules

the proper class of R-modules flatly generated by a
class M of right R-modules

the proper class coprojectively generated by a class M
of R-modules

the proper class coinjectively generated by a class M
of R-modules

the set of all equivalence classes of short exact
sequences starting with the R-module A and ending
with the R-module C

the set {IE € Ext(C,A) | rE = 0 for some 0 # r € R}
of equivalence classes of short exact sequences of R-
modules

the set of all equivalence classes of pure-exact
sequences starting with the group A and ending with
the group C

the set of all equivalence classes of neat-exact
sequences starting with the group A and ending with
the group C

the proper class of pure-exact sequences of abelian
groups

the proper class of neat-exact sequences of abelian
groups

an abelian category (like R-Mod or Z-Mod = Ab)

For a suitable abelian category A like R-Mod or Z-Mod,

the following classes are defined:
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Abs A

Compl #

Suppl 4

Neat 4
Co-Neat 4

the smallest proper class consisting of only splitting short
exact sequences in the abelian category A

the largest proper class consisting of all short exact se-
quences in the abelian category A

the proper class of complements in the abelian category
A

the proper class of supplements in the abelian category
A

the proper class of neats in the abelian category A

the proper class of coneats in the abelian category A
the class of k-exact sequences in the abelian category A
the class of p-exact sequences in the abelian category A
isomorphic

submodule

small (=superfluous) submodule

SB-submodule

iX



CHAPTER 1

INTRODUCTION

Throughout R is an associative ring with identity and all modules are uni-
tal left R-modules unless otherwise stated. We will denote the category of torsion
R-modules by 7z and bounded R-modules by 8. Definitions not given here can
be found in (Anderson and Fuller 1992), (Wisbauer 1991), (Hungerford 1974),
(Mac Lane 1995) and (Fuchs 1970).

In this thesis, we study the class S of k-exact sequences where an element

E: 0 A—">B C 0 of Extg(C, A) is called k-exact if Im « has a sup-

plement in B, i.e. a minimal element in the set {V C B|V + Ima = B}. We show

that S is not a proper class in general. The class ‘Wsupp consists of the short exact

sequences 0 A—>B C 0 of R-modules such that Ima has a weak
supplement in B. We denote the class consisting of the short exact sequences

0 A—>B C 0 where Im a < B by Small. For a class &, we denote by

(E) the smallest proper class containing & which is called the proper class gener-
ated by &. Over a Dedekind domain R, the smallest proper class (S) containing S
coincides with the smallest proper class (Small) containing Small and the smallest
proper class (Wsupp) containing ‘Wsupp. The class S8 of short exact sequences
L.p—f.c—o0,

is introduced as the class of short exact sequences 0 A
where Im f has a supplement V in B with V N Im f is bounded. The short exact
sequences contained in SB form a proper class over a noetherian ring of Krull
dimension 1 and S8 coincides with the proper class k($) generated by the class
8B of bounded R-modules in this case. In the category 7 of torsion R-modules
over a Dedekind domain R, S and S8 form proper classes. There are no nonzero
S-projective and nonzero SB-projective R-modules , the only S-injective and
SB-injective R-modules are injective modules in the category 7. The characteri-
zation of S-coinjective and S$B-coinjective modules in the category 7 are given

in Propositions 4.5 and 4.7, respectively.



In Chapter 2, the notions related to our work will be given, which includes
the properties of the functor Extz(C, A) in terms of short exact sequences, supple-
ments, supplemented modules and Dedekind domains.

The definition and the properties of a proper class will be given in Chapter
3. The class Purez.pq Of pure-exact sequences of abelian groups is an important
example of a proper class in the category of abelian groups. It is shown here that,
if Mis a given class of R-Mod for an additive functor T(V], -) : R-Mod — Ab, the
class of exact triples E such that T(M, E) is exact form a proper class. This result
is helpful in the definition of projectively, injectively or flatly generated proper
classes.

In Chapter 4, the proper classes related to complements and supplements
are studied. It is shown that x-elements of Extz(C, A) need not form a proper class
in general. Results due to Zoschinger show that when A and C are torsion abelian
groups, the k-elements of Ext(C, A) over the ring Z of integers form a proper class,
which we denote by S. For a Dedekind domain R, over the category 7 of torsion
R-modules, there are no nonzero S-projective R-modules and the S-injectives are
exactly injective modules in 7x. We give the characterization of S-coinjective

R-modules in Proposition 4.5. The subgroup S8 of Extz(C, A) is introduced as the

[24

set of elements [0 A B C 0] such that Im a has a supplement
Vin B and V N Ima is bounded. For a noetherian integral domain of Krull di-
mension 1, in the category 7, we show that there are no nonzero S8-projective

modules and SB-injective modules are only the injective modules in 7.



CHAPTER 2

PRELIMINARIES

This Chapter will consist of a short summary of Chapter IX from (Fuchs
1970) and Chapter 3 from (Mac Lane 1995), some preliminary information about
supplements in module theory and Dedekind domains. One can find further
information and missing proofs in (Fuchs 1970), (Vermani 2003) and (Mac Lane
1995) about group of extensions, in (Wisbauer 1991) about supplements, supple-
mented modules and in (Cohn 2002) about Dedekind domains.

2.1. Extensions As Short Exact Sequences

Given the R-modules A and C, the extension B of A by C can be visualized

as a short exact sequence

C 0,

where p is a monomorphism and v is an epimorphism with kernel u(A). Then
one can build up a category in which the objects are the short exact sequences and
a morphism between two short exact sequences E and [E’ is defined as a triple

(a, B, 7) of module homomorphisms such that the diagram

E:0—>A—>B—"~C——=0 (2.1)

b ,pL b

E’:0 A’ B —=C’ 0

has commutative squares. Itis straightforward to show that in this way a category
& arises.

The extensions [E and E’ with A = A’, C = C’ are said to be equivalent,
denoted by E = [E’, if there is a morphism (14, 8, 1c) with f : B — B’ is an
isomorphism. Indeed, the condition § being an isomorphism can be omitted,

since this follows from the Five Lemma.



If A is a fixed R-module, for a homomorphism y : C’ — C, to the extension

E in 2.1, there is a pullback square

B'——~C
ﬁi J/;V
H v
0 A B C 0

for some B’, f and v’. v’ is epic (since v is epic), and Kerv’ = Kerv = A, hence
there is a monomorphism y’ : A — B’ (i.e. u’a = (ua, 0) € B’ if B’ is defined to
be a submodule of B ® C’) such that the diagram

’
H v’

Ey : 0 A B’ C’ 0
bl
E 0 A—t-B—rsC 0

with exact rows and pullback right square commutes. The top row is an extension
of Aby C’ which we have denoted by [Ey to indicate its origin from IE and . Notice
that y* = (14, ,y) is a morphism Ey — Ein &.

If the diagram
ue v
E° 0 A Be c’ 0
oo
E - 0 A—‘t-B—Y-(C 0

has exact rows and commutes, then there isunique ¢ : B° — B’ suchthatv’¢ =v°
and ¢ = °. Since the maps pu°, u’ : A — B’ are such that f(pu°) = p°u°=u=
pu’ and v'(pu°) = v°u® = 0 = v’u’, with the uniqueness assertion in (Vermani
2003, 1.7.3), we have ¢u° = u’. This shows that [E, is unique up to equivalence

and this yields the equivalences
Elc=E and E(yy’) = (Ey)y’

for C” . C’—~C. Now the contravariance of Ext(C, A) on C is evident.
Next let C be fixed and for a given a : A — A’, let B’ be defined by the

pushout square

0 A—s-B—tsC 0
ol
A/HHB/

Here i’ isa monomorphism, and if B’ is defined as the quotient module (A'®©B)/H

where H is the submodule of A® B consisting of elements of the form (u(a), — a(a))



fora € A, thenv' : B’ — C defined by v'((a’, b) + H) = v(b) for (a’, b) € A’ @B,

makes the diagram

E - 0 A—>B—tsC 0
ol
aE : 0 AL sp Y 0

with exact rows commutative. The bottom row of this diagram is an extension of
A’ by C which we denote by aE. Here a. = («, 8, 1¢) is a morphism E — aE in &.

If we have the commutative diagram

E - 0 A B C 0
e
E. : 0 A B, s C 0

with exact rows, then in view of (Vermani 2003, 1.7.6) there exists a unique
¢ : B” — B, such that ¢ = p. and ¢pu’ = .. From (vod)p = voffs = v = V',
(Vo) = 0 = v’u’ we infer that vo¢p = v’, thus (14/, ¢, 1¢) is a morphism
aE — E,. Consequently, aE = E,, i.e. alE is unique up to equivalence. So, we

obtain
1.E=E and (aa”)E = a(a’E)

for A—%> A’ —*“> A" , which establishes the covariant dependence of Ext(C, A)
on A.

Witha: A — A’and y : C’ — C, we have the important associative law

a(Ey) = (aE)y.

By making use of the pullback property of (a[E)y, it is easy to prove the existence
of a morphism (a, 8, 1) : Ey — (aE)y and to show the commutativity of the

square

1, B1,7)
IEV Rdiad i E

(@p’1) (@,p2,1)
(a2 o,
The equivalence classes of extensions of A by C form a group.
In order to describe the group operation in the language of short exact

sequences, we make use of diagonal map A¢ : ¢ = (g, g) and the codiagonal map



Ve : (g1, §2) = g1 + & of amodule G. If we understand by the direct sum of two

extensions

]El' . 0 Ai Ci 0 (l = 1, 2)

the extension

1%1521%)

]E1@]E2IOHAleBAZ@Bl@BZHCl@CZHO,
then we have :

Proposition 2.1 ((Mac Lane 1995), Theorem 2.1) For given R-modules A and C, the
set Extgr(C, A) of all congruence classes of extensions of A by C is an abelian group under
the binary operation which assigns to the congruence classes of extensions [E; and |E,, the

congruence class of the extension

]El + ]Ez = VA(]El (&) ]E2)AC.

The class of the split extension 0 A AeC C 0 is the zero element of
this group, while the inverse of any E is the extension (=14)E. For homomorphisms

a:A— Aandy: C" — Cone has

OK(IEl + ]Ez) = (X]El + Ol]Ez, (]El + IEz))/ = ]El’)/ + IEz')/, (22)

(1 + »)E = o E + o F, E(y1 +y2) = Ey; + Ey,. (2.3)

The equivalences in 2.2 and 2.3 express the fact that a. : E — aFE and

y" : E + Ey are group homomorphisms
a. : Extg(C,A) — Extg(C,A"), y* 1 Extgr(C,A) — Extr(C’, A),

and that (a1 + a2). = (1) + (az). and (Y1 +72)" = (1) + ()2) foraq, ay : A — A,
Y1, 72:C"— C.

Theorem 2.1 ((Mac Lane 1995), Lemma 1.6) Extg is an additive bifunctor on
R-Mod x R-Mod to Ab which is contravariant in the first and covariant in the sec-

ond variable. O

In order to be consistent with the functorial notation for homomorphisms,

we shall use the notation



Extr(y, a) : Extr(C, A) — Extr(C’,A’)
instead of y*a.. = a.)"; that is, Extr(y, @) acts as shown by
Extr(y,a) : E — alEy.

Given an extension

E:0—>A~Bloc——0 (2.4)

representing an element of Extz(C,A), and homomorphisms n : A — G and
& : G — C, we know that 7 is an extension of G by C and [E¢ is an extension of
Aby G, i.e., nE represents an element of Extz(C, G) and EE represents an element

of Extgr(G, A). In this way we obtain the maps

E*: Hom(A, G) — Extr(C, G)

E. : Hom(G, C) — Extgr(G, A)
defined as
E':nw—nE and E.: & - EE.

From 2.3 we can show that E* and E. are homomorphisms. If ¢ : G — H is

any homomorphism, as we have (¢pn)E = ¢(1E) and E(¢p) = (EE)o, the diagrams

Hom(A, G) — Extz(C, G) Hom(H, C) — = Extg(H, A)

| | l l

Hom(A, H) —— Extg(C, H) Hom(G, C) —— Extr(G, A)

with the obvious maps commute. E* and E. are called connecting homomorphisms

for the short exact sequence 2.4. This terminology is justified in the light of

Theorem 2.2.

Lemma 2.1 ((Mac Lane 1995), Proposition 1.7) Given a diagram

E: 0 A“/BﬁC 0
I
Re:
G

with exact row, there exists a & : B — G making the triangle commute if and only if nE

splits.



Lemma 2.2 ((Mac Lane 1995), Proposition 1.7) If the diagram

G
é/
D
a«_pt P
E: 0—=A B C 0

has exact row, then there is a & : G — B such that B& = n if and only if En splits.

With the aid of these lemmas, we have the following theorem which estab-

lishes a close connection between Hom and Extg.

Theorem 2.2 ((Mac Lane 1995), Theorem 3.4) If 2.4 is an exact sequence, then the

sequences

0 — Hom(C,G) —— Hom(B,G) —= Hom(A,G) ——

— B Extg(C, G) —L = Extg(B, G) —“~ Extg(A,G) — >+,

and

0 — Hom(G,A) — Hom(G, B) —— Hom(G, C) ——

B Bxtr(G, A) — "~ Extr(G, B) — %> Extg(G, C) — > - -

are exact for every module G.

u

v

If E:0 A
A — A,y : C— Care endomorphisms of A and C, respectively, then aE and Ey

B C 0 is an extension of A by C, and if a :

will be extensions of A by C. The correspondences
a.:E - alE and y*:Em Ey

are endomorphisms of Extz(C, A), which are called induced endomorphisms of Extg.
The formulas (a1 + a2). = (a1). + (a2). and (1 + v2)* = (y1)" + (y2)* show that
the endomorphism ring of A acts on Extz(C,A) and similarly the dual of the
endomorphism ring C operates on Extg(C, A). These commute as is shown by
a.y” = y'a.; hence Extg(C, A) is a (unital) bimodule over endomorphism rings of

A and C, acting from the left and right, respectively.



2.2. Supplements and Supplemented Modules

This section includes definitions and some results about supplements and
supplemented modules. See (Wisbauer 1991) for more information about sup-
plements and supplemented modules.

Let U be a submodule of an R-module M. If there exists a submodule V of
M minimal with respect to the property M = U + V then V is called a supplement
of U in M.

A submodule K of an R-module M is called superfluous or small in M, written
K < M, if, for every submodule L C M, the equality K + L = M implies L = M.

The following lemma is used frequently while studying supplements.
Lemma 2.3 Visa supplement of Uin Mifand only if U+ V =Mand UNV < V.
The properties of supplements are given in the next proposition.

Proposition 2.2 (Wisbauer 1991), 41.1) Let U, V € M and V be a supplement of U
in M.

1. If W+ V = M for some W C U, then V is a supplement of W.

2. If M is finitely generated, then V is also finitely generated.

3. If U is a maximal submodule of M, then V is cyclicand UNV = RadV is a (the
unique) maximal submodule of V.

4. If K < M, then V is a supplement of U + K.

5. If K< M, then VNK <« Vand RadV = VN Rad M.

6. If Rad M < M, then U is contained in a maximal submodule of M.

7. IfLc U V +L/Lis asupplement of U/L in M/L.

8. IfRadM < MorRad M C Uandp : M — M/ Rad M is the canonical epimorphism,
then M/ Rad M = p(U) ® p(V).

Let M be a module. If every submodule of M has a supplement in M, then
M is called a supplemented module. Artinian modules and semisimple modules are
examples of supplemented modules. As an example to show that every module
need not be supplemented, we can consider the ring Z of integers as a module
over itself.

For the properties of supplemented modules, we have the following

proposition.



Proposition 2.3 ((Wisbauer 1991), 41.2) Let M be an R-module.

1. Let U and V be submodules of M such that U is supplemented and U + V have a
supplement in M, then V has a supplement in M.

2. If M = M, + M, with My and M, supplemented, then M is also supplemented.

3. If M is supplemented, then M/ Rad M is semisimple.

2.3. Dedekind Domains

Let R be an integral domain, i.e. a commutative ring without zero divisors,
and M be an R-module. The torsion submodule of M is defined as the set T(M) =
{me M| rm=0 for some 0 # r € R}. If T(M) = M, then M is called torsion, and
if T(M) = 0, then M is called torsion-free. For a prime ideal p of R, the submodule
{me M| p"m = 0 for some n > 1} is called the p-primary part of M. This submodule
is indicated by T,(M). An R-module M is said to be bounded if there exists 0 # r € R
such that rM = 0.

A commutative ring R which is not a field is a valuation ring, if its ideals are
totally ordered by inclusion. Additionally, if R is an integral domain, it is called
a valuation domain. A Noetherian valuation domain with unique maximal ideal
is said to be a discrete valuation ring (DVR for short). If R is a DVR then all its
non-zero ideals are: R > Rp > --- > Rp" > --- for some n € IN where Rp is the
unique maximal ideal of R.

Let R be an integral domain and K be its field of fractions. An element
of K is said to be integral over R if it is a root of a monic polynomial in R[X]. A
commutative domain R is integrally closed if the elements of K which are integral
over R are exactly the elements of R.

An integral domain R is a Dedekind domain if the following conditions hold:
1. R is a Noetherian ring,

2. Ris integrally closed in its field of fractions K, and
3. all non-zero prime ideals of R are maximal.

The following lemma is well-known, we include it for completeness.
Lemma 2.4 Let R be a commutative ring and € be the set of all maximal ideals of R.

Then for an R-module M, Rad M = () pM.
peQ)

10



Proof For a maximal ideal p, we can consider M/pM as a module over R/p, so
M/pM is semisimple and therefore Rad M € pM. Then we obtain Rad M C () pM.
Conversely, let x € M be such that x ¢ Rad M. Then there is a maximal subrif(g))dule
Kin M such that x ¢ K. M/K is a simple module, so gM C K for some q € Q. then

we obtain x ¢ gM, hence x ¢ () pM. Contradiction. O
peQ)

Theorem 2.3 ((Cohn 2002), Propositions 10.5.1, 4, 6) Foracommutative domain R,

the following are equivalent.
(i) Risa Dedekind domain.
(ii) Every ideal of R is projective.

(iii) R is Noetherian and the localization R, of R at p is a DVR for all maximal ideals p
of R.

(iv) Every ideal of R can be expressed uniquely as a finite product of prime ideals.

Proposition 2.4 ((Sharpe and Vamos 1972), Proposition 2.10) Every  divisible

module over a Dedekind domain is injective.

Over a Dedekind domain R, by the use of Proposition 2.4 together with
Lemma 2.4 we have that the conditions for an R-module M being divisible, injec-
tive and radical, i.e. Rad M = M, are equivalent. For torsion R-modules, we have

the following important result.

Proposition 2.5 ((Cohn 2002), Proposition 10.6.9) Any torsion module M over a

Dedekind domain is a direct sum of its primary parts, in a unique way:
M = e&T, (M)

and when M is finitely generated, only finitely many terms on the right are different from

zero.

For more information about Dedekind domains and modules over a
Dedekind domain see (Hazewinkel, Gubareni and Kirichenko 2004) and (Sharpe
and Vamos 1972).
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CHAPTER 3

PROPER CLASSES

Let  be a class of short exact sequences of R-modules and R-module

homomorphisms. If a short exact sequence

0—=A—>B-f-C—=0 (3.1)

belongs to $, then f is said to be a P-monomorphism and g is said to be a
P-epimorphism (both are said to be P-proper and the short exact sequence is said
to be a P-proper short exact sequence.). The class P is said to be proper (in the
sense of Buchsbaum) if it satisfies the following conditions ((Buchsbaum 1959),

(Mac Lane 1995), (Sklyarenko 1978)):

P-1) Ifashortexactsequence Eisin %, then # contains every short exact sequence

isomorphic to E .
P-2) P contains all splitting short exact sequences.

P-3) The composite of two P-monomorphisms is a P-monomorphism if this

composite is defined.

P-3’) The composite of two P-epimorphisms is a P-epimorphism if this composite

is defined.

P-4) If g and f are monomorphisms, and g o f is a P-monomorphism, then f is

a P-monomorphism.

P-4’) If ¢ and f are epimorphisms, and g o f is a P-epimorphism, then g is a

P-epimorphism.

An important example for proper classes in abelian groups is Purezpoa:
The proper class of all short exact sequences (3.1) of abelian groups and abelian
group homomorphisms such that Im(f) is a pure subgroup of B, where a subgroup
A of a group B is pure in B if A N nB = nA for all integers n (see (Fuchs 1970)

for the important notion of purity in abelian groups). The short exact sequences
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in Purez.pmoq are called pure-exact sequences of abelian groups. The corresponding
subgroup of Ext(C, A) is denoted by Pext(C, A). The following Theorem gives the
structure of Pext(C, A) in terms of subgroups of Ext(C, A).

Theorem 3.1 ((Fuchs 1970), Theorem 53.3) For every abelian groups A, C,
Pext(C, A) coincides with the first Ulm subgroup of Ext(C, A), i.e.

Pext(C, A) = Ext(C, A)! = ﬂ n Ext(C, A).

nez+
The smallest proper class of R-modules consists of only splitting short exact se-
quences of R-modules which we denote by Splitgp4. The largest proper class of
R-modules consists of all short exact sequences of R-modules which we denote
by Absgpoa (absolute purity ).

Another example is constructed by using the change of rings: Let f : R —

Sbe ahomomorphism of rings. Then every S-module M can be made an R-module

by rm = f(rym,Vm e M,r e R. Let ¥ ={E: 0 A B C 0 | Eis
splitting as a sequence of R-modules }. Then ¥ is a proper class.

A subfunctor ¥ of Exty such that F(C,A) is a subgroup of Exty(C, A) is
called an e-functor (see (Butler and Horrocks 1961)). By (Nunke 1963, Theorem
1.1), an e-functor F of Exty gives a proper class if it satisfies one of the properties
P-3) and P-3’). This result enables us to define a proper class in terms of subfunc-
tors of Extp.

For a proper class # of R-modules, call a submodule A of a module B a
P-submodule of B, if the inclusion monomorphism iy : A — B, is(a) =a,a € A, is
a P-monomorphism.

Let T(M, -) : R-Mod — Ab be an additive functor (covariant or contravari-
ant), left or right exact and depending on an R-module M from R-Mod. If Mis a
given class of modules of this category, we denote by +~!(M) the class P of short
exact sequences E such that T(M, [E) is exact for all M € M.

Lemma 3.1 P = t"'(M) is a proper class.

Proof For example, suppose that T is covariant and right exact. Let

E: 0—A2-B*C 0and E: 0—=AL-B"5-C— 0 be

isomorphic triples, i.e. there is an isomorphism a : B — B’. Since T is right
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exact and T(M, E) is exact we have the following diagram:

0—— 1M, A) " 70, B) T (M, ©) —— 0
iT(M,a)

M, A) "1, B 82 7(m, ©) — 0

TM, f')=T(M,ao f)=T(M,a)o TV, f) and T(M, a) is an isomorphism, as « is
an isomorphism. Then T (M, f’) is a monomorphism, i.e. the second row is exact.

Hence E’ € .

If E: 0 AL-BYsC 0 is a splitting short exact sequence, then
there exist f” : B — A and v : B — Csuch that p’ oy = 14, vov = 1c.
Then we have T(M, ) o TM,u) = TM,p" o u) = T(M,14) = lrpa and
T(M,v)o T(M,V') = T(M,vov') =T, 1¢c) = 1), i-e. T(M, E) is exact.

Leta: A — Bandp: B— Cbe P-monomorphisms. Then T(M, «) and T(M, )
are monomorphisms and T(M, p o a) = T(M, ) o T(M, o) is a monomorphism. So
p o a is a P-monomorphism.

Leta : A — B and § : B — C be monomorphisms and f o a be a #-

monomorphism. Then we have the diagram

M, A) "™ (M, B)

T(M,B)

0 —= T(M, A) 97, €)

If x € Ker T(M, a), then T(M, o a)(x) = T(M,B) o T(M, a)(x) =0,sox € Ker T(M, o
a) =0, i.e. aisa P-monomorphism.

Ifh:B — Cand g : C — D are epimorphisms and A’ = Ker g o h, then the
mapping of derived functors T;(M, B) — T1(M,C) — T1(M, D) is epimorphic,
therefore, T(M, A’) — T(M, B) is a monomorphism and go h € P.

Let u: B — Candv:C — D be epimorphisms and v o u be a P-epimorphism.

Then we have the diagram
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0 A-ltsx—LsN 0
c )
H
0 A B C 0
vou v
D——D
0 0

where i, u, f and w are R-module homomorphisms. Applying the functor T(M, .)

to this diagram, we see that the second column of the diagram

TM, A) "2 (M, X) "2 T(M, N) —> 0

T(M,g) T(M,f)
TM, A) "2 (M, B) "2 T(M, C) —— 0

T(M,vop) T(M,v)

T(M, D) = T(M, D)

0 0

is exact, since voy is a P-epimorphism. In order to show thatvis a P-epimorphism,
we have to show that T(V], f) is a monomorphism. Let n € KerT(M, f). n =
T(M, u)(x) for some x € T(M, X) since T(M,u) is an epimorphism. (T(M,u) o
T(M, 9)(x) = (T(M, f)oT(M, u)(x) = 0. ThenT(M, g)(x) € Ker T(M, u) = Im T(M, w),
ie. T(M, g)(x) = T(M,w)(a) for some a € T(M,A). T(M,g)(x) = T(M,w)(a) =
(T(M,g) o T(M, h))(a) = x—T(M,h)(a) € KerT(M, g) = 0. Then n = T(M, u)(x) =
T(M, u)(T(M, h)(a)) = (T(M,u) o T(M,h))(a) = 0. So KerT(M,f) = 0 and vis a
P-epimorphism. O

Let t(P) be the class of all modules M for which the triples T(M, E), E € P,
are exact. As we can take the functors Hom or ® for T, t(P) and t~(#) leads us to
projectively, injectively or flatly generated proper classes.

For a proper class P over an integral domain R, we denote by % the class

of the short exact sequences [E: 0 A B C 0 of R-modules
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such that ¥E € P for some 0 # r € R where r also denotes the multiplication

homomorphism by r € R. Thus
P = {E | rE € P for some 0 # r € R}.

In case of abelian groups the class P is studied in (Walker 1964), (Alizade
1986) and (Alizade, Pancar and Sezen 2004) for = Split where it was denoted
by Text since Ext}sﬁlit(C,A) = T(Ext(C, A)) the torsion part of Ext(C, A).

Let & be a class of short exact sequences. The smallest proper class con-
taining & is said to be generated by & and denoted by < & > (see (Pancar 1997)).

Since the intersection of any family of proper classes is proper, for a class

& of short exact sequences
<&E>=N{P:ECP;Pisaproper class }.

For more information about proper classes generated by a class of short
exact sequences see (Pancar 1997). We will give two results from this paper in

the next section.

3.1. Projectives, Injectives, Coprojectives and Coinjectives with

respect to a Proper Class

Take a short exact sequence

E: 0—>A'>B-%.C—>0

of R-modules and R-module homomorphisms.
An R-module M is said to be projective with respect to the short exact sequence
[, or with respect to the epimorphism g if any of the following equivalent conditions

holds:

1. every diagram

E: 0 AkagC 0
\\Ty
AN
M

where the first row is E and y : M — C is an R-module homomorphism

can be embedded in a commutative diagram by choosing an R-module
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homomorphism y : M — B; that is, for every homomorphism y : M — C,

there exits a homomorphism 7 : M — B such that go 7 = y.
2. The sequence
Hom(M,E): 0—— Hom(M, A)—> Hom(M, B)—*~ Hom(M, C)—=0
is exact.

Dually, an R-module M is said to be injective with respect to the short exact
sequence E, or with respect to the monomorphism f if any of the following equivalent

conditions holds:

1. every diagram

where the first row is E and @ : A — M is an R-module homomorphism
can be embedded in a commutative diagram by choosing an R-module
homomorphism & : B— M; that is, for every homomorphism o : A — M,

there exists a homomorphism & : B— M such thatao f = a.
2. The sequence
Hom(E,M): 0— Hom(C, M)—*—~ Hom(B, M)—— Hom(A, M)—=0
is exact.

An R-module M is said to be P-projective [P-injective] if it is projective
[injective] with respect to all short exact sequencesin #. The relative projectiveness
[injectiveness] of M is equivalent to the requirement that Exty,(M, B) = 0, for any
B [Extp(A, M) = 0, for any A]. Denote all P-projective [P-injective] modules by
n(P) [(P)]-

The Functor Exty, : In a proper class # in R-Mod, there need not be a
P-epimorphism from some P-projective module to a given R-module A. So in

general, it is not possible to define the functor Exty, by using the derived functor
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of the functor Hom. However, the alternative definition of Exty, may be used in
this case.

For a proper class  and R-modules A, C, denote by Ext;)(C,A) or shortly
by Extp(C, A), the equivalence classes of all short exact sequences in £ which
start with A and end with C. This turns out to be a subgroup of Extz(C, A) and a
bifunctor Exty, : R-Mod X R-Mod —> Ab is obtained which is a subfunctor of Extg.

A class P of R-modules is said to have enough projectives if for every module
A we can find a P-epimorhism from some P-projective module P to A. A class
P of R-modules is said to have enough injectives if for every module B we can
tind a P-monomorphism from B to some P-injective module J. A proper class
P of R-modules with enough projectives [enough injectives] is also said to be a
projective proper class [resp. injective proper class].

The following propositions give the relation between projective (resp. in-
jective) modules with respect to a class & of short exact sequences and with respect

to the proper class < & > generated by &.

Proposition 3.1 ((Pancar 1997), Propositions 2.3 and 2.4)
(a) (E) = n(< & >).
(b) (&) =< E>).

An R -module C is said to be P-coprojective if every short exact sequence of R-

modules and R-module homomorphisms of the form

E: 0 A

ending with C is in the proper class . An R-module A is said to be P-coinjective
if every short exact sequence of R-modules and R-module homomorphisms of the

form

E: 0 A

starting with A is in the proper class P.
Using the functor Extp, the P-projectives, P-injectives, P-coprojectives, -
coinjectives are simply described in terms of the subgroup Extp(C, A) < Extz(C, A)

being 0 or the whole of Extz(C, A):
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1. An R-module C is P-projective if and only if
Extp(C, A) = 0 for all R-modules A.

2. An R-module C is P-coprojective if and only if
Extp(C, A) = Extr(C, A) for all R-modules A.

3. An R-module A is P-injective if and only if
Extp(C, A) = 0 for all R-modules C.

4. An R-module A is P-coinjective if and only if
Extp(C, A) = Extg(C, A) for all R-modules C.

Proposition 3.2 ((Misina and Skornjakov 1960), Propositions 1.9 and 1.14)
If in the short exact sequence 0 M N K 0, modules M and K are

P-coprojective (P-coinjective), then N is P-coprojective (P-coinjective).

Proof Let A be an R-module. Suppose that M and K are P-coprojective. Then

0 M N K 0 € $. We have the following exact sequences

0 — Hom(K, A) — Hom(N, A) — Hom(M, A) ——
— Extp(K, A) — Extp(N, A) — Extp(M, A) —
0 —— Hom(K,A) —— Hom(N, A) —= Hom(M, A) ——

— Extg(K, A) — Extx(N, A) — Exty (M, A) —

Since M and K are -coprojective, we have the equalities in the following diagram.

Extp(K, A) — Extp(N, A) — Extp(M, A)

|

Exty(K, A) — Exty(N, A) — Exty(M, A)

Then Ext,(N, A) = Extg(N, A) for every R-module A, which shows that N is P-
coprojective.
For the case of P-coinjectives, the proof can be done by using the functor Hom(B, -)

for an R-module B. m|
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Proposition 3.3 ((Misina and Skornjakov 1960), Proposition 1.12) An
R-module M is P-coprojective if and only if there is a P-epimorphism from a projec-
tive R-module P to M.

Proof (=) Take any epimorphism y : P — M from a projective R-module P to
M. Since M is P-coprojective, y is a P-epimorphism.

(<) Let y : P — M be a P-epimorphism and K = Kery. Then the short exact

sequence 0 K P—=M 0 isin #. For every R-module A, we have the

following exact sequences:

-+ — Hom(K, A) — Extp(M, A) — Extp(P, A) —

|

-+ ——Hom(K, A) — Ext}(M, A) —> Extp(P,A) — "

where the equality Ext,lo(P,A) = Extx(P, A)=0 holds, since P is projective. Then
Extp(M, A) = Extg(M, A), hence M is P-coprojective. O

Corollary 3.1 ((Misina and Skornjakov 1960), Proposition 1.13)

If 0 A B C 0 is a short exact sequence in a proper class P and

B is P-coprojective, then C is also P-coprojective.

Dually, for P-coinjective modules we have the following proposition:

Proposition 3.4 ((Misina and Skornjakov 1960), Proposition 1.7)
An R-module N is P-coinjective if and only if there is P-monomorphism from N

to an injective module 1.
Proof (=)Takeany monomorphisma : N — [from N to aninjective R-module
I. Since N is P-coinjective,  is a P-monomorphism.

(&) Leta : N — I be a P-monomorphism and L = I/ Im a. Then the short exact

sequence 0 N—~I L 0 is in . For every R-module B, we have the

following exact sequences:

+— Hom(B, L) — Extp(B, N) — Extyp(B,[) —= -

|

-+ — Hom(B, L) — Extx(B, N) — Extg(B,I) — "

where the equality Ext;(B, I) = Extg(B,1)=0 holds, since I is injective. Then
Ext},(B, N) = Ext}Q(B, N), i.e. N is P-coinjective. O
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Corollary 3.2 ((Misina and Skornjakov 1960), Proposition 1.8) If

0 A B C 0 is a short exact sequence in a proper class P and B is

P-coinjective, then A is also P-coinjective.

3.2. Projectively Generated Proper Classes

For a given class M of modules, denote by 7171(M) the class of all short exact
sequences [E of R-modules and R-module homomorphisms such that Hom(),, [E)

is exact for all M € M, that is,
Y (M) = {E € Absgpal Hom(M, E) is exact for all M € Mj.

71(M) is the largest proper class P for which each M € M is P-projective and it
is called the proper class projectively generated by M.

Proof Thisis a consequence of Lemma 3.1. Take T(M, -) = Hom(M,, -). O

Proposition 3.5 Let P be a proper class and M be a class of modules. Then we have
1. PCnl(n(P)),
2. Mcn(n (M),
3. (P) = n(n Y (n(P))),

4. o Y(M) = Y (r(I(M))).
For a proper class P, 7w~ }(n(P)) is called the projective closure of P and it
always contains .
3.3. Injectively Generated Proper Classes

For a given class M of modules, denote by 1~ (M) the class of all short exact
sequences [E of R-modules and R-module homomorphisms such that Hom(IE, M)

is exact for all M € M, that is,

" {M) = {E € Absgpal Hom(E, M) is exact for all M € Mj.
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"1(M) is the largest proper class P for which each M € M is P-injective which is
called the proper class injectively generated by M.

Proof Thisis a consequence of Lemma 3.1. Take T(M, -) = Hom(-, M). O

3.4. Flatly Generated Proper Classes

When the ring R is not commutative, we must be careful with the sides for
the tensor product analogues of projectives and injectives with respect to a proper
class. Recall that by an R-module, we mean a left R-module.

Take a short exact sequence

E: 0—A—2-B-f.C— >0

of R-modules and R-module homomorphisms. We say that a right R-module M is
flat with respect to the short exact sequence IE, or with respect to the monomorphism g if

1m®f 1m®g

M®E: 0—M®A M®B M®C——0

is exact.

A right R-module M is said to be P-flat if M is flat with respect to every
short exact sequence E € P, that is, M ® [E is exact for every E in P.

For a given class M of right R-modules, denote by 77}(M) the class of all
short exact sequences [E of R-modules and R-module homomorphisms such that

M® E is exact for all M € M:
T Y M) = (E € AbsgpdM ® E is exact for all M € Mj.

7-1(M) is the largest proper class P of (left) R-modules for which each M € M is
P-flat. Itis called the proper class flatly generated by the class M of right R-modules.

3.5. Coprojectively and Coinjectively Generated Proper Classes

Let M and J be classes of modules over some ring R. The smallest proper
class E(M) (resp. k(7)) for which all modules in M (resp. J) are coprojective
(resp. coinjective) is said to be coprojectively (resp. coinjectively) generated by

M (resp. ]).
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Theorem 3.2 ((Alizade 1985), Theorem 2) Let L be a class of modules closed under

extensions. Consider the class L of exact triples, defined as:

Ext,(C,A) = | Im{Ext(C,I) = Ext(C, A)}
ILa

over all I € L and all homomorphisms a : I — A.  Then exact triples

0 A X C 0 belonging to Ext (C, A), form a proper class and L co-
incides with k(L).

For more information about coprojectively and coinjectively generated proper

classes see (Alizade 1985) and (Alizade 1986).
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CHAPTER 4

THE PROPER CLASSES RELATED TO
COMPLEMENTS AND SUPPLEMENTS

The proper classes Complrptod, SUpplrmod, Neatrpos and Co-Neatgptea are
defined in (Mermut 2004). One can find the properties of these classes and
their relationship in the same work and (Clark, et al. 2006). Here we will give

definitions and some results that will be useful for our work.

4.1. Complrmod, SUpPlrmod, Neatrpos and Co-Neatgptoq

The class Complr.moa consists of all short exact sequences

f

0—=A—>B-f-C—>0 (4.1)

in R-Mod such that Im f is a complement of some submodule K of B, that is
Im f N K = 0 and K is maximal with respect to this property.
The class Neatg_pi,q consists of all short exact sequences 4.1 such that every

simple R-module is relative projective for it, denoted by
Neatgpod = “1_3}/\40 AS € R-Mod | S is simple}.

The corresponding subset of Ext(C, A) is denoted by Next(C,A). Over
the ring Z of integers, we have the following result that gives the structure of

Neatz p,q in terms of the subgroups of Ext(C, A).

Corollary 4.1 ((Alizade, Pancar and Sezen 2004), Corollary 4.3)

For every abelian groups A, C, we have Next(C,A) = (\pExt(C,A) = F(Ext(C, A))
p

where p ranges over the prime numbers and F(Ext(C, A)) is the Frattini subgroup of

Ext(C, A).

The class Supplrpoa, consisting of all short exact sequences 4.1 such that
Im f is a supplement of some submodule K of B, is a proper class (see (Erdogan

2004) or (Clark, et al. 2006) for a proof). The properties of Supplrea-coinjective
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and Supplrpoa-coprojective modules are investigated in (Erdogan 2004).

Dual to the notion of Neatgpoi, Co-Neatgraa is defined as

Co-Neatgpor = 13y,,,4M € R-Mod | Rad M = 0}.

We have the relations, Complgme S Neatrpos and Supplraoa S

Co-Neatg.p,a for arbitrary ring R.

4.2. The x-Elements of Ext(C, A)

For the rest of this chapter, we will write Ext instead of Extg. A short exact

sequence

E: 0—-A7

B—-C——0 (4.2)

is called x-exact if Im f has a supplement in B, i.e. a minimal element in the set
{(V.cB|V+Imf = B}. In this case we say that E € Ext(C, A) is a k-element and
the set of all k-elements of Ext(C, A) will be denoted by S.

We denote by Wsupp the class of short exact sequences 4.2., where Im f has
(is) a weak supplement in B, i.e. there is a submodule K of B such thatIm f +K = B
and Im f N K < B. We denote by Small the class of short exact sequences 4.2.

where Im f < B.

The x-elements need not form a proper class in general. For in-
stance, let R = Z and consider the composition g o a of the monomorphisms
a:2Z — Zand f : Z — Q where a and § are the corresponding in-

pec Q Q/27 0 is a x-element, but

clusions. Then we have 0 27

0 272—+7. Z.]2Z——0 is not a k-element as 2Z does not have a sup-
plement in Z.

If X is a Small-submodule of an R-module Y, then Y is a supplement of X
in Y, so X is S-submodule of Y. If U is a S-submodule of an R-module Z, then
a supplement V of U in Z is also a weak supplement, therefore U is a “Wsupp-
submodule of Z. These arguments give us the relation Small € S € Wsupp for
any ring R.

For the following proposition, recall that for a class & of short exact se-

quences < & > denotes the proper class generated by &.
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Proposition 4.1 (Small) = (S) = (Wsupp).
Proof We have the relation Small € S C Wsupp which implies (Small) C (S) C
f.p-%.c 0 € Wsupp. We can

(Wsupp). Conversely, let E : 0 A
assume that A is a submodule of B. Let D be a weak supplement of A in B, i.e.

A+ D =Band AND < B. Then we have the commutative diagram

0 0
AND AND
x Y
E:0 A—L g% .c 9
E:0—>=A/AND —"~B/AnD.—~C—>0

where x, y are the corresponding inclusion homomorphisms and u, v are canon-
ical epimorphisms. We have A/AN D ® D/AND = B/A N D, therefore
E’" € Split € (Small). Since AND < B, v and j are (Small) -epimorphisms.
Then g = jo v is a (Small) -epimorphism and E € (Small). Since (Small) is a
proper class, we have that (Wsupp) C (Small). O

Proposition 4.2 Let R be a domain. Then every bounded R-module is (Small)-
coinjective.

Proof Let B be a bounded R-module and I be an injective hull of B such that
B c I. We will show that B < I. Let B+ X = I for some X C I. Since B is bounded,
there exists 0 # r € Rsuch that ¥rB = 0. ThenI = rI = ¥rB + rX = rX, since [ is
divisible. Therefore X =] and B < I. I is (Small)-coinjective, since it is injective.

Then B is (Small)-coinjective by Corollary 3.2. O

Corollary 4.2 If R is a domain, then k(B) C (Small).

The main problem with the investigation of the x-elements in Ext(C, A) is
that they need not form a subgroup. The reason for this is the fact that, in general,
for a homomorphism g : C" — C, the induced map ¢ : Ext(C,A) — Ext(C’, A)

need not preserve x-elements.
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Let us consider the short exact sequences

E: 0 A—>B C 0 in which V + Ima = B for some V C B,

where VNIma <« Vand V NIma is bounded, i.e. V is a supplement of Im « in
B with V N Ima is bounded. Following Zoschinger we will call such sequences
B-exact and denote Im a P B. In this case we say that [E € Ext(C, A) is a B-element.
Over a Dedekind domain, any S-element of Extz(C, A) is a k-element as well as
a torsion element. Let us denote the f-elements of Extz(C, A) by SB. In order to
show that every x-element need not be a p-element, we give an example over

R=Z.

Example 4.1 Consider the inclusion homomorphism f : @ Z, — EB 2, where p
ranges over all prime numbers in Z. Im f = EB Z, is small in @ me, so fisaS-

monomorphism. €D Z,~ itself is the only supplement of Im f in P Z -~ Imf=2zZ,
p p

p
is not bounded, hence f is not an SB-monomorphism.
The following proposition holds for a noetherian integral domain of Krull

dimension 1. Recall that B denotes the class of bounded R-modules.

Proposition 4.3 Let R be a noetherian integral domain of Krull dimension 1. Then

S8 = k(B). Hence SB is a proper class in this case.

Proof (C)LetE: 0—>A*-B "'

C 0 be a short exact sequence in
SB. We can assume that «a is the inclusion, i.e. A C B. Then there is a supplement

V of A in B such that V N A is bounded. We have the following commutative

diagram
E: 0 A ]j C 0
nE : 0—=A/ANV)—=B/(ANV)—=C—0

where the second row splits, since it is equivalent with the splitting short
exact sequence 0——A/(ANV)—A/(ANV)o V/(ANV)—=V/(ANV)—=0.

If we apply the functor Homg(C,-) to the short exact sequence

0 ANV—-A—"~(A/ANV)——=0 where ( is the inclusion homomorphism

and 7 is the canonical epimorphism, we get the sequence

-+ — > Extg(C, AN V) —> Extg(C,A) —=> Extg(C,A/JAN V) —= -
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and 7t*(IE) = 0 by the previous argument. Then [E € Kern* = Im (", so there is
an E’ € Ext(C,A N V) such that (*(E’) = E. Since A NV is bounded and k(8B) is a
proper class, [E = *(IE’) is an element of k(8B). Hence S8 C k(8B).

(2) By (Zoschinger 1974b, Folgerung after Lemma 1.4) over a noetherian integral
domain of Krull dimension 1, every bounded R-module M is S-coinjective. As M
is bounded, it is SB-coinjective.

Let E: 0 A B C 0 € k(8B). Using Theorem 3.2, there ex-

ist I € B and a homomorphism a : I — A such that a*(E’) = E for some

E: 0 I X C 0 € Ext(C, I). Then the diagram

E:0 I X C 0

|

E:0 A B C 0

is commutative. I is SB-coinjective, since I € B. Therefore E’ € SB. By
(Zoschinger 1978, Folgerung (b) after Lemma 1.3), a, preserves -elements. Then
E = a.(E') € SB. O

Corollary 4.3 Over a Dedekind domain R, we have SB = k(B), therefore SB is a proper

class.

Let R denote the ring Z of integers till the end of this section.

A homomorphism g : C’ — C is called coneat if for every decomposition
g = P o a where § is a small epimorphism, f3 is an isomorphism.

The following results establish a connection between coneat homomor-

phisms and the k-elements of Ext(C, A).
Lemma 4.1 ((Z6schinger 1978), Lemma 2.2)

(a) An epimorphism g : C' — C is coneat if and only if Ker g is coclosed in C’, i.e.

for any submodule X of Ker g, Ker /X < C"/X implies X = Ker g.

(b) A splitting monomorphism g : C' — C is coneat if and only if Coker g has no

small cover.
(c) If g = go o 1 is coneat, then g is also coneat.

Theorem 4.1 ((Z6schinger 1978), Satz 2.3) For a homomorphism g : C" — C, the

following are equivalent:
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(i) g is coneat.
(i) Ker g is coclosed in C" and Im g D Soc C.
(iii) g(C’'[pl) = Clp] for all prime numbers p.

(iv) If the diagram below is a pullback diagram and B is a small epimorphism, then ' is

also a small epimorphism.

Corollary 4.4 ((Zoschinger 1978), Folgerung 1 after Satz2.3) If g : C" — C is

coneat, then g : Ext(C, A) — Ext(C’, A) preserves k-elements.

Corollary 4.5 ((Zoschinger 1978), Folgerung 2 after Satz 2.3) ¢ : Ext(C,A) —

Ext(C’, A) preserves x-elements if g satisfies the following two conditions:
(a) ITm g O Soc(C).

(b) Ker g is supplemented and has a supplement in every extension.

We can find an answer to the question if k-elements of Ext(C, A) form a
subgroup of Ext(C, A), in terms of C and A. The following results give an answer
under some conditions on C and A. Note that the following two results for abelian

groups can be generalized for modules over Dedekind domains.
Lemma 4.2 ((Z6schinger 1978), Lemma 2.1) Let A, A’, C and C’ be R-modules.
(D) If f:A— A’, then f, : Ext(C,A) — Ext(C, A") preserves x-elements.

(II) Let g : C" — Cand C’ be torsion. If either a primary component of C is zero or A

is torsion, then g* : Ext(C, A) — Ext(C’, A) preserves k-elements.

Corollary 4.6 ((Zoschinger 1978), Folgerung 3 after Lemma 2.1) If C is torsion,
and either a primary component of C is zero or A is torsion, then the x-elements of

Ext(C, A) form a subgroup.
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4.3. The x-Elements of Extg(C,A) over the Category 7 for a
Dedekind Domain R

In this section, R denotes a Dedekind domain which is not a field and K
denotes its field of fractions, we will denote the set of maximal ideals of R by Q.
Let 7 be the category of torsion R-modules. Consider the short exact sequences

0 A / B—%-C 0 of R-modules A, B, C and R-module homomorphisms

f and g where A, B, C € Tx. From now on, we will consider the short exact
sequences in the form given above.
By Corollary 4.6, kx-elements of Ext(C,A) in 7z form a subgroup. It is also a
subfunctor of Ext by Lemma 4.2, so it is an e-functor.

In order to show that k-elements form a proper class, we need the transitiv-
ity of the relation . The following lemma is proved when R = Z in (Z6éschinger
1978), note that it holds for all R-modules, but we will use it only for modules in

Tr.

Lemma 4.3 ((Zéschinger 1978), Lemma 6.6) Let X C Y C Z be R-modules, V be a
supplement of X in'Y, and W be a supplement of Y in Z. Then we have:

(a) If Rad(Y/X) = Y/X NRad(Z/X), then V + W is a supplement of X in Z.

(b) X has a supplement in Z.

Proof (a) The condition on the radical implies that (X +(WNY)/X) = (W+X)N
Y)/Xis small in Y/X. Then the canonical map V — Y/X — Z/(W + X) is a small
epimorphism. Therefore V is a supplement of W + X in Z. We also have that W
is a supplement of V + X in Z. Hence V + W is a supplement of X in Z.

(b) The R-module (W + X) N Y)/X is small in Z/X, so it is coatomic. It has
a supplement Y’/X in the torsion module Y/X such that (W + X)/X and Y’/X
are mutual supplements in Z/X. Then we have that Y’ has a supplement in Z,
Rad(Y’/X) = Y'/XNRad(Z/X) and (VNY’)+X = Y’. Therefore X has a supplement

in Y. By using the same argument in part (a), X has a supplement in Z. O

We can see that Exts is an e-functor by Lemma 4.2 and Corollary 4.6 in the

category 7. Lemma 4.3 also holds for modules in 7. Then S gives an e-functor
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and P-3 in the definition of a proper class is satisfied in the category 7, we have
by (Nunke 1963, Theorem 1.1), that S form a proper class in the category 7.

Our next aim is to find the S-injective and S-projective R-modules in 7.
Proposition 4.4 In the category Tr, we have:
(a) x-elements of Ext(C, A) form a proper class.
(b) n(Wsupp) = n(S) = n(Small) = {0}.

(c) S-injective R-modules are only the injective R-modules in 7.

Proof (a) Follows from the previous arguments.

(b) We always have the relation Wsupp 2 S 2 Small which implies 1t(‘Wsupp) C

n(S) € n(Small).

Assume that there is a nonzero element P in n(Small). P = & T,(P) where
peQ

T,(P) # 0 for some q € Q, since P # 0. Then there is a simple submodule
M < Ty(P), clearly M = R/q = q7'/R (see (Nunke 1959, Lemma 4.4) for the

[l

last isomorphism), and there is a nonzero homomorphism a : M — T,(K/R).
Since T,(K/R) is injective, there is a homomorphism & : P — T,(K/R) making the
diagram

0 M—t p

Ve

Ve
o Ve
27 h

T,(K/R

commutative. Since a # 0, we have I # 0.

The short exact sequence 0—q~1 /R—=T,(K/R)—~T,(K/R)—0 where j and
f are canonical homomorphisms, is in Small (see (Wisbauer 1991, Ch. 8, §40.3,
(4))). Since P is an element of 1t(Small), there isa homomorphism g : P — T,(K/R)

making the diagram

0" /R—"=Ty(K/R) "~ Ty(K/R) —=0
\g\ . Th
°P
commute, i.e. h = f o g, which implies h|y = (f o §)lm. Since g(M) is simple in
T.(K/R), gM) = q7'/R or ¢(M) = 0. In both cases, we have 0 # a(M) = h|y =
(f o @)lm = 0. This contradicts withh = f o g.
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(c) We always have ((Wsupp) C 1«(S) C ((Small), and we know that all these classes
include injective R-modules. We will show that the Small-injective R-modules in
T are only the injective ones.

Let I be a Small-injective R-module. Then I = D(I) @ I’, where D(I) is the divisible
part of I and I’ is reduced. Since I’ is a direct summand of a Small-injective R-
module, I’ is Small-injective.

Suppose that I’ # 0. With similar arguments we used in part (b), there is a nonzero
monomorphism  : q /R — I’ for some q € Q. If we take the same short exact

sequence we used in part (b), we get the commutative diagram

0—=q1/R — > Ty(K/R) —L= T,(K/R) —0

II
where the existence of / is guaranteed by the assumption of I being Small-
injective.Then we have y = ho jand 0 # (q7!/R) = (h o j)(q7'/R) € h(T,(K/R)) C
D(I’) = 0, where D(I’) = 0 as I is reduced. This is a contradiction.

So Small-injective R-modules in 7 are only the injective modules in 7k.

Corollary 4.7 In the category T z of torsion abelian groups we have:

(a) x-elements of Ext(C, A) form a proper class.
(b) n(Wsupp) = n(S) = n(Small) = {0}.
(c) S-injective abelian groups are only the injective abelian groups.

In order to find the form of k-coinjective R-modules in the category 7, we

need the following lemmas.

Lemma 4.4 Let A, B be R-modulesand A C B. Then A < B ifand only if A is coatomic
and A C Rad B.

Proof (=)SupposethatRad(A/X)=A/XforsomeX C A. Then A/Xisdivisible,
so A/X is a direct summand of B/X. Since A/X is an epimorphic image of A in B,
A/X < B/X which implies A/X = 0.

(<) Suppose that A+ Y = B forsome Y & B. Then A/ANY = A+Y/Y =B/Yis
also coatomic, so there is a maximal submodule Z of B containing Y and we have

Rad B + Z = B which is a contradiction. O
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Lemma4.5 Let S be a DVR, B be a reduced torsion S-module and A be a bounded
submodule of B. If B/A is divisible, then B is also bounded.

Proof If p is the generator of the maximal ideal of S, then p(B/A) = B/A, since
B/A is divisible. Then pB + A/A = B/A and pB + A = B. As Aisbounded, p"A =0
for some n € Z*. We have p"B = p"*"'B + p"A = p"*'B, i.e. p"B is divisible. Then

p"B = 0, since B is reduced. m|

Lemma 4.6 Let S be a DVR and A C B be torsion S-modules. If A < B, then A is
bounded.

Proof Let A and B be torsion S-modules and A < B. Then A is reduced and by
Lemma 4.4, A is coatomic. By (Zoschinger 1974a, Lemma 2.1) A is bounded. O

Proposition 4.5 In the category Tr of torsion R-modules, an R-module X is S-
coinjective if and only if every primary part of the reduced part of X is bounded.

Proof (=) Let X € 71 be S-coinjective. Let D be the divisible part of X. Then
X = D& T where T is reduced. By Corollary 3.2, T is S-coinjective. Let p
be a maximal ideal of R and Y = T,(T). Again by Corollary 3.2 Y is also S-
coinjective. We can consider Y as an R,-module,i.e. a module over a DVR. If [ is
the injective hull of Y, Y has a supplement AinI. AsYNAissmallin A, YNA
is coatomic by Lemma 4.4 and bounded by (Zoschinger 1974a, Lemma 2.1). We
have Y/YNA =Y + A/A = 1/A is divisible. Then by Lemma 4.5, Y is bounded.

(&) Let X = D @ T where D is the divisible part of X. D is injective, hence D is
S-coinjective. Let p be maximal ideal of R, T,(T) is S-coinjective by (Zéschinger
1974b, Folgerung after Lemma 1.4). Let Y be an R-module containing T. We
have T,(T) € T,(Y) and T,(T) has a supplement V, in T,(Y). Then @V, is a

P

supplement of P T,(T) = T in Y. Therefore T is S-coinjective. Considering the
P

splitting short exact sequence 0 D X T 0, by Proposition 3.2, X
is S-coinjective. O
The following result holds when R = Z and it can be generalized for

modules over a Dedekind domain. Recall that we denoted x-elements of Ext(C, A)

by S and p-elements of Ext(C, A) by S8.
Lemma 4.7 ((Zoschinger 1978), Lemma 1.2) If A, C € Ty, then

Extss(C, A) = Exts(C, A) N T(Ext(C, A)).
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We have a similar result to Lemma 4.3 for f-elements.

Lemma 4.8 Let X c? Y P Z. If Z is torsion, then X cF Z.

Proof Following the proof of Lemma 4.3, there exists Y’ C Z such that X has a
supplement V" in Y” and Y’ has a supplement W’ in Z. We know that V' + W’ is a
supplement of X in Z. What we need to show is that X N (V' + W’) is bounded.

Wehave XN(V'+W’) C (V' N(X+W)+(WNX+V")) = (V' N(X+W))+ (W' NY).
We know that W N Y’ is bounded. Let v’ = x+w’ € V' N (X + W), then w’ =
vV-xeWnNnV'+X)=WnNnY. WnNY is bounded, so r(v' — x) = 0 for some
reR.rv' =rxe V' NnX. V"N Xisalso bounded, therefore srv’ = 0 for some s € R.

Hence V' N (X + W’) is also bounded. O

By using (Nunke 1963, Theorem 1.1), we have that f-elements of Extz(C, A)
form a proper class. With similar arguments in Proposition 4.4, we have the

following proposition.

Proposition 4.6 Let T be the category of torsion R-modules and A, C € Tg. Then we

have:
(i) B-elements of Extg(C, A) form a proper class.
(ii) (SB) = {0}.
(iii) SB-injective R-modules are only the injective R-modules in T .
Corollary 4.8 In the category T z of torsion abelian groups we have:
(i) B-elements of Ext(C, A) form a proper class.
(ii) (SB) = {0}.
(iii) SB-injective abelian groups are only the injective abelian groups in T .

The following proposition characterize SB-coinjective R-modules in the

category 7.

Proposition 4.7 In the category Tr of torsion R-modules, an R-module X is SB-
coinjective if and only if reduced part of X is bounded.
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Proof (=) Let X € 71 be SB-coinjective. Let D be the divisible part of X. Then
X = D&Y where Y is reduced. By Corollary 3.2, Y is SB-coinjective, so it is
S-coinjective. By Proposition 4.5, T,(Y) is bounded for every maximal ideal p of
R. Suppose that T,(Y) # 0 for infinitely many maximal ideals p of R. We can write
Y = P T,(Y) where G € Q and T,(Y) # 0 for all p € G. Let A be the supplement

peG

of Y in an injective hull I of Y. We have (B T,(Y)) + (B T,A) = €5 T,(I). Since
Y N A is bounded, there is q € G such thaie%q(Y NA) zpe%q(Y) N T;(efl) = 0. Then
To(Y)® To(A) = To(I), so T4(Y) = 0, since Y is reduced. This contradicts with our
assumption that T,(Y) # 0 for every q € G. Therefore Y is bounded.

(&) Let X = D @ Y where D is the divisible part of X. D is injective, hence D is
SB-coinjective. Y is S-coinjective by (Zoschinger 1974b, Folgerung after Lemma
1.4). Since Y is also bounded, it is SB-coinjective. By Proposition 3.2, X is SB-

coinjective. O

Corollary 4.9 In the category Tz of torsion abelian groups, an abelian group X is
SB-coinjective if and only if reduced part of X is bounded.
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CHAPTER 5

CONCLUSIONS

In this thesis we applied homological methods for description of the sub-
modules of modules that have supplements. The corresponding elements in
the module of extensions are called x-elements. These elements for the case of
abelian groups were studied in (Zoschinger 1978). We showed that when R is
a Dedekind domain, the proper class (S) generated by the class S consisting of
k-elements coincides with the classes (Small) and (‘Wsupp). We have also inves-
tigated p-elements and showed that over a noetherian integral domain of Krull
dimension 1, f-elements form a proper class and this proper class coincides with
the proper class coinjectively generated by the class of bounded R-modules. We
restricted our attention to the category 7 of torsion R-modules for a Dedekind
domain R and characterized S-projective, S-injective, SB-projective and SB-
injective R-modules. We have also given the characterization of S-coinjective and

SB-coinjective R-modules in the category 7.
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