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ABSTRACT

FOURIER ANALYSIS ON THE LORENTZ GROUP AND

RELATIVISTIC QUANTUM MECHANICS

The non-relativistic Schrödinger and Lippman-Schwinger equations are de-

scribed. The expressions of these equations are investigated in momentum and configura-

tion spaces, using Fourier transformation. The plane wave, which is generating function

for the matrix elements of three dimensional Euclidean group in spherical basis, expanded

in terms of Legendre polynomials and spherical Bessel functions. Also explicit calcula-

tion of Green’s function is done.

The matrix elements of the unitary irreducible representations of Lorentz group

are used to introduce Fourier expansion of plane waves. And the kernel of Gelfand-

Graev transformation, which is the relativistic plane wave, is expanded in to these matrix

elements. Then relativistic differential difference equation in configuration space is con-

structed.

Lippman-Schwinger equations are studied in Lobachevsky space (hyperbolic

space). An analogous to the non-relativistic case, using the finite difference Schrödinger

equation, one dimensional Green’s function is analyzed for the relativistic case . Also the

finite difference analogue of the Heavyside step function is investigated.
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ÖZET

LORENTZ GRUBU ÜZERİNE FOURIER ANALİZİ VE

RÖLATİVİSTİK KUANTUM MEKANİĞİ

Rölativistik olmayan Schrödinger ve Lippman-Schwinger denklemleri

tanımlandı. Bu denklemlerin hem momentum hem de konfigürasyon uzayındaki

ifadeleri Fourier dönüşümü kullanılarak incelendi. Üç boyutlu Öklid grubunun küresel

bazlarca ifade edilen matris elemanlarının doğuranı olan ”düzlem dalga” nın seri açılımı,

Legendre polinomları ve küresel Bessel fonksiyonları cinsinden yapıldı. Bunun yanısıra,

dalga denkleminde kullanılmak üzere, Green fonksiyonunun hesabı gerçekleştirildi.

Lorentz grubunun birimsel indirgenemez temsillerinin matris elemanları tanıtıldı

ve bu elemanlar kullanılarak Gelfand-Graev dönüşümlerinin çekirdeği olan rölativistik

dalga fonksiyonunun seri açılımı gerçekleştirildi. Bu bakış açısıyla, konfigürasyon

uzayında, sonlu fark Schrödinger denklemi yapılandırıldı.

Rölativistik olmayan denklemlerin benzeri olan rölativistik Lippman-Schwinger

denklemlerini yapılandırmak üzere üç boyutlu Lobachevsky uzayında çalışıldı. Son

olarak, sonlu fark Schrödinger denklemi kullanılarak, rölativistik dalga denkleminde kul-

lanılmak üzere, bir boyutlu Green fonksiyonun hesabı gerçekleştirildi.
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CHAPTER 1

INTRODUCTION

The description of the two-particle relativistic system is one of the central prob-

lems of the Quantum Field Theory. Traditionally for studying this problem in the frame-

work of the four-dimensional Feynman-Dyson’s formalism the covariant equation was

used known under the name ”Bethe and Salpeter equation”. This equation being advan-

tageous in many senses is nevertheless not completely satisfactory. In particular, in the

4-dimenional Bethe-Salpeter approach the clear treatment of the wave function depen-

dence of the relative time of two particles is absent.( Salpeter, et al. 1951, Landau and

Lifshitz 1958, Davydov 1963, Kadyshevsky, et al. 1968, Kadyshevsky 1988, Kagra-

manov, et al. 1989, Mir-Kasimov , et al. 1990, Mir-Kasimov 1991, Thaller 1992,

Nagiev 1995, Mir-Kasimov 2000, Mir-Kasimov 2002, Mir-Kasimov, et al. 2003)

The natural question arises: does in the framework of the covariant field theory

such formalism exist, which is from the one hand side three dimensional and admits the

probabilistic interpretation of the wave function and from the other hand side possesses

all main advantages (renormalisibility, analyticity) of the completely covariant approach.

There exist several formulations (unified under common title ”quasi-potential approach”)

of the 3-dimensional relativistic 2-body problem which give a positive answer to this

question. In the momentum representation the equations of quasi-potential approach are

the direct relativistic generalizations of the standard (non-relativistic) Schrödinger and

Lippmann-Schwinger equations. The goal of this Thesis is to consider and apply to

solution of scattering theory the concept of the relativistic configurational space in the

framework of the quasi-potential approach.

The concept of relativistic configurational space is based on the simple observation

that a free motion of a relativistic particle can be described on the basis of the Gelfand-

Graev transformation , i.e., expansion in relativistic spherical functions. ( Kontorovich

and Lebedev 1938, Bateman 1953, Gel’fand, et al. 1966, Vilenkin 1968, Biedenharn

1989). We start with the well-known fact that the equation describing the relativistic

relation between energy and momentum of the particle ( mass shell equation), describes

at the same time the three-dimensional momentum space of constant negative curvature
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or the Lobachevsky space. The isometry group of this space is the Lorentz group. To

introduce an adequate Fourier expansion, we must find the matrix elements of the unitary

irreducible representations of this group. These matrix elements are the eigen-functions

of the Casimir operator, or the Laplace-Beltrami operator in the Lobachevsky space

Later on it became clear that the geometry of relativistic configurational space

carries the non-commutative geometry (its ”Snyder version”). ( Carlitz 1957, Witten

1986, Deser, et al. 1988 , Witten 1988, Kadyshevsky and Fursaev 1990, Wess and

Zumino 1990, Dubois-Violette, et al.1990, Mir-Kasimov 1991, Connes 1994, Madore

1995, Dimakis and Müller 1998, Mir-Kasimov 2000, Güven, et al. 2001).

It is important to stress also the connection of given approach with q-deformations.

( Kulish 1981, Manin 1988, Woronowich 1989, Kulish 1991, Floreanini, et al. 1991,

Mir-Kasimov 1996). The oscillator model in relativistic configurational space is an ex-

plicit realization of the q-oscillator. ( Macfarlane 1989, Mir-Kasimov 1991, Rajagopal

1993).

Ĉ =
1

2
MµνMµν µ, ν = 0, 1, 2, 3 (1.1)

Eigenfunctions of Ĉ are unitary irreducible representations of the Lorentz group and can

be written in a form of the Gelfand - Graev kernels

< r | p >=

(
p0 − p · n

mc

)−1−i r
λ

(1.2)

r = rn n2 = 1 0 ≤ r <∞ (1.3)

λ =
~
mc

Compton wave length of the particle (1.4)

Note that r in (1.3) does not transform as the spatial component of a four vector.

There are several strong arguments for considering r as a relativistic position vec-

tor of the particle:

1. The range of variation of r (1.3) coincides with that of the standard non-relativistic

coordinate vector.

2. The magnitude r of r is Lorentz invariant in full analogy with the non-relativistic

relative distance, which is Galilean invariant.
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3. ”Relativistic plane wave” < r | p > in the non-relativistic limit

|p| � mc r � λ p0 ' mc+
p2

2mc
(1.5)

goes over into the standard non-relativistic plane wave

< r | p >' exp
(
irp·n

~

)
= exp

(
ip·x~

)
(1.6)

In the last expression x denotes the standard non-relativistic position vector.

4. The most important physical argument is that there exists in r-space the differential

– difference operator Ĥ0 of free energy

Ĥ0 = mc2{cosh iλ
∂

∂r
+ i

λ

r
sinh iλ

∂

∂r
− λ2

r2
∆ϑ,φ e

λ ∂
∂r } (1.7)

such that

(
Ĥ0 − E

)
< r | p >= 0 (1.8)

The last two equations show that the plane wave < r | p > is the wave function of

the relativistic free particle, i.e. the state with a fixed value of the relativistic energy

and momentum. It is worthwhile to stress that (1.8) can be considered as a solution

of the problem of extracting the square root in the expression for the relativistic

energy

E =
p0

c
=
√

p2c2 +m2c4 (1.9)

in a form of differential – difference operator (1.7)

The ”price” for this extraction is the presence of the exponential derivation which

amounts to a finite-difference character of the Hamiltonian operator (1.7). The interac-

tion can be described in terms of a potential function V (r). On this basis, the quantum

theory in the relativistic configurational space had been developed. This theory will be

called hereafter the Relativistic Quantum Mechanics (RQM). It proved to be an efficient

approach to solving problems in a wide range: from analytic properties of relativistic
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wave functions and amplitudes to relativistic confinement models of composite hadrons.

We refer the reader further references therein where this theory is presented.

In chapter two the non-relativistic Schröndinger and Lippman-Schwinger equa-

tions are described in both momentum and configuration spaces, using Fourier transfor-

mation. The plane wave expansion and it’s group theoretical meaning is described.

In chapter three the matrix elements of the unitary irreducible representations of

Lorentz group are used to introduce Fourier expansion of plane waves. Then relativistic

differential difference equation in configuration space is constructed.

Finally in chapter four relativistic two-body problem and general formalism of the

scattering theory and related equations are described. Lippman-Schwinger equations are

described in Lobachevsky (hyperbolic)space.

xi



CHAPTER 2

A BRIEF REVIEW OF NON-RELATIVISTIC

SCATTERING THEORY

2.1. Non-Relativistic Two Body Problem

This chapter in a sense is introductory. We analyze here the non-relativistic two-

body problem giving the group-theoretical interpretation of a number of aspects of this

well established theory keeping in mind to generalize these properties if possible from the

non-relativistic (Galilean) case to the relativistic (Lorentz) case.

It is well known from classical mechanics that in the non-relativistic theory, the

problem of the scattering of a particle of mass m1 by a particle of mass m2, when the

interaction V (r) between the particles depends on the relative coordinate, amounts to a

problem of the scattering of a single effective particle with reduced mass in a potential

field V (r). This reduction of the problem of the elastic scattering of two particles to the

motion of a fictitious particle with reduced massm in the potential field V (r) is realized by

the simple change to a system of coordinates fixed in the center of mass of the colliding

particles,( Davydov 1963). Now let us show this reduction. The Hamiltonian of two

particles with masses m1 and m2 for the stationary state has the form;

Ĥ =
p2

1

2m1

+
p2

2

2m2

+ V̂ (r1, r2) (2.1)

We introduce new variables; the center of mass radius vector R and the relative position

vector r defined by

R =
m1r1 +m2r2

M
, r = r1 − r2 (2.2)

where M = m1 +m2 is total mass and

P = p1 + p1, p =
m2p1 −m1p2

m1 +m2

(2.3)

P and p are total and relative momenta respectively.

Now considering the relation

−i~ ∂

∂ri

= pi (i = 1, 2) (2.4)
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we can determine the equation which describes the motion of the center of mass. Let’s

write r1 and r2 as;

r1 =
m2

M
r + R

r2 = −m1

M
r + R (2.5)

and determine the following

∂

∂r1

=
∂R
∂r1

∂

∂R
+

∂r
∂r1

∂

∂r
=
m1

M

∂

∂R
+

∂

∂r
∂

∂r2

=
∂R
∂r2

∂

∂R
+

∂r
∂r2

∂

∂r
=
m2

M

∂

∂R
− ∂

∂r
. (2.6)

Now we insert these relations into Hamiltonian equation;

Ĥ = − ~2

2m1

(
m1

M

∂

∂R
+

∂

∂r

)2

− ~2

2m2

(
m2

M

∂

∂R
− ∂

∂r

)2

+ Ṽ (R, r) (2.7)

= − ~2

2M

(
∂

∂R

)2

− ~2

2

(
1

m1

+
1

m2

)(
∂

∂r

)2

+ Ṽ (R, r) (2.8)

and substitute
1

m1

+
1

m2

=
m1 +m2

m1m2

=
1

m
, m =

m1m2

M
(2.9)

where m is the reduced mass and M is the total mass of the system. Then equation (2.8)

can be written in the form

Ĥ = − ~2

2M
∇2

R −
~2

2m
∇2

r + Ṽ (R, r) (2.10)

=
P2

2M
+

p2

2m
+ Ṽ (R, r) (2.11)

= Ĥcm + Ĥ (2.12)

This equation represents the separation of Ĥ into the Hamiltonian of the center of mass,

Ĥcm, and the Hamiltonian of the, relative motion Ĥ .

For an isolated system, relative coordinate r is invariant in respect to translations,

time shifts and pure Galilean transformations. Therefore if the potential does not depend

on the coordinate of center of mass, then the motion of center of mass and relative motion

are separated i.e. in respect to full inhomogeneous Galilean group. So we can write,

Ĥcm = − ~2

2M
∇2

R (2.13)
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Ĥ = − ~2

2m
∇2

r + Ṽ (r). (2.14)

We stress that transfer to the center of mass reference system is an Galilean trans-

formation. Separating the motion of the center of mass of two body system we can con-

sider the relative motion as a motion of an effective particle in the field of potential Ṽ (r).

2.2. General Formalism of Non-Relativistic Scattering Theory

Now we will concentrate on the time independent formulation of relative motion

of free particle with momentum q and energy Eq = q2/2m, (2/~2Ṽ (r) = V (r))which is

determined by Schrödinger equation

[
− 1

m
∇2

r + V (r)− 2Eq

]
Ψq(r) = 0 (2.15)

where r is the relative distance of the particles with respect to each others. The solution

of the free Schrödinger equation ϕoq, corresponding to the case

V (r) = 0 (2.16)[
− 1

m
∇2

r − 2Eq

]
ϕoq(r) = 0 (2.17)

where

ϕoq(r) = eiq.r. (2.18)

We stress again that the plane waves ϕoq(r) are the free motion of the non-relativistic

particle, i.e. the motion with definite momentum q and energy Eq. At the same time

ϕoq(r) are generating functions for the unitary irreducible representations of the isometry

group of the Euclidean space of relative (non-relativistic) momenta.

Using the free solution (2.18) of equation (2.15), then with the following equation,

(
1

m
∇2

r + 2Eq

)
Ψq(r) =

∫
V (r′)Ψq(r′)dr′ (2.19)

the Schrödinger equation can be written as

Ψq(r) = exp[iq.r] +

∫
G+

q (r, r′)V (r′)Ψq(r′)dr′ (2.20)

where the Green’s function G+
q (r, r′) satisfying the equation

3



(∇2 + q2)G+
q (r, r′) = δ(r, r′) (2.21)

is given by

G+
q (r, r′) = 〈r|(2Eq + iε−H0)

−1|r′〉

=
1

(2π)3

∫
exp[ik.r]

dk
2Eq − 2Ek + iε

exp[−ik.r′]. (2.22)

and Eq = q2/2m , Ek = k2/2m defines the energy shell.

The scattering amplitude A(p,q) in momentum space is defined as the Fourier

transform of the product −m/4πV (r)Ψq(r′) which is

A(p,q) =
−m
4π

∫
V (r)Ψq(r) exp[−ip.r]dr (2.23)

=
−m
4π

1

(2π)3

∫
Ṽ (p− k)Ψ̃q(k)dk (2.24)

where the Fourier transform of the potential is

Ṽ (p,k) =

∫
exp[−ip.r]V (r, r′) exp[ik.r′]drdr′. (2.25)

If the potential is local,

V (r, r′) = V (r)δ(r− r′) (2.26)

then we can write

Ṽ (p,k) = Ṽ (p− k) =

∫
exp[−i(p− k).r]V (r)dr. (2.27)

To obtain the Lippmann-Schwinger equation for the off energy-shell scattering

amplitude we multiply both sides of equation (2.20) by (−m/4π)V (r) and take the

Fourier transform, using (2.22) and (2.24) we get

A(p,q) =
−m
4π

Ṽ (p− q) +
1

(2π)3

∫
Ṽ (p− k)

dkA(k,q)

2Eq − 2Ek + iε
. (2.28)

Its off-shell extrapolation is dictated by the boundary conditions of the

Schrödinger equation. We note that on the energy shell, the denominator of the inte-

grand in equation (2.28) vanishes. It can be proved that if V(r) decreases at infinity fast

enough so that

4



∫
|V (r)|dr <∞ (2.29)

then Ψq(r) has the following asymptotic behavior:

Ψq(r) = exp[iq.r] + Aq(θ, ϕ)
eiqr

r
(2.30)

where Aq(θ, ϕ) is the on energy-shell scattering amplitude in the spherical coordinates

which are described by

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ

(2.31)

with the range of variables 0 < θ < π and 0 ≤ ϕ < 2π. The amplitude A(p,q) is

normalized to the elastic-scattering (Eq = Ep) differential cross-section by

dσ

dwk

= |A(p,q)|2 (2.32)

where dwk = sin θdθdϕ

In the absence of absorption (ImV=0), the unitarity condition can be obtained from

equation (2.28)

ImA(p,q) =
|p|
4π

∫
A(p,k)A∗(k,q)dwk (2.33)

for |p| = |k| = |q|.

Then if we take the Fourier transform of equation (2.20) directly, we get the

Lippmann-Schwinger equation for the wave function of the continuous spectrum in mo-

mentum space

Ψ̃q(p) = (2π)3δ(3)(p− q)− 4π

m

1

2Eq − 2Ep + iε
A(p,q) (2.34)

which together with (2.24) gives the following Schrödinger equations in momen-

tum space:

Ψ̃q(p) = (2π)3δ(3)(p− q) +
1

(2π)3

1

2Eq − 2Ep + iε

∫
Ṽ (p− k)Ψ̃q(k)dk (2.35)

(2Eq − 2Ep)Ψ̃q(p) =
1

(2π)3

∫
Ṽ (p− k)Ψ̃q(k)dk. (2.36)

5



2.3. Partial Wave Analysis

2.3.1. The plane wave expansion and related relations

The solution of free Schrödinger equation in Cartesian coordinate system is

ϕoq(r) = exp[iq.r] (2.37)

whereas in spherical coordinate system it is possible to express the plane wave in the form

ϕoq(r) =
∞∑
l=0

l∑
m=−l

alP
m
l (cos θ) exp[imϕ] (2.38)

where m = −l,−l + 1, ..., l − 1, l. For simplicity we choose the z axis along q, then the

free solution becomes symmetric with respect to the z axis and onlym = 0 terms survive.

Thus, the associated Legendre polynomials Pm
l reduced to the Legendre polynomials1

Pl(x) so we can write the solution in the form

ϕoq(r) =
∞∑
l=0

alPl(
q.r
qr

) (2.39)

By substituting x = q.r/qr and y = qr, we have

exp[ixy] =
∞∑
l=0

al(y)Pl(x). (2.40)

To find the coefficients al(y), let us multiply both sides of equation (2.40) by Pl′ and then

integrate with respect to x

∫ 1

−1

exp[ixy]Pl′(x)dx =
∞∑
l=o

al(y)

∫ 1

−1

Pl′(x)Pl(x)dx (2.41)

Then by using the fact that Legendre polynomials form a complete set of orthogonal

polynomials in the interval x ∈ [−1, 1]

∫ 1

−1

Pl(x)Pl′(x)dt =
2

2l + 1
δll′ (2.42)

we can write

al(y) =
2l + 1

2

∫ 1

−1

exp[ixy]Pl(x)dx. (2.43)

1see Appendix B
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If we substitute the Rodrigues formula (see Appendix B)

Pl(x) =
1

2l

1

l!

dl

dxl
(x2 − 1)l, (2.44)

for the Legendre Polynomial Pl(x), we get

al(y) =
2

2l + 1

∫ 1

−1

exp[ixy]
1

2l

1

l!

dl

dxl
(x2 − 1)ldx (2.45)

and

al(y) =
2

2l + 1

∫ 1

−1

exp[ixy]
1

2l

1

l!
d

[
dl−1

dxl−1
(x2 − 1)l

]
. (2.46)

By applying the partial integration, we can write

al(y) =
2

2l + 1

1

2l

1

l!

[
exp[ixy]

dl−1

dxl−1
(x2 − 1)l|1−1 −

∫ 1

−1

d exp[ixy]
dl−1

dxl−1
(x2 − 1)l

]
. (2.47)

The function (x2−1)l has zeros of the lth order at x = ±1. If we differentiate l−1

times it still has zeros at x = ±1. Therefore, the integrated term (dl−1/dxl−1) vanishes.

After l − 1 times partial integration we can write

al(y) =
2

2l + 1

1

2l

1

l!
(−1)lilyl

∫ 1

−1

(x2 − 1)l exp[ixy]dx. (2.48)

Recalling the integral representation of the Bessel functions Jl+ 1
2
(y) and the relation be-

tween Bessel and spherical Bessel functions jl(y): (see Appendix A)

Jl+ 1
2
(y) =

1√
πl!

(y
2

)l+ 1
2

∫ 1

−1

(1− x2)l exp[ixy]dx (2.49)

jl(y) =

√
π

2y
Jl+1/2(y). (2.50)

Therefore, the coefficients al(y) can be written as

al(y) = (2l + 1)iljl(y) (2.51)

and we conclude that
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eiq.r =
∞∑
l=o

(2l + 1)iljl(qr)Pl

(
q.r

qr

)
. (2.52)

The expansion of the plane wave in terms of Legendre polynomials and the spher-

ical Bessel functions has a clear group theoretical meaning. An incoming or outgoing

plane wave is a generating function for the matrix elements of the three dimensional

Euclidean group in spherical basis. This group can be defined in both the configuration

space and the momentum space because of the fact that the expression of a plane wave is

symmetric with respect to r and q. The group of motion of the three dimensional Euclid-

ean space E3 has some sub-group such as three dimensional rotation group O3 and three

dimensional translation group T3. Since, the spherical harmonics Ylm are the matrix ele-

ments of the 2l + 1 dimensional representation of the group O3 and the spherical Bessel

functions are the matrix elements of the the group T3, the above expansion is clear. The

plane wave can also be expanded in terms of other sub-groups of E3 and it plays the role

of kernel in Fourier transformation for the group E3. ( Gel’fand, et al. 1966)

Let’s start from the free Schrödinger equation

(2Eq +
∇2

m
) exp[iq.r] = 0 (2.53)

which is in spherical coordinates (2.31),

[
2Eq +

1

mr2

∂

∂r
(r2 ∂

∂r
) +

1

mr2
∆θ,ϕ

]
exp[iq.r] = 0 (2.54)

where

∆θ,ϕ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
. (2.55)

The wave functions then separates into radial part and angular part

ϕoq(r) = R(r)Ylm(θϕ) (2.56)

where Ylm(θϕ) is a spherical harmonic, that is the eigenfunction of angular momentum

operator.

Now it is possible to write a differential equation for the solution of the radial part

d2jl(rq)

dr2
+

2

r

d

dr
jl(rq)−

l(l + 1)

r2
jl(rq) + q2jl(rq) = 0 (2.57)
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satisfied by the spherical Bessel functions. These functions also have following complete-

ness and orthogonality relations:

2qq′

π

∫ ∞

0

r2drjl(rq)jl(rq
′) = δ(q − q′),

2rr′

π

∫ ∞

0

r2drjl(rq)jl(r
′q) = δ(r − r′). (2.58)

Using the relations (2.58), completeness and orthogonality relations for the spher-

ical functions

∫
dΩYlm(Ω)Y ∗

l′m′(Ω) = δll′δmm′ (2.59)

(dΩ = dn = sin θdθdϕ)∑
lm

Ylm(θϕ)Y ∗
lm(θ′ϕ′) =

δ(θ − θ′)δ(ϕ− ϕ′)

sin θ
(2.60)

we obtain the standard orthogonality and completeness relations for the plane waves

1

(2π)3

∫
eiq.re−iq.r′dq = δ(r− r′) (2.61)

1

(2π)3

∫
eiq.re−iq′.rdr = δ(q− q′). (2.62)

(See corresponding relativistic relations.)

2.3.2. Wave function expansion

If the potential of the field producing the scattering is spherically symmetric, we

can expand the solution of the Schrödinger equation with the potential

Ψq(r) =
∞∑
l=0

(2l + 1)ilfl(r, q)Pl

(
q.r
qr

)
. (2.63)

Hence, the functions fl(r, q) introduced here satisfies a similar differential equation with

previous one

d2fl(r, q)

dr2
+

2

r

d

dr
fl(r, q)−

l(l + 1)

r2
fl(r, q) + q2fl(r, q) = mV (r)fl(r, q). (2.64)
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which means that in the spherically symmetric potential case, the states corresponding to

different values of angular momentum take part independently in the scattering. We can

also write Lippmann-Schwinger type equation for fl(r, q)

fl(r, q) = jl(rq) +

∫ ∞

0

Glq(r, r
′)V (r′)r′2dr′ (2.65)

where Glq(r, r
′) is the partial wave Green’s function defined by

Gq(r, r′) =
1

4π

∞∑
l=0

(2l + 1)Glq(r, r
′)Pl

(
r.r’
rr′

)
, (2.66)

Glq(r, r
′) =

2

π

∫ ∞

0

jl(rk)jl(r
′k)

2Eq − 2Ek + iε
k2dk, (2.67)

and satisfies the equation

1

m

[
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

]
Glq(r, r

′) + 2EqGlq(r, r
′) =

1

r2
δ(r − r′). (2.68)

To prove this, let’s insert Eq = q2/2m and Ek = k2/2m into equation (2.67) where

q = |q| and k = |k|. Then we get the integral

Glq(r, r
′) =

2m

π

∫ ∞

0

jl(kr)jl(kr
′)

q2 − k2 + iε
k2dk (ε = εm). (2.69)

Now we can insert this integral into the equation (2.68)

d2

dr2

2

π

∫ ∞

0

jl(kr)jl(kr
′)

q2 − k2 + iε
k2dk +

2

r

d

dr

2

π

∫ ∞

0

jl(kr)jl(kr
′)

q2 − k2 + iε
k2dk−

l(l + 1)

r2

2

π

∫ ∞

0

jl(kr)jl(kr
′)

q2 − k2 + iε
k2dk + q2 1

π

∫ ∞

0

jl(kr)jl(kr
′)

q2 − k2 + iε
k2dk (2.70)

and perform the differentiation

2

π

∫ ∞

0

jl(r
′k)

q2 − k2 + iε

[
d2jl(kr)

dr2
+

2

r

d

dr
jl(kr)−

l(l + 1)

r2
jl(kr)

]
k2dk +

+
1

π

∫ ∞

0

jl(kr
′)

q2 − k2 + iε
q2jl(kr)k

2dk. (2.71)

By using the equation (2.57)and orthogonality relation (2.58), we can write

2

π

∫ ∞

0

jl(kr
′)

q2 − k2 + iε
(−k2 + q2)jl(kr)dk =

δ(r − r′)

r2
(2.72)
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and see that equation (2.68) holds.

Now, to determine the integral of partial wave Green’s function (2.69) we will

use the spherical Hankel functions (see Appendix A) of first and second kind, which are

defined respectively as

h
(1)
l (z) = jl(z) + inl(z)

h
(2)
l (z) = jl(z)− inl(z) (2.73)

and also have a relation

h
(1)
l (−z) = (−1)lh

(2)
l (z) h

(2)
l (−z) = (−1)lh

(1)
l (z). (2.74)

So we can write the integral (2.69) in terms of spherical Hankel functions as,

2m

π

1

4

∫ ∞

0

[h
(1)
l (kr) + h

(2)
l (kr)][h

(1)
l (kr′) + h

(2)
l (kr′)]

−k2 + q2
k2dk. (2.75)

By using equation (2.74) we get

m

2π

∫ ∞

0

[h
(1)
l (kr)− (−1)lh

(1)
l (−kr)][h(1)

l (kr′)− (−1)lh
(1)
l (−kr′)]

−k2 + q2
k2dk. (2.76)

After multiplying the terms and substituting k → −k we can separate the integral in the

following form,

m

2π

∫ ∞

−∞

h
(1)
l (kr)h

(1)
l (kr′)

−k2 + q2
k2dk + (−1)l

∫ ∞

−∞

h
(1)
l (kr)h

(1)
l (−kr′)

−k2 + q2
k2dk (2.77)

Now we can apply the Jordan’s lemma and Cauchy’s residue theorem to the both

integral by considering the behavior of the Hankel functions at r →∞ which are,

h
(1)
l (kr) ∼ 1

kr
ei(kr− l+1

2
π) (2.78)

h
(1)
l (kr)h

(1)
l (kr′) ∼ 1

k2rr′
ei(k(r+r′)−(l+1))π

h
(1)
l (kr)h

(1)
l (−kr′) ∼ 1

k2rr′
ei(k(r−r′)−(l+1))π.

In equation (2.77) we shift the poles of the integrand from the real axis as,

m

2π

∫ ∞

−∞

h
(1)
l (kr)h

(1)
l (kr′)

−k2 + q2 + iε
k2dk + (−1)l

∫ ∞

−∞

h
(1)
l (kr)h

(1)
l (−kr′)

−k2 + q2 + iε
k2dk (2.79)

and find the poles

k1 = q + iε

11



k2 = −q − iε.

In general Cauchy’s residue theorem defined as,

∮
C

f(z)dz = 2πiΣjRes(zj) (2.80)

where
∮

C
defines the closed contour in the complex z plane and Res(zj) is the residues

of the poles, zj .

To determine the integral, as a first step we choose a closed contour. Then we

apply the Cauchy’s residue theorem with the help of the Jordan’s lemma. Jordan’s lemma

states that; If CR is a closed semicircle in the upper half of the complex plane, then the

condition

lim
R→∞

(∫
CR

eiazf(z)dz

)
= 0 (2.81)

satisfies. Where lim|z|→∞ f(z) = 0.

Now we can turn back to integral (2.79). For the first integral, considering the

asymptotic values, for r + r′ > 0 and k > 0 we close the contour in the upper half plane.

For the second integral,

if r − r′ > 0 we close the contour in the upper half plane and,

if r − r′ < 0 we close the contour in the lower half plane.

Then we apply the Cauchy’s residue theorem for both cases.

For r − r′ > 0, for the first integral,

lim
ε→0

Res(q + iε) = lim
ε→0

m
2π
.2πi

(
h

(1)
l (kr)h

(1)
l (kr′)k2

−2k

)∣∣∣∣∣
k=q+iε


= −iqmh

(1)
l (qr)h

(1)
l (qr′)

2
(2.82)

and for the second integral

lim
ε→0

Res(q + iε) = lim
ε→0

m
2π
.2πi(−1)l

(
h

(1)
l (kr)h

(1)
l (−kr′)k2

−2k

)∣∣∣∣∣
k=+q+iε


= −iqm(−1)lh

(1)
l (qr)h

(1)
l (−qr′)
2

. (2.83)

For r − r′ < 0

lim
ε→0

Res(−q − iε) = lim
ε→0

[
m

2π
.2πi(−1)lh

(1)
l (−qr)h(1)

l (qr′)

2

]
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= −iqm(−1)lh
(1)
l (−qr)h(1)

l (qr′)

2
. (2.84)

With combining these results we can introduce here step function θ(r − r′) which is ,

θ(r − r′) =

 0 , r − r′ < 0

1 , r − r′ > 0
(2.85)

and arrange the equations as;

−iqm
[
h

(1)
l (qr)h

(1)
l (qr′)

2
+ (−1)lθ(r − r′)

h
(1)
l (qr)h

(1)
l (−qr′)
2

+

+(−1)lθ(r′ − r)
h

(1)
l (−qr)h(1)

l (qr′)

2

]
. (2.86)

As a conclusion by using the identities

h∗l (z) = (−1)lhl(−z) (2.87)

jl(z) =
1

2
[hl(z) + h∗l (z)]

we determine the radial Green’s function in the following form,

Glq(r, r
′) = −iqm[jl(qr)h

(1)
l (qr′)θ(r − r′)− jl(qr

′)h
(1)
l (qr)θ(r′ − r)]. (2.88)

Let us substitute this function into equation (2.68)

−iq d
dr

[
j′l(qr)h

(1)
l (qr′)θ(r − r′) + jl(qr

′)h
(1)
l (qr)θ(r − r′)

]
−

iq
d

dr

[
jl(qr)h

(1)
l (qr′)− jl(qr

′)h
(1)
l (qr)

]
δ(r′ − r)−

2iq

r

[
j′l(qr)h

(1)
l (qr′)θ(r − r′) + jl(qr

′)h
(1)
l (qr)θ(r − r′)

]
−

2iq

r

[
jl(qr)h

(1)
l (qr′)δ(r − r′)− jl(qr

′)h
(1)
l (qr)δ(r′ − r)

]
+

l(l + 1)

r2
iq[jl(qr)h

(1)
l (qr′)θ(r − r′)− jl(qr

′)h
(1)
l (qr)θ(r − r′)]−

iq3[jl(qr)h
(1)
l (qr′)θ(r − r′)− jl(qr

′)h
(1)
l (qr)θ(r − r′)]. (2.89)

In this equality we will cancel the δ(r− r′) terms, because of continuity of Green’s Func-

tion.
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Then;

−iqh(1)
l (qr′)

[
d2jl(rq)

dr2
+

2

r

d

dr
jl(rq)−

l(l + 1)

r2
jl(rq) + q2jl(rq)

]
θ(r − r′)−

iqjl(qr)

[
d2hl(rq)

dr2
+

2

r

d

dr
hl(rq)−

l(l + 1)

r2
hl(rq) + q2hl(rq)

]
θ(r − r′)−

iq
[
j′l(qr)h

(1)
l (qr′)− jl(qr

′)h′l
(1)(qr)

]
δ(r − r′)

=
δ(r − r′)

r2
. (2.90)

We convinced that equation (2.88) also is a solution of equation (2.68).
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CHAPTER 3

RELATIVISTIC Q.M. BASED ON THE CONCEPT OF

THE RELATIVISTIC CONFIGURATION SPACE

3.1. Lorentz Group Representations and Relativistic

Position Operator

In this section we expand the kernel of the Gelfand-Graev transformation in the

matrix elements of the unitary representations of the Lorentz group1. The Gelfand-Graev

transformation links the curved p space (Lobachevsky space) and a new relativistic con-

figuration space to each others.

Let us consider the hyperboloid

p2
0 − p2 = m2 (3.1)

which from the geometrical point of view realizes the three dimensional Lobachevsky

space.

We consider the Gelfand-Graev transformation (which was introduce by Gelfand,

Shapiro, Graev and other mathematicians) in a form

f(p) =
1

(2π)3

∫
ξ(p; n, r)f̃(r)dr (3.2)

f̃(r) =
1

(2π)3

∫
ξ∗(p; n, r)f̃(p)dΩp (3.3)

where f(p) is the function determined on the hyperboloid (3.1), f̃(r), is the function

determined in the relativistic configurational r-space. (r=rn)

In hyperpolar coordinates

p0 = m coshχ

p = m sinhχn

n =
p
|p|

= (sin θ cosφ, sin θ sinφ, cos θ)

(3.4)
1See Appendix C, D
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kernels of the Gelfand-Graev transformation on the hyperboloid (3.1) are

ξ(p; n, r) =

(
p0 − p.n

m

)−1−irm

. (3.5)

The parameter r appearing in the kernel of the Gelfand-Graev transformation

plays the main role in describing the new r space. Therefore, before the expansion, we try

to get more familiar to the parameter r. The Casimir operators of the Lorentz group are

x2 − 1

m2
L2

and

L.x

where L is the angular momentum operator, x is the coordinate operator in Lobachevsky

space.

The second Casimir operator L.x is identical to zero in the spinless case. Let the

eigenvalue of the first one be defined by

(x2 − 1

m2
L2)Ψ̃q(p) = (

1

m2
+ r2)Ψ̃q(p), 0 < r <∞ (3.6)

where Ψ̃q(p) is the relativistic wave function.

As is well known, the relation (3.6) selects the so called principal series of the

unitary representations of the Lorenz group. The functions ξ(p; n, r) used in the Gelfand-

Graev transformations are the matrix elements of these representations, thus, (3.6) con-

nects the square of the coordinate operator x to the parameter r.

Since, we are dealing with the quantity r2 instead of x2 in the relativistic case, we

should specify the relations between these two. First, let us find the non-relativistic limit

of the operator x2 − 1
m2 L2

lim
m→∞

x2 − 1

m2
L2 = lim

m→∞
x2, (3.7)

in virtue of (4.12)

lim
m→∞

x2 = − ∂2

∂p2
= ρ̂2 (3.8)

where ρ2 is the eigenvalue of the operator ρ̂2 which should be equal the non-relativistic

limit of the eigenvalue of the first Casimir operator of the Lorentz group and ρ is the radial

part of the non-relativistic coordinates. The non-relativistic limit of 1/m2 + r2 is

lim
m→∞

(1/m2 + r2) = r2 = ρ2 (3.9)
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Second, r2 with the eigenvalue r2 is the Casimir operator of the group of motions of

the curved p-space, just as ρ̂2 is the Casimir operator of the group of motions of the flat

p-space. Therefore, the range of r2 is independent of the angular quantum number l (com-

pare with the range of x2) and the entire relativistic formalism becomes very similar to the

non-relativistic one. If the parameter r plays the role of a relativistic distance, is it possible

to construct the vector r? In this connection let us consider the Gelfand-Graev transfor-

mation, which is expansion in relativistic spherical functions with generating functions

(relativistic plane waves) ξ(p; n, r) satisfies the following completeness and orthogonal-

ity conditions:

1

(2π)3

∫
ξ(p; n, r)ξ∗(p; n, r′)dΩp = δ(r− r′) (3.10)

r = rn, r′ = rn, dΩp =
dp√

1 + p2

m2

.

1

(2π)3

∫
ξ(p; n, r)ξ∗(p′; n, r) = δ(p(−)p′) = δ(p− p′)

√
1 +

p2

m2
. (3.11)

(Compare these formula with non-relativistic plane waves orthogonality and complete-

ness equations (2.61) and (2.62)).

Let’s find the non-relativistic limit (rm� 1 and χ� 1) of Gelfand-Graev trans-

formation. In this limit, one has

p = m sinhχ ∼= mχ

χ ∼=
p
m

p0

m
∼=
√

1 +
p2

m2
∼= 1 +

p2

2m2(
p0 − p.n

m

)−1−irm

∼= (1 +
p2

2m2
− p.n

m
)−1−irm

exp

[
ln(1 +

p2

2m2
− p.n

m
)−1−irm)

]
∼= exp

[
(−1− irm) ln(1 +

p2

2m2
− p.n

m
)

]
, (3.12)

ln(1 + x) = x− x2

2
+ ......
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for−1 < x ≤ 1,

exp

[
(−1− irm)(

p2

2m2
− p.n

n
)

]
∼= exp

[
−(

p2

2m2
+

p.n
m

)− irp2

2m
+ irp.n

]
,

∼= exp[ip.r].

The vector r = rn in ξ(p; n, r) appears as a variable canonically conjugated to the

momentum p. Therefore, the unit vector n = (sin θ cosφ, sin θ sinφ, cos θ) is exactly the

angular part which we wanted to find. From the four dimensional point of view n is the

space part of the isotropic 4-vector

n = (1,n). (3.13)

Therefore, the modulus of the radius vector r is a relativistic invariant, and its

direction is transformed as the three-dimensional part of (3.13)2.

3.2. Relativistic Plane Wave Partial Expansion

Now, we can determine the expansion. Since, the Lorentz group has the rotation

group O3 as a sub-group and since, the Legendre functions are the matrix elements of

2l + 1 dimensional unitary representation of the group O3 in spherical coordinates, it is

possible to expand the Gelfand-Graev functions in terms of the Legendre functions in the

same coordinate system.

The coefficients of the expansion can be found by a similar integration of the one

in the non-relativistic quantum mechanics. In this case we substitute x = p.n/pn where

n = 1 into the Gelfand-Graev function and proceed as the following:

(
p0 − px

m

)−1−irm

=
∞∑
l=0

al(p0, p)Pl(x) (3.14)

2

2l + 1
al(p0, p) =

∫ 1

−1

(
p0 − px

m

)−1−irm

Pl(x)dx (3.15)

Thus;

al(po, p) =
2l + 1

2

∫ 1

−1

(
p0 − px

m

)−1−irm
l

2l.l!

dl

dxl
(1− x2)ldx

=
2l + 1

2

∫ 1

−1

(
p0 − px

m

)−1−irm
l

2l.l!
d(
dl−1

dxl−1
(1− x2)l)

2Note that r does not transform as the spatial component of o four vector
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=
2l + 1

2

l

2l.l!

[(
p0 − px

m

)−1−irm
dl−1

dxl−1
(x2 − 1)l

]1

−1

−2l + 1

2

l

2l.l!

[∫ 1

−1

[
dl−1

dxl−1
(x2 − 1)l

]
d

(
p0 − px

m

)−1−irm
]

(3.16)

We get,

al(po, p) = −2l + 1

2

l

2l.l!

∫ 1

−1

(−1− irm)(−p/m)

(
p0 − px

m

)−1−irm
dl−1

dxl−1
(x2 − 1)ldx

=
2l + 1

2

l

2l.l!
(p/m)l Γ(1 + irm+ l)

Γ(1 + irm)

∫ 1

−1

(
p0 − px

m

)−1−irm−l

(x2 − 1)ldx. (3.17)

By taking the following formulas into the consideration

Γ(z + n)

Γ(z)
= z(z + 1)(z + 2)...(z + n− 1), (3.18)

P µ
ν (z) =

π−1/22µ(z2 − 1)−µ/2

Γ(1/2− µ)

∫ π

0

[z + (z2 − 1)1/2 cos t]ν+µ(sin t)−2µdt, (3.19)

and substituting the equalities z = p0/m, (z2 − 1)1/2 = p/m, x = cos t, µ = −l − 1/2

and ν = −irm− 1/2 into the equation (3.17), it can be written as

al(po, p) = (2l + 1)

√
π

2 sinhχ

Γ(1 + irm+ l)

Γ(1 + irm)
P
−l−1/2
−irm−1/2(coshχ) (3.20)

where we’ve used the hyperpolar coordinates (3.4) for p0/m = coshχ and p/m = sinhχ.

So, the expansion of the Gelfand-Graev function in terms of the generalized associated

Legendre function is

ξ(p; n, r) =

√
π

2 sinhχ

∞∑
l=o

(2l + 1)
Γ(1 + irm+ l)

Γ(1 + irm)
P
−l−1/2
−irm−1/2(coshχ)Pl

(
p.n

pn

)

=
∞∑
l=o

il(2l + 1)pl(coshχ, r)Pl

(
p.n

pn

)
. (3.21)

ξ∗(p; n, r) =
∞∑
l=o

(−i)l(2l + 1)p∗l (coshχ, r)Pl

(
p.n

pn

)
. (3.22)

or by other words the Kernel of the Gelfand-Graev transformation (the relativistic

plane wave) ξ(p; n, r) is the generating function for the relativistic spherical functions

pl(coshχ, r).
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In the non-relativistic limit rm � 1 and χ� 1,

pl(coshχ, r) =
∞∑
l=o

(−i)l

√
π

2 sinhχ

Γ(1 + irm+ l)

Γ(1 + irm)
P
−l−1/2
−irm−1/2(coshχ) → jl(qr) (3.23)

p∗l (coshχ, r) =
∞∑
l=o

(i)l

√
π

2 sinhχ

Γ(1− irm+ l)

Γ(1− irm)
P
−l−1/2
−irm−1/2(coshχ) → jl(qr) (3.24)

The functions pl(coshχ, r), like the spherical Bessel functions jl(qr), can be ex-

pressed in terms of elementary functions:

p0(coshχ, r) =
sin(rmχ)

rm sinhχ
,

pl(coshχ, r) =
ilΓ(−irm+ l)

Γ(−irm+ l + 1)
(sinhχ)l

(
d

d coshχ

)l

p0(coshχ, r). (3.25)

The analogues of the relations (2.58) can be obtained as

2 sinhχ sinhχ′

π
m3

∫ ∞

0

r2drpl(coshχ, r)p∗l (coshχ′, r) = δ(χ− χ′)

2rr′

π
m3

∫ ∞

0

sinhχ2dχpl(coshχ, r)p∗l (coshχ, r′) = δ(r − r′). (3.26)

Further, in complete analogy with (2.66) and (2.67) we have

Gp =
1

4π
Σ∞

l=0(2l + 1)Glp(r, r
′)Pl

(
r, r′

r, r′

)
,

Glp(r, r
′) =

2m2

π

∫ ∞

0

pl(coshχ, r)p∗l (coshχ, r′) sinhχ2dχ

2 coshχp − 2 coshχ+ iε
. (3.27)
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3.3. Relativistic Differential Difference Schrödinger Equation

Now, we are ready to write the relativistic relations in configuration space. Defin-

ing the Green’ s function Gp(r; r′)

Gp(r; r′) =
1

(2π)3

∫
ξ(k; n, r)

dΩk

2Ep − 2Ek + iε
ξ∗(k; n′, r′) (3.28)

we can write an integral equation for the wave function Ψp(r) in relativistic configuration

space:

Ψp(r) = ξ(p; n, r) +

∫
Gp(r; r′)V (r′;Ep)Ψp(r′)dr′. (3.29)

When we want to write the corresponding differential equation, we can use the

following recursion formulae for the generalized associated Legendre functions :

(2ν + 1)zP µ
ν (z) = (ν − µ+ 1)P µ

ν+1(z) + (ν + µ)P µ
ν−1(z). (3.30)

For values

µ→ −l − 1/2

ν → −irm− 1/2

we construct the P µ
ν+1(z) and P µ

−ν−1(z) as;

P µ
ν+1(z) = P

−l−1/2
irm−1/2+1(z) = P µ

i(rm−i)−1/2(z) = e−i d
drP

−(l+1/2)
irm+1/2 (z) = e−i d

drP µ
ν (z) (3.31)

P µ
ν−1(z) = P

−l−1/2
irm−1/2−1(z) = P µ

i(rm+i)−1/2(z) = e−i d
drP

−(l+1/2)
irm−1/2 (z) = e−i d

drP µ
ν (z).

(3.32)

In equations (3.31) and (3.32) the terms e±i d
dr are the finite difference opera-

tors(see chapter 4.3). To see how these operators act to any function f(r), we use the

Taylor series expansion of e±i d
dr which is

ei d
dr =

(
1 + i

d

dr
+
i2

2!

d2

dr2
+ ...+

in

n!

dn

drn
+ ...

)
=

∞∑
n=0

1

n!
in
(
d

dr

)n

. (3.33)

For the function f(r) this expression becomes

ei d
dr f(r) =

(
f(r) + i

df(r)

dr
+
i2

2!

d2f(r)

dr2
+ ...+

in

n!

dnf(r)

drn
+ ...

)
(3.34)
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ei d
dr f(r) = f(r + i). (3.35)

Correspondingly

cosh i
d

dr
f(r) =

ei d
dr + e−i d

dr

2
f(r) (3.36)

=
f(r + i) + f(r − i)

2
(3.37)

sinh i
d

dr
f(r) =

ei d
dr − e−i d

dr

2
f(r) (3.38)

=
f(r + i)− f(r − i)

2
. (3.39)

Then with the equation (3.31) and (3.32), recursion relation (3.30) can be written in the

form

−2ir. coshχ.P
−l−1/2
−irm−1/2(coshχ) =

= (−irm+l+1)e−i d
drP

−l−1/2
−irm−1/2(coshχ)+(−irm−l−1)ei d

drP
−l−1/2
−irm−1/2(coshχ). (3.40)

From equation (3.23) we can also construct the following relations

e−i d
drP

−l−1/2
−irm−1/2(coshχ) = (−i)−l

√
2 sinhχ

π

Γ(irm+ 2)

Γ(irm+ l + 2)
e−i d

dr pl(coshχ, r) (3.41)

ei d
drP

−l−1/2
−irm−1/2(coshχ) = (−i)−l

√
2 sinhχ

π

Γ(irm)

Γ(irm+ l + 1)
ei d

dr pl(coshχ, r). (3.42)

And if we insert them into formulae (3.40), we get[
2irm coshχ

Γ(irm+ 1)

Γ(irm+ l + 1)
− (irm+ l + 1)

Γ(irm+ 2)

Γ(irm+ l + 2)
e−i d

dr +

+(irm− l − 1)
Γ(irm)

Γ(irm+ l)
e−i d

dr

]
pl(coshχ, r). (3.43)

With these constructions, it is easy to see that the function pl(coshχ, r) introduced

in (3.23) satisfy the following differential equation :[
2m coshχq − 2m cosh

(
i
1

m

d

dr

)
− 2i

r
sinh

(
i
1

m

d

dr

)
− l(l + 1)

mr2
exp

[
i
1

m

d

dr

]]
×

× pl(coshχ, r) = 0 (3.44)

From here, taking into account (3.21), we obtain the finite-difference analogue of

the free Schröndinger equation in the relativistic domain

(2Ep −H0)ξ(p; n, r) =
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=

[
2Ep − 2m cosh

(
i
1

m

∂

∂r

)
− 2i

r
sinh

(
i
1

m

∂

∂r

)
+

∆θ,ϕ

mr2
exp

[
i
1

m

∂

∂r

]]
.ξ(p; n, r) = 0.

(3.45)

In the non-relativistic limit, using the Taylor expansion of the functions

cosh

(
i
1

m

∂

∂r

)
=
ei 1

m
∂
∂r + e−i 1

m
∂
∂r

2
≈

(2− 1
m2 (

∂
∂r

)2 + ...)

2

sinh

(
i
1

m

∂

∂r

)
=
ei 1

m
∂
∂r − e−i 1

m
∂
∂r

2
≈

(2i 1
m

∂
∂r

+ ...)

2
(3.46)

and considering the non-relativistic analogue of energy term,

E

c
= p0 =

√
m2c2 + p2 = mc(1 +

1

2

p2

m2c2
+ ...) (3.47)

equation (3.45) obviously reduces to (2.54). From the derivation of (3.44) and (3.45)

it is clear that these equations are recursion relations for the functions pl(coshχ, r) and

ξ(q; n, r). For instance, (3.45) may be written in the form

H0ξ(p; n, r) =

m

[
((1 +

1

mr
)ξ(p; n, r +

i

m
) + (1− 1

mr
)ξ(p; n, r − i

m
)− ∆θ,ϕ

mr2
ξ(p; n, r +

i

m
)

]
= Epξ(p; n, r). (3.48)

The function ξ∗(p; n, r) also satisfies (3.44) and(3.45) . We shall write down two more

equations, without explanations since their analogy with the non-relativistic formalism is

quite evident.

a ) The Schröndinger equation with quasi-potential

[
2Ep − 2m cosh

(
i
1

m

∂

∂r

)
− 2i

r
sinh

(
i
1

m

∂

∂r

)
+

∆θ,ϕ

mr2
exp

[
i
1

m

∂

∂r

]]
Ψp(r)

= V (r;Ep)Ψp(r), (3.49)

b ) The equation for the partial wave Green’ s function (3.27)[
−2m cosh

(
i
1

m

d

dr

)
− 2i

r
sinh

(
i
1

m

d

dr

)
− l(l + 1)

mr2
exp

[
i
1

m

d

dr

]]
.Glp(r, r

′)+

+2EpGlp(r, r
′) =

1

r2
δ(r − r′). (3.50)
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The recursion form of these relations must not be discouraging since the recursion

formulae are often as the differential equations for defining the functions.

We continue our consideration to the case of spherically symmetric real potential.

Equation for the radial wave function is;

[
Hr

0 − 2E + Ṽ (r)] ψql(r) = 0, (3.51)

where

Hr
0 = 2 cosh(i

d

dr
) +

l(l + 1)

r(r + 1)
ei d

dr . (3.52)

The free solutions of equation (3.51) are analogues of spherical Bessel, Neumann

and Hankel functions (see Appendix A) which appear in the non-relativistic partial-wave

analysis. They defined as;3

sl(r, χ) =

√
π sinhχ

2
(−1)l+1(−r)(l+1)P

−l− 1
2

ir− 1
2

(coshχ) (3.53)

cl(r, χ) = s−l−1(r, χ) =

√
π sinhχ

2
(−r)(−l)P

l+ 1
2

ir− 1
2

(coshχ) (3.54)

e
(1,2)
l (r, χ) =

√
2 sinhχ

π
(−1)l+1(−r)(l+1)Q

−l− 1
2

ir− 1
2

(coshχ) (3.55)

e
(1,2)
l = cl ± isl

where E = coshχ, r(λ) is the ”generalized degree”which is defined as;

r(λ) = iλ
Γ(−ir + λ)

Γ(−ir)
(3.56)

and P µ
ν (coshχ) and Qµ

ν (coshχ)are the Legendre functions of first and second kinds.

Remembering that the equation (3.23) we see that we can write the following

relation

sl(r, χ) = r sinhχpl(coshχ, r). (3.57)

Then, as an analogue of the equation (3.26), function sl(r, χ) satisfies the follow-

ing completeness and orthogonality relations

2

π

∫
drsl(r, χ)s∗l (r, χ

′) = δ(χ− χ′) (3.58)

3we will use the unit system in which ~ = m = c = 1
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2

π

∫
drsl(r, χ)sl(r

′, χ) = δ(r − r′). (3.59)

Now let us insert the function sl(r, χ) into equation (3.52)

Hr
0sl(r, χ) =

(
2 cosh(i

d

dr
) +

l(l + 1)

r(2)
ei d

dr

)
sl(r, χ) (3.60)

By using the definition of cosh(i d
dr

) we can write the equation as;

Hr
0sl(r, χ) =

[
ei d

dr sl(r, χ) + e−i d
dr sl(r, χ) +

l(l + 1)

r(2)
ei d

dr sl(r, χ)

]
and inserting the definition of the function sl(r, χ) into previous equation,

√
π sinhχ

2
(−1)l+1i(l+1)

[
ei d

dr
Γ(ir + l + 1)

Γ(ir)
P
−l− 1

2

ir− 1
2

(coshχ)+e−i d
dr

Γ(ir + l + 1)

Γ(ir)
P
−l− 1

2

ir− 1
2

(coshχ)+

+
l(l + 1)

r(r + i)
ei d

dr
Γ(ir + l + 1)

Γ(ir)
P
−l− 1

2

ir− 1
2

(coshχ)

]

=

√
π sinhχ

2
(−1)l+1 i(l+1)

[
Γ(ir + l)

Γ(ir − 1)
P
−l− 1

2

ir− 3
2

(coshχ) +
Γ(ir + l + 2)

Γ(ir + 1)
P
−l− 1

2

ir+ 1
2

(coshχ)+

+
l(l + 1)

r(r + i)

Γ(ir + l)

Γ(ir − 1)
P
−l− 1

2

ir− 3
2

(coshχ)

]
we get;√

π sinhχ

2
(−1)l+1i(l+1) 1

ir

[
(ir − l − 1)P

−l− 1
2

ir− 3
2

(coshχ) + (ir + l + 1)P
−l− 1

2

ir+ 1
2

(coshχ)
]

(3.61)

Now recall the recursion formulae (3.30) for the Legendre functions which can be

written,

(2ir) coshχP
−l− 1

2

ir− 1
2

(coshχ) = (ir + l + 1)P
−l− 1

2

ir+ 1
2

(coshχ) + (ir − l − 1)P
−l− 1

2

ir− 3
2

(coshχ)

(3.62)

then we see that with (3.61) following equation holds

Hr
0sl(r, χ) ≡

(
2 cosh(i

d

dr
) +

l(l + 1)

r(2)
ei d

dr

)
sl(r, χ) = 2Esl(r, χ). (3.63)
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We can also consider the asymptotic behavior of the functions (3.53), (3.54) and

(3.55) when r →∞ which are given by

sl(r, χ) ∼ sin(rχ− 1

2
lπ) (3.64)

cl(r, χ) ∼ cos(rχ− 1

2
lπ) (3.65)

e
(1,2)
l (r, χ) ∼ e±i(rχ− 1

2
lπ). (3.66)

The functions sl, cl, e
(1)
l and e(2)l are all two-by-two linearly independent. It is

known that two solutions of a second order finite difference equation are linearly inde-

pendent4 iff

W (φ1, φ2) 6= 0, (3.67)

where W (φ1, φ2) is the ”Wronskian”

W (φ1, φ2) =

∣∣∣∣∣∣ φ1 φ2

∆φ1 ∆φ2

∣∣∣∣∣∣ (3.68)

and

∆ =
e−id/dr − 1

−i
(3.69)

is the finite difference ”derivative” operator.

It can be shown that

W [sl(r, χ), cl(r, χ)] =
1

2i
W [e

(1)
l (r, χ), e

(2)
l (r, χ)] (3.70)

= sinhχ(−1)l (−r)(l+1)

(r)(l+1)
. (3.71)

We can also consider the non-relativistic limit of these functions. First let us give

the definition of Legendre function in terms of hypergeometric series.

P µ
ν (z) =

(z + 1)
−1
2

µ(z − 1)
1
2
µ

Γ(1− µ)
F (−ν, 1 + ν; 1− µ;

1− z

2
) (3.72)

which is with suitable indices takes the form,

P
−l− 1

2

ir+ 1
2

(coshχ) =
(coshχ+ 1)

−1
2

µ(coshχ− 1)
1
2
µ

Γ(l + 3
2
)

∞∑
n=0

(−ir + 1
2
)n(ir + 1

2
)n

(l + 3
2
)n

1

n!

(
1− coshχ

2

)n

.

(3.73)

where (z)n = Γ(z + n)/Γ(z).

4see Appendix A
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Now we insert the relation (3.73) into function sl(r, χ) and get,

sl(r, χ) =

√
π sinhχ

2
(−1)l+1(i)l+1 Γ(ir + l + 1)

Γ(ir)
×

×(coshχ+ 1)
−1
2

µ(coshχ− 1)
1
2
µ

Γ(−l + 1
2
)

∞∑
n=0

(−ir − 1
2
)n(ir + 3

2
)n

(−l + 1
2
)

1

n!

(
1− coshχ

2

)n

.

So in the non-relativistic limit, for χ� 1 , r � 1;

sl(r, χ) −→
√
πpr

2
Jl+ 1

2
(pr). (3.74)

If we do the same calculation for the function cl(r, χ) and e(1,2)
l (r, χ) we find the following

relations

cl(r, χ) −→ −
√
πpr

2
Nl+ 1

2
(pr) (3.75)

e
(1,2)
l (r, χ) −→ ±i

√
πrq

2
H

(1,2)

l+ 1
2

(pr) (3.76)

where Jl+ 1
2
(pr), Nl+ 1

2
(pr) and H

(1,2)

l+ 1
2

(pr) are spherical Bessel, Neumann and Hankel

functions respectively.

Arbitrary Green’s function of equation (3.51) can be obtained if a solution of the

homogeneous equation, i.e., linear combination of (3.53), (3.54) with coefficients in gen-

eral depending on r′, is added to Gl(r, r
′;Eq). We introduce now a Green’s function

Gl(r, r
′;Eq) =

sl(r, χ)cl(r
′, χ)− cl(r, χ)sl(r

′, χ)

W [sl(r′, χ), cl(r′, χ)]
θ̂(r − r′) (3.77)

which satisfies the equation

(H0 − 2Eq)Gl(r, r
′;Eq) =

[
2 coshχ− 2 cosh(i

d

dr
)− l(l + 1)

r(2)
ei d

dr

]
Gl(r, r

′;Eq)

= δ(r − r′). (3.78)

To show that the previous equality holds, let’s write the terms explicitly. By using

the finite difference derivative operator (3.69) we can write

cosh(i
d

dr
) =

1

2i
(∆−∆∗) + 1 (3.79)

and inserting into equation (3.78) we get
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cl(r
′, χ)

W [sl(r′, χ), cl(r′, χ)]

[
2 coshχ+ (∆−∆∗)− 2− l(l + 1)

r(2)
ei d

dr

]
sl(r, χ)θ̂(r − r′)

+
sl(r

′, χ)

W [sl(r′, χ), cl(r′, χ)]

[
2 coshχ+ (∆−∆∗)− 2− l(l + 1)

r(2)
ei d

dr

]
cl(r, χ)θ̂(r − r′).

(3.80)

Now we need to determine the relation when the finite difference derivative operator

(3.69) acts to the multiplication of two functions. For given functions f(r) and g(r)

we have

∆(f(r)g(r)) = i(ei d
dr − 1)(f(r)g(r)) = i(ei d

dr f(r)g(r)− f(r)g(r)) (3.81)

= i(f(r − i)g(r − i)− f(r)g(r)). (3.82)

When we write the expression f(r − i) as

f(r − i) = f(r)− i∆f(r) (3.83)

and the same for g(r − i), then we have the following relation

∆(f(r)g(r)) = f(r)∆g(r)− g(r)∆f(r)− i(∆f(r))(∆g(r)). (3.84)

We can also determine the similar relation for ∆∗(f(r)g(r)) which is

∆∗(f(r)g(r)) = f(r)∆∗g(r)− g(r)∆∗f(r) + i(∆∗f(r))(∆∗g(r)). (3.85)

By using the equations (3.84), (3.85) and the following relations (see chapter 4.3)

∆θ(r − r′) = δ(r − r′) and ei d
dr ∆ = ∆∗ (3.86)

(3.87)

we can arrange our equation as,

1

W [sl(r′, χ), cl(r′, χ)]

[
cl(r

′, χ)ei d
dr sl(r, χ)− isl(r

′, χ)ei d
dr cl(r, χ)

]
δ(r − r′)+

−
[

icl(r
′, χ)

W [sl(r′, χ), cl(r′, χ)]
(ei d

dr +
l(l + 1)

r(2)
ei d

dr )sl(r, χ)

]
ei d

dr δ(r − r′)+

+

[
isl(r

′, χ)

W [sl(r′, χ), cl(r′, χ)]
(ei d

dr +
l(l + 1)

r(2)
ei d

dr )cl(r, χ)

]
ei d

dr δ(r − r′). (3.88)
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From definition of δ(r − r′) function we consider the case r − r′ = 0. So the the second

and the third terms give no input in integration over real r’s and must be omitted. Then

from equation (3.68) and (3.69) we have,

W [sl(r
′, χ), cl(r

′, χ)] = sl(r
′, χ)∆cl(r

′, χ)− cl(r
′, χ)∆sl(r

′, χ)

= isl(r
′, χ)e−i d

dr cl(r
′, χ)− icl(r

′, χ)e−i d
dr sl(r

′, χ). (3.89)

which is the relation in the first bracket in equation (3.88). So we get

1

W [sl(r′, χ), cl(r′, χ)]

[
cl(r

′, χ)ei d
dr sl(r, χ)− isl(r

′, χ)ei d
dr cl(r, χ)

]
δ(r − r′)

= δ(r − r′). (3.90)

and convinced that equality (3.78) holds.

Then, it is possible to write the following integral equation

ψql(r) = A(r)sl(r, χ) +B(r)cl(r, χ)−
∫ ∞

0

Gl(r, r
′;Eq) ˜V (r′)ψql(r

′)dr′, (3.91)

which is a direct generalization of the corresponding non-relativistic equation (2.20). In

equation (3.91) A(r) and B(r) are i periodic functions

e±i d
drA(r) = A(r + i) = A(r) (3.92)

e±i d
drB(r) = B(r + i) = B(r) (3.93)

which play the role of constants in the finite-difference calculus.
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CHAPTER 4

RELATIVISTIC 2-BODY PROBLEM AND

RELATIVISTIC SCATTERING THEORY

4.1. General Theory

Although in the relativistic quantum mechanics, as in the non-relativistic one, the

two body problem can be reduced to the problem of the behavior of one relativistic particle

in a quasi-potential field within the framework of quasi potential approach.

The quasi-potential approach is a diagram technique in the old fashioned (non-

covariant) perturbation theory. It is a rearrangement of the ordinary Feynman diagrams.

This technique allows us to write a Lippmann-Schwinger type, on mass-shell equation

with a quasi potential field for the scattering of two relativistic particles, in the center of

mass frame of these particles. The specific features of such a quasi-potential equation are:

a) it is a three-dimensional equation,

b) all quantities in it are defined in the Lobachevsky space modelled by the hyper-

boloid p2
0 − p2 = m2 (the mass shell of the particle of mass m)

c) it is satisfied order by order by the Feynman perturbation expansion of the

scattering amplitude,

d) for a hermitian potential it implies the elastic unitarity condition.

The derivation of these features of the quasi-potential equations is not the theme

of this thesis.

In this thesis, we shall use the following quasi-potential equation to develop our

own considerations (we recall that p, q, k, ... denote the spatial part of the 4-vectors

belonging to the hyperboloid (3.1)):

A(p, q) = −m

4π
Ṽ (p, q;Eq) +

1

(2π)3

∫
Ṽ (p, k;Eq)

dk√
1 + k2/m2

A(k, q)
2Eq − 2Ek + iε

.

(4.1)

All variables in this equation are in the center of mass frame and the masses

of the relativistic particles are considered to be identical and equal to m. The quantity
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Ṽ (p,q;Eq) called quasi-potential is in general a complex function of momenta and of

energy and in the weak coupling case it can be constructed with the help of perturbation

theory.

Each of the p and k denotes the relative three-momenta of the particles with re-

spect to each others in the center of mass frame. A(p,q) is the relativistic scattering

amplitude and Eq and Ek are the relativistic energies Eq =
√

q2 +m2, Ek =
√

k2 +m2.

When we compare the Lippmann-Schwinger equation (4.1) and (2.28) of the rel-

ativistic and non-relativistic quantum mechanics, we can see that if we take the geomet-

rical relations (the volume elements and the energies), which are different in relativistic

and non-relativistic cases, out of these equations they become indistinguishable by their

forms. This means that their dynamical features are the same but their geometrical rela-

tions are different. Therefore, to get the analogues of the relations listed in the section 2,

it is enough to study on the geometry of the space of the relativistic Lippman-Schwinger

equation which is the Lobachevsky space.

To study the Lobachevsky geometry we should parametrize it. To parametrize

the Lobachevsky space, it is useful to project the hyperboloid (3.1) on some Euclidean

hyperplane and to assign to the points (3.1) the Cartesian coordinate of their projections.

If we project the hyperboloid from the point (∞, 0) onto the hyperplane k0 = 0, the entire

three dimensional k-space will be a model of the Lobachevsky space with metric

ds2 =
(k.dk)2

m2 + k2 − dk2 = gijdkidkj (4.2)

and volume element

dΩk =
√
g(k)dk =

dk√
1 + k2/m2

(4.3)

where g(k) is the determinant of the metric gij . Thus, we can study the Lobachevsky

space as the momentum space of a spinless relativistic particle with the metric (4.2)

Now, we want to define the operators of the angular momentum L and the coor-

dinate x in Lobachevsky space. Let Ψ(p) be the wave function of a particle with spin 0,

mass m and momentum p, which is a vector in Lobachevsky space. The group of motions

of Lobachevsky space-the Lorentz group-contains O3 as a sub-group and the operator L

has the ordinary form
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Lk =
1

i
εklmpl

∂

∂pm

(4.4)

In the non-relativistic theory, the coordinates x are generators of translations in the

Euclidean p-space. In the curved p-space the boosts Λk play the role of translations and

we could try to introduce the operators x as generators of these transformations. A boost

Λ(χ) in the direction pl is

Λ(χ) =


coshχ sinhχ 0 0

sinhχ coshχ 0 0

0 0 1 0

0 0 0 1

 (4.5)

It contains a single real parameter χ and value of χ in the range

−∞ < χ < ∞ corresponds to a different transformation Λ(χ). The transformed vector

p′ is given by

p′ = Λ(χ)p = (p0 coshχ+ p1 sinhχ, p1 coshχ+ p0 sinhχ, p2, p3) (4.6)

We may clearly define a similar boost transformation in an arbitrary direction

defined by a unit three-vector k̂:

p′ = p + k̂[(coshχ− 1)p.k̂ + p0 sinhχ], (4.7)

p′0 = p0 coshχ+ k̂.p sinhχ. (4.8)

If we use the following ” spherical ” co-ordinates for the curved momentum space

k0 = m coshχ

k1 = m sinhχ sin θ cosϕ

k2 = m sinhχ sin θ sinϕ

k3 = m sinhχ cos θ (4.9)

where the range of the variables are −∞ < χ <∞, 0 < θ < π and

0 < ϕ < 2π, the equation (4.7) can be written as
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p′ = Λkp = p(+)k = p + k

[√
1 + p2/m2 +

p.k
m2[1 +

√
1 + k2/m2]

]
(4.10)

For the infinitesimal momentum dk the transformation (4.10) becomes

p′ = p +
√

1 + p2/m2dk (4.11)

and we can introduce the operator x as

x = i
√

1 + p2/m2
∂

∂p
. (4.12)

Although the operator (4.12) is hermitian in the metric

(Ψ,Φ) =

∫
Ψ∗(p)Φ(p)

dp√
1 + p2/m2

, (4.13)

since it components do not commute amongst themselves and cannot be reduced to di-

agonal form simultaneously, the transformations (4.10) do not form a group, in contrast

to the Euclidean shifts. However, being elements of the Lorentz group they have certain

group theoretical properties. In particular,

p(+)0 = p and p(−)p = 0 (4.14)

0(+)k = k and [p(+)k](−)k = p (4.15)

where

p(−)k = p− k

[√
1 + p2/m2 − p.k

m2[1 +
√

1 + k2/m2]

]
. (4.16)

Evidently the volume element (4.3) is invariant with respect to the transformation

(4.10). Thus, we have

dΩk(+)q = dΩp. (4.17)

This property of dΩk allows a convolution to be defined for functions on

Lobachevsky space:

Ψ1(p) ∗Ψ2(p) =

∫
dΩkΨ1(k)Ψ2(−k(+)p). (4.18)

It is evident that
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Ψ1(p) ∗Ψ2(p) = Ψ2(p) ∗Ψ1(p) (4.19)

Putting Ψ1(p) = δ(3)(p) and Ψ2(p) = Ψ(p) in (4.18) and taking into account

(4.14) and (4.19), we obtain

δ(p) = Ψ(p) =
√
g(0)Ψ(p) =

∫
δ(3)(k(−)p)Ψ(k)dΩk (4.20)

Hence,

δ(3)(k(−)p) =
δ(3)(k - p)√

g(k)
=
√

1 + k2/m2δ(3)(k - p). (4.21)

Now, we are ready to write the analogues of the corresponding non-relativistic

relations. First, in the case of a real quasi-potential, from (4.1) follows a relation which

coincides exactly with the non-relativistic unitarity condition (2.33):

ImA(p, q) =
|q|
4π

∫
A(p, k)A∗(k, q)dwk (4.22)

where Ep = Eq = Ek. The relativistic wave function of the continuous spectrum ( See

the equations (2.34) and (4.21)) can be introduced as

Ψ̃q(p) = (2π)3δ(3)(p(-)q)− 4π

m

A(p, q)
Eq − 2Ep + iε

. (4.23)

Using the Gelfand-Graev transformations(3.2) and (3.3) for the quasi-potential

V (p;Eq) and applying the addition theorem for ξ(p; n, r) function

∫
ξ∗(p(−)k; n, r)dwn =

∫
ξ∗(p; n, r)ξ(k; n, r)dwn (4.24)

dwn = sin θdθdϕ, (4.25)

we can generalize the equation (2.23) in an evident way:

A(p, q) = −m

4π

∫
ξ∗(p; n, r)V (r;Eq)Ψq(r)dr (4.26)

= −m

4π

1

(2π)3

∫
Ṽ (p(−)k;Eq)Ψ̃q(k)dΩk. (4.27)

Then, we can obtain the following relativistic Schrödinger equation for the quan-

tity Ψ̃q(p)( compare with (2.35) and (2.36)):
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Ψ̃q(p) = (2π)3δ(3)(p(−)q)+
1

(2π)3

1

2Eq − 2Ep + iε

∫
Ṽ (p(−)k;Eq)Ψ̃q(k)dΩk, (4.28)

(2Eq − 2Ep)Ψ̃q(p) =
1

(2π)3

∫
Ṽ (p(−)k;Eq)Ψ̃q(k)dΩk, (4.29)

In the spherically symmetric potential case we have, in addition

Ṽ (p(−)k;Eq) = Ṽ ((p(−)k)2;Eq) (4.30)

=

∫
ξ∗(p; n, r)V (r, Eq)ξ ∗ (k; n, r)dr

=

∫
r2drV (r, Eq)

∫
ξ∗(p; n , r)ξ(k; n, r)dwn (4.31)

4.2. Evaluation of Green Function

In this chapter we will analyze the one dimensional Green’s function for the rel-

ativistic case by using finite difference Schrödinger equation. With the potential V (x),

finite difference Schröndinger equation defined as;[
cosh i

d

dx
− coshχ

]
ψ(x) = −V (x)ψ(x). (4.32)

and Green’s function is defined as a solution of the equation[
cosh i

d

dx
− coshχ

]
G(x− x′, χ) = −δ(x− x′). (4.33)

So, if we determine solution of the previous equation, then we can write the Schrödinger

equation in a form of integral equation as,

ψ(x) = eixχ +

∫ ∞

−∞
G(x− x′, χ)V (x′)ψ(x′)dx′. (4.34)

Let’s define δ function in relativistic configuration space in the following form;

δ(x− x′) =
1

2π

∫ ∞

−∞
eiα(x−x′)dα (4.35)

then the Fourier integral representation of Green’s function can be written as

G(x− x′, χ) =
1

2π

∫ ∞

−∞
g(α, χ)eiα(x−x′)dα. (4.36)
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Inserting the equation (4.36) into equation (4.32)(
ei d

dx − e−i d
dx − coshχ

)
G(x− x′, χ) = −δ(x− x′) (4.37)

1

2π

∫ ∞

−∞

(
ei d

dx − e−i d
dx − coshχ

)
g(α, χ)eiα(x−x′)dα = −δ(x− x′) (4.38)

=
1

2π

∫ ∞

−∞
g(α, χ)(2 coshα− coshχ)eiα(x−x′)dα = − 1

2π

∫ ∞

−∞
eiα(x−x′)dα (4.39)

then we get

g(α, χ) =
1

coshχ− coshα
. (4.40)

Substituting equation (4.40) into equation (4.36) we can find the integral representation

of Green’s function, which is

G(x− x′, χ) =
1

2π

∫ ∞

−∞

eiα(x−x′)

coshχ− coshα
dα (4.41)

In analogy with the non-relativistic scattering theory formalism we can shift the

poles as

χ→ χ+ iε (4.42)

and by using x−x′ = x for simplification, the integral representation of Green’s function

becomes

G(x, χ) =
1

2π

∫ ∞

−∞

eiαx

cosh(χ+ iε)− coshα
dα. (4.43)

We can find the poles of the integrand from the equation

cosh(χ+ iε)− coshα = 0. (4.44)

Considering the periodicity of the hyperbolic functions with respect to imaginary axis,

the poles are find as

α = χ+ iε+ 2πin

α = −χ− iε− 2πin,

(4.45)

n = integer

Now we can apply the Cauchy’s residue theorem and Jordan’s lemma by recalling

the equations (2.80) and (2.81) from non-relativistic theory.
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Then we turn back to the integral equation (4.43). If we close the contour in the

upper half plane,

for x > 0 and large imaginary values of α

eiαx → 0

and if we close the contour in the lower half plane,

for x < 0 and large imaginary values of α

eiαx → 0

then we can apply the Cauchy’s residue theorem for both cases.

For x > 0 Green’s function is

G(x, χ)x>0 =
1

2π
2πi lim

ε→0

 ∞∑
n=0

eiαχ

− sinhα

∣∣∣∣∣
α=χ+iε+2πin

+
∞∑

n=1

eiαχ

− sinhα

∣∣∣∣∣
α=−χ+iε+2πin



= −i

[
∞∑

n=0

eixχ e−2nπx

sinh(χ+ 2πin)
+

∞∑
n=1

e−ixχ e−2nπx

sinh(−χ+ 2πin)

]
. (4.46)

Take into account that periodicity of the hyperbolic functions with respect to imag-

inary axis, we can write

sinh(χ+ 2πin) = sinhχ sinh(−χ+ 2πin) = − sinhχ (4.47)

If we insert these expression into equation (4.46) we get

G(x, χ)x>0 =
−i

sinhχ

[
eixχ

∞∑
n=0

e−2nπx − e−ixχ

∞∑
n=1

e−2nπx

]
. (4.48)

The series expansion

∞∑
n=0

e−2nπx = 1 + e−2πx + e−4πx + e−6πx + ... (4.49)

is a geometric series which is in the form; Sn =
∑∞

n=0 ar
n. And if |r| < 1 then the series

is convergent and Sn = a/(1− r).

In our case a = 1 and |e−2nπx| < 1 for n > 0, so series is convergent also. Then

the summation of the first series in equation (4.48) is
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∞∑
n=0

e−2nπx =
1

1− e−2πx
(4.50)

and the summation of the second series in equation (4.48) is

∞∑
n=1

e−2nπx =
e−2πx

1− e−2πx
. (4.51)

If we combine these two results and insert into equation (4.48), we get

G(x, χ)x>0 =
−i

sinhχ

[
eixχ 1

1− e−2πx
− eixχ e−2πx

1− e−2πx

]
. (4.52)

For x < 0 Green’s function is

G(x, χ)x<0 = − 1

2π
2πi

∞∑
n=1

eiαχ

− sinhα

∣∣∣∣∣
α=χ+iε+2πin

+
∞∑

n=1

eiαχ

− sinhα

∣∣∣∣∣
α=−χ−iε−2πin

(4.53)

= −i

[
∞∑

n=1

eixχ e−2nπ

− sinh(χ− 2πin)
+

∞∑
n=0

e−iχx e−2nπx

sinh(−χ− 2πin)

]
. (4.54)

using the equalities

sinh(χ− 2πin) = sinhχ sinh(−χ− 2πin) = − sinhχ (4.55)

we can write

G(x, χ)x<0 =
i

sinhχ

[
∞∑

n=0

eiχxe2nπ −
∞∑

n=1

e−iχxe2nπx

]
. (4.56)

And for the summation of the two geometric series in previous equation we can write

respectively

∞∑
n=0

e2nπx =
1

1− e2πx
=

e−2πx

e−2πx − 1
. (4.57)

∞∑
n=1

e2nπx =
1

1− e2πx
=

e2πx

1− e2πx
. (4.58)

And substituting these results into equation (4.56) we get

G(x, χ)x<0 =
−i

sinhχ

[
eixχ 1

1− e−2πx
− e−ixχ e−2πx

1− e−2πx

]
. (4.59)
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Then with the equations (4.52) and (4.56) relativistic Green’s function can be defined as

G(x, χ) =
−2i

sinhχ

[
eixχ 1

1− e−2πx
− e−ixχ e−2πx

1− e−2πx

]
. (4.60)

In the last equation corresponding to Green’s function, the expressions 1
1−e−2πx and

− e−2πx

1−e−2πx are called finite difference step operators that will be defined in the following

chapter. These operators have different property from step functions which are used in

non-relativistic formalism. This property is continuity for the following definition

θ̂(x) =
1

1− e−2πx
(4.61)

θ̂(−x) = − e−2πx

1− e−2πx
= 1− 1

1− e−2πx
. (4.62)

So with these equalities relativistic Green’s function can be expressed by;

G(x, χ) =
−2i

sinhχ

[
eixχθ̂(x)− e−ixχθ̂(−x)

]
. (4.63)

4.3. Finite Difference Analogue of the Heavyside Step Function

and Bernoulli Numbers

Now, we can analyze the step function and finite difference step function together.

Let us start with the step function which is defined in equation (2.85). Derivative of this

function defined as

d

dx
θ(x) = δ(x). (4.64)

From this relation we can find the integral representation of θ function. So let’s

define the θ function by using its Fourier image

θ(x) =

∫ ∞

−∞
g(q)eiq(x)dq (4.65)

and insert this relation into equation (4.64)

d

dx
θ(x) =

∫ ∞

−∞
g(q).iqeiqxdq =

1

2π

∫ ∞

−∞
eiqxdq (4.66)

where the relation on the right hand side is the Fourier image of the δ function.

Then we find
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g(q) =
1

2πi

1

q
. (4.67)

If we insert this relation into equation (4.65) then we get

θ(x) =
1

2πi

∫ ∞

−∞

eiqx

q − iε
(4.68)

which is the integral representation of θ function. And the derivative of the equation

(4.79) is the δ function for x′ = 0.

The integral equation (4.79) has a single pole at q = iε. And for x > 0 the

conditions of the Jordan’s lemma are fulfilled in the upper half plane. So we can apply

the Cauchy’s residue theorem. Then the θ function is determined as

θ(x) =
1

2πi
2πi lim

ε→0
[Res(iε)] = lim

ε→0

eiqx

1

∣∣∣∣∣
q=iε

= 1 (4.69)

for x < 0 the contour in the lower half plane doesn’t enclose the pole so integral is

zero. So, as in the definition, we convinced that the θ function is a partial function. Now

let’s turn back to the relativistic case.

Finite difference step operator can be expressed as

∆θ̂(x) = δ(x) (4.70)

which is the analogue of the derivative operator in the non-relativistic form. Then if we

introduce the integral representation of finite difference step operator as

θ̂(x) =
1

2πi

∫ ∞

−∞

eiαx

eα−iε − 1
dα (4.71)

and insert this into equation (4.70), then together with equation (4.35) we can see that

∆θ̂(x) = lim
ε→0

[
i

1

2πi

(
e−i d

dx − 1
)∫ ∞

−∞

eiαx

eα−iε − 1
dα

]

= lim
ε→0

[
1

2π

∫ ∞

−∞

eiαx(eα − 1)

eα−iε − 1
dα

]
=

1

2π

∫ ∞

−∞
eiαxdα = δ(x). (4.72)

In the same way as in the usual analysis, θ̂(x) is a constant at r 6= 0, i.e., a periodic

function

θ̂(x) =
1

1− e−2πx. . (4.73)
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The singularity at r = 0 is connected with the basic property (4.70). The relation

θ̂(x) + θ̂(−x) = 1 (4.74)

is also satisfied.

From equation (4.71) we can write

lim
x→∞

θ̂(x) = 1

lim
x→−∞

θ̂(x) = 0. (4.75)

For the equation (4.71) we find the pole α = iε and the contour is the semicircle in the

upper half plane. For x > 0

θ̂(x) =
1

2πi

∫ ∞

−∞

eiα(x)

eα−iε − 1
dα =

1

2πi
2πi lim

ε→0
[Res(iε)] = lim

ε→0

(
eiαx

eα

∣∣∣∣∣
α=iε

)
= 1 (4.76)

for x < 0 in the lower half plane pole is outside the contour so integral is zero.

Now if we insert the equation (4.63) into equation (4.34) and substitute x→ x−x′

then we get the wave equation as

ψ(x) = eixχ− 2i

sinhχ

∫ ∞

−∞
(ei(x−x′)χθ̂(x−x′)+e−i(x−x′)χθ̂(x′−x))V (x′)ψ(x′)dx′. (4.77)

We can also define the finite difference step function (4.71) in different way that

is in terms of Bernoulli numbers.

If Bν denotes the Bernoulli numbers then that can be defined by the generating

function as;

t(et − 1)−1 =
∞∑

ν=o

Bν
tν

ν!
. (4.78)

Now, we introduce expression of θ̂(r − r′) such as

θ̂(r − r′) =

[
θ(r − r′)−

∞∑
ν=1

Bν

ν!
(iν)

dν−1

drν−1
δ(r − r′)

]
(4.79)

If we substitute here representations for θ(r − r′) and δ(r − r′) as an analogue of one

dimensional case,

θ(r − r′) =
1

2πi

∫ ∞

−∞

eiz(r−r′)

z − iε
dz (4.80)
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δ(r − r′) =
1

2π

∫ ∞

−∞
eiz(r−r′)dz (4.81)

then the right side of equation (4.79) becomes

=
1

2πi

∫ ∞

−∞
eiz(r−r′)

[
1

z − iε
+

∞∑
ν=1

Bν

ν!
(−1)ν−1zν−1

]
dz. (4.82)

From relation (4.78) we can write,

z(ez − 1)−1 − 1 +
z

2
=

∞∑
ν=2

Bν
zν

ν!
(4.83)

where B0 = 1 and B1 = 1/2. Then if we arrange the terms as,

(ez − 1)−1 − 1

z
+

1

2
=

∞∑
ν=1

Bν+1
zν

(ν + 1)!
. (4.84)

with ν → ν − 1 we get,

(ez − 1)−1 − 1

z
=

∞∑
ν=1

Bν

ν!
zν−1. (4.85)

Finally, substituting this relation into equation (4.82) we obtain

θ̂(r − r′) =
1

2πi

∫ ∞

−∞

eiz(r−r′)

ez−iε
dz (4.86)

which is the integral representation of finite difference step operator.

4.4. Scattering Theory

In this section section we collect the formulae related to the relativistic two-body

scattering theory based on the differential difference Schrödinger equation .

We stress the remarkable fact that all essential formulae (scattering phase shifts

from the asymptotics of the wave function, unitary condition-in integral and partial form,

etc.) can be obtained in the framework of the relativistic Quantum Mechanics. Even

relativistic analogues of the Jost functions using which the problem of study of analytic

properties of the scattering matrix can be reduced to study these properties of the wave

function, exists in the relativistic r space approach.

The differential cross section is expressed through the amplitude A(p,q), in a

non-relativistic form
dσ

dΩ
= |A(p,q)|2. (4.87)
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The wave function is connected to the amplitude by

A(p,q) = − 1

4π

∫
ξ∗(p, r)Ṽ (r)ψq(r)dr. (4.88)

Using the partial-wave expansion of the functions ξ(p, r) and the wave function

ψq(r),

ξ∗(p, r) =
1

r sinhχp

∞∑
l=0

(2l + 1)(−i)ls∗l (r, χq)Pl

(
p.r
pr

)
, (4.89)

ψq(r) =
1

r sinhχq

∞∑
l=0

(2l + 1)(i)lψlq(r)Pl

(
q.r
qr

)
(4.90)

and the well-known equality for Legendre polynomials,∫
dΩrPl

(
p.r
pr

)
Pl′

(
q.r
qr

)
=

4π

2l + 1
Pl

(
p.q
pq

)
δll′ , (4.91)

we obtain the decomposition of the amplitude

A(p,q) =
1

sinhχp sinhχq

∞∑
l=0

(2l + 1)Al(p, q)Pl

(
p.q
pq

)
(4.92)

where the partial amplitudes are defined by the formula

Al(p, q) = −
∫ ∞

0

drs∗l (r, χq)Ṽ (r)ψlq(r). (4.93)

The wave function ψ+
q (r) of continuous spectrum, describing the scattering on a potential

V (r) satisfies the equation

ψ+
q (r) = ξ(q, r) +

∫
dr′G(+)(r, r′;Eq)Ṽ (r′)ψ(+)

q (r′), (4.94)

where G(+)(r, r′;Eq) is connected with the partial wave Green’s functions

G
(+)
l (r, r′;Eq) =

1

π

∫ ∞

0

sl(r, χk)s
∗
l (r

′, χk)dχk

coshχq − coshχk + iε
(4.95)

by the decomposition

G(+)(r, r′;Eq) =
1

4πrr′

∞∑
l=0

(2l + 1)G
(+)
l (r, r′;Eq)Pl

(
r.r’
rr′

)
. (4.96)

Combining equation (4.89), (4.90), (4.93), (4.94) and (4.96), we obtain the following

expression for ψ(+)
ql (r):

ψ
(+)
ql (r) = sl(r, q)−

1

π

∫ ∞

0

dχk
sl(r, χk)Al(k, q)

coshχq − coshχk + iε
(4.97)
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The asymptotic form of equation (4.97) at r →∞ can be found using equation (3.64):

ψ
(+)as
ql (r) = sin(rχ− πl

2
)− 1

π

∫ ∞

0

dχk

sin(rχk − πl
2
)Al(k, q)

coshχq − coshχk + iε
(4.98)

Then using the symbolic equality

1

2πi

eir(χq−χk)

coshχq − coshχk − iε
=

 δ(coshχq − coshχk) at r →∞

0 at r → −∞,
(4.99)

one gets

ψ
(+)as
ql (r) = sin(rχq −

πl

2
) + ei(rχq−πl

2
)Al(q, q)

sinhχq

. (4.100)

Introducing now, in analogy with the non-relativistic theory, the phase shifts δl

ψ
(+)as
ql (r) = al(q)sl(rχ−

πl

2
+ δl) (4.101)

we have

al(q) = eiδl , (4.102)

e2iδl = 1 +
2iAl(q, q)

sinhχq

≡ Sl(q). (4.103)

Equality (4.103) is the definition of the scattering matrix Sl(q). Using equations (4.102),

(4.103) and (4.92), we obtain the expression for ψ(+)
q (r) in the form

ψ(+)as
q (r) = ξas(q, r) +

eirχq

r
A(q,p)

∣∣∣∣
Ep=Eq

(4.104)

where

A(p,q)

∣∣∣∣
Ep=Eq

=
1

sinh2 χq

∞∑
l=0

(2l + 1)Al(q, q)Pl

(
p.q
pq

)
=

1

2i sinhχq

∞∑
l=0

(2l + 1)[Sl(q)− 1]Pl

(
p.q
pq

)
. (4.105)

The asymptotic partial-wave expansion of the wave function in terms of the scat-

tering matrix is

ψ(+)as
q (r) =

1

2ir sinhχq

∞∑
l=0

(2l + 1)[Sl(q)e
irχq + (−1)l+1e−irχq ]Pl

(
r.q
rq

)
. (4.106)

To conclude this section, let us note that in the scheme under consideration the

relation between the total cross section and phase shifts is valid in a non-relativistic form

σ =
4π

sinh2 χq

∞∑
l=0

(2l + 1) sin2 δl. (4.107)

The optical theorem also holds:

ImA(q,q) =
sinhχq

4π
σ. (4.108)
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4.5. The Jost Functions

Now we shall construct solutions, satisfying different boundary conditions. Let us

consider, together with equation (4.95), the Green’s function

G
(−)
l (r, r′;Eq) =

1

π

∫ ∞

0

sl(r, χk)s
∗
l (r

′, χk)dχk

coshχq − coshχk + iε
. (4.109)

Let us also introduce the functions G(0)
l (r, r′;Eq) and G(J)

l (r, r′;Eq) with the help of the

non-relativistic relations

G
(0)
l (r, r′;Eq) =

1

2
[G

(+)
l (r, r′;Eq) +G

(−)
l (r, r′;Eq)]−

sl(r, χqcl(r
′, χq)

W [sl(r′, χqcl(r′, χq)]
, (4.110)

G
(J)
l (r, r′;Eq) = G

(0)
l (r, r′;Eq)−

e1l (r
′, χq)e

2
l (r, χq)− e2l (r

′, χq)e
1
l (r, χq)

W [e1l (r
′, χq), e2l (r

′, χq)]
(4.111)

The corresponding wave functions satisfy the equations

ψ
(±,0)
ql (r) = sl(r, χq) +

∫ ∞

0

G
(±,0)
l (r, r′;Eq)Ṽ (r′)ψ

(±,0)
ql (r′)dr′, (4.112)

(solutions regular at the origin)

ψ
(1,2)
ql (r) = ± 1

2i
e
(1,2)
l (r, χq) +

∫ ∞

0

G
(J)
l (r, r′;Eq)Ṽ (r′)ψ

(1,2)
ql (r′)dr′, (4.113)

(Jost solutions). Insofar as G(J)
l (r, r′;Eq) → 0 when r → ∞, the asymptotics

of the solutions ψ(1,2)
ql (r) coincide with the asymptotic of the free partial spherical waves

(3.66).

Let us introduce then the Jost functions f (±)
l (q) as the coefficient of the expansion

of ψ(0)
ql (r) in terms of Just solutions ψ(0)

ql (r):

ψ
(0)
ql (r) = f

(−)
l (q)ψ

(1)
ql (r) + f

(+)
l (q)ψ

(0)
ql (r). (4.114)

A simple calculations gives

f
(±)
l (r) = 1−

∫ ∞

0

e
(1,2)
l Ṽ (r′)ψ

(0)
ql (r′)

W [sl(r′, χq)cl(r′, χq)]
dr′ (4.115)

From here it follows that if one defines the partial S-matrix as

Sl(q) =
f

(−)
l (q)

f
(+)
l (q)

(−1)l+1, (4.116)
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then in the case of a real potential the unitary condition holds:

S∗l (q)Sl(q) = 1. (4.117)

Moreover, passing in equation (4.114) to the asymtotic form of ψ(0)
ql (r) and ψ(1,2)

ql (r), it is

possible to obtain Sl(q) as a function of the phase shifts δl, which coincides with equation

(4.103).

Just as in the case of non-relativistic potential scattering, it is possible to express

the Jost function f (±)
l (q) in terms of Wronskian of the solutions ψ(0,1,2)

ql (r). Indeed, cal-

culating W [ψ
(0)
ql (r), ψ

(1)
ql (r)] and W [ψ

(0)
ql (0), ψ

(2)
ql (r)] we have

f
(+)
l (q) =

W [ψ
(0)
ql (r), ψ

(1)
ql (r)]

W [ψ
(2)
ql (r), ψ

(1)
ql (r)]

, (4.118)

f
(−)
l (q) = −

W [ψ
(0)
ql (r), ψ

(2)
ql (r)]

W [ψ
(2)
ql (r), ψ

(1)
ql (r)]

. (4.119)

Formulae (4.118) and (4.119) allow us to reduce the problem of investigating the analyti-

cal properties of the wave functions.
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CHAPTER 5

CONCLUSION

In this thesis, we describe the general formalism of the non-relativistic scattering

theory as a brief review. Non-relativistic Schröndinger and Lippman-Schwinger equations

are described and the expressions of these equations are investigated in momentum and

configuration spaces, using Fourier transformation. The plane wave, which is generating

function for the matrix elements of three dimensional Euclidean group in spherical basis,

is expanded in terms of Legendre polynomials and spherical Bessel functions.

Then, to get the analogues of the relations in non-relativistic theory we study

on the geometry of the space of the relativistic Lippman-Schwinger equation which

is Lobachevsky space. We start with the well-known fact that the equation describ-

ing the relativistic relation between energy and momentum of the particle , describes

at the same time the three-dimensional momentum space of constant negative curvature

or the Lobachevsky space. The isometry group of this space is the Lorentz group. We

find the matrix elements of the unitary irreducible representations of this group which

are the eigen-functions of the Casimir operator, or the Laplace-Beltrami operator in the

Lobachevsky space.

And we restricted our attention to the most important physical argument is that

there exists in r-space the differential difference operator of free energy. On this basis,

the quantum theory in the relativistic configurational space in the framework of the quasi-

potential approach had been developed.
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APPENDIX A

BESSEL FUNCTIONS

A.1. Bessel Differential Equation

Bessel functions are solutions of the Bessel’s differential equation which is given

as

z2d
2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0 (A.1)

where ν, z are unrestricted (apart from condition that, for the present ν is not an integer.

For brevity the differential operator which occurs in (A.1) will be called ∇ν so that

∇ν ≡ z2 d
2

dz2
+ z

d

dz
+ z2 − ν2. (A.2)

The standard method of obtaining solutions of a linear differential equation in the neigh-

borhood of a regular singularity (z=0)lead to the solution

Jν(z) =
∞∑

m=0

(−1)m( 1
2z

)2m+ν

[m!Γ(m+ ν + 1)]
(A.3)

and J−ν(z).

The first solution Jν(z) is called the Bessel function of first kind. The linear

combinations

Nν(z) = (sin νπ)−1[Jν(z) cos νπ − J−ν(z)],

H(1)
ν (z) = Jν(z) + iNν(z) = (i sin νπ)−1[J−ν(z)− Jν(z)e

−iνπ],

H(2)
ν (z) = Jν(z)− iNν(z) = (i sin νπ)−1[Jν(z)e

iνπ − J−ν(z)]

(A.4)

are likewise solution of (A.1). Nν is called the Neumann’s function, H(1)
ν and H(2)

ν are

called first and second kind Hankel functions respectively.
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A.2. Spherical Bessel Functions

The Bessel functions reduced to combinations of elementary functions if and only

if ν is half of an odd integer. When l = 0, 1, 2... and ν = l + 1/2 we can write;

jl(z) = (
π

2z
)1/2Jl+ 1

2
(z),

nl(z) = (
π

2z
)1/2Nl+ 1

2
(z),

h
(1)
l (z) = jl(z) + inl(z) = (

π

2z
)1/2H

(1)

l+ 1
2

(z)

h
(2)
l (z) = jl(z)− inl(z) = (

π

2z
)1/2H

(2)

l+ 1
2

(z)

(A.5)

where jl(z), nl(z), h
(1,2)
l (z) are called spherical Bessel, Neumann and Hankel functions

respectively.

A.3. A Fundamental System of Solutions of Bessel’s Equation

It is well known that, if y1 and y2 are two solutions of a linear differential equation

of the second order, and if y′1 and y′2 denote their derivatives with respect to the inde-

pendent variable, then the solution are linearly independent if the Wronskian determinant

does not vanish identically; and if the Wronskian does vanish identically then either one

of the two solutions vanishes identically, or else the ratio of the two solutions is a constant.

If the Wronskian does not vanish identically, then any solution of the differential

equation is expressible in the form c1y1 + c2y2 where c1, c2 are constants depending on

the particular solution under consideration; then solutions y1 and y2 are then said to form

a fundamental system.

Now we proceed to evaluate

W [Jν, J−ν ]. (A.6)

If we multiply the equations

∇νJν(z) = 0, ∇νJ−ν(z) = 0 (A.7)

by Jν(z) and J−ν(z) respectively and subtract these results, we obtain an equation which

may be written in the form
d

dz
{zW [Jν, J−ν ]} = 0, (A.8)
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and hence, on integration

W [Jν, J−ν ] =
C

z
, (A.9)

C is a determinate constant. To evaluate C, we observe that when ν is not an integer, and

|z| is small, we have

Jν(z) =
(1

2
z)ν

Γ(ν + 1)
{1 + 0(z2)}J ′ν(z) =

(1
2
z)ν−1

2Γ(ν)
{1 + 0(z2)} (A.10)

with similar expressions for J−ν(z) and J ′−ν(z) and hence

Jν(z)J
′
−ν(z)− J−ν(z)J

′ν(z) =
1

z

[
1

Γ(ν + 1)Γ(−ν)
− 1

Γ(ν)Γ(−ν + 1)

]
(A.11)

= −2 sin νπ

πz
+ 0(z). (A.12)

Since sin νπ is not zero the functions Jν(z) and J−ν(z) form a fundamental system of

solutions of equation (A.1).

A variety of Wronskian formulas can be developed:

Jν(z)J−ν+1(z) + J−ν(z)Jν−1(z) =
2 sin νπ

πz
,

Jν(z)N
′
ν(z) + J ′ν(z)Nν(z) =

2

πz
,

Jν(z)Nν+1(z) + Jν+1(z)Nν(z) = − 2

πz
,

Hν(z)
(2)H

(1)
ν+1(z) +H(1)

ν (z)H
(2)
ν+1(z) =

4

iπz
,

Jν−1(z)H
(1)
ν (z)− Jν(z)H

(1)
ν−1(z) =

2

iπz
,

Jν−1(z)H
(2)
ν−1(z)− Jν−1(z)H

(2)
ν (z) =

2

iπz
.

(A.13)
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APPENDIX B

LEGENDRE FUNCTIONS

B.1. Legendre Differential Equation

Associated Legendre differential equation is given by

(1− z2)
d2

dz2
w − 2z

dw

dz
w + [ν(ν + 1)− µ2(1− z2)−1]w = 0. (B.1)

where z, ν and µ are unrestricted. Solutions of this equation

w = P µ
ν (z) =

1

Γ(1− µ)
(z2− 1)

−1
2

µF (1− µ+ ν,−µ− ν; 1− µ;
1

2
− 1

2
z), |1− z| < 2

(B.2)

w = Qµ
ν (z) = eµiπ2−ν−1π1/2 Γ(ν + µ+ 1)

Γ(ν + 3/2)
z−1−ν+µ(z2 − 1)

−1
2

µ

×F (
1

2
+

1

2
ν − 1

2
µ, 1 +

1

2
ν − 1

2
µ; ν +

3

2
; z−2) (B.3)

are called associated Legendre functions or associated Legendre functions of first and

second kind respectively.

Associated Legendre’s differential equation remains unchanged if µ is replaced

by −µ and z by −z, and ν by −ν − 1. Therefore P±µ
ν (±z), Q±µ

ν (±z), P±µ
−ν−1(±z),

Q±µ
−ν−1(±z) are solutions of equation (B.1).

For the case µ = 0 and ν is an integer we have Legendre’s differential equation,

which is

(1− z2)
d2s

dz2
− 2z

ds

dz
+ ν(ν + 1)s = 0. (B.4)

Solutions of this equation are Pν(z) andQν(z) which are called Legendre functions. From

equation (B.2) and (B.3) we have,

s = Pν(z) = F (1 + ν,−ν; 1; 1

2
− 1

2
z). (B.5)

s = Qν(z) = 2−ν−1π1/2 Γ(ν + 1)

Γ(ν + 3/2)
z−1−ν × F (

1

2
+

1

2
ν, 1 +

1

2
ν; ν +

3

2
; z−2). (B.6)

If we differentiate (B.5) m times with respect to z (m=1,2,...)it follows that

Pm
ν (z) = (z2 − 1)

1
2
md

mPν(z)

dzm
(B.7)

and also

Qm
ν (z) = (z2 − 1)

1
2
md

mQν(z)

dzm
. (B.8)
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B.2. Rodrigues’ Formula

In particular case; µ = 0 and ν is an integer, P µ
ν (z) becomes

P2n(z) =
(−1)n(2n)!

22n(n!)2
F (−n, n+ 1/2; 1/2; z2)

P2n+1(z) =
(−1)n(2n+ 1)!

22n(n!)2
z.F (−n, n+ 3/2; 3/2; z2) (B.9)

or together which can be written as

Pn(z) =
(2n)!

22n(n!)2
×
[
zn − n(n− 1)

2(2n− 1)
zn−2 +

n(n− 1)(n− 2)(n− 3)

2.4(2n− 1)(2n− 3)
zn−4 + ...

]
.

(B.10)

It can be written also in compact form

Pn(z) =
1

2nn!

dn

dzn
(z2 − 1)n. (B.11)

which is Rodrigues’ formula.
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APPENDIX C

LORENTZ GROUP

An ”event” is something that happens at a definite time at a definite place.

Events in space-time are described with respect to an ”inertial frame” by coordinates1

x = (x0, x)T ∈ R4, where x = (x1, x2, x3)T are the space coordinates, and x0 = ct is the

time coordinate of event. The factor c denotes the velocity of light. It gives x0 the dimen-

sion of a length. The principals of relativity states that all inertial frames are equivalent

for description of nature. The coordinate transformations I → I ′ between all possible

inertial frames are called Poincaré transformations.

In the vector space R4 we define the ”Lorentz metric”

< y, x >= y0x0 − y1x1 − y2x2 − y3x3, x, y ∈ R4 (C.1)

The bilinear form < ., . > is symmetric and nondegenerate2, but not positive

definite. With 4× 4 matrix

g = (gµν) = (gµν) =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (C.2)

we can write (C.1) in the form

< y, x >= yTg x =
4∑

µ,ν=0

gµνy
µxν (C.3)

The vector space R4 endowed with the Lorentz metric is called ”Minkowsky”

”space”.

Definition C.1 A (homogeneous) Lorentz transformation of R4 is a linear map Λ : R4 →

R4 with

< Λy,Λx >=< y, x >, ∀x, y ∈ R4. (C.4)

The elements of the matrix of Λ are denoted by Λµ
ν .

1”T” denotes the transposed of a vector or a matrix. We would like to consider x a column vector.
2i.e., for all y 6= 0 there exists an x such that < y, x > 6= 0
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Eq. (C.4) is equivalent to

ΛTg Λ = g or Λµ
ρgµνΛ

ν
τ = gρτ , (C.5)

which consists of ten independent quadratic equations for the components of Λ, e.g.,

(Λ0
0)

2 − (Λ1
0)

2 − (Λ2
0)

2 − (Λ3
0)

2 = 1. (C.6)

The composition of two Lorentz transformation Λ is again a Lorentz transformation. We

find

1 = −det g = −detΛTg Λ = −detΛTdet g detΛ = (detΛ)2 (C.7)

and hence det Λ = ±1 for any Lorentz transformation Λ. Therefore Λ is invertible and

set of all Lorentz transformations forms a group which is called ”Lorentz group”.
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APPENDIX D

GROUP REPRESENTATIONS

Definition D.1 An m-dimensional matrix group D(G) is called a representation of the

given group G, if G is homomorphic to D(G). The element D(R) in D(G), which

is nonsingular, is called the representation matrix of the group element R ∈ G in the

representation D(G).

Definition D.2 If all matrices D(R) in D(G) are unitary, D(G) is called unitary

representation.

Definition D.3 Two representations D(G) and D̄(G) with the same dimension are called

equivalent to each other if there is a similarity transformation X relating two representa-

tion matrices for each element R in the group G, D̄(R) = X−1D(R)X .

The concept of equivalence of representations is reflexive, symmetric and transi-

tive: every representation is equivalent to itself; if a representation D(G) is equivalent to

a representation D̄(G), then D̄(G) is equivalent to D(G); if D(G) is equivalent to D̄(G)

and D̄(G) is equivalent to D̂(G), then D(G) is equivalent to D̂(G). Therefore the set

off all representations of the group G can be divided into equivalence classes of represen-

tations. Henceforth we shall not distinguish between equivalent representations, i.e. we

shall study the properties of equivalence classes of representations.

Definition D.4 A representationD(G) of the groupG is said to be reducible if the repre-

sentation matrix D(R) of any elementR of G in D(G) can be transformed into the same

form of the echelon matrix by a common similarity transformation X ,

X−1D(R)X =

D(1)(R) T (R)

0 D(2)R

 . (D.1)

Otherwise, it is called an irreducible representation.

The necessary and sufficient condition for a reducible representation is that there is a

nontrivial invariant subspace with respect to D(G) in its representation space. That is,

if a representation possesses only trivial invariant subspaces it is called irreducible. A

representation with nontrivial invariant subspaces is reducible.
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