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ABSTRACT 
 

DEVELOPMENT OF BIOSENSORS FOR DETERMINATION OF THE 

TOTAL ANTIOXIDANT CAPACITY 

 
In this study, an amperometric laccase biosensor was developed for determination 

of the oleuropein concentration that is the biological active component of olive leaf and 

contributes dominantly to the total antioxidant capacity. The biosensor was prepared by 

immobilization of laccase from Trametes versicolor by addition of cross-linking agent, 

glutaraldehyde, into the carbon paste electrode. Different biosensors were prepared by 

changing the amount of crosslinking agent and concentration of the enzyme solution. 

So, effect of these parameters on biosensor performance was investigated. The best 

biosensor performance was determined for the biosensor having glutaraldehyde amount 

of 12.03 % vol. of the biosensor bottom part and 5 mg/ml of laccase enzyme. The effect 

of scan rate and temperature on the biosensor performance was also investigated in this 

study. The scan rate of 10 mV/s was decided to be the optimum for the amperometric 

detection of oleuropein considering the fastest response and maximum reduction 

current. 250C was chosen as an optimum temperature value due to the maximum laccase 

activity and capability of oleuropein acting as an antioxidant. 

Extraction of phenolics from olive leaf was also an important part of this study. 

The extract was divided into fractions varying in their oleuropein amounts such as polar 

fractions and relatively less polar fractions. Therefore, biosensor performance was 

investigated for fractions containing different type of phenolics. HPLC analyses of the 

fractions were also performed in this study. In addition total phenol content and 

antioxidant capacity of the fractions were determined by conventional methods. 
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ÖZET 

 

TOPLAM ANTİOKSİDAN KAPASİTE TAYİNİ İÇİN 

BİYOSENSÖRLER GELİŞTİRİLMESİ 

 
Bu çalışmada, zeytin yaprağı özütündeki toplam antioksidan madde miktarının 

önemli bir bölümünü oluşturan fenolik bir bileşik olan oleuropein’e karşı spesifik 

biyosensörler geliştirilmesi esas alınmıştır. Bu amaçla, lakkaz temelli amperometrik 

biyosensörler geliştirilmiştir. Bu biyosensörler, Trametes versicolor kaynaklı lakkaz 

enziminin glutaraldehit kullanılarak karbon pastasına immobilizasyonu ile 

hazırlanmıştır. Çapraz bağlayıcı miktarı ve lakkaz enzimi konsantrasyonu değiştirilerek 

çeşitli biyosensörler geliştiştirilmiştir. Böylelikle, bu parametrelerin biyosensör 

performansına etkisi incelenmiştir. En iyi performans, 5 mg/ml lakkaz konsantrasyonu 

ve alt tabakası hacimce %12.03 glutaraldehitten oluşan biyosensörden elde edilmiştir. 

Bunun yanında tarama hızı ve sıcaklığın da biyosensör performansına olan etkisi 

incelenmiştir. Oleuropeinin’in tayininde kullanılan amperometrik biyosensörler için, 

minimum yanıt zamanı ve ölçülebilen maksimum indirgenme akımı esas alınarak 

döngüsel voltametre ölçümlerinde optimum tarama hızı 10 mV/s olarak belirlenmiştir. 

Ayrıca, lakkaz enziminin en aktif olduğu ve oleuropeinin antioksidan özelliğini devam 

ettirebildiği en uygun çalışma sıcaklığı 250C olarak saptanmıştır. 

Bu çalışmada zeytin yaprağı özütündeki fenolik bileşiklerin ekstraksiyon 

çalışmaları gerçekleştirilmiştir. Elde edilen özüt, oleuropein’ce zengin ve oleuropein’ce 

zengin olmayan farklı fraksiyonlara ayrılmıştır. Buradaki amaç, geliştirilen 

biyosensörün farklı fenolik bileşikler içeren fraksiyonlara karşı olan tepkisini 

incelemektir. Bu çalışmada fraksiyonların HPLC analizleri de yapılmıştır. Buna ek 

olarak, fraksiyonların toplam fenol ve toplam antioksidan kapasiteleri de bilinen 

metodlarla tayin edilmiştir. 
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CHAPTER 1 

 

INTRODUCTION 
 
 

In recent years, there is a growing interest obtaining the biologically active 

compounds from natural sources. The protective effects of diets rich in fruit and 

vegetables against cardiovascular diseases and certain cancers have been attributed 

partly to the antioxidants contained therein. Olive tree is one of the potential natural 

antioxidant source because of its phenolic content. There are various methods used to 

determine the antioxidant capacity of biologically active components. Analytical 

methods used in the qualitative and quantitative determination of polyphenols in olive 

leaf involve techniques of chromatographic separation such as HPLC and GC-MS. 

However these techniques are expensive, reagent and time consuming. 

Biosensors are attractive alternative techniques due to their unique 

characteristics such as selectivity, low cost, miniaturization, easy automation, time 

saving and simplicity of operation and manufacturing. Thus, the development of 

biosensors for the polyphenolic fraction of olive leaf is a great ongoing challenge. 

Biosensors can be defined as an analytical tool or system consisting of an immobilized 

biological material in intimate contact with a suitable transducer. Biological recognition 

elements are the major selective element in a biosensor system. They can be organisms, 

tissues, organelles, enzymes, antibodies and nucleic acids. The type of the biological 

recognition element determines the degree of selectivity or specificity of the biosensor. 

The transducer element in a biosensor system converts the biological signal into an 

electrical one. Biosensors can be classified in several types according to their transducer 

type such as amperometric, potentiometric, conductimetric, optical, acoustic, 

piezoelectric and thermal.  

Enzymes are extremely specific and selective for the substrates which they 

interact with. Problems like selectivity and slow response characteristics of biosensors 

can be overcomed by the use of enzymes. Laccase is an object of intensive studies in the 

fields of basis research of oxidation of various phenols. It is an oxidoreductase able to 

catalyze the oxidation of various aromatic compounds, particularly phenols with the 

concomitant reduction of oxygen to water. It displays a broad specificity for the 
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reducing substrates including mono-phenols, di-phenols, polyphenols, amino phenols 

and aromatic diamines. The broad specificity for the phenolic substrates enables laccase 

to be developed as a biosensor for the determination of total phenols. 

An amperometric biosensor may be more attractive among the other biosensor 

systems due to its promising properties such as high sensitivity and a wide linear range. 

Amperometric biosensors are based on the measurement of the current resulting from 

the oxidation or reduction of electroactive species. In amperometry, the resulting current 

is correlated to the bulk analyte concentration of the electroactive species.  

In this study, an amperometric laccase biosensor was developed for determination 

of the oleuropein concentration which contributes dominantly to the total antioxidant 

capacity in olive leaf. This study is very important due to the fact that it shows how to 

detect oleuropein, the phenolic that determines the quality of olive leaf extract, in an 

easy and economic way. Also, this study will give an idea about how to determine the 

antioxidant capacities of different products in food industry. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 
2.1. Free Radicals 

  

Oxidative metabolism is essential for survival of cells and a side effect of this 

dependence is the production of free radicals (Antolovich, et al. 2002). Free radicals are 

unstable atom or molecules that have unpaired electrons. Free radicals are not only the 

products of oxidative metabolism; they can also be formed in response to light, 

radiation, smog, tobacco or alcohol. Formation of free radicals is shown in Figure 2.1. 

 
 

 
 

Figure 2.1. Free radical formation 

(Source: Simone 1992) 

 

Unstable free radicals try to become stable by transferring their high energy to 

nearby substances. When free radicals are formed in the body, in an attempt to stabilize, 

they attack other molecules in the body by blocking protective enzymes such as 

superoxide dismutase, catalase and peroxidase. Hence, they cause destructive and lethal 

cellular effects by oxidizing membrane lipids, cellular proteins, DNA and enzymes, thus 

shutting down cellular respiration. Cell damage by free radicals is schematically shown 

in Figure 2.2 (Antolovich, et al. 2002, Simone 1992). 
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Figure 2.2. Cell damage by free radicals  

(Source: Simone 1992) 

 

 The interaction of oxygen free radicals with molecules of a lipidic nature also 

produces new radicals; hydroperoxides and different peroxidases. This group of radicals 

may interact with biological systems and though studies indicate that they have 

cytotoxic, mutagenic, carcinogenic, atheragenic and antiotoxic effects (Benavente-

Garcia, et al. 2000, Madhavi, et al. 1996). 

 The direct reaction of a lipid molecule with a molecule of oxygen, autoxidation, 

is a free radical chain reaction (Madhavi, et al. 1996). Lipid oxidation proceeds via three 

different pathways; 

(1) non-enzymatic free radical-mediated chain reaction, 

(2) non-enzymatic, non-radical photo-oxidation and 

(3) enzymatic reaction. 

Pathway (1) is the classical free radical route and this pathway is composed of initiation, 

propagation, branching and termination steps (Antolovich, et al. 2002). 

 

Initiation: 

 

LH + R●              L● + RH 

 

An unsaturated lipid gives rise to free radicals when in contact with oxygen. 

Initiation reactions take place when the substrate molecule (LH) reacts with the 

initiating oxidizing radical (R●), generating a highly reactive allyl radical (L●) that can 

rapidly react with oxygen to form a lipid peroxyl radical (LOO●). 
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Propagation: 

 

L● + O2             LOO● 

LOO● + LH             L● + LOOH 

 

The peroxyl radicals are the chain carriers of the reaction that can further oxidize 

the lipid, producing lipid hydroperoxides (LOOH), which in turn break down to a wide 

range of compounds, including alcohols, aldehydes, alkyl formates, ketones, 

hydrocarbons and radicals including the alkoxyl radical (LO●). Thus, a general feature 

of the propagation reactions is that they tend to proceed as chain reactions, that is, one 

radical yields another and so on. Therefore, formation of one radical is responsible for 

the subsequent chemical transformations due to the chain events. 

 

Branching: 

 

 LOOH  LO● + HO● 

 2 LOOH    LOO● + LO● + H2O 

 

The breakdown of lipid hydroperoxides often involves transition metal ion 

catalysis, in reactions analogous to that with hydrogen peroxide, yielding lipid peroxyl 

and lipid alkoxyl radicals: 

 

 LOOH + Mn+ + H+  LO● + M (n+ 1)+ + H2O 

LOOH + M (n+1)+ + OH-            LOO● + Mn+ + H2O 

 

Termination: 

 

LO● + LO● 

LOO● + LOO●                        non-radical products 

LO● + LOO● 

 

Free radicals are electrically neutral and their solvation effects are generally too 

small. They are considered to be bonding-deficient and structurally unstable. Therefore, 

they tend to react whenever possible and that is why a radical is highly reactive. When 
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there is a reduction in the amount of fatty acids, radicals bond to one another. 

Termination reactions involve the combination of radicals to form non-radical products 

(Madhavi, et al. 1996, Antolovich, et al. 2002). 

Among the causes of the major chronic health problems, harmful free radicals 

and reactive oxygen species (ROS) have been found to play an important role. Radicals 

and ROS such as the superoxide anion (O2
●−), hydroxyl radical (OH●) and peroxy 

radical (ROO●) have been implicated as mediators of degenerative and chronic 

deteriorative, inflammatory, autoimmune diseases, diabetes, vascular disease, 

hypertension, cancer, hyperplastic diseases, cataract formation, emphysema, arthritis, 

malaria, multiple sclerosis, myocardial ischemia-reperfusion injury, immune system 

decline, brain dysfunction as well as the aging process (Tsao and Deng 2004). 

 To prevent free radical damage, the body has a defense system of antioxidants 

(Antolovich, et al. 2002). Antioxidants, as bioactive components, are capable to reduce 

the cell and tissue damages derived from the free radical mechanism (Simone 1992). 

Many plants have been identified as having potential antioxidant activities. Bioactive 

phenols, especially bioflavonoids, are very interesting as antioxidants because of their 

natural origin and the ability to act as efficient free radical scavengers (Katalinic, et al. 

2006). Due to its high proportion of bioactive compounds such as vitamins, flavonoids 

and polyphenols, the Mediterranean diet that is rich in fresh fruits and vegetables has 

been known with a low incidence of cardiovascular disease and cancer (Benavente-

Garcia, et al. 2000). 

 

2.2. Phenolic Compounds 
 

Phenolic compounds have been reported to have multiple biological effects, 

including antioxidant activity. Crude extracts of fruits, herbs, vegetables, cereals and 

other plant materials rich in phenolics are increasingly of interest because they retard 

oxidative degradation of lipids and thereby improve the quality and nutritional value of 

food (Kahkönen, et al. 1999). 

Phenolic compounds, or polyphenols, constitute one of the most numerous and 

widely-distributed groups of substances in the plant kingdom. Polyphenols are products 

of the secondary metabolism of plants. Phenolics are a group of organic compounds 

with one or more hydroxyl groups on the aromatic ring and/or rings. Most of the major 
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classes of plant polyphenol are listed in Table 2.1, according to the number of carbon 

atoms of the basic skeleton. The structure of natural polyphenols varies from simple 

molecules, such as phenolic acids, to highly polymerized compounds, such as 

condensed tannins (Urquiaga and Leighton 2000). 
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Table 2.1. Major classes of phenolic compounds in plants 

(Source: Urquiaga and Leighton 2000) 

 
 

The three important groups of phenolics are flavonoids, phenolic acids and 

tannins (King and Young 1999). 

 

Flavonoids 

 

Flavonoids are the most common and widely distributed group of plant phenolics. Their 

common structure is that of diphenylpropanes (C6-C3-C6) and consists of two benzene 

rings linked by an oxygen containing heterocycle as it is seen in Figure 2.3 (Urquiaga 

and Leighton 2000). 
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Figure 2.3. General structure of a flavonoid molecule  

(Source: Urquiaga and Leighton 2000) 

 

Flavonoids are divided into anthocyanins and anthoxanthins. Anthocyanins are the 

molecules that posses some color pigments such as red, blue and purple. Anthoxanthins 

are colorless or white to yellow molecules and they are subdivided into four groups. 

These are flavones, flavonols, flavanols and isoflavonoids (King and Young 1999). The 

basic structures of the flavonoid subgroups can be seen in Figure 2.4. 

 

 
Figure 2.4. Structure of the flavonoid subgroups: flavonol, flavone, flavanol, and       

isoflavone (Source: Rice-Evans, et al.1997) 
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• Flavones:   

Flavones are phenolic compounds that contain one carbonyl group (Cowan 1999). 

Apigenin and luteolin are the examples of flavones. Celery and olives are the foods 

having been known with their high flavones content (King and Young 1999). 

• Flavonols: 

Flavonols are the most common type of flavonoids. The addition of 3-hydroxyl group to 

the flavones yields a flavonol (Cowan 1999). Quercetin, kaempferol and myricetin are 

the three widely distributed flavonols. Onion, apple, kale and tea are the examples of 

foods which are high in their flavonol levels (King and Young 1999). 

• Flavanols:   

Flavanols are the flavonoids lacking the 2,3-double bond and the 4-one structure (Rice-

Evans, et al.1997). Catechin and epicatechin are the most famous flavanols. These 

flavanols can be seen in combination with gallic acid as in tea or with condensed tannin 

polymers in the case of fruits, legumes and grains (King and Young 1999). 

• Isoflavones: 

In Isoflavones, the B ring is located in the 3 position of the C ring (Rice-Evans, et 

al.1997). Isoflavones are the phenolic constituents that are mostly specific for legume 

family, especially for soybeans. The most famous isoflavones are genistein and daidzein 

(King and Young 1999). 

 

Phenolic Acids 

 

Phenolic acids are grouped into hydroxybenzoic and hydroxycinnamic acids. 

Hydroxybenzoic and hydroxycinnamic acids have a single-ring structure (Tsao and 

Deng 2004). 

• Hydroxybenzoic Acid: 

Ellagic and gallic acids can be evaluated under this group and hydroxybenzoic acids are 

commonly seen in berries and nuts. 

• Hydroxycinnamic Acid: 

Caffeic and ferulic acids are examples of hydroxycinnamic acids. These groups of 

phenolic acids have the property of heat sensitivity.  
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Tannins 

 

Vegetable tannins (plant polyphenols) are one of the most numerous and widely 

distributed categories in the plant kingdom, with more than 8000 phenolic structures 

currently known (Liao, et al. 2003). Tannins are water-soluble phenolic compounds 

having a molecular weight between 500 and 3000 Da. These polyphenols contain a 

large number of hydroxyl or other functional groups. In addition, they are capable of 

forming cross-linkages with proteins and other macromolecules (Chung, et al. 1998). 

This group of phenolics can be investigated in two categories. Hydrolyzable tannins 

(polyesters of gallic acid and polysaccharides) and condensed tannins (polymerized 

products of flavan-3-ols and flavan-3,4-diols, or a mixture of the two). Other type of 

tannins may also be seen as a combination of these two basic structures (Liao, et al. 

2003). 

• Hydrolyzable Tannins: 

Hydrolyzable tannins contain a central core of polyhydric alcohol such as glucose and 

hydroxyl groups which are esterified either partially or wholly by gallic acid 

(gallotannins) or hexahydroxydiphenic acid (ellagitannins). After hydrolysis by acids, 

bases or certain enzymes, gallotannins yield glucose and gallic acids. The 

hexahydroxydiphenic acid of ellagitannins undergoes lactonization to produce ellagic 

acid (Chung, et al. 1998). 

• Condensed Tannins: 

Condensed tannins are structurally more complex than hydrolyzable tannins. Their 

complete structures are yet to be determined. They are mainly the polymerized products 

of flavan-3-ols and flavan-3,4-diols or a mixture of the two. The polymers, referred to 

as “flavolans”, are popularly called condensed tannins. Condensed tannins are widely 

distributed in fruits, vegetables, forage, 

plants, cocoa, red wine and certain food grains such as sorghum, finger millets, and 

legume (Chung, et al. 1998). 

Phenolic compounds are known with their high level of antioxidant activities 

and this property of phenolics is mainly due to their redox properties, which allow them 

to act as reducing agents, hydrogen donators and singlet oxygen quenchers (Kahkönen, 

et al. 1999). The antioxidant activity of the dietary polyphenolics is considered to be 

much greater than that of the essential vitamins, therefore contributing significantly to 

the health benefits of fruits (Tsao and Deng 2004). Before going into detail about the 
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antioxidant activity of phenolic compounds, it is important to learn what antioxidants 

are and what are their action towards free radical species. 

 

2.3. Antioxidants 
 

Organisms develop a series of defence mechanisms as they exposure to free 

radicals from a variety of sources. Defence mechanisms against free radicals include i) 

preventative mechanisms, (ii) repair mechanisms, (iii) physical defences, and (iv) 

antioxidant defences (Kirschvink, et al. 2007, Valko, et al. 2007).  

An antioxidant may be defined as ‘any substance that when present at low 

concentrations, compared with those of the oxidizable substrate significantly delays or 

inhibits oxidation of that substrate’ (Antolovich, et al. 2002, Prior and Cao 1999). The 

molecular structure of antioxidants is so suitable that they can safely react with free 

radicals and they are willing to give up their own electrons to free radicals. Antioxidants 

are not only donate a hydrogen atom, but also form a radical with low reactivity and in 

this state there is no further possibility of antioxidants to react with lipids (Madhavi, et 

al. 1996). 

 Antioxidants are of two types based on mechanism of action; primary or chain-

breaking and secondary or preventative antioxidants. Primary antioxidants, such as 

Vitamin E and beta-carotene, may either delay or inhibit the initiation step by reacting 

with a lipid radical or inhibit the propagation step by reacting with peroxyl or alkoxyl 

radicals. Secondary antioxidants, usually enzymes, retard the rate of chain initiation by 

various mechanisms. Binding metal ions, scavenging oxygen, decomposing 

hydroperoxides to nonradical products, absorbing UV radiation and deactivating singlet 

oxygen are the processes that secondary antioxidants follow in the prevention of lipid 

oxidation (Antolovich, et al. 2002, Scheibmeir, et al. 2005, Madhavi, et al. 1996). 

The antioxidant enzymes inside cells are an important defense against free 

radicals. Enzymatic antioxidant defences include superoxide dismutase, glutathione 

peroxidase and catalase. The catalytic activity of these enzymes allows the 

transformation of superoxide anion into hydrogen peroxide and water, thereby 

inactivating important amounts of oxidants. Trace-elements, such as selenium zinc, 

copper and manganese play an important catalytic role for the enzymatic activity 

(Kirschvink, et al. 2007). Non-enzymatic antioxidants are represented by ascorbic acid 
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(Vitamin C), α-tocopherol (Vitamin E), glutathione (GSH), carotenoids, flavonoids, and 

other antioxidants (Valko, et al. 2007). 

 

2.3.1. Reaction of Antioxidants 
 

Lipid peroxidation is an important process that gives rise to many radicals such 

as lipid radical, peroxyl radical and alkoxyl radical. To understand the role of 

antioxidants in inhibiting lipid peroxidation, the reaction of antioxidants towards these 

radials should be taken into account. 

Primary antioxidants may either delay or inhibit the initiation step by reacting 

with a free radical or they may inhibit the propagation step by reacting with the peroxyl 

or alkoxyl radicals. The reaction of antioxidant towards these radicals can be seen below 

(Madhavi, et al. 1996, Antolovich, et al. 2002). 

 

L● + AH   LH + A● 

LOO● + AH   LOOH + A● 

LO● + AH   LOH + A● 

 

where, 

AH: an antioxidant 

L●: lipid radical 

LOO●: peroxyl radical 

LO●: alkoxyl radical 

 

It is seen from the above reactions that after donating a H atom to the radicals, 

antioxidants form antioxidant free radicals (A●). Once antioxidant free radicals are 

formed they are neutralized by forming nonradical compounds. 

 

 A● + LOO●                LOOA 

 A● + LO●  LOA 

 

If there is an increment in the A-H and L-H bond dissociation energies, the 

activation energy of the antioxidant reactions increases. Hence, the efficiency of the 
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antioxidant increases with decreasing A-H bond strength. In other means, the weaker A-

H bonds yields the more efficient antioxidants (Antolovich, et al. 2002). 

 

2.4. Antioxidative Activity of Polyphenols 

 
Antioxidant activity of polyphenols means first of all radical scavenging 

associated with their simultaneous oxidizing (Filipiak 2001). To be effective against 

free-radical-mediated cell disturbances, the antioxidants or free-radical scavengers must 

have several important characteristics. These criteria are as follows: 

o The scavenger (antioxidant) must get to the right site within the cell of the 

relevant tissue in a concentration that is sufficient to allow effective competition 

with neighboring molecules. 

o The scavenger (antioxidant) must get to the right site at the right time in order to 

interact with transient damaging free-radical species as they are formed.  

o The scavenger (antioxidant) must be able to interact with the toxic species 

sufficiently rapidly to ensure successful competition with biologically sensitive 

loci in the immediate vicinity of free radical production. 

o The scavenger (antioxidant) must have acceptable biological properties, that is, 

its inherent toxicity must be low. 

o Finally in summary, the scavenger (antioxidant) must get to the right site at the 

right time and in the right concentration; it must have acceptable low intrinsic 

toxicity for use under conditions in vivo (Madhavi, et al. 1996). 

Antioxidants are divided into two groups according to their origin as ‘natural 

antioxidants’ and ‘synthetic antioxidants’. Most of the synthetic antioxidants are of the 

phenolic type. The differences in their antioxidant activities are related to their chemical 

structures, which also influence their physical properties such as volatility, solubility 

and thermal stability (Madhavi, et al. 1996). The commercially available and currently 

used synthetic antioxidants are butylated hydroxyanisole (BHA), butylated 

hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ). In recent years, there is an 

increasing interest in natural antioxidants and subsequently looking through the 

literature it is recognized that the replacement of synthetic antioxidants by natural ones 

may have several benefits and much of the research on natural antioxidants has focused 

on phenolic compounds, in particular flavonoids as potential sources of natural 
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antioxidants (Balasundram, et al. 2006, Moure, et al. 2001, Bonilla, et al. 2006). 

Structural features and nature of substitutions on rings B and C determine the 

antioxidant activity of flavonoids. These can be summarized as follows: 

o The degree of hydroxylation and the positions of the –OH groups in the B ring, 

in particular an ortho-dihydroxyl structure of ring B (catechol group) results in 

higher activity as it confers higher stability to the aroxyl radical by electron 

delocalisation or acts as the preferred binding site for trace metals. 

o The presence of hydroxyl groups at the 3’-, 4’-, and 5’-positions of ring B (a 

pyrogallol group) has been reported to enhance the antioxidant activity of 

flavonoids compared to those that have a single hydroxyl group. However, under 

some conditions, such compounds may act as pro-oxidants, thus counteracting 

the antioxidant effect. This is consistent with the observation of Seeram and Nair 

who reported that the conservation of the 3’,4’-dihydroxyphenyl to 3’,4’,5’-

trihydroxylphenyl increases the antioxidant activity for anthocyanidins but 

decreases the activity for catechins. 

o A double bond between C-2 and C-3, conjugated with the 4-oxo group in ring C 

enhances the radical scavenging capacity of flavonoids. 

o A double bond between C-2 and C-3, combined with a 3-OH, in ring C, also 

enhances the active radical scavenging capacity of flavonoids, as seen in the 

case of kaempferol. Substitution of the 3-OH results in increase in torsion angle 

and loss of coplanarity and subsequently reduced antioxidant activity. 

o Substitution of hydroxyl groups in ring B by methoxyl groups alters the redox 

potential, which affects the radical scavenging capacity of flavonoids 

(Balasundram, et al. 2006). 

 

2.5. Olive Leaf and its Antioxidative Properties 

 
The principal letters of the oldest alphabets are symbols for an agricultural 

society. Alpha refers to an ox, beta to a house, gamma to a camel and zeta to an olive. In 

Hebrew, the name of olive is “Zait”. Arabs call it “Zaitun”, Cretans called it “Elaiwa” 

and the Greeks call it today “Elai”. In French and English it is referred to as “olive”, 

Romans first called it “olea” then “oliva”. The word became “vivax oliva”, which 

means “the one which has seven lives”. Turks encountered the olive when they arrived 
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in Anatolia and they first called it “zeytun” and then “zeytin”, which is the modern 

Turkish word for olive today. 

There are two species of tree in the Garden of Eden, the fig tree and the olive 

tree. The Fig tree is the “tree of the truth” and the olive tree is the “tree of longevity”. 

Since we began with the Garden of Eden, let’s go to the beginning of everything.  

“The moment when having had eaten the forbidden fruit, Adam and Eve were banished 

from the Garden of Eden. Adam, after falling from the Garden of Eden, felt that the end 

was near and he decided to beg God for his forgiveness upon himself and therefore, 

upon the humanity as a whole. Meanwhile, he sent his son Seth to the Garden of Eden. 

The guardian angel of the Garden of Eden gave Seth three seeds that he had taken from 

the tree of the knowledge of the good and evil telling him to bury these three seeds into 

his father’s mouth after his death. When Adam died, he was buried in the Mount Tabor. 

Three shoots sprouted from the ground on the site of his grave, an Olive Tree, a Cedar 

and a Cypress, three symbols of the Mediterranean flora. The first to get green among 

them is the Olive Tree. As the oldest statement referring to the Olive in the Old 

Testament as well other references in the New Testament and the Koran”, 

 

“olea prima arborum umnium est.” 

“The olive tree is the first tree of all.” (sadecezeytin 2005) 

 

In recent years, there is a growing interest obtaining the biologically active 

compounds from natural sources. The protective effects of diets rich in fruit and 

vegetables against cardiovascular diseases and certain cancers have been attributed 

partly to the antioxidants contained therein, particularly to phenolic compounds 

(Benavente-Garcia, et al. 2000).  

Olive tree is botanically known as Olea europaea and its products have been 

recognized as important components of a healthy diet because of their phenolic content. 

Large body of epidemiological studies has shown that the incidence of coronary heart 

disease and certain cancers, e.g., breast and colon cancers, is lowest in the 

Mediterranean basin where the diet is rich in olives and olive products (Al-Azzawie, et 

al. 2006). 

 Many data have been reported on the polyphenols of olive fruits and olive oil, 

but only few studies have been published on olive leaves (Savournin, et al. 2001). 
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 Olive leaf has known as a symbol of Mediterranean Region and peace since 

ancient times. Historically, olive leaf has been used as a folk remedy against fevers and 

other diseases such as malaria. Several reports have shown that olive leaf extract had the 

capacity to lower blood pressure in animals, to increase blood flow in the coronary 

arteries, to relieve arrhythmia and to prevent intestinal muscle spasms. These health 

benefits of olive leaf are probably due to its rich polyphenolic content (Benavente-

Garcia, et al. 2000). 

Three structural groups are important for determining the radical scavenging 

and/or antioxidative capacity of flavonoids. 

o The o-dihydroxy (catechol) structure in the B-ring, which confers greater 

stability to aroxyl radicals 

o The 2,3-double bond conjugated with a 4-oxo function, responsible for electron 

delocation from the B-ring 

o The presence of both 3- and 5-hydroxyl groups for maximal radical-scavenging 

capacity and strongest radical absorption.  

From these structures, it is mainly the o-dihydroxy (catechol) structure, which 

confers the antioxidant properties to the olive leaf extract (Benavente-Garcia, et al. 

2000). 

The stability of the aroxyl radical formed is another factor that determines the 

antioxidant potential of phenolic compounds. However, the aroxyl radical species of the 

olive leaf mono and polyphenols have molecular structures capable of an extensive 

electron delocation, which is a prerequisite for radical stabilization, generating multiple 

mesomeric structures. The decay rate constants of flavonoid aroxyl radicals generated 

by interrelation with other radicals show that all the most stable aroxyl radicals, without 

exception, contain the 3’,4’-catechol B-ring substitution pattern. All other polyphenolic 

compounds form far less stable aroxyl radicals (Benavente-Garcia, et al. 2000). 

 Olive leaf extract from Olea europaea leaves contain five groups of phenolic 

compounds. These are oleuropeosides, flavones, flavonols, flavan-3-ols and substituted 

phenols. The phenolic groups of olive leaf extract with their examples are given in 

Table 2.2 and the chemical structure of the most abundant phenolics from each of these 

groups is given in Figure 2.5. 
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Table 2.2. The phenolic groups of OLE with their examples 

(Source: Benavente-Garcia, et al. 2000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group   Examples 

 

 oleuropeosides               oleuropein 

    verbascoside 

 

flavones               luteolin-7-glucoside 

         apigenin-7-glucoside 

            diosmetin-7-glucoside 

                            luteolin 

                                   diosmetin 

 

                           flavonols           rutin 

 

flavan-3-ols   catechin 

 

substituted phenols   tyrosol 

         hydroxytyrosol 

      vanillin 

    vanillic acid 

caffeic acid 
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Figure 2.5. Groups of phenolics and chemical structures of the most abundant phenolics 

in olive leaf extract (Source: Benavente-Garcia, et al. 2000) 

 

Garcia et al. (2000) reported the sequence of the antioxidant capacity of the 

flavanoids in olive leaf extract as; 

 rutin > catechin ≈ luteolin > OL ≈ hydroxytyrosol > diosmetin > caffeic acid > 

verbascoside > oleuropein > luteolin-7-glucoside ≈ vanillic acid ≈ diosmetin-7-

glucoside > apigenin-7-glucoside > tyrosol > vanillin.  

This sequence of relative radical scavenging abilities confirm the importance of 

the flavonoid B-ring catechol structure that present in rutin, catechin and luteolin, the 

presence of a 3-hydroxyl free or glycosylated group (catechin and rutin), and the 2,3-

double bond conjugated with a 4-oxo function (rutin and luteolin). Although the 2,3-

double bond conjugated with a 4-oxo function is absent in catechin, its antioxidant 

activity is closer to rutin, that confirms the importance of flavonoid B-ring catechol 

structure and the presence of a free 3-hydroxyl group when scavenging ABTS●+ radical. 

From this sequence, it is understood that flavonols, flavan-3-ols and flavones with 

catechol structures are the most efficient phenolic compounds of olive leaf when 
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scavenging ABTS●+ radical and this ability increases as more free hydroxyl groups are 

present in the flavonoid structure. In addition, the flavonoids, oleuropeosides and 

substituted phenols are realized to show synergic behaviour in mixed form, as it is a 

characteristic for olive leaf extract with a high content of oleuropein (Benavente-Garcia, 

et al. 2000). 

 

2.5.1. Oleuropein 

 
Oleuropein is the principle active component in olive leaf extract (Olea 

europaea) and it is also present in olive oil and olive fruit (Caturla, et al. 2005, Japon-

Lujan and Castro 2006, Savournin, et al. 2001, Tuck and Hayball 2002). 

Oleuropein was discovered in 1908 by Bourquelot and Vintiles (Benavente-

Garcia, et al. 2000). The bitter compound oleuropein is the major constituent of the 

secoiridoid family in olive tree (Malik and Bradford 2006, Benavente-Garcia, et al. 

2000). Oleuropein is an ester that consists of elenoic acid and 3,4-

Dihydroxyphenylethanol. 3,4-Dihydroxyphenylethanol is more commonly known as 

hydroxytyrosol and it is the principal degradation product of oleuropein (Tuck and 

Hayball 2002, Tan, et al. 2003, Benavente-Garcia, et al. 2000). The structure of 

oleuropein and its metabolites are shown in Figure 2.6. 

 

 
Figure 2.6. Structure of oleuropein and its metabolites elenoic acid and hydroxytyrosol 

(Source: Al-Azzawie, et al. 2006) 
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Oleuropein is present in high amount in unprocessed olive fruit and leaves while 

hydroxytyrosol is more abundant in the processed olive fruit and olive oil (Tan, et al. 

2003).  

Oleuropein posses a wide range of pharmacologic and health promoting 

properties. It prevents cardiac diseases by protecting membrane lipid oxidation acting 

on coronary dilation and by antiarythmic action; improves the lipid metabolism to make 

the obesity problems better; protects enzymes and cell death in cancer patients. Many of 

these properties have been observed as a result of the antioxidant character of 

oleuropein (Japon-Lujan, et al. 2006, Japon-Lujan and Castro 2006, Al-Azzawie, et al. 

2006). Antioxidant activity of oleuropein is mainly due to the hydroxytyrosol moiety in 

its structure (Benavente-Garcia, et al. 2000). 

Oleuropein acts as an antioxidant at both prevention and intervention levels. 

Formation of free radicals is prevented by its ability to chelating metal ions such as Cu 

and Fe. Intervention of oleuropein with already present free radicals may come about 

through providing hydroxyl group to directly neutralize and quench free radicals (Al-

Azzawie, et al. 2006). 

Oleuropein and its metabolite hydroxytyrosol both posses the structural 

requirement needed for optimum antioxidant activity; it is the catechol structure in the 

B-ring. Oleuropein and hydroxytyrosol have been shown to be scavengers of superoxide 

ions and inhibitors of the respiratory burst of neutrophils and hypochlorous acid-derived 

radicals. Both compounds also scavenged hydroxyl radicals with oleuropein showing 

greater activity. These compounds are also reported to be effective scavengers of the 

1,1-diphenyl-2-picrylhydrazyl (DPPH) radical (Al-Azzawie, et al. 2006). 

Oleuropein is also known with its antimicrobial activity against viruses, 

retroviruses, bacteria, yeasts, fungi, molds and other parasites (Benavente-Garcia, et al. 

2000). Micol, et al. (2005) reported the antiviral activity of oleuropein against the viral 

haemorrhagic septicaemia virus (VHSV), which infects continental and sea farmed fish 

and a wide range of wild marine species in Europe, North America and Japan. 

Oleuropein is reported to show in vitro capacity to inhibit viral infectivity in a dose 

dependent manner when preincubated with the virus before infecting cells and also 

when administered post-infection. It is indicated that the olive leaf extract can be 

considered as a potential source of natural, selective, safe, low environmental impact 

and cost-effective antivirals with relevant interest in aquaculture. Furthermore, 
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oleuropein can be considered as a lead compound for the rational design of therapeutic 

agents for other rhabdovirus and/or enveloped virus (Micol, et al. 2005). 

Due to the biological activities, it is quite important to determine the oleuropein 

amount in olive leaf. Analytical methods used in the qualitative and quantitative 

determination of polyphenols involve techniques of chromatographic separation such as 

HPLC and GC-MS. However, these techniques are expensive, reagent and time 

consuming. On the other hand, biosensors are attractive alternative techniques in 

polyphenols detection due to their unique characteristics such as selectivity, low cost, 

miniaturization, easy automation, time saving and simplicity of operation and 

manufacturing (Gomes, et al. 2004). 

 

2.6. Biosensors - Definitions 

 
The term sensor can be defined as a device or system including control and 

processing electronics, software and interconnection networks that responds to a 

physical or chemical quantity by producing an output which is a measure of that 

quantity (Patel 2002). Sensors can be divided into three categories, namely physical 

sensors, chemical sensors and biosensors. Physical sensors are used for measuring 

distance, mass, temperature, pH and etc (Eggins 2002). According to the common 

nomenclature proposal, chemical sensors are the compact devices that transform a 

chemical information into an analytically useful and measurable signal. Chemical 

sensors usually contain two basic components that are connected in series; a chemical 

recognition system and a physico-chemical transducer. The selective and reversible 

detection of the chemical sensors is accompanied by the electrical signal that is obtained 

from the physicochemical transducer (Thevenot, et al. 2001, Vastarella 2001). 

Biosensors are special chemical sensors in which the recognition system utilises 

a biochemical mechanism (Thevenot, et al. 2001, Vastarella 2001). 

A biosensor is an analytical tool or system consisting of a biological material 

that is in intimate contact with a suitable transducer which can convert a biochemical 

signal into a qualifiable electrical signal (Gronow 1991, Freire, et al. 2003b). 

Biosensors can be also defined as analytical devices incorporating biological 

materials such as enzymes, tissues, micro-organisms, antibodies, cell receptors or 

biologically derived materials or a biomimic component in intimate contact with a 
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physico-chemical transducer or transducing microsystems (Mello and Kubota 2002, 

Malhotra, et al. 2005). 

According to International Union of Pure and Applied Chemistry (IUPAC), a 

biosensor is precisely defined as a self-contained integrated device, capable of providing 

specific quantitative or semi-quantitative analytical information using a biological 

recognition element, which is retained in direct spatial contact with a transduction 

element (Vastarella 2001). 

 Schematical representation of a biosensor system is given in Figure 2.7. 

 

 
Figure 2.7. Biosensor system  

(Source: Streffer 2002) 

 

As it is seen from the above figure, biosensors are made up of three different but 

strictly connected elements, the selector (biocomponent), the transducer and the 

detector. The selector is the part of the biosensor that selectively binds and recognizes 

the compound to be detected; the transducer transfers the signal from the output domain 

of the recognition system to a physically measurable signal; the detector permits to 

display the chemico-physical signal into a suitable form (Vastarella 2001). 

 

2.7. Classification of Biosensors 
 

All biosensors rely on highly specific recognition events to detect the target 

analytes and suitable transducers to obtain measurable signal for the analyte of interest. 

Figure 2.8 shows some analytes that are possible to be analyzed in a biosensor system 
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(Mello and Kubota 2002). When this figure is investigated, it is understood that there 

are various combinations of the biological material and the transducer depending on 

each sample of interest and the type of physical magnitute to be measured. So, it is clear 

that the classification of the biosensors is made in agreement of their composition. 

Biosensors are classified based on their biological recognition elements or transducers 

or alternatively the combination of these two aspects (Vastarella 2001).  

 

 
Figure 2.8. Biocomponent and transducers in a biosensor system 

 (Source: Mello and Kubota 2002) 
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Biological elements are the major selective elements in a biosensor system. The 

type of the biological recognition element determines the degree of selectivity or 

specificity of the biosensor. Biological recognizers in a biosensor system can be 

enzymes, tissues, antibodies, microorganisms, cells and organelles (Voort, et al. 2005). 

A transducer in a biosensor system converts the biological signal into an electrical one. 

The transducer element may be categorized into several groups. The major groups are 

electrochemical, optical, piezoelectric, acoustic, wave and thermal (Gooding 2006).  

 

2.7.1. Biological Recognition Elements 

 
 The biorecognition molecule such as an enzyme, antibody, sequence of DNA, 

peptide or even a microorganism provides the biosensor with a high degree of 

selectivity for the target analyte so that the molecule of interest can be picked out by the 

biosensor from a matrix of many other molecules (Gooding 2006). The biological 

recognizers in a biosensor system are divided in three major groups; biocatalytic, 

bioaffinity and hybrid receptors (Mello and Kubota 2002). 

 

Biocatalytic receptors: 

 

Among the other types of biological recognition elements, the biocatalytic-based 

biosensors are the best known and studied and have been most frequently applied to 

biological matrices since pioneering work of Clark, et al. (1962). Three types of 

biocatalyst are commonly used. These are enzymes, whole cells and tissue slices. 

Among the enzymes used as biocatalyst, mono or multi enzymes take the attention. 

These are the most common and well developed recognition systems. Examples to 

whole cells are microorganisms and cell organelles or particles. Plant or animal tissue 

slices are taken into consideration under the type of tissue slices (Thevenot, et al. 2001). 

In the case of biocatalytic receptors, enzymes, microorganisms or tissue slices 

are employed and a reaction is catalyzed with these birecognition molecules involving 

the analyte to give a product (Gooding 2006). 

Biosensors which use microorganisms, plant or animal tissue as biocomponents 

have the advantage of the elimination of the unnecessary procedures such as extraction 
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and purification because of the fact that enzymes are used as active components (Mello 

and Kubota 2002). 

 

Bioaffinity receptors: 

 

Biorecognition molecules commonly used in affinity biosensors may be 

antibodies, DNA, peptides and lectins. Affinity biosensors are characterised by a 

binding event between the biorecognition molecule and the analyte often with no further 

reaction occurring (Gooding 2006). Affinity based biosensors provide selective 

interactions with a given ligand to form a thermodynamically stable complex (Mello 

and Kubota 2002). Hence, transducing the biorecognition element is a challenging task. 

As this class of biosensor is compatible with the detection of virtually all biological 

agents, researchers attempt to develop portable devices for detecting toxins, microbes 

and viruses.  Transduction of affinity biosensors has been achieved using labelled 

species and using label free apprpoaches (Gooding 2006). 

 The potential use of immunosensors is due to their general applicability, 

specifity, selectivity of the antijen-antibody reaction. The antigen–antibody complex 

may be utilized in all types of sensors. The physichochemical change induced by 

antigen–antibody binding does not generate an electrochemically detectable signal. 

Therefore, enzymes, fluorescent compounds, electrochemically active substrates, 

radionuclides or avidin-biotin complexes are used to label either the antigen or the 

antibody. The most common transducers to immunosensors are acoustic and optical 

systems (Mello and Kubota 2002). 

 

Hybrid receptors: 

 

 The principle of selective detection by hybrid receptors is based on the detection 

of a unique sequence of nucleic acid bases through hybridization. The nucleic acid 

structure is a double helix conformation of two polynucleotide strands. Each strand is 

constituted of a polymeric chain that contains Adenin, Thymine, Cytosine and Guanine 

bases. These bases are complemented by three hydrogen bonds in the C-G base pair and 

by two hydrogen bonds in the T-A base pair. This property of base pairing gives the 

ability of one single strand to recognize its complementary strand to form a duplex. 

DNA sensors composed of well defined sequences of single strands as biological 
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receptors in their immobilized form onto a solid matrix. A DNA probe is added to DNA 

or RNA from an unknown sample. If the probe combines with the unknown nucleic acid 

because of pairing of complementary base recognition, detection and identification are 

possible. DNA-based analytical method seems to be the only method for detecting 

genetic modifications and is the most sensitive approach for detecting microorganisms 

(Mello and Kubota 2002). 

 

2.7.2. Transducers 
 

 The transduction element of a biosensor must be capable of converting a specific 

biological reaction (binding or catalytic) into a response which can be processed into a 

useable signal (Scott 1998). The transducer part of the sensor serves to transfer the 

signal from the output domain of the recognition system mostly to electrical domain. 

Bi-directional signal transfer which means the transfer of non-electrical signal to 

electrical one and vice versa is provided by the transducer. The synonyms of transducer 

are detector, sensor or electrode but the term transducer is preferred to avoid confusion 

(Thevenot, et al. 2001). The specifity of the biorecognition element for a substrate can 

be monitored by several ways such as oxygen consumption, hydrogen peroxide 

formation, changes in NADH concentration, fluorescence, absorption, pH change, 

conductivity, temperature or mass. Hence, the biosensor can be classified in several 

types according to its transduction element (Mello and Kubota 2002). The commonly 

used transducers are outlined in Table 2.3. 
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Table 2.3. Commonly used transducers  

(Source: Scott 1998) 

Transducer    Examples 

Electrochemical    

  Amperometric    Clark oxygen electrode, chemically modified electrodes 

  Potentiometric    Ion-selective electrodes, field effect transistors 

  Conductimetric  Platinum electrodes 

Optical    Optical fibres, evanescent field devices 

Acoustic   Surface acoustic wave devices 

Thermal   Thermistor, thermopile 

Piezoelectric   Piezoelectric crystals 

 

 Amperometry was the basis of the first biosensor, designed by Clark and Lyons 

in 1962, in which glucose oxidase was immobilized next to a Clark oxygen electrode. It 

has continued to be the most popular approach to biosensing largely due to its inherent 

simplicity, the ease of mass production, the low cost and availability of instrumentation. 

The technique involves the measurement of current at a fixed potential. The signal is 

dependent on the rate of mass transfer to the electrode surface and hence it is common 

to use a diffusion barrier to minimize the variations due to turbulance and to extend the 

linear range of the sensor. In the simplest mode of operation, the release of an 

electroactive product or consumption of reactant due to a biocatalytic reaction can be 

monitored directly at an inert working electrode in amperometry (Scott 1998). 

 Potentiometric sensors are also known as ion-selective electrodes. These sensors 

are a popular class of analytical sensors that generally posses long lifetimes and 

acceptable mechanical stability. The main appeal lies in the simple instrumentation, low 

cost and their suitability for continuous monitoring. However, these sensors recently 

undergone a revolution in terms of lowering the detection limits to ultratrace levels. 

Consequently they are being used to perform billions of measurements each year in 

virtually every hospital throughout the world. A major problem with potentiometric 

sensors is the leaching of the membrane components into the sample but this influence 

has been improved by incorporating minute amounts of electroactive ingredients (Pejcic 

and Marco 2006). 

 Conductiometric biosensors are based on the principle of the change of 

conductivity of the medium when microorganisms metabolize uncharged particles or 
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intermediates such as carbohydrates or lactic acid. The amount of the charged 

metabolites is directly proportional to the growth rate of the organism and it can be 

easily quantified. By ion conductometric transducers it is possible to monitor many 

biological membrane receptors. Conductimetric biosensors are usually nonspecific and 

have a poor signal noise ratio therefore, have been little used (Mello and Kubota 2002). 

 Optical biosensors comprise a rather heterogeneous group of sensors in which 

the interaction of light with an immobilized biologically active material is sensed. They 

often contain a light source in addition to the signal transducer. Optical sensors offer a 

wide range of advantages; they are not susceptible to disturbances by electric fields, 

they are suited for continuous indication and the shape remains chemically unchanged 

during the measurement. Although optical sensors offer a number of advantages there is 

a limitation in their usage. They should be operated only in the dark since the day light 

disturbs the measuring procedure (Scheller and Schubert 1992). 

 Even if the electrochemical and the optical sensors dominate, other forms of 

transducers such as thermal and acoustic transducers are also used. Thermal and 

acoustic transducers are sufficiently effective  in analytical applications, they have the 

advantage of miniaturization and the possibility of construction of arrays of sensors for 

simultaneous determination of several compounds but a characteristic problem of these 

transducers are that they have a lack of selectivity (Mello and Kubota 2002). When a 

chemical reaction is catalyzed by enzymes or microorganisms, there is a change in 

energy and this change can be monitored by thermal transducers. However heat cannot 

be confined in an adiabatic system so, there is always a loss of information due to the 

fact that the produced heat is partly wasted by irradiation, conduction or convection 

(Mello and Kubota 2002). 

 The principle of piezoelectric sensors is that the frequency of vibration of an 

oscillating crystal is decreased by the adsorption of a foreign material on its surface. 

The crystal is sensitized by covering it with material binding or reacting with the 

analyte. Piezoelectric sensors are used for the measurement of ammonia, nitrous oxides, 

carbon monoxide, hydrocarbons, hydrogen, methane, sulfur dioxide and certain 

organophosphate compounds.  

 Up to this point, biosensor classes depending both on the biorecognition element 

and the transducer are explained. To sum up, enzymes are the biological components 

most commonly used in biosensors while electrochemical transduction is the most 

popular method often employing potentiometric or amperometric techniques. In 
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potentiometric devices the analytical information is obtained by converting the 

biorecognition process into a potential signal, whereas the amperometric types are based 

on monitoring the current associated with oxidation or reduction of an electroactive 

species involved in the recognition process (Freire, et al. 2003b). Amperometry is the 

most valuable tool in the electrochemical detection of polyphenols and due to this 

reason much attention will be given to amperometric biosensors. 

 

2.8. Amperometric Biosensors 
 

Amperometric biosensors are based on the measurement of the current resulting 

from the oxidation or reduction of electroactive species (Vastarella 2001). It is usually 

performed by maintaining a constant potential at a Pt, Au or C based working electrode 

or an array of electrodes with respect to a reference electrode, which may also serve as 

the auxiliary electrode, if currents are low (Thevenot, et al. 2001). The resulting current 

is correlated to the reaction of electroactive substances within the adjacent biocatalytic 

layer or it can be correlated to the bulk analyte concentration of electroactive species 

(Vastarella 2001). As biocatalytic reaction rates are often chosen to be first order 

dependent on the bulk analyte concentration, such steady-state currents are usually 

proportional to the bulk analyte concentration (Thevenot, et al. 2001). 

An amperometric biosensor may be more attractive due to its high sensitivity 

and a wide linear range. It offers more precise and accurate results and it is also not 

necessary to wait until the thermodynamic equilibrium is obtained. Therefore, 

amperometric enzymatic electrodes hold a leading position among the presently 

available biosensor systems. These devices combine the selectivity of the enzyme for 

the recognition of a given target analyte with the direct transduction of the rate of the 

biocatalytic reaction into a current signal, allowing a rapid, simple and direct 

determination of various compounds. However, the selectivity of the amperometric 

devices is only governed by the redox potential of the electroactive species present 

(Mello and Kubota 2002, Freire, et al. 2003b). 
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2.8.1. Response Characteristics of Amperometric Sensors 
 

Some criteria must be satisfied in the use of amperometric sensors for the best 

detection performance. Accordingly, it is useful to examine how standard protocols for 

performance criteria may be defined in accordance with the standard IUPAC protocols. 

 

Response (slope) of the electrode: 

One of the most important response characteristics of amperometric electrodes is the 

slope considered for the linear concentration range. The slope of the amperometric 

electrodes can be determined either by the graphical method or by the linear regression 

method. From the graphical method, the slope of the amperometric electrode is 

calculated as the tangent of the angle formed in the calibration line (Nejem 2004). 

 

Limit of detection: 

The limit of detection is defined by IUPAC as the concentration at which, under 

specified conditions, the intensity of the current I, deviates from the average value by a 

multiple of the standard error of a single measurement of the intensity of the current in 

this region. The amperometric electrode limit of detection can be considered as the 

concentration 

i) where the limiting current intensity value is equal with the one obtained for the buffer 

solution, 

ii) where the limiting current intensity value is double the one obtained for the buffer 

solution, 

iii) below the one where the intensity of the current remains constant (Nejem 2004). 

 

Linear concentration range: 

The linear concentration range can be defined by the range of concentration of the 

substrate over which the sensitivity of the electrode is constant with a specific variation. 

This response characteristic is very important because the activity of concentration of all 

the solutions to be measured must lie within the linear concentration range (Nejem 

2004). 
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pH range: 

The pH value plays a critical role in the biochemical reaction that occurs at the 

electrode-solution interface. The enzymes are working in a specific pH range so, it is 

very important to optimize the pH to find the best catalytic activity of the enzyme 

(Nejem 2004). 

 

Response time: 

IUPAC defines the response time as the time which elapses between the instant when 

the electrodes of the amprometric cells are brought into contact with a sample solution 

or at which the activity of the ion of intrest in solution is changed and the first instant at 

which the slope becomes equal to a limiting value selected on the basis of the 

experimental conditions. Response time is a function of the kinetics of the reaction that 

takes place on the electrode surface and it increases as the concentration of the analyte 

decreases (Nejem 2004). 

 

The influence of temperature: 

Similar to pH, the response of the sensor is highly affected by the temperature. The 

increase of the temperature will favor the kinetics and the thermodynamics of the 

processes that occur at the sensor surface and as a result the slope will increase. It is also 

very important to optimize the temperature for the biochemical reaction and maintain it 

in its optimized value during the experimental work (Nejem 2004). 

 

2.8.2. Selectivity of Amperometric Sensors 
 

Selectivity is related to the accuracy and precision of the measurements in the 

presence of the inferring substances. Two classes inferring substances effects the 

response of amperometric sensors. These are the substances whose response is similar 

to the analyte and the substances which interact with the detected compound. Both 

mixed solution and separate solution methods can be used for the determination of 

amperometric selectivity coeffiecients (Nejem 2004). In the mixed solution method, 

selectivity is expressed as the as the ratio of the signal output with the analyte alone and 

with the interfering substance alone at the same concentration as that of the analyte. In 

the separate solution method, interfering substances are added, at their expected 
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concentration, into the measuring cell, already containing usual analyte concentrationat 

the mid-range of its expected value. Selectivity is then expressed as the percentage of 

variation of the biosensor response (Thevenot et a. 2001). 

 

2.8.3. Enzymes for Amperometric Biosensors 
 

 Enzymes are proteins which catalyze the substrate specific reactions extremely 

rapidly. In an analytical process, enzymes are used for specific estimation of the 

corresponding substrates and they provide a significant amplification system for the 

sensitive detection of a substrate. Enzymatic biosensors utilize specific enzymes for the 

capture and catalytic generation of the product (Patel 2002). Generation of the product 

is directly determined by using a range of transducers however a majority of enzyme 

based biosensors employ the amperometric transduction method (Pejcic and Marco 

2006). 

Enzymes are divided into six major classes according to their function. These are 

oxido-reductases, transferases, hydrolases, isomerases and ligases (Streffer 2002). 

Among the enzymes commercially available, oxidases are the most often used in 

biosensor applications. This type of enzyme offers the advantages of being stable, and 

in some situations does not require coenzymes or cofactors (Mello and Kubota 2002). 

Oxido-reductases can be classified into four groups; oxidases, dehydrogenases 

peroxidases and oxygenases. Oxidases are the enzymes capable of transfering hydrogen 

from a substrate to molecular oxygen. Oxidases are also divided into two groups based 

on the product formed during catalysis. These are water producing (copper containing) 

and hydrogen peroxide producing oxidases (Streffer 2002). Copper containing oxidase 

enzyme laccase is the most commonly used enzyme in biosensor applications. 

 

2.8.3.1. Laccases 
 

Oxidation reactions are essential for biosensor applications but these reactions 

have some drawbacks such as having non-specific or undesirable side reactions and 

using of environmentally hazardous chemicals. However, enzymatic oxidation is known 

to be a promising technology with a lot of advantages over chemical oxidation. 

Enzymes are specific and biodegradable catalysts and enzyme catalyzed reactions are 
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carried out in mild conditions. Several enzymes are responsible for the enzymatic 

oxidation and enzymes recycling on molecular oxygen as an electron acceptor are the 

most interesting ones. Thus, laccase is a particularly promising enzyme for the 

oxidation recations (Couto and Herrera 2006). 

Laccase (EC 1.10.3.2, p-diphenol: dioxygen oxidoreductase) is an 

oxidoreductase able to catalyze the oxidation of various aromatic compounds, 

particularly phenols with the concomitant reduction of oxygen to water. Laccases 

exhibit four copper atoms, which play an important role in the enzyme catalytic 

mechanisms (Duran, et al. 2002). Laccase was first described by Yoshida in 1883 which 

makes it one of the oldest enzymes ever described and it was characterized as a metal 

containing oxidase by Bertrand in 1985 (Mayer and Staples 2002). 

 Until recently, laccase is known to be widely distributed in higher plants, in 

fungi and in insects but now there is a strong evidence for their widespread distribution 

in some bacterial strains (Claus 2004). 

In a typical laccase reaction, a phenolic substrate is subjected to a one-electron 

oxidation giving rise to an aryloxyradical. This active species can be converted to a 

quinone in the second stage of the oxidation. The quinone as well as the free radical 

product, undergoes non-enzymatic coupling reactions leading to polymerization (Duran, 

et al. 2002, Minussi, et al. 2002). Laccase does not require hydrogen peroxide (H2O2) as 

co-substrate and any co-factors for the catalytic oxidation which makes the use of 

laccase very useful in oxidation reactions (Roy, et al. 2005, Gamella, et al. 2006). 

Laccases are found in nature in different forms. Among the different laccases, 

the enzymes isolated from Trametes strains are generally more stable (Ncanana, et al. 

2007). The structure of laccase from Trametes versicolor is given in Figure 2.9. 

 
Figure 2.9. Trametes versicolor laccase  

(Source: The Armstrong Research Group 2005) 
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The spectroscopic studies have shown that the catalytic unit of the laccase 

contains four copper atoms classified in three types, 

Type I (T1): paramagnetic ‘blue’ copper, 

Type II (T2): paramagnetic ‘non-blue’ copper and 

Type III (T3): diamagnetic spin-coupled copper-copper pair (Duran, et al. 2002, Claus 

2004). 

The copper ions in the active site of the laccase, provide electron transfer mechanism by 

switching their oxidation states between Cu(II) and Cu(I). The function of the T1 center 

is to provide the long-range intramolecular electron transfer from the substrate to the 

T2/T3 redox copper center. The T2/T3 copper center plays a key role in the reduction of 

oxygen. Between the two T3 coppers there is an oxygen ligand, either OH- or O-2, 

which coordinates with the T2 and T3 copper ions. The solvent and oxygen have access 

to the T2/T3 center through two channels. The fully reduced trinuclear copper center 

reacts with dioxygen to generate a peroxide level intermediate and finally, molecular 

oxygen is reduced to water (Ivnitski and Atanassov 2007), 

 
O2 + 4H+ + 4e-    2H2O 
 

Laccases have wide substrate specificity and great potential for the 

determination of phenolic compounds (Timur, et al. 2004). The broad specificity of the 

phenolic substrates enables laccase to be developed as a biosensor for the determination 

of total phenols (Quan, et al. 2004). 

In several studies it is reported that laccase in its immobilized form is more stable than 

laccase in solution (Fei, et al. 2007). Looking through the literatute, it is seen that there 

are various studies using immobilized laccase in biosensor applications. Laccase 

enzyme was immobilized on different supports in biosensor applications such as carbon 

fibres, redox hydrogel on glassy carbon, graphite, carbon paste, polyethersulphone 

membranes and platinum (Gomes, et al. 2004).  

 

2.8.4. Enzyme Immobilization in Amperometric Biosensors 
 

The success behind the enzyme biosensor relies on how well the enzyme bonds 

to the sensor surface and remains there during use (Vastarella 2001). Thus, the 

stabilization and storage of the enzyme is an important criterion in the biosensor 

development. Immobilization is the commonly used method for the bonding of the 

4Cu+2 
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enzyme to the sensor surface (Roy, et al. 2005). Depending on the nature of the support 

and properties and stability of the biomolecule, several methods can be used for 

immobilizing the enzyme onto the electrode surface including physical adsorption, 

covalent binding, encapsulation, entrapment and cross-linking (Freire, et al. 2003b). 

These methods can be schematically seen in Figure 2.10. 

 

 

 
Figure 2.10. Principle methods of immobilization  

(Source: Vastarella 2001). 

 

The selection of an appropriate immobilization method depends on the nature of 

the biological element, type of transducer used, physicochemical properties of the 

analyte and operating conditions for the biosensor (Mello and Kubota 2002). A 

successful matrix should immobilize or integrate the biomolecules stably at a transducer 

surface and efficiently maintain the functionality of the biomolecules while providing 

accessibility towards the target analyte and an intimate contact with the transducer 

surface. The development of a good biocompatible matrix for immobilization of 

biomolecules is very crucial to improving the analytical performance of a biosensor 

(Xu, et al. 2006). Although, the most common methods for immobilization of 

biocomponents are adsorption and covalent bonding, the suitability of a method for a 
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particular task is at present still being empirically elucidated. However, some generally 

valid aspects of immobilization techniques are outlined below (Scheller and Schubert 

1992). 

 

Physical Adsorption: 

 

The pysical adsorption of the biocomponent is the simplest and oldest method of 

immobilization. It involves reversible surface interactions between enzyme and support 

material. The forces involved are mostly electrostatic as Van der Waals forces, ionic 

and hydrogen bonds. These forces are weak but they are sufficiently large in number in 

order to enable the necessary binding. Existing surface chemistry between enzyme and 

support is used in this method so, neither activation nor chemical modification are 

required. Thus, little damage is done to enzymes with this method. The simplest and 

cheap procedure consists of mixing together enzyme and support under suitable 

conditions of pH, ionic strength, incubation period and this is followed by the collection 

of the immobilized material and extensive washing step to remove the non-bound 

biological component (Vastarella 2001). Anionic and cationic ion exchange resins, 

active charcoal, silica gel, clay, aluminum oxide, porous glass and ceramics are being 

currently used as active material. The carrier should exhibit high affinity and capacity 

for the biomolecule and the latter must remain active in the adsorbed state. The carrier 

should also adsorb neither reaction products nor inhibitors of the biocatalyst. Since the 

adsorption of a protein to a surface is a reversible process, changes of pH, ionic 

strength, substrate concentration and temperature may detach the biomolecule from the 

carrier (Scheller and Schubert 1992). The most significant disadvantage is the leakage 

of biomolecules from the support with probable desorption and contamination of the 

solution. Physical factors as flow rate, bubble agitation, particle-particle abrasion can 

affect the desorption of the biocatalyst from the support. Therefore this method alone 

has not been used under flow conditions (Vastarella 2001). Despite having some 

limitations and disadvantages, immobilization by physical adsoption also offers an 

advantage additional to the simplicity of the procedure. It does not need 

nonphysiological coupling conditions or chemicals potentially impairing enzyme or cell 

functions. Hence, an activity loss is seldom observed in this method (Scheller and 

Schubert 1992). 
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Covalent Binding: 
 

This method involves the formation of covalent bonds. Functional groups 

available in the enzymes or protein mainly originate from the side chain of the amino 

acids (Mello and Kubota 2002). Functional chemical groups belonging to amino acid 

residues on the surface of the enzyme that are not essential for activity may be attached 

covalently to chemically activated supports (Vastarella 2001). The immobilization by 

covalent binding is conducted in three steps; activation of the carrier, coupling of the 

biomolecule and removal of the adsorbed biomolecules. A disadvantage of covalent 

coupling is the frequently occuring loss of activity (Scheller and Schubert 1992). 

 

Entrapment: 

  

 Immobilization by entrapment differs from adsorption and covalent binding in 

the case that enzymes are free in solution but they are restricted by the lattice structure 

of the entrapment system. Three general methods for entrapment are given below. 

Entrapment behind a membrane: a solution of enzyme, a suspension of cells or a slice of 

tissue is simply confined by an analyte permeable membrane as a thin film covering the 

electrochemical detector, 

Entrapment of biological receptors within a polymeric matrix: such as polyacrylonitrile, 

agar gel, polyurethane or polyvinyl-alcohol membranes, sol gels or redox hydrogels 

with redox centers, 

Entrapment of biological receptors within self assembled monolayers or bilayer lipid 

membranes (Thevenot, et al. 2001). 

The most used technique is the entrapment in polymeric film via casting or 

electropolymerization and in redox gel lattice. Gel porosity is an important parameter 

due to the reason that it gives an idea whether the structure is tight enough to prevent 

enzyme leakage and at the same time allow free movement of substrates and products. 

Inevitably, the support act as a barrier to mass transfer with serious implications for 

reaction kinetics, but it has also some useful advantages. For instance, interaction of the 

harmful biological compounds with the immobilized catalyst is prevented with the 

support matrix. In addition, some dangerous interference are avoided (Vastarella 2001). 
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Encapsulation: 

 

Encapsulation of receptors can be achieved by enveloping the biological 

components within a semipermeable membrane. Encapsulation is very similar to 

entrapment method but it is restricted in a space. The driving force for the transfer of 

molecules out or into the membrane is the molecular weight. Large molecules cannot 

pass out or into the capsule but small substrates and products can pass freely across the 

semipermeable membrane. The problem associated with diffusion is acute and may 

result in rupture of the membrane if the reaction products accumulate rapidly. An 

additional problem is the similar density of the enzyme to that of the bulk solution. A 

distinct advantage of this method is the co-immobilization of enzyme/cell in any desired 

combination (Vastarella 2001). 

 

Cross-linking: 

 

 This is a support free procedure and involves joining the receptor molecules with 

each other to form a large three dimensional complex structure. Crosslinking or 

cocrosslinking can be achieved by chemical or physical methods. Chemical method 

normally involves the formation of covalent bonds between the enzyme by means of bi- 

or multi functional reagents such as glutataldehyde and toluene diisocyanate. Both 

albumin and gelatine has been proved as good molecular spaces to minimize the close 

proximity problems that can be caused by crosslinking a single enzyme. Physical 

crosslinking of cells by flocculation is well known in biotechnology industry and does 

lead to high cell densities (Vastarella 2001). 

 Crosslinking method offers some advantages of being a simple method and 

having a strong chemical binding of the biomolecules. Furhermore, the choice of the 

degree of crosslinking permits the physical properties and the particle size to be 

influenced. The main drawback is the possibility of activity losses due to chemical 

alternations of the catalytically essential sites of the protein (Scheller and Schubert 

1992). 
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2.9. Carbon Paste Electrodes 
 

Carbon paste electrodes have been extensively used for electroanalytical 

applications since their introduction by Adams in 1958 (Mailley, et al. 2004). Carbon 

paste electrodes are produced by mixing graphite powder with a non-electrolytic binder. 

A non-electrolytic binder can be a hydrophobic material such as parafin oil or teflon or 

it can be a hydrophilic material such as polyacrylamide. Another constituent of the 

carbon paste electrode is a modifier. Modifying agent is usually one substance but the 

pastes can also be modified with two or even more components, which is in the case of 

carbon paste biosensors containing enzyme together with its appropriate mediator. The 

amount of modifier in the paste usually varies between 10-30 % (w/w) depending on the 

character of modifying agent and its capability of forming enough active sites in 

modified paste. Carbon paste based biosensors are developed by filling the mixture into 

a pipette tip. Electrical contact is supplied by inserting a silver wire into the carbon 

paste (Svancara, et al. 2001). 

Carbon paste electrodes are suitable for various sensing and detection 

applications however, the use of a carbon paste electrodes in the electroanalytical 

applications exhibit some limitations. First, they have weak mechanical stability which 

results in leakage of the enzyme into the solution. Second, their fabrication 

reproducibility is very low. In addition, the lifetime of the carbon paste electrode is 

limited due the presence of the electrolytic binder. Moreover, the viscosity of the binder 

shows a significant effect on the electrode performance (Almeida and Giannetti 2002, 

Mailley, et al. 2004). 

Despite having some advantages, carbon paste electrodes offer intristic 

advantages in the electroanalysis. Carbon paste electrodes are cheap, easy to handle. 

They offer a wide potential range and high electric conductivity. They have low 

background current and rich surface chemistry. Surface renewal and modification of 

carbon paste electrodes are also simple (Ghobadi, et al. 1996, Bolado, et al. 2007). 

 

2.10. Electron Transfer Mechanism of Polyphenolic Compounds 
 

Most of the antioxidants contain a phenolic group attached to the ring structures. 

The presence of a phenolic group and its relative ease of oxidation makes 
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electroanalytical methods suitable for the determination of such compounds. Electron 

transfer between the analyte and the electrode surface is the fundamental process of 

electroanalytical methods. In order to get the principles of the electroanalytical methods, 

first the electron transfer mechanisms should be understand in detail. The phenomenon 

of direct electron transfer in enzymes was first described for laccase (Freire, et al. 

2003a). 

 Laccase, horseradish peroxidase and tyrosinase-based electrodes have shown 

good sensitivity and selectivity for determination of phenols. Laccases are o-diphenol 

and p-diphenol dioxygen oxidoreductases that catalyze the oxidation of diphenolic 

substrates in the presence of molecular oxygen. Schematical representation of the 

mechanism of the reactions on laccase biosensor is given in Figure 2.11. In these 

reactions, oxygen is reduced directly to water without the intermediate formation of 

hydrogen peroxide. The formed product can be electrochemically reduced to phenolic 

substances at low potential without any mediator. This kind of amperometric enzyme-

based biosensors have been shown several advantages over direct electrochemical 

oxidation of phenolic compounds  (Freire, et al. 2001, Freire, et al. 2003a). 
 

 
Figure 2.11. Mechanism of the reactions on the laccase biosensor; PC: phenolic    

compound,   E: enzyme (Source: Freire, et al. 2001) 

 

The oxidation of flavonoids is of great interest because of their action as 

antioxidants with the ability to scavenge radicals by electron transfer processes (Janeiro 

and Brett 2004). Flavonoids, particularly o-diphenols, can be oxidized to their 

corresponding semiquinones and quinones by oxidases such as polyphenol oxidases and 
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peroxidases. Oxidation of a flavonoid structute by laccase can be seen in Figure 2.12 

(Pourcel, et al. 2007). 

 

 
Figure 2.12. Oxidation of o- and p-diphenols by laccase  

(Source: Pourcel, et al. 2007) 

 

Figure 2.12 demonstrates that oxidation by laccase enzyme results in the formation of 

semiquinones and quinones which are highly reactive species and undergo undergo 

further non-enzymatic reactions. While this transformation occur, molecular oxygen is 

at the same time reduced at the electrode surface to water according to a direct four-

electron mechanism as shown in the following, 

 

O2 + 4H+ + 4e-                 2H2O (Freire, et al. 2003b) 
 
 
 After learning the general principles of the electron transfer mechanisms 

between the laccase enzyme and a polyphenolic compound, it is now necessary to learn 

the oxidation and reduction mechanism of the phenolic compound, oleuropein. 

Mechanism of oleuropein oxidation is given in Figure 2.13. 

laccase 
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Figure 2.13. Mechanism of oleuropein oxidation 

 
As shown in Figure 2.13, oleuropein gives its H atoms to the radical species and 

then it becomes a radical. However, polyphenols having antioxidant capabilities are able 

to stable themselves and does not posses any harmful effects for the living metabolism. 

Thus, it makes double bonds with its oxygen atoms and becomes a quinone. 

 

2.11. Electrochemical Analysis of Polyphenolic Compounds 

 
Qualitative and quantitative determination of polyhenols is usually done by 

HPLC or spectrometry. However these techniques are expensive reagent and time 

consuming. Electroanalytical methods are promising techniques to determine these 

substances with high accuracy in an extremely wide range of concentrations for 

separating and preconcentrating them (Climent, et al. 2001). There are many studies in 

the literature related with the electrochemical detection of polyphenolic compounds 

some of which are illustrated in Table 2.4. 
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Table 2.4. Some of the electrochemical studies of polyphenols from the literature 

                                                   

  

 

Detected Item 

 

Sensor System 

 

Reference 

 

Phenolic content of extra   

virgin olive oil         

 

Tyrosinase based sensor 

operating in organic solvent 

 

Capannesi, et al. 2000 

 

Polyphenolic compounds 

in red wine                          

 

Laccase biosensor immobilized 

on polyethersulphone 

membranes     

 

Gomes, et al. 2004 

 

Antioxidant capacity of 

different tea samples 

 

Campanella, et al. 2003 

 

Antioxidant capacity of 

red and white wines 

Campanella, et al. 2004a 

 

Antioxidant capacity of 

several drug specialities      

 

Campanella, et al. 2004b

 

Total antioxidant capacity 

of algae 

 

 

 

 

 

SOD biosensor immobilized in 

kappa-carrageenan membrane 

 

Campanella, et al. 2005 

 

Polyphenol content of 

different tea samples 

 

Campanella, et al. 2003   

 

Polyphenol content of red 

and white wines 

 

 

 

Tyrosinase biosensor 

immobilized 

in kappa-carrageenan membrane 

 

Campanella, et al. 2004a   
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Capannesi, et al. (2000) studied the phenolic content of extra virgin olive oil 

using two rapid procedures based on a disposable screen-printed sensor coupled with 

differential pulse voltammetry and an amperometric tyrosinase based biosensor 

operating in an organic solvent. The results obtained with these two innovative 

procedures were compared with a classical spectrophotometric assay using Folin- 

ciocalteau reagent and HPLC analysis. It was found that two proposed methods monitor 

the degradation reactions of oleuropein derivatives occurring in an extra virgin olive oil 

during storage, while the spectrophotometric analysis reveals the final products of these 

degradation reactions. Thus, the two proposed methods were more rapid and 

inexpensive in comparison with the classical methods for polyphenol analysis and could 

be considered promising systems for the evaluation of this class of compounds in oil 

samples (Capannesi, et al. 2000). 

 A biosensor was developed with laccase, immobilized on polyethersulphone 

membranes for the amperometric detection of polyphenolic compounds in red wine. 

Gomes, et al. (2004) could determine the amount of catechin and caffeic acid in red 

wines but the results were different from the HPLC results indicating that other 

polyphenols detected could have an important role in the deviation (Gomes, et al. 2004). 

 Campanella et al. (2003) developed superoxide dismutase (SOD) and tyrosinase 

biosensors for the determination of the polyphenol content and the antioxidant capacity 

of different tea samples. SOD biosensor was proved to be perfectly capable of 

determining the antioxidant capacity of all the different tea samples. Besides, the 

polyphenol content obtained using the tyrosinase biosensor displayed a trend that was 

very similar to that of antioxidant capacity (Campanella, et al. 2003). 
 Campanella et al (2004a) determined of the polyphenol content and the 

antioxidant capacity of red and white wines with SOD and tyrosinase biosensors. The 

results were compared with those of two traditional spectrophotometric methods and a 

spectrofluorimetric method. Good agreement was found between the results obtained 

using the latter methods and those obtained with the SOD biosensor. In addition, 

analysis of polyphenol content performed by a tyrosinase biosensor clearly revealed the 

good correlation in wine samples between polyphenol content and antioxidant capacity 

(Campanella, et al 2004a). 

Antioxidant capacity of several drug specialities containing acetylsalicylic acid 

were studied by Campanella et al. (2004b) using SOD biosensor. The results were also 

compared with the traditional spectrofluorimetric method and by two other methods, 
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cyclic and pulsed voltammetry. The results obtained in this work showed a particularly 

good correlation between biosensor method and the ORAC spectrofluorimetric method 

and also a comparatively good correlation with the cyclic voltammetric method. So, 

SOD biosensor was found to be a reliable method also in the case of the antioxidant 

capacity of the drug specialities (Campanella, et al. 2004b). 

Campanella et al. (2005) also studied the antioxidant capacity of three types of 

algea using different analytical methods both in their whole, homogenized and 

centrifugated forms. One of the analytical methods was based on the use of SOD 

biosensor which had already developed in the previous researches. From this study it 

could be confirmed that the SOD biosensor was a valid sensor type for measuring 

antioxidant capacity also in the case of algea. 

  

2.12. Cyclic Voltammetry 
 

Cyclic voltammetry is a potential-controlled reversible electrochemical 

experiment. In a typical cyclic voltammetry experiment, a voltage is applied to the 

working electrode in a triangle waveform from an initial value to a predetermined limit 

where the direction of scan is reversed and measuring the resulting current. Triangular 

waveform of the potential is given in Figure 2.14 (Lojou and Bianco 2006).   

 

Figure 2.14. Traiangle waveform for the applied potential  

(Source: Princeton Applied Research 2005) 

 

As the potential is swept back and forth, the current on the working electrode is 

observed. Analysis of the current response can be used to study the thermodynamics 

and kinetics of electron transfer at the electrode-solution interface. Moreover it helps to 
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study the kinetics and mechanism of solution chemical reactions initiated by the 

heterogeneous electron transfer (Gosser 1993). Cyclic voltammetry can also be 

described as an analytical tool by which information about the analyte can be obtained 

by measuring the current flowing on the working electrode that either oxidizes or 

reduces the analyte. The magnitude of this current is proportional to the concentration of 

the analyte in solution, which allows cyclic voltammetry to be used in an analytical 

determination of the analyte concentration (Pine Instrument 1996). 

The current at the working electrode is called faradaic current and this current is 

transduced to an output at a selected sensitivity. The output can be current-time curve or 

since the potential is linearly related with time, it is current-potential curve.  The 

representation of the response in cyclic voltammetry experiment is usually the current-

potential curve, which is called “cyclic votammogram”. Voltage sweep and current 

response for the cyclic voltammetry experiment are given in Figure 2.15. 
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Figure 2.15. (a) potential waveform (b) current-time (c) current-potential 

representations in cyclic voltammetry experiment (Source: Gosser 

1993) 

 

Figure 2.15c shows a typical cyclic voltammogram for the case of a simple one 

electron transfer reaction. As the potential is swept in the forward direction, a cathodic 

peak is observed. Reduction occurs in this positive scan and the current resulting from 

the reduction is called cathodic peak current. The potential value in this point is called 

as cathodic peak potential. The representations of these terms are ipc and Epc 
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respectively. Note that the reduction current is taken as positive as the cathodic sweep 

goes from left to right. At the switching potential, the direction of the potential sweep is 

reversed. In the reverse scan, oxidation occurs and a peak resulting from the oxidation 

process is called anodic peak current. A negative anodic peak current is observed in the 

case of oxidation process. The representations for the anodic peak current and anodic 

peak potential are ipa and Epa respectively (Pine Instrument 1996, Gosser 1993). A 

typical cyclic voltammogram is given in Figure 2.16 with a clear representation of the 

defined characteristics such as ipc, Epc, ipa and Epa. 

 

 
Figure 2.16. A typical cyclic voltammogram with defined characteristics 

 (Source: Bioanalytical Systems 2008) 

 

As it is seen in Figure 2.16, during the positive scan, cathodic peak potential and 

cathodic peak currents are obtained. This is the direction of the scan where the 

electroactive species are reduced at the elecrode surface. As the scan is reversed, a 

negative anodic peak current and anodic peak potential are obtained. In this direction, 

reduced species are reoxidized on the electrode surface.  

The equipment required to perform cyclic voltammetry experiment consists of a 

three electrode potentiostat that is connected to working, reference and auxiliary 

electrodes immersed in the test solution. The principle function of a potentiostat is to 

control the potential and measure the current. For the three electrode configuration, 

potential is applied to the working electrode with respect to the reference electrode and 
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an auxiliary electrode is used to complete the electrical circuit. A recording device such 

as computer or plotter is used to record the resulting cyclic 

voltammogram as a graph of current versus potential (Pine Instrument 1996). Overall 

view of cyclic voltammetry experiment is given in Figure 2.17. 

 

 
Figure 2.17. Overall view of cyclic voltammetry experiment; WE: working electrode,             

RE: reference electrode, AE: auxiliary electrode (Source: Gosser 1993) 

 

The Electrochemical Cell: 

 

Electrochemical cell, in its simplest form is a single piece of glassware. It 

provides to hold a necessary volume of analyte for electrochemical studies. Three 

electrodes (WE, RE and AE) are immersed in the test solution and electrical connection 

of this system to a potentiostat is achieved. The three neck round bottom flask is 

suitable piece of glassware that can be used in electrochemical studies. Having large 

enough diameters permits the electrodes to be fit through the neck openings. Each neck 

on the flask is used to mount one of the three electrodes. This configuration is quite 

suitable for the experiments where the test solution can be safely exposed to oxygen in 

the air and where isolation of each electrode in a separate compartment is not required. 

On the other hand, it is often necessary to eliminate dissolved oxygen from the test 

solution usually in the situations when quite negative potentials are applied to the 
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working electrode. At these potentials, dissolved oxygen can be reduced, resulting to an 

undesired cathodic current which may interfere with the measurement of interest. A 

solution to this problem is to use a cell which is airtight except for one or two gas inlets 

and a single small outlet. With this configuration, an inert gas such as nitrogen is 

bubbled through the solution to expel any dissolved oxygen. A four neck round bottom 

flask can also be used for the removal of oxygen. Three of the openings are used to 

mount the electrodes in an airtight fashion. The fourth opening is sealed by using a 

rubber septum. A small syringe needle is inserted through the septum near the outer 

edge of the septum. Then, a much longer needle is inserted through the centre of the 

septum and down into the test solution. Nitrogen gas is passed into the cell through the 

long needle while the small needle simply serves as the outlet. The long needle is first 

pushed down into the solution and nitrogen gas is allowed to bubble through the 

solution. Then, when it is time to perform an experiment, the long needle is pulled out 

of the solution (but not all the way out of the cell) and a blanket of nitrogen gas then 

covers the solution (Pine Instrument 1996).  

 

Working Electrode (WE): 

 

The working electrode is the electrode where the current is measured and at the 

same time the potential is controlled. Working electrode is the electrode in which the 

electrochemical reaction of interest takes place in its surface (Gamry Instruments 1997). 

The working electrode is usually an inert material with a well-defined geometry that is 

in direct contact with the analyte. The most widely used working electrodes are 

mercury, platinum, gold, and various forms of carbon (Pine Instrument 1996). 

 

Reference Electrode (RE): 

 

The potential of the working electrode in a voltammetry experiment is always 

controlled with respect to some standard and that standard is the reference electrode 

(Guide). A reference electrode may be considered a small battery whose voltage 

(potential) is determined by the chemistry taking place between a solid conductor 

(usually a metal salt) and the electrolytic solution around it (Bioanalytical Systems 

2008). The most common reference electrodes are the Saturated Calomel Electrode 

(SCE) and the Silver/Silver Chloride (Ag/AgCl) electrodes (Gamry Instruments 1997). 
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Auxiliary (Counter) Electrode (AE): 

 

In a traditional two electrode cells that have only a working and a reference 

electrode, current is necessarily forced to flow through the reference electrode. If 

current flows through a reference electrode, its internal chemical composition may be 

significantly altered, causing its potential to drift away from the expected standard 

value. Due to this reason it is desirable to make electrochemical measurements without 

current flowing through the reference electrode. Auxiliary or counter electrode provides 

an alternate route for the current to follow so that only a small current flows through the 

reference electrode (Pine Instrument 1996). The current that flows into the solution via 

the working electrode leaves the solution via the auxiliary electrode. The auxiliary 

electrode is generally an inert conductor like platinum or graphite (Gamry Instruments 

1997). 

 

Criterion for reversibility: 

 

Reversibility is an important criterion for the cyclic voltammetry experiments. 

Several criteria can be used for the confirmation of the reversibility of one electron 

transfer process at the working electrode. 

1) The difference in cathodic and anodic peak potentials is around 57-60 mV depending 

on the switching potential. Mathematically, 

ΔEp = abs [Ep,c - Ep,a] ≈ 58 mV 

But the expected 58 mV value may not be observed because of small distortions due to 

solution resistance effects and electronic or mathematical “smoothing” of the data. In 

most situations, the result is that ΔEp is often 60-70 mV for reversible electron transfer. 

2) The difference between the initial sweep peak and half-peak potentials of the forward 

sweep is 56 mV/n. 

3) The shifted ratio of the cathodic to anodic currents is unity. Mathematically speaking, 

ipc / ipa
* =1 

In the shifted ratio, the anodic peak current is measured from a baseline that is moved to 

a value that can be predicted from the decaying portion of the cathodic peak. 

4) The forward scan peak current should be proportional to the square root of the scan 

rate. This criterion is used to distinguish “diffusion-controlled” processes from 
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processes featuring the adsorption of the electroactive species onto the electrode (in 

which case a linear current-scan rate relationship is observed). A plot of the log ip versus 

log v is linear, with a slope of 0.5 for a diffusion peak and a slope of 1 for adsorption 

peak. Intermediate values of the slope are sometimes observed, suggesting a “mixed” 

diffusion-adsorption peak (Gosser 1993). 

After learning some necessary concepts about cyclic voltammety, now it should 

be focused on how cyclic voltammetry can be used as an analytical tool for the 

evaluation of the antioxidant capacity of polyphenols. Redox properties are crucial for 

better understanding of the electron transfer process. Cyclic voltammetry is one of the 

most useful methods for the measurement of the electron transfer process (Chatterjee et. 

al 2007, Hotta, et al 2002). The phenolic groups of flavonoids can be electrochemically 

oxidized and show an oxidation or reduction peak in cyclic voltammetry measurements 

(Janeiro and Brett 2004). Thus, redox potentials of flavonoids determined by cyclic 

voltammetry have been utilised as a measure of the antioxidant capacity (Firuzi, et al. 

2005). After a cyclic voltammogram is obtained from the cyclic voltammetry 

experiments, a number of parameters can be extracted from this voltammogram such as 

cathodic peak current, cathodic peak potential, anodic peak current and anodic peak 

potential. Evaluation of these cyclic voltammetry parameters is an important task to 

characterise the phenolics as reducing agents thus, gives an idea about the antioxidant 

capacity of phenolic compounds (Kilmartin and Hsu 2003). 
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CHAPTER 3 

 

EXPERIMENTAL STUDY 
 

3.1. Materials 
 
 

Graphite powder (282863) was used as a conductive material for the 

construction of carbon paste biosensor. It is synthetic and < 20 microns and it was 

purchased from Aldrich (Steinheim, Germany). Mineral oil (69794), ultra for molecular 

biology, was used as a non-electroactive binder in the biosensor experiments and it was 

purchased from Fluka (Steinheim, Germany). Glutaraldehyde (49629) was the type of 

the crosslinking agent that was used in this study. It was obtained from Fluka in the 

form of solution. Laccase (38429) from Trametes versicolor (EC 1.10.3.2) was the 

selected biological recognition element and it was purchased from Fluka. Sodium 

phosphate dibasic and sodium phosphate monobasic dihydrate were used to prepare 50 

mM phosphate buffer at pH: 6. Sodium phosphate dibasic (30427) and sodium 

phosphate monobasic dihydrate (04269) were both obtained from Riedel-de Haën 

(Seelze, Germany). Oleuropein was used as an analyte in the biosensor experiments. 

Oleuropein standard was purchased from Extrasynthese (Genay, France). Mobile phases 

for High Performance Liquid Chromatography experiments were acetonitrile (34851) 

and glacial acetic acid (1.0063). They were purchased from Sigma-Aldrich (Steinheim, 

Germany) and Merck (Darmstadt, Germany) respectively. Olive leaves used in the 

experiments were collected from the olive trees grown in the campus of Izmir Institute 

of Technology (Izmir, Turkey). Besides oleuropein, coumarin was also used as an 

internal standard and it was also obtained from Extrasynthese. HPLC grade ethanol 

(34870) was used in the extraction of olive leaves and it was purchased from Riedel-de 

Haën. Hydrophobic silk fibroin was used as an adsorbent for the adsorption of olive leaf 

phenols and it was obtained from Silk Biochemical Co., LTD. (China). Besides 

oleuropein standard, the response of the laccase biosensor to rutin, catechin, epicatechin 

and caffeic acid standards were investigated. Catechin (C-1251) and epicatechin (E-

1753) were purchased from Sigma, caffeic acid (60020) was obtained from Fluka and 

rutin (5.00017) was purchased from Merck. Trolox (6-Hydroxy-2,5,7,8,-
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tetramethylchromane-2-carboxylic acid) (56510) was used as a calibration standard in 

the lipid soluble antioxidant capacity (ACL) analysis and it was obtained from Fluka. 

Metanol (24229) was used as a reagent in the ACL analysis and it was purchased from 

Riedel-de Haën. Ascorbic acid (33034) was used as calibration standard in the water 

soluble antioxidant analysis (ACW) and purchased from Riedel-de Haën. Carbonate 

buffer was the reaction buffer in the antioxidant analysis and in order to prepare this 

buffer, sodium carbonate anhydrous, sodium bicarbonate and 

ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) were used. Sodium 

carbonate anhydrous (71350) was purchased from Fluka, sodium bicarbonate (13433) 

was purchased from Riedel-de Haën, EDTA (03685) was purchased from Fluka. 

Luminol (09253) was the photosensitizer that was also used in the antioxidant analysis 

and it was obtained from Fluka. Dimethylsulphoxide (67-68-5) was the solvent used to 

dissolve the extracts and it was purchased from Carlo Erba (MI, Italy). For the total 

phenol analysis, gallic acid standard was used to construct the calibration curve. Gallic 

acid standard (1.59630) was obtained from Merck. Folin&Ciocalteu’s reagent (F-9252) 

and sodium carbonate anhydrous (71350) were used in the total phenol analysis and 

they were obtained from Sigma and Fluka respectively. 

 Gamry Electrochemical Measurement Apparatus and Software was used in the 

cyclic voltammetry experiments. This system consists of three electrodes, a 7.5 cm long 

platinum electrode as an auxiliary electrode, saturated Ag/AgCl electrode in 3 M NaCl 

solution as a reference electrode and a working electrode which is enzyme immobilized 

carbon paste biosensor. 

 

3.2. Pretreatment and Extraction of Olive Leaves 
 

Extraction was used in order to recover phenolic compounds from olive leaves. 

For this purpose, firstly the leaves were pretreated and then the extraction procedure 

was followed. 

 

3.2.1. Pretreatment of Olive Leaves 
 

 After the olive leaves were washed with deionized water, they were left into the 

oven (Membert-800, at 370C) for 3 consecutive days. 370C is a critical temperature for 
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drying due to the fact that there is a degradation risk of antioxidants over 400C. Then, 

grinding process was followed and the grinder was operated till the leaves became fine 

powder to about 90-150 μm. In this process, the grinder was stopped in 5 minute 

intervals to prevent frictional heating of the sample. 

 

3.2.2. Extraction of Olive Leaves 
 

 Aqueous ethanol solution was used as extracting solvent due to its low cost and 

non-toxic nature. In the study of Hızal (2006), it was seen that the highest oleuropein 

and rutin yields was obtained by 70 % aqueous ethanol solution thus, this ratio was used 

in the extraction of olive leaves. After the suitable ethanol-water ratio was decided, 

olive leaf powder was processed with this solvent in 1/20 solid/liquid ratio. Extraction 

was performed in Comecta Thermoshaker for 2 hours at 180 rpm and 25oC in order to 

ensure a complete homogenization of the solution. Centrifugation was the next step that 

enables to remove insoluble particles from the extraction medium. For this purpose, the 

solution was centrifuged in Beckman Coulter centrifuge at 5,000 rpm for 15 minutes. 

Then the liquid phase, separated in the centrifugation process, was transferred to the 

Heidolph rotary evaporator. Rotary evaporator was operated at 380C and 120 rpm 

rotation under vacuum. In the rotary evaporator, ethanol and partial water evaporation is 

achieved with a vacuum technique by reducing the interior pressure. The last step of the 

extraction was the lyophilization. Solvent free olive leaf extract was put in Telstar 

Cryodos freeze drier to remove the water content of the extract. Olive leaf extract was 

dried in a freeze drier system at -520C and below 0.2 mbar. After all these steps, olive 

leaf crude extract was obtained to be used in the next studies. 

 

3.3. HPLC Analysis and Identification of Phenolic Compounds 
 

High performance liquid chromatography (HPLC) analysis was performed for 

the analytical qualification and quantification of the phenolics in olive leaf extract. The 

operating conditions and properties of HPLC are given in Table 3.1. 

 

 

 



 57

Table 3.1.  Operating conditions and properties of HPLC 

Property Value or Attribute 

Column Column C18 LiChrospher 100 analytical column 

Column Length 250 mm 

Column Diameter 4 mm 

Particle Size 5 µm 

Mobile Phase Mobile Phase A: 2.5 % acetic acid in deionized water 
Mobile Phase B: 100 % acetonitrile 

Flow Rate 1 ml/min 

Temperature 30 °C 

Detector Diode Array Detector 

Absorbance 280 nm 

 

A linear gradient of the mobile phases was used in the HPLC analysis and this elution 

system is given in Table 3.2. 

 

Table 3.2. HPLC elution program 

Time 

(min) 

Mobile phase A 

2.5 % Acetic Acid in Deionized Water 

Mobile phase B 

100 % Acetonitrile 

0 95 % 5 % 

20 75 % 25 % 

40 50 % 50 % 

50 20 % 80 % 

60 5 % 95 % 

 

Identification of the phenolics in olive leaf extract was achieved by comparing 

their retention times with the corresponding standards. In this study, identification of the 

major phenolic of olive leaf extract, oleuropein, was taken into account. For this reason 

oleuropein in the olive leaf extract was firstly qualified by comparing its retention time 

with its standard and then its quantification was made by using the calibration curve. 

Calibration curve for this compound was constructed by using internal and external 

standard methods. In internal calibration, coumarin was used as a standard. Internal and 

external calibration curves of oleuropein were given in Appendix A. 
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3.4. Fractionation of Olive Leaf Antioxidants 
 

Olive leaf extract contains various phenolic compounds in its structure and 

isolation of polyphenols from olive leaf extract is a very important task. It is quite 

important to concentrate on the fractionation of olive leaf phenols and obtain some olive 

leaf fractions to be used in biosensor studies. In this case, the aim is to achieve the 

adsoption of olive leaf phenols with a suitable adsorbent and then desorb them 

selectively in order to fractionate the olive leaf phenols.  

An edible protein polymer silk fibroin is a favourable adsorbent used in 

adsorption studies. Due to its promising health effects, bounding mechanisms and 

hydrophobic character, Bayçın et al. (2007) studied the extraction and adsorption of the 

two most abundant polyphenols in olive leaf, oleuropein and rutin, on silk fibroin under 

different conditions. They also aimed to increase the purity of oleuropein and rutin 

therefore, desorption studies were performed after the adsorption to understand whether 

silk fibroin can be used as a purification material for these polyphenols. In addition, 

Altıok et al. (2008) used silk fibroin for the isolation of antioxidants from the olive leaf 

extract. From these studies, silk fibroin was understood to be a promising adsorbent for 

the purification of oleuropein in olive leaf extract and thus silk fibroin was used as an 

adsorbent for the fractionation of olive leaf phenols in this study. 

 Olive leaf crude extract which was prepared previously was dissolved in 

deionized water in 1/20 solid/liquid ratio. In order to remove the insoluble particles, this 

solution was centrifuged at 5000 rpm for 15 minutes. Then, a clear solution was 

obtained. A syringe column of 63 m in height and 10 mm internal diameter was filled 

with 7.8 g of silk fibroin powder. The column was preconditioned by washing with 

deionized water and ethanol. Then the clear solution of olive leaf crude extract was 

loaded to the column with GilsonTM ASPEC XL liquid handling system. The loading 

procedure was repeated for four times until silk fibroin was saturated with olive leaf 

phenols. The saturation of the adsorbent was checked by HPLC analysis of olive leaf 

extract solution at the column outlet after each loading procedure. 

 After the adsorption stage, desorption was followed. Proper eluting solvents 

should be selected for this goal. Deionized water and 70 % ethanol solution was 

respectively used as the eluting solvents in the desorption stage. The color of the eluting 

stream turned from yellow to white while nine batches of 100 ml deionized water were 
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passed through the column. In addition, desorption by four batches of 100 ml 70 % 

ethanol solution, caused the color change of the outlet stream from brown to white.  

 At the end of the desorption process, nine batches of polar and four batches of 

relatively less polar olive leaf extract fractions were analyzed in HPLC in order to 

determine the desorption efficiency. Depending on the HPLC results, some fractions 

were grouped together. These fractions were in the form of solution and they were 

processed in rotary evaporator and then freeze dryer. So, fractions were collected in 

their powder form and they were stored at +40 C to be used in biosensor experiments. 

The combined form of the fractions are given in Table 3.3.  

 

Table 3.3. Fractions and their combinations 

Fractions Combination 

Fraction I (FI) W1+W2 

Fraction II (FII) W3+W4 

Fraction III (FIII) W5+W6 

Fraction IV (FIV) W7+W8+W9 

Fraction V (FV) E1+E2 

Fraction VI (FVI) E2+E3 

 

After this work, olive leaf crude extract was fractionated and partial purification of 

phenolic compounds was achieved for biosensor studies. 

 

3.5. Antioxidant Capacity Analysis 
 

A number of assays have been developed for the detection of both general and 

specific antioxidant action. Of these, Trolox equivalent antioxidant capacity (TEAC) 

assay, first reported by Miller and Rice-Evans, is based on the scavenging ability of 

antioxidants on the ABTS●+ radical. The total radical-trapping antioxidant parameter 

(TRAP) assay is most often used for measurements of in vivo antioxidant capacity in 

serum or plasma as it measures the nonenzymatic antioxidants. The oxygen radical 

absorbance capacity (ORAC) assay has found broader application for measuring the 

antioxidant capacity of botanical and biological samples (Besco, et al. 2007, Prior, et al. 

2005). 
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However most of these techniques require long experimental times and high 

costs for the detection of antioxidant capacity. Due to this reason, researchers are 

looking for a method that allow a quick analyse of antioxidant capacity (Besco, et al. 

2007). A system for the measurement of the antioxidative capacity consists of a method 

that is first based on the generation of the radicals and then allows a detector for the 

quantification of the generated radicals. Generated radicals are partially eliminated by 

the antioxidants of the sample allowing the quantification of the antioxidative capacity 

(Rohe). This system is known as photochemiluminescence (PCL) assay and it is known 

to be a time and cost-effective system for the determination of the antioxidative capacity 

(Besco, et al. 2007). 

 This assay was described by Popov and Lewin and was commercialized by 

Analytik Jena AG (Jena, Germany). The PCL assay is sold as a complete system under 

the name PHOTOCHEM (Prior, et al. 2005). In the PCL assay, the photochemical 

generation of free radicals is combined with the sensitive detection by using 

chemiluminescence. The reaction is induced by optical excitation (hυ) of the 

photosensitiser (S), which results in the generation of the superoxide radical O2
●- 

(Vertuani, et al. 2004, Prior, et al. 2005). 

 

S + hυ + O2 → [ S* O2 ] →  S●+  + O2
●-    

 

Two basic kinds of radicals are present in the PLC measuring system; 

superoxide radical and luminol radical (Prior, et al.2005). Luminol acts as 

photosensitiser as well as oxygen radical detection reagent (Vertuani, et al. 2002). The 

PCL method can be conducted by two different propocols; ACW and ACL. The ACW 

protocol permits the measurement of the antioxidant capacity of water soluble 

components whereas; ACL permits the measurement of the antioxidant capacity of lipid 

soluble components (Vertuani, et al. 2004). In other means, antioxidant capacity of 

hydrophilic and lipophilic compounds can be separately determined by these protocols. 

On the other hand, integral antioxidant capacity (IAC) which represents the sum of the 

lipophilic antioxidant capacity and hydrophilic antioxidant capacity can also be 

determined by the summation of the antioxidant capacity obtained from these two 

different protocols. These two protocols have a different measurement mechanism. 

Calibration and measurements for ACW are based on the difference in lag time (L) 

between the sample and the blank (Harrison, et al. 2007). 
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L = L0 – L1 

where L0 and  L1 are the respective parameters in seconds for the blank and the sample. 

 

The lipophilic antioxidant capacity is assayed by the degree of PCL inhibition (I), 

according to the calculation; 

 

I = 1 – S/S0 

where S0 is the integral under the blank curve and  S is the integral under the sample 

curve. 

 

Ascorbic acid and Trolox are typically used as calibration reagents for hydrophilic and 

lipophilic antioxidant capacity respectively (Prior, et al. 2005). 

The PCL assay offers various advantages for the determination of the 

antioxidative capacity. First, as it is emphasized before, this system is marketed as a 

time and cost-effective system. Second, it does not require high temperatures to 

generate radicals and it is more sensitive (nanomolar range) to measure the scavenging 

activity of antioxidants against the superoxide radical which is one of the most 

dangerous reactive oxygen species (ROS) also occurring in human body (Prior, et al., 

2005, Vertuani, et al. 2002, Vertuani, et al. 2004). Besides, it is the PCL method that 

provides the first ever possibility to measure the antioxidant capacity of water and lipid 

soluble substances with a single system (Killenberg-Jabs and Tirok). 

In the present study PCL assay was used to determine the antioxidant capacity of 

olive leaf extract and its fractions. To determine the antioxidant capacity of olive leaf 

extract and its fractions by PCL assay, both ACW and ACL protocols were followed. 

 

ACW Protocol: 

 

In ACW protocol, olive leaf extract fractions were firstly dissolved in DMSO in 

a presolution ratio of 1g extract in 20 ml DMSO. Then the samples were diluted with 

deionized water. Next, ACW kit procedure was followed. In this procedure, 1.5 ml 

Reagent 1 (solvent), 1 ml Reagent 2 (buffer solution, pH: 10.5) and 25 μl Reagent 3 

(photosensitiser) were mixed for blank measurement. Then appropriate amount of olive 

leaf extract fraction was added to this mixture and sample measurement was performed. 
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Measurements were conducted using 10-50 μl of the sample. Each measurement was 

repeated three times. 

 

ACL Protocol: 

 

 After dissolving the olive leaf fractions in DMSO in a presolution ratio of 1g 

extract in 20 ml DMSO, the fractions were diluted with methanol. Then ACL kit 

procedure was applied. In this procedure, 2.3 ml Reagent 1 (solvent), 200 μl Reagent 2 

(buffer solution, pH:10.5) and 25 μl Reagent 3 (photosensitiser) were mixed for blank 

measurement. Then the addition of the fractions was followed. Next, sample 

measurement was applied with that mixture. Each measurement was also repeated three 

times in the ACL protocol. 

 

3.6. Total Phenol Analysis 
 

Total phenol analysis of the olive leaf extract fractions were performed by Folin-

ciocalteu method using gallic acid as a standard. 

For the total phenol analysis, calibration curve was constructed for gallic acid 

standard. For the construction of calibration curve, 250 mg gallic acid was firstly 

dissolved in 10 ml ethanol and then it was diluted to 500 ml by distilled water. The 

prepared 0.5 mg/ml stock gallic acid standard was kept at +4 C0. Next, working 

standards of 0.02, 0.03, 0.04, 0.05 and 0.06 mg/ml were prepared for calibration. 

Finally, absorbance values at 725 nm versus gallic acid concentrations were plotted and 

the calibration curve of gallic acid was obtained with an R2 value of 0.9994. 

 After the construction of the calibration curve, olive leaf extract fractions were 

dissolved in DMSO in a ratio of 1 g extract in 20 ml solvent. Then, suitable dilutions 

were prepared for the samples. Next, 500 μl of the diluted sample solution were mixed 

with 2.5 ml folin-ciocalteu reagent that was previously diluted in 1:10 ratio. The 

mixture was left at room temperature for 2.5 minutes to allow folin-ciocalteu reagent to 

react completely with the oxidizable substances or phenolates. Then 2 ml of Na2CO3 

(7.5 %) was added to destroy the residual reagent. After that, the mixture was incubated 

for 1 hour at room temperature in a dark place. Incubated samples can be seen in Figure 

3.1. 
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Figure 3.1. Samples after incubating 1 hour at room temperature in a dark place 

 

After the incubation, absorbance values were measured at 725 nm by UV-Visible 

Spectrophotometer (Perkin Elmer-Lambda 25). All samples were analyzed at least three 

times. 

 

3.7. Biosensor Construction  
 

 Carbon paste biosensors were constructed for this study. Top and bottom parts of 

the biosensor were prepared separately. The top part of the biosensor was prepared by 

mixing graphite powder and mineral oil in definite amounts; besides, preparation of the 

bottom part was achieved by the addition of glutaraldehyde in order to allow the cross-

linking reaction and laccase enzyme solution which was the key component in this 

study. Laccase enzyme from Trametes versicolor (E.C. 1.10.3.2) was dissolved in 

phosphate buffer solution (0.05 M, pH: 6) and 5 % vol. of glutaraldehyde solution was 

prepared before using it for the construction of the bottom part. While constructing a 

biosensor, first the top mixture and then the bottom mixture were filled into a pipette 

tip. Finally, preparation of the biosensor was completed by immersing silver wire into 

the pipette tip. In addition, carbon paste biosensor was polished by using a polishing 

paper just before using and storage. Carbon paste biosensor was stored at about +40 C to 

avoid the deactivation of the laccase enzyme. An electrochemical sensor which did not 

contain any enzyme and crosslinking agent was also prepared in this study and it was 

used as a reference sensor. 

 Laccase enzyme concentration and crosslinking agent amount were the 

investigated parameters in this study. In order to observe the effect of these parameters 

on biosensor performance, carbon paste biosensors were prepared by changing the 
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values of these parameters. The content of the top and the bottom part of the biosensors 

are given in Table 3.4 and Table 3.5 respectively. 

 

Table 3.4. The top part of the biosensor components 

Biosensor No G.P.* (mg) M.O.*(ml) 

Biosensor 00 325 0.18 

Biosensor 01 300 0.17 

Biosensor 02 300 0.17 

Biosensor 03 300 0.17 

Biosensor 04 300 0.17 

Biosensor 05 300 0.17 

Biosensor 06 300 0.17 

Biosensor 07 300 0.17 

Biosensor 08 300 0.17 

Biosensor 09 300 0.17 

G.P.*: Graphite powder 
M.O.*: Mineral oil 
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Table 3.5. The bottom part of the biosensor components 

Biosensor No G.P.(mg) M.O.(ml) G.A. (% v)* L.S. (% v)* L.C. * (mg/ml) 

Biosensor 00 - - - - - 

Biosensor 01 25 0.01 6.40 63.97 1 

Biosensor 02 25 0.01 12.03 60.13 1 

Biosensor 03 25 0.01 17.01 56.72 1 

Biosensor 04 25 0.01 6.40 63.97 5 

Biosensor 05 25 0.01 12.03 60.13 5 

Biosensor 06 25 0.01 17.01 56.72 5 

Biosensor 07 25 0.01 6.40 63.97 10 

Biosensor 08 25 0.01 12.03 60.13 10 

Biosensor 09 25 0.01 17.01 56.72 10 

G.A. (% v)*: % vol. of the glutaraldehyde solution in deionized water used in the bottom 
part of the biosensor 
L.S. (% v)*: % vol. of the laccase solution in the bottom part of the biosensor 
L.C.*: Laccase concentration 
 

When the above tables are investigated, it is found that the top part of all 

biosensors contain the same amount of graphite powder and mineral oil. The variability 

of biosensors was due to the bottom part. As it is seen from Table 3.5, bottom parts of 

the biosensors were changed in three levels of glutaraldehyde amount as 6.40, 12.03 and 

17.01 % vol. of the biosensor bottom part and in three levels of laccase concentration as 

1, 5 and 10 mg/ml. Biosensor 00 is the electrochemical sensor without any enzyme or 

crosslinking agent. 

 

3.8. Cyclic Voltammetry Experiments for Oleuropein 
 

Standard oleuropein solution was used in cyclic voltammetry experiments. This 

phenolic compound was used as a substrate for laccase enzyme. Oleuropein was 

dissolved in 50 % vol. acetonitrile-water solution and 2 mg/ml oleuropein solution was 

prepared with that solvent. Biosensor 05 was used and cyclic voltammetry experiment 

was run. A cyclic voltammogram was obtained and this voltammogram was 

investigated in order to learn about the redox properties of oleuropein.  
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Oxidizibility of a compound has been used as a measure of antioxidant property 

and this can be determined by measuring an oxidation potential in cyclic voltammetry. 

Except oxidation potential, a huge number of parameters can be found from the cyclic 

voltammograms, such as reduction potential, switching potential, anodic peak current 

and cathodic peak current. A lot of information about the redox properties of 

polyphenols can be obtained from the investigation of these parameters. So, cyclic 

voltammograms of oleuropein were investigated in detail in order to characterize this 

phenolic compound as a reducing agent. 

 

3.9. Effect of Laccase Enzyme on Biosensor Response 
 

To investigate the effect of laccase enzyme on biosensor response, both laccase 

biosensors and the electrochemical sensor were used and cyclic voltammetry 

experiments were performed under the same experimental conditions. These 

experiments were useful to understand whether oleuropein showed a good substrate 

behavior for laccase enzyme or not. After obtaining a response with laccase biosensors, 

laccase concentration effect on biosensor performance was also investigated in this 

study. Thus, cyclic voltammetry experiments were conducted with biosensors having an 

enzyme concentration of 1, 5 and 10 mg/ml and laccase concentration effect was 

investigated when the other parameters were fixed. 

 

3.10. Effect of Crosslinking Agent on Biosensor Response 
 

 The second factor in this experiment was the glutaraldehyde amount. Three 

levels of glutaraldehyde amount were used to check its effect on biosensor performance. 

Lowest amount was 6.40 % vol. of the bottom part, 12.03 % vol. of the bottom part was 

the medium level and the highest level was chosen as 17.01 % vol. of the biosensor 

bottom part. After cyclic voltammograms were obtained by biosensors differentiating in 

their glutaraldehyde amounts, they were investigated in detail to learn more about the 

effect of glutaraldehyde on the performance of the biosensor. 
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3.11. Cyclic Voltammetry Experiments with Different Biosensors 
 

After nine different biosensors were constructed, the cyclic voltammetry 

experiments were conducted in the same conditions (250C and 10 mV/s scan rate) and 

cyclic voltammograms were obtained for all biosensors for the analyte concentration of 

2 mg/ml. As all the parameters were fixed such as temperature, scan rate and analyte 

concentration, it was clear that the difference in the biosensor response was due to the 

change in enzyme concentration and crosslinking agent amount. This situation led us to 

investigate the effect of both enzyme concentration and crosslinking agent amount at the 

same time on biosensor performance. To sum up, the objective here was that, to 

determine the best biosensor performance in the same experimental conditions. The 

determination of the best biosensor performance was really important because, the 

following experiments would be performed with that biosensor. 

 

3.12. Effect of Scan Rate on Biosensor Response 
 

 Scan rate is one of the most important parameters which influences the redox 

properties of the substrates. In order to investigate the effect of scan rate on biosensor 

response, cyclic voltammetry experiments of laccase biosensor in 2 mg/ml of oleuropein 

solution were conducted in the scan rate values of 1, 2, 3, 5, 10, 30, 50, 70, 90, 110, 130, 

150, 200, 250 and 500 mV/s. 

 

3.13. Effect of Temperature on Biosensor Response 
 

 Oxidation and reduction of oleuropein was catalyzed with laccase enzyme and 

investigation of the temperature effect is very important in the enzyme catalyzed 

reactions. After the investigation, the best working temperature should be found and this 

value should be set in the experiments for higher activity of the enzyme and higher 

response of the biosensor. To achieve this, cyclic voltammetry experiments were run in 

the temperatures of 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 0C and the 

temperature effect was investigated. 
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3.14. Calibration Curve for Oleuropein 
 

Construction of a calibration curve is a necessary task that should be followed 

for the quantification of oleuropein. To construct a calibration curve, first, oleuropein 

solutions of 1.25, 2, 3.2, 5.18, 7.33, 9.18 mg/ml were prepared and then the experiment 

was conducted for each of these concentration values. The current responses were 

recorded at different oleuropein concentrations. Next, oleuropein solutions lower than 

1.25 mg/ml were prepared and it was tried to find out at which concentration a cathodic 

peak current value could be recorded. At the end of the trials, it was found that a 

noticeable cathodic peak occurred at the oleuropein concentration of 1.05 mg/ml. This 

concentration value is the minimum detection limit of the amperometric laccase 

biosensor in oleuropein oxidation. Finally, oleuropein concentrations of 1.05, 1.25, 2, 

3.2, 5.18, 7.33, 9.18 were plotted against the corresponding current responses and the 

calibration curve was obtained. Construction of a calibration curve and determination of 

its linear region are very significant parts of this study because the linear calibration 

curve should be used to determine the oleuropein amount in an unknown solution. 

 

3.15. Response of Laccase Biosensor to OLE and Its Fractions 

 

 Up to this point, the performance of laccase biosensor to standard oleuropein 

solution was investigated in cyclic voltammetry experiments. Working with standard 

oleuropein solution was very crucial because it was helpful to understand the principles 

of the biosensor system. In addition, the effect of various parameters such as enzyme 

concentration, crosslinking agent amount, temperature and scan rate on biosensor 

response were studied and suitable values for these parameters were also determined in 

the former parts of the study. After studying the principles and determining the 

appropriate values for the parameters that had a significant effect on the performance of 

the laccase biosensor, it was now suitable to work with the olive leaf extract and its 

fractions which were obtained in the preceeding experiments. 

Olive leaf extract and its fractions (FI, FII, FIII, FIV and FV) were prepared as 3 

mg/ml with 50 % vol. acetonitrile-water solution. Due to the reason that there was not 

enough yield for the FVI fraction, it was not possible to work with this fraction. When 

the analytes of interest were prepared, cyclic voltammetry experiments were followed 
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with Biosensor 05 in suitable experimental conditions (250C temperature, 10 mV/s scan 

rate, in the potential range of -500 to 500 mV). At the end of the experiments, cyclic 

voltammograms were obtained for olive leaf extract and its fractions. Investigation of the 

voltammograms would give some important information about the performance of 

laccase immobilized carbon paste biosensor to olive leaf extract and its fractions. 

 

3.16. Response of Laccase Biosensor to Catechin, Rutin and Caffeic   

Acid 

 
The response of laccase biosensor to rutin, catechin and caffeic acid was also 

studied. For this purpose 2 mg/ml aqueous solutions were prepared with these standards. 

Cyclic voltammetry experiments were performed with these analytes in the same 

experimental conditions (250C temperature, 10 mV/s scan rate and in the potential range 

of -500 to 500 mV) and cyclic voltammograms were obtained. 

 

3.17. Comparison of Biosensor Response with HPLC Response,            

Antioxidant Capacity and Total Phenol Analysis 
  

 After obtaining the response of laccase immobilized carbon paste biosensor to 

olive leaf extract and its fractions, biosensor response in terms of oleuropein amount was 

compared with the HPLC response, antioxidant capacity analysis (ACW and ACL) and 

total phenol analysis. This comparison was very significant for finding a relationship 

between these methods. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 
4.1. Pretreatment and Extraction of Olive Leaves 

 

In the extraction of olive leaves, 70% aqueous ethanol solution and 1/20 

solid/liquid ratio was used. At the end of the extraction process, olive leaf crude extract 

was obtained to be used in the next studies. 

 

4.2. HPLC Analysis and Identification of Phenolic Compounds 
 

Oleuropein is the most abundant polyphenol, contributes to total antioxidant 

capacity in olive leaf. So, detection of this compound is very important in olive leaf 

studies. Qualitative and quantitative determination of oleuropein can be performed by 

HPLC analysis. HPLC chromatogram of olive leaf crude extract and abundance of the 

main phenolic compounds with the retention times are given in Figure 4.1 and Table 4.1. 

  

min0 5 10 15 20 25 30 35 40

mAU

0

500

1000

1500

2000

 DAD1 A, Sig=280,4 Ref =400,100 (SIG00222.D)

 2
.6

86

 5
.0

19

 9
.8

02

 1
5.

09
3

 1
6.

57
6

 1
7.

51
7

 1
9.

45
0

 2
0.

49
0

 2
1.

57
8

 2
3.

46
9

 
Figure 4.1. Chromatogram of olive leaf crude extract 
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Table 4.1. Retention time and abundance of the main phenolic compounds in OLE 

Phenolics   Retention time (min)  Peak area (%) 

Hydroxytyrosol  5.02     1.45 

Catechin   9.80     2.01 

Vanillic acid   15.09     2.09 

Vanillin   16.58     1.88 

Rutin    17.52     3.35 

Luteolin-7-glucoside  19.45     2.74 

Verbascoside   20.49     4.25 

 Oleuropein   21.58     22.31 

 

Oleuropein, the major phenolic compound of olive leaf extract, was first 

qualitatively determined by comparing its retention time with its standard and then it 

was quantitatively determined by using external and internal calibration methods. These 

methods are explained in detail and external and internal calibration curves for 

oleuropein are given in Appendix A. 

 Retention time of oleuropein in olive leaf extract is 21.58 minutes. Retention 

time of a compound gives an idea about its polarity. Reversed phase HPLC is a 

combination of non-polar column with high polar mobile phase. High polarity solutes 

elute first in reversed phase HPLC.  

 Identification of oleuropein was followed by the quantitative determination of 

oleuropein. A detailed sample calculation for oleuropein quantification is given in 

Appendix B. When this calculation is investigated, it was found that, 1 gram of olive 

leaf extract contains 141.6 mg oleuropein. Hızal (2006) found the oleuropein amount in 

olive leaf extract as 9.25 %. In addition to her study, Savournin et al. (2001) calculated 

the oleuropein amount of 14 cultivated olive trees and their results show that oleuropein 

content changed from 9.04 % to 14.32 % depending on the variety of olive tree. The 

oleuropein amount of the olive trees that are found in our campus was calculated as 

14.16 % in this study and the result show that the value is in the range that was given in 

the literature. 

 

 

 

 



 72

4.3. Fractionation of Olive Leaf Antioxidants 
 

 Isolation of olive leaf phenols is a necessary task for biosensor applications. For 

this purpose, fractionation of olive leaf extract was performed. After, the olive leaf 

phenols were adsorbed on silk fibroin, desorption process was followed for the partial 

fractionation of olive leaf phenols. 

 Four stage of adsorption process was applied in this work. In order to have an 

idea about adsorption efficiency, a volume of liquid olive leaf extract was injected to 

HPLC after each adsorption stage and area of oleuropein peak was recorded. HPLC 

results of olive leaf crude extract before adsorption and after each stage of adsorption 

are given in Table 4.2. 

 

Table 4.2. HPLC results of olive leaf extract in the four stage adsorption process 

 Retention time (min) Area (mAU*s) Area (%) 

Crude Extract 21.58 37,558 22.24 

After 1st loading 22.06 31,601 22.14 

After 2nd loading 22.06 33,279 22.42 

After 3rd loading 22.07 32,267 23.28 

After 4th loading 22.07 32,755 23.60 

  

 For the determination of adsorbed amount of oleuropein, the HPLC response of 

crude extract (its chromatogram was previously given in Figure 4.1) and the results 

obtained from the chromatogram after the 4th loading (it is given in Figure 4.2) would 

be used. HPLC response in terms of area for oleuropein is 37,558 mAU*s before 

adsorption and 32,755 mAU*s after the adsorption stage. 
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Figure 4.2. Chromatogram of olive leaf crude extract after the forth loading procedure 

 

Adsorbed amount of oleuropein on silk fibroin was calculated and the calculation is 

given in Appendix B. 

After adsorption, there were visible changes in the color of silk fibroin from white 

to brown. This change can be visually observed in Figure 4.3.  

 

             
Figure 4.3. Color change in silk fibroin after adsorption 

 

After adsorption, desorption process was followed for the removal of the olive 

leaf phenols. Selection of the solvent type is the most critical step in the desorption 

process. The type of the solvent is directly proportional to the desorption efficiency. 

Deionized water and 70% aqueous ethanol solution was respectively used as the eluting 

solvents in the desorption stage. First, polar and then relatively less polar phenolic 

compounds were eluted from the column by this selection. At the end of the desorption 

process, nine batches of polar and four batches of relatively less polar olive leaf extract 
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fractions were collected and they were analyzed in HPLC. Then the fractions were 

combined according to the HPLC response. Next, the fractions in their combined form 

were treated in rotary evaporator and then dried in freeze dryer. Fractions were obtained 

in powder form after this process. The combined form of the olive leaf fractions were 

also analyzed in HPLC. For the analysis, 10 mg/ml solutions of each fraction were 

prepared and then they were injected to HPLC. HPLC results, in terms of oleuropein 

peak, of the combined form of the fractions are given in Table 4.3.  

 

Table 4.3. HPLC results for oleuropein peak in the combined olive leaf fractions 

 Retention time (min) Area (mAU*s) Area (%) 

FI 21.82 30,123 90.95 

FII 22.04 32,168 78.15 

FIII 22.11 13,677 54.70 

FIV 22.21 5,861 49.43 

FV  no oleuropein peak -- -- 

FVI  no oleuropein peak -- -- 

 

HPLC profiles of the two fractions, FI and FII, which were richer with their 

oleuropein contents are given in Figures 4.4 and 4.5. 
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Figure 4.4. Chromatogram of FI (W1+W2) 
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According to analysis of FI, retention time for oleuropein was recorded as 21.82 

minutes and HPLC response in terms of area was recorded as 30,123. From the external 

calibration curve, oleuropein concentration in this fraction was calculated as 5.66 mg/ml. 

As the concentration of the analyte was 10 mg/ml, 56.6 % of this fraction was composed 

of oleuropein. 
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Figure 4.5. Chromatogram of FII (W3+W4) 

 

Retention time for oleuropein in FII was found as 22.04 minutes and the area 

value was 32,168. Oleuropein concentration was calculated as 6.05 mg/ml from the 

calibration curve. Oleuropein content of this fraction is 60.5 % by weight. HPLC profiles 

of FIII and FIV are given in Figures 4.6 and 4.7. Oleuropein content in these fractions 

were also calculated and they were found as 25.3 % and 10.4 % by weight respectively. 
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Figure 4.6. Chromatogram of FIII (W5+W6) 
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Figure 4.7. Chromatogram of FIV (W7+W8+W9)  

 

 HPLC chromatograms of less polar fractions, obtained from the column outlet 

by eluting 70% aqueous ethanol, are given in Figures 4.8 and 4.9. When these 

chromatograms are investigated it is realized that there is no oleuropein peak in these 

fractions meaning that there is only a little (below the detection limit of HPLC) or no 

oleuropein in these fractions. 
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Figure 4.8. Chromatogram of FV (E1+E2) 
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Figure 4.9. Chromatogram of FVI (E3+E4) 

 

The HPLC chromatograms of the fractions are also given in Appendix C with the 

identification of the other phenolics with respect to their retention times. Fractionation, in 

other means, partial purification of olive leaf extract was achieved in this work. 
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4.4. Antioxidant Capacity Analysis 

 
In the present study, PCL assay was performed for determination of the both 

water soluble and lipid soluble antioxidant capacities of olive leaf crude extract and its 

fractions. 

 

Antioxidant Capacity of Water Soluble Compounds: 

 

ACW protocol was applied for the detection of the antioxidant capacity of water 

soluble compounds. Curves for the blank and the samples were constructed according to 

the protocol and they are given in Figure 4.10. 

 

 

Figure 4.10. ACW curves for the olive leaf crude extract and the fractions (Figure 4.10.a. 

for the fractions FI, FII and FV, Figure 4.10.b. for the samples CE, FIII and FIV) 

 

Antioxidant capacity (AOC) of olive leaf extract and its fractions, in terms of ascorbic 

acid concentration, were calculated and a sample calculation is given in Appendix D. 

The results are given in Figure 4.11. 

a b
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Figure 4.11. Ascorbic acid equivalent concentration values (μg/mg) for AOC of water 

soluble compounds in olive leaf extract and its fractions 

  

As it is seen in Figure 4.11, the highest water-soluble antioxidant capacity was 

observed for FI with a concentration value of 1278.35 μg ascorbic acid/mg. That is 

followed by FIII (1148.49 μg/mg) and FII (1036.70 μg/mg). The lowest capacity was 

detected for crude extract with a concentration value corresponding to 678.81 μg ascorbic 

acid/mg sample. It was not possible to report any results for FVI due to the reason that 

there was not enough yield. When the HPLC chromatograms are investigated, it is 

observed that the most abundant phenolic in FI, FII and FIII fractions is oleuropein. Peak 

area of oleuropein in FI, FII and FIII is 90 %, 78 % and 54 % respectively. It should be 

taken into account that FI fraction has the highest peak area value and also the highest 

water soluble antioxidant capacity value. As the FIII fraction has higher water soluble 

antioxidant capacity value than the fraction FII, it is not possible to say that the AOC 

value is just directly proportional with the oleuropein. When the chromatograms in 

Appendix C are investigated it is observed that fraction FII contains oleuropein, rutin and 

verbascoside. Although the main peak is oleuropein in FIII fraction, the existence of 

rutin, verbascoside and luteolin-7-glucoside should attract the attention. Moreover, rutin 

and oleuropein are the phenolics of fraction FIV and the phenolics of FV are rutin and 

vebascoside.  

When antioxidant capacity of FII fraction is investigated, it is observed that the 

presence of rutin and verbascoside results into a decrease in water soluble antioxidant 
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capacity value. On the other hand, the combination of oleuropein, rutin, verbascoside and 

luteolin-7-glucoside in FIII, increases the water soluble antioxidant capacity value. This 

may be the positive effect of luteolin-7-glucoside on the radical scavenging capacity. The 

combination of rutin and vebascoside is recognized in fraction FV and this fraction has a 

lower water soluble antioxidant capacity value (807.03 μg/mg) indicating that the 

coupling of these phenolics results into a decrease in water soluble antioxidant capacity 

value. This can be also an explanation of why FII fraction has lower water soluble 

antioxidant capacity value than the FI fraction. The presence of rutin and verbascoside 

beside oleuropein in FII yields with a lower water soluble antioxidant capacity value, 

whereas the situation completely changes with the existence of luteolin-7-glucoside in 

FIII. In accordance with this knowledge, it can be thought that olive leaf phenolics show 

a synergic behaviour in radical scavenging capacity.  

Garcia, et al. (2000) studied the ABTS●+ scavenging capacity of olive leaf 

phenolics and they found that the most effective flavonoid for scavenging the ABTS●+ 

radical was rutin with a TEAC value 2.75 mM. Water soluble antioxidant capacity 

analysis of this study showed that although rutin was found to be a promising flavonoid 

in scavenging ABTS●+ radical, it showed a synergic behaviour when mixed with 

oleuropein and verbascoside. 

 

Antioxidant Capacity of Lipid Soluble Compounds: 

 

ACL protocol was applied for the detection of the antioxidant capacity of lipid 

soluble compounds. Curves for the blank and the samples were constructed according to 

the protocol and they are given in Figure 4.12. 

Antioxidant capacity, in terms of Trolox concentration, was calculated from the 

same equation as in the case of ACW, only differentiating in the molar mass value. 

Trolox was used in the ACL calculations and Trolox equivalent concentration values 

were calculated. A sample calculation is given in Appendix D. ACL results are shown in 

Figure 4.13. 
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Figure 4.12. ACL curves for the olive leaf crude extract and the fractions (Figure 4.12.a.   

for the fractions FI, FII and FV,  Figure 4.12.b. for samples CE, FIII and FIV) 
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Figure 4.13. Trolox equivalent concentration values (μg/mg) for AOC of lipid soluble 

compounds in olive leaf extract and its fractions 
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According to the results, the highest lipid soluble antioxidant content was 

detected for FIII with a concentration value of 2051.46 μg/mg. This is followed by FI 

(1634.63 μg/mg), CE (1495.30 μg/mg), FIV (1260.51 μg/mg) and FV (1070.42 μg/mg). 

The lowest lipid soluble antioxidant content was observed for FII corresponding to 

270.49 μg/mg concentration value. When the results are investigated, a direct comparison 

between the ACL and ACW results cannot be observed. ACL results just depend on the 

lipid soluble compounds. Although the higher water soluble antioxidant capacity values 

of FI and FIII fractions, they also have higher lipid soluble antioxidant capacity values. 

Crude extract has higher lipid soluble antioxidant capacity value than FIV, FV and FII 

fractions which is a demonstration of synergic behaviour of olive leaf phenolics. 

 

4.5. Total Phenol Analysis 
 

Total phenol contents of the olive leaf extract and its fractions were analyzed with 

folin-ciocalteu reagent and the results were expressed as milligrams of gallic acid 

equivalents per gram weight. 

For the total phenol analysis, calibration curve of gallic acid standard was used 

and it is given in Figure 4.14. 
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Figure 4.14. Calibration curve of gallic acid 
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 Total phenol content of the crude extract was calculated as 195.09 mg GAEq/g 

sample. Total phenol content of the water soluble fractions (FI, FII, FIII and FIV) were 

found as 309.57, 376.63, 309.86 and 249.94 mg GAEq/g sample respectively. Total 

phenol content of the least polar fraction (FV) was calculated as 334.78 mg GAEq/g 

sample. The results are schematically represented in Figure 4.15. The highest total 

phenolic content was detected for FII that is followed for FV. As it is seen from the 

graph, non-phenolic compounds are eliminated by fractionation that results an increase in 

the total phenol content. 
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Figure 4.15. Total phenol content of crude extract and olive leaf extract fractions 

 

4.6. Biosensor Construction  
  

 Carbon paste biosensors were constructed by mixing graphite powder and mineral 

oil as top components and the bottom part of the biosensor was prepared by 

immobilization of laccase from Trametes versicolor by addition of cross-linking agent 

into the carbon paste. Laccase enzyme concentration and crosslinking agent amount were 

the key components in this study. Laccase enzyme concentration (1, 5, 10 mg/ml) and 

glutaraldehyde amount (6.40, 12.03 and 17.01 % vol. of the biosensor bottom part) were 

changed in three levels in order to observe their effects on biosensor performance. So, 

nine different carbon paste biosensors and a chemical sensor as a reference sensor were 

prepared in this study.  
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4.7. Cyclic Voltammetry Experiments for Oleuropein 

 

 Before running the cyclic voltammetry experiments for oleuropein, Gamry 

Physical Electrochemistry Software was checked with the working electrode. FeCl3 

solution was used for this test. Cyclic Voltammogram of 1.25 M FeCl3 solution at 25ºC 

and 10mV/s scan rate is given in Figure 4.16. It was concluded from this figure that the 

voltammogram had well characteristics and the experiments for oleuropein could be 

followed. 

 

  
Figure 4.16. Voltammogram of 1.25 M FeCl3 solution at 25ºC and 10mV/s scan rate 

 

 Presence of one or more hydroxylated benzene rings is the basic feature of all 

phenols. Phenolic compounds also contain hydroxyl group(s) attached to the ring 

structures. Antioxidant activity of polyphenols is known as radical scavenging property. 

In a typical scavenging reaction, H atom from the O-H group of a polyphenolic 

compound is donated to the radical and this is associated with the oxidizing capacity of 

the polyphenol (Filipiak 2001). In respect of Filipiak’s publication, measuring an 

oxidation potential in cyclic voltammetry can be used as an analytical tool in the 
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determination of oxidizability of a compound. So, electrochemical behaviour of a 

phenolic compound, oleuropein, was studied in this work by cyclic voltammetry 

experiments. Figure 4.17 represents a typical cyclic voltammogram of oleuropein. 

 

 
Figure 4.17. Cyclic Voltammogram of 2 mg/ml of oleuropein at 25ºC and 10mV/s scan rate 

 

As a first step, different experimental conditions were studied in cyclic 

voltammetry experiments in order to check reversibility and to find out the suitable 

working potential values. As it is seen from the above figure, working between -0.5 V 

and 0.5 V potential values, yields a typical, reversible cyclic voltammogram for 

oleuropein. 

Filipiak performed cyclic voltammetry experiments for some flavonoids and 

some phenolic acids. All investigated phenolics, both flavonoids and phenolic acids 

exhibit one or two oxidation peaks (anodic wave) at about 200-300 mV and 500-700 mV. 

It was reported that oxidation peaks are associated with the oxidation centers present in 

polyphenolic molecules. Oxidation peak existed at about 300 mV correspond to 3’, 4’-

dihyroxyl moiety at B ring (catechol moiety) and the second oxidation peak at about 600 

mV comes from the OH group at position 3 at C ring or some additional OH groups at A 

and C (Filipiak 2001). 

Some polyphenols have both an oxidation and a reduction peaks on their 

voltammograms showing reversibility on oxidation process (Filipiak 2001). When the 
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cyclic voltammogram for oleuropein is investigated, it is realized that the top scan of the 

cyclic voltammogram represents the reduction of oleuropein and this is achieved by 

generating a cathodic current. Anodic current occurs by peaking at a particular electrode 

potential. On the reverse scan, reduced form of oleuropein is oxidized back to its original 

form and in this situation, a positive peak potential is produced indicating to the anodic 

current value. The lower the potential of oxidation, the more powerful the compound as a 

reducing agent (Kilmartin and Hsu 2003). 

Therefore, a huge number of information on the mechanism of polyphenols 

oxidation can be obtained by investigating their cyclic voltammograms. Base on this 

information, the typical cyclic voltammogram of oleuropein (Figure 4.17) is investigated 

to learn more about the electrochemical behaviour of oleuropein. 

Oleuropein shows one oxidation peak at 285.4 mV (anodic peak potential, Epa) 

and this can be associated with the catechol moiety at the B ring. Besides, oleuropein 

does not show a peak at 600 mV in cyclic voltammetry experiments. This is due to the 

fact that, oleuropein does not contain hydroxyl group attached to the 3 position of C ring. 

Oleuropein also shows a reduction peak at 212.3 mV (cathodic peak potential, Epc). The 

reduction potential (Eo) was calculated as 248.85 mV which is the average of the 

oxidation and reduction potentials (Gosser 1993). The anodic peak current (Ipa) of 

oleuropein is 100.7 μA and the cathodic peak current (Ipc) is 187.8 μA. 

As Filipiak reported, phenolics having a low oxidation potential value (below 

+300 mV), shows a high radical scavenging activity. In the case of oleuropein, the Epa 

value was found as 285.4 mV. This value is lower than 300 mV that exhibits a high 

radical scavenging activity of oleuropein. 

Several criteria can be utilized to confirm a single reversible electron transfer to 

characterize the phenolics as reducing agents. First, the difference in anodic (Epa) and 

cathodic (Epc) peak potentials is around 57-60 mV depending on the switching potential. 

Mathematically; 

ΔEp = abs [Epc - Epa] ≈ 58 mV 

But, in actual experiments the expected 58 mV value is rarely observed due to the small 

distortions and electronic or mathematical smoothing of the data. The value of ΔEp for a 

reversible electron transfer is often accepted as 60-70 mV (Gosser 1993). 

  ΔEp value is calculated as 73.1 mV from the cyclic voltammogram of oleuropein 

and this value is quite closer to the 70 mV. So, electrochemical behavior of oleuropein 

can be defined to have a reversible electron transfer mechanism. 
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 Other criterion for a reversible electron transfer mechanism is the ratio of the 

cathodic peak current (Ipc) and shifted ratio of the anodic peak current (I*
pa). If this ratio 

is unity, it is possible to deal with a fully reversible process. The shifted ratio of the 

anodic peak current is calculated from the baseline that is moved to a value that can be 

predicted from the decaying portion of the cathodic peak (Kilmartin and Hsu 2003, 

Gosser 1993).  

 The shifted ratio of the anodic peak is calculated as 151.7 μA from Figure 4.13 

and the shifted ratio of the cathodic to anodic currents is calculated as 1.24. This value is 

also quite closer to unity and this criterion also proves the reversibility of oleuropein in 

cyclic voltammetry experiments. 

It is clear that a number of parameters can be extracted from the cyclic 

voltammetry curves to characterise the phenolics as reducing agents. Up to this point it is 

intended to show how to use cyclic voltammetry to understand the redox properties of 

polyphenols.  

 

4.8. Effect of Laccase Enzyme on Biosensor Response 
  

 Oleuropein is known to attach to the binding site of laccase by hydrophobic 

interaction and it is believed that it shows good substrate behavior for laccase enzyme 

(Quan, et al. 2004). To prove this belief, both the laccase biosensors and the 

electrochemical sensor were used to determine the redox properties of oleuropein in the 

same experimental conditions. Figure 4.18 is graphical representation of the cyclic 

voltammetry experiments with oleuropein. As it is seen from Figure 4.18, there is a sharp 

distinction between the behavior of laccase biosensor and the electrochemical sensor in 

oleuropein oxidation. Laccase biosensor has some distinctive features on their 

voltammograms such as, oxidation potential, reduction potential, anodic peak current and 

cathodic peak current, whereas, chemical sensor has recessive characteristics of these 

properties. The investigation of these features led us to have some useful information 

about the redox properties of oleuropein. So, cyclic voltammetry curves of laccase 

biosensor can be successively used to characterize oleuropein as a reducing agent. After 

this part of the work, it is proved that oleuropein showed a good substrate behavior for 

laccase enzyme. 
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Figure 4.18. Cyclic voltammograms of (a) laccase biosensor and (b) electrochemical 

sensor in 2 mg/ml of oleuropein concentration at 25 ºC with ± 0.5 V and 10 

mV/s scan rate 

 

 The effect of laccase concentration on biosensor performance was also 

investigated in this study. In order to achieve this, biosensors with laccase concentration 

of 1, 5 and 10 mg/ml were used and the cyclic voltammetry experiments were conducted 

with these biosensors. The voltammograms showing the effect of laccase concentration 

when glutaraldehyde amount was 6.40 % vol. of the biosensor bottom part are given in 

Figure 4.19. 
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Figure 4.19. Cyclic voltammograms of biosensors with laccase concentration of 1, 5 and 

10 mg/ml when GA = 6.40 % vol. of the biosensor bottom part (oleuropein 

concentration of 2 mg/ml, at 25 ºC with ± 0.5 V and 10 mV/s scan rate) 

 

This figure proves that the best biosensor performance was obtained with the 

biosensor having laccase concentration of 5 mg/ml when the crosslinking agent amount 

was fixed at 6.40 % vol. of the biosensor bottom part. The situation was nearly same 

when the glutaraldehyde amount was changed to 12.03 and 17.01 % vol. of the biosensor 

bottom part. The voltammograms showing the effect of laccase concentration when 

glutaraldehyde amount was 12.03 and 17.01 % vol. of the biosensor bottom part are also 

given in Figure 4.20 and Figure 4.21 respectively.  
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Figure 4.20. Cyclic voltammograms of biosensors with laccase concentration of 1, 5 and 

10 mg/ml when GA = 12.03 % vol. of the biosensor bottom part (oleuropein 

concentration of 2 mg/ml at 25 ºC with ± 0.5 V and 10 mV/s scan rate) 
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Figure 4.21. Cyclic voltammograms of biosensors with laccase concentration of 1, 5 and 

10 mg/ml when GA = 17.01 % vol. of the biosensor bottom part (oleuropein 

concentration of 2 mg/ml, at 25 ºC with ± 0.5 V and 10 mV/s scan rate) 

 

As, it is seen from the above figures, 5 mg/ml is the optimum laccase 

concentration compared to 1 and 10 mg/ml. So, it is clear that the enzyme amount is not 

directly proportional with the biosensor response.  This is due to the phenomenon that is 

explained below. 

The magnitude of the biosensor response can be related to the amount of enzyme. This 

relation can be summarized as, as the rate of enzymatic oxidation increases as the amount 

of enzyme increases. On the other hand, as the amount of enzyme increases, enzyme 

layer thickness also increases which leads to the increase of the diffusional limitations. 

Due to the diffusional limitations, a resistance occurs for the enzymatically oxidized 

substrate to arrive to the electrode surface and this contributes to the decrease in the 

current response (Quan, et al. 2004). So, it can be concluded that 10 mg/ml laccase 

concentration was resulted in the occurrence of the diffusional resistance to provide the 

oxidized form of oleuropein to arrive to the biosensor surface for re-reduction. 
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4.9. Effect of Crosslinking Agent on Biosensor Response     
 

 Quan and his friends reported that the stability of the sensors based on polymer 

entrapped laccase or carbon paste mixed laccase was generally about 1-2 weeks (Quan, et 

al. 2004). During this study, we encountered with a similar problem that was the 

disintegration of the carbon paste mixed laccase as soon as the biosensor surface was 

interacted with the analyte. Therefore, a crosslinking agent, glutaraldehyde, was added to 

the carbon paste mixture in order to enhance the stability of the immobilized enzyme. 

After this work, it is understood that using glutaraldehyde, dramatically enhanced the 

integrity of the biosensor and this is schematically shown in Figure 4.22. 

 

                        
 
                       Disintegrated particles (a)                                    No disintegration (b) 

Figure 4.22. Biosensor system in contact with the analyte (a) without GA (b) with GA 

 

 Other concern in this part is the investigation of the effect of glutaraldehyde 

amount on biosensor performance. For this purpose, cyclic voltammograms obtained by 

using biosensors changing in glutaraldehyde amounts were analyzed and they are given 

in Figure 4.23, 4.24 and 4.25.  
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Figure 4.23. Cyclic voltammograms of biosensors with glutaraldehyde amount of 6.40, 

      12.03 and 17.01 % vol. of the biosensor bottom part when LC = 1 mg/ml 

                     (oleuropein concentration of 2 mg/ml, at 25 ºC with ± 0.5 V and 10 mV/s 

scan rate) 

 



 94

 
    Figure 4.24. Cyclic voltammograms of biosensors with glutaraldehyde amount of 6.40, 

12.03 and 17.01 % vol. of the biosensor bottom part when LC = 5 mg/ml 

(oleuropein concentration of 2 mg/ml, at 25 ºC with ± 0.5 V and 10 mV/s 

scan rate) 
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Figure 4.25. Cyclic voltammograms of biosensors with glutaraldehyde amount of 6.40, 

12.03 and 17.01 % vol. of the biosensor bottom part when LC = 10 mg/ml 

(oleuropein concentration of 2 mg/ml, at 25 ºC with ± 0.5 V and 10 mV/s 

scan rate) 

 

 When these figures are investigated, it is understood that it is not easy to find out 

a direct relationship between the glutaraldehyde amount and catholic peak current.  

 

4.10. Cyclic Voltammetry Experiments with Different Biosensors 
 

After learning how to use the cyclic voltammograms, the experiment was run for 

2 mg/ml oleuropein solution with nine biosensors and the chemical sensor. The response 

in terms of delta cathodic peak current for nine biosensors was investigated and the 

biosensor giving the best performance was reported in this part of the work. While the 

biosensor response in terms of cathodic peak current was determined, the response of 

chemical sensor was substracted from the response of each biosensor. The cyclic 

voltammetry experiments for oleuropein solution were repeated for two times with each 

biosensor. The cyclic voltammetry results are given in Table 4.4. Moreover, the graphical 

representation of the average cathodic peak current data is given in Figure 4.26.   
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Table 4.4. Cyclic voltammetry results 

Biosensor no 

 

   L.C.* 

 (mg/ml) 

G.A.* amount 

     (% vol.) 

Delta current 

       (μA) 

Delta current 

       (μA) 

Average current

        (μA) 

Biosensor 01 1 6.40 28.6 20.9 24.8 

Biosensor 02 1 12.03 51.4 50 50.7 

Biosensor 03 1 17.01 53.8 52.4 53.1 

Biosensor 04 5 6.40 59.8 64.1 62 

Biosensor 05 5 12.03 87.2 73.8 80.5 

Biosensor 06 5 17.01 62.6 63.4 63 

Biosensor 07 10 6.40 42.5 33.2 37.9 

Biosensor 08 10 12.03 44.4 43 43.7 

Biosensor 09 10 17.01 43.5 44.9 44.2 

L.C.*: Laccase concentration 
G.A.*: Glutaraldehyde 

 

 
Figure 4.26. Graphical representation of the average cathodic peak current with respect to 

laccase concentration and glutaraldehyde amount 

 

When the results are investigated, it is easy to notice that Biosensor 05, having 

the highest average cathodic peak current value, showed the best performance in cyclic 
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voltammetry experiments. It is also possible to say that laccase concentration of 5 mg/ml 

and glutaraldehyde amount of 12.03 % vol. of the biosensor bottom part were the most 

suitable levels for this experiment. 

The best biosensor performance was determined and after this point, the 

following experiments were followed with Biosensor 05. But before that, the effects of 

the factors were investigated. Due to this reason the experimental data were analyzed 

with Design Expert Software (30 days trial version). Full factorial design was followed 

and according to the analysis it was found that the model terms of laccase concentration 

and glutaraldehyde amount and their interaction are significant. It was also found that the 

most significant model term is the laccase concentration having a p value smaller than 

0.0001. P value calculated for glutaraldehyde amount and the interaction of the model 

terms are 0.0003 and 0.0063 respectively. P values for these terms are smaller than 0.05 

which indicates the model terms and their interaction are significant. 

 

4.11. Effect of Scan Rate on Biosensor Response 
 

 Scan rate defines the speed of the potential sweep during data acquisition. Scan 

rate is one of the most important parameters which effects the redox properties of the 

substrates in cyclic voltammetry experiments. The influence of scan rate on the anodic 

and cathodic peak currents was investigated by performing cyclic voltammetry 

experiments in the range of 1-500 mV/s scan rate. The voltammograms are given in 

Figure 4.27. 
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Figure 4.27. Cyclic voltammograms of laccase biosensor for 2 mg/ml oleuropein    

solution, at 25ºC, in ± 0.5 V potential interval, with various scan rates 

 

It was observed that, delta value of the cathodic peak current decreases as the 

scan rate increases. In other words, the response of biosensor, in terms of cathodic peak 

current is inversely proportional with the scan rate. Moreover, anodic peak current is a 

distinctive feature of the voltammograms in the low scan rate values, whereas, oxidation 

peak cannot be observed as the scan rate increases hence, it is not possible to pronounce 

a term called anodic peak current in the high scan rate values. This situation occurs 

because, increasing scan rate results in the increase of the rate of diffusion of the reduced 

substrate from the electrode surface (Gosser 1993). In addition, higher scan rates may 

yield inaccurate data due to inability of the software to acquire data points fast enough. 

So, lower scan rates are suitable for the reduction of oleuropein. However, a considerable 

change on biosensor response cannot be observed below 10 mV/s scan rate values. 

Besides, working below 10 mV/s scan rate values requires extended experimental time. 

Then, 10 mV/s is selected as the suitable scan rate value for the detection of oleuropein 

with amperometric laccase biosensor. 

Square root of scan rate can be also used as a key factor in the confirmation of the 

reversibility. Plots of Ipc and Ipa versus square root of the scan rate show the reaction of 
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oxidation of oleuropein to be reversible. Then, Ipc versus square root of scan rate is 

plotted and it is given in Figure 4.28. Figure 4.28 shows that there exists a proportional 

relationship between the cathodic peak current and square root of scan rate, verifying 

reversibility of oleuropein oxidation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28. Cathodic peak current versus square root of scan rate (2 mg/ml oleuropein, 

at 25ºC, in ± 0.5 V potential interval, with 10 mV/s scan rate) 

 

4.12. Effect of Temperature on Biosensor Response 
 

 Temperature dependency of the enzyme catalyzed reactions has already been 

known. Laccase enzyme was used in this study to construct the enzyme biosensors and 

oxidation and reduction reactions took place in the surface of the enzyme biosensors. 

Redox properties of oleuropein can be understood from the oxidation and reduction 

reactions. As these reactions were enzyme catalyzed reactions, the oxidation and 

reduction of oleuropein was also dependent on temperature. To sum up, it is understood 

that the biosensor response is highly affected from the temperature and the best working 

temperature should be found for the detection of oleuropein. In this respect, cyclic 

voltammetry experiments were done in the temperature range of 2 0C – 60 0C. The 

voltammograms are shown in Figure 4.29. It can be clearly seen from this figure that the 

response of the biosensor (cathodic peak current) increases with increasing temperature. 

But it was reported that the phenolic compounds which act as antioxidants loss their 

radical scavenging activity above 400C (Altıok 2003). So, the working temperature 
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should be kept below this value. Optimum working temperature for oleuropein oxidation 

with laccase biosensor was chosen as 25 0C in order to avoid possible activity loss. 

 

 
Figure 4.29. Cyclic voltammograms of laccase biosensor for 2 mg/ml oleuropein 

solution, in ± 0.5 V potential interval, with 10 mV/s scan rate, at various 

temperatures 

 

4.13. Calibration Curve of Oleuropein 
 

Amperometric measurements depend on the current resulting from the 

electrochemical oxidation and reduction of electroactive species and it is known that the 

resulting current response can be easily correlated to the bulk concentration of the 

electroactive species or its production or consumption rate within the adjacent 

biocatalytic layer. Biocatalytic reaction rates are often chosen to be first order 

dependent on the bulk analyte concentration thus, steady state current response is 

usually accepted to be proportional to the bulk analyte concentration (Thevenot, et al. 

2001). This correlation can be obtained from the calibration curve and only by this 
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curve it is possible to find out the relation between the concentration of the analyte and 

the current response. 

After investigating the effect of various parameters on biosensor response, cyclic 

voltammetry experiments were conducted with “Biosensor 05” in different analyte 

(oleuropein) concentrations. Cyclic voltammograms of oleuropein solutions, 

differentiating in their concentrations, are given in Figure 4.30. The voltammograms in 

the figure were obtained with the oleuropein concentrations of 1.05, 1.25, 2, 3.2, 5.18, 

7.33 and 9.18 mg/ml. 

 

 
Figure 4.30. Cyclic voltammograms of oleuropein solutions in a temperature of 25 0C, 

scan rate of 10 mV/s and the potential range of -0.5 to 0.5 V 

  

 It is seen from the above figure that the cathodic current response for oleuropein 

solution increases as the concentration of oleuropein increases. This was an expected 

result yielding to a correlation which can be extracted from the calibration curve.  

Steady state delta cathodic current response values were recorded for each 

analyte concentration and these current values were plotted with respect to the 
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corresponding oleuropein concentration. The resulting linear curve was called the 

“calibration curve”. The calibration curve for oleuropein is given in Figure 4.31. 
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Figure 4.31. Calibration curve for oleuropein 

 
As it is seen from the above figure, the calibration curve is a linear line with an 

R-sguare of 0.9579 and the calibration equation is given on the figure. The linear 

calibration curve was very significant in this study due to the fact that it would be used 

in the following experiments for the determination of oleuropein amount in an analyte 

solution with an unknown oleuropein concentration. 

  

4.14. Response of Laccase Biosensor to OLE and Its Fractions 
 

 Laccase immobilized carbon paste biosensors showed a considerable response 

for oleuropein solution in cyclic voltammetry experiments. So it was clear that, this type 

of biosensor could detect oleuropein. After this finding, the question coming to mind 

was that; could the laccase immobilized carbon paste biosensor detect oleuropein 

amount in olive leaf extract or not. So, in the further experiments of this work it was 

decided to investigate the detection capability of laccase biosensor in olive leaf extract 

and its fractions. To achieve this goal, first 3 mg/ml of the analytes which were olive 

leaf extract, FI, FII, FIII, FIV and FV were prepared by solving the extracts in the 

working solution. Then, cyclic voltammetry experiments were run with laccase 



 103

biosensor in the potential range of -0.5 to 0.5 V, temperature of 250 C and scan rate of 

10 mV/s. 

 Cyclic voltammograms for the olive leaf extract, FI, FII, FIII, FIV and FV are 

given in Figure 4.32, 4.33, 4.34, 4.35, 4.36 and 4.37 respectively. Voltammograms of 

laccase biosensor in FVI could not be obtained because of the fact that there was not 

enough yield of this fraction. 

 

 
Figure 4.32. Cyclic voltammogram of laccase biosensor in 3 mg/ml of OLE 

 

Cyclic voltammogram of laccase biosensor in 3 mg/ml of olive leaf extract can 

be seen in Figure 4.32. When this figure is investigated, it is found that the delta value 

of the cathodic current was 17.8 µA with a vertex value of 70.96 µA and the baseline of 

53.16 µA. 
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Figure 4.33. Cyclic voltammogram of laccase biosensor in 3 mg/ml of FI 

 

According to the above voltammogram, the delta value of the cathodic peak 

current of the laccase biosensor in FI was observed as 33.71 µA. This value was 

calculated by subtracting the baseline of the peak (66.39 µA) from its vertex value 

(100.1 µA). 

Figure 4.34 shows the cyclic voltammogram of laccase biosensor in FII. The 

highest cathodic peak current was observed in this fraction. As it is seen from the figure 

below, delta value of the cathodic peak current for this fraction was calculated as 66.13 

µA. 

The voltammogram of laccase biosensor in FIII can be seen in Figure 4.31. It is 

observed that the cathodic peak current of this voltammogram had a vertex value of 

55.69 µA and a baseline of 30.50 µA. So, delta value of the cathodic peak current of 

this voltammogram was found as 25.19 µA. 
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Figure 4.34. Cyclic voltammogram of laccase biosensor in 3 mg/ml of FII 

 

 

 
Figure 4.35. Cyclic voltammogram of laccase biosensor in 3 mg/ml of FIII 
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Figure 4.36. Cyclic voltammogram of laccase biosensor in 3 mg/ml of FIV 

 

 

 
Figure 4.37. Cyclic voltammogram of laccase biosensor in 3 mg/ml of FV 
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Cyclic voltammogram of laccase biosensor in fraction IV is given in Figure 

4.36. Delta value of the cathodic peak current of this fraction is calculated as 14.95 µA 

which was found by subtracting the baseline of the peak (28.86 µA) from its vertex 

value (43.81 µA).  

Cyclic voltammogram of laccase biosensor in fraction FV can be seen in Figure 

4.37. Delta value of the cathodic peak current was found by subtracting the baseline of 

the peak (49.31 µA) from its vertex value (37.02 µA). It was found as 12.29 µA for this 

fraction. 

 

4.15. Response of Laccase Biosensor to Catechin, Rutin and Caffeic    

Acid 

 
Oleuropein is the major polyphenolic component of olive leaf that contributes to 

the total antioxidant capacity. However rutin, catechin and caffeic acid have known with 

a considerable antioxidant effect. In this respect the response of laccase biosensor to 

rutin, catechin and caffeic acid was also studied.  

However, in the first trials, no noticeable anodic or cathodic peaks could be 

observed with these standards. Then, the experiment was run for various cycles and an 

acceptable anodic and cathodic peaks began to appear with catechin and caffeic acid in 

the potential range of -500 to 500 mV. On the other hand, no appreciable response was 

achieved for rutin no matter how many cycles the experiment was conducted. The 

number of the cycles was fixed and the voltammograms obtained from the last cycle for 

caffeic acid, catechin and rutin were respectively given in Figures 4.38, 4.39 and 4.40. 
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Figure 4.38. Cyclic voltammogram of laccase biosensor in 2 mg/ml of caffeic acid 

 

 
Figure 4.39. Cyclic voltammogram of laccase biosensor in 2 mg/ml of catechin 
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Figure 4.40. Cyclic voltammogram of laccase biosensor in 2 mg/ml of rutin 

 

Structures of these polyhenols are given in Figure 4.41. 

 

                                
  

 

                                     
 

Figure 4.41. Structure of polyphenols: caffeic acid, catechin, rutin  

(Source: Gomes, et al. 2004) 

       caffeic acid          catechin 

rutin 
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When the cyclic voltammograms of polyphenols are investigated together with 

their structures, it can be concluded that the electron transfer mechanism in caffeic acid 

and catechin oxidation is not a completely reversible process. Conducting the 

experiment for various cycles resulted into the accumulation of the oxidation products 

into the system and cathodic and anodic peaks were observed for the oxidation products 

of caffeic acid and catechin. However, the situation was different in the case of rutin 

oxidation. It was considered that no considerable oxidation and reduction occurred in 

the rutin solution since no anodic and cathodic peaks were observed. Laccase may not 

be a convenient enzyme for the oxidation of rutin. 

 

4.16. Comparison of Biosensor Response with HPLC Response, 

Antioxidant Capacity and Total Phenol Analysis 
 

 Up to this point, HPLC analysis, antioxidant capacity analysis (ACW, 

antioxidant capacity of water soluble antioxidants; ACL, antioxidant capacity of lipid 

soluble antioxidants), total phenol analysis and cyclic voltammetry experiments were 

performed and the results were obtained for olive leaf crude extract and its fractions. 

These results were tabulated and they are given in Table 4.5. 
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Table 4.5. The results of antioxidant capacity analysis, total phenol, HPLC analysis and cyclic voltammetry experiments 

 
Antioxidant Capacity Analysis 

   

ACW Analysis ACL analysis 

Total Phenol Analysis Biosensor Results HPLC Results 

  (µg ascorbic acid /mg) (µg trolox /mg) (mg gallic acid/g sample) oleuropein (% wt) oleuropein (% wt) 

CE 678.81 1495.3 195.09 25.18 14.16 

FI 1278.35 1634.63 309.57 44.09 56.6 

FII 1036.7 270.49 376.63 82.62 60.5 

FIII 1148.49 2051.46 309.86 33.96 25.3 

FIV 807.03 1260.51 249.94 21.79 10.4 

FV 807.02 1070.42 334.78 18.63 No oleuropein peak 
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As it is seen from Table 4.5, ACW results were given as µg ascorbic acid 

standard/mg sample, while ACL results were given as µg trolox standard/mg sample. 

Total phenol results were reported as mg gallic acid standard/g sample. On the other 

hand, biosensor and HPLC results were given in the form of weight percentage of 

oleuropein in olive leaf extract.  

ACW, ACL and total phenol results were not representative results for only 

oleuropein whereas, HPLC and biosensor results were representative for oleuropein. 

When the biosensor and HPLC results were investigated, it was seen that although the 

weight percentages were not completely same, they were quite closer with each other. 

As it was noticed from the table, the highest oleuropein amount was found in FII 

fraction by both HPLC and biosensor analysis. FII fraction having the highest 

oleuropein amount also has the highest ACW result in terms of ascorbic acid equivalent 

antioxidant capacity. As, water soluble component, oleuropein is known with its 

antioxidative property, such a result is not suprising. 

It was noticed that, FI and FIII contained additional water soluble antioxidants 

other than oleuropein. This prediction could also be proved by the HPLC 

chromatograms of the fractions which are given in Appendic C. 

In addition, it was clear that non-phenolic components were removed from 

fractionation and the lowest total phenol amount was observed for CE.    

 To sum up, when antioxidant capacity, total phenol analysis, HPLC and 

biosensor results were investigated, a general relationship could not be obtained for all 

of them but some similarities were observed. This was not a surprising result because 

only HPLC and biosensor results were representative for oleuropein. On the other hand, 

ACW calculations were performed for water soluble antioxidants, ACL calculations 

were performed for lipid soluble antioxidants and total phenol analysis were 

predominantly for both water and lipid soluble antioxidants. 
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CHAPTER 5 

 

CONCLUSION 

 
The objective of this study was the development of an amperometric laccase 

biosensor for the determination of oleuropein concentration in olive leaf extract. The 

biosensor was prepared by immobilization of laccase enzyme from Trametes versicolor 

by addition of crosslinking agent, glutaraldehyde, into the carbon paste. 

The behaviour of electrochemical sensor and laccase biosensor to oleuropein 

was investigated. As a result of the comparison of the responses of electrochemical 

sensor and laccase biosensor, it was concluded that the laccase enzyme has a capability 

to oxidize oleuropein. In other words, oleuropein shows a good substrate behaviour for 

laccase enzyme. After this confirmation, the effect of laccase concentration and 

glutaraldehyde amount on biosensor response was investigated. For this purpose 

biosensors having glutaraldehyde amount of 6.40, 12.03 and 17.01 % vol. of the bottom 

part and enzyme concentration of 1, 5 and 10 mg/ml were prepared. After the cyclic 

voltammetry experiments were performed with these biosensors, it was found that the 

best performance was observed with the biosensor having glutaraldehyde amount of 

12.03 % vol. of the bottom part and 5 mg/ml of laccase enzyme. 

The effect of scan rate and temperature on the response of the biosensor was also 

studied. To find the suitable values for the best biosensor performance, the cyclic 

voltammery experiments were performed at various scan rates and temperatures. The 

scan rate of 10 mV/s was decided to be the optimum for the amperometric detection of 

oleuropein considering the fastest response and maximum reduction current. 250C was 

chosen as an optimum temperature value due to the maximum laccase activity and 

capability of oleuropein acting as an antioxidant. 

The cyclic voltammetry experiments were followed to obtain a calibration curve 

between the current response and the concentration of oleuropein. To construct a 

calibration curve, cyclic voltammetry experiments were performed with oleuropein 

solutions differentiating in their concentration in a temperature of 250C, scan rate of 10 

mV/s and the potential range of -0.5 to 0.5 V. After the cyclic voltammograms were 
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obtained, the calibration curve was constructed and a good linearity was observed with 

the biosensor response with an R2 value of 0.9579.  

Extraction of olive leaf was also performed in this study. Isolation of polyphenols 

from olive leaf extract is a very important task and because of that fractionation was 

followed for further purification. By fractionation, the extract was divided into six 

fractions (FI, FII, FIII, FIV, FV and FVI) varying in their oleuropein amounts such as 

polar fractions and relatively less polar fractions. Therefore, biosensor performance was 

investigated for fractions containing different type of phenolics. Oleuropein amount in 

crude extract and its fractions was calculated by the biosensor method. Crude extract 

and the fractions (FI, FII, FIII, FIV, FV) were found to contain 25.18, 44.09, 82.62, 

33.96, 21.79 and 18.63 % wt. oleuropein respectively. Oleuropein amount of fraction 

FVI could not be detected because of the inadequate yield value. 

HPLC analyses of the fractions were also performed in this study. According to 

the HPLC results, it can be observed that CE, FI, FII, FIII and FIV contained 14.16, 

56.6, 60.5, 25.3 and 10.4 % wt. oleuropein. Oleuropein peak could not be observed in 

FV and FVI fractions.  

Moreover, total phenol content and antioxidant capacity of the fractions were 

determined by conventional methods. Total phenol content of CE and its fractions were 

found by Folin- ciocalteu method as 195.09, 309.57, 376.63, 309.86, 334.78 and 249.94 

mg gallic acid/g sample. ACW and ACL analyses were performed by PLC assay. Water 

soluble antioxidant capacity values for CE and its fractions were found as 678.81, 

1278.35, 1036.7, 1148.49, 807.03 and 807.02 µg ascorbic acid /mg and lipid soluble 

antioxidant capacity values were calculated as 1495.3, 1634.63, 270.49, 2051.46, 

1260.51 and 1070.42 µg trolox /mg respectively. 

Rutin, catechin and caffeic acid are known with their antioxidant capacities. So, 

the performance of biosensor to these polyphenols was also studied. It was found that 

constructed biosensors could specifically detect oleuropein, in contrast they gave no 

appreciable anodic and catodic peak current responses to rutin at studied concentration, 

scan rate and potentials. 
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APPENDIX A 
 

OLEUROPEIN CALIBRATION IN HPLC  
 

Calibration studies should be applied as a necessary task to calculate the amount 

of oleuropein in olive leaf extract. External and internal calibration methods were 

applied in this study. 

In external calibration, a stock solution of oleuropein was prepared by dissolving 

in 50 % acetonitrile-water solution at 250C. 1, 2, 3, 4, 5, 6, 7 and 8 mg/ml of oleuropein 

solutions were prepared by diluting the stock solution. Each of these concentrations was 

injected to HPLC and HPLC response, in terms of area, was recorded in each case. The 

injection was repeated twice for all the concentration values. The recorded area values 

for oleuropein are given in Table A1. 

To find the minumum oleuropein concentration that could be detected by HPLC, 

low oleuropein concentrations were prepared by diluting the 2 mg/ml of stock 

oleuropein solution. First set was composed of 0.5 mg/ml, 0.3 mg/ml, 0.1 mg/ml of 

dilute oleuropein solutions and these three dilute concentrations yield a chromotogram 

in HPLC analysis. So it was understood that, the experiment should be conducted with 

more dilute oleuropein concentrations. For this reason, 0.05 mg/ml, 0.08 mg/ml, 0.09 

mg/ml, 0.098 mg/ml and 0.099 mg/ml of oleuropein concentrations were injected to 

HPLC and no observable peaks could be seen in their chromatograms. As a result, 0.1 

mg/ml of oleuropein concentration was accepted as the minimum detection limit in the 

HPLC anlysis and in order to check this result, detection of oleuropein amount with this 

concentration was repeated again.  

 

 

 

 

 

 

 

 

 



 123

Table A1. Data for HPLC response at each injection 

Concentration 
(mg/ml) 

Area of Oleuropein 
(mAU*s) 

Area of Oleuropein
(mAU*s) 

Average Area of Oleuropein
(mAU*s) 

0.1 569.2 578.8 574
1 5465.8 5576.3 5521
2 11131.8 11161.4 11146.6
3 16826.9 16724.3 16775.6
4 21847.1 21758.5 21802.8
5 27077.2 26656.1 26866.7
6 31672.8 30569.8 31121.3
7 35904.8 34627.8 35266.3
8 43417.8 44502.5 43960.2

  

The concentration versus area was plotted for oleuropein and it is given in Figure A1. 

This curve is the oleuropein external calibration curve. Oleuropein external calibration 

curve is linear fit as it is expected with an R-square value of 0.9955. 

 

y = 5248.1x + 397.62
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0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 1 2 3 4 5 6 7 8 9

Concentration of Oleuropein (mg/ml)

A
re

a 
of

 o
le

ur
op

ei
n

 
Figure A1. Oleuropein external calibration curve 

 

 In internal calibration, coumarin was used as a standard. The reasons of using 

coumarin as internal standard are as follows; 

o Coumarin does not exist in olive leaf, 

o It does not react with any phenolic in olive leaf, 

o Its retention time in HPLC is very close to the retention time of oleuropein and 

o It has a similar structure with the polyphenols in olive leaf. 
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In internal calibration method, stock solutions of oleuropein and coumarin were 

prepared. While preparing the stock solutions, both of the standards either oleuropein or 

coumarin was dissolved in 50 % acetonitrile-water solution at 250C. Different 

concentrations of oleuropein and coumarin were prepared by diluting the stock solution. 

For the oleuropein calibration, solutions containing 60% oleuropein and 40% coumarin 

were injected to the HPLC. The injection was repeated twice for all the concentration 

values. Then the responses of HPLC at different concentrations were recorded. The 

recorded area values for oleuropein and coumarin are given in Table A2. 

 

Table A2. HPLC response for oleuropein and coumarin 

Concentration of Oleuropein 
(mg/ml) 

Area of Oleuropein 
(mAU*s) 

Area of Coumarin 
(mAU*s) 

0 0 0
1 3266.4 47088.9
2 6792.8 6379
3 10263 71777.5
4 13550.4 76306.4
5 17119.25 80666.4
6 19490.5 83323.9
7 22678.9 85278.2

 

 The ratio of the area of oleuropein to area of coumarin versus concentration of 

oleuropein was plotted. The plot is the oleuropein internal calibration curve and it is 

given in Figure A2. Oleuropein internal calibration curve is linear fit with an R-square 

value of 0.9531. 
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y = 0.0411x
R2 = 0.9531
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Figure A2. Oleuropein internal calibration curve 
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APPENDIX B 
 

CALCULATION OF THE OLEUROPEIN AMOUNT IN OLE AND 

ADSORBED AMOUNT OF OLEUROPEIN ON SILK FIBROIN 
 

HPLC response, in terms of area, was used to find out the oleuropein amount in 

olive leaf extract. The area value was put into the calibration equation and oleuropein 

concentration was calculated. For instance, in the case of olive leaf crude extract, 

37,558 was recorded as the area value. The external calibration equation for oleuropein 

is; 

y = 5248.1x + 397.62  

From the calibration equation x is calculated and found as, 

x = 7.08 mg/ml 

7.08 mg/ml * 20 = 141.6mg oleuropein 

As solid/liquid ratio of the extract was 1/20, 1 gram of extract contains 141.6mg 

oleuropein.  

 

In order to find the adsorbed amount of oleuropein; first, calibration curves were 

used and the responses of HPLC in terms of area were converted to concentration 

values. Then the following equation was used. 

( )
m
VCCq

i
−=  

 
where, 

q = Solute phase concentration in equilibrium (mg oleuropein/g silk fibroin) 

Ci = Initial concentration of liquid phase (mg oleuropein/ml extract) 

C = Equilibrium solute concentration in the aqueous phase (mg oleuropein/ml extract) 

V = Volume of liquid phase (ml olive leaf extract) 

m = Mass of the adsorbent (g silk fibroin) 

Ci = 7.08 mg/ml and 

C = 6.17 mg/ml 

05.0
1)17.608.7( −=q  

q = 18.2 mg oleuropein/g silk 
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APPENDIX C 

 
HPLC CHROMATOGRAMS OF OLIVE LEAF FRACTIONS 

 

min0 5 10 15 20 25 30 35 40

mAU

0

200

400

600

800

1000

1200

1400

1600

1800

 DAD1 A, Sig=280,4 Ref =400,100 (SECIL\SIG00289.D)

 2
1.

82
1

 2
3.

66
1

 
Figure C1. Chromatogram of FI (W1+W2) 
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Figure C2. Chromatogram of FII (W3+W4) 
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Figure C3. Chromatogram of FIII (W5+W6) 
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Figure C4. Chromatogram of FIV (W7+W8+W9)  
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Figure C5. Chromatogram of FV (E1+E2) 
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Figure C6. Chromatogram of FVI (E3+E4) 
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APPENDIX D 

ANTIOXIDANT CAPACITY OF WATER AND LIPID SOLUBLE 

COMPOUNDS 
 

Antioxidant capacity of water soluble compounds, in terms of ascorbic acid 

concentration, was calculated from the following equation; 

 

( ) ( )( )( )( )
( )( )mpleWeightedsalumePipettedvo

VolumeMDilutionQuantitymggionConcentrat =/μ  

 

where, 

Quantity: nmol (Ascorbic acid equivalents), 

M: molar mass of ascorbic acid (176.13 ng/nmol), 

Pipetted volume: used volume in the vial in µl, 

Weighted sample: initial weighted sample in mg, 

Volume: extraction volume in ml, 

Dilution: (at 1:10 dilution factor, dilution =10) 

 

Quantity values were calculated from the ACW curves and substituting other values 

into the equation yields ascorbic acid equivalent concentration values. For example, 

quantity value was found as 1.29 nmol for one of the samples then, ascorbic acid 

equivalent antioxidant capacity of this sample is found as in the following, 

 

)/( mggionConcentrat μ = ( ) ( )
)1000(*)10(

)20(*)13.176(*1500*29.1  

 
 

)/( mggionConcentrat μ = 681.62 mgg /μ  
 

 

Antioxidant capacity of lipid soluble compounds, in terms of trolox 

concentration, was calculated from same equation; 

 

( ) ( )( )( )( )
( )( )mpleWeightedsalumePipettedvo

VolumeMDilutionQuantitymggionConcentrat =/μ  
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where, 

Quantity: nmol (trolox equivalents), 

M: molar mass of trolox (250.3 ng/nmol). 

Pipetted volume: used volume in the vial in µl, 

Weighted sample: initial weighted sample in mg, 

Volume: extraction volume in ml, 

Dilution: (at 1:10 dilution factor, dilution =10) 

 
 
In this case quantity values were found from the ACL curves as nmoles of trolox 

equivalents and simultaneously molar mass of trolox was used in the equation. 

Antioxidant capacity of one of the samples yielding a quantity value of 1.996 nmol 

trolox equivalents is found as in the following, 

 

)/( mggionConcentrat μ = ( ) ( )
)1000(*)10(

)20(*)3.250(*1500*996.1  

 
 

)/( mggionConcentrat μ = 1498.8 mgg /μ  
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