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ABSTRACT 

 
QUASI-STATIC CRUSHING BEHAVIOR OF NOMEX®   

HONEYCOMB FILLED THIN-WALLED ALUMINUM TUBES 
 

The experimental and numerical studies presented in this thesis were focused on 

the experimental and numerical quasi-static crushing behavior of Nomex® honeycomb 

filled thin-walled aluminum tubes. Nomex® honeycombs having different cell sizes 

(3.2, 4.8 and 6.4 mm) and the same density (48 kg/m3) were used to fill thin walled 

aluminum tube, 25 mm in diameter and 0.29 mm in thickness. Compression tests were 

conducted at quasi-static the strain rates of 1.64 10-2, 6.56 10-3 and 3.28 10-3 s-1. The 

results showed that the honeycomb cell size had a strong effect on the crushing 

behavior. Decreasing cell size increased crushing loads and the specific absorbed 

energy values of empty tubes. The highest strengthening effect of filling was found in 

3.2 mm cell size honeycomb filled tubes.  Although no effects of 4.8 and 6.4 mm cell-

size honeycomb filling on the deformation mode of tube was observed (mixed),  3.2 

mm cell size honeycomb filling changed the deformation mode to mixed/concertina.  

The numerical model of empty tube, 6.4 mm cell size honeycomb and 6.4 mm cell size 

honeycomb filled tube were performed using LS-DYNATM and ANSYSTM finite 

element analysis programs. To acquire maximum computational efficiency, a mesh 

optimization was done. The effect of the honeycomb cell wall thickness was also 

investigated numerically and shown to have a strong effect on the crushing behavior of 

honeycomb.  The experimental and numerical studies conducted showed that 3.2 mm 

cell size Nomex® honeycomb might become an alternative to aluminum foam filler in 

thin walled tubes as long as the tube crushing load was comparable with honeycomb 

crushing load.  
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ÖZET 
 

NOMEX® BALPETEĞİ İLE DOLDURULMUŞ İNCE DUVARLI 
ALÜMİNYUM TÜPLERİN YARI STATİK EZİLME DAVRANIŞLARI 

 
Bu çalışma Nomex® bal peteği ile doldurulmuş ince duvarlı alüminyum tüplerin 

yarı statik ezilme davranışlarının nümerik ve deneysel olarak incelenmesini 

kapsamaktadır. 25 mm çapında ve 0.29 mm kalınlığındaki alüminyum tüpler 3 farklı 

hücre boyutuna (3,2, 4,8 ve 6,4 mm) ve aynı yoğunluğa sahip (48 kg/m3) Nomex® bal 

petekleri ile doldurulmuştur.  Basma testleri, 1.64 10-2, 6.56 10-3 ve 3.28 10-3 s-1 yarı 

statik deformasyon hızlarında gerçekleştirilmiştir. Sonuçlar hücre boyutunun bal peteği 

ezilme davranışları üzerinde önemli bir etkisi olduğunu ve daha düşük hücre 

boyutlarında boş tüplerin ezilme yükününün ve spesifik sönümlenen enerji miktarlarının 

arttığını göstermiştir. En yüksek güçlendirme etkisi 3.2 mm bal peteği ile doldurulmuş 

tüplerde bulunmuştur. 4.8 ve 6.4 mm hücre boyutundaki bal peteği dolumunun boş 

tüpün deformasyon modu (karışık deformasyon) üzerinde etkisinin olmadığı ancak 3.2 

mm hücre boyutundaki bal peteği dolumunun deformasyon modunu değiştirdiği 

(karışık/konsertina deformasyon) bulunmuştur.  Boş tüp, 6.4 mm hücre boyutundaki bal 

peteği ve 6.4 mm hücre boyutundaki bal peteği ile doldurulmuş tüplerin nümerik 

modelleri LS-DYNATM ve ANSYSTM sonlu eleman analiz programları kullanılarak 

oluşturulmuştur. Nümerik model eleman sayısı hesaplama verimliliği göz önüne 

alınarak optimize edilmiştir.  Bal peteği hücre duvar kalınlığının etkisi ayrıca nümerik 

olarak incelenmiş ve bal peteği ezilme davranışları üzerinde önemli bir etkisinin olduğu 

bulunmuştur. Yapılan deneysel ve nümerik çalışmalar boş tüplerin doldurulmasında,  

3.2 mm hücre boyutundaki Nomex® bal peteğinin, tüp ezilme yükünün bal peteği 

ezilme yükü ile karşılaştırılabileceği durumlarda, alüminyum köpüklere alternatif bir 

dolgu malzemesi olabileceğini göstermiştir.  
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CHAPTER 1 

 

INTRODUCTION 

 
Starting with Alexander’s research in 1960’s, the crash behavior of columnar 

structures including thin-walled circular and rectangular tubes was studied nearly in a 

time period of over 50 years. In the last decade the columnar structures started to be 

filled with light weight material cores. The reason of filling is to create weight and cost 

effective alternatives for crash absorbing systems or structures. Filling the structures 

with light weight materials increases the absorbed energy in a thin walled column and 

are preferred to the column wall thickening when the weight is taken into consideration. 

The absorbed energy of the filled columns is higher than the summation of the absorbed 

energies of empty tube and filler material alone. This phenomenon is known as the 

interaction effect. The columnar structures have a high variety of usage areas in energy 

absorbing structures including bumpers and crash boxes and main frames of 

automobiles, platforms and building frames in civil engineering applications. 

In the filling of thin-walled aluminum tubes, light weight materials are usually 

used with two different classes of cores, namely foams and honeycombs. Honeycombs 

are extensively used as energy absorbers in real world applications. Because of their 

geometry and structure, they are very light materials. Their most common usage area is 

aero plane, and aerospace technology. These materials are excellent weight efficient 

materials due to their strength and energy absorption capacities. In the industry several 

types of honeycombs are used. Aluminum, sheet steel, aramid paper, thermoplastics and 

polymers are the most common materials that are used in honeycomb manufacturing. 

Many studies of honeycomb crush behavior and its energy absorption effects as a filler 

material have been investigated and in addition to these previous works, this study is 

aimed to determine the strengthening effect of honeycomb filling in thin walled 

aluminum circular tubes and support the results with numerical simulations. 

In this study, the aramid paper based Nomex® honeycomb was used in three 

different cell-sizes as the filler material of filling thin walled aluminum tubes, with a 

constant wall thickness and diameter.  
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The variations of cell size, compression strain rate and adhesive addition’s effect 

on deformation mode, specific absorbed energy, average crushing load, stroke 

efficiency and the interaction effect were investigated. The specific absorbed energy of 

filled tubes was compared according to cell-size and also with the empty tubes. The 

deformation mechanisms were investigated for tubes, honeycombs and for filled tubes 

at different strain rates to observe the possible deformation mechanism changes. 

According to support the experimental results the numerical analysis of empty tubes and 

6.4 mm cell-sized honeycombs were made and a comparison was made between the 

experimental, analytical and numerical results. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 
2.1. Honeycombs and Material Properties 

 
Honeycombs are the light-weight materials used in various kinds of engineering 

applications including light-weight energy absorbing structures such as sandwich 

panels, special fire protective suits and etc. Honeycomb structures can be constructed 

from any material; however the current interest focuses on the honeycomb structures 

made from aluminum (Figure 2.1.a) and aramid paper (Figure 2.1.b).  A honeycomb has 

a standard hexagonal geometry which can be characterized by the cell wall thickness (t), 

cell width (b), minor diameter of the cell (D) and height of the cells (2H) (Figure 2.1.c). 

The hexagonal cell arrangement leads to highly anisotropic material properties through 

T, L and W directions. T, L and W refer to through thickness, width and length of the 

honeycomb plate, respectively.   

 

 

       
 



 4

T

L

W

 
(c) 

Figure 2.1.(a) aluminum, (b) aramid paper honeycomb and (c) honeycomb cell structure 

( Source: Santosa  and Wierzbicki 1998) 

 

Nomex® is a flame resistant meta-aramid material manufactured by DuPont 

Company in the 1970’s. Due to its material characteristics, Nomex® is an aromatic 

nylon, the meta-variant of the para-aramid Kevlar. It is marketed both in fiber and sheet 

form and used in applications where resistance to heat and flame is required. The 

application areas of Nomex® paper encompass a variety of range. The paper form is 

used in electrical laminates such as circuit boards and transformer cores, in designing 

fire fighting equipments and in the race drivers. In honeycomb form, it is used in 

protective pressure suits due to its water immersion near vacuum and fire resistance 

properties and as core materials in sandwich panels, passenger seats and passenger 

cabin frames of airplanes due its light-weight and fire resistant properties. 

 

2.2. The Crushing Behavior of Tubes 

 

The crushing behavior of thin walled tubes has been studied over 50 years. For 

the last decade, the studies were also extended to numeric and finite element analysis. 

The numerical tools are helpful to predict the crushing behavior of tubes with different 

geometrical parameters, which may greatly reduce the number and the cost of 

experimentation. In the first part of this section the terminologies used the crash 

analysis of columnar structures will be given.  

 

 

http://en.wikipedia.org/wiki/Aramid
http://en.wikipedia.org/wiki/DuPont
http://en.wikipedia.org/wiki/Aromaticity
http://en.wikipedia.org/wiki/Nylon
http://en.wikipedia.org/wiki/Meta
http://en.wikipedia.org/wiki/Para
http://en.wikipedia.org/wiki/Kevlar
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2.3. Terminologies Used In Crush Analysis 

 
Consider the typical uniaxial compression load-displacement curve of a 

columnar structure given in Figure 2.2.a. Initially, the column deforms elastically until 

about a peak load (region I); thereafter, the structure plastically collapses as the folds 

form progressively (region II) and finally, folds are compressed together in the 

densification region; hence, the load values increases sharply in this region. In region II, 

the collapse mode in the form of progressive folding lead to a nearly constant load, 

providing energy absorption at a constant load. The total absorbed energy (E) of the 

crushed column is calculated from the area under the load-displacement curve given in 

Figure 2.2.a as; 

 

     ∫=
δ

δδ
0

)( PdE          (2.1) 

 

where δ and P are the displacement and load, respectively. The corresponding average 

or mean crushing load (Pa) is calculated by dividing the absorbed energy to the 

displacement as,  

   

     
δ
δδ )()( EPa =          (2.2) 

 

The specific absorbed energy per unit mass (SAE) shown in Figure 2.2.b is calculated 

using the following relation, 

     
tm

Pd
SAE

∫
=

δ

δ
0

            (2.3) 

 

where mt  is the total mass of the crushing element, which includes the weight of 

column, filler and bonding material between wall and filler in the filled tubes.  The 

crush force efficiency (AE), which is the ratio between average load and the maximum 

load (Pmax ) is calculated using  the following relations 
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δδ

δ
δ

δ
)(
)(

)(
)(

maxmax P
E

P
P

A a
E ==         (2.4) 

 

Total efficiency (TE), defined as the ratio between total energy absorption and energy 

absorption at the maximum load, is shown in Figure 2.2.c and expressed as, 

 

     
lP

ETE )(
)(

max δ
δ

=         (2.5) 

 

where l is the length of the column. ≤ the stroke.    

 
The stroke efficiency (SE), which is the maximum displacement (δmax) divided by the 

total length of the crushing element, is  

 

     
l

SE
maxδ

=          (2.6) 

 

The deformation capacity (DC) which is the displacement divided by the initial length 

is,  

     
l

DC
δ

=          (2.7) 

           
     (a) 

Figure 2.2. Terminology used in the crush analysis 

                                                                  (cont. on next page) 
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     (b) 

 
       (c) 

Figure 2.2. (cont.) Terminology used in the crush analysis  

 

 

2.4. Crushing Behavior of Empty Tubes: Numerical and Experimental                     

        Analysis 
 

Four main crushing modes of circular tubes under axial compressive loads are so 

far identified (Guillow, et al. 2001). These are (i) progressive axisymmetric: concertina 

mode, (ii) progressive non-symmetric: diamond mode, (iii) mixed mode: axisymmetric 

mode followed by non-symmetric mode and (iv) Euler or global buckling. Tubes with 

low D/t ratios and elastic perfectly plastic materials generally exhibit concertina mode 
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of deformation, on the other hand tubes with high D/t ratios and strain hardening 

materials exhibit diamond mode of deformation (Singace and Sobky 2001).  Mixed 

mode is generally observed following the first couple of axisymmetric mode of folding. 

Euler buckling occurs in the tubes of high L/D ratios. The type of deformation mode 

depends on the geometrical as well as the material parameters. The concertina mode of 

deformation of HT30 Al alloy tubes was for example found, when D/t ratios varied 

between 10 and 90 and L/D ratios between 1 and 5 (Andrews, et al. 1983) (Figure 2.3).  

Diamond mode became dominant at D/t ratios higher than 90 as seen in Figure 2.3 Due 

to non-symmetric folding, the fold length (the total length of the fold section) increases 

in diamond mode as compared with concertina mode. Because of increased fold length 

and the promotion of the global bending, diamond mode of deformation is usually 

regarded as the lower mode of deformation as compared with concertina mode.  

In addition, the experimental deformation and load-displacement curves of tubes 

were affected by several other factors including the folding parameter (ratio of internal 

folding to fold length) , load eccentricities, cut-off and grooving on the tube wall (Han, 

et al. 2007), foam-filling (Seitzberger, et al. 1997), (Santosa, et al. 2000) and any 

disturbances in the periodicity of folding. 

 

 
Figure 2.3. The collapse mode of deformation chart of HT30 Al alloys as function of          

                   L/D and t/D (Source: Andrews, et al. 1983) 
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The load-displacement curve of a 3003-H14 circular tube is shown in Figure 2.4 

for an example for the deformation sequence involved in folding of tubes under uniaxial 

compressive loads. The load-displacement curve in Figure 2.4 shows characteristics of 

the tube crushing: a relatively high initial peak-load followed by a sharp decline in load 

values, and a gradual increase in the peak-load values following the initial peak-load as 

the displacement increases.  The deformation sequence consists of inward and outward 

bending of the tube wall. Following the maximum initial peak-load (A), the tube wall 

bends outward and meanwhile the load values decrease until the point B in Figure 2.4; 

thereafter, the load values increase until the point C.  During the inward folding of the 

tube wall over the first fold, the load values decrease once again (D in Figure 2.4). 

When the inner wall of the first fold comes into contact, the load values increase until 

point E, where outward folding starts to form over the first fold. When the outer knee of 

the second fold comes into contact with the first fold, the load values increase again 

from the point F in Figure 2.4.  This sequence of tube wall deformation repeats as the 

third, fourth and fifth folds form, except the inner and outer fold formation (point C and 

D respectively) starts at the same point in the fourth and fifth folds. The distance 

between the peak-loads is the fold length as depicted in Figure 2.4.  
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Figure 2.4. Load-displacement curve of an aluminum deep drawn tube (3003-H14) of      

                   20 mm in outside diameter, 50 mm in length and 0.9 mm in wall thickness 

       (Source : Tasdemirci 2008) 

 



 10

The first analytic study to formulate the crushing behavior of cylindrical thin-

walled tubes was shown by Alexander (1960). He developed a simple model for the 

concertina mode of deformation using metal tubes with D/t ratios varying between 29 

and 89, by considering the formation of four plastic hinges as shown in Figure 2.6.  

Note that in Alexander’s model the inward folding of the tube wall is excluded in the 

analysis. The average crushing load for concertina mode of deformation in the model 

was given as, 

 

     2/1
0 )(6 DttPa σ≅         (2.8) 

 

 

In above equations σ0 is the yield strength of the tube material, t is the thickness and D 

represents the diameter of the tube. The plastic half-wavelength H (half of the fold 

length) shown in Figure 2.5 is given by the following equation, 

 

                                                            DtCH =                                                     (2.9) 

where C is a constant. 

     
Figure 2.5 Alexander’s concertina deformation mode model 

 (Source : Alexander 1960) 
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Abramowicz and Jones (1986) analytically analyzed concertina and diamond 

mode of deformation. The following equations were proposed for the average crushing 

force of concertina and diamond mode of deformations, respectively. 

 

                          
Dt
tDt

Pa /568.086.0
44.30

−

+
=

σ
      (2.10) 

 

and 

 
    )4/()/(14.86 2

0
33.0 ttDPa σ=                 (2.11) 

 

and 

 

                                )44.3)(6( 2/1
0 tDttPa += σ                 (2.12) 

                  

Singace and Elbosky ( 1995) investigated the concertina and diamond mode of 

deformation and determined the eccentricity factor (m), which is the ratio of inward 

folding to outward folding, in both concertina and diamond mode of deformations and 

found the value of m as 0.65 for both types of deformation. The following equations 

were proposed by the same authors for the average axial crushing force of concertina 

and diamond mode of deformation, respectively 

 

    632.5/27.22)32/( 2
0 += tDtPa σ     (2.13)

          

 

and  

 

    )408.1)/(874.7( 2/12
0 += tRtPa σ      (2.14) 

 

Gupta and Abbas (2000) developed a mathematical model for determining 

eccentricity factor m by considering with or without change of the thickness of the tube 

in the fold section. The model used in the analysis is shown in Figure 2.6.  In this figure 
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mH and (1-H)m refer to inward and outward folding, respectively. The average 

crushing load was given in terms of the fold length as, 

 

                        )])1(()42([ 22
0 mrmhm

h
DkttPa −++−+=

ππσ                     (2.15)       

Where the Wb, Wc and h was the energy dissipated in plastic bending in the formation 

of a fold, energy dissipated in circumferential deformation of a fold and the half fold 

length respectively. 

 

k is defined as a parameter. 

 
Figure 2.6. The Axial crushing model for a cylindrical tube   

(Source : Gupta and Abbas  2000) 

 

Pugsley and Macaulay (1960) studied the diamond mode of deformation of thin walled 

tubes with high D/t ratios. Based on the deformation energy resulting from the bending 

and shear of the folds, the following equation was proposed, 
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    )38.005.10(0 DttPa += σ       (2.16) 

 

Pugsley (1979) proposed a modified model of Alexander’s plastic hinge analysis for the 

diamond mode of deformation based on n numbers of diamond folds as, 

 

    2
0

2286.2 tnPa σ=        (2.17)  

The value of the n depends on the D/t ratio of the tube. Wierzbicki (1988) proposed an 

approximate expression for the average crushing load of the diamond mode of 

deformation as, 

 

    3/12
0 )/(15.18 tDtPa σ=       (2.18) 

 

and 

 

    2/12
0 )/(22.11 tRtPa σ=       (2.19) 

 

for concertina mode of deformation 

 

    2/12
0 )/(933.7 tDtPa σ=       (2.20) 

 

Guillow et al. (2001) defined the average crushing load of circular thin walled tubes as  

 

    32.02
0 )/(3.72)4/( tDtPa σ=       (2.21) 

 

 

Singlace and Sobky (2001) studied the effect of end-constraints on the crushing 

behavior of mild steel and aluminum alloy tubes of relatively low D/t ratios subjected to 

axial crushing.  

The partially constrained tubes were found to deform in concertina or diamond 

mode depending on D/t ratio. Mixed mode of deformation generally occurred when the 

tubes were constrained at both ends. It was proposed in the same study that the 

deformation mode and the absorbed energy of the crushing tubes could be controlled by 
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applying end constraints. Abramowicz and Jones (1986) studied the transition of the 

axially crushed tubes from the Euler bending mode to the non-symmetrical buckling 

mode under dynamic and static loadings. The transition point was found to depend on 

the tube length, material type, strain rate and the end condition.  

 

2.5. Crushing Behavior of Foam filled tubes   

 
The ultimate goal of light-weight material filling of columnar structures is to 

increase the specific energy absorption.  One of the first investigations on the foam 

filling of tubes was by Thornton (1980). It was shown that although polyurethane foam 

filling increased the specific absorbed energy of the filled tube, it was not effective in 

increasing the specific absorbed energy over that of wall thickening of empty tube (the 

equal mass of empty tube).  Hanssen et al. (1999) investigated static and dynamic 

crushing of circular aluminum extrusions with aluminum foam filler. It was shown in 

the same study that the filled tube showed higher crushing loads over that empty and 

foam alone as shown in Figure 2.7, which is known as interaction effect. The interaction 

may be partly due to the resistance of filler to the inward and/or outward folding of tube 

wall and partly due to the interfacial friction stress between foam and tube wall.  The 

use of adhesive can contribute to the specific energy absorption of tube by two 

mechanisms, namely, increased load transfer from tube wall to the foam core and 

peeling of the adhesive.  The latter mechanism occurs mainly due to the outward folding 

of the tube.    The foam filling generally increases the number of folds formed and 

decreases the fold lengths in the metal tubes. Hannsen et al. (2000) developed an 

equation for the average crushing load  of foam filled (Paf) columns by including 

contributions of the average crushing load of empty tube (Pae), foam plateau stress (σpl) 

and interaction effect.  The equation was found to be well agreed with experimental 

results and is given as 

 

                           btσσCbσPP yplavg
2

plaeaf ++=                       (2.22) 

 

where Cavg, , b  are the dimensionless constant which is directly related to the interaction 

effect, tube width respectively. The second term of the right hand side of the equation 

2.18 accounts for the axial compression of the foam and the last term for the interaction 
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effect. Santosa et al. (1998) noted that the bonding between filler and tube wall 

increased the average crushing load of filled tube over the unbounded filled tube when 

appropriate tube geometry and foam density were chosen. In this study, the filled tubes 

were moddeled using using PAM-CRASH. The model was created by the mesh 

generator program HYPERMESH. The column wall (aluminum) was modeled with 

Belytschko-Tsay-4 node thin shell element and the foam core (HYDRO and MEPURA 

aluminum foam) was modeled with an 8-node solid element. No triggering imperfection 

was used in the model. Based on finite element modeling results the same authors 

proposed the following equation for the average crushing load of foam-filled square 

tubes,   

 

     2bCPP plaeaf σ+=                            (2.23) 

 

The constant C in equation .2.19 is considered strengthening coefficient of foam 

filling. The values of C for foam-filled single tubes were shown to be 1.8 and 2.8 for the 

unbounded and bounded cases, respectively. Kavi et al. (2006) studied the energy 

absorption characteristics of foam filled thin walled aluminum tubes. The foam filling 

was found to change the deformation mode of the tube from diamond (empty tube) into 

concertina, regardless the foam type and the foam density used. An interaction effect 

between the filler material and the empty tube was found. However, the foam filling 

was found not efficient in increasing the specific energy absorption than tube wall 

thickening. The strengthening coefficient of the foam filled tubes was found 1.7. 

Toksoy and Guden (2005) investigated the crushing behavior of polystyrene foam filled 

thin walled aluminum tubes with diameters of 16 mm and 25 mm. The foam filling 

changed the deformation mode from diamond to concertina mode in 25 mm diameter 

tubes. The strengthening coefficient was found around 1 for the concertina mode of 

deformation and higher than unity for the diamond mode of deformation. 

 In concertina mode the tubes were observed to deform independently from the filler, 

whilst in diamond mode of deformation the foam filler was detected to be compressed 

between the folds, leading to a higher strengthening coefficient.  

 

 



 16

 
Figure 2.7. The interaction effect in Al foam filled Al tubes  

(Source : Hanssen, et al. 1999) 

 

2.6. Crushing Behavior of Honeycomb and Honeycomb Filled Tubes   
 

Wierzbicki and Abramowicz  (1983) proposed the following equation for the 

average crushing load of honeycomb structure based on the cell model shown in Figure 

2.1.c;    

 

                                         3/13/5
0

3/13/5
0, 17.761.8 DtbtP ha σσ ==                              (2.24) 

 

By considering the area of the basic folding element (dark sections in Figure 2.1.c), 

which is 2

4
3 D , the crushing strength of the honeycomb was proposed as 

 

                                     3/5
0

3/5
0 )/(22.3)/(55.16 shh Dt ρρσσσ ==                         (2.25) 

 

where  ρh and ρs are the  density of the honeycomb and the density of the solid material 

respectively.  

Chawla et al. (2003) investigated the crushing behavior of honeycomb structures 

using PAM-CRASH finite element analysis program. The finite element model was 
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created in IDEAS software. For the modeling section, 6 x 80 elements (6 elements 

along the thickness and 80 elements along the ribbon direction) per cell gave good 

results in the analysis, while 6 x 60 elements gave sufficient results without introducing 

large errors (Figure 2.8). A comparison was made between the materials models of 

elastic-perfectly plastic and elastic plastic. Two material models gave similar stress-

strain behavior. It was concluded that the compressive strength depended on only the 

yield strength of the basic material.  

 

 

 
Figure 2.8. Effects of number of elements on the stress-strain curves of honeycomb 

(Source : Chawla, et al. 2003) 

 

 Aktay and Johnson (2007) modeled Nomex® honeycomb crush behavior using PAM-

CRASH. Two standard modeling techniques were used: micromechanical and 

homogenized model. In the micromechanical model, Belytychko-Tsay–4 node thin shell 

elements were used to characterize each honeycomb shell. For the representation of 

Nomex® and aluminum honeycomb, were modeled using elastic-plastic isotropic thin 

shell material model.   

They compared the numerical modeling techniques of semi-adaptive coupling 

technique and the element elimination technique and observed that both techniques gave 

approximate results with the experiments, but semi-adaptive coupling technique was 

found more CPU efficient.  Wu and Jiang (1996) studied the axial crush behavior of 

5052-H38 and 5056-H38 aluminum honeycombs. A unit cell model was developed for 
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honeycomb crushing.  The effect of number of cells on the crushing behavior of the 

honeycomb was also investigated. It was shown that decreasing number of cells, cell 

size and core height and using stiffer core material increased energy absorption.  

Aminanda et al.  (2005) studied the deformation modes of honeycombs made of 

aluminum, Nomex® and the drawing paper. The fold shape was found different in all 

three types of core materials. It was further proposed that the compression load was 

essentially carried by the vertical edges of the hexagonal cells of honeycomb. 

Santosa and Wierzbicki (1997) studied the crash behavior of box columns filled 

with aluminum foam and honeycomb. The mean crushing load of the honeycomb filled 

columns were formulated as; 

 

    hhoneycombm bbtP σσ 23/13/5
0, 14 +=      (2.26) 

 

In above equation, the first term is the crushing load of square box column with the 

cross-section of b x b.   The strengthening coefficient of the honeycomb was taken as 1 

as no interaction effect was found between the honeycomb filler and the tube wall. The 

specific energy absorption of honeycomb foam filled box column and box column with 

a effective crushing distance of 2/3(2H) were given sequentially as; 

 

                                             hc

h
combh bt

bt
EAS

ρρ
σσ

4)/(16
3)/(15.39

..
3/5

0
. +

+
=  (2.27) 

and 

                                                 
3/20 )/)((45.2.. btEAS

c
box ρ

σ
=   (2.28)  

 

where c and h refer to column and honeycomb. In terms of total column weight (mt), 

SAEs were given sequentially as; 

 

                                             t

t
combh m

m
EAS

3/5

.
)4.0(4.971.3

..
−+

=      (2.29) 

and 

     3/24.14.. tbox mEAS =       (2.30) 
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The specific absorbed energy was shown by the same authors to depend on the 

density of the filler. The results have shown that the aluminum honeycomb filling was 

more weight efficient than aluminum foam filling although aluminum foam resulted in 

higher average crushing loads. Zarei and Kröger (2006) performed quasi-static tests on 

aluminum honeycomb and honeycomb filled square and circular aluminum tubes. The 

crush response of the honeycomb filled sections was further modeled using LS-DYNA 

software. The tube walls were modeled with Belytschko-Tsay thin shell elements and 

the honeycomb filler with solid elements. The contact between the rigid body and the 

specimen was modeled using node to surface algorithm with a friction coefficient of 

0.2.  Results have shown that filled tubes deformed in a more stable manner; the 

specific absorbed energy increased over that of the empty tubes and the honeycomb 

filling of the tubes became energetically more efficient than tube wall thickening.  It 

was also shown that increasing honeycomb density increased the interaction effect.  

The aim of this thesis is the further investigation of the energy absorption 

behavior of honeycomb (aramid paper) filled thin-walled circular tubes. For that, 

honeycomb plates with three different cell sizes were used to fill aluminum tubes in 

order to determine the effect of cell size on the crushing performances of filled tubes. 

The results were also compared with the same Al circular tubes, those filled with Al 

closed-cell foam filler.  The deformation of the empty and filled tubes were further 

modeled using LSDYNA software in order to support the experimental results and form 

a solid foundation to model complex shaped structures filled with honeycomb. 
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CHAPTER 3 

 

MATERIALS & EXPERIMENTAL SECTION 

 
3.1. Nomex® Aramid Paper Honeycomb Filler Material 

 
The dimensions of three Nomex® honeycomb sheets, which were received from 

DuPont, were 1.27x60x120 cm with the cell-sizes of 3.2, 4.8 and 6.4 mm. The cells of 

three different cell sizes of honeycombs are shown sequentially in Figures 3.1.a, 3.1. b 

and 3.1.c. Although, the cell size of the honeycombs was different, the densities were 

the same, 48 kg/m3. The honeycomb cell-wall thickness was measured using a digital 

micrometer and found to be varying between 0.08 and 0.15 mm with an average cell-

wall thickness of 0.13 mm. At least 50 measurements were made for each honeycomb 

sheet and the results were averaged.  

The honeycomb structures consist of hexagonal cells made of cell walls (Figure 

3.1). The cell walls are glued to each other with the help of ribbons in the aramid 

paper’s surface. Table 3.1 lists the mechanical properties of three honeycombs provided 

by the supplier. The mechanical properties in this table are through length (L) and width 

(W) directions, normal and parallel to the cells (Figure 3.2). As seen in this table, the 

honeycombs show strong anisotropy in mechanical behavior as the mechanical 

properties are higher through L direction. 

 

Table 3.1. The compression and plate shear strength and elastic modulus values of 
                   Nomex®  honeycombs according to their cell size              
 

Product Designation Compression Plate Shear 
Bare L-Direction W-Direction                         

cell size-density 
          mm         kg/m3  (µm) 

Strength 
(MPa) 

min  type  

Strength 
(MPa) 

min  type 

Modulus 
(MPa) 

min  type 

Strength 
(MPa) 

min  type 

Modulus 
(MPa) 

min  type 
 
ECA  3.2           48         (51)  
 
ECA  4.8           48         (51) 
 
ECA  6.4           48         (51) 

  
1.90 - 2.10 

 
2.60 - 2.85 

 
0.80 – 1.06 

 
1.16 -1.32 
 
0.98 -1.14 
 
0.54 -0.76

 
38 – 48 

 
34 – 40 

 
22 - 32 

 
0.62 - 0.72 
 
0.56 - 0.66 
 
0.30 - 0.40

 
24 – 30 

 
22 – 28 

 
12 – 20 
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Figure 3.1.  Nomex®  honeycombs cells;  cell size (a) 4.8, (b) 3.2 and (c) 6.4 mm 
 

 
 

Figure 3.2. L and W directions of the honeycomb sheet 
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The crushing behavior of honeycombs  was determined through compression 

testing on the cylindrical samples of L/D=1 (length/diameter) with 25.4 mm in diameter 

and square cross-section samples of 5x5x1.27 cm using the SHIMADZU AG-I testing 

machine (Figure 3.3). The compression tests were applied parallel to L directions of the 

samples with the cross-head speeds of 25, 10 and 5 mm  min-1, which corresponds to the 

strain rates of 1.64 10-2 s-1, 6.56x10-3 s-1 and 3.28x10-3 s-1, respectively. In a separate 

testing program, two layers of honeycomb samples were glued to each other using an 

epoxy based bond and these glued samples were tested (compression) at the same strain 

rates. During compression testing, the deformations of the samples were video recorded. 

The average crushing loads and Specific Absorbed Energies of the tested samples were 

calculated using following equations:  

 

     
δ

δ∫=
Pd

Pa          (3.1) 

 

and 

     
tm

Pd
SAE ∫=

δ
         (3.2) 

 

In the calculations of the average crushing loads the initial region of the load-

displacement curves corresponding to the region of initial peak-load were excluded as 

this region may be affected by the end surfaces of the honeycombs and interfacial forces 

between compression test plates and end surfaces. 
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Figure 3.3. The SHIMADZU AG-I testing machine 

 

3.2. Empty and Nomex® Honeycomb Filled Tubes 
 

The thin walled aluminum tubes produced by METALUM Company of Turkey 

were received 25 mm in diameter and 50 mm in length with a wall thickness of 0.29 

mm (Figure 3.4.a).  The length of the tubes was reduced to 25.4 mm (2 times of the 

thickness of the honeycomb sheets) using PRESI MECATOME T255/300 saw. The 

cutting speed was set to 3200 rpm and water was used as the cutting fluid. After cutting, 

the tube ends were grinded using BUEHLER PHONIX Beta grinding machine with a 

turning speed of 300 rpm. Grinding was performed sequentially using silicon carbide 

grinding paper of P120, P320 and P600. A special metal block, which accommodated a 

25 mm hole at the center, was used to accommodate tubes, providing flat surfaces of the 

tubes during grinding. Figure 3.4.b shows a cut and grinded tube sample. The quasi-

static compression tests were applied to the empty tubes at the cross-head speeds of 25, 

10 and 5 mm.min-1 in both axial and lateral directions.  
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Figure 3.4. The empty tubes; (a) as-received, (b) after cutting process and (c) the cutting       
                   apparatus that was used to drill the honeycomb sheets 
  

The honeycomb thickness and the tube length were matched by doubling the 

thickness of honeycomb sheets. The same type of honeycombs was glued to each other 

by using a BisonTM type epoxy. The epoxy was applied as a thin layer onto a clean and 

smooth glass surface, and then each layer of honeycombs surfaces was covered with 

glue. During bonding, no pressure was applied to the honeycomb layers. The 

honeycomb layers were carefully glued and the cells fitted each other in a perfect order 

in order to avoid undesirable middle section buckling.  The double layer of honeycomb 

(Figure 3.5.a) was drilled with a CHIN 16 Speed Drill Press using a special cutting head 

(Figure 3.4.c). In order to eliminate the possibility of tearing in honeycomb sheets, the 

cutting speed was kept low (120 rpm). In the filling of tubes, the circular double layer 

honeycombs (Figure 3.5.b) side surfaces were fist covered with an epoxy based bonding 

agent and then placed gently inside the empty tube (Figure 3.6). After curing of the 

epoxy bond (5 minutes), the excess epoxy was cleaned carefully with acetone.  
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Figure 3.5. (a) Double layer honeycomb and (b) circular double layer honeycomb after    
                   drilling 
 

 
 

Figure 3.6. Filling the empty Al tube with a honeycomb filler 
 

Using the above procedure, 21 filled Al tube test samples were prepared for each 

type of honeycomb filler. The weights of the tubes and honeycomb fillers were 

measured before and after filling so that the weight of the epoxy layer was calculated 

for each filled tube.  A group of prepared test specimens are shown in Figure 3.7. 



 26

 
Figure 3.7.  Filled Al tubes 

 

The same cross-head speeds and strain rates were also used in the testing of the 

filled tubes, 1.64 10-2 s-1, 6.56 10-3 s-1 and 3.28 10-3 s-1. The strain rates applied and 

geometrical parameters of empty and filled tubes and honeycomb filler are listed in 

Table 3.2 and Table 3.3, respectively.  Compression tests were also performed through 

the lateral direction of the empty and filled tubes in order to determine the effect of 

filling to the lateral loadings.  
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Table 3.2. Tested empty and filled tubes:  coding as following; A: 6.4 mm cell size, B:  
                  4.8 mm cell size and C: 3.2 mm cell size honeycombs 
 

 
Tube type 

 
Strain rate Test 

Direction 

 
Number of 
specimens 

tested 

Diameter 
(mm) 

Length 
(mm) 

Empty tube 1.64 10-2 s-1 Axial 9 25 25.4 

Empty tube 6.56 10-3 s-1 Axial 3 25 25.4 

Empty tube 3.28 10-3 s-1 Axial 3 25 25.4 

Empty tube 1.64 10-2 s-1 Lateral 1 25 25.4 

Filled tube 
A type 1.64 10-2 s-1 Axial 6 25 25.4 

Filled tube 
A type 6.56 10-3 s-1 Axial 3 25 25.4 

Filled tube 
A type 3.28 10-3 s-1 Axial 3 25 25.4 

Filled tube 
A type 1.64 10-2 s-1 Lateral 1 25 25.4 

Filled tube 
B type 1.64 10-2 s-1 Axial 6 25 25.4 

Filled tube 
B type 6.56 10-3 s-1 Axial 3 25 25.4 

Filled tube 
B type 3.28 10-3 s-1 Axial 3 25 25.4 

Filled tube 
B type 1.64 10-2 s-1 Lateral 1 25 25.4 

          
   (cont. on next page) 
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Table 3.2.(cont.) Tested empty and filled tubes:  coding as following ;  A: 6.4 mm  cell           
                  size, B: 4.8 mm cell size and C : 3.2 mm cell size honeycombs 
 
 

Tube type 
 

Strain rate Test 
Direction 

Number of 
specimens 

tested 
Diameter Length 

 
Filled tube 

C type 
 

1.64 10-2 s-1 Axial 6 25 25.4 

 
Filled tube 

C type 
 

6.56 10-3 s-1 Axial 3 25 25.4 

 
Filled tube 

C type 
 

3.28 10-3 s-1 Axial 3 25 25.4 

 
Filled tube 

C type 
 

1.64 10-2 s-1 Lateral 1 25 25.4 
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Table 3.3. Tested Nomex® honeycomb samples: coding as following; A: 6.4 mm cell  
  size B: 4.8 mm cell size and C: 3.2 mm cell size honeycombs 
  
 
Honeycomb 

type 
 

Strain rate 
(s-1) 

Test 
Direction 

Number of 
specimens 

tested 

Cross-
section 
(mm2) 

Honeycomb 
thickness 

(mm) 

 
Type A  

(6.4 mm cell 
size) 

 

1.64 10-2 s-1 Axial 3 Circular 
(D= 25) 12.7 

 
Type A  

(6.4 mm cell 
size) 

 

1.64 10-2 s-1 Axial 1 
Rectangular 

L=50 
W=50 

12.7 

 
Type A  

(6.4 mm cell 
size) 

 

1.64 10-2 s-1 Axial 3 Circular 
(D= 25) 25.4 

 
Type B  

(4.8 mm cell 
size) 

 

1.64 10-2 s-1 Axial 3 Circular 
(D= 25) 12.7 

 
Type B  

(4.8 mm cell 
size) 

 

1.64 10-2 s-1 Axial 1 
Rectangular 

L=50 
W=50 

12.7 

 
Type B  

(4.8 mm cell 
size) 

 

1.64 10-2 s-1 Axial 3 Circular 
(D= 25) 25.4 

 
             
 
 
 
 
 
 
 
 

   (cont. on next page) 
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Table 3.3. (cont.)Tested Nomex® honeycomb samples: coding as following; A: 6.4  
                  mm cell size B: 4.8 mm cell size and C: 3.2 mm cell size honeycombs 
 
 
Honeycomb 

type 
 

Strain rate 
(s-1) 

Test 
Direction 

Number of 
specimens 

tested 

Cross-
section 
(mm2) 

Honeycomb 
thickness 

(mm) 

 
Type C  

(3.2 mm cell 
size) 

 

1.64 10-2 s-1 Axial 3 Circular 
(D= 25) 12.7 

 
Type C  

(3.2 mm cell 
size) 

 

1.64 10-2 s-1 Axial 1 
Rectangular 

L=50 
W=50 

12.7 

 
Type C  

(3.2 mm cell 
size) 

 

1.64 10-2 s-1 Axial 3 Circular 
(D= 25) 25.4 
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CHAPTER 4 
 
 

RESULTS 

 
4.1. Compression Behavior of Honeycomb Filler 

 
The Nomex® honeycomb has a typical compression stress-strain curve 

comprising three different deformation regions. These are the linear elastic, plateau and 

densification regions as shown in Figure 4.1 for 4.8 mm cell size honeycomb sample. 

Cellular materials made from metals or polymers such as aluminum closed-cell foams 

and hollow spheres show the similar deformation regions sequentially. In the linear 

elastic region the stress increases until a maximum peak value which is known as the 

collapse or peak stress as shown in Figure 4.1. Following the linear elastic region, the 

stress values decrease abruptly to a plateau stress. In the plateau region the stress values 

oscillate around the plateau stress as the cells fold progressively. The plateau region 

continues until about the densification strain, after which the stress increases sharply as 

the folded cells are compressed together. 
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Figure 4.1. The compression stress-strain curves of Nomex® honeycomb samples (cell     
                   size 4.8 mm, deformed at 1.64x10-2 s-1)  
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In all tested honeycomb samples, the initial peak load and the following 

deformation regions stated are detected. It is also noted in Figure 4.1 that the stress 

values between individual tests slightly differs from each other. The differences in stress 

values however increase particularly at the later stages of the plateau region near the 

densification strain.  Figures 4.2.a and 4.2.b show sequentially the compression stress-

strain curves of 3.2 and 6.4 mm cell size honeycomb samples. The same deformation 

regions are also noted in these figures, showing globally the similar deformation 

sequences in different cell size honeycomb samples. 
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Figure 4.2. Stress-strain curves of (a) 3.2 and (b) 6.4 mm cell size Nomex®  
        honeycombs. 
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The typical stress-strain curves of three different cell size honeycombs are 

shown together in Figure 4.3 for comparison.  The effects of cell size on the stress-strain 

curves are as follows; as the cell size increases (a) plateau stress decreases and (b) 

densification strain slightly increases. As is clear from Figure 4.3 the increase in the cell 

size results in a decrease in the average crushing loads. In a honeycomb structure, an 

increase in the numbers of cells which means a decrease in the cell-size in a constant 

area, results in increase in the average crushing force.  It is also noted in Figure 4.3 that 

4.8 mm cell size honeycomb shows the highest peak load and 6.4 mm cell size 

honeycomb the lowest peak load. The peak stress corresponds to the buckling of the 

common edge of three honeycomb cells. The peak load is expected to be affected by the 

thickness of the cells, as well as the resin material used to bond the cells. In order to get 

equal densities from different cell size honeycombs, different types of resins are 

generally used and each resin may affect the material properties differently.  
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Figure 4.3. The typical stress-strain curves of 3.2, 4.8 and 6.4 mm cell size honeycombs 
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4.2. The Deformation of Honeycomb Filler 
 

  For the Nomex® honeycomb structures compressed in the thickness direction, 

the deformation mechanism started with the bending of the cell walls which gives linear 

elastic deformation. Beyond a critical strain the cells collapse by plastic yielding, creep 

or brittle fracture depending on the nature of the cell wall resin type for all three types 

of honeycombs. The collapsing of cell walls ended with the opposing cell walls began 

to contact each other and the structure densified and its stiffness increased rapidly. In 

case of Nomex® honeycombs the crush response consists three phases : the elastic 

buckling of cell walls followed by a plastic buckling, debonding fracture at the cell 

interfaces and the fracture of the resin layer due to the resin type. 

 The deformed top and side views of a 3.2 mm cell size honeycomb sample are 

shown sequentially in Figures 4.4.a and 4.4.b.  The sample deformed until about the 

strains above the densification strain and gives valuable information about the 

deformation mechanism involved. The folding of the cells in the form of local buckling 

as in the case of circular tubes is presumably started following the initial maximum 

load, triggering from one of the free ends.  The folding progresses gradually as the 

vertical edges of the sample start deform in the plateau region. Interpenetrating local 

tears and local separations are observed on the vertical edge. In the plateau region, 

honeycomb may deform either symmetrically or non-symmetrically. In 3.2 mm cell size 

honeycomb, as shown in Figure 4.4.b, the folding is progressive and symmetrically 

occurring without breaking the cell walls but some local tears take place on the vertical 

edges. Figures 4.5.a and 4.5.b show sequentially, the deformed top and side views of a 

4.8 mm cell size honeycomb sample. As is seen in these pictures, the deformation is 

partly non-symmetrical and the tearing of vertical edges and the brittle fracture of the 

cell walls occur. Resulting from non symmetrical deformation and vertical edge tearing, 

continuous plastic fold formation as in 3.2 mm cell size sample is not observed. It is 

further noted that, the deformation character of 6.4 mm cell size filler is the same with 

that of 4.8 mm honeycomb filler. The cell walls tear (Figure 4.6.a) and the deformation 

continues with the fracture of the phenolic resin layer (Figure 4.6.b).  
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Figure 4.4. Deformed 3.2 mm cell size Nomex® honeycomb sample: (a) top and (b) side  
                   view 

 

         
Figure 4.5. Deformed 4.8 mm cell size Nomex® honeycomb sample; (a) top and (b) side     
                   view 
 

     
Figure 4.6. Deformed 6.4 mm cell size Nomex® honeycomb sample; (a) top and (b) side  
                   view 
 

 

The uniform deformation and symmetrical folding mechanism are expected to 

result in higher energy absorption than non-symmetrical folding. Further, the tearing of 

the cell-walls tends to decrease the energy absorption. The dissipated energy is mainly 

absorbed by the vertical edges through the formation of plastic hinges and the 

compatibility zones in the honeycomb cell walls. In testing double layer honeycomb 

samples (two layers stick with epoxy), the bond section was separated in few samples; 

therefore, the cell collapse started from the mid-section.   
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The load-strain graphs of  3.2, 4.8 and 6.4 mm cell size honeycomb double and 

single layer honeycomb samples are shown in Figure 4.7.a-c, respectively. The effects 

of bond layer on load displacement curves of honeycomb samples shown in Figure 

4.7.a-c are as follow: in double layer samples the load values in the plateau region and 

the peak load values are lower than those of single layer honeycomb samples.  The 

reduced peak load values in double layer samples simply may arise from the fold 

triggering in the bonded region of the honeycomb layers. The cell wall collapse in 6.4 

and 3.2 mm cell size honeycomb double layer samples starts in the bonded section, 

while in 4.8 mm cell size samples the triggering is very much similar with that of single 

layer samples, leading to similar load values.  
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Figure 4.7. The load-strain curves of (a) 3.2 (b) 4.8 and (c) 6.4 mm cell size double and    
 single layer honeycomb samples 

 

            (cont. on next page) 
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Figure 4.7. (cont.) The load-strain curves of (a) 3.2 (b) 4.8 and (c) 6.4 mm cell size  
                   double and single layer honeycomb samples  

 

The average plateau loads of honeycombs are calculated from the plateau region 

and found 0.692, 0.503 and 0.370 (kN) for 3.2, 4.8 and 6.4 cell size honeycombs. The 

crushing loads and strength of honeycombs are also calculated using Equation 2.24 and 

25 respectively and tabulated in Table 4.1. Equation 2.24 gives the similar crushing load 

values with experiments. The details of the crushing load and strength calculations of 

honeycombs are given in Appendix A.   

 
Table 4.1. Calculated and experimental mean crushing loads and strength values of  
         honeycombs. 
 
Honeycomb cell 
size (mm) 

Mean crushing 
load (KN) 
(Equation 2.24) 

Mean crushing 
load (kN) 
(Experimental) 

Crushing 
Strength (MPa) 
(Equation 2.25) 

Crushing 
Strength (MPa) 
(Experimental) 

3.2 0.717 0.692 
0.532*  

5.38 4.1 

4.8 0.546 0.503 
0.428*  

2.7 2.741 

6.4 0.362 0.370 
0.3* 

1.69 1.8 

* Double layer samples 
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4.3. The Deformation Behavior of Empty and Nomex® Honeycomb   

          Filled Tubes 

 

4.3.1. The Deformation Behavior of Empty Tubes 

 
The empty tubes deformed dominantly in mixed mode within the studied strain 

rate regime, while few samples deformed in concertina and diamond mode.  The folding 

starts from of the ends of the tube in axisymmetric mode and is reverted into 

asymmetric mode after axisymmetric fold formation.  The typical load-displacement 

curve of the empty tube is shown in Figure 4.8. The densification starts after 20 mm, 

corresponding to 80% deformation and total 3-4 fold are formed as marked in Figure 

4.8. Deformed tube samples front, back and side views are shown sequentially for 

concertina, mixed and diamond mode of deformation in Figures 4.9, 4.10 and 4.11, 

respectively.   
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Figure 4.8. Typical load-displacement curve of empty aluminum tube (1.64x10-2 s-1) 
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 Figure 4.9. Pictures of tube deformation in concertina mode: (a) front, (b) back and (c)  
                   side views.  

 

        
 Figure 4.10. Pictures of tube deformation in mixed mode: (a) front, (b) back and (c)  
           side views.  

 

 

         
Figure 4.11.  Pictures of tube deformation in diamond mode: (a) front, (b) back and (c)  
  side views. 

 

The effect of deformation rate (cross-head speed) on the empty tube load-

displacement curves are shown in Figure 4.12. When considered the scattering of the 

load values, the tubes are found to show no significant differences in load values at 

strain rates of 6.56x10-3, 3.28x10-3 and 1.64x10-2 s-1.  The variation of the load values of 

the Al tubes between the individual tests at a loading rate of 1.64x10-3 s-1 are shown in 

Figure 4.13. The average crushing loads of empty tubes are calculated and the results 

were averaged. An average load of 1.108 (kN) is calculated for the empty tube.  
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The average crushing loads of empty tube are also calculated using analytical 

approaches in the literature. The results of calculations are tabulated in Table 4.2. The 

details of calculations are further given in Appendix B. Table 4.2 shows that Pugsley’s 

and Wierzbicki’s approaches of diamond mode of deformation give the average 

crushing loads comparable with that of experiment. The fold lengths of the empty tubes 

are found 2.833, 3.1 and 3.24 mm for the strain rates of 1.64x10-2, 6.56x10-3 and 

3.28x10-3s-1 which corresponds to the cross-head speed of 25, 10 and 5 mm/min 

respectively.  
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Figure 4.12. The effect of loading rate on load-displacement curve of empty tube 
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Figure 4.13. The load displacement curve for empty tubes compressed at the strain rate  
          of 1.64x10-2(s-1) 
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Table 4.2. The average crushing loads and deformation modes with analytical,  
        experimental results 
 

Approach Formulation of  Pa   
Deformation 

Mode 
Analytical 

Results  

Alexander 
 

2/1
0 )(6 Dttσ  

 
Concertina 0.726 kN 

Abramowicz 
& 

Jones 
)44.3)(6( 2/1

0 tDtt +σ  Concertina 0.804 kN 

Abramowicz 
&  

Jones 

 
)4/()/(14.86 2

0
33.0 ttD σ  Concertina 1.286 kN 

Abramowicz 
&  

Jones Dt
tDt

/568.086.0
44.30

−

+σ
 Diamond 1.008 kN 

Pugsley  
&  

Macaulay 
)38.005.10(0 Dtt +σ  Diamond 0.573 kN 

 
Pugsley 

 

2
0

2286.2 tn σ  Diamond 1.148 kN 

 
Wierzbicki 

 

3/12
0 )/(15.18 tDtσ  Diamond 1.098 kN 

 
Wierzbicki 

 

 
2/12

0 )/(22.11 tRtσ  
 

Diamond 
 

1.006 kN 

 
Wierzbicki 

 

2/12
0 )/(933.7 tDtσ  Concertina 1.007 kN 

 
Singace 

 

 
4.1)/(874.7( 2/12

0 += tRtPa σ
 

Diamond 0.725 kN 

 
Singace 

 

 
6.5/27.22)32/( 2

0 +tDtσ
 

Concertina 0.833 kN 

 
Guillow 

 

32.02
0 )/(3.72)4/( tDtσ  Diamond 1.33  

 
(The experimental average crushing load is found as 1.108 kN) 
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4.3.2. The Deformation Behavior of Honeycomb Filled Tubes 

 
The load-displacement curves of 3.2, 4.8 and 6.4 mm cell size honeycomb filled 

Al tubes deformed at 1.64x10-2s-1 strain rate are sequentially shown in Figure 4.14.a-c, 

respectively.  In 3.2 mm cell size honeycomb filled tubes the deformation mode changes 

from diamond/mixed to concertina/mixed mode of deformation (Figure 4.15), while 

honeycomb filling with 6.4 mm and 4.8 mm cell size is found not to affect the 

deformation mode of empty tube as shown in Figure 4.16 and Figure 4.17. 
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Figure 4.14. Load-displacement curves of (a) 3.2 mm (b) 4.8 mm and (c) 6.4 mm cell  
          size honeycomb filled tubes  

                        (cont. on text page) 
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Figure 4.14. (cont.)Load-displacement curves of (a) 3.2 mm (b) 4.8 mm and (c) 6.4 mm     
          cell  size honeycomb filled tubes 

 

       
                   

Figure 4.15. Deformed 3.2 mm cell size honeycomb filled tubes (a) top view, (b) cross-   
                     section and (c) side view  

        
Figure 4.16. Deformed 4.8 mm cell size honeycomb filled tubes (a) top view, (b) cross-  

 section and (c) side view 
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Figure 4.17. Deformed 6.4 mm cell size honeycomb filled tubes (a) top view (b) cross-  
 section and (c) side view 
 

Figures 4.18.a-c show sequentially the typical load-displacement curves 3.2, 4.8 

and 6.4 mm honeycomb filled Al tubes together with empty tube load-displacement 

curve.  As is seen in these figures, honeycomb filling increases peak load values and 

plateau stress values and decreases the densification strain. The fold length is found to 

increase as the cell size increases. The fold lengths are calculated for each type of the 

specimens. In 3.2 mm cell-size honeycomb filled samples deformed at 1.64x10-2s-1 

strain rate, the fold length is 2.524 mm and in the samples deformed at 6.56x10-3s-1 it is 

3.273 mm.  The average fold length at 3.28x10-3s-1 strain rate is calculated 3.275 mm. 

The average fold lengths are 2.813 mm for the 4.8 mm cell size honeycomb filled tubes 

deformed at 1.64x10-2s-1 strain rate while  the fold length is 3.128 mm and 3.397 mm  

for 6.56x10-3s-1  and 3.28x10-3 s-1 respectively. The average fold lengths of 6.4 mm 

cell-size honeycomb filled tubes are sequentially 2.953 mm, 3.410 mm and 3.702 mm 

for 1.64x10-2s-1, 6.56x10-3s-1 and 3.28x10-3s-1  strain rates respectively. The effect of 

deformation rate on the load-displacement curves of 3.2, 4.8 and 6.4 mm cell size 

honeycomb filled tubes are shown in Figures 4.19.a-c, respectively.   
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Figure 4.18. Typical Load-displacement curves of the honeycomb filled and empty   
           tubes; (a) 3.2 mm, (b) 4.8 mm and (c) 6.4 mm cell size honeycomb  
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Figure 4.19. The load-displacement curves of filled tubes at different deformation rates     
        (a) 3.2 mm  (b) 4.8 mm (c) 6.4 mm cell size honeycomb filled tubes 
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4.4. Effect of Honeycomb Filling On the Average Crush Load, Specific  

       Absorbed Energy and Stroke Efficiency 

 
Figure 20.a-c shows sequentially the effect of honeycomb filling on the average 

crushing loads of empty tubes for 3.2, 4.8 and 6.4 mm honeycomb filling.  The average 

crushing loads increases with decreasing honeycomb cell size as seen in Figure 4. 21.a  

Although the average crushing load of empty tube is pretty much constant in the plateau 

region, the average crushing loads of filled tubes increase slightly in the plateau region 

with increasing displacement. It is further noted that, honeycomb filling decreases the 

differences between the initial average crushing peak load and average crushing loads in 

the plateau region, leading to more homogenous deformation of the tube. The highest 

average crushing load and maximum load are found in 3.2 mm cell-size honeycomb 

filled tube as shown in Figure 4.21.a and 4.21.b, respectively.  The average crushing 

loads, maximum load, SE and the other important crush properties of the filled tubes are 

further listed in Appendix C.  
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Figure 4.20. Effect of honeycomb filling on the average crushing loads of (a) 3.2, (b)      
          4.8 and (c) 6.4 mm honeycomb filled tubes (1.64x10-2 s-1) 



 49

0

1

2

3

4

5

0 1 2 3 4 5 6 7

y = 2.5575 - 0.14046x   R= 0.69962 

Pa
 (k

N
)

Honeycomb Cell Size

2.168

1.108

1.768 1.678

 
(a) 

 

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

y = 4,1734 - 0,081493x   R= 0,28619 

Pm
ax

 (k
N

)

Honeycomb cell size (mm)  
(b) 

Figure 4.21. (a) Pa  and (b) Pmax vs. honeycomb cell size 

 

The stroke efficiencies of the filled tubes and empty tubes are almost the same as 

depicted in Figure 4.22. The stroke efficiencies are determined as 0.75, 0.73 and 0.73 

for the 3.2, 4.8 and 6.4 mm cell-size honeycomb filled tubes and 0.75 for empty tubes.  
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The specific absorbed energy -displacement curves are shown in Figures 4.23.a-

d for 3.2, 4.8 and 6.4 mm cell size honeycomb filled tubes and empty tubes, 

respectively. 3.2 mm cell size honeycomb filled tubes results in the highest SAE values 

at 50% displacement and at the stroke efficiency (Figure 4. 24). The SAE values of 

filled and empty tubes at 50% and at stroke efficiency deformations are further listed in 

Appendix C. 
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Figure 4.22. SE vs. honeycomb cell size 
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Figure 4.23. The comparison between the SAE’s of (a) 3.2, (b) 4.8 and (c) 6.4 mm  
          honeycomb filled tubes and (b) empty tube (1.64x10-2 s-1)  
  
         (cont. on next page) 
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Figure 4.23. (cont.)The comparison between the SAE’s of (a) 3.2, (b) 4.8 and (c) 6.4  
          mm honeycomb filled tubes and (b) empty tube (1.64x10-2 s-1) 
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Figure 4.24. SAE at stroke efficiency versus honeycomb cell size  

 

The variations of TE with displacement are shown in Figure 4.25.a-c. for 3.2, 4.8 

and 6.4 mm honeycomb filled tubes. TE values of 4.8 and 6.4 mm honeycomb filled 

tubes show variation while TE values of 3.2 mm honeycomb filled tubes show 

relatively small scattering, proving a more stable crushing in small size honeycomb 

filling of tubes (Figure 4.26). On the average, the highest TE is found in 3.2 mm 

honeycomb filled tubes. 
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Figure 4.25. The total efficiency and corresponding stroke efficiency values for the  
           filled tubes (a)3.2 mm (b)4.8 mm and (c)6.4 mm honeycomb filled tubes  
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Figure 4.26. Variation of TE with honeycomb cell size at stroke efficiency 

 

4.5. The Interaction Effect  

 
The interaction effects are shown in Figure 4.27.a-c sequentially for 3.2, 4.8 and 

6.4 mm honeycomb filled tubes.  The interaction effect is found in all honeycomb filled 

tubes.  The value of C in equation. (2.23) is calculated (Appendix D). The C values for 

3.2 mm, 4.8 and 6.4 mm honeycomb filled samples are 1.53, 1.32 and 1.48, 

respectively.  The C values based on the double layer honeycomb are sequentially 1.99, 

1.54 and 1.83 for 3.2 mm, 4.8 and 6.4 mm honeycomb filled samples, respectively. The 

average C values, (single layer + double layer)/2 are 1.76, 1.43 and 1.65 for 3.2 mm, 4.8 

and 6.4 mm honeycomb filled samples, respectively.  The highest interaction effect is 

found for the smallest cell size honeycomb filling.    

 



 55

0

1

2

3

4

5

0 5 10 15 20 25

Honeycomb Filled Tube
Empty Tube + Honeycomb

Lo
ad

 (k
N

)

Displacement (mm)

Interction Effect

 
    (a) 

0

1

2

3

4

5

0 5 10 15 20 25

Honeycomb Filled Tube
Empty Tube + Honeycomb

Lo
ad

 (k
N

)

Displacement (mm)

Interaction Effect

 
    (b) 

0

1

2

3

4

5

0 5 10 15 20 25

Empty tube + Honeycomb
Honeycomb Filled Tube

Lo
ad

 (k
N

)

Displacement (mm)

Interaction Effect

 
    (c) 

Figure 4.27. The interaction effect in (a) 3.2 mm cell size (b) 4,8 mm cell size (c) 6.4  
          mm cell size honeycomb filled tube  
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The deformed sections of 3.2 mm and 6.4 mm honeycomb filled tubes are shown 

in Figure 4.28.a and 4.28.b, respectively. Near to the tube folding a highly compressed 

honeycomb section is clearly seen in these figures. The compressed layer is clearly seen 

for 3.2 mm honeycomb filled tube sample (Figure 4.28.a).  

 

      

 
Figure 4.28. Partially compressed honeycombs between tubes: (a) 3.2 mm cell size  
          (b) 6.4 mm cell size and (c) 4.8 mm cell size honeycomb filled tube  
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CHAPTER 5 

 

NUMERICAL ANALYSIS  
 

5.1. Numerical Modeling of Empty Tube, Honeycomb Filler and  

       Honeycomb Filled Tubes 

 
The numerical models of empty tube and the 6.4 mm cell size honeycombs were 

simulated. The empty tube model was constructed using LS-DYNA PrepostTM and the 

honeycomb filled tube (6.4 mm cell size) model was created in SolidworksTM (Solid 

works 2008 Manual). The meshed geometrical honeycomb model was subsequently 

exported to LS-DYNATM software in order to set the boundary conditions and material 

properties. LS-PrepostTM was used for a post processor for the numerical solutions.  

Honeycomb cells and aluminum tube were modeled using Belytschko-Tsay-4 

node-thin shell elements. Since the honeycomb material shows anisotropy under 

compression, a symmetrical model is not applicable; therefore, the specimens were 

modeled in actual dimensions. The upper and bottom compression test plates were 

modeled as rigid body with kinematical boundary conditions. The motion of the upper 

compression plate was determined by an imposed motion (displacement) of a set of 

nodes in the upper plate. Automatic single surface contact was used between the bottom 

compression plate and the empty tube. The static and dynamic coefficients of frictions 

were taken as 0.20 and 0.15, respectively.  Material type 024 (LS DYNA user manual), 

the piecewise linear plasticity, was used during the simulation of both the empty tubes 

and the honeycomb material. This model is an elasto-plastic material with an stress 

versus strain curve and strain rate dependency. 

In the model, 6x20 elements (6 along the ribbon direction, 20 along the thickness 

direction) were used in each face of honeycomb sheet and a total of 12 complete 

hexagonal honeycomb cells were created. For the aluminum tube 40 x 80 elements were 

used.  
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In order to understand the mesh dependency behavior of the honeycomb, in 

empty and honeycomb filled tube, the mesh size was doubled and divided by two, 

respectively. It must be noted that the larger the element size yielding reasonable 

accuracy will increase the computational time and cost. By considering the same reason 

the simulation of the adhesive bonding was neglected. 

 

5.2. The Mesh Optimization 
  

In the finite element analysis number of mesh for a fixed geometry leads to 

variation in the element size, computational time and accuracy of the numerical results. 

The optimum mesh size has been established by refining the mesh until the convergence 

is reached. The mesh size was doubled and divided by two in order to define an 

optimum mesh size for the simulation.  

 

5.2.1. The Mesh Optimization of Empty Tubes 
 

In Figures 5.1.a, 5.1.b and 5.1.c, the numerical load-displacement curves of 

empty tube with the number of meshes of 40x40, 40x80 and 50x128 are shown together 

with experimental load-displacement curves, respectively. As is seen in Figures 5.1.b 

and 5.1.c, the load-displacement curves of models constructed with 40x80 and 50x128 

elements give reasonably well agreements with the experimental load displacement 

curves, while the load displacement curve of the model constructed with 40x40 (Figure 

5.1.a) elements shows much more disagreements with the experimental load-

displacement curves in the initial region of the load-displacement curve. For the 

computational and time efficiency the 40x80 elements were considered as the optimum 

number of elements for this simulation.    
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Figure 5.1. The Numerical and experimental load-displacement curves of empty tubes  
        with (a) 1600, (b) 3200 and (c) 6400 elements  
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5.2.2. The Mesh Optimization of Honeycomb Filler 
 

Figures 5.2(a), (b) and (c) show the numerical load-displacement curves of 6.4 

mm cell size honeycomb with the number of elements of 3x20, 6x20 and 12x20, 

respectively. On these curves, the experimental load-displacement curves are also 

shown for comparison. The model with 6x20 and 12x20 give reasonable agreement with 

the experimental load-displacement curves, while the model with 3x20 elements shows 

disagreements at low and at high displacements.  
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Figure 5.2. The Numerical and experimental load-displacement curves of honeycomb  
        Filler of 6.4 mm cell size (a) 3x20, (b) 6x20, (c) 12x20 elements (at each   
        wall of the honeycomb)  
 
            (cont. on next page)  
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Figure 5.2. (cont.)The Numerical and experimental load-displacement curves of  
        honeycomb Filler of 6.4 mm cell size (a) 3x20, (b) 6x20, (c) 12x20  

       elements (at each  wall of the honeycomb) 
 
 

5.2.3. The Mesh Optimization of Honeycomb Filled Tubes 
 

Figures 5.3.a,b and c show sequentially the modeling load-displacement curves 

of 6.4 mm cell size honeycomb filled tube  with number of elements of 40x40-3x20,  

40x80-6x20 and 50x128-12x20 On the same curves, the experimental load-

displacement curves are also shown for comparison. It is noted in Figure 5.3, the 

modeling results gives very much similar load-displacement values/curves with those of 

experiment when the element size is selected 50x128-12x20. 
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Figure 5.3. The Numerical and experimental load-displacement curves of honeycomb  
        filled tubes: (a) 40x40-3x20, (b) 40x80-6x20 (c) 50x128-12x20 elements  
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5.3. The Comparison between Experimental and Numerical Results  
 

Figures 5.4.a and 5.4.b  show the numerical and experimental deformed empty 

tubes at various deformation levels, respectively. In the experiments, the tube 

deformation starts with axisymmetric mode and then revert into diamond mode which 

the same with numerically deformed tubes.  A total number of 4 and 5 folds were 

formed numerically and experimentally and the fold lengths were calculated as 4.12 mm 

and 2.83 mm respectively. Figure 5.5 shows the load displacement curves of 

experimentally and numerically compressed empty tubes together. The numerical load-

displacement curve closely approximates the main characteristics of the experimental 

load-displacement curves of the empty tube: the load increases initially to a maximum 

peak load; thereafter, the load decreases to lower values and shows fluctuations as the 

tube progressively deforms until densification region. The average crushing loads were 

calculated 1.108 kN and 1.086 kN for experimentally and numerically deformed empty 

tubes, respectively.  The SAE values calculated from simulation and experiment also 

show very good agreements as shown in Figure 5.6. The SAE values were found 

experimentally and numerically as 12.270 and 11.181 kJ/kg at the densification point 

respectively. 

 

 
(a) 

 
(b) 

Figure 5.4. The deformed empty tubes at 0%, 20%, 40%, 60%, 80% strains (left to            
        right); (a) simulation (b) experimental 
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Figure 5.6. The experimental and numerical SAE curve of empty tube 

 

 

Figure 5.7.a and 5.7.b show sequentially the numerical deformed pictures of 

single and double layer 6.4 mm cell size honeycomb samples.  The deformation 

mechanism is similar in both sample types. The plastic buckling of cell walls followed 

by debonding and fracture at the cell interfaces.  
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The irregular folding of the honeycomb walls and local tears and separations are 

observed in the numerical simulation, similar to experimentally deformed honeycomb 

samples.  The numerical load displacement and SAE curve of the honeycomb show 

good agreement with the experimental load-displacement and SAE curve as shown in 

Figure 5.8 and 5.9 respectively.  The SAE values are calculated 11.301 and 12.826 for 

numerically and experimentally, respectively. The double layer honeycomb, which is 

originally consisted of two layers glued with an epoxy based bonding material, was 

simulated as single layer. The modeling of double layer sample will be considered in 

future.   

 

 

 
(a) 

 
(b) 

Figure 5.7. The numerical deformed of 6.4 mm honeycomb: (a) double layer and (b)  
        single layer, at 0%, 20%, 40%, 60%, 80% strains (left to right)  
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Figure 5.8. The numerical and experimental load-displacement curve of single layer 6.4  
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Figures 5.10.a and 5.10.b show sequentially the numerical and experimental 

deformed filled tubes at various strains, respectively. The numerical simulation shows 

the mixed mode of deformation of filled tube with progressive folding mechanism, 

which is also observed in the experiments. The numerical and the experimental load 

displacement curves (Figure 5.11), further show good agreements except the number of 

folds. Totally 5 folds formed experimentally and 4 folds formed in the simulation of the 

filled tubes. The fold length in the simulation is 3.72 mm and 2.95 mm in the 

experiment. The experimental and numerical average crushing loads are 1.678 kN and 

1.723 kN, respectively.  Furthermore, the numerical SAE values at the stroke efficiency 

show well agreements with those experiments (Figure 5.12).   The SAE is 12.290 kJ/kg, 

in the experiment and 11.677 kJ/kg in the simulation. Figures 5.13.a and 5.13.b show 

the partially deformed 6.4 mm cell size honeycomb filled tubes, triggering the 

deformation at the glued sections (middle section) and at the free end of the tube, 

respectively. However, the numerical filler and the tube deformation are generally 

progressive and triggers from one of the ends of the filled tube (Figure 5.13.c).  

As a summary and for easy comparison, the average crushing load, the 

maximum load, SAE, fold length and number of folds calculated both experimentally 

and numerically for empty tube, honeycomb and filled tube are listed altogether in 

Table 1. Despite the small variations generally the numerical model satisfactorily 

reaches the values of experimental found deformation parameters.    

 

 
(a) 

 
 

(b) 
Figure 5.10. The deformed filled tubes (a) experimental and (b) numerical, strains 0%,  
           20%, 40%, 60%, 80% 
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Figure 5.11. The experimental and numerical load displacement curve of 6.4 mm cell  
          size honeycomb filled tube 
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Figure 5.13. Deformed filled tubes, (a) trigger at the mid-section, (b) trigger  from   the  
          end of the tube and (b) numerical deformation triggering from the tube end  
 

 

Table 5.1 The experimental and the numerical deformation parameters of empty tube,  
      filler and filled tube  
 

 Pa (kN) Pmax (kN) SAE (kj/kg) Hf (mm) Number of 
folds 

Empty Tube 

simulation 
1.086 2.150 11.181 4.19 4 

Empty Tube 

experimental 
1.108 2.543 12.270 2.883 5 

Honeycomb  
 

simulation 
0.419 0.987 11.301 - - 

Honeycomb  
 

experimental 
0.370 1.136 12.826 - - 

Filled tube  
 

simulation 
1.723 4.934 11.677 3.724 4 

Filled Tube  
 

experimental 
1.678 3.673 12.291 2.953 5 
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5.4. The Effect of Honeycomb Cell Wall Thickness Variation  

 
The experimental measurements show that the honeycomb cell wall thickness 

varies between 0.09-0.15 mm. In the numerical analysis in order to determine the effect 

of the honeycomb wall thickness on the crushing mechanism and the average crushing 

load the cell walls thickness changes as 0.09, 0.12 and 0.15 mm. In Figure 5.14.a the 

variation of the load-displacement curve with cell wall thicknesses of 6.4 mm cell size 

honeycomb filler is shown.  The peak load and the average crushing load increase with 

the increasing cell wall thickness.  In Figure 5.14.b the numerical load-displacement 

curves of the filler at various cell wall thicknesses is shown together with experimental 

load-displacement curve.  This figure clearly shows that, 0.13 mm cell wall thickness 

load-displacement numerical curve nearly matches to the experimental load-

displacement curve, when the peak-load and load values are considered. It is also noted 

that in Figure 5.14.b a small increase in the cell wall thickness results in significant 

increase in peak and higher average crushing loads values.  
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Figure 5.14. (a) Numerical load-displacement curves of 6.4 mm cell size honeycombs of  
          varying  cell thickness  and (b)  comparison with  experimental load-  
          displacement curve 
 
            (cont. on next page) 
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Figure 5.14. (cont.)(a) Numerical load-displacement curves of 6.4 mm cell size  
         honeycombs of varying cell thickness  and (b)  comparison with   
         experimental load-displacement curve 
 
The effect of honeycomb cell wall thickness on the filled tubes is also very 

similar.  The values of peak loads and the plateau load increases with increasing wall 

thickness (Figure 5.15.a). However, in filled tubes the experimental load-displacement 

curve shows best matches with both 0.13 and 0.12 mm honeycomb cell wall thicknesses 

as seen in Figure 5.15.b 



 72

0

1

2

3

4

5

0 5 10 15 20 25

honeycomb wall thickness = 0.15 mm
honeycomb wall thickness = 0.12 mm
honeycomb wall thickness = 0.09 mm

Lo
ad

 (k
N

)

Displacement (mm)  
         (a) 

0

1

2

3

4

5

0 5 10 15 20 25

honeycomb wall thickness = 0.13 mm
honeycomb wall thickness = 0.15 mm
honeycomb wall thickness = 0.12 mm
honeycomb wall thickness = 0.09 mm
Experimental

Lo
ad

 (k
N

)

Displacement (mm)  
         (b) 

Figure 5.15. (a) the numerical load-displacement curves of 6.4 mm cell size honeycomb  
        filled tubes of varying honeycomb cell wall thickness and (b) comparison 
          with experimental load-displacement curve  
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CHAPTER 6 

 

DISCUSSION 
 

6.1. The Average Crushing Loads and Deformation Modes of the  

       Empty Tubes 
  

The average crushing loads of the empty tubes were analyzed for the diamond 

and concertina mode of deformation in Chapter 4. The results of the analysis are further 

given in Table 4.2. The empty tube was dominantly deformed in mixed mode of 

deformation and the analysis showed good correlations with the empirical equations of 

Abramowicz and Jones (1986), Pugsley et al. (1979), Wierzbicki (1988), and Guillow et 

al. ( 2001) developed for the concertina and diamond mode of deformation.  The results 

also show that the experimental average crushing loads show significant differences 

from the equations of Singace (1996) and Alexander (1960). The difference between the 

average crushing loads of experiments and empirical equations given in Table 4.2 is in 

the range of 86-99 %. For diamond mode of deformation the difference is in the range 

between 51 and 99% and for concertina between 65 and 90%.  In addition, the mixed 

mode of deformation of the empty tubes observed in this study shows a good agreement 

with the collapse mode of deformation chart of aluminum alloys constructed by 

Andrews et al. (1983) (Figure 2.4), when the L/D and t/D ratios of the tubes are 

considered. 

 The deformation rates show no significant effect on the deformation of the 

empty tubes. The mixed mode of deformation was observed as the dominant 

deformation mode in all strain rates used. This is mainly due to the strain rate 

insensitive mechanical response of aluminum and alloys. The observed variations in the 

deformation mode within the tube samples tested with the same testing parameters may 

be related to the existing non-uniformities in the tube samples such as variations in 

microstructure, tube thickness and surface conditions.   

In the numerical analysis, the number of finite element mesh for a fixed 

geometry is known to lead to variations in the numerical results. The optimum finite 

element mesh number was determined by refining the mesh until convergence was 
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reached. The increasing number of elements in the finite element simulation resulted in 

better agreements with the experimental data.  

However in order to keep a reasonable computational efficiency and cost, a 

compromise should be made. For tested tubes, the model was constructed using 40x80 

elements for the highest computational efficiency.  

  

6.2. The Average Crushing Loads and Deformation Modes of  

       Honeycomb and Honeycomb Filled Tubes 

  
When the honeycomb specimens are loaded quasi-statically, they exhibited a 

peak load, followed by a series of oscillatory crush loads with a nearly constant mean 

value (Chawla, et .al 2003). The quasi-static crush response of the Nomex® honeycomb 

also showed the same behavior. The deformation of the cells include the following 

mechanism:  elastic buckling of cell walls followed by a plastic buckling, debonding 

and fracture at cell interfaces and fracture of the phenolic resin layer. These mechanisms 

were also previously observed (Aktay, et al. 2007). The resin type of the honeycomb is 

expected to influence the deformation mode of the honeycombs having the same cell 

size.   This further affects the average crushing loads and the peak loads. 

The cell size is one of the most important parameter effective on the load-

displacement curves of honeycombs.  In this thesis, it was shown both experimentally 

and numerically that reducing the cell size slightly without changing the density of the 

honeycomb gave higher crushing forces and a more stable deformation. These were also 

confirmed previously in a separate study on the effect cell size (Wu and Jiang 1996).  

4.8 and 6.4 mm cell size honeycombs tested in accord with this and showed lower mean 

crushing loads and more non uniform folding mechanisms and brittle fractures at their 

cell walls. The crushing strengths and mean crushing loads of the honeycombs 

converged with the theoretical crushing strengths with 76, 98, 93% and the theoretical 

mean crushing loads with 96, 92 and 97% for 3.2, 4.8 and 6.4 mm cell size honeycombs 

respectively. In order to asses, the effect of the honeycomb cell wall thickness on the 

load-displacement curve, the honeycomb cell wall thicknesses of 0.09, 0.12, 0.13 and 

0.15 mm were simulated. Since the compressive loads are mainly taken by the vertical 

edges of honeycombs, the increase cell wall thickness increased significantly both 

average crushing loads and peak loads.  
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The mesh size of the numerical simulation is known to be an important factor in 

computational efficiency. The increasing number of elements results in more 

approximate results with experimental data, but decreases the computational efficiency. 

Figures 6.1.a, 6.1.b and 6.1.c show the numerical analysis of 6.4 mm cell size 

honeycomb with different number of elements. The Nomex® honeycomb deformation 

mode is global collapse mode which can be observed in Figure 6.1.b. The reduction in 

element size as shown in Figure 6.1.b results in a change of deformation mode. In 

Figure 6.1.c the model with the double mesh number is shown and shows a progressive 

collapse mode which is not observed in experiments. This shows that increasing the 

number of elements doe not always give the best converging results with those of 

experiments. Therefore as stated earlier in another study (Aktay, et. Al 2007) the 

optimum number of meshes must be selected based on the experimental results. 

 

 

  
Figure 6.1. The effect of mesh size on the deformation of 6.4 mm cell size Nomex®  
         honeycombs, (a)3x20 (b) 6x20 (c) 12x20 elements on each wall of   
         honeycomb 
 

Tube filling with Nomex® honeycomb resulted in increased peak and average 

crushing loads and SAE values as compared with empty tube. The lateral strength of 

honeycomb resists against inward penetration of the tube walls during the crash process, 

leading to an effect known as interaction effect. This effect is seen in simulations as 

shown in Figure 6.2.  Due to interaction effect, the energy absorption capacity of the 

filled tubes increased and the tubes deformed in a more stable manner when compared 

with the empty tubes (Zarei and Kröger 2006). The cell sizes of the honeycomb also 

affect the specific absorbed energy. In this study, although 6.4 mm and 4.8 mm cell size 

honeycomb filling had no effect on the deformation mode of the empty tube 

(mixed/diamond), 3.2 mm cell size honeycomb filling changed the deformation mode 
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into mixed/concertina mode, showing clearly the effect of filling on the deformation 

mode of the filled tube.    

Due to its progressive folding mechanism and symmetrical deformation, 3.2 mm 

cell size honeycomb showed the highest interaction effect in this study.   

 
Figure 6.2. The simulation of interaction effect in 6.4 mm cell size honeycomb filled  
         tube 

 

6.3. The Strengthening Effect and Specific Absorbed Energy 

 

The strengthening coefficient of the Nomex® honeycomb filling is determined as 

1.53, 1.32 and 1.48 for 3.2, 4.8 and 6.4 mm cell size honeycomb fillings respectively 

and is given in Appendix C. The use of adhesive can contributed to the specific energy 

absorption of the tube by two mechanisms; increased load transfer from tube wall to the 

foam core and peeling of the adhesive. The double layer honeycombs (adding the 

adhesive effect) give higher strengthening coefficients for the filler honeycombs; 1.99, 

1.54, 1.83 for the 3.2, 4.8 and 6.4 mm cell size honeycomb filled tubes respectively. The 

results may be compared with the previous works on foam filled tubes as 2.8 and 1.8 

(Santosa, et al. 2000), 2 and 1.7 (H.Kavi, et al. 2006) for the bonded and unbounded 

foam fillers, respectively.  

The specific energy absorption values of honeycomb filling are further 

compared with Al-closed cell foam (0.27, 0.35 and 0.42 g/cm3) filled aluminum tubes 

(Aktay, et al. 2008). 3.2 mm cell size honeycomb filled aluminum tube was found to 

show higher SAE than Al-foam filled tubes at % 50 deformations.  It also showed 

higher SAE than 0.27 g/cm3 foam filling and similar SAE with 0.35 g/cm3 foam filling 

at 80% deformation. These show the potentials of honeycomb filling of thin walled 

tubes in increasing SAE values. However, the strength of honeycomb is relatively low 

and the strengthening effect dictates honeycomb filling can solely be used in thin walled 

tubes having the crushing loads comparable with that of honeycomb.   
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CHAPTER 7 

 

CONCLUSION 

 
The quasi-static crushing behavior of three different  cell size,  3.2, 4.8 and 6.4 

mm, Nomex® honeycomb filled Al tubes was investigated through compression testing 

at quasi-static strain rates.  The crushing behavior of empty tube and the fillers were 

also determined in order to asses the effect of filler on the crushing behavior of filled 

tubes.  The deformation of empty tube, 6.4 mm cell size honeycomb filler and 6.4 mm 

cell size honeycomb filled tube were modeled in LSDYNATM and ANSYSTM. The 

followings are concluded 

 

1. The experimental and numerical results showed that 6.4 mm and 4.8 mm cell 

size honeycomb filling had no effect on the deformation mode of empty tube 

(diamond/mixed), while 3.2 mm cell size honeycomb filling changed the 

tube deformation mode into mixed/concertina mode of deformation. 

 

2. The honeycomb filling was shown, both experimentally and numerically, to 

increase crushing load, peak load and SAE values of filled tubes as 

compared with empty tubes. 

 

3. The interaction effect was observed in all types of honeycomb filled tubes. 

3.2 mm cell size honeycomb filling showed the highest average crushing 

load and SAE values. The strengthening coefficient was also the highest in 

3.2 mm honeycomb filled tubes. 

 
4. It was shown that 3.2 mm cell size honeycomb might be an alternative to 

aluminum foam as filler in tubes as long as the tube crushing load was 

comparable with honeycomb crushing load.  

 

5. The modeling efforts gave similar deformation mode, crushing loads and 

SAE values with those of experiments. The modeling was also shown to be a 

tool to see the interaction between tube and filler. 
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APPENDIX A 
 

Mean Crushing Force and Strength of Honeycombs 
 

 t  = 0.1 mm 

σ0 =  105 MPa 
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APPENDIX B 
 

The Mean Crushing Forces of Empty Tubes 
 

Alexander’s approach  

 

Concertina Mode  
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Abramowicz and Jones approach  
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Diamond Mode 
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0
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Singlace and Elbosky’s Approach 
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Diamond Mode 

 

The average crushing force ; 

 

)408.1)/(874.7( 2/12
0 += tRtPa σ                                                                         (2.14)               
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Pugsley and Macaulay’s Approach  
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Diamond Mode 
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Where the n is the number of diamond folds formed during deformation. 
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Wierzbicki’s approach  

 

Diamond Mode 
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Guillow’s Approach 

 

 

The average crushing force ; 
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APPENDIX C 
 

The Mean Crushing Force of Nomex Honeycomb Filled Tubes 

maenh PCPP ×+=                                                                                                       (2.23)         

 

3.2 mm cell-sized Nomex honeycomb Filled Tube 

 

kNCkNPnh 692.0108.12.3, ×+=  

kNCkNkN 692.0108.1168.2 ×+=  

53.1=C  
Double layer: 

2.168kN 1.108kN C 0.532kN= + ×  
 C=1.99 

 

4.8 mm cell-sized Nomex honeycomb Filled Tube 

 

kNCkNPnh 503.0108.18.4, ×+=  
kNCkNkN 503.0108.1768.1 ×+=  

32.1=C  

Double layer: 

1.768kN 1.108kN C 0.428kN= + ×  
C=1.54 

 

6.4 mm cell-sized Nomex honeycomb Filled Tube 

 

kNCkNPnh 37.0108.14.6, ×+=  

kNCkNkN 37.0108.1657.1 ×+=  
48.1=C  

Double layer: 

1.657kN 1.108kN C 0.3kN= + ×  
C=1.83  
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APPENDIX D 

 

Result Tables 
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