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ABSTRACT 
 

GROWTH AND CHARACTERIZATION OF 
CARBON NANOTUBES BY 

THERMAL CHEMICAL VAPOR DEPOSITION 
METHOD 

 

            This thesis work is focused on producing carbon nanotubes (CNTs) by methane 

gas thermal chemical vapor deposition method on very thin Cobalt, Iron, and Nickel 

catalyst thin films deposited onto SiO2/Si substrates by DC magnetron sputtering. This 

thesis is also devoted to understanding some parameters affecting the growth of CNTs; 

such as catalyst material, temperature, and catalyst layer thickness effects.  

           In this study, CNT growth was performed on directly Si substrates, which was 

observed that the growth was too difficult and requiring very high temperatures. Hence, 

very thin catalyst films were deposited on SiO2/Si substrates, and the CNT growth was 

observed. 

The temperature effect was also examined. When the growth temperature was 

increased, the average diameters of the CNTs were decreased up to a critical 

temperature, but after this point the average diameter of CNTs were increased. This 

effect was studied systematically by utilizing Fe and Co catalyst thin films and with the 

help of Raman spectroscopy and Scanning Electron Microscopy results. 

            Catalyst thickness effect was also examined. For this aim, Ni catalyst thin films 

with three different thicknesses; 0.7 nm, 1.4 nm, and 6 nm, were utilized. It was 

observed that CNTs were grown well on 0.7 and 1.4 nm thick Ni films, while there was 

a little growth on 6 nm thick Ni film. The roughness analysis of 0.7 nm and 1.4 nm 

thick Ni films were also done. Some of as-grown CNTs were also examined by X-ray 

diffraction method, and the results were compared one another. 
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ÖZET 
 

KARBON NANOTÜPLERİN TERMAL KİMYASAL BUHAR 

BİRİKTİRME YÖNTEMİ  İLE BÜYÜTÜLMESİ VE 

KARAKTERİZASYONU 

 

            Bu tez çalışması, karbon nanotüplerin metan gazı termal kimyasal buhar 

biriktirme yöntemi ile, doğru akım mıknatıssal saçtırma tekniği ile silikon dioksit 

kaplanmış silikon alttaşlari üzerine kaplanan Kobalt, Demir ve Nikel çok ince kataliz 

filmlerinin üzerinde büyütülmesine odaklanmıştır. Bu çalışma, ayrıca karbon 

nanotüplerin büyümesini etkileyen bazı parametreleri, örneğin sıcaklığın etkisi, kataliz 

materyalinin ve kataliz ince filmin kalınlığının etkilerini anlamaya adanmıştır.  

           Bu çalışmada karbon nanotüp büyümesi direkt olarak sadece silikon filmler 

üzerinde denenmiştir; silikon üzerinde büyümenin çok zor olduğu ve çok yüksek 

sıcaklıklar gerektiği gözlenmiştir. Bu nedenle silikondioksit/silikon alttaşı üzerine 

kataliz tabakaları kaplandı ve yüksek sıcaklıklarda büyüme gözlendi. 

           Ayrıca, sıcaklığın etkisi araştırıldı. Büyüme sıcaklığı arttırıldığında, karbon 

nanotüplerin ortalama yarıçaplarının kritik bir sıcaklık değerine kadar azaldığı ancak 

kritik bir değerden sonra arttığı gözlendi. Sıcaklığın etkisi, Fe ve Co kataliz filmleri ve 

Raman spektroskopisi ile yüzey taramalı mikroskop sonuçları kullanılarak sistematik 

olarak çalışıldı. 

            Kataliz kalınlığının karbon nanotüp büyümesi üzerindeki etkisi de incelendi. Bu 

amaç için, farklı kalınlıklardaki, 0.7 nm, 1.4 nm ve 6 nm, Nikel ince filmler kullanıldı. 

Elde edilen sonuçlardan, karbon nanotüplerin 0.7 nm ve 1.4 nm kalınlıklardaki filmler 

üzerinde, 6 nm kalınlıktakine kıyasla daha iyi büyüdüğü gözlendi. Ayrıca, 0.7 ve 1.4 nm 

kalınlıktaki  Nikel filmlerin yüzeylerinin pürüzlülüğü ölçüldü. Bazı karbon nanotüpler 

X-ışını kırınımıyla da incelenip, elde edilen sonuçlar diğer sonuçlarla kıyaslandı. 
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CHAPTER 1 
 

INTRODUCTION 
 
            The discovery of carbon nanotubes (CNTs) was not only a giant leap for science 

but also an inspiring step to open an incredible era for many research areas worldwide.  

Many scientists have been trying to figure out the unknown properties of these gorgeous 

nanostructures which are about to be in power of nanoscience, as they are being used in 

chemistry, electronics, physics, medicine, engineering, etc.  

A CNT is a nanometer-sized hexagonal graphene structures which shows very 

high chemical stability (Heer and Ugrate 1993) and very large current density 

(109 A/cm2) (Dresselhaus, et al. 2001). CNTs have many distinct properties over the 

other conventional nano-materials for their extraordinary mechanical, electrical, 

structural, and optical properties (Dresselhaus, et al. 2001).  They are believed to be one 

of the strongest and stiffest materials with respect to their tensile strength and elastic 

modulus since they have covalently bonded carbon atoms within their graphitic 

structures (Dresselhaus, et al. 2001, Baughman, et al. 2002).  

The CNTs are classified mainly as single-walled carbon nanotubes (SWNTs) 

and multi-walled carbon nanotubes (MWNTs) (Dresselhaus, et al. 2001). It was shown 

that an (n, m) CNT is metallic if n=m or (n-m) = 3i, where i is an integer and n and m 

defining the CNT structure (C=nâ1+mâ2, C is chirality vector) (Thostenson, et al. 2001).  

Moreover, SWNTs also come in three types as armchair, zigzag, and chiral nanotubes 

(Ivchenko and Spivak 2002). The most distinct and well known property of them is that 

the CNTs can be either metallic or semiconducting depending on their structures (Saito, 

et al. 1992, Baughman, et al. 2002). All armchair nanotubes are metallic nanotubes 

while zigzag nanotubes are to be either semiconducting or metallic (Saito, et al. 1992).  

           All CNTs are very good electrical conductors along their tube axis, exhibiting a 

property known as "ballistic conduction," and very good insulators perpendicular to the 

tube axis (Roth and Carroll 2004, Ivchenko and Spivak 2002). It is predicted that the 

CNTs will be able to transmit up to 6000 W·m−1·K−1 at room temperature; compare to 

copper, which only transmits 385 W·m−1·K−1 (Yi, et al. 1999, Hone, et al. 1999). The 

temperature stability of CNTs is estimated to be up to 2800°C in vacuum and about 

750°C in air (Begtrup, et al. 2007). The differences in conducting properties are caused 

http://en.wikipedia.org/wiki/Tensile_strength
http://en.wikipedia.org/wiki/Elastic_modulus
http://en.wikipedia.org/wiki/Elastic_modulus
http://en.wikipedia.org/wiki/Thermal_conductor
http://en.wikipedia.org/wiki/Ballistic_conduction
http://en.wikipedia.org/wiki/Vacuum
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by the molecular structure which results in a different band structure and thus a different 

band gap (Avouris 2002, Baughman, et al. 2002).  

            Additionally, CNTs are the stiffest and the strongest fibers known; a SWNT can 

be up to 100 times stronger than that of steel this is due to C-C bonds (Baughman, et al. 

2002). The Young’s modulus of SWNT is up to 1 TPa, which is 5 times greater than 

steel (230 GPa) while the density is only 1.3 g/cm3 (Saito, et al. 1992). They have high 

tensile strength (130 GPa bundled strength) high chemical storage capacity, e.g. 

hydrogen storage (Kajiura, et al. 2003).  

            Furthermore, they have high aspect ratio; the ratio is the word defining the ratio 

of their length to diameter (Dresselhaus, et al. 2001). There has been a huge interest to 

create longer CNTs since the longer have the better application ability. In the early 

years making CNTs length longer and longer was a big target, the only aim was to 

increase the length from micrometer scale to millimeter. Nowadays, scientists are likely 

to reach the centimeter scale growth on regular basis. 

            Zhu and his co-workers reported that they produced very long single-walled 

CNTs by catalytic chemical vapor deposition method using ferrocene as catalyst and 

hydrogen as carrier gas; they also compared the CNTs diameter with human hair. The 

length of these carbon nanotubes was 20 cm and 10 cm, these strands generally have a 

diameter of 0.3 mm, which is larger than a human hair (Zhu, et al. 2002). In order to 

realize large scale CNT applications they are to be grown in large quantities. In this 

aspect, CVD gives the best hope to come over this problem compare to other method. 

This method had been reported for preparation of various carbon materials such as 

carbon fibers and MWCNTs with high yield and at large scale (Journet and Barnier 

1998). 

            The as-grown CNTs can have different morphology or structure, although they 

are grown with the same parameters. These kinds of facts are still being investigated. 

For example, Lee and his co-workers from Republic of Korea investigated the 

temperature effect on the growth of CNTs; they observed that as the temperature 

increased the as grown CNTs were formed with larger size, low density, and broad 

diameter distribution (Lee, et al. 2001). 

            On the other hand, another group, Makris and his co-workers from Italy 

observed that low temperature corresponded to thicker, shorter and less curved CNTs, 

whereas higher temperature resulted in CNTs with thinner diameter and greater length 

(Makris, et al. 2005). 
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            Also, the best catalyst material type has been investigated by different groups. 

The results of choosing the best catalyst metal are not that much of controversial. The 

groups share the same idea that Fe, Ni, and Co nanoparticles have very good 

performance since carbon has very high solubility in these metals at high temperatures 

(Dai 2002).  

            The main objective of this thesis is to optimize the parameters of CNTs 

produced by methane thermal chemical vapor deposition and to investigate main 

parameters affecting the growth of CNTs, such as catalyst, temperature, and catalyst 

thickness effects. This thesis is composed of six chapters. Chapter 2 gives a background 

on CNTs, their discovery, types, structure, and growth methods along with growth 

mechanisms. Chapter 3 is devoted to a brief literature survey on catalysts and sputtering 

process. Chapter 4 is the experimental section, consisting of catalyst preparation steps 

by sputtering and CNT growth steps by Thermal Chemical Vapor Deposition method 

(TCVD), and the characterization techniques used for the analyses of as-grown CNTs. 

Chapter 5 presents the results and discussions part. Finally, the conclusions are given in 

Chapter 6. 
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CHAPTER 2 
 

CARBON NANOTUBES 
 
2.1. Discovery 

 
            CNTs are considered as graphene sheets rolled up into cylinders with diameters 

as small as 0.4 nm (Guan, et al. 2008, Dai 2002). Although CNTs attracted significant 

attention worldwide in 1991 because of its very small size, actually, their observation is 

not so new (Iijima 1991, Monthioux and Kuznetsov 2006). There have been so many 

investigations for a long time concerning with the exact date of the first observation of 

CNTs so as to make clear who should be credited with the discovery of CNTs 

(Monthioux and Kuznetsov 2006). It was shown that a type of MWNTs were firstly 

observed by Russian researchers Radushkevich and Lukyanovich in 1952, which 

unfortunately did not draw much attention owing to the fact that the article related to 

this experiment was in Russian, therefore, access to this article was limited during the 

Cold War (Monthioux and Kuznetsov 2006, Radushkevich and Lukyanovich  1952). 

The same Russian researchers also examined the samples under transmission electron 

microscope and showed that there were some kinds of nearly 50 nm in diameter tubes 

made of carbon; related images are depicted in the Figure 2.1.a and Figure 2.1.b.  

            In 1976, there was another paper published by Oberlin and his co-workers in 

(Oberlin, et al. 1976); these researchers grew some carbon nanofibers with diameters of 

on the order of nanometer scale using vapor growth technique; the related image is seen 

in Figure 2.1.c, which depicts some kinds of single or double walled carbon nanotubes.  

            At that time, there was a new discovery of buckminsterfullerene (C60) observed 

by Smalley, Kroto and his co-workers in 1985 and they were awarded by Nobel Prize in 

Chemistry in 1997 (Kroto, et al. 1985). The discovery of fullerenes opened a new era in 

the field of nanotechnology and this work was also an inspiration for researchers 

working on nanoscience worldwide. A Japanese electron microscopist Sumio Iijima was 

one of them who inspired of the discovery of fullerenes. He kept on his experiments in 

order to observe some other allotropes of fullerenes, and luckily he came across with 

some tiny tubes along with fullerene like structures (Iijima 1991). He did the 

experiments in ‘Arc-Discharge Evaporation’ system by varying electrical current 
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between two graphite electrodes and then collecting the growth structures in the sooty 

atmosphere (Iijima 1991). The MWNTs grown by Iijima are depicted in Figure 2.2.  

           Two years later, Iijima along with his co-workers and Bethune and his co-

workers produced independently the first SWNTs nearly at the same time (Iijima and 

Ichihashi 1993, Bethune, et al. 1993), the related images are depicted in Figure 2.3.a and 

Figure 2.3.b, respectively. The production of these SWNTs was succeeded in adding 

some iron metal onto either anode or cathode or both electrodes (Ando, et al. 2004).  

 

 

 

 

   
 

Figure 2.1. a) and b) TEM images of CNTs (Source: Radushkevich and Lukyanovich  

1952), c) TEM image of SW- or DWNTs (Source: Oberlin, et al. 1976) 

 

 

 

 

a 

b

c
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Figure 2.2. TEM images of MWNTs observed by Sumio Iijima  

(Source: Iijima 1991) 

 

 

   
 

Figure 2.3. TEM images of, a) the bundles of SWNTs (Source: Iijima and Ichihashi      

1993), b) the web-like structures of SWNTs (Source: Bethune, et al. 1993) 

 

    2.2. Types of Carbon Nanotubes 

 
            A CNT is named according to the number of graphite layers; if there is only one 

sheet rolled into a cylinder, it is called as SWNT; whereas there are more than one layer, 

the carbon nanotubes are then called MWNTs (Dresselhaus, et al. 2001). 

 

ba 
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2.2.1. Single-Walled Carbon Nanotubes  

                    A SWNT is separated among other types of nanotubes by its having only 

one wall with   the diameter of ranging from 0.4 nm (Guan, et al. 2008) to 5 nm as well 

as having high aspect ratio (Dai 2002). SWNTs are mostly preferred nanotube type due 

to their perfect mechanical, electrical, and structural properties as well as their having 

less defects with compared to MWCNTs, which is relatively easier to control the 

structure of SWNTs than MWNTs (Dai 2002).  

 
 

Figure 2.4.  An illustration of a SWNT 

(Source: Dresselhaus, et al. 2003) 

 

2.2.2. Multi-Walled Carbon Nanotubes 

          A MWNT is considered as coaxial cylindrical stacks of graphene sheets whose 

graphene walls are parallel to the central axis (Merkoci 2006) with an interlayer spacing 

of 0.34 nm (Dresselhaus, et al. 2001), a diameter of on the order of 5-100 nm and their 

lengths up to µm or even cm range (Dai 2002).  All MWNTs are metallic NTs. 

 

Figure 2.5. An illustration of a MWNT 

(Source: Dresselhaus, et al. 2003) 
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2.3. Structure of Carbon Nanotubes 
 

            A CNT is considered as a graphene sheet rolled into a cylindrical shape being 

one dimensional structure as well as having an excellent axial symmetry (Saito, et al. 

1998). The important fact to be remembered that the type of a CNT is identified by the 

rolling direction of the hexagons which are the six-membered carbon rings 

(Dresselhaus, et al. 2001). There are two important parameters to control the type of a 

CNT, one of which is the chiral angle (Ө) while the other one is chiral vector (Ch) 

(Reich, et al. 2004). The chiral angle, Ө, being the angle between Ch and â1 is measured 

relative to the direction defined by â1 (Rotkin and Subramoney 2005). These two 

parameters are clearly seen in Figure 2.6. 

            The structure of a CNT is well identified by the vector called chiral vector, 

Ch=nâ1+mâ2, where â1 and â2 are unit vectors, or so-called graphite lattice vectors, and n 

and m are the integers (Dresselhaus, et al. 2001), which are crucially important to decide 

whether a CNT is zigzag, chiral or an armchair nanotube (Dresselhaus, et al. 2001); 

therefore the chiral vector behaves like the fingerprints of CNTs as for their defining the 

structural character of the CNTs. As it is clearly seen from the Figure 2.6, the structure 

of a SWNT is defined by the OA vector being perpendicular to the NT axis, is of crucial 

importance in defining the structure of NTs. OA vector is the chiral vector of CNT 

(Dresselhaus, et al. 2001); the chiral vector is shown clearly in Equation 2.1: 

                                                     OA= Ch=nâ1+mâ2                                                    (2.1)                        

           To form the CNT, the cell which is seen in Figure 2.6, is rolled up into a cylinder 

so that O meets with A and B meets with B', and the two ends are capped with half of a 

fullerene molecule; the unit cell of a CNT is bounded by OAB'B (Dai 2002). Different 

types of CNTs have different values of n and m; that is to say these nanotubes do have 

different diameters which are also meaning that the nanotubes are to be in different 

structures. The chiral vector thus forms the circumference of the circular cross-section 

of the carbon nanotube, and different values of n and m lead to different nanotube 

structures with different chiral vectors (Saito, et al. 1998).  Depending on the tube 

chirality, the electrical properties of the CNTs differ from one another; that is to say that 

CNTs can be metallic or semiconducting; if n-m=3p, where p is an integer, the CNTs 

are metallic; while n-m≠3p, the CNTs are semiconducting (Ivchenko and Spivak 2002).   
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Figure 2.6. The unrolled, two-dimensional, honeycomb lattice of a CNT  

(Source: Saito, et al. 1998) 

 

           CNTs are formed with three different structures (Saito, et al. 1998). If the atoms 

around the circumference are in arm-chair shapes, they are called ‘armchair’ NTs with 

(n=m) integers, which always show metallic character; while if the atoms are arranged 

in zigzag shapes, the CNTs are ‘zigzag’ NTs with (m, 0) indices showing either metallic 

or semiconducting behavior; if atoms are shaped in spiral shapes in the axial direction, 

they are called ‘chiral’ NTs (Dai 2002, Dresselhaus, et al. 2001).  The classifications of 

CNTs are depicted in Figure 2.7. 

 

 

Figure 2.7. Classification of CNTs, a) Arm-chair, b) Zig-zag, c) Chiral CNTs  

(Source: Dresselhaus, et al. 2001) 

Ch 
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2.4. Carbon Nanotube Synthesis Methods 
 

            There have been three common CNT growth techniques one of which is arc-

discharge method (Bethune, et al. 1993); while the other two are called laser ablation 

method (Thess, et al. 1996) and chemical vapor deposition method (Dai 2002, Ebbesen 

1994). The results obtained by these three methods differ from each other since each has 

its own growth dynamics and each method has its own advantages and disadvantages. 

These three growth methods are briefly explained below. 

 

2.4.1.  Arc-Discharge Method: 

            

            Arc-Discharge method is the most common and the oldest one used in the 

growth of CNTs worldwide. This technique depends on applying a low voltage (20-40 

V) and a DC current (nearly 50-100 Å) between cathode and anode in order to produce 

a discharge (Iijima 1991). Applying current between the electrodes causes anode to 

vaporize and condense either on the walls or the cathode surface of which the 

observations showed that the deposit on the cathode surface is NTs. The temperature of 

the plasma reaches at very high temperatures (nearly ~4000°C) which must be enough 

to vaporize the anode which is made of graphite.  

            The evaporation of the carbon from the anode is generally done in a helium 

atmosphere (Popov 2004) and large scale synthesis of MWCNTs was achieved in 

Helium atmosphere (Colbert, et al 1994). It has been observed that the CNTs can also 

be grown in the liquid nitrogen atmosphere or in water (Alexandrou, et al. 2004).            

A typical illustration of an arc-discharge apparatus is depicted in Figure 2.8. In arc-

discharge experiment, the distance must be adjustable so as to keep the constant 

distance between two electrodes (Harris 2007). By this method, CNTs are produced at 

relatively high temperatures over the other growth methods but with very high yield per 

unit time and with very well crystallized CNTs.  

           SWNTs are produced with the help of catalyst material (such as Fe, Co, Ni, etc) 

(Bethune, et al. 1993, Iijima and Ichihashi 1993); however there is no limitation for 

MWCNT growth since MWNTs can be produced without catalyst (Dai 2002). 
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Figure 2.8. Schematic illustration of an arc-discharge apparatus  

(Source: Harris 2007) 

 

 

2.4.2.  Laser-Ablation Method 
 

            The laser ablation method was used firstly for the growth of fullerenes (C60) by 

Richard Smalley group in 1985 (Kroto, et al. 1985). In 1995 the group of Guo used this 

method to produce CNTs (Guo, et al. 1995). A typical illustration of a laser-ablation 

method is depicted in Figure 2.9.  

            This method is performed generally at very high temperatures, nearly at 2500°C 

in an argon or helium gas environment kept at 500 Torr pressure in a temperature 

controlled furnace where a graphite target is placed in the middle of the quartz tube 

(Harris 2007).  Since the energy density of lasers is much higher than that of other 

vaporization devices, the laser is suitable for materials with a high melting temperature, 

such as carbon (Ando, et al. 2004). After vaporizing the target, the vaporized carbon is 

carried to the cupper collector which is cooled by a water cooling system and deposits 

the carbon on the top surface of this copper collector (Harris 2007).  
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Figure 2.9. Schematic illustration of a laser ablation method  

(Source: Guo, et al. 1995, Journet and Barnier 1998) 

 

           If the target used in this method is made of pure graphite target, i.e. there is no 

catalyst substance deposited on the target, MWNTs are likely to be produced (Guo, et 

al. 1995); otherwise it is possible to produce SWNTs by adding catalyst particles into 

the graphite target (Ando, et al. 2004). An image of SWNTs grown by laser-ablation 

method is seen in Figure 2.10.  

 

 
  

Figure 2.10. The SWNTs grown by laser ablation method 

(Source: Thess, et al. 1996) 

 

2.4.3. Chemical Vapor Deposition Method  

            The utilization of CVD technique is not new for it was used firstly in order to 

grow carbon fibers and carbon filaments a long time ago (Walker, et al. 1959). In 1993, 

Yacaman and his co-workers successfully grew CNTs by CVD technique; they 
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performed the growth of CNTs with acetylene as a hydrocarbon gas and iron particles as 

catalyst at 700°C (Yacaman, et al. 1993). 

            Since then, CVD has been preferred growth method for CNTs since it has many 

advantages over the other techniques, such as high scalability, having an advantage of 

accommodating more than one sample at one time at the desired temperature and 

relatively low growth temperature with compared to the other methods (Reich, et al. 

2004). What is more, it is possible to control the length, diameter, and alignment of the 

CNTs to a certain degree by adjustment some of the growth parameters. The typical 

hydrocarbon gases used in CVD are acetylene, ethylene, methane, etc (Kong, et al. 

1998, Moisala, et al. 2003). A typical schematic illustration of chemical vapor 

deposition method is depicted in Figure 2.11. 

 

 

 
 

Figure 2.11. A schematic illustration of a CVD System  

(Source:  Journet and Barnier 1998) 

 

           The main steps followed in the growth of CNTs by CVD method are; first, 

insertion the substrate onto which CNTs to be grown; second, heating the system to the 

desired temperature in an inert gas environment; third, sending an etching gas such as 

hydrogen, nitrogen, or ammonium so as to form the catalyst nanoparticles; fourth, 

sending a hydrocarbon gas into the system then decompose this hydrocarbon gas on the 

catalyst nanoparticles. Furthermore, CNTs growth over the catalyst nanoparticles, and 

finally, cooling the system down to room temperature in an inert gas atmosphere. This 



 14

kind of CVD method is generally called catalytic CVD or TCVD method. The first 

CNTs grown by CVD are seen in Figure 2.12. The CNTs seen in Figure 2.12 were 

produced over Fe/SiO2/Si catalyst in the decomposition of C2H2 at 700°C (Ivanov, et al. 

1994). 

 

 
 

Figure 2.12. TEM image of CNTs produced by TCVD  

(Source: Ivanov, et al. 1994) 

 

2.5. The Growth Mechanism of Carbon Nanotubes 
 

             The growth mechanism of CNTs is not fully known owing to the fact that the 

growth dynamics of the CNTs have not been completely understood (Ando, et al. 2004, 

Lee, et al. 2001). Some studies proposed several growth models. The first growth 

mechanism suggested for the growth of carbon fibers by Bakers et al (Baker, et al. 1972, 

Baker and Harris 1978, Baker, et al. 1972), which has helped many researchers to have 

some idea about the growth mechanism of the CNTs. This growth model is illustrated in 

Figure 2.13.  

             According to this growth model, firstly, it is essential to grow some nucleation 

sites, so-called catalyst nanoparticles (shown in the 1st step of Figure 2.13). Carbon goes 

into the these catalyst nucleation sites, then diffuses down to these nucleation sites 

(shown in the 2nd step of Figure 2.13), and furthermore the precipitation of carbon at the 

rear of the particle builds up a deposit of carbon which forces the particle away from the 

support (seen in the 3rd step of Figure 2.13) (Baker and Harris 1978).  Once the catalyst 

particle is supersaturated with carbon, it extrudes out the excess carbon in the form of a 

tube (Kukovitsky, et al. 2002).   
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Figure 2.13. An illustration of CNT growth steps  

(Source:  Baker and Harris 1978) 

 

           CNTs can grow in either base (root) growth or tip growth mechanisms. These 

mechanisms are named whether the catalyst nanoparticles are at the tip of the CNTs or 

at the bottom side (Saito, et al. 1994). If there is a strong interaction between the 

catalyst and substrate it is called base growth model; or else it is tip growth if the 

catalyst nanoparticle is lifted up by the growth of CNTs (Dresselhaus, et al. 2001). 

Formation of SWNTs or MWNTs is mostly governed by the size of the catalyst particle 

(Lee, et al. 2001, Kukovitsky, et al. 2002) that is to say, if the catalyst particle size is a 

few nanometers, SWNTs would form, whereas particles of a few tens of nanometers 

wide would favor MWNT formation (Ando, et al. 2004). 

 

 

 
 

Figure 2.14. An illustration of CNT growth mechanisms, a) Base-Growth,                       

b) Tip-Growth mechanism (Source: Ando, et al. 2004) 
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CHAPTER III 

ON CATALYSTS 

            The catalyst material has been considered one of the indispensible parameters 

affecting the growth of CNT in an important way since it is the substance responsible 

for having either SWNTs or MWNTs and either with the tip-growth or base growth 

mechanisms. In the first section of this chapter, a brief literature survey on catalyst 

materials will be given. The second section covers a brief explanation on sputtering 

process which was used for deposition of the catalyst materials throughout this thesis 

work. 

 

3.1. A Short Literature Survey on Catalyst Materials                   
                                                     

            There have been a variety of parameters affecting the growth of CNTs; catalyst 

material is one of the most important parameters affecting the CNT growth. Numerous 

articles in the literature point out that the catalyst is absolutely required material so as to 

have the CNT in relatively short time with well defined shape and structure (Laurent, et 

al. 1998, Ando, et al. 2004, Lee, et al. 2002). Much research has been done into which 

catalyst gives the best result for the CNT growth by utilizing the elements in the 

periodic table (Deck and Vecchio 2006, Qingwen, et al. 2002, Laurent, et al. 1998). 

            The common catalyst materials used for the CNT growth have been Fe, Co, and 

Ni in the literature. It has been observed that it is possible to grow both MWNTs and 

SWNTs by using Fe, Co, and Ni (Deck and Vecchio 2006, Dupuis 2005, Laurent, et al. 

1998).  

            When iron-based catalyst was used, many research groups observed SWNTs 

(Dupuis 2005, Cheng, et al. 1998, Li, et al. 2001, Cheung, et al. 2002, Nikolaev, et al. 

1999, Zhu, et al. 2002, Hayashi, et al. 2003, Hongo, et al. 2002, Zhang, et al. 2002, 

Satishkumar, et al. 1998) and also MWNTs were observed by utilizing Fe (Dupuis 

2005, Kukovecz, et al. 2000, Pérez-Cabero, et al. 2003, Sen, et al. 1997, Ermakova, et 

al. 1997, Pan, et al. 1999, Ivanov, et al. 1994, Venegoni, et al. 2002, Hernadi, et al. 

1996, Fonseca, et al. 1996, Cui, et al. 2000, Cho, et al. 2002, Duesberg, et al. 2003). 
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            Mostly MWNTs were observed when Co-based catalyst was utilized (Dupuis 

2005, Ivanov, et al. 1994, Hernadi, et al. 1996, Fonseca, et al. 1996, Ago, et al. 2000, 

Hsu, et al. 2002, Ago, et al. 2003), a few groups observed SWNTs when Co-based 

catalyst (Dupuis 2005, Satishkumar, et al. 1998, Marty, et al. 2002, Colomer, et al. 

1999, Colomer, et al. 2000). 

            When Ni catalyst was used, groups observed mostly MWNTs (Dupuis 2005, 

Ivanov, et al. 1994, Yudasaka, et al. 1995, Teo, et al. 2001, Ren, et al. 1998, Klinke, et 

al. 2001, Choi, et al. 2000, Huang, et al. 1998, Jiao and Seraphin 2000, Kukovitsky, et 

al. 2002, Siegal, et al. 2002, Wright, et al. 2003, Yudasaka, et al. 1997) and very rarely 

SWNTs were observed by utilizing Ni catalyst material (Dupuis 2005, Colomer, et al. 

1999, Colomer, et al. 2000, Seidel, et al. 2004). 

            It was investigated that for Ni, Co, and Fe, carbon has a finite solubility in these 

metals at high temperatures, which leads to the formation of metal-carbon solid state 

solutions (Dai, 2002, Park, et al. 2002). It was also observed that the ability for 

transition metals to bond with carbon atoms increases with the number of unfilled d-

orbital, for metals such as Al, Au, and Pd have no d-vacancies and negligible affinity 

for carbon (Arthur and Cho 1973). Metals with few d-vacancies such as Ni, Co, and Fe 

exhibit finite solubility for carbon in certain temperature ranges. 3d and 4d metals with 

many d-vacancies such as Ti and Nb can form strong chemical bonds with carbon and 

thus highly stable carbide compounds (Arthur and Cho 1973).  

            There was a very good systematic study done on catalyst materials in the 

periodic table (Deck and Vecchio 2006). It was observed that the three transition metals, 

Fe, Co, and Ni, are considered the best among others because of the fact that these all 

have high carbon solubility (~ 0.5-1.0 wt %) at high temperatures (800-900°C) in the 

solid solution (Deck and Vecchio 2006, Laurent, et al. 1998). It was also considered that 

in the solid solution there were stable carbides (iron carbide, nickel carbide, and cobalt 

carbide) (Laurent, et al. 1998, Deck and Vecchio 2006). At the solid solution solubility 

limit with iron, stable carbide (Fe3C) is produced (Deck and Vecchio 2006). When Fe3C 

solid is saturated with carbon (at 6.67 wt% C), graphite forms and, when nanoscale 

catalyst particles are used, this graphite will be produced with a NT structure. Co3C, 

Co2C, and Ni3C form immediately following saturation of carbon in the solid solution, 

and additional carbon diffuses into the catalyst, graphite precipitates out, forming CNT 

(Deck and Vecchio 2006).             
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            It was also observed that in the Cu, Zn, Gd, and Cd systems studied, the 

solubility limit of carbon in the metals was extremely low; for example 0.0001 wt %C 

in Cu at 1100°C which is above the melting point of Cu (Hansen 1958, Deck and 

Vecchio 2006). Carbon cannot diffuse in significant quantitites into the nanoscale 

catalyst particles, and therefore these particles cannot act as nucleation sites for the 

formation of CNT (Deck and Vecchio 2006). 

            Also, the performances of those three catalyst materials was investigated 

according to their growth rate of CNTs which was on the order of Ni>Co>Fe (Lee, et al. 

2002). The average diameter of CNTs follows the sequence of Fe>Co>Ni catalysts 

(Lee, et al. 2002). The peculiar ability of these metals was suggested to relate to the 

catalytic activity for decomposition of carbon precursors, the formation of meta-stable 

carbides, the diffusion of carbons, and the formation of graphitic sheets (Kiang 2000).  

            Furthermore, it was also investigated that if the elements in the periodic table are 

categorized into which is very good or not, it has been reached the conclusion that d-

electron transition metals are so very successful catalyst materials among all in the 

periodic table (Richardson 1989). 

            As for the alkali and alkaline s-metals, they tend to revert too easily to ionic 

states under catalytic conditions which are not suitable for the growth of CNTs 

(Richardson 1989). Rare earth f-metals likewise are too difficult to produce and too 

reactive to remain in the metallic state, there is no example of successful catalysis with 

rare earth metal (Richardson 1989). Moving from right to left across the periodic table 

means less d-electron is available to fill the bands of energies corresponding to 

collectivized d-orbitals. Levels are filled successively until the Fermi is reached 

(Richardson 1989).  

            The key to obtaining high yields of pure CNTs is achieving hydrocarbon 

decomposition on catalyst site alone and avoiding spontaneous pyrolysis. It is 

remarkable that the transition metals have proven to be efficient catalyst not only in 

CVD but also in arc-discharge and laser ablation methods (Richardson 1989).  

Transition metals such as Fe, Ni, and Co are frequently used catalysts in the growth of 

CNTs. In addition, Sc, Ti, V, Cr, Mn, Y, Zr, Nb, Mo, Hf, Ta, W, Re or a combination of 

them are also used for this purpose (Deck and Vecchio 2006). 
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3.2. Sputtering Process 

 
           There have been numerous techniques for depositing thin films in today’s 

technological applications; among them the sputtering method is widely used one which 

is a Physical Vapor Deposition (PVD). It has several advantages over the other 

conventional thin film deposition techniques, such as good surface uniformity, growth 

on substrates, and its cost effectiveness (Seshan 2002). The catalyst materials used in 

this thesis work were deposited by DC magnetron sputtering process. 

           Sputtering relies on the transfer of linear momentum and kinetic energy from the 

incident particle to the surface atoms impact on the surface or near-surface atoms of the 

solid with sufficient energy to break the bonds and dislodge the atoms. In this process, 

atoms removed from the solid target are called the sputtered atoms (Seshan 2002). A 

magnetron uses a static magnetic field configured at the cathode location. The magnetic 

field is located parallel to the cathode surface. Secondary electrons which are emitted 

from the cathode due to ion bombardment are constrained by this magnetic field to 

move in a direction perpendicular to both the electric field (normal to the surface) and 

the magnetic field (Seshan 2002). 

These secondary electrons are trapped in a region close to the cathode. 

Eventually, they lose their kinetic energy due to collisions with gas atoms (ionization) 

or with other electrons (electron heating) and the net result is dense plasma in this drift 

ring. Visually this is quite easy to see in magnetron sputtering system. The drift path 

light up dramatically and there is no question the density is much higher in this region. 

The location of this ring is also known as the etch track because the erosion of the 

cathode is highest here and deep groves can be eroded onto the cathode. Ions which are 

made in the drift region have a high probability of hitting the cathode which is close by. 

This results in even more production of secondary electrons and eventually extremely 

dense plasma (Seshan 2002). 
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CHAPTER 4 
 

EXPERIMENTAL 
 
            This chapter is devoted to the experimental processes used throughout this thesis 

work. The first section of this chapter is focused on the catalyst film deposition 

processby DC magnetron sputtering.  Second section offers a brief explanation about 

the thermal CVD, third section covers the main growth steps of CNTs by TCVD 

method, and final section is focused on the characterization techniques (SEM, AFM, 

XRD, and Raman Spectroscopy) used for characterization of as-grown CNTs 

throughout this thesis work. 

 

4.1. Catalyst Film Deposition by DC Magnetron Sputtering Process 

 

            In this study, the DC magnetron sputtering method was utilized so as to deposit 

the catalyst films (Fe, Co, Ni) onto the SiO2/Si substrates. The sputtering system used 

for depositing the catalyst thin films for the growth of CNTs is AJA ATC Orion 5 UHV 

sputtering system based in Magnetism Lab, IYTE. This system is controlled by a 

computer and reaches very high vacuum levels. It is composed of four 2-inch magnetron 

heads including a substrate holder which is able to rotate at different speeds so as to 

have a uniform deposition, a heater, and a load-lock with a magnetic arm with a 

cylindrical stainless steel chamber. The targets are bonded to a water cooled copper 

carrier, ensuring both electrical and thermal contact.  

           The chamber base pressure can reach about 5×10-6 Torr with the help of turbo 

molecular pump before the catalyst film growth. In the chamber, above the substrate 

there are two halogen lamps so as to heat the substrate at different temperatures varied 

from room temperature to nearly 850°C.  

           The thickness of the thin film is measured by an in-situ thickness monitor.  The 

distance between substrate and target was kept at 7 cm. The parameters used for the 

deposition of Fe, Co, and Ni thin films are given in Table 4.1. 
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Table 4.1.  Growth conditions of catalyst thin films for DC magnetron sputtering 

 

Material 

Name 

Power 

(Watt) 

P 

(mTorr) 

   d 

(cm) 

tgrowth  
t (nm) 

CoSiO5 20 3 7 5 min ~3.5 

FeSiO7 40 3 7 2 min ~1.2 

NiSiO1 20 3 7 1 min ~0.7 

NiSiO2 20 3 7 2 min ~1.4 

NiSiO3 20 3 7 10 min ~6 

 

 

4.2. Thermal Chemical Vapor Deposition Process 

 
           The TCVD system used for the CNT growth is composed of two parts; one of the 

parts is a Lindberg/Blue M 1200C Split Hinge Tube Furnace in horizontal use and the 

other one is an independent controller (Model CC58114C Controller). An image of the 

TCVD system used throughout this study is depicted in Figure 4.1. The hinge tube 

furnace also involves a quartz tube (~1200 mm in length, 1 inch diameter) and a quartz 

boat. The quartz boat is used for a bed for the samples onto which the CNTs were 

grown. The quatz boat and the samples are depicted in Figure 4.2.a and Figure 4.2.b, 

respectively.  

            The quartz boat onto which the substrates were accommodated is placed in the 

middle of the furnace; since there is an isothermal area. The upper temperature limit of 

the hinge furnace is 1200°C; which is lower than the melting temperature of quartz, and 

hence the maximum temperature limit was restricted to 1000°C throughout this thesis 

study. 
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Figure 4.1. The TCVD system based in Physics Department, CNL Lab, IYTE 

 

       

 
 

Figure 4.2.  a) Quartz boat, b) Some thin films used for CNT growth 

 

         

            The reactor is heated by a resistance furnace. The flow value of the gases sent 

into the system is read via mass flow controllers. Before the CNT growth, the system 

should be brought to the vacuum level in an inert gas ambient, generally argon (Ar) gas 

is used for this purpose as a carrier gas, which is responsible for carrying the foreign 

atoms and by products before and after the CNT growth processes so as to have a clean 

atmosphere.  Then the furnace is set to the desired temperature before the CNT growth, 

and the temperature is increased in an Ar ambient.  

           After the desired temperature is reached, etching or dilution gases are sent into 

the system so as to form the catalyst nanoparticles. After etching away the catalyst film 

and forming the catalyst nanoparticles, a hydrocarbon gas is sent into the system at the 

desired temperature and pressure; afterwards, the CNT growth starts by sending the 

hydrocarbon gas. In this study, three gases were utilized; methane as a carbon precursor 

gas, hydrogen gas as an etchant gas and diluent gas, and argon gas was used to have a 

a b
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vacuum and an inert gas atmosphere along with having a role carrying the by-products 

both after and before the growth. 

 

 

4.3. CNT Growth Process by TCVD 

 
           In all experiments, it was tried to reach low vacuum with the help of a diaphragm 

valve which is connected to mechanical pump and quartz tube before the CNT growth 

which was between 2-15 Torr, and the pressure was kept at ~350 Torr during the CNT 

growth.  

           Furthermore, after having reached the desired vacuum, the temperature was set to 

the expected reaction temperature at an increase rate of 28°C/min, and then the system 

was heated in an Ar gas ambient until the desired growth temperature was reached. 

After the temperature was stabilized, H2 gas was sent with the Ar gas, and then the Ar 

was switched off and H2 gas was sent alone as an etchant gas for five minutes with the 

flow rate of 120 sccm.  

           Methane (CH4) gas was utilized for it is the most stable hydrocarbon gas against 

self-decomposition at high temperatures, and the catalytic decomposition of CH4 by the 

transition metal catalyst particles is the dominant process in SWNT growth (Dai 2002). 

For the CNT growth, CH4 and H2 gas mixture was sent into the system, with the flow 

rate of 100 sccm and 50 sccm, respectively. The growth was carried on 30 minutes in all 

experiments. After 30 minutes, first, CH4 gas was switched off and after some time H2 

gas was turned off, as well; and the system was set to room temperature in Ar gas 

ambient. The cooling process was continued nearly 6 hours. All the growth conditions 

are listed in the Table 4.2. 
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Table 4.2. Growth conditions of CNTs for TCVD method 
 

 
Sample 

Name 

Increase 

Rate 

(°C/min) 

Ar 

(sccm) 

CH4:H2

(sccm) 

Pinitial 

(Torr) 

Pgrowth 

(Torr) 

Time 

(min) 

T 

(°C) 

CoSiO5CNT32 28 120 100:50 4.7 ~350 30 850 

CoSiO5CNT33 28 120 100:50 5.1 ~350 30 875 

CoSiO5CNT37 28 120 100:50 15.9 ~350 30 900 

CoSiO5CNT38 28 120 100:50 10.7 ~350 30 925 

CoSiO5CNT39 28 120 100:50 4.8 ~350 30 950 

CoSiO5CNT49 28 120 100:50 4.4 ~350 30 975 

FeSiO7CNT51 28 120 100:50 3.4 ~350 30 700 

FeSiO7CNT52 28 120 100:50 3.4 ~350 30 750 

FeSiO7CNT53 28 120 100:50 3.8 ~350 30 800 

FeSiO7CNT54 28 120 100:50 3.7 ~350 30 850 

FeSiO7CNT55 28 120 100:50 3.6 ~350 30 900 

FeSiO7CNT57 28 120 100:50 3.9 ~350 30 925 

FeSiO7CNT58 28 120 100:50 4.0 ~350 30 950 

FeSiO7CNT59 28 120 100:50 3.8 ~350 30 975 

FeSiO7CNT60 28 120 100:50 3.7 ~350 30 1000

NiSiO1CNT75 28 120 100:50 2.4 ~350 30 850 

NiSiO2CNT76 28 120 100:50 2.4 ~350 30 850 

NiSiO3CNT77 28 120 100:50 2.4 ~350 30 850 

NiSiO1CNT78 28 120 100:50 2.2 ~350 30 900 

NiSiO2CNT79 28 120 100:50 2.2 ~350 30 900 

NiSiO3CNT80 28 120 100:50 2.2 ~350 30 900 

NiSiO1CNT81 28 120 100:50 2.0 ~350 30 950 

NiSiO2CNT82 28 120 100:50 2.0 ~350 30 950 

NiSiO3CNT83 28 120 100:50 2.0 ~350 30 950 

Si53 28 120 100:50 3.8 ~350 30 800 

Si54 28 120 100:50 3.7 ~350 30 850 

Si55 28 120 100:50 3.6 ~350 30 900 

Si56 28 120 100:50 3.2 ~350 30 950 
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4.4. Characterization Techniques 
 

            It is nothing without any characterization techniques to analyze the experimental 

results. The tools used for examining the samples give absolutely crucial properties 

about the samples. Different characterization techniques were used to examine the as-

grown CNTs; namely Scanning Electron Microscopy (SEM), Atomic Force Microscopy 

(AFM), X-Ray Diffraction Method (XRD), and Raman Spectroscopy,  

 

4.4.1. Scanning Electron Microscopy 
 

            Scanning electron microscopy (SEM) is one of the main surface analysis 

instruments, which is the simplest and most accessible technique. It is also the first 

characterization technique used for analyzing the CNTs worldwide although it has some 

limitations while examining the surface of the sample. It cannot measure the diameter of 

the CNTs precisely, but roughly. Apart from this, its resolution is restricted; therefore 

after some magnification it is likely to neither see the images totally nor give the exact 

information about the wall numbers of CNTs. Even though it has both advantages and 

some drawbacks, it is the first characterization technique to be used in analyzing the 

CNTs. 

           As to mention about its working principle, the SEM depends on sending highly 

focused electrons on the sample in order to scan the surface of the sample in a vacuum 

chamber. While these focused electrons scan the surface of the sample, it is an 

unavoidable fact that there have other electrons emitted and scattered along with 

forming X-rays, which are then collected by different detectors. The outputs collected 

by detectors give invaluable information about the sample. In SEM, there are three main 

images to be observed: secondary electron images, backscattered electron images, and 

elemental X-rays maps. Secondary electron images can be obtained on all materials 

identifying surface features, on most instruments, to a practical limit of ~100 nm. 

Despite the considerable depth of penetration of the incident primary electron beam 

(e.g. 0.5-5µm), re-emitted electrons (as secondary and backscattered electrons) comes 

from the mean depths of 50 nm-5 µm depending on the density of the material. Hence, 

this technique is sensitive to the near-surface region. Scanning the beam over the 

surface minimizes the surface damage and surface charging. Backscattered electron 
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images can give contrast based on the average atomic number of the region or phase 

examined. Topographic images obtained by combining different backscattered electron 

images can reveal detail of pits and protrusions, precipitates and altered regions on the 

surface (O’Connor, et al. 2003). The SEM utilized throughout this thesis work was 

Philips XL 30S, FEG. 

 

 

4.4.2. Atomic Force Microscopy  
 

            Atomic Force Microscopy (AFM) is crucially important for providing 

significant information about the topography and structural properties of thin films by 

measuring the forces between the surface and tip interaction, such as Van der Waals, 

electrostatic, frictional, and magnetic forces.  

            According to the working principle of the AFM, the tip which is stuck on the tip 

of a cantilever and generally made of silicon carbide scans the surface of a sample by 

different modes, principally in two modes, tapping mode (non-contact) mode and 

contact mode. The tapping mode is generally the desired one due to it’s not touching the 

sample surface and not damaging the surface, while in the contact mode, there is an 

interaction between the tip and the surface atoms leading to remove the atoms from their 

places and scratch the surface of the material. Additionally, the tapping mode gives 

better image resolution compared to other modes. 

            The AFM used throughout this study was Multimode SPM, Nanoscope-IV 

Digital Instrument with an ultra sharp tip performed with non-contact mode, at the 

Material Research Center, IYTE. 

 

 

4.4.3. X-Ray Diffraction Method 
 

            X-ray diffraction (XRD) method is very powerful tool for analyzing the 

structural properties of different phases of not only thin films but also powder samples 

while giving the exact information about the structure of the crystalline material, such as 

stress, grain size, phase composition, crystal orientation and defects. It is also possible 

to get more information about whether there are any other materials in the sample. 
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            If a monochromatic X-ray beam falls on such a crystal, each atomic plane 

reflects the beam. Each separate reflected beam interacts with other reflected beams. If 

the beams are not in phase, they destroy each other and emerge from the crystal. The net 

result is a diffraction pattern of reinforced beams from many planes. It is the atomic 

planes that are important in X-ray diffraction. 

            The XRD is based on the Bragg equation which describes the condition for 

constructive interference for X-rays scattering from atomic planes of a crystal (Feldman 

and Mayer 1986). The condition may be satisfied by varying λ or varying orientation of 

a single crystal. In thin films the distribution of crystallite orientations is nearly 

continuous. Diffraction occurs from crystallites which happen to be oriented at the angle 

to satisfy Bragg equation (Feldman and Mayer 1986). 

            The XRD utilized in this thesis was Philips X’pert Pro X-ray diffractometer with 

Cu-Kα X ray source λ=1.5418 Å.  

 

 

4.4.4. Raman Spectroscopy 
 

Raman spectroscopy is of crucial importance for better understanding of not 

only the structure but also the type of CNTs as well as providing crucial information 

about the quality of CNTs whether as-grown CNTs have defects or they are well-

graphitized. This tool also gives the information about the type of CNTs whether they 

have armchair nanotubes, zigzag, or chiral structures. 

It uses scattering of a light within a material to characterize its structure. The 

basic principle of Raman Spectroscopy is that when a beam of light traverses 

transparent sample a small fraction of the light scattered in the directions other than that 

of the incoming beam (Shanov, et al. 2006). Most of this scattered light is of unchanged 

wavelength. However a small part has wavelengths different from the incident light and 

its presence is a result of the Raman Effect (Shanov, et al. 2006). Micro-Raman 

spectroscopy is used for characterization of CNTs with a typical excitation wavelength 

laser.  

The characteristic spectrum of SWCNT exhibits 3 main zones at low (100-250 

cm-1), intermediate (300-1300 cm-1), and high (1500-1600 cm-1) frequencies (Colomer, 

et al.  2000, Maultzsch, et al. 2002), these bands can be produced by the presence of 
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other carbon forms like MWCNTs and amorphous carbon (Cheng, et al. 1998). These 

three zones have also other names, as Radial Breathing Modes (RBM), D (disordered)-

modes, and G (Graphite)-modes, respectively (Qingwen, et al. 2002). 

The RBM is of crucial important while having an idea about the diameter 

distribution of SWNTs. This mode is very sensitive to the diameter of SWNTs and 

generally seen for up to 3 nm (Dresselhaus, et al. 2002). 

D-band is observed around 1300 cm-1 (for excitation with He-Ne laser with the 

wavelength of 632 nm) or at 1350 cm-1 when using Ar ion 488 nm laser (Eklund, et al. 

1995, Reich, et al. 2004). The D peak is related to the presence of defects. The high 

intensity of D-band is associated with high defects in density. The other band is called 

the G-peak at about 1580 cm-1, which is associated with the in-pale vibrations of the 

graphene sheet (Eklund, et al. 1995). G-band is very important due to the fact that it 

gives very good information about the character of SWNTs (Dresselhaus, et al. 2002). 

Ratios of D-peak to the G peak have been used as an indicator of the amount of 

disorder within CNTs. A small ID/IG ratio, typically in the range of 0.1 - 0.2, indicates 

that the defect level in the atomic carbon structure is low, which suggests reasonable 

crystalline quality. In other words, a high ratio between the G band and D band peak 

intensities indicates that the CNTs are of high purity (Eklund, et al. 1995, Dresselhaus, 

et al. 2002). 

The G mode can be decomposed in one main peak with a shoulder (Rao, et al. 

1997, Dresselhaus, et al. 2002). This shoulder is more important in the case of SWCNT, 

because it gives the information about the CNTs whether they are semiconducting or 

metallic CNTs (Rotkin and Subramoney 2005, Reich, et al. 2004). The typical Raman 

spectra are shown in Figure 4.3. 

As it is depicted in the Figure 4.3 that the G-band has also a G- band at lower 

frequencies with an asymmetric and broad shape, which is associated with metallic 

character of the nanotube. If the shoulder is narrow with a tangential rear shape then the 

nanotubes show semiconductor behavior (Dresselhaus, et al. 2002). 

The Raman Spectrometer used for characterization of our CNTs is a Lab-Ram 

Infinity from Dilor with a wavelength of 633nm, the incident radiation is a laser He-Ne, 

, focused onto the substrate through an objective of a microscope. The probe area is 

about 1-2µm2 and the laser power is in the order of 1mW. The Raman images were 

taken at CNRS, Grenoble, France. 
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Figure 4.3.  Raman spectra showing the main peaks and the characters of SWNTs 

(Source: Dresselhaus, et al. 2002)  
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CHAPTER 5 
 

RESULTS AND DISCUSSION 
 
 
            This chapter is devoted to the results and discussions of the experiments. The 

first section of this chapter is focused on understanding of the catalyst and temperature 

effect on the CNT growth, of which the experiments were performed directly on Si 

substrates and also catalyst (Fe, Co, Ni) deposited SiO2/Si substrates. The second 

section examines the catalyst layer thickness effect on the growth of CNTs. 

Furthermore, the results were compared one another by examining SEM, AFM, X-ray 

Diffraction (XRD), and Raman Spectroscopy results, which will be given respectively. 

 

5.1. SEM Results 

5.1.1. Catalyst and Temperature Effects on the CNT Growth 

5.1.1.1. Growth on Bare Si Substrates 
 

            The regular growth was directly applied on bare Si substrates, which did not 

have any catalyst layer, named as Si53, Si54, Si55, and Si56. The results were examined 

to observe whether there was any CNTs growth or not by utilizing only Si substrates. 

The experiments were performed at 800°C, 850°C, 900°C, and 950°C, for Si53, Si54, 

Si55, and Si56, respectively. The other all parameters were kept constant in order to 

observe only the temperature effect on CNT growth.  

            Figure 5.1.a. illustrates that CNT growth conditions were directly performed on 

Si substrates at 800°C, which also demonstrates that there was no tubular structure on 

the surface of the Si substrate; the Si nanoparticles were covered amorphous carbon. It 

was observed that the temperature was not enough for carbon atoms to be dissolved in 

the Si nanopparticles then the temperature was increased. Figure 5.1.b. depicts that CNT 

growth was directly performed at 850°C, it is seen from the image that the nanoparticles 

were covered with amorphous carbon, but there was still no CNT structures. It was 

decided to keep going further to higher temperature, and Si55 sample was utilized for 

this aim at 900°C, the result is depicted in Figure 5.1.c, whose Si nanoparticles were 

covered with fully amorphous carbon. The CNT growth was performed again directly 
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on the Si substrates but this time at 950°C, depicted in Figure 5.1.d. It was observed that 

the sample surface was covered with mainly amorphous carbon like a cloud. From the 

SEM pictures, there seemed some tubular-like structures but one or two, not too many.  

            The reason for this is that the solubility of carbon in Si nanoparticles is too low, 

and required very high temperatures on the range of 1560 - 2900°C (Taylor, et al. 1993, 

Scace and Slack 1959). Moreover, carbon precipitation in Si appeared to be an 

extremely difficult process at these temperature values used in the experiments. Since 

the hinge furnace system had a maximum temperature range of the system, 1200°C, the 

temperature was not exceeded 1000°C. 

 

 

  
                                                                                                        

   
 
 
Figure 5.1. SEM micrographs of, a) Si53 at 800°C, b) Si54 at 850°C, c)  Si55 at 900°C,  

d) Si56 at 950°C 
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5.1.1.2. CNT Growth on Fe/SiO2/Si Samples 
 
 
           CNT growth was then applied on Fe-deposited SiO2/Si thin films. The Fe 

catalyst film thickness was measured from the in-situ thickness monitor at around ~1.2 

nm. The experiments were performed at different temperatures keeping all the other 

parameters constant in order to observe only the temperature effect on the CNT growth. 

Firstly, it was tried to observe the temperature value at which Fe catalyst nanoparticles 

were grown, the average diameters of these Fe catalyst nanoparticles were measured 

from SEM.  

           Even though CH4 was sent through the reaction zone as a hydrocarbon gas, at 

three different temperatures, 700, 750, 800°C, there was not any CNT growth. This is 

due to the fact that carbon has low solubility at these temperatures; in other words, these 

temperatures were not enough for the Fe catalyst nanoparticles to solve carbon atoms.  

           The catalyst nanoparticles grown at 700°C, 750°C, 800°C are depicted in Figure 

5.2.a, Figure 5.2.b, and Figure 5.2.c; respectively. The average diameters were 

measured approximately as 35.67 nm for the Fe catalyst nanoparticles grown at 700°C, 

depicted in Figure 5.2.a. While the average diameters of the Fe catalyst nanoparticles 

grown at 750°C and 800°C were measured as 30.19 nm and 28.31 nm, respectively. The 

results are given in Table 5.1. 

           It was observed that when the temperature was increased, the average diameter of 

catalyst nanoparticles was decreased. When the temperature was increased, the rate of 

hydrogen gas of etching away the catalyst thin film was also increased, which leaded to 

finer and smaller catalyst nanoparticles.  
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Figure 5.2. SEM micrographs of Fe nanoparticles produced at, a) 700°C on 

Fe51/SiO2/Si, b) 750°C on Fe52/SiO2/Si, c) 800°C on   Fe53/SiO2/Si 

 
 

 

Table 5.1.  Average diameters of Fe nanoparticles at different temperatures 

 

Sample Temperature  (°C) Average Diameter (nm) 

FeSiO7CNT51 700 35.67 

FeSiO7CNT52 750 30.19 

FeSiO7CNT53 800 28.31 

 

 

            When the temperature was increased from 800°C to 850°C, the catalyst 

nanoparticles were encapsulated by amorphous carbon. The related images are depicted 

in Figure 5.3, taken with two different magnifications of 20000 and 100000, 

respectively. As it is seen from the Figure 5.3, nearly all Fe catalyst nanoparticles were 

a b

c 
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covered with amorphous carbon. This was due to the fact that the solubility of carbon 

was still very low at 850°C, which leaded the catalyst nanoparticles to be encapsulating 

by amorphous carbon provided that the temperature was not enough for the catalyst 

nanoparticles to be active for the CNT growth (Snoeck, et al. 1997). 

 

 

   
 
 

Figure 5.3.  SEM micrographs of Fe54/SiO2/Si nanoparticles covered with amorphous 

carbon at 850°C, a) magnification: 20000X, b) magnification: 100000X 

 

 
           The temperature was then increased from 850°C to 900°C; which is depicted in 

Figure 5.4.a. The CNTs seen in Figure 5.4.a were curved and woven each other, it was 

deemed that they consisted of defects within themselves; some pentagons or some 

carbon atoms might not be in its place so there could be some vacancy, leaded to CNTs 

to be curved. The average diameters of these as-grown CNTs were measured from SEM 

approximately 20.02 nm.  

           Then the temperature was increased from 900°C to 925°C, and the result is 

depicted in Figure 5.4.b. as it is seen from the Figure 5.4.b, the as-grown carbon 

nanotubes were not well-aligned, but curved, short, and bulky. The average diameters of 

these as-grown CNTs were approximately 14.43 nm. It is also clearly seen from both 

images that some parts of the as-grown CNTs are brighter than the other parts. And also 

the brighter parts are at the tip of the as-grown CNTs, meaning that the CNTs were 

grown according to tip-growth mechanism.  

 

 

ba 
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Figure 5.4. SEM micrographs of as-grown CNTs on, a) Fe55/SiO2/Si at 900°C, b) 

Fe57/SiO2/Si at 925°C 

 

Furthermore, the temperature was increased from 925°C to 950°C, and the 

related image is depicted in Figure 5.5.a. It is seen from the image that the as-grown 

CNTs were thinner and longer than those grown at lower temperatures of 900°C, and 

925°C. The average diameter of CNTs grown at 950°C was measured approximately 

13.86 nm. These CNTs were grown according to tip growth mechanism, since the 

catalyst nanoparticles are seen at the tips of the CNTs. 

 At high temperature the CNTs were formed with thinner diameter, and greater 

length, otherwise they were with shorter length and thicker diameter. It is also seen 

from the images (Figure 5.4.a, Figure 5.4.b, and Figure 5.5.a) that at low temperatures, 

the CNTs were less curved with, however at high temperatures CNTs were woven each 

other. Furthermore, it was observed that the length was also increasing with increasing 

the temperature.  

Then, the temperature was increased to 975°C, related image is shown in Figure 

5.5.b, the average diameter of those as-grown CNTs were measured nearly 18.12 nm. 

This result was really interesting due to the fact that the average diameter was expected 

to be decreased, but here the average diameter was increased with increasing the 

temperature. When the temperature was increased to 1000°C, the average diameters of 

CNTs were measured at around 38.83 nm. The as-grown CNTs were depicted in Figure 

5.5.c. The results are given in Table 5.2. 

Although the temperature was increased, it was observed that the lengths of 

CNTs were increased but the average diameters of as-grown CNTs were increased.  

ba 
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Graphite layers are occurred when the carbon concentration inside the metallic 

nanoparticle exceeds supersaturation. When the carbon precipitates out, the surface 

tension of the catalyst particle is increased, and the dissolution of carbon starts again. 

Then the thickening of the nanotubes occurs layer by layer (Ruemmeli, et al. 2005).  

 

 

   
 

 
 
 

Figure 5.5. SEM micrographs of as- grown CNTs on, a) Fe58/SiO2/Si at 950°C,                       

b) Fe59/SiO2/Si at 975°C, c) Fe60/SiO2/Si at 1000°C 

       
 

Table 5.2.  Comparison of diameters of CNTs grown at different temperatures 

 

Sample Name Temperature (°C) CNT Average Diameter (nm) 

FeSiO7CNT55 900 20.01 

FeSiO7CNT57 925 14.43 

FeSiO7CNT58 950 13.86 

FeSiO7CNT59 975 18.12 

FeSiO7CNT60 1000 38.83 

ba 
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5.1.1.3. CNT Growth on Co/SiO2/Si Samples 

 
           CNT growth was also performed on Co deposited SiO2/Si substrates. In the first 

place, Co-catalyst nanoparticles were formed on SiO2/Si thin films at 825°C. The 

related images are depicted in Figure 5.6.a and Figure 5.6.b with 100000X 50000X 

magnifications, respectively. It is clearly seen from the images that the catalyst 

nanoparticles were distributed nearly uniformly on the whole sample surface. 

            When the catalyst thin films were heated up and etched away by hydrogen gas, 

the catalyst films were converted to the nanoparticles. Study of SEM images of the 

CNTs grown on Co/SiO2/Si thin films at 825°C revealed that no CNT formation was 

occurred even though methane gas was sent at this temperature. In fact, in our efforts 

with other Co thin films, not presented here, resulted with no CNT growth at 

temperatures at and lower than 825 °C. It was observed that nearly uniform formation of 

Co nanoparticles was achieved with average diameter of about 25 nm. 

 

                                                                        

   
 
 
Figure 5.6.  SEM micrographs of Co nanoparticles grown on Co26/SiO2/Si at 825°C, a) 

magnification: 100000X, b) magnification: 50000X 

 
 
            Hence, the temperature was increased to 850°C, of which result is seen in Figure 

5.7.a, depicting that CNT formation was rather bulky and short; the average diameters 

of CNTs were measured at around 20.4 nm. Furthermore, the temperature was increased 

to 875°C; the related image is shown in Figure 5.7.b. It was observed that the as-grown 

CNTs were not well aligned but had the shape of spaghetti with woven each other. And 

a b
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it is clearly seen from the Figure 5.7.a and Figure 5.7.b that the CNTs were grown with 

the tip-growth mechanism, since the catalyst nanoparticles were seen at the tip of the 

CNTs. 

 
 

  
 

 
Figure 5.7.  SEM micrographs of as-grown CNTs produced onto, a) Co32/SiO2/Si at  

850°C, b) Co33/SiO2/Si at 875°C 

 

            Then, the temperature was increased from 875°C to 900°C; the related SEM 

images are seen in Figure 5.8.a. and Figure 5.8.b, with 100000 and 50000 

magnifications, respectively. From the SEM pictures, the average diameters of CNTs 

were measured at around ~14.2 nm. The average diameters of as-grown CNTs were 

decreased with increasing the temperature. From the Figure 5.8, it is seen that the CNTs 

were grown according to tip-growth mechanism. 

 

 

   
 

Figure 5.8. SEM micrographs of as-grown CNTs produced onto Co37/SiO2/Si at 900°C, 

a) magnification: 100000X, b) magnification: 50000X 

b

a

a 

b
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           The growth temperature was increased from 900°C to 925°C; the related SEM 

picture is seen in Figure 5.9.a. The average diameters of the CNTs were measured 

approximately 10.5 nm. When the growth temperature was increased from 925°C to 

950°C, of which the result is depicted in Figure 5.9.b, that thinner and longer CNTs 

were grown with compared to those grown at 925°C and the temperature below 925°C. 

The average diameters of as-grown CNTs were measured approximately ~13.15 nm; the 

CNTs were grown with tip-growth mechanism. When the temperature was increased to 

975°C, the average diameters of CNTs were measured at around ~18.66 nm. The results 

were very similar to those obtained for Fe catalyzed CNTs. It was observed that after a 

critical point, the diameters of CNTs were increasing with increasing the temperature, 

because of the reasons explained for Fe catalyzed CNTs; after a critical point the surface 

tension of the catalyst particle was increased, and the dissolution of carbon started 

again. Then the thickening of the nanotubes occurred layer by layer (Ruemmeli, et al. 

2005). 

           Table 5.3 summarizes the comparison of the average diameter of as-grown CNTs 

at different temperatures. The results demonstrated how temperature significantly 

affected the growth of CNTs along with their diameters and lengths. 

 

 
 

   
 
 
Figure 5.9.  SEM micrographs of as-grown CNTs produced onto, a) Co38/SiO2/Si at 

925°C, b) Co39/SiO2/Si at 950°C 
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Figure 5.10. SEM micrographs of as-grown CNTs produced at 975°C onto 

Co49/SiO2/Si, a) magnification: 100000X, b) magnification: 200000X 

 

 

 

Table 5.3.  Comparison of diameters of CNTs grown at different temperatures 

 

Sample Temperature (°C) Average Diameter (nm) 

CoSiO5CNT32 850 20.4 

CoSiO5CNT33 875 15.4 

CoSiO5CNT37 900 14.2 

CoSiO5CNT38 925 10.5 

CoSiO5CNT39 950 13.15 

CoSiO5CNT49 975 18.66 

 

 
 
5.1.2. Catalyst Thickness Effect on the CNT Growth  

 
            In this section, Ni catalyst films with three different thicknesses; ~0.7 nm thick 

named NiSiO1, ~1.4 nm thick named NiSiO2, ~6 nm thick named NiSiO3; were 

utilized. The growth process was applied for these three catalysts at the same time and 

at the same temperature; all the parameters were kept constant except the thickness of 

the catalyst layers in order to observe catalyst layer thickness effect on the CNT growth.             

ba
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           And the CNT growth was performed at the same time for those three Ni catalyst 

thin films at 900°C. The as-grown CNTs were depicted in Figure 5.11, Figure 5.12, and 

Figure 5.13 for 0.7 nm, 1.4 nm, and 6 nm thick nickel catalyst films named as 

NiSiO1CNT78, NiSiO2CNT79, and NiSiO3CNT80, respectively.  

           It is clearly seen from the images that the CNTs were very well grown on the 

thinnest (0.7 nm) catalyst layer. Figure 5.11 shows the as-grown CNTs with different 

magnifications. The average diameters of as-grown CNTs were measured at around 

14.42 nm. While the average diameter of the CNTs grown on 1.4 nm thick nickel film 

was measured approximately 20.74 nm, the related images are seen in Figure 5.12. 

While there were not so many CNTs on the thickest nickel film which was 6 nm, the 

related image is depicted in Figure 5.13. 

           It was investigated that the Ni nanoparticles were grown very small in size on the 

thinnest film (0.7 nm), whereas very big in size on the thickest film (6 nm). The catalyst 

nanoparticles were formed very small in size on the thinnest films. When the catalyst 

nanoparticles were formed very small in size, the carbon atoms would reach the 

nucleation sites in a short time since the diffusion lengths of the carbon atoms were 

decreased, and this would result in an increasing in growth rate of CNTs.  

           On the other hand, when the film thickness was increased, the catalyst 

nanoparticles would be formed very big in size with compared to those grown on 

thinner catalyst layers. When the catalyst nanoparticles were very big in size, the carbon 

atoms would diffuse the nucleation sites in a long time, owing to the fact that the 

diffusion path of the carbon atoms was increased, which resulted in decreasing the 

growth rate of CNTS.             

           The temperature was also increased from 900°C to 950°C, so as to examine the 

temperature effect on Ni catalyst films with three different thicknesses. The results are 

depicted in Figure 5.14.a, b, and c for 0.7 nm, 1.4 nm, and 6 nm thick Ni catalyst films, 

respectively. It was observed that when the temperature was increased, the average 

diameter of CNTs was decreased and the length was also increased, of which the results 

were in agreement with those CNTs grown on Fe and Co catalyst thin films. When the 

temperature was increased from 900°C to 950°C, the diameters were decreased from 

~14.42 nm to ~9.35 nm for NiSiO1 films, and in a similar manner, it was decreased 

from ~20.74 nm to ~17.42 nm for NiSiO2 catalyst film. The results are given in Table 

5.4.  
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Figure 5.11. SEM micrographs of as-grown CNTs on NiSiO1CNT78 at 900°C, a) 

magnification: 50000X, b) magnification: 100000X, thickness: ~0.7 nm 

 

 

   
 
Figure 5.12. SEM micrographs of as- grown CNT on NiSiO2CNT79 at 900°C, a) 

magnification: 50000X, b) magnification: 100000X, thickness: ~1.4 nm 

 

 

   
 
Figure 5.13. SEM micrographs of as-grown CNT on NiSiO3CNT80 at 900°C, a) 

magnification: 50000X, b) magnification: 100000X, thickness: ~6 nm 
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Figure 5.14. SEM micrographs of as-grown CNTs at 950°C on Ni catalyst thin films  

with three different thicknesses, a) NiSiO1CNT81: ~0.7 nm, b) 

NiSiO2CNT82: ~1.4 nm, c) NiSiO3CNT83: ~6 nm 

 

 

 
Table 5.4.   Comparison of diameters of CNTs grown on Ni catalyst thin films with 

different thicknesses and temperatures  

 

 
Sample Name 

 
Catalyst Thickness 

(nm) 

 
Temperature 

(�C) 

 
CNT Average 
Diameter (nm) 

NiSiO1CNT78 ~0.7 nm 900 ~14.42 

NiSiO2CNT79 ~1.4 nm 900 ~20.74 

NiSiO1CNT81 ~0.7 nm 950 ~9.35 

NiSiO2CNT82 ~1.4 nm 950 ~17.42 

ba 
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5.2. AFM RESULTS 
 

 
           The roughness values of two Ni catalyst thin films, NiSiO1 (~0.7 nm/1 min) and 

NiSiO2 (~1.4 nm/2 min), deposited on SiO2/Si substrates onto which no CNT growth 

was performed were also measured by utilizing the AFM. The related AFM images are 

depicted in Figure 5.15.a and Figure 5.15.b. The rms surface roughness values were 

measured as 0.205 nm, and 0.305 nm for NiSiO1 (~0.7 nm/1 min) and NiSiO2 (~1.4 

nm/2 min), respectively. The roughness values are given in Table 5.5.  

           On one hand, these values were very satisfying since from the view of thin film 

technology, it showed that those catalyst thin films were deposited uniformly and 

continuously. If rms surface roughness is smaller than the catalyst film thickness it 

means that the thin film is deposited uniformly. On the other hand, the increase in rms 

surface roughness is associated with an increase in some irregularities in the film; which 

results in an increase the size of the catalyst nanoparticles. 

 

 

   
 

 
Figure 5.15. Roughness analyses of, a) NiSiO1 (~0.7 nm), b) NiSiO2 (~1.4 nm)  
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Table 5.5.  Roughness values of Ni catalyst thin films  

 

 
Sample Name 

 
Catalyst Thickness 

(nm) 

 
Rms Surface Roughness 

(nm) 
NiSiO1 ~0.7 nm 0.205 

NiSiO2 ~1.5 nm 0.301 
 

 
 
5.3. XRD Results 
  
 
           The XRD measurement (θ-2θ Scan) was carried out using CuKα radiation with 

λ= 1.54 Å so as to characterize the CNT structures. Since CNTs are composed of many 

graphitic planes made of carbon atoms, the XRD characterization gives good 

information about the CNT structure. The graphs exhibit characteristic peaks of CNTs.  

            From the literature, the peak seen at around 26.2° indexed by (002) illustrates of 

being CNTs. Also, the peak at around 77.7° (or 78°) indexed by (110) also corresponds 

to CNTs (Park, et al. 2002). The peak at around 43.95° (or 44°) indicates CNT (101) 

structure (Treffer, et al. 1997), while the peak at 38° corresponds to SiC (101) and also 

SiC (220) is seen at around 61° (Treffer, et al. 1997, Bhuyan, et al. 2007). Substrates 

peaks are Si (002) planes, 32.88°, Si (004) plane, 69.08°. 

            Figure 5.16 shows a typical XRD pattern of as-grown CNTs for CoSiO5CNT32 

taken with θ–2θ scan mode. It is seen from the picture that, the peak seen at 26° is 

ascribable to CNT (002) planes, while the peaks seen nearly at 44° refers to CNT (101), 

whereas the CNT (110) peak is seen at around 78°. There is also one broad peak seen at 

around 69.08° is coming from the Si substrate, while the other sharp and thin peak 

around 38° is considered to be SiC (101) plane (Bhuyan, et al. 2007). It is sensible to 

see SiC (101) peak due to the fact that it is desired to see some carbide peaks since they 

have an important role in the growth of CNTs. 
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Figure 5.16. XRD pattern of as-grown CNTs onto CoSiO5CNT32 
 
 

              Figure 5.17 is the XRD pattern of the as-grown CNTs for CoSiO5CNT38. The 

peak at 2θ = 26.24° is attributed to the diffractions of (002) planes of the hexagonal 

graphite structure, and 32° and 69° contribute to substrates peaks. The peaks seen at 

nearly 35°, 38, and 61° refer to SiC peaks from the planes of (111), (101), and (220), 

respectively. Peaks seen at around 44° and 78° contribute to CNT (101) and CNT (110), 

respectively.  
 
 

 
 
 

Figure 5.17. XRD pattern of as-grown CNTs onto CoSiO5CNT38 
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Figure 5.18 is the XRD pattern of the as-grown CNTs for CoSiO5CNT38. The peaks at 

2θ = 26.24°, 44° and 78° contribute to CNT (002), CNT (101), and CNT (110), 

respectively; and 69° attributes to Si (004); 38, and 61° refer to SiC peaks from the 

planes of (101), and (220), respectively.  

 
 
 

 
 

 
Figure 5.18. XRD pattern of as-grown CNTs onto CoSiO5CNT49 

 
 
 
5.4. Raman Spectroscopy Results  
 
           Micro-Raman Spectroscopy with He-Ne laser with the excitation wavelength of 

632.8 nm (633nm) was utilized for some the samples so as to observe the quality of 

CNTs as well as their types, whether they were semiconductor or metallic.  

     Figure 5.19 depicts the Raman spectra of FeSiO7CNT58. Figure 5.19 shows that 

the graph definitely proved the presence of SWNTs. Figure 5.19 is the Raman signature 

of semiconducting SWNTs with very few defects (low D band intensity). These CNTs 

were of a very high structural purity because of the fact that there was very small 

intensity of D-band around 1300 cm-1, and it is also seen from the image that the G-

band at around 1594 cm-1 was very narrow having also a shoulder at around 1558 cm-1 

meaning that the as-grown SWNTs were semiconducting CNTs.  
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Figure 5.19. Raman spectra of as-grown CNTs on FeSiO7CNT58 thin film 
 

            Figure 5.20 illustrates the Raman spectra of as-grown CNTs on FeSiO7CNT59 

catalyst thin film. He-Ne Laser 633 nm on a 2µ2 area was taken from three different 

points on Fe59SiO7 area seen with the colors of blue, red, and black. Clearly seen from 

the Figure 5.20 that the spectra had mainly four Raman bands two of which were 

coming from the substrates while the other bands were seen at nearly ~1335 cm-1 (D 

band), and ~1580 cm-1 (G band). The G band indicates original graphite features but the 

D band displays the disorder features of graphitic sheets meaning that D mode is a sign 

for the defective graphitic structures.  

            The comparison of the ratios of these two peaks gives a measure of quality of 

the bulk samples. Depicted in Figure 5.20, there were disordered MWCNTs signal 

coming from the sample. And also, the intensity of D line was bigger than the G-line 

intensity which indicated that there were defects in the structure of CNTs and those 

CNTs showed metallic behavior.   
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Figure 5.20. Raman spectra of as-grown CNTs on FeSiO7CNT59 thin film 
 
        
           Figure 5.21 is the Raman spectra of as-grown CNTs on NiSiO1CNT81 catalyst 

thin film. Depicted in Figure 5.21 that the longitudinal Raman bands of semiconducting 

SWNTs peaks were 1597 and 1567 cm-1, which were very narrow line (nearly 9 cm-1), 

meaning that the as-grown CNTs were really well crystallized. There was a little trace 

of disordered carbon phases around 1320 cm-1. This graph definitely proved that the as-

grown CNTs were semiconducting SWNTs with very low defects.  

 
 

Figure 5.21. Raman spectra of as-grown CNTs on NiSiO1CNT81 thin film 
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           Figure 5.22 illustrates the Raman spectra of as-grown CNTs on CoSiO5CNT39 

catalyst thin film. If there is only the band at 1594 cm-1, it corresponds to very well 

crystallized MWNTs. Clearly seen from the spectra, there was no trace of signal around 

1300 cm-1 meaning that there was no trace of disordered carbon phases.  

 

 
 
 

Figure 5.22. Raman spectra of as-grown CNTs on CoSiO5CNT39 thin film 
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CHAPTER 6 

 
CONCLUSION 

 
            In this thesis work, the parameters were optimized and some parameters 

affecting the growth of CNTs were examined. In the first place, the CNTs growth was 

performed on directly bare Si substrates at four different temperatures, 800, 850, 900, 

and 950°C. It was observed that there was no CNT growth on Si but mostly amorphous 

carbon, due to the fact that the solubility of C atoms in Si nanoparticles was too low at 

the temperatures; 800, 850, 900, and 950°C and it required very high temperatures.  

            Furthermore, the temperature effect was systematically studied by utilizing Co 

and Fe thin films. It was obtained that the average diameter of as-grown CNTs were 

decreased with increasing the temperature up to a critical point, and then that the 

average diameter of those CNTs’ was increased after this critical point. The similar 

results were observed for Co and Fe catalyst thin films. The reason of this thickening of 

the CNTs was explained by the means of surface tension and the size of the catalyst 

nanoparticle.  

           Moreover, the thickness effect of the catalyst thin film layer on the CNT growth 

was also examined by utilizing Ni thin films with three different thicknesses as 0.7, 1.4, 

and 6 nm, keeping all the other parameters constant. When the thickness of the catalyst 

layer was increased, the average diameters of the catalyst nanoparticles were increased 

which leaded an increase in the carbon atoms diffusion length, and so for low growth 

rate. So it was reached the conclusion that the thinnest catalyst thin film leaded CNTs to 

be very small in size, on the contrary the thickest thin film caused CNTs to be bigger in 

size. 

            The experiments were performed at both 900 and 950°C by utilizing the Ni 

catalyst thin films with three different thicknesses by comparing the average diameter of 

as-grown CNTs by increasing the temperature from 900°C to 950°C. When the 

temperature was increased from 900°C to 950°C, it was observed that the average 

diameters of CNTs were decreased, which was very compatible with the results 

obtained for the temperature effect on the growth of CNTs by utilizing Fe and Co thin 

films. 
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            The Ni catalyst thin films with 0.7 nm and 1.4 nm thickness were utilized for the 

measurement rms surface roughness values. Obtained from AFM results that the rms 

surface roughness value was increased with increasing the thickness, meaning that the 

average diameter of catalyst nanoparticles grown on 0.7 nm thin film was smaller in 

size than the catalyst nanoparticles produced on 1.4 nm thin film.  

            Some of the as-grown CNTs were also examined by micro-Raman spectroscopy 

to have an accurate idea about not only the type of the CNTs but also the quality of 

them. It was observed that the as-grown CNTs produced on Ni and Fe catalyst thin 

films were SWNTs showing semiconducting behavior with very low defect, but 

MWNTs were observed on Co deposited catalyst thin films. The Raman spectroscopy 

results were in agreement with SEM results. 

           Moreover, XRD was utilized in order to have the structural information and 

chemical composition of as-grown CNTs. As expected, CNTs peaks coming from 

different planes along with SiC peaks and Si substrates peaks were observed. 
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