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ABSTRACT 

 

SPECTROSCOPIC DETERMINATION OF 
VEGETABLE OIL AND BIODIESEL IN PETROLEUM 

DIESEL USING MULTIVARIATE CALIBRATION 
 
 

  
         Due to the limited petroleum reserves and pollutant effect of petroleum fuels, the 

use of alternative fuels has became important in recent years. Diesel is one of the most 

used petroleum fuel, whose exhaust emissions composed of harmful particles, that 

pollutes the environment. In this sense, vegetable oils and their esters (biodiesel) are 

considered environmentally friendly fuels, which reduce hazardous impact of diesel 

emissions. However, using vegetable oils directly in diesel engines may cause some 

engine problems due to their high viscosity. The most commonly used way to reduce 

their viscosity is the converting into biodiesel. Because biodiesel production is 

expensive and time consuming, diesel may be illegally adulterated with vegetable oils 

before converting into biodiesel.  

Diesel may also adulterated with kerosene due to the large price differences. The 

main impact of this adulteration is increased emissions, which damage the environment. 

On the other hand, the addition of kerosene may also damage the engine. Because of 

these reasons, it is important to determine these adulterants illegally present in 

petroleum diesel. In this study, we have determined the adulteration of diesel with 

sunflower, canola oil, used frying oil, kerosene, and biodiesel by different molecular 

spectroscopic techniques combined to genetic inverse least squares (GILS). The results 

showed that the GILS method is suitable in the fast determination of diesel adulteration 

with vegetable oils, used frying oil, kerosene, and biodiesel when combined to NIR, 

FTIR-ATR, and molecular spectroscopic techniques. 
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ÖZET 

 

PETROL TÜREVİ DİZEL İÇERİSİNDE BİTKİSEL YAĞ VE 
BİYODİZELİN ÇOK DEĞİŞKENLİ KALİBRASYON 

KULLANILARAK SPEKTROSKOPİK TAYİNİ 
 

 

         Petrol rezervlerinin sınırlı sayıda olması ve petrol yakıtlarının kirletici etkisinden 

dolayı son yıllarda alternatif yakıtların kullanımı büyük önem kazanmıştır. Dizel yakıtı 

en çok kullanılan petrol yakıtlarından biridir. Ancak yaydığı egzoz gazları insan sağlığı 

ve çevre açısından son derece zararlıdır. Bu nedenle bitkisel yağlar ve biyodizel olarak 

tanımlanan alkil esterleri çevre ile dost alternatif yakıtlar olarak kullanılmaktadırlar. 

Yüksek viskozitelerinden dolayı bitkisel yağların dizel araçlarında direk olarak 

kullanımı motorda bazı problemlere neden olabilmektedir. Bitkisel yağların belli 

miktarlarda dizel ile karıştırılması bu sorunu çözse de en etkili yöntem biyodizele 

dönüştürülmeleridir. Ancak biyodizel üretimi belli bir maliyet gerektirdiğinden ve 

zaman aldığından bitkisel yağlar biyodizele çevrilmeden direk olarak dizel içerisine 

katılabilmektedirler.  

Dizel yakıtı aynı zamanda yüksek fiyat farkı olan kerosen ile de 

karıştırılabilmektedir. Kerosen de bitkisel yağlar karıştırıldığında olduğu gibi motorda 

problemlere neden olmaktadir. Bu nedenle dizel içerisinde ihtiva eden yasal olmadan 

karıştırılmış maddelerin belirlenmesi önem taşımaktadır. Bu çalışmada çeşitli moleküler 

spektroskopik yöntemler ile birlikte genetik çok değişkenli kalibrasyon metodu 

kullanılarak dizel içerisinde bulunan bitkisel yağ, kullanılmış kızartma yağı, biyodizel 

ve kerosen gibi maddelerin tayini yapılmıştır. Deney sonuçları çok değişkenli 

kalibrasyon metodunun spektroskopik yöntemlerle kullanıldığında dizel içerisine 

karıştırılmış olan maddeleri hızlı ve kolay bir şekilde tayin ettiğini göstermektedir. 
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CHAPTER I 

 

Introduction 

 
    The fact that one day petroleum will be finished due to the limited reserves has directed 

the scientist to search for renewable alternative fuels instead of petroleum fuels. Another 

important reason for the researches on alternative fuels is the pollutant and hazardous 

effects of petroleum fuels that damage public’s health and cause global warming, which is 

an important problem of today’s world. 

    Vegetable oils and their monoalkyl esters (biodiesel) are considered one of the 

renewable alternative fuels of the future due to their environmentally benefits. However, 

they haven’t entirely displaced petroleum as an engine fuel in terms of technical, 

economical and political considerations.  

    Diesel is one of the most prevalent petroleum based fuel used in many areas especially 

in transportation. Therefore, this fuel plays an important role in the economy of a country. 

 

1.1. Diesel Fuel 

 
    Petroleum diesel or simply referred as diesel is a complex mixture of aliphatic, aromatic 

and olefinic hydrocarbons. It also contains in a small amounts of sulfur, nitrogen, oxygen, 

metals, etc. It is the main energy source for compression ignition (diesel) engines found in 

trucks, ships, locomotives, and passenger cars.  Diesel fuels are composed of molecules 

with 8–40 carbon atoms (Vieira, et al. 2006). 

      The exhaust of diesel fuel composed of harmful particles which pollute the 

environment and damage the human health due to its cancerogenic effect. The 

cancerogenic particulate of diesel exhaust has been proved from many studies in 

humans and in animals. The main hazardous pollutants emitted from the exhaust of a 

typical diesel engine include carbon monoxide (CO), carbon dioxide (CO2), sulfur 

oxides (SOx), nitrogen oxides (NOx), polycyclic aromatic hydrocarbons (PAHs) and 

particulate matter (PM) (Altun, et al. 2007). In this sense, it became very important to 

find environmentally friendly alternative fuels that reduce the hazardous impact of 

diesel fuel emissions. 
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    Vegetable oils and their monoalkyl esters (biodiesel) have been pointed out as 

environmentally friendly alternative fuels for diesel engines since recent studies show that 

they exhibit decrease in CO2, CO, SOx, aromatic hydrocarbons, and PM emissions when 

compared with diesel fuel (Rakopoulos, et al. 2006). These alternative fuels can be 

extensively used with or without modification in the compression ignition (IC) engines as a 

diesel fuel (Agarwal 2007). Whether they haven’t entirely displaced diesel fuel it is evident 

that they will be the main widely used fuels for diesel engines in the near future.  

 

1.2. Vegetable Oils as Fuel 

 
    Vegetable oils are the mixtures of triglycerides (TGs), which are the esters of a 

trialcohol (glycerol) with three different fatty acids. One of the biological function of 

triglycerides is its use as fuel (Stavarache, et al. 2006). Hence, in various countries 

many studies have been performed on different vegetable oils including soybean oil, 

sunflower oil, cotton seed oil, corn oil, canola oil, in addition to waste (used or frying) 

vegetable oil (WVO) for their feasibility as diesel fuel. In fact, the works carried out on 

the use of vegetable oils depend on 1900s. Primarily Rudolph Diesel, the inventor of the 

diesel engine used the peanut as a fuel in diesel engines in 1900. Then the works on 

vegetable oils as an engine fuel was continued in 1930s and 1940s and after the fuel 

crises early 1980’s gain more attention. The results of these studies have shown that 

vegetable oils in crude (raw) form can be used as a diesel engine fuel with small 

amounts of power loss when compared to diesel fuel (Knothe 2001). However, using 

vegetable oils directly in diesel engines may cause some engine problems due to their 

high viscosity, which is 10–20 times higher than petroleum diesel (Stavarache, et al. 

2006). 

    There are many ways to reduce the viscosity of vegetable oils in order to use them 

directly in diesel engines. One way is modifying the engine, so it preheats the oil to 

produce an acceptable viscosity, another way is blending vegetable oils in a small ratios 

with diesel fuel, and the most common way is converting vegetable oils into biodiesel 

which doesn’t require any modification in diesel engines and has a high energetic yield 

(Rakopoulos, et al. 2006, Wang, et al. 2006, Pugazhvadivu, et al. 2005, Huzayyin, et al. 

2004). 
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1.3. Biodiesel as Fuel 

 
    Among the alternative fuels biodiesel has gained popularity in recent years as a 

substitute for diesel fuel. Almost all researches on biodiesel show that they can be 

performed well in diesel engines, which is reported better than petroleum diesel in 

several aspects. It contains no more petroleum, “bio” describes its renewability and 

“diesel” describes its use as diesel fuel.  It is a mixture of fatty acid alkyl esters derived 

from renewable vegetable oils, animal fats, and used frying oils. Biodiesel is chemically 

simple since biodiesel mixture doesn’t contain more than six or seven fatty acid esters 

(Stavarache, et al. 2006). 

    Biodiesel is made through a chemical process called transesterification shown in the 

Figure 1.1. The transesterification of vegetable oils comprises the reaction of 

triglycerides with an alcohol in the presence of a strong acid or base catalyst producing 

a mixture of fatty acid alkyl esters (biodiesel) and glycerol (Demirbaş 2007, Wang, et 

al. 2006 ). 

                                                                      

                         
                      Triglyceride     Methanol              Methyl ester      Glycerol 

                              (Biodiesel) 

 

Figure 1.1. Principle of the transesterification reaction 

 

      NaOH and KOH are the most studied catalysts for the production of biodiesel. The 

overall process consists roughly of three consecutive, reversible reactions in which 

monoglycerides and diglycerides are formed as intermediates. However, the real 

situation is much more complicated. Base catalyzed transesterification reactions are 

faster than acid-catalyzed processes (Kwanchareon, et al. 2007). 

      There are several choices for vegetable oil sources in the production of biodiesel. 

Transesterification reactions have been studied for many vegetable oils such as soybean, 
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rapeseed, sunflower, palm, corn, cotton, castor, and canola oil. In Turkey, canola oil is 

the most preferred vegetable oil for the production of biodiesel. 

    Using biodiesel has many advantages over regular diesel fuel. The most important 

advantages of biodiesel are its renewability, and biodegradability which means that the 

product can be recycled by nature, or can be broken down into its smallest parts through 

the actions of microorganisms so that it will not pollute the environment. Moreover, the 

reduction of exhaust emissions and greenhouse gas effect due to its minimal sulfur, 

carbon dioxide and aromatic content make biodiesel an environmentally friendly fuel 

(Knothe, et al. 2003, Hernando, et al. 2007). 

      Biodiesel can be used in diesel engines by blending with petroleum diesel in any 

proportion without engine modifications. Therefore biodiesel is widely used by 

blending with petroleum diesel. The proportion of the blend is defined as BX, where X 

is the amount of biodiesel in the blend. For example, diesel engines can run using 

blends of diesel up to 20% which is called B20. In addition, pure biodiesel fuel contains 

100% esters of fatty acids called as B100. B5 used in Europe contains 5% biodiesel in 

diesel (Pinto, et al. 2005). In Turkey, the use of biodiesel allowed up to a volume of 2% 

in diesel (4.12.2003, 5015 sayılı Petrol Piyasası Kanunu, Madde 16). This blend is 

referred as B2. There are many studies about the blends of various vegetable oils with 

diesel fuel. From these studies the blend of 20% oil and 80% diesel was found 

successful in diesel engines (Agarwal 2007). 

 

1.4. The Adulteration of Diesel Fuel 

 
    The term "adulteration" means the illegal addition of any chemical foreign substance, 

which is called as adulterant, into another substance, generally to reduce manufacturing 

costs. The adulterants also may be accidentally or unknowingly introduced into 

substances. Because biodiesel production process is expensive and time consuming 

diesel fuel may be illegally adulterated with raw or used frying vegetable oils before 

converting into biodiesel. Diesel fuel may also involve much cheaper kerosene. 

    Kerosene is a petroleum product which is obtained similar to diesel. It is widely used 

as a heating, lighting and rocket fuel. The fact that it is miscible with diesel, some 

amount of mixing with almost no change in the properties of automotive fuel is 

possible. In addition, large price differences between kerosene and diesel, make this 
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unhealthy and unethical adulteration available (Roy 1999, Divya and Mishra 2007). 

Adulteration of diesel with low-taxed or subsidized kerosene is a common problem in 

many countries. The main impact of this adulteration is increased emissions. In the case 

of the adulteration of diesel with kerosene, the exhaust have harmful, cancer causing 

hydrocarbons, nitrous oxides, and carbon monoxide so that it damages the environment 

and human health (Taksande and Hariharan 2006). The adulteration of diesel by 

kerosene not only causes serious environmental problems also damaging automotive 

engines. It reduces diesel’s lubricating function that causes faster wear of the pistons so 

that the performance and life of the engine decreases. In this sense, it is important to 

determine or verify the illegal adulteration of petroleum diesel. For this purpose a 

number of reliable and fast analytical methods have been developed for checking 

adulteration of petroleum diesel where they are practiced in the illegal market. Moving 

beyond that the aim of this work is to determine the amount of illegal adulteration 

contents present in petroleum diesel by developing calibration models based on 

molecular spectroscopic techniques combined to multivariate calibration. 
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CHAPTER 2 

 

MOLECULAR SPECTROSCOPY 

 
         Molecular spectroscopy is important for analytical chemistry in the detailed 

investigation of molecules. One of the most spectacular applications of molecular 

spectroscopy is identification the structure of molecules based upon its electromagnetic 

characteristics. The structural information from this kind of spectroscopy is very 

detailed and precise. The investigation of chemical reactions plays also important role in 

molecular spectroscopy. The possible variety in molecular spectroscopy is large due to 

the numerous different kinds of molecules compared to the approximately 100 different 

types of atoms. The molecules can be determined even in gas, liquid or solid phases. 

The spectra in molecular spectroscopy is complex because of the greate number of 

excited states. The determination of mixtures of molecules is difficult due to the width 

of molecular electronic bands. The spectral bands in molecular spectroscopy result from 

the absorption, emission, reflection, and scattering of electromagnetic radiation when 

the energy of a molecule changes. In molecular spectroscopy, bonding of atoms lead to 

rotational and vibrational transitions in addition to electronic transitions. These added 

transitions result from very broad peaks in uv-visible region to the microwave region. 

Usually, transitions within the rotational energy levels are observed in far infrared and 

microwave regions, transitions within the vibrational energy levels are observed in 

infrared region, and transitions between the electronic energy levels are observed in 

ultraviolet, visible and near IR regions of the spectrum. In general, the vibrational 

transitions result in changes in the rotational mode and the electronic transitions result 

in changes in the rotational and vibrational modes as well (Banwell and McCash 1994, 

Hollas 2004, Ingle and Crouch 1988). 

        There are many specific molecular spectroscopic techniques such as infrared 

spectroscopy and molecular fluorescence spectroscopy that are used in this study. 
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2.1. Infrared (IR) Spectroscopy 

 
         Infrared spectroscopy is a technique based on the vibrations of the bonds of a 

molecule. It is the measurement of transmittance or absorption intensity of a sample in 

the IR region at different IR frequencies. An infrared spectrum is commonly obtained 

by passing infrared radiation through a sample and determined what fraction of the 

incident radiation is absorbed at a particular energy. IR spectroscopy is one of the most 

commonly used spectroscopic technique to determine the chemical functional groups in 

the sample since different functional groups absorb characteristic frequencies of IR 

radiation. In addition, infrared spectroscopy can be used for the identification the 

amount of a particular compound presents in a mixture. It is an important and popular 

tool in terms of the wide range of sample types as gase, liquid, and solid phases. One of 

the great advantages of infrared spectroscopy is that almost any sample can be studied 

in any state. Liquids, solutions, pastes, powders, films, fibres, gases and surfaces can all 

be examined by IR spectroscopy (McKelvy, et al. 1996, Ingle and Crouch 1988). 

         Infrared energy is the electromagnetic energy of molecular vibrations consist of 

stretching and bending as illustrated in Figure 2.1. While streching vibrations occur at 

higher energy levels, bending vibrations occur at higher energy levels. 

 

                                  
                                     Stretching            Bending               Stretching 

 

Figure 2.1. Streching and bending vibrations 

  

        The absorption of the IR radiation is observed, when the frequency of a specific 

vibration is equal to the frequency of the IR radiation. In addition, minimum one 

vibrational motion must change the net dipole moment of the molecule so that the 

absorption of the infrared radiation occurs. A heteronuclear diatomic molecule can be 

given as an example of an infrared-active molecule in which the dipole moment of the 
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molecule changes. On the other hand, infrared-inactive molecules are the homonuclear 

diatomic molecules such as H2, Br2, and I2 as their dipole moments are zero (Skoog and 

Leary 1992, Hsu 1997).  

       Infrared radiation, commonly defined as electromagnetic radiation have 

wavenumbers from approximately 13,000 to 10 cm–1, or wavelengths from 0.78 to 

1,000 μm. It is delimited from the red end of the visible region at high frequencies to the 

microwave region at low frequencies. Because the IR region covers a wide range of the 

electromagnetic spectrum, it is divided into three areas in order to provide the 

requirements of instruments for their different applications (Skoog and Leary 1992). 

The areas of IR region defined as near infrared (NIR), middle infrared (MIR), and far 

infrared (FIR). Table 2.1. shows the wavelength and wavenumber ranges of these IR 

regions. 

 

Table 2.1. The corresponding wavenumber and wavelength ranges of the IR region 

 

Near IR Mid IR Far IR 

Wavenumber  12,800-4000 cm-1 4000-200 cm-1 200-10 cm-1 

Wavelength 780-2500 nm 2500-50,000 nm 50,000-1x106 nm 

         

         The near infrared (NIR) spectroscopy is used to detect solid and liquid samples 

with no prior manipulation. Moreover, this technique is useful for the quantitative 

determination of complex mixtures by the help of computers and chemometrics. 

Recently, near IR spectroscopy has gained increased interest, especially in process 

control applications (Xixiong, et al. 2007). The middle infrared (MIR) spectroscopy is 

mostly used to identify the structure of organic molecules as each functional group in 

the molecule has sharp absorption bands in this region. It is also used for both 

qualitative and quantitative analysis in analytical chemistry. The mid IR region covers 

the fingerprint region (1300 to 910 cm–1) where the absorptions include the 

contributions from complex interacting vibrations that give each compound a unique 

information. A good compliance between the IR spectra of two compounds in all 

frequency ranges, particularly in the fingerprint region means that they have the same 

molecular structures. The far infrared (FIR) spectroscopy is used for qualitative analysis 
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of organic, inorganic, and organometallic compounds which involve heavy atoms (mass 

number over 19). They can be analyzed due to their metallic bands in this region. The 

far IR spectroscopy requires the use of specialized optical materials and sources. It 

provides useful information to structural studies such as conformation and lattice 

dynamics of samples (Skoog and Leary 1992, Hsu 1997). 

 

2.2. Near Infrared (NIR) Spectroscopy 

       
         Generally, in the scientific literature, it is defined that the NIR region of the 

electromagnetic spectrum bounded from 780 to 2500 nanometers (12,800-4000 cm-1). 

In this region the absorption bands observed due to overtones of hydrogen-stretching 

vibrations or due to combinations of stretching and bending modes of fundamental 

vibrations found in the mid infrared region. The most observed fundamental vibrations 

are the harmonic C-H stretching vibrations and their corresponding combinations 

including methyl C-H stretching, methylene C-H stretching and aromatic C-H stretching 

vibrations, also O-H stretching and N-H stretching vibrations which occur from 

approximately 690 to 3000 nm. Therefore especially C-H, O-H, and N-H functional 

groups can quantitatively measured by this technique. The basic uses of near infrared 

spectroscopy are, process control, quality assessment, identification of raw materials 

and process byproducts, and quantitative analysis of complex mixtures (Stuart 2004, 

Skoog and Leary 1992). 

 

2.2.1. Theory and Principles of NIR Spectroscopy 

 
            The near infrared spectral region is energetic enough to excite the molecule to 

the vibrational or rotational states. The absorption bands are obtained due to the 

overtones (780-1800 nm) and combinations of fundamental vibrations (1800-2500 nm) 

at mid IR region. Fundamental vibrations in infrared spectroscopy can be explained by 

diatomic harmonic oscillator related to Hooke’s law. The Hooke’s law describes the 

frequency (υ) of a vibration for a simple two body diatomic harmonic oscillator (Barton 

2002, Burns and Ciurczak 2001), which can be calculated from the equation below: 
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            υ = 
μπ
k

2
1     (2.1) 

                                                                           

where k is the force constant, which is related to the bond strength and µ is the reduced 

mass stated as: 

 

                                            µ= 
21

21

mm
mm
+

                                                           (2.2) 

 

where m1 and m2 are the masses of  atoms of the diatomic molecule involved in the 

vibration. If the diatomic molecule demonstrates ideal harmonic oscillator, its potential 

energy is calculated as: 

 

                                                V = 
2
1 kx2                                                                                            (2.3) 

 

where x is the displacement of the internuclear distance. Because the quantized nature of 

the molecular vibration energies are not described by this equation, the equation is 

treated and developed to give the potential energy (E) as: 

 

                                                E = 
μπ
khv

22
1
⎟
⎠
⎞

⎜
⎝
⎛ +                                                      (2.4) 

 

where h is the Planck’s constantand and υ is the vibrational quantum number, which 

only takes positive integer values including zero. The potential energy equation can be 

rearranged using the equation 2.1 as: 

 

                                                E = νhv ⎟
⎠
⎞

⎜
⎝
⎛ +

2
1                                                              (2.5) 

 

In this way only distinct energy levels are allowed. The separation between two 

vibrational levels would be: 
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                                                 ∆E = hυ                                                                   (2.6) 

 

          The ideal harmonic oscillator can be shown in Figure 2.4 by a plot demonstration. 

The dotted line labeled with (a) demonstrates the “ideal” case that the spring stretches 

and reaches a point where it loses its shape and decreases to zero. In molecules, the 

charges on the nuclei limit the approach of the nuclei during the compression step, 

creating an energy barrier. At the extension of the stretch the bond eventually breaks 

when the vibrational energy level reaches the dissociation energy. This effect is 

illustrated with asymmetric potential curve in the Figure 2.2 (Burns and Ciurczak 2001). 

 

 
 

Figure 2.2. Energy diagram of vibrational modes 

 

          In fact, molecules are not ideal oscillators and transitions between more than one 

vibrational state are forbidden for such an ideal harmonic oscillator by quantum 

mechanical selection rules which allow anharmonic oscillator. This anharmonic 

behaviour is illustrated in Figure 2.4 at higher vibrational states, where the departures 

from harmonic behaviour occur since at high level of potential energy a molecule tends 

to dissociate and can no longer return to its equilibrium position. For an anharmonic 

oscillator, only the transitions with ∆υ>1, between vibrational states of ∆υ=2 or ∆υ=3 

are possible. Near infrared overtone bands arise from these multi level transitions that 

occur at multiples of the fundamental vibrational frequency. A transition from υ=0 to 2 

Energy 

0

Internuclear distance (r)

(a) 
     Harmonic potential 

                   (b) 
    Anharmonic potential 
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is called first overtone and a transition from υ=0 to 3 is called second overtone. The 

wavenumbers of overtones can be estimated from their fundamental vibrations with an 

anharmonicity constant χ of 0.01–0.05 by the following equation:  

 

                                                     υx = ∆υ υ0 (1- ∆υχ)                                            (2.7) 

               

where υx is the wavenumber of xth overtone, υ0 is the wavenumber of fundamental 

vibration and χ is the anharmonicity constant (Burns and Ciurczak 2001). 

         Combination bands compose around 1900 nm to 2500 nm, occur when a single 

photon simultaneously excites two or more different molecular vibrations. The sum of 

energies of these different molecular vibrations is nearly equal to the transition energies 

of combination bands. Because near infrared absorption bands are wide, overlapping 

and 10-100 times weaker than their corresponding fundamental middle infrared 

absorption bands, the sensitivity of near infrared spectrometer is limited and near 

infrared spectra are very complex so that spectral interpretation is very difficult. Thus, 

the use multivariate calibration methods to process the recorded signals and extract the 

relevant information for qualitative or quantitative analysis are required (Abajo, et al. 

2006, Reich 2005). 

 

2.3.2. Instrumentation of NIR Spectroscopy 

 
           A NIR spectrometer is generally composed of a light source, a monochromator, a 

sample holder or a sample presentation interface, and a detector, allowing for 

transmittance or reflectance measurements. The light source is usually a tungsten 

halogen lamp, which is small and rough. Detectors used in NIR spectrometer include 

lead sulfide (PbS), silicon, and indium gallium arsenide (InGaAs). Sample holders can 

be glass or quartz and typical solvents are CCl4 and CS2. To measure good NIR spectra, 

the proper sample presentation is important so that several types of sample cells, such as 

quartz cuvettes with defined optical path length for liquids, specifically designed sample 

cells with quartz windows for semi-solids and powders, and adjusted sample holders for 

tablets and capsules have been developed. According to their properties near infrared 

instruments are divided into two classes as dispersive and fourier transform instruments. 

Dispersive instruments such as UV-visible-NIR spectrometers depend on the 
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monochromator types. The appropriate NIR measuring mode will be dictated by the 

optical properties of the samples (Skoog and Leary 1992, Ingle 1988).  

 

2.3.3. Advantages of NIR Spectroscopy 
 

        NIR spectroscopy has many advantages over other vibrational spectroscopic 

techniques and classical methods. It can be used in many different fields such as 

agriculture, pharmaceutical, biotechnology and food industry because of its advantages. 

It offers on-line process control, non-invasive analysis. It is a non-destructive analytical 

technique with high-speed quantitative analysis without consumption or manipulation of 

the sample. In addition, NIR spectroscopy provides a low cost instrumentation with 

high signal-to-noise (Özdemir and Öztürk 2007, Font, et al. 2006). 

 

2.4. Fourier Transform Infrared (FTIR) Spectroscopy 

 
        Infrared spectrometers have been commercially used since the 1940s, at the time 

that instruments depend upon prisms and act as dispersive instruments. Around 1950s, 

diffraction gratings had been introduced into dispersive machines. As a result of the 

improvement in instrumentation, a variety of IR spectroscopic techniques have been 

developed in order to remove the intractable drawbacks of classic dispersive IR 

spectroscopy. Hence, the most significant advances in infrared spectroscopy have come 

with the introduction of Fourier transform infrared (FTIR) spectroscopy. When 

compared with classic dispersive IR spectroscopy, FT-IR spectroscopy no longer 

measures one wavelength after the other, but applies an interferometric modulation of 

radiation. This type of instrument employs an interferometer and exploits the well 

established mathematical process of Fourier-transformation). Fourier-transform infrared 

(FTIR) spectroscopy has improved the quality of infrared spectra and minimized the 

time required to obtain data. FTIR spectrometers have been much more common than 

the traditional dispersive instruments. The working mechanism of a Michelson 

interferometer in an FTIR spectrometer is shown schematically below in Figure 2.3 

(Ingle 1988, Smith 1996). 
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Figure 2.3. A schematic diagram of a FTIR spectrometer 

 

 The Michelson interferometer is a device designed by Michelson similar to an 

interferometer that is used for modulating optical radiation. The Michelson 

interferometer splits a beam of radiation into two beams in nearly same power and then 

recombines them in such a way that intensity is kept as it is. As shown in the Figure 2.5, 

IR radiation from the source is split into two beams by a beam splitter, which is a plate 

whose surfaces are partly reflecting. The beam from the source which passes straight 

through (the solid line) reflects off a fixed mirror and then this beam is diverted towards 

the detector by the beam splitter. The beam which is reflected by the splitter (the dashed 

line) reflects off the moving mirror, passes through the splitter and then on to the 

detector. The key thing about this arrangement is that, by the time they arrive at the 

detector, the two beams have different traversed different path lengths. Furthermore, by 

moving one of the mirrors, we can alter the path length of one of the beams; in the 

diagram above, it is the dotted beam whose path length can be changed. In the FT-IR 

spectrometers, the interference patterns of the modulated signals from interferograms 

are amplified, digitised, electronically stored and finally transformed into a spectrum by 

the fast fourier transform (FFT) algorithm. Therefore, the Fourier transformation can be 

considered simply as a mathematical means of extracting the individual frequencies 

from the interferogram for final representation in an IR spectrum (Skoog and Leary 

1992, Smith 1996). 

 

 

Moving 
mirror 

  Beam 
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2.4.1. Advantages of FTIR Spectroscopy 

 
           The FTIR spectrometers have much greater sensitivity than conventional 

dispersive instruments for three major reasons. The first is the absorption at all 

wavelengths is recorded at the same time, rather than scanning through the spectrum so 

that more efficient use is made of the experiment time. This is called the multiplex or 

Fellgett advantage. The second is the Throughput or Jacquinot advantage. Since there 

are no narrow slits in FTIR spectrometers, the throughput of light is much greater than 

in dispersive instruments. The third is the extremely high wavelength accuracy and 

precision of the FTIR spectrometers which makes signal averaging possible. The output 

of the detector can be passed through in integrator so that improves the signal-to-noise 

ratio. These advantages have made FTIR spectrometers substitute to conventional 

dispersive instruments, especially for routine use. Furthermore, the mechanical 

simplicity of the interferometer is also an attractive advantage of FTIR spectrometers 

(Smith 1996, Skoog and Leary 1992). 

 

2.5. Attenuated Total Reflectance Fourier Transform Infrared  

          (ATR -FTIR) Spectroscopy 
    
         The attenuated total reflectance (ATR) technique is used to obtain the spectra of 

solids, liquids, semi solids, and thin films. Different experimental setups of ATR-FTIR 

spectroscopy have been designed, including fiber optics for the study of various 

samples. It is a fast technique which yields a strong signal with only a few micrograms 

of sample and recent ATR devices allow the recording of nanogram quantities (Gayete, 

et al. 2006, Smith 1996). 

 

2.5.1. Principles of ATR -FTIR Spectroscopy 

 
           The ATR- FTIR spectroscopy is executed using an accessory which is mounted 

on the sample compartment of an FTIR. At the heart of the accessory there is a crystal 

of infrared transparent material of high refractive index and on the accessory there are 

mirrors which bring the IR radiation to a focus on the face of the crystal. The crystal 

behaves as a waveguide for the IR radiation that will follow the shape of the crystal. If 
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the crystal has the proper refractive index and the light has the proper angel of 

incidence, the infrared radiation undergoes and reflects off the crystal surface rather 

than leaving it that is called total internal reflection. This is demonstrated in the 

schematic diagram of an ATR accessory in Figure 2.4.  

 

       Pressure 

 
 

 

Figure 2.4. A schematic diagram of an ATR accessory 

 

 There are several internal total reflections occur within the crystal until the beam 

reaches the end. It can be shown from Maxwell’s equations that superimposition of 

incoming and reflected waves yields a standing wave within the crystal established 

normal to the totally reflecting surface. The beam is completely reflected when it 

collides on the surface of the crystal. The IR radiation reflects with a critical angle, θc, 

depends on the refractive index of the crystal n1, and of external medium, n2, can be 

presented as:  

 

                                                          θc= sin-1n21                                                          (2.8)  
 

Furthermore, when the radiation is inside the crystal, a standing wave of radiation is set 

up which is called evanescent wave. The evanescent wave is attenuated by the sample’s 

absorbance that the name attenuated total reflectance (ATR) came from. Evanescent 

wave is characterized by its amplitude which falls exponentially with the distance from 

the interface represented as: 

 

                                                          E =E0 e-z/dp                                                                                        (2.9) 

Sample

  Detector IR beam
ATR crystal

Evanescent wave 
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where E0 is the time averaged electric field intensity at the interface, E is the time 

averaged field intensity at a distance z from the interface in the rarer medium and dp is 

the penetration depth of the evanescent field which is given by: 

 

                                              dp = 2/1
12

22 )(sin2
1

n−θπ
λ                                      (2.10) 

 

where λ1 = λ/n1 and n21 = n2/n1. The larger λ or the smaller θ, the larger the penetration 

depth. From this equation it can be drawn that the sample has to be in close contact with 

the crystal. In addition, from Equation 2.10 the band intensity will depend on the 

wavelength since the penetration depth, and so the interaction with the sample, increases 

with λ (Carolei and Gutz 2004, Smith 1996). 

 

2.5. Molecular Fluorescence Spectroscopy 

 
        Fluorescence spectroscopy has become a popular spectroscopic technique due to its 

high sensitivity and selectivity. Fluorescence spectroscopic measurements can be 

carried out from simple of steady-state emission intensity to quite sophisticated time-

resolved measurements. Although, fluorescence measurements do not provide detailed 

structural information fluorescence spectroscopy is gaining interest in many areas of 

science for quantitative analysis of complex mixtures with the help of chemometrics. 

Fluorescence occurs in simple as well as in complex gaseous, liquid, and solid chemical 

systems. While fluorescence can be observed from almost all molecules with an 

excitation beam in adequate intensity only a small part of molecules demonstrate 

fluorescence characteristics which are desirable for the analytical purposes. Therefore, 

fluorescence spectroscopy is less universal than absorption techniques although it is 

more selective. However, in some applications in terms of its lower detection limits and 

greater selectivity, fluorescence spectrometry is a preferred technique than molecular 

absorption spectrometry (Valeur 2002, Ingle 1988). 
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2.5.1. Theory of Fluorescence Spectroscopy 

 
            Fluorescence is a radiational transition between electronic states of the same 

multiplicity and involves a singlet-singlet transition which is illustrated by a simple 

Jablonski diagram in Figure 2.5.  

   

Figure 2.5. A simple Jablonski energy diagram for fluorescent molecules 

       

        In this diagram, the electronic singlet states S0, S1 and S2 along with three 

vibrational energy levels are shown. hvA and hvF symbolizes absorption and 

fluorescence, respectively. Fluorescence occurs from the ground vibrational state of S1 

to various vibrational levels in S0 or to higher vibrational levels in the S1 level. It can 

also occur from S2 to S0 level. Fluorescence usually appears at longer wavelengths than 

absorption as absorption transitions are higher excited electronic states. The internal 

conversion resulting in fast transition when a molecule relaxes from the second 
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vibrational level of S2 to the first excited singlet state of S1. Emission occurs from the 

lowest vibrational level of the lowest excited singlet state because relaxation from the 

excited vibrational levels is much faster than emission. Therefore fluorescence spectrum 

is generally independent of the excitation wavelength. After emission the molecule 

returns to the ground state. This completes the simplest case of fluorescence: excitation, 

internal conversion, emission and relaxation (Skoog and Leary 1992, Ingle 1988). 

 

2.5.2. Instrumentation 

 
        All fluorescence instruments contain three basic items including a source of light, a 

sample holder, excitation and emission monochromators, and a detector. To be of 

analytical use, the wavelength of incident radiation needs to be selectable and the 

detector must be capable of precise manipulation and presentation. The schematic block 

diagram of a typical fluorescence spectrometer is shown in Figure 2.6. 

     

  

 

Figure 2.6. A schematic diagram of a fluorescence spectrometer 

 

          Simple fluorescence spectrometers have a means of analysing the spectral 

distribution of the light emitted from the sample, the fluorescence emission spectrum, 

which may be by means of either a continuously variable interference filter or a 

monochromator.  In more sophisticated instruments, monochromators are provided for 

both the selection of exciting light and the analysis of sample emission. Such 
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instruments are also capable of measuring the variation of emission intensity with 

exciting wavelength, the fluorescence excitation spectrum. The greatest sensitivity can 

be achieved by the use of filters, which allow the total range of wavelengths emitted by 

the sample to be collected, together with the highest intensity source possible. Filter 

fluorimeters, the wavelengths of excited and emitted light are selected by filters which 

allow measurements to be made at any pair of fixed wavelengths. In practice, to realize 

the full potential of the technique, only a small band of emitted wavelengths is 

examined and the incident light intensity is not made excessive, to minimize the 

possible photodecomposition of the sample. 

Different modes of excitation are illustrated in Figure 2.7. To the left, a dilute 

solution, to the middle, concentrated solution or solid sample and to the right 

transparent solid sample in a standard 1 x 1 cm cuvette are shown. 

 

                     
Figure 2.7. Three modes of excitation in a standart cuvette 

 

Most measurements are done as the left way. Horizontal arrow illustrates 

excitation light and the vertical arrow fluorescence. In very concentrated solutions all 

the light gets absorbed right at the edge of the cuvette and the measured intensity drops 

very fast across the cuvette. In this case front-face illumination can be used, as shown in 

the middle. With the front-face illumination, there is a risk that the reflected light from 

the surface and back surface interfere with each other to give regular peaks. Moreover, 

large amounts of light may be reflected directly into the emission monochromator that 

may result in large amount of stray light. 

 

2.5.3. Excitation Emission Matrix Fluorescence (EEMF) and 

          Synchronous Fluorescence Spectrometry 
 

           For the analysis of multifluorophoric systems the widely used methods are the 

excitation emission matrix fluorescence (EEMF) spectroscopy and synchronous 
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fluorescence spectroscopy (SFS). EEMF spectroscopy is a rapid and inexpensive 

technique. The EEMF analysis provides a “fingerprint” consisting of a 3-D emission-

excitation intensity diagram. This “fingerprint” along with multivariate calibration can 

be used for the qualitative and quantitative information about the multifluorophores 

present in the sample. The data generated by EEMF (fluorescence emission spectra 

measured at several excitation wavelengths for several samples) method, having at least 

three dimensions, can be considered as one of the most suitable types of data for N-

dimensional analysis. EEMF provides a three-way data set, in which each sample gives 

rise to a data matrix (Divya and Mishra 2006). 

         Synchronous fluorescence spectroscopy is a highly sensitive and simple technique. 

In synchronous fluorescence (SYF) spectroscopy both the excitation and emission 

monochromators are simultaneously scanned at a constant wavelength interval between 

emission and excitation wavelengths (Δλ), so that spectral overlaps are reduced and the 

spectra is simplified (Poulli, et al. 2006). 
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CHAPTER 3 

 

MULTIVARIATE CALIBRATION USED IN 

SPECTROSCOPY 
 
         In the past, performing chemical analysis was tiring and time consuming as 

analytical instruments were primitive and most analyses were carried out using wet 

chemistry. Nevertheless, over the years, enormous developments in spectroscopy, has 

allowed analytical chemists to obtain both quantitative and qualitative information 

about a sample of interest.  The information of an analyte that is desired to know is 

usually its chemical quantity or concentration in quantitative analysis. However, this 

cannot be measured directly with the use of spectroscopic techniques. Because direct 

measurements are impossible with spectroscopic analysis, a calibration process is 

required. Thus, the concentration of the analyte, x, can be indirectly determined by the 

calibration function y = f (x), with the use of another physical quantity, y. The physical 

quantity is measured on a selected number of samples (standards) where the content of 

the analyte is known. Frequently the calibration function is linear and can be obtained 

by an mathematical model relating the measured quantities with the corresponding 

chemical quantities: 

 

y = a+ bx                                                                 (3.1) 

 

where a and b are the regression coefficients, intercept and slope of the straight line. 

Finally, in order to obtain the value of the unknown sample concentration of the new 

sample, the inverse of Equation 3.1 is used: 

 

                                                       x = (y-a)/b                                                            (3.2) 

 

In addition, calibration is an important step in chemical analysis since a good accuracy 

and precision can only be achieved with a good calibration model. There are many 

different calibration methods have been developed for spectrochemical analysis and 

generally they are divided into two types as univariate and multivariate calibration 
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methods. While univariate calibration is useful to determine the concentration of a 

single compound using one wavelength, multivariate calibration provides possibility to 

determine the concentration of a multi-component mixture using all or several of the 

wavelengths instead of one wavelength. Before understanding the development of 

multivariate calibration method, it is useful to investigate the univariate calibration 

methods (Massart, et al. 1988, Brereton 2003). 

 

3.1. Univariate Calibration Methods 
 

        Univariate calibration which is described as zero-order calibration, involves the use 

of single measurements from an instrument that all observations or responses depend on 

a single variable, x. It is usually called as simple linear regression which is the simplest 

method for obtaining concentration information from the instrument data. This method 

is generally have been used for quantitative analysis in many spectroscopic techniques 

such as UV-Vis, IR and NIR spectroscopy, where the relationship between the 

concentration of an analyte and the instrumental response is expressed by Lambert 

Beer´s law. This calibration method also requires that the instrument’s response only 

depend on the analyte of interest without interference. Univariate calibration process is 

divided into two steps called calibration and prediction. The first step includes a data set 

that contains measurements on a set of known samples which is called as training or 

calibration set. This step is the most time consuming step in terms of preparing this set 

of known samples named reference samples. The calibration set consists of an 

absorbance matrix containing instrumental spectra that are previously measured and a 

concentration matrix containing concentration values which have been determined by a 

reliable, independent method (Massart, et al. 1988). 

       The absorbance matrix consists of spectral data, can be illustrated with the use of 

row-wise organization where each spectrum is placed as a row vector: 
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A11    A12    A13  ...  A1x 

A21    A22    A23  ...  A2x 

...      ...      ...    ...   ... 

Am1    Am2   Am3  ... Amx 

 

Figure 3.1. Absorbance matrix 

 

where Amx is the absorbance for sample m at the xth wavelength. Similarly the 

concentration matrix consists of the concentration data, can be illustrated through a row 

vector: 

 

C11    C12    C13  ...  C1n 

C21    C22    C 23  ... C 2n 

...      ...     ...    ...   ... 

Cm1   C m2   C m3 ... C mn 

 

Figure 3.2. Concentration matrix 

 

where Can is the concentration for sample m of the nth component (Kramer 1998). 

         The calibration or training set is used to develop a calibration model in order to 

predict the analyte concentration of an unknown sample in the second, prediction step. 

This step is demonstrated in Figure 3.3. 

 

       

                      x (Concentration) 

                                        Predicted concentration 

Figure 3.3. A calibration graph for a set of unknown sample 
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(Absorbance) 
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For a univariate calibration model, the instrumental response, s, at a constant 

frequency is related to the analyte concentration, c, can be represented by the calibration 

function as: 

 

                                              s = f (c)+ es                                                                                     (3.3) 

                                                                                                                                 

where es is the error associated with the instrument response. 

          In spectroscopic analysis, the relationship between instrument response and 

analyte concentration described by f (c) is assumed to be linear according to Beer’s law 

which states that the measured absorbance value for a given spectral band of an analyte 

of interest is proportional to the analyte concentration at maximum absorbing 

wavelength or wavelengths. The most common univariate calibration methods are the 

classical and inverse univariate calibrations according to this linear relationship between 

the instrument response and analyte concentration (Massart, et al. 1988, Brereton 2003). 

 

3.1.1. Classical Univariate Calibration  

 
The classical univariate calibration method uses the statistical model, which 

assumes Beer’s law. This model can be demonstrated by the equation as: 

 

                                     ai = b0+ b1 ci +ei                          (3.4) 
 

where the instrumental response and analyte concentration for ith sample of m 

calibration samples are represented by ai and ci, and the error associated with 

instrumental response for each analyte is represented by ei, which is often called as 

residual. In ideal case, there is no error and this equation gives a straight line where b0 

and b1 are the intercept and slop. In fact, there is no such an ideal case in practice and 

there is always some kind of error associated with instrumental response. Hence, the 

common practice in quantitative spectroscopic analysis is plotting the instrumental 

responses against the analyte concentration for a set of m calibration sample and 

producing a straight line that is best fit to the plotted data by estimating b0 and b1 using 

the method of least squares. The least squares estimates of b0 and b1 are found by 

minimizing the sum of the squares (SS) of the residuals. The sum of the squares (SS) 

function can be defined by rearranging Equation 3.4 for m calibration sample as: 
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     Minimizing SS, which means producing the least possible value of SS needs to be 

taken its partial derivatives with respect to b0 and b1 that are being estimated and the 

results are set to zero as:  
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Thus, the estimates of  b0 and b1 can be solved by these two equations: 
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Then from these equations we receive: 
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These equations are defined as normal equations and solution of them gives the least-

squares estimates of  b0 and b1: 
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and                                                                                                                                                                

                                                       cbab 10 ˆˆ −=                                 (3.15)   
 

where a  is the mean value of instrumental response and c  is the mean value of analyte 

concentration for m calibration samples. Then the estimated calibration equation can be 

written as: 

 
                                    cbba 10

ˆˆˆ +=                            (3.16) 
 

and the concentration of an unknown sample can be defined as: 
 

                                  
1
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=                                  (3.17) 

 

where cu is the unknown analyte concentration and au is the instrument response of this 

analyte. The correlation coefficient (R2) is a numerical measure, which usually called as 

the multiple correlation coefficient. R2 expresses the strength of the linear relationship 

between c and a, and can be calculated as: 
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     From this equation a unit free number can be defined. The values for R2 range from 

0 to 1 should as close as 1 for the best fitted straight line. The method of least-squares 

can also be described using matrix algebra. The model represented for classical 

univariate calibration can be written as matrix equation by: 

 

                           aeC βa +=                              (3.19) 

 

where a is the m x 1 vector of instrument responses, C is the m x 2 matrix of analyte 

concentrations, β is the 2 x 1 vector of regression parameters (b0 and b1) and ea is the m 

x 1 matrix of the errors or residuals not fit by the model. The first column of the C 

matrix is a vector of ones, which is necessary to estimate b0 when the multiplication is 

performed. The two normal equations given in Equation 3.6 can be described in matrix 

notation by: 

 

                             ( ) aCβCC ⋅′=⋅⋅′                          (3.20)    

 

Then the least-squares solution of this equation is: 

 

                               ( ) aCCCβ 1 ⋅′⋅⋅′= −ˆ               (3.21) 

    

where β̂ is the 2 x 1 vector of least squares estimates, b0 and b1, which are solved earlier 

in Equation 3.5 using the sum of squared residuals being minimized (Massart, et al. 

1988, Brereton 2003). 
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3.1.2. Inverse Univariate Calibration 
 
           Although classical univariate calibration is the most widely used method in 

analytical chemistry, it is not always the most suitable approach in terms of two reasons. 

First reason is that in the classical univariate calibration, though, the concentration is 

predicted from the instrumental response, inverse of this approach is impossible. 

Classical univariate or direct calibration relates to the regression of the responses on the 

concentrations, whereas inverse calibration relates to the regression of the 

concentrations on the responses. The second reason depends on the error distributions. 

The errors not fit by the model are usually due to the independent variable, often 

concentration. Classical calibration constructs a model where all errors are in the 

response Figure 3.4.a. However, after the developments in instrumentation, the more 

appropriate assumption indicates that errors are primarily in the measurement of 

concentration Figure 3.4.b.  

 

 
 

Figure 3.4. Errors in classical (a) and inverse (b) calibrations 

 

      All of these reasons arise the need for inverse univariate calibration method. The 

inverse calibration method assumes the inverse Beer’s law and the statistical model is 

represented by:  

 

                                           iioi eappc +⋅+= 1                                            (3.22) 

 

a) b) 
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where ei is assumed to be the error associated with the reference value ci. In the 

calibration step, the model parameters (po and p1) are estimated by the method of least-

squares described earlier. The following equations represent the estimated model 

parameters that are the slope and the intercept of the calibration line. 
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                                      and 
 
                                                     apcp o ⋅−= 1ˆˆ                           (3.24) 
 
where a  and c  are the mean values of instrumental responses and analyte 

concentrations, respectively for m calibration samples. Now the estimated calibration 

equation can be written as: 

 
                                           appc ⋅+= 10 ˆˆˆ                           (3.25) 
 

In the prediction step, concentration of an unknown sample can be calculated by: 

 
                                        uou appc ⋅+= 1ˆˆ                (3.26)  
 
where cu is unknown analyte concentration and au is instrument response for that 

sample. Although the predictions acquired by classical and inverse calibration methods 

will be different for a sample of interest, in many cases they are not significant. The 

selection of appropriate univariate calibration method depends on whether the reference 

values of known samples in other words calibration standards or the instrument 

responses which are more precise. Although univariate calibration methods offer 

simpleness for specific types of applications where selective measurements can be 

found or where the analyte contains no interferences, their applications are limited due 

to its disadvantages. A disadvantage of univariate calibration methods is in terms of the 

interference free systems which are rarely met in real applications and another is in 

terms of the concentrations of the interfering species which are usually unknown and 

their amounts in sample are not always the same. Moreover, a problem with the use of 

univariate calibration methods is lack of the constant baseline for every measurement.  
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        In recent years, calibration methods have been increasingly more effective with 

today's powerful computing resources give the chance to fast quantitative determination 

of samples which include more than one compenents with complex spectral data. 

Several different multivariate calibration methods are available in the analysis of such 

as complex mixtures which have great deal of interference (Brereton 2003). 

 

3.2. Multivariate Calibration 
 

         Spectroscopic techniques require the application of multivariate calibration 

methods to model instrumental responses of a complex sample of interest due to the 

complexity of their spectra that makes direct interpretation impossible. In addition, 

multivariate approaches are necessary in order to obtain all the chemical information 

contained in the spectral variables. Indeed, multivariate calibration is important because 

it deals with the data containing instrument responses measured on multiple 

wavelengths for a sample that usually contains more than one component. In addition, 

multivariate calibration methods are required when the relationship between the 

analytical signal and the analyte of interest is nonlinear for the analysis of complex 

mixtures. Major advantage of multivariate calibration is that the analysis of complex 

mixtures can be achieved without any separation or extraction. The multivariate 

calibration methods are the classical least squares (CLS), inverse least squares (ILS), 

principle component analysis (PCA), principle component regression and partial least 

squares (PCR and PLS), genetic regression (GR), genetic classical least squares 

(GCLS), genetic inverse least squares (GILS), and genetic partial least squares (GPLS). 

The choice of the most suitable calibration method is very important in order to generate 

the best calibration model (Massart, et al. 1988, Brereton 2003). 

 

3.2.1. Classical Least Squares 
 

       Classical least squares (CLS) model is described by the classical Beer's law in 

matrix form as: 

 

                                             AECKA +=                             (3.27) 
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where the absorbance is a function of component concentration and is directly 

proportional to the component concentration for m calibration samples with n 

wavelengths. In this equation, A is the m x n matrix of the calibration spectra, C is the m 

x l matrix of component concentrations, K is the l x n matrix of absorptivity-pathlength 

constants and EA is the m x n matrix of the spectral errors or residuals not fit by the 

model. Model errors are assumed to be in the measurement of the instrument responses 

as it was in the classical univariate method. The K matrix represents the first order 

estimates of the pure component spectra at unit concentration and unit pathlength. The 

method of least-squares can be used to estimate K matrix. The least-squares estimate of 

the K is defined as: 

 

                                       ACC)C(K 1 ′′= −ˆ                                                 (3.28) 

          

    Then the estimated K̂ matrix can be used to obtain the concentrations of an unknown 

sample from its spectrum by: 

 

                                                 aK)KK(c 1 ˆˆˆˆ −′=                                                     (3.29) 

           

where a is the vector of unknown sample spectrum and ĉ is the vector of predicted 

component concentrations. 

 The model of classical multivariate calibration points out that in order to 

construct a good model, all the species present in a given sample need to be known 

included in the calibration step, in the C matrix. This is the major disadvantage of the 

CLS method since generally concentrations of all species are not known exactly, so the 

instrument response due to this interfering species can not be modeled thereby causing a 

large error. However, when the content of the sample is precisely known, CLS offers 

several advantages as this method can use the full spectrum to build the calibration 

model compared to the methods that are restricted to single or a small number of 

wavelengths. Furthermore, in CLS, estimated pure component spectra along with the 

residuals and simultaneously fitted spectral base lines made this method preferable. 

Beside advantages of CLS method, the major disadvantage of it, is that all species in the 

sample and their concentrations included in the model must be known. This need can be 

eliminated by using Inverse least squares (ILS) method. 
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3.2.2. Inverse Least Squares 
 

Inverse least squares (ILS) model as understood from its name, is described by 

inverse Beer’s law for m calibration samples with n wavelengths as: 

 

                                     CEAPC +=                                                         (3.30) 

 

where C and A are the same as in CLS, P is the n x l matrix of the unknown calibration 

coefficients relating l component concentrations to the spectral intensities and EC is the 

m x l matrix of errors in the concentrations not fit by the model. As can be seen, 

according to the model, concentrations of the analyte is a function of absorbance. Since 

modern spectroscopic instruments provide excellent signal-to-noise (S/N) ratios, it is 

assumed that the great deal of errors lie in the reference or calibration samples, not in 

the instrumental measurement. The major advantage of ILS is that the equation 3.24 can 

be reduced for the analysis of single component because of the analysis based on the 

ILS model is constant respect to the number of components in the sample. The reduced 

model is given as: 

 

                                     ceApc +=                                                              (3.31) 

            

where c is the m x 1 vector of concentrations for the analyte that is being analyzed, p is 

n x 1 vector of calibration coefficients and ec is the m x 1 vector of concentration 

residuals not fit by the model. During the calibration step, the least-squares estimates of 

p also called the estimated calibration coefficients symbolized as p̂  can be calculated 

as: 

 

                                cAA)A(p 1 ⋅′′= −ˆ          (3.32) 

         

       Then from this equation the concentration of the analyte can be predicted as: 

 

                                      pa ˆˆ ⋅′=c          (3.33) 
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where ĉ  is the scalar estimated concentration and a is the spectra of the unknown 

sample. The ability to predict one component at a time without knowing the 

concentrations of interfering species has made ILS one of the most preferable 

calibration method (Özdemir 2006).  

           The major disadvantage of ILS as illustrated in Equation 3.30 is that the matrix, 

which must be inverted has the dimensions equal to the number of wavelengths in 

spectra and this number can not exceeded the number of calibration samples. This is a 

big restriction since the number of wavelengths in a spectrum will generally be more 

than the number of calibration samples and selection of wavelengths that provides best 

fit for the model is an important part of the process. Collinearity of wavelengths that are 

not independent of each other, is also a problem, as it increases the spectral overlaps. 

Thus, the full spectrum advantage of CLS, where precision of the analysis is 

significantly improved is impossible with ILS. Several wavelength selection ways such 

as stepwise wavelength selection and all possible combinations are available to build an 

ILS model that fits the data best. However, if there is overfitting of the data, even a 

good calibration model would not produce reasonable predictions. 

         In last years, new calibration methods have been developed which use genetic 

algorithms (GAs). These methods are available to solve the calibration problems in 

many fields in spectroscopy. One of the new calibration method involving GAs is the 

Genetic Inverse Least Squares (GILS). Before understanding this new technique it is 

useful to explain the principle and importance of GAs.   

 

3.3. Genetic Algorithms 
 

  The term Genetic Algorithm (GA) describes optimization methods which are 

effective to solve complex problems such as wavelength selection problems from a 

large spectrum of data whereas the conventional methods cannot offer a sufficient 

solution to this problem. As the name suggests, the processes employed by GAs are 

based on natural evolution and selection. According to this processes a population of 

possible solutions to a problem is generated. These processes imitate those in nature so 

that subsequent populations fit better and adapt in their environment and are passing 

their genetic informations to their offspring as a result of breeding. On the contrary, 

who are not fit and adapt in their environment will be eliminated from the population. 
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As a long period of time progresses, generations become better suited to their 

environment and provide more optimal solutions. Computational approach of a typical 

GA is quite simple and includes five basic steps as shown in Figure 3.5.  

 

                            
Figure 3.5. Flow chart of a genetic algorithm 

 

 

      These steps consist of initialization of a gene population, evaluation of the 

population, selection of the parent genes for breading and mating, crossover and 

replacing parents with their offspring. The name of these steps arise from the biological 

feature of the genetic algorithm. 

 

3.4. Genetic Inverse Least Squares (GILS) 
     

GILS is a modified version of the ILS multivariate calibration model. As mentioned 

before GILS method uses GAs in the selection of the wavelengths to create a calibration 

model with reduced data set. A gene is a potential solution of a given problem which 

changes from application to application. In the GILS method, the term ‘gene’ is referred 

as the collection of instrumental response at the wavelength range of the data set. Each 

  Evaluate & rank the population 

Selection of the genes for breeding 

 Crossover & replacing parent genes 
               with their offspring 

        TERMİNATE ? 

 Selection of the best gene 

YES
NO 

Initialization of gene population 
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gene produces a subspectrum at a few wavelengths of the full spectrum, which relates to 

the component concentration. The term ‘population’ is referred as the collection of 

individual genes in the current generation. 

     GILS, which is unique in the encoding genes, depends on the same basic GAs steps 

of  initialization, evaluation, selection, crossover and replacing.  

 

3.4.1. Initialization 
 

       The initialization step is the first step where the first generation of genes are 

randomly created with a fixed population size. The number of the gene pool size is a 

user optional parameter which allows breeding of each gene in the population. Hence, 

as the population size is larger, the computation time is longer since the large number of 

genes result in lower computation speed. The number of instrumental responses found 

in a gene is determined randomly between a fixed low limit and high limit. The lower 

limit was set to 2 to allow single point crossover whereas the higher limit was set to 

eliminate overfitting problems and reduce the computation time. 

 
3.4.2. Evaluate and Rank the Population 

 
      After the initilization of a gene population the next step is to evaluate and rank 

these genes with the use of a fitness function. The value of the fitness function of the 

each gene also show their success for the calibration model. The value of the fitness 

function is obtained by the inverse of the standard error of calibration (SEC): 

 

                                                  Fitness = 1/SEC                                                        (3.34) 

The SEC is calculated from the derivative of the standart error (SE) as: 
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where iĉ  and ci are the predicted and known analyte concentrations for m samples and 

df  is the degrees of freedom, which is given by: 
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                                     df = m-k                                                         (3.36) 

 

where k is the number of parameters extracted from the data set. In a calibration data 

set, for a linear model it is assumed that there are two parameters to be extracted. These 

parameters are the slop of the line and the intercept. In this case, the degrees of freedom 

would be equal to m-2. Thus, the standard error of calibration (SEC) is represented as: 
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if m-2 is replaced in the Equation 3.35 for the term df . 

 

3.4.3. Selection of the Genes for Breeding 
 

       The third step depends on the selection of the parent genes from the current 

population for breeding. The selection is made by using a selection method according to 

their fitness values. The aim of a selection method is to give the genes higher chance to 

breed with higher fitness values so that the best performing genes of the population will 

survive and will generate better offspring to pass their information to the next 

generations. Therefore, the genes with the low fitness values will have lower chance to 

breed and as a consequence, most of them will be unable to survive. 

      There are many selection methods that can be used for the selection of parent genes. 

The simplest selection method is the top down selection where the genes are allowed to 

mate after they ranked in the current population in a way that the first gene mates with 

the second gene, the third gene with the forth one and so on until all genes of the current 

population got a chance to breed. Another selection method, which is used in the GILS 

is the Roulette wheel selection method. In this method an imaginary roulette wheel is 

constructed with different size of segments where each segment illustrates a gene as 

shown in the Figure 3.6. The selection is made randomly by rotating the wheel a 

number of times that is equal to the population size. It is expected that the gene with the 

highest fitness value has the biggest segment, on the contrary, the lowest value has the 
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smallest segment. Thus, when the wheel is rotated there is higher chance of being 

selected for a gene with higher fitness value than for a gene with a low fitness value. 

When the wheel stops the segment of a gene which the selection point shows is 

selected. In this segment there will be also the genes, which are selected multiple times 

while some of them will not be selected at all and will be removed from the gene pool.    

                                                 

                                                             Wheel is rotated   

 

             Lowest chanced gene with 
                                                                                smallest segment of the roulette wheel 
Highest chanced gene with biggest  
segment of the roulette wheel 
                                                                             

Figure 3.6. Roulette wheel selection 

 
 
3.4.4. Crossover and Replacing Parent Genes by Their Offspring 

 
       After the selection of parent genes is completed, all of them are mating to produce 

their offspring by crossing over until there is no more rest. For example, if two parent 

genes of  S1 and  S2 are to be selected, the first part of S1 is combined with the second 

part of S2 likewise the second part of S1 is combined with the first part of the S2 to 

produce the offspring S3 and S4 as illustrated in Figure 3.7.                                                                         

 Selection 
 point 
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Figure 3.7. Mating of the parent genes 

                   

            Here A represents the instrument response at the given wavelength which is 

represented with the subscript of A. After crossover procedure, the parent genes are 

replaced by their offspring and the offspring are evaluated. Following the evaluation 

step they are ranked according to their fitness values and then the circle of selection for 

breeding and mating starts all over again. This is repeated until the number of the 

predefined iteration value is finished. 

        Finally, the gene with the lowest SEC, in other words with the highest fitness value 

is selected to build a calibration model in order to predict the concentrations of 

components being analyzed in the prediction sets (validation sets). The success of the 

model in the prediction sets is evaluated according to the standard error of prediction 

(SEP) values, which is calculated as: 
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where m is the number of prediction (validation) samples (Özdemir and Dinç 2005). 
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3.5. Advantages of GILS 
 

  GILS is a preferred multivariate calibration method in terms of its some major 

advantages over the other calibration methods either univariate or multivariate. One of 

the advantage is its simplicity in the mathematics of the model building and prediction 

steps. In addition, it has the advantage of the multivariate calibration methods related to 

the selection of a small data set of wavelengths from a full spectral data set and solve 

the wavelength selection problems. Nevertheless, selecting reduced data set of 

instrument responses makes it possible to eliminate nonlinearities that might be present 

in the full spectral region (Özdemir and Betül 2007). 
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CHAPTER 4 

 

DETERMINATION OF DIESEL ADULTERATION 

BY NIR SPECTROSCOPY COMBINED TO 

MULTIVARIATE CALIBRATION 
 

         NIR spectroscopy has found a wide application area in fuel analysis. The chemical 

stability of NIR spectroscopy in different solvents and the high light throughput 

provided by its optical fibers is the main factor for its large application in fuel analysis 

(Kelly, et al. 1989, Parisi, et al. 1990, Zetter, et al. 1993, Cooper et al. 1996, Breitkreitz, 

et al. 2003, Mendes et al. 2003) including on line monitoring of fuels (Parisi, et al. 

1990, Zetter, et al. 1993, Kim, et al. 2000). 

         This  spectroscopic method when combined to multivariate calibration have been 

demonstrated to be an effective technique in the analysis of fuel samples such as diesel 

(Santos 2005, Breitkreitz 2003, Lima and Borges 2002) and kerosene (Chung, et al. 

1999, Garrigues, et al. 1995) since it presents good accuracy and precision besides 

being faster than the usual methods such as filter test (Roy 1999), density test (Yadav, et 

al. 2005), and American Standarts for Testing Materials (ASTM) methods (Oliveira et 

al. 2007, Roy 1999). 

        Since the use of NIR spectroscopy combined to multivariate calibration in the 

quantitatively determination of biodiesel and vegetable oils that are not converted to 

biodiesel in petroleum diesel is very recent, several reports can be found in the 

literature. Santiago et al. and Aliske et al. (2007) reported that the determination of 

biodiesel-diesel mixtures concentrations is possible by using NIR spectroscopy. 

Pimentel et al. (2006) determined the concentration of biodiesel in blends with 

petroleum diesel, in the presence of raw vegetable oil by NIR spectroscopy combined to 

multivariate calibration methods. Oliveira et al. (2007) used FT-NIR spectroscopy 

combined to multivariate calibration methods to determine the presence of vegetable 

oils and biodiesel in petroleum diesel. The aim of this study was to determine the 

content of different vegetable oils, used frying oil, biodiesel, and kerosene in petroleum 

diesel by NIR spectroscopy combined to multivariate calibration. 
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4.1. Instrumentation and Data Pre-Processing 

 
         In this study near-infrared spectroscopic analyses were performed by a FTS-3000 

NIR spectrometer (Bio-Rad, Excalibur, Cambridge, MA). Spectra were taken between 

4,000 and 10,000 cm-1 wavenumber range with a wavelength interval of 4 cm-1. This 

spectrometer was equipped with 250 W tungsten-halogen lamp as a source, calcium 

fluoride (CaF2) as a beam splitter, and lead selenide (PbSe) as a detector. Resolution 

was optimized to the 16 cm-1 and 128 scans were done. Samples were held in a 1.00 cm 

pathlength infrasil quartz sample holder from Starna (Atascadero, CA). Backround was 

taken with an empty infrasil quartz sample holder. Triple measurements have done for 

each sample and the means of the measurements were used in multivariate analyses. All 

spectra collected from the instrument were transfered to a computer to develop a 

calibration model for the prediction. Microsoft Excel (MS Office 2003, Microsoft 

Corporation) program was used to prepare the text files for calibration and validation 

sets, which are required to employ and test the multivariate calibration method used in 

this study. The genetic algorithms based genetic inverse least squares (GILS) 

multivariate calibration method was written in MATLAB programming language using 

Matlab 5.3 (MathWorks Inc., Natick, MA) and employed to set up the calibration 

models. The first step in the development of a calibration model is the design of 

calibration set. In the design of calibration set it is important to chose the samples that 

have maximum and minimum concentration values. In addition, the success of model in 

prediction can be tested by validation (prediction) set. The samples in calibration and 

validation sets were selected randomly. The unit of concentration values was taken as 

mass percent. 

 

 4.2. Sample Preparation and Design of the Data Sets 

 
         Different diesel adulteration with sunflower, canola oil, used frying oil, biodiesel, 

and kerosene were prepared to determine their content in petroleum diesel blends. 

Sunflower, and canola oils were bought from a local supermarket. Used frying oil was 

acquired from a restaurant in Izmir. Biodiesel was obtained from a company named Ege 

Biotechnology Ltd. (Izmir Institute of Technology, Technopark, TR). Euro diesel, 

diesel, and kerosene were purchased from a service station in Izmir, where the public 
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provides its fuel. In order to construct calibration models four different sets were 

prepared including binary mixture of diesel with sunflower oil and ternary mixtures of 

diesel with sunflower oil, used frying oil, canola oil, biodiesel, and kerosene.          

         The first set involves 30 binary mixtures of sunflower oil and diesel. The 

concentration data corresponding to each component of each set were divided into two 

sets which are called calibration and validation (prediction) sets. Table 4.1 to Table 4.8 

illustrate the concentrations of each component for the calibration and validation sets. 

All concentrations on the tables are given in the mass percentage. The calibration set 

composed of 20 samples, and validation set composed of 10 samples. The 

concentrations of sunflower oil in diesel were in the mass range between 0.65% and 

39.56% and diesel were in the mass range between 60.43% and 99.35%. 

 

Table 4.1. Concentration profile of the calibration samples in the first set 

 
Sample 

No 

Sunflower oil 

(w/w%) 

Diesel 

(w/w%) 

Sample 

No 

Sunflower oil 

 (w/w%) 

Diesel 

(w/w%) 

1 1.50 98.50 11 20.85 79.15 

2 26.23 73.76 12 26.56 73.43 

3 7.15 92.85 13 22.81 77.18 

4 39.56 60.43 14 24.25 75.75 

5 21.18 78.81 15 22.82 77.17 

6 7.10 92.90 16 0.65 99.35 

7 11.20 88.79 17 19.95 80.05 

8 28.76 71.23 18 27.40 72.60 

9 26.95 73.05 19 31.55 68.45 

10 15.20 84.79 20 38.23 61.76 
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Table 4.2. Concentration profile of the validation samples in the first set 

     
Sample 

No 

Sunflower oil 

 (w/w%) 

Diesel 

 (w/w%) 

Sample 

No 

Sunflower oil 

 (w/w%) 

Diesel 

 (w/w%) 

1 2.80 97.20 6 35.91 64.08 

2 18.09 81.90 7 7.35 92.65 

3 24.05 75.95 8 30.10 69.90 

4 35.81 64.18 9 23.48 76.51 

5 2.95 97.04 10 6.90 93.09 

     

         The second set contains 30 ternary mixtures of sunflower oil, used frying oil, and 

diesel. This set includes differently from the first set used frying oil since diesel fuel 

may have possible adulteration with used frying oil that was not converted into 

biodiesel. The calibration set composed of 20 samples, and validation set 10 samples. 

The concentrations of sunflower oil in diesel were in the mass range between 2.15% and 

24.71%, used frying oil were in the mass range between 0.54% and 23.56%, and diesel 

were in the mass range between 52.02% and 93.79%.  

 

Table 4.3. Concentration profile of the calibration samples in the second set 

 

 

 

 

 

Sample 

No 

Sunflower 

oil (w/w%) 

Used frying 

oil (w/w%) 

Diesel 

(w/w%) 

Sample 

No 

Sunflower 

oil (w/w%) 

Used frying 

oil (w/w%) 

Diesel 

(w/w%) 

1 2.89 12.09 85.00 11 7.05 23.56 69.38

2 14.60 5.60 79.80 12 18.15 8.30 73.55

3 16.24 3.94 79.81 13 11.90 19.00 69.08

4 18.70 15.05 66.25 14 24.71 23.26 52.02

5 11.15 12.65 76.18 15 4.80 1.40 93.79

6 20.32 2.64 77.02 16 8.25 0.55 91.20

7 20.21 8.75 71.03 17 20.53 0.54 78.91

8 9.64 14.74 75.61 18 23.28 18.84 57.87

9 3.49 5.09 91.40 19 2.15 9.40 88.44

10 22.25 16.15 61.60 20 11.45 9.30 79.23
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Table 4.4. Concentration profile of the validation samples in the second set 

 
Sample 

No 

Sunflower 

oil (w/w%) 

Used frying 

oil (w/w%) 

Diesel 

(w/w%) 

Sample 

No 

Sunflower 

oil (w/w%)

Used frying 

oil (w/w%) 

Diesel 

(w/w%) 

1 21.18 17.44 61.36 6 5.30 4.70 90.00

2 9.05 6.90 84.03 7 16.59 3.94 79.46

3 3.15 14.55 82.30 8 4.55 18.55 76.88

4 23.08 6.49 70.41 9 5.60 7.85 86.54

5 22.73 0.49 76.76 10 6.74 5.85 87.39

 

         Then the third set was prepared that containes 30 ternary mixture of kerosene, 

euro diesel, and normal diesel due to the possible adulteration of diesel with kerosene. 

The calibration set in the first set composed of 20, validation set 10 samples. The 

concentrations of  kerosene in diesel were in the mass range between 3.99% and  

49.00%, euro diesel were in the mass range between 1.00% and  49.02% and normal 

diesel were in the mass range between 3.90% and 92.00%. 

 

Table 4.5. Concentration profile of the calibration samples in the third set 

 

Sample 

No 

Kerosene 

(w/w%) 

Euro 

Diesel 

(w/w%) 

Normal 

Diesel 

(w/w%) 

Sample 

No 

Kerosene 

(w/w%) 

Euro 

Diesel 

(w/w%) 

Normal 

Diesel 

(w/w%) 

1 45.97 1.00 53.02 11 49.00 32.01 18.98

2 25.98 17.99 56.02 12 30.96 17.95 51.07

3 10.99 4.04 84.95 13 25.93 49.02 25.03

4 34.03 1.04 64.91 14 37.03 47.02 15.94

5 47.00 48.00 5.00 15 3.99 42.97 53.02

6 25.01 11.00 63.98 16 6.00 12.00 81.99

7 47.00 42.05 10.95 17 44.97 7.99 47.02

8 44.97 13.04 41.97 18 15.99 26.03 57.97

9 45.97 50.07 3.95 19 13.95 18.00 68.05

10 36.96 21.96 41.07 20 35.00 9.95 55.05
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Table 4.6. Concentration profile of the validation samples in the third set 

 

Sample 

No 

Kerosene 

(w/w%) 

Euro 

Diesel 

(w/w%) 

Normal 

Diesel 

(w/w%) 

Sample 

No 

Kerosene 

(w/w%) 

Euro 

Diesel 

(w/w%) 

Normal 

Diesel 

(w/w%) 

1 18.99 5.04 75.96 6 12.00 26.96 61.03

2 38.96 16.03 45.00 7 47.05 19.00 33.95

3 15.04 48.97 35.98 8 23.03 19.94 57.02

4 21.97 13.03 64.98 9 42.95 36.05 21.00

5 2.00 5.95 92.05 10 33.00 36.00 31.00

 

     The fourth set consists of 50 ternary mixtures of canola oil, biodiesel (canola oil 

methyl ester), and diesel. The concentrations of canola oil, biodiesel, and diesel were in 

the mass range between 0% and 100%.  

  

Table 4.7. Concentration profile of the calibration samples in the fourth set 

 
Sample 

No 

Canola oil 

(w/w%) 

Biodiesel 

(w/w%) 

Diesel 

(w/w%) 

Sample 

No 

Canola oil 

(w/w%) 

Biodiesel 

(w/w%) 

Diesel 

(w/w%) 

1 100 0.00 0.00 16 9.90 14.61 75.47

2 0.00 100 0.00 17 10.33 67.17 22.49

3 0.00 0.00 100 18 25.97 26.16 47.86

4 37.20 22.88 39.91 19 8.89 47.05 44.05

5 32.43 57.78 9.78 20 39.40 20.30 40.30

6 31.43 25.77 42.79 21 35.75 22.96 41.28

7 5.13 12.83 82.03 22 9.67 38.62 51.70

8 59.71 9.72 30.55 23 36.46 44.05 19.48

9 38.13 2.38 59.48 24 16.61 78.17 5.20

10 11.02 44.99 43.98 25 27.08 24.30 48.61

11 15.74 83.05 1.20 26 33.46 59.11 7.41

12 4.66 40.42 54.91 27 25.94 45.30 28.74

13 16.68 20.36 62.94 28 52.24 32.36 15.38

14 14.57 16.33 69.09 29 2.10 46.28 51.60

15 42.19 57.00 0.79 30 83.11 1.09 15.78
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Table 4.8. Concentration profile of the validation samples in the fourth set 

 
Sample 

No 

Canola oil 

(w/w%) 

Biodiesel 

(w/w%) 

Diesel 

(w/w%) 

Sample 

No 

Canola oil 

(w/w%) 

Biodiesel 

(w/w%) 

Diesel 

(w/w%) 

1 23.84 6.53 69.61 11 57.92 20.12 21.95

2 56.88 9.71 33.40 12 37.40 10.59 52.00

3 17.34 24.30 58.35 13 34.06 9.01 56.91

4 33.57 60.93 5.49 14 67.61 24.78 7.60

5 44.36 23.23 32.39 15 45.55 8.09 46.35

6 72.28 9.03 18.68 16 14.16 42.49 43.33

7 36.62 43.81 19.55 17 50.60 15.20 34.20

8 6.48 63.21 30.30 18 35.42 39.74 24.82

9 41.45 26.49 32.04 19 29.45 37.20 33.33

10 34.09 27.46 38.43 20 24.12 41.44 34.43

 

 

4.3. Results and Discussion 

 
Near infrared spectra of pure sunflower oil, used frying oil, canola oil, biodiesel, 

kerosene, and diesel samples are shown in Figure 4.1 and 4.2. As it can be seen from the 

Figure 4.1 the spectral bands of sunflower oil, used frying oil, canola oil, and biodiesel, 

which was derived from canola oil were overlapped due to their resembling main 

composition. In addition, the spectral bands of kerosene, normal diesel, and euro diesel 

in the Figure 4.2 were also much alike since all of them are petroleum products and 

their main composition is similar. Only small differences exist in some parts of the 

whole spectrum where the spectral bands of kerosene can be distinguished around 5000-

5500 cm-1 wavenumber region. The overlapping of spectral bands makes the use of 

multivariate calibration necessary to resolve the components from the full spectral data 

which is impossible with univariate calibration. The algorithm used in GILS can select 

the genes which are the selected wavelengths that have maximum correlation with the 

components. 
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Figure  4.1. NIR spectra of  pure sunflower oil, used frying oil, canola oil, and biodiesel 
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Figure  4.2. NIR spectra of kerosene, diesel, and euro diesel 

                                                              

         The standart error of calibration (SEC) values of each component were found 

between 0.19% (w/w) and 2.31% (w/w) and the standart error of prediction (SEP) 

values of each component were found between 0.55% (w/w) and 1.98% (w/w) by using 

GILS method for all sets. Calibration models for sunflower oil determination gave SEC 

and SEP values as 0.21% (w/w) and 0.95% (w/w) and for diesel determination as 0.19% 

(w/w) and 0.68% (w/w) for the first data set, respectively. When these SEC and SEP 

values are examined, it is seen that these values are compatible with each other, which 

illustrates a good prediction for fast identification of a possible diesel adulteration with 
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sunflower oil. Figure 4.3 shows the actual sunflower and diesel concentration values 

versus their GILS predicted concentration values based on NIR spectra for the first data 

set. The R2 values of regression lines for sunflower oil and diesel was found 0.999. 

When the overall calibration performance of the models is examined, it is possible to 

state that the NIR spectra contain quantitative information of sunflower oil and diesel.  
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Figure 4.3. Actual vs predicted concentration plots obtained by GILS for the first set 

 

         Figure 4.4 shows the actual sunflower oil, used frying oil, and diesel concentration 

values versus their GILS predicted concentration values based on NIR spectra for the 

second data set. While the concentrations of sunflower oil were ranging between 0.65% 

and 39.56% (w/w) for the first data set, for the second data set the concentrations of 

sunflower oil were between 2.15% and 24.71% (w/w). On the other hand, the 

concentrations of diesel in the second data set were in a narrower mass range between 

52.02% (w/w) and 93.79% (w/w) when compared with the first data set. The SEC 

values for sunflower oil, used frying oil, and diesel were found as 0.56, 0.77, and 0.40, 

while the SEP values were found 0.79, 0.92, and 0.55, respectively. The R2 value of 

regression line for sunflower oil was 0.996, lower than this obtained for the first data 

set. Furthermore, the R2 values of regression lines for used frying oil and diesel were 

0.994 and 0.999. When the SEC and SEP values of sunflower oil and diesel for the 

second data set are examined, it is seen that the agreement between these values are 

better than those obtained for the first data set. In addition, there is also a good 
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agreement between the SEC and SEP values of used frying oil for the second data set. 

When the overall calibration performance of the models is examined, it can be said that 

the NIR spectra contain quantitative information of sunflower oil, used frying oil, and 

diesel.  
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Figure 4.4. Actual vs. predicted concentration plots obtained by GILS for the second set 

 

         The calibration plots of kerosene, diesel and euro diesel for the third data set are 

given in Figure 4.5. The SEC and SEP values for the determination of kerosene content 

were obtained as 1.66% (w/w) and 1.81% (w/w) and those for the determination of 
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normal diesel were 2.31% (w/w) and 1.75% (w/w), respectively. In the case of euro 

diesel determination, the SEC and SEP results were 1.50% (w/w) and 1.98% (w/w), 

higher than the first and second data sets. On the other hand, R2 value of euro diesel 

somewhat went down, while its calibration and prediction results increase. In addition, 

R2 values of regression lines for kerosene and normal diesel were 0.993 and 0.995. 

Similar regression coefficients show that NIR spectra also contain quantitative 

information of kerosene, normal diesel, and euro diesel.  
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Figure 4.5. Actual vs predicted concentration plots obtained by GILS for the third set 
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          Figure 4.6 shows the actual canola oil, biodiesel, and diesel concentration values 

versus their GILS predicted concentration values based on NIR spectra for the fourth 

data set. The R2 values of regression lines for canola oil, biodiesel, and diesel were 

found 0.999. Calibration models for the fourth data set, for canola oil determination 

gave SEC and SEP values as 0.77% (w/w) and 0.73% (w/w), for biodiesel 

determination 0.69% (w/w) and 0.76% (w/w), and for diesel determination 0.56% (w/w) 

and 0.64% (w/w), respectively. When these SEC and SEP values are examined, it can 

be said that these values are compatible with each other, which demonstrates a good 

prediction for fast identification of a possible diesel adulteration with canola oil and 

biodiesel. In addition, the overall calibration performance of the models showed that the 

NIR spectra contain more quantitative information of canola oil, biodiesel, and diesel 

when compared with other sets.  
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Figure 4.6. Actual vs. predicted concentration plots obtained by GILS for the fourth set 

(Cont. on next page) 
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Figure 4.6(cont). Actual vs. predicted concentration plots obtained by GILS for the 

                                fourth set 

 
        Due to the fact that GILS is a wavelength selection method, the distribution of 

selected wavelengths in multiple runs over the whole spectrum that correspond to each 

component can be observed. The frequency distributions of selected wavenumbers in 50 

runs with 20 genes and 50 iterations were plotted against wavenumber range for each 

component in Figure 4.7 to 4.10. As can be seen from the figures, the frequency of the 

selected wavenumbers is significantly higher around the peak maximum of each 

component. This indicates that the GILS method selects the wavenumbers, where the 

most concentration related information is contained. As a result of this, it can be said 

that the GILS method can be used for the determination of diesel adulteration with 

sunflower oil, used frying oil, canola oil, kerosene, and biodiesel. 
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Figure 4.7. Frequency distribution of GILS selected wavelengths using NIR data of first 

                  set for sunflower oil and diesel along with its pure component spectrum 
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Figure 4.8. Frequency distribution of GILS selected wavelengths using NIR data of 

                  second set for  sunflower oil, used frying oil, and diesel along with its pure 

                  component spectrum 
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Figure 4.9. Frequency distribution of GILS selected wavelengths using NIR data of 

                  third set for kerosene, euro diesel, diesel along with its pure component 

                  spectrum 
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Figure 4.10. Frequency distribution of GILS selected wavelengths using NIR data of 

                    fourth set for canola oil, biodiesel, and diesel along with its pure 

                    component spectrum 
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CHAPTER 5 

 

DETERMINATION OF DIESEL ADULTERATION 

BY FTIR-ATR SPECTROSCOPY COMBINED TO 

MULTIVARIATE CALIBRATION 
 
         In literature several different methods have been employed for determining the 

amount of biodiesel in petroleum diesel fuel in the presence of vegetable oils which are 

not converted into biodiesel. Their determination with classic methods including 1H 

NMR spectroscopy (Knothe 2001) and chromatography (Foglia, et al. 2005) are 

expensive and time consuming as they require sample preparation. Infrared 

spectroscopy combined to multivariate calibration has been shown to be an alternative 

analytical technique to classic methods since it allows low cost, fast, and non-

destructive determination without sample preparation (Pimentel, et al. 2006). Among IR 

measurements, fourier transform infrared (FTIR) spectroscopy has found several 

applications in the determination of biodiesel content in diesel. For example, Aliske et 

al. (2007) reported that FTIR spectroscopy is the most promising method in the 

determination of biodiesel-diesel mixtures concentrations, since in the mid infrared 

range there are many unmatched peaks between biodiesel and diesel. On the other hand, 

the literature is very scarce in the use of fourier transform infrared-attenuated total 

reflectance (FTIR-ATR) spectroscopy combined to multivariate calibration analysis as 

an analytical tool. Oliveira et al. (2007) has determined the biodiesel contents in 

petroleum diesel by using FTIR-ATR spectroscopy combined to multivariate calibration 

methods.  

         In this study we used the FTIR-ATR spectroscopy combined to multivariate 

calibration to determine the adulteration of diesel with biodiesel and its corresponding 

vegetable oil present in diesel. 
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5.1. Instrumentation and Data Pre-Processing 

 
         A Spectrum 100 FTIR spectrometer (Perkin Elmer, Waltham, MA) was employed 

to obtain the FTIR-ATR spectra between 450 cm-1 and 4,000 cm-1 wavenumber range. 

The resolution was set to 4 cm-1 and 4 scans were done using air as backround. This 

spectrometer was equipped with a tungsten lamp as source, extended range KBr as 

beam splitter, and temperature stabilized fast recovery deuterated triglycine sulfate (FR-

DTS) as detector. Also triple measurements were taken by using an ATR accessory 

(Pike Technologies, ATR diamond KRS 5 Accessory). Then the means of the 

measurements were used in multivariate analyses. All spectra collected from the 

instrument were transferred to a computer and the genetic inverse least squares (GILS) 

was employed to set up the calibration models. Microsoft Excel ( MS Office 2003, 

Microsoft Corporation) program was used to prepare the text files for calibration and 

validation sets, which are required to build the calibration models and test the GILS 

method which was written in MATLAB programming language using Matlab 5.3 

(MathWorks Inc., Natick, MA). The samples in calibration and validation sets were 

selected randomly. The unit of concentration values was taken as mass percent. 

 

 5.2. Sample Preparation and Design of the Data Sets 

 
         Canola oil was purchased from a local supermarket and biodiesel which is 

produced from canola oil was obtained from a company named Ege Biotechnology Ltd. 

(Izmir Institute of Technology, Technopark, TR). Diesel was bought from a service 

station in Izmir.  

         A set including 50 ternary mixtures of canola oil, biodiesel, and diesel were 

prepared. The concentrations of canola oil, biodiesel, and diesel were in the mass range 

between 0% and 100% in the mixture. From the 50 samples, 30 samples were used in 

the calibration set and the other 20 samples were separated for validation set. Table 5.1 

and Table 5.2 illustrate the concentrations of each component for the calibration and 

validation sets. All concentrations on the tables are given in mass percentage. 
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Table 5.1. Concentration profile of the calibration samples 

 
Sample 

No 

Canola oil 

(w/w%) 

Biodiesel 

(w/w%) 

Diesel 

(w/w%) 

Sample 

No 

Canola oil 

(w/w%) 

Biodiesel 

(w/w%) 

Diesel 

(w/w%) 

1 100 0.00 0.00 16 9.90 14.61 75.47

2 0.00 100 0.00 17 10.33 67.17 22.49

3 0.00 0.00 100 18 25.97 26.16 47.86

4 37.20 22.88 39.91 19 8.89 47.05 44.05

5 32.43 57.78 9.78 20 39.40 20.30 40.30

6 31.43 25.77 42.79 21 35.75 22.96 41.28

7 5.13 12.83 82.03 22 9.67 38.62 51.70

8 59.71 9.72 30.55 23 36.46 44.05 19.48

9 38.13 2.38 59.48 24 16.61 78.17 5.20

10 11.02 44.99 43.98 25 27.08 24.30 48.61

11 15.74 83.05 1.20 26 33.46 59.11 7.41

12 4.66 40.42 54.91 27 25.94 45.30 28.74

13 16.68 20.36 62.94 28 52.24 32.36 15.38

14 14.57 16.33 69.09 29 2.10 46.28 51.60

15 42.19 57.00 0.79 30 83.11 1.09 15.78

 

 

Table 5.2. Concentration profile of the validation samples 

 
Sample 

No 

Canola oil 

(w/w%) 

Biodiesel 

(w/w%) 

Diesel 

(w/w%) 

Sample 

No 

Canola oil 

(w/w%) 

Biodiesel 

(w/w%) 

Diesel 

(w/w%) 

1 23.84 6.53 69.61 11 57.92 20.12 21.95

2 56.88 9.71 33.40 12 37.40 10.59 52.00

3 17.34 24.30 58.35 13 34.06 9.01 56.91

4 33.57 60.93 5.49 14 67.61 24.78 7.60

5 44.36 23.23 32.39 15 45.55 8.09 46.35

6 72.28 9.03 18.68 16 14.16 42.49 43.33

7 36.62 43.81 19.55 17 50.60 15.20 34.20

8 6.48 63.21 30.30 18 35.42 39.74 24.82

9 41.45 26.49 32.04 19 29.45 37.20 33.33

10 34.09 27.46 38.43 20 24.12 41.44 34.43

 



 

 61

 

5.3. Results and Discussion 

 
         The genetic inverse least squares (GILS) multivariate calibration method 

combined to FTIR-ATR spectroscopy have been used to determine diesel adulteration 

with canola oil and biodiesel. Figure 5.1 demonstrates the FTIR-ATR spectra of pure 

canola oil, biodiesel, and diesel between 450 and 4,000 cm-1 wavelength range. Because 

the spectral characteristics of canola oil and its methyl ester (biodiesel) are much alike, 

they exhibit overlapped signals. The spectral bands of canola oil, biodiesel, and diesel 

are only discriminable approximately between 800 and 1200 cm-1 wavelength range as 

seen from the Figure 5.1 

 

      
 

Figure 5.1. FTIR-ATR spectra of pure canola oil, biodiesel, and diesel 

 

         Figure 5.2 shows the actual canola oil, biodiesel, and diesel concentration values 

versus their GILS predicted concentration values based on FTIR-ATR spectra. The SEC 

values for canola oil, biodiesel, and diesel were found as 0.23% (w/w), 0.11% (w/w), 

and 0.14% (w/w), while the SEP values were found 0.49% (w/w), 0.37% (w/w), and 

0.33% (w/w), respectively. When these SEC and SEP values, which are obtained by 

GILS using FTIR-ATR spectra are examined, it is seen that the agreement between 

these values are better than those obtained by GILS using NIR spectra. In addition, the 

R2 results of regression lines for canola oil, biodiesel, and diesel were higher than those 

acquired by NIR. When the overall calibration performance of the FTIR-ATR based 
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models is examined, it is possible to state that the FTIR-ATR spectra contain more 

quantitative information of canola oil, biodiesel, and diesel than those contain NIR 

spectra.  
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Figure 5.2. Actual vs. predicted concentrations plots obtained by GILS 

 

         The frequency distributions of selected wavenumbers in 50 runs with 20 genes and 

50 iterations were plotted against wavenumber range for each component in Figure 5.3. 

As seen from the figure, the frequency of the selected wavenumbers is significantly 

higher around the maximum peak of each component. This shows that the GILS method 
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selects the wavenumbers, where only the information related to the particular 

component is used to construct the model so that the noise in the whole spectrum 

reduces. As a result, it is possible to state that the GILS method can be used for fast and 

simultaneous determination of diesel adulteration with canola oil and biodiesel. 
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Figure 5.3. Frequency distribution of GILS selected wavelengths using FTIR-ATR data 

                  for canola oil, biodiesel, and diesel along with its pure component spectrum  

(Cont. on next page)
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 Figure 5.3 (cont). Frequency distribution of GILS selected wavelengths using FTIR-    

                              ATR data for canola oil, biodiesel, and diesel along with its pure                        

                              component spectrum 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Diesel 



 

 65

   CHAPTER 6 
 

DETERMINATION OF DIESEL ADULTERATIONS BY 

MOLECULAR FLUORESCENCE SPECTROSCOPY 

COMBINED TO MULTIVARIATE CALIBRATION 
 
         Fluorescence spectroscopy combined to multivariate analysis which is a fast, 

sensitive, and inexpensive tool, finds many applications for the analysis of petroleum 

products (Patra and Mishra 2002, Dudelzak, et al. 1991, Shanahan, et al. 1991, Patra, et 

al. 2001). Because standart techniques like GC–MS or testing of physical properties are 

time consuming, costly and often complicated in determining the adulteration level, 

fluorescence based methods are offered as rapid and inexpensive techniques for the 

analysis of petroleum products. For example, Patra and Mishra (2001) used EEMF 

spectroscopy to estimate the amount of kerosene present in diesel. However, it was not 

found in the literature a fluorescence spectroscopy based method capable of determining 

diesel adulterations with vegetable oils and biodiesel. In this sence, this study is 

important to be the first study in the determination of diesel adulterations with vegetable 

oils, used frying oil, and biodiesel by using molecular fluorescence spectroscopy 

combined to multivariate calibration. 

 

6.1. Instrumentation and Data Pre-Processing 

 
         Fluorescence measurements were carried out with Varian Cary Elipse 

spectrofluorimeter with a 100 W Xenon lamp as source. For two sets emission spectra 

were collected. The emission fluorescence spectra of both sets were recorded in the 

excitation wavelengths between 300 and 400 nm and emission wavelength range 

between 300 and 650 nm within an interval of 10 nm respectively. Excitation slit width 

was chosen 5 and emission slit width was chosen 2.5 nm. For the second set 

additionally the synchronous fluorescence spectra were collected by simultaneously 

scanning both the excitation and emission monochromators for an excitation 

wavelength range 300 to 700 nm and ∆λ was chosen 10 nm. Excitation and emission slit 

widths were chosen 5. 
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         Preprocessing of the data obtained from instrument were performed with 

Microsoft Excel (MS Office 2003, Microsoft Corporation) program using genetic 

inverse least squares (GILS) method which was written in MATLAB programming 

language using Matlab 5.3 (MathWorks Inc., Natick, MA).  

 

 6.2. Sample Preparation and Design of the Data Sets 

 
         Two sets including ternary mixtures of diesel with sunflower oil, used frying oil, 

canola oil, and biodiesel were prepared. Sunflower and canola oils were purchased from 

a local supermarket. Used frying oil was acquired from a restaurant. Biodiesel was 

obtained from a company named Ege Biotechnology Ltd. (Izmir Institute of 

Technology, Technopark, TR) and diesel was purchased from a service station in Izmir. 

The concentration data corresponding to each component of each set were divided into 

two sets which are called calibration and validation (prediction) sets. Table 6.1 to Table 

6.4 illustrate the concentrations of each component for the calibration and validation 

sets. The samples in calibration and validation sets were selected randomly. All 

concentration  values on the tables are given in mass percentage. The first set contains 

30 ternary mixtures of sunflower oil, used frying oil, and diesel. The calibration set 

composed of 20 samples, and the validation set composed of 10 samples. The 

concentrations of sunflower oil were in the mass range between 2.15% and 24.71%, 

used frying oil were in the mass range between 0.54% and 23.56%, and diesel were in 

the mass range between 52.02% and 93.79%.  

Table 6.1. Concentration profile of the calibration samples in the first set 
Sample 

No 

Sunflower 

oil (w/w%) 

Used frying 

oil (w/w%) 

Diesel 

(w/w%) 

Sample 

No 

Sunflower 

oil (w/w%) 

Used frying 

oil (w/w%) 

Diesel 

(w/w%) 

1 2.89 12.09 85.00 11 7.05 23.56 69.38

2 14.60 5.60 79.80 12 18.15 8.30 73.55

3 16.24 3.94 79.81 13 11.90 19.00 69.08

4 18.70 15.05 66.25 14 24.71 23.26 52.02

5 11.15 12.65 76.18 15 4.80 1.40 93.79

6 20.32 2.64 77.02 16 8.25 0.55 91.20

7 20.21 8.75 71.03 17 20.53 0.54 78.91

8 9.64 14.74 75.61 18 23.28 18.84 57.87

9 3.49 5.09 91.40 19 2.15 9.40 88.44

10 22.25 16.15 61.60 20 11.45 9.30 79.23
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Table 6.2. Concentration profile of the validation samples in the first set 

 
Sample 

No 

Sunflower 

oil (w/w%) 

Used frying 

oil (w/w%) 

Diesel 

(w/w%) 

Sample 

No 

Sunflower 

oil (w/w%)

Used frying 

oil (w/w%) 

Diesel 

(w/w%) 

1 21.18 17.44 61.36 6 5.30 4.70 90.00

2 9.05 6.90 84.03 7 16.59 3.94 79.46

3 3.15 14.55 82.30 8 4.55 18.55 76.88

4 23.08 6.49 70.41 9 5.60 7.85 86.54

5 22.73 0.49 76.76 10 6.74 5.85 87.39

 

         The second set consists of 50 ternary mixtures of canola oil, biodiesel, and diesel 

(euro). The concentrations of canola oil, biodiesel, and diesel were in the mass range 

between 0% and 100%. 

 

Table 6.3. Concentration profile of the calibration samples in the second set 

 
Sample 

No 

Canola oil 

(w/w%) 

Biodiesel 

(w/w%) 

Diesel 

(w/w%) 

Sample 

No 

Canola oil 

(w/w%) 

Biodiesel 

(w/w%) 

Diesel 

(w/w%) 

1 100 0.00 0.00 16 9.90 14.61 75.47

2 0.00 100 0.00 17 10.33 67.17 22.49

3 0.00 0.00 100 18 25.97 26.16 47.86

4 37.20 22.88 39.91 19 8.89 47.05 44.05

5 32.43 57.78 9.78 20 39.40 20.30 40.30

6 31.43 25.77 42.79 21 35.75 22.96 41.28

7 5.13 12.83 82.03 22 9.67 38.62 51.70

8 59.71 9.72 30.55 23 36.46 44.05 19.48

9 38.13 2.38 59.48 24 16.61 78.17 5.20

10 11.02 44.99 43.98 25 27.08 24.30 48.61

11 15.74 83.05 1.20 26 33.46 59.11 7.41

12 4.66 40.42 54.91 27 25.94 45.30 28.74

13 16.68 20.36 62.94 28 52.24 32.36 15.38

14 14.57 16.33 69.09 29 2.10 46.28 51.60

15 42.19 57.00 0.79 30 83.11 1.09 15.78

 

 

 

 



 

 68

Table 6.4. Concentration profile of the validation samples in the second set 

 
Sample 

No 

Canola oil 

(w/w%) 

Biodiesel 

(w/w%) 

Diesel 

(w/w%) 

Sample 

No 

Canola oil 

(w/w%) 

Biodiesel 

(w/w%) 

Diesel 

(w/w%) 

1 23.84 6.53 69.61 11 57.92 20.12 21.95

2 56.88 9.71 33.40 12 37.40 10.59 52.00

3 17.34 24.30 58.35 13 34.06 9.01 56.91

4 33.57 60.93 5.49 14 67.61 24.78 7.60

5 44.36 23.23 32.39 15 45.55 8.09 46.35

6 72.28 9.03 18.68 16 14.16 42.49 43.33

7 36.62 43.81 19.55 17 50.60 15.20 34.20

8 6.48 63.21 30.30 18 35.42 39.74 24.82

9 41.45 26.49 32.04 19 29.45 37.20 33.33

10 34.09 27.46 38.43 20 24.12 41.44 34.43

 

6.3. Results and Discussion 

 
         Molecular fluorescence spectroscopy combined to genetic inverse least squares 

(GILS) multivariate calibration method was used for the determination of diesel 

adulteration. Figure 6.1 and Figure 6.2 illustrate the excitation-emission and 

synchronous fluorescence spectra of pure components and their mixtures. According to 

the Figure 6.1, it is evident that excitation-emission spectral bands of canola oil, 

biodiesel, and diesel can be distinguished around 350 nm wavelength region. In 

addition, as it can be seen from the Figure 6.2, while the synchronous fluorescence 

spectral bands of canola oil, biodiesel, and diesel were overlapped around 350-500 nm 

wavelength region, the spectral bands of canola oil and diesel were overlapped around 

600-700 nm wavelength region. 
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Figure  6.1. Excitation-emission fluorescence spectra of  pure canola oil, biodiesel, and 

                    diesel along with their ternary mixture      
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Figure  6.2. Synchronous fluorescence spectra of pure canola oil, biodiesel, and diesel 
                   along with their ternary mixture 
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         For the excitation-emission fluorescence measurements the standart error of 

calibration (SEC) values were found between 0.92% (w/w) and 2.89% (w/w), and the 

standart error of prediction (SEP) values were found between 0.86% (w/w) and 3.87% 

(w/w) by using GILS. On the other hand, for the synchronous fluorescence 

measurements the SEC values were found between 0.83% (w/w) and 1.38% (w/w), and 

the SEP values were found between 1.46% (w/w) and 2.66% (w/w) by using GILS. 

Calibration models for sunflower oil determination gave SEC and SEP values as 1.88% 

(w/w) and 1.57% (w/w), for used frying oil determination 0.92% (w/w) and 0.86% 

(w/w), and for diesel determination 1.02% (w/w) and 2.56% (w/w) for the first data set, 

respectively. 

       When these SEC and SEP values are examined, it is seen that these values are 

compatible with each other, which illustrates a good prediction for fast identification by 

excitation-emission fluorescence for a possible diesel adulteration with sunflower oil 

and used frying oil. Figure 6.3 shows the actual sunflower oil, used frying oil, and diesel 

concentration values versus their GILS predicted concentration values based on 

excitation-emission fluorescence spectra for the first data set. 

       The R2 values of regression lines for sunflower oil, used frying oil, and diesel was 

found as 0.964, 0.991, and 0.995. When the overall calibration performance of the 

models is examined, it is possible to state that the excitation-emission fluorescence 

spectra contain quantitative information of sunflower oil, used frying oil, and diesel. 
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Figure 6.3. Actual vs. predicted concentration plots of sunflower oil, used frying oil, 

                   and diesel by GILS using excitation-emission fluorescence data  

 

       Figure 6.4 shows the actual canola oil, biodiesel, and diesel concentration values 

versus their GILS predicted concentration values based on excitation-emission 

fluorescence spectra. The SEC values for canola oil, biodiesel, and diesel were found as 

1.56, 2.89, and 1.72, while the SEP values were found as 2.34% (w/w), 3.87% (w/w), 

and 2.49% (w/w), respectively. When these SEC and SEP values are examined, it is 

seen that the agreement between these values are worse than those obtained for 
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sunflower oil, used frying oil, and diesel in the first data set. The R2 value of regression 

line for diesel higher than this obtained for the first data set. 
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Figure 6.4. Actual vs. predicted concentration plots of canola oil, biodiesel, and diesel 

                   by GILS using excitation-emission fluorescence data  
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        In addition, Figure 6.5 shows the actual canola oil, biodiesel, and diesel 

concentration values versus their GILS predicted concentration values for second set 

based on syncronous fluorescence spectra. In the case of canola oil, biodiesel, and diesel 

determination, while the SEC results were found as 1.38% (w/w), 1.10% (w/w), and 

0.83% (w/w), the SEP results were found as 2.30% (w/w), 2.66% (w/w), and 1.46% 

(w/w), respectively. When these SEC and SEP values are examined, it is seen that the 

agreement between these values are better than those obtained by GILS using 

excitation-emission fluorescence spectra. On the other hand, R2 values of regression 

lines of diesel were somewhat higher. Similar regression coefficients show that 

syncronous fluorescence spectra also contain quantitative information of canola oil, 

biodiesel, and diesel. 
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Figure 6.5. Actual vs. predicted concentration plots of canola, biodiesel, and diesel by              

                  GILS using synchronous fluorescence data 

(cont. on next page) 
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Figure 6.5 (cont). Actual vs. predicted concentration plots of canola, biodiesel, and                

                             diesel by GILS using synchronous fluorescence data  

 

          In order to construct calibration models, the GILS program was set to run 50 

times with 20 genes and 50 iterations. The frequency distributions of selected regions 

for each component of the first and second data sets were plotted in Figure 6.6 to 6.8. 

As can be seen from the figures, the frequency of the selected cell numbers correspond 

to selected wavelengths is significantly higher around the peak maximum of each 

component. This shows that the GILS method selects the regions, where the most 

concentration related information is contained. 

         As a result, it can be said that the GILS method can be used for the determination 

of diesel adulteration with sunflower oil, used frying oil, canola oil, and biodiesel using 

excitation-emission and synchoronous fluorescence spectra. 
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Figure 6.6. Frequency distribution of GILS selected wavelengths using excitation- 

                  emission fluoresecence data of the first set for sunflower oil, used frying oil, 

                  and diesel along with their concatenated pure component spectrum. 



 

 76

0
5

10
15
20
25
30
35
40
45

0 1000 2000 3000 4000 5000
Cell Number

In
te

ns
ity

2

7

12

17

22

27

Se
le

ct
io

n 
Fr

eq
ue

nc
y

Canola oil

 

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000
Cell Number

In
te

ns
ity

2

7

12

17

22

27

Se
le

ct
io

n 
Fr

eq
ue

nc
y

Biodiesel

 

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000
Cell Number

In
te

ns
ity

2

7

12

17

22

27

Se
le

ct
io

n 
Fr

eq
ue

nc
y

Diesel

 
 

Figure 6.7. Frequency distribution of GILS selected wavelengths using excitation- 

                  emission fluoresecence data of the second set for canola oil, biodiesel, and 

                  diesel along with their concatenated pure component spectrum 
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Figure 6.8. Frequency distribution of GILS selected wavelengths using synchronous 

                  fluoresecence data of the second set for canola oil, biodiesel, and diesel 

                  along with their concatenated pure component spectrum 
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CHAPTER 7 

 

CONCLUSION 

 
         This study has demonstrated that the NIR, FTIR-ATR, and fluorescence 

spectroscopies with multivariate calibration method can be used for fast and 

simultaneous determination of diesel adulteration with several vegetable oils, used 

frying oil, kerosene, and biodiesel. In this sence, this study is very important in the 

presence of time consuming and expensive standard methods. In order to construct 

successful calibration models, genetic inverse least squares (GILS) was used as a 

multivariate calibration method. The validity and the performance of the models was 

determined by standart error of calibration (SEC) and standart error of prediction (SEP) 

values. The lowest SEC and SEP values, and also regression coefficient (R2) values of 

actual vs. predicted component concentrations plots that are equal or closed to 1 

indicated the best calibration model which includes the most quantitative information of 

the components. According to the results, all spectroscopic methods used in this study 

can be applied for the fast and non-destructive determination of diesel adulteration. On 

the other hand, the best results were obtained from FTIR-ATR spectroscopy combined 

to GILS when compared to the other methods. 
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