
PROBABILITY THEORY APPLICATIONS ON TIME
SCALES

A Thesis Submitted to
the Graduate School of Engineering and Sciences of
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ABSTRACT

PROBABILITY THEORY APPLICATION ON TIME SCALES

In this thesis we introduce probability theory adapted on time scales. In

this study, we have modified some concepts of probability theory on time scales.

∆−Probability Function has been constructed on time scales. After providing

some basic concepts of Probability Theory, the review of the fundamental concepts

of time scale has been provided. Time scale unifies continuous and discrete

analysis. With the help of the definition of ∆−Measure and the ∆−Probability

Function, random variable has been constructed on time scale. Mathematical

expectation and some probabilistic inequalities are provided to Time scale.
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ÖZET

ZAMAN SKALALARINDA OLASILIK KURAMI

UYGULAMALARI

Bu tezde, zaman scalasına uyarlanmış olasılık teorisini çalıştık. Bu çalışmada

olasılık kuramının bazı kavramlarını zaman skalasına uyarladık. Delta olasılık

fonksiyonunu zaman skalasında tanımladık. Olasılık kuramıyla ilgili bazı temel

kavramlardan söz ettikten sonra, zaman skalasının kısa bir tekrarını verdik. Za-

man skalası sürekli ve ayrık analizi birleştirir. Delta-ölçüm ve delta-olasılık

fonksiyonları yardımıyla zaman skalasındaki rassal değişkenleri tanımladık.

Matematiksel beklenen değer ve bazı olasılıksal eşitsizlikleri zaman skalasına

uyarladık.
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CHAPTER 1

INTRODUCTION

Time scale unifies continuous and discrete analysis. Probability theory on

time scale has been constructed on time scale. This thesis is organized as follows:

In chapter one, same basic concepts about Probability Theory are given. In chap-

ter two, we gave the review of the fundamental concepts of Time Scale. In chapter

three, Measure on time scale was discussed. In chapter four, ∆−Probability Func-

tion and random variable have been constructed on time scale. We also have

derived some properties of expectations of random variables on time scales, they

need not be discrete or be continuous only. In addition, expectation, variance and

some important probabilistic inequalities are modified to Time scales.

1.1. Basic concepts of Probability Theory

We express our behavior of believing in change by the use of words such as

”random” or ”probability”. The mathematical theory of probability incorporates

these concepts of chance. Such a theory formalizes these concepts as a collection of

axioms. Any experiment involving randomness can be modelled by a probability

space. Such a space comprises of the set Ω of all possible outcomes of by the

experiment, the set F of events, and the probability measure P.

This chapter contains the essential ingredients about the probability theory:

1.1.1. Events and sets

In everyday life we come across many phenomena which can not be pre-

dicted in advance or many experiments whose outcomes may not be known

precisely. We may know that the outcome has to be one of the several possibil-

ities. The weight of a newborn baby can be known before the birth. However,

when a coin is tossed, we know that the outcome has to be a head or a tail.

In this case, possible outcomes should be finite, but also the observation of the

phenomenon such as the weight of a new born baby or the weather condition of
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certain region,the number of possible outcomes is infinite. The concept of random

experiment is very important for studying probability theory.

1. Sample Space: The set of all possible outcomes of an experiment is called the

sample space and is denoted by Ω.

2. Outcomes: The results of an experiment are called outcomes. w is also called

a sample point.

3. Events: Any subset of a sample space Ω is called an event.

1.1.2. Fields and σ−Fields

LetF = {all events associated with the experiment E on Ω}. If A is an event

Ac is also an event which means that the event A is not occurred.

Definition 1.1 Let F be a class of the sets of all subsets of Ω. If these conditions are

satisfied;

a) If A, B ε F then A ∪ B ε F and A ∩ B ε F ,

b) If A ε F then Ac ε F ,

c) The empty set belongs to F ,

then any collection F of subsets of Ω is called a field.

Lemma 1.1 Every field contains the empty set ∅ and the whole space Ω.

The class containing only ∅ and Ω is a field which is called the smallest field (trivial

field).

The power set consisting of every subset of Ω is also a field and is the largest field.

Theorem 1.1 The intersection of arbitrary number of fields is a field.

Proof (Royden 1988). �

Since events are any subsets of a sample space it can be considered that a collection

of these events is a field:

Example 1.1 Suppose a coin is tossed three times. The set of possible outcomes is finite

and is denoted by

Ω = {HHH,TTT,TTH,HTT,THT,THH,HTH,HHT}

2



= {w1,w2,w3,w4, ...,w8}

Let A be the event that at least one head turns up, then

A = {w1,w3,w4,w5,w6,w7,w8}

then Ac = {TTT} = w2 represents the event that no head turns up. This is fine when Ω is

a finite set, but we will deal with the common situation when Ω is infinite. For example, a

coin is tossed repeatedly until the first head turns up. We are concerned with the number

of tosses before this happens. The set of all possible outcomes is the set

Ω = {w1,w2,w3, ...}

In this case the experiment E has an infinite number of outcomes. Let A be an event that

the first head occurs after an even number of tosses, then

A = {w2,w4,w6, ...}

This is an infinite countable union of members of Ω and we require that such a set belong

to F .

Definition 1.2 A collection F of events of Ω is called a σ−field if it satisfies the

following conditions:

a) ∅ and Ω ε F ,

b) If A ε F then Acε F ,

c) If A1,A2, ... ε F then
⋃∞

i=1 Ai ε F .

Remark 1.1 A σ−field is always a field, but a field need not be a σ−field.

Example 1.2 Let Ω = {1, 2, 3, 4, 5, 6, ....} and D = {A : A ⊂ Ω, either A contains a

finite number of points or Ac contains a finite number of points} Then D is a field , but

not a σ−field. Because, the set A = {An}∞n=1 and its complement is not belong to the setD.

Here are some examples of σ−fields:

Example 1.3 The smallest σ−field associated with Ω is the collection F = {∅,Ω}.

Example 1.4 If A be any subset of Ω then F = {∅,A,Ac,Ω} is a σ−field.
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Example 1.5 A power set of Ω, which is written P and contains all subsets of Ω, is

obviously a σ−field.

Theorem 1.2 The intersection of an arbitrary number of σ−fields is a σ−field.

Example 1.6 Let us consider D = {[a, b) ∈ Ω, a, b ∈ R, a < b} is not a field, since this

class is not closed under complementations (nor under countable intersections). Let us

define σ(D) = B be the minimal σ−field containingD, since

[a, b] = ∩∞n=1[a, b +
1
n

) (by countable intersection)

(−∞, a) ∪ (b,∞) = ([a, b])c (by complementation)

(a, b) = (−∞, b) ∩ (a,∞) (a < b)

(a, b], (−∞, a], etc. also belong to the setD for a,b ε R.

B is called the ’Borel Field’ of subsets of the real line. The sets of B are called

’Borel sets’.

From now on with each experiment E, we denote Ω as the space of all outcomes of

the random experiment and F as the σ−field of events. This pair (Ω,F ) is called

a measurable space.

1.1.3. Probability Measure

Definition 1.3 A Probability measure P on (Ω,F ) is a function P : F → [0, 1],

satisfying

a) P(∅) = 0 and P(Ω) = 1

b) If A1,A2 . . . is a collection of disjoint members of F , in that case Ai ∩ A j = ∅ for all

pairs i, j satisfying i , j then

P(
∞⋃

n=1

An) =

∞∑

n=1

P(An).

The triplet (Ω,F ,P) is called a probability space.

A probability measure is a special example of what is called a measure on a pair

(Ω,F ). A measure is a function µ : F → [0,∞) satisfying µ(∅) = 0 together with

the condition b) as mentioned above. A measure µ is a probability measure if

µ(Ω) = 1 (Grimmett and Stirzaker 2006).
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Proposition 1.1 Let A1,A2, . . . be subsets of Ω.

a) If A1 ⊆ A2 ⊆ . . ., then An → A =
⋃∞

n=1 An. (We denote this by An ↑ A.)

b) If A1 ⊇ A2 ⊇ . . ., then An → A =
⋂∞

n=1 An. (This is written as An ↓ A.)

Proof (Royden 1988). �

Elementary Properties of Probability Measure:

Let (Ω,F ,P) be a probability space. Then,

a) P(∅) = 0.

b) P is finitely additive: if A1, . . . ,An are (pairwise) disjoint, then

P(
n⋃

i=1

Ai) =

n∑

i=1

P(Ai).

c) For each A, P(Ac) = 1 − P(A).

d) If A ⊆ B, then P(B\A) = P(B)−P(A), where B\A is the set such that B\A = B∩Ac.

e) P is monotone: if A ⊆ B then P(A) ≤ P(B).

d) For all A and B (disjoint or not),

P(A ∪ B) + P(A ∩ B) = P(A) + P(B).

f) P is (finitely) subadditive: for all A and B, disjoint or not,

P(A ∪ B) ≤ P(A) + P(B).

1.1.4. Random Variables

A random variable is a quantity that is measured in connection with a

random experiment. If Ω is a sample space, and the outcome of the experi-

ment is w, a measuring process is carried out to obtain a number X(w). Then a

random variable is a real valued function on a sample space. For example, the

experiment is to throw a coin 15 times, and X be the number of heads. We take

Ω = {all sequenceso f length 15 with components H(head), T(tail)} For this Ω we have

215 points all together. A typical sample point is w = {HTHTHTHTTTTTTTT}, so

for this point X(w) = 4.

Aa another example, consider picking a person at random from a certain city

and measure his/her height and weight, this is the set of all pairs (x, y), where x
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denotes the height and y denotes the weight of this person. Let X be the ratio of

height to weight; that is X(w) = x
y .

If we are interested in a random variable X defined on a given sample space we

generally want to know the probability of events involving X.

If X is a random variable on the probability space (Ω,F ,P), we are generally

interested in calculating probabilities of events involving X, that is we generally

want to know P(w : X(w) ∈ B) for various Borel sets B.

Definition 1.4 A random variable is a function X : Ω → R with the property that

inverse image under X of B ∈ B(R) is the subset of Ω given by

X−1(B) = {ω : X(ω) ∈ B},

Definition 1.5 A random variables is a function X : Ω→ R such that X−1(B) ∈ F for

every B ∈ B(R).

Definition 1.6 (A σ-algebra Generated by a Random Variable:) The family of

events that are inverse images of Borel sets under a random variable is a σ-algebra on Ω.

The way in which probabilities are calculated will depend on the particular nature

of X. The random variable X is said to be ”discrete” if and only if the set of possible

values of X is finite. In this case, if {x1, x2, ..., xn} are the values of X that belong to

B then

P(X ∈ B) = P(X = x1,X = x2, ...)

=
∑

x∈B
P(X = xi) =

∑

x∈B
pX(xi)

where pX(x) is the probability mass function of X, defined by pX(x) = P(X = x).

1.1.5. Distribution Function

Definition 1.7 The distribution function of a random variable X is the function

F : R→ [0, 1] given by F(x) = P(X ≤ x).

If the random variable is discrete then:

F(x) = P(X ≤ x) =
∑

xi≤x

pX(xi)

6



where pX(xi) is a probability mass function. If the random variable is continuous then:

F(x) = P(X ≤ x) =

∫ x

−∞
f (t)dt

where f (x) is the probability density function. Distribution Function satisfies the

following conditions:

1) If a ≤ b then F(a) ≤ F(b)

2) limx→−∞ F(x) = 0 and limx→+∞ F(x) = 1

Proof 1) A = {x : X < a} and B = {x : X < b} since

A ⊆ B then P(A) ≤ P(B) which is

P(X ≤ a) ≤ P(X ≤ b) then

F(a) ≤ F(b).

2) limx→−∞ P(X ≤ x) = P(Ø) = 0

limx→∞ P(X ≤ x) = P(Ω) = 1. �

1.1.6. Expected Value

Definition 1.8 Expected value is an averaging process for random variables. If random

variable X is discrete then expected value of X is given by

E[X] =
∑

x

xpX(xi).

Similarly, if X is continuous random variable with probability density function f , then

the expected value of X is defined as follows:

E[X] =

∫ ∞

−∞
x f (x)dx.

Expected value has the following properties:

1. Constants preserved: For any constant c, then E[cX] = cE[X].

2. Monotonicity: If X ≤ Y, then E[X] ≤ E[Y].

3. Linearity: For a, b ∈ R, E[aX + bY] = aE[X] + bE[Y].

4. Continuity: If Xn → X, then E[Xn]→ E[X].

5. Separation: For any independent two random variables X and Y,

E[XY] = E[X]E[Y].

7



1.1.7. Variance

Definition 1.9 Let X be a random variable on (Ω,F ,P). If k > 0, the number E[Xk] is

called the k’th. moment of X. If k = 1 then E[X] is called the mean of X. The variance of

X is defined as follows:

Var[X] = E[(X − E[X])2]

Variance has the following properties:

1.Var[X] = E[X2] − (E[X])2.

2.Var[cX] = c2Var[X].

8



CHAPTER 2

TIME SCALE

A time scale is an arbitrary nonempty closed subset of the real numbers.

In 1988 the calculus of time scales was initially introduced by Stefan Hilger in his

Ph.D thesis. Stefan Hilger and his supervisor Bernd Auldbach have constructed

time scale in order to create a theory that can unify discrete and continuous

analysis. In this section we are going to introduce the theory of time scale.

Definition 2.1 A time scale is a closed subset of the real numbers. Thus, R , Z, N

and union of any closed intervals such as [5, 7] ∪ [8, 11], or any closed intervals plus

some single points for instance [4, 6]∪ [9, 14]∪{16, 19}, are some examples of time scales,

whereas Q and C are not time scales. Because they are any subsets of real numbers that

are not closed or not union of closed intervals or single points. Time scale is denoted by

the symbol T.

Definition 2.2 Let T be a time scale. We define the forward jump operator σ : T→ T

by

σ(t) := inf{s ∈ T : s > t}

and the backward jump operator ρ : T→ T by

ρ(t) := sup{s ∈ T : s < t}.

If σ(t) > t, t is called right-scattered, if ρ(t) < t, t is called left-scattered, if the points that

are both right-scattered and left-scattered are called isolated, if σ(t) = t, then t is called

right-dense, if ρ(t) = t, then t is called left-dense, if the points that are both right-dense

and left-dense are called dense points.

For a special case if t = maxT, σ(t) = t and if t = minT, ρ(t) = t.

Definition 2.3 The function µ : T→ [0,∞) is defined by

µ(t) := σ(t) − t.

is called graininess function.

9



2.1. Derivative on Time Scale

Now we consider a function f : T→ R and define so-called delta or Hilger

derivative of f at a point t ∈ Tk. Tk is a new term derived from T if T has a left

scattered maximum m, then Tk = T − {m}. Otherwise, Tk = T.

Definition 2.4 Assume f : T → R is a function and let t ∈ Tk. Then we define delta

derivative f ∆(t) to be the number provided it exists with the property that given any ε > 0,

there is a neighborhood U of t (i.e, U = (t − δ, t + δ) ∩ T for some δ > 0 ) such that

|( f (σ(t)) − f (s)) − f ∆(t)(σ(t) − s)| ≤ ε|σ(t) − s| f or all s ∈ U.

We call f ∆(t) the delta derivative of f at t. Moreover, we say that f is ∆-differentiable on

Tk provided f ∆(t) exists for all t ∈ Tk. The function f ∆ : Tk → R is then called the delta

derivative of f on Tk.

Theorem 2.1 Assume f : T → R is a function and let t ∈ Tk. Then we have the

following:

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f ∆(t) =
f (σ(t)) − f (t)

µ(t)

(iii) If t is right-dense, then f is differentiable at t if and only if the limit

lim
s→t

f (t) − f (s)
t − s

exist as a finite number, in this case

f ∆(t) = lim
s→t

f (t) − f (s)
t − s

.

(iv) If f is differentiable at t, then f (σ(t)) = f (t) + µ(t) f ∆(t).

10



2.2. Integration on Time Scale

Definition 2.5 A function is called a rd − continuous if it is continuous at all right

dense points and its left sided limits exists at all left dense points. Crd denotes the class of

rd − continuous functions.

Definition 2.6 A function F : T → R is called an antiderivative of f : T → R

provided F∆(t) = f (t) holds for every t ∈ Tκ. The indefinite integral is defined by
∫

f (t)∆t = F(t) + c,

where c is arbitrary constant. We define the Cauchy integral by
∫ b

a
f (t)∆t = F(b) − F(a), f or all a, b ∈ T.

Theorem 2.2 Let F : T→ R be an rd-continuous function, for t0 ∈ T and t ∈ Tκ

F(t) :=
∫ t

t0

f (τ)∆τ

is antiderivative of f.

Proposition 2.1 If F : T→ R is rd-continuous function and t ∈ Tκ, then
∫ σ(t)

t
f (s)∆s = µ(t) f (t).

Proof (Bohner and Peterson 2001). �

Theorem 2.3 Let a, b ∈ T and f ∈ Crd.

(i) If T = R, then ∫ b

a
f (t)∆t =

∫ b

a
f (t)dt,

where the integral on the right hand side is the usual Riemann integral from calculus.

(ii) If T = Z, then

∫ b

a
f (t)∆t =



∑b−1
t=a f (t) , a < b ;

0 , a = b;

−∑b−1
t=a f (t) , a > b.

(2.1)

11



(iii) If [a, b] consists only isolated points, then

∫ b

a
f (t)∆t =



∑
tε[a,b) f (t)µ(t) , a < b ;

0 , a = b;

−∑
tε[b,a) f (t)µ(t) , a > b.

(2.2)

Example 2.1 Let us compute
∫ 2

0
2t∆t on the time scales T = R, T = Z, and T = 1

2Z.

If T = R, then ∫ 2

0
2t∆t =

22 − 20

ln 2
=

3
ln 2

If T = Z, then ∫ 2

t0

2t∆t =

1∑

t=0

2t = 20 + 21 = 3

If T = 1
2Z, then

∫ 2

0
2t∆t =

3
2∑

t=0

2t 1
2

=
1
2

(20 + 2
1
2 + 21 + 2

3
2 ) =

3 +
√

2 +
√

8
2

.

2.2.1. Double Integration on Time Scale

Integration on time scale was studied by G.Guseinov in 2003 (Guseinov

2003). Multiple Lebesgue integration on time scale was introduced by M. Bohner

and G. Guseinov in 2006 (Bohner and Guseinov 2006). The relationship between

Riemann and Lebesgue multiple integrals is investigated in that paper.

Definition 2.7 Let T1 and T2 be two time scales. For i = 1, 2 let σi, ρi and ∆i denote

the forward jump operator, backward jump operator, and the delta differentiation operator,

respectively on Ti. Suppose a < b are points in T1, c < d are points in T2. [a, b) be a half

closed bounded interval in T1, and [c, d) be a half closed bounded interval in T2. Let us

introduce a rectangle in T1 × T2 by

R = [a, b) × [c, d) = {(t, s) : t ε[a, b), s ε[c, d)}.

First we define Riemann integrals over rectangles R. A partition of [a, b) is any ordered

subset P = {t0, t1, ...tn} ⊂ [a, b] where a = t0 < t1 < ... < tn = b. Similarly, S =

{s0, s1, ...sk} ⊂ [c, d] where c = s0 < s1 < ... < sk = d. The number n and k are arbitrary

positive integers. The collection of the intervals

Pi = {[ti−1, ti); 1 ≤ i ≤ n}

12



S j = {[s j−1, s j); 1 ≤ j ≤ k}

is called a ∆−partition of [a, b) and [c, d) respectively. Let us set

Ri j = [ti−1, ti) × [s j−1, s j), where 1 ≤ i ≤ n, 1 ≤ j ≤ k.

We call the collection

P = {Ri j : 1 ≤ i ≤ n, 1 ≤ j ≤ k}

a ∆−partition of R. The set of all ∆−partitions of R is denoted by P(R). Let f be a bounded

function we set

M = sup{ f (t, s) : (t, s) ∈ R} and m = inf{ f (t, s) : (t, s) ∈ R}

and for 1 ≤ i ≤ n, 1 ≤ j ≤ k.

Mi j = sup{ f (t, s) : (t, s) ∈ Ri j} and mi j = inf{ f (t, s) : (t, s) ∈ Ri j}.

The upper Darboux ∆-sum U( f ,P) and the lower Darboux ∆-sum L( f ,P) of f with respect

to P are defined by

U( f ,P) =

n∑

n=1

k∑

j=1

Mi j(ti − ti−1)(s j − s j−1), L( f ,P) =

n∑

n=1

k∑

j=1

mi j(ti − ti−1)(s j − s j−1)

The upper Darboux integral U( f ) of f from a to b defined by

U( f ) = inf{U( f ,P)}

and the lower Darboux integral L( f ) of f from a to b defined by

L( f ) = sup{U( f ,P)}.

Definition 2.8 f is said to be ∆-integrable over R if L( f ) = U( f ). In this case, we write
∫ ∫

R
f (t)∆1t∆2s for this common value and call this integral the Riemann ∆-integral.

Definition 2.9 A bounded function f on R is ∆-integrable if and only if for each ε > 0,

there exists δ > 0 such that

U( f ,P) − L( f ,P) < ε.

for all partitions P ∈ Pδ(R).
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Definition 2.10 Let E ⊂ T1 × T2 be a bounded set and f be a bounded function de-

fined on the set E. Let R = [a, b) × [c, d) ⊂ T1 × T2 be a rectangle containing E

(obviously such a rectangle exist) and define F on R as follows:

F(t, s) =


f (t, s), if (t, s) ε E

0, if (t, s) ε R \ E

Then f is said to be Riemann ∆−integrable over E if F is Riemann ∆−integrable over R,

we write

∫

E

∫
f (t, s)∆1t∆2s =

∫

R

∫
F(t, s)∆1t∆2s.

(Bohner and Guseinov 2006).
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CHAPTER 3

MEASURE ON TIME SCALE

In this chapter we will introduce the concept of ∆−Measure. ∆−measure

and ∇−measure were first defined by Guseinov in 2003 (Guseinov 2003). Then

in further study, the relationship between Lebesgue ∆−integral and Riemann

∆−integral were introduced in detail by Guseinov and Bohner (Bohner and Gu-

seinov 2003). Delta measurability of sets was studied by Rzezuchousky (Rzezu-

chousky 2005). And after that, Cabada and Vivero (Cabada and Vivero 2004)

were developed this concept.

3.1. Definition of ∆−Measure

Let T be a time scale, σ and ρ be the forward and the backward jump

functions defined on T respectively as given in Definition 2.2. We shall denote by

F1 the class of all bounded left closed and right open intervals of the form

F1 = {[a, b) ∩ T : a, b ∈ T, a ≤ b}.

It is easy to see that if a = b, then interval is equal to the empty set.

We define the function m1 : F1 → [0,+∞) that assigns each interval [a, b) to its

length such that,

m1([a, b)) = b − a. (3.1)

where F1 is the set of all semi-closed intervals. The set function m1 is countably

additive measure on F1. Indeed,

1) m1([a, b)) = b − a ≥ 0 since b ≥ a.

2) m1(
∞⋃

i=1

[ai, bi)) =

∞∑

i=1

m1([ai, bi)) for pairwise disjoint intervals [ai, bi).

3) m1(∅) = m1([a, a)) = a − a = 0 holds for all a ∈ T.

For describing the Caratheodory extension µ∆ of m1, first we will discuss the outer

measure on all subsets of T by using m1.
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Definition 3.1 Let E be any subset of T. If there exists at least one finite or countable

system of intervals I j ∈ F1 ( j = 1, 2, ...) such that E ⊂
⋃

j

I j, then

m∗1(E) = inf
E⊂⋃ j I j

∑

j

m1(I j)

is called the outer measure of the set E, where the infimum is taken over all coverings of E

by a finite or countable system of intervals I j ∈ F1.

The outer measure is always nonnegative and also could be infinite so that in

general we have 0 ≤ m∗1(E) ≤ ∞.

Definition 3.2 A set A ⊂ T is called m∗1-measurable or ∆-measurable if the following

equality,

m∗1(E) = m∗1(E ∩ A) + m∗1(E ∩ Ac)

holds for all subsets E of T.

Now defining the family

M(m∗1) = { A ⊂ T : A is ∆ −measurable},

the Lebesgue ∆−measure, denoted by µ∆, is the restriction of m∗1 to M(m∗1).

Proposition 3.1 The family M(m∗1) of all m∗1-measurable (∆−measurable) subsets of T

is a σ-algebra.

Proposition 3.2 If En is an increasing sequence of sets in a time scale T, then

µ∆(∪∞n=1En) = lim
n→∞

µ∆(En).

Similarly, if {En} is a decreasing sequence of sets in a time scale T, then

µ∆(∩∞n=1En) = lim
n→∞

µ∆(En).

In other words, ∆-measure on T is continuous.

Theorem 3.1 For each t0 ε T − {maxT} the single point set {t0} is ∆−measurable and

its ∆−measure is given by µ∆({t0}) = σ(t0) − t0.
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Proof Case1. Let {t0} be right scattered. Then {t0} = [t0, σ(t0)) ε F1. So {t0} is

∆−measurable and µ∆({t0}) = σ(t0) − t0.

Case2. Let {t0} be right dense. Then there exists a decreasing sequence {tk} of

points of T such that t0 ≤ tk and tk ↓ t0. Since {t0} =
⋂∞

k=1[t0, tk) ε F1. Therefore {t0}
is ∆−measurable. By Preposition 3.2

µ∆(∩∞k=1[t0, tk)) = lim
k→∞

µ∆([t0, tk)) = lim
k→∞

tk − t0 = 0.

which is the desired result. �

Every kind of interval can be obtained from an interval of the form [a, b) by adding

and subtracting the end points a and b. Then each interval of T is ∆−measurable.

Theorem 3.2 If a, b ∈ Tk and a ≤ b, then

a) µ∆([a, b)) = b − a.

b) µ∆((a, b)) = b − σ(a).

If a, b ∈ T and a ≤ b, then

c) µ∆((a, b]) = σ(b) − σ(a).

d) µ∆([a, b]) = σ(b) − a.

Proof (Guseinov 2003). �

Definition 3.3 We say that f is ∆−measurable if for ever α ∈ R the set

f −1([−∞, α)) = {t ∈ T : f (t) < α}

is ∆−measurable.

Theorem 3.3 Monotone Convergence Theorem Adapted to Time Scale: Let { fn}n∈N
be an increasing sequence of nonnegative ∆−measurable functions defined on a

∆−measurable set E and let f (t) = lim fn(t) ∆−a.e., then
∫

E
lim f (s)∆s = lim

∫

E
fn(s)∆s

Proof As in (Aliprantis and Burkinshaw 1998). �
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CHAPTER 4

PROBABILITY THEORY ON TIME SCALE

Probability Theory involves discrete and continuous random variables. In

this chapter we introduce ∆−Probability Measure which unifies both continuous

and discrete cases. Also some distribution functions are adapted to time scale.

Uniform and Normal random variables are constructed on time scale. Some

Mathematica applications of Normal random variable on time scale are given.

Very important inequalities on probability theory are also adapted to time scale.

4.1. Random Variable on Time Scale

Let XT be a real valued function from ΩT to T such that XT : ΩT → T. The

inverse image under XT of BT ∈ B(T) is the subset of ΩT given by

X−1
T (BT) = {w : XT(w) εBT, w ε ΩT}

For example, let ΩT = [1, 2] ∪ {3} ∪ [5, 7] be a sample space of an experiment, and

X(w) = 2w + 1 be a random variable on ΩT, so,

X(ΩT) = [3, 5] ∪ {7} ∪ [11, 15].

Definition 4.1 A random variable is a function XT : ΩT → T such that X−1
T (BT) ∈ F1

for every BT ∈ B(R).

4.2. ∆−Probability

∆−Probability is a real valued set function P that assigns to each event A

in the sample space ΩT a number P∆(A), called the probability of the event A. We

define ∆−Probability function on a Time Scale as follows:

P∆(A) =



µ∆(A)
µ∆(ΩT) , if A ⊂ ΩT

0, otherwise.
Since this function satisfies the following conditions:

i) P∆(A) =
µ∆(A)
µ∆(ΩT) ≥ 0 by the definition of ∆-measure.
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ii) P∆(ΩT) = 1 since, P∆(ΩT) =
µ∆(ΩT)
µ∆(ΩT) = 1.

iii) Let Ai be pairwise disjoint subsets of ΩT;

P∆(
∞⋃

i=1

Ai) =
µ∆(

⋃∞
i=1 Ai)

µ∆(Ω)

=
µ∆(A1)
µ∆(ΩT)

+
µ∆(A2)
µ∆(ΩT)

+ ... +
µ∆(An)
µ∆(ΩT)

+ ...

= P∆(A1) + P∆(A2) + ... + P∆(An) + ...

=

∞∑

i=1

P∆(Ai)

Then P∆(A) is a probability function on a time scale.

Definition 4.2 A random variable XT = a on time scale T is called almost surely (a.s)

if

P∆(XT , a) = 0.

4.2.1. Properties of the ∆−Probability

Theorem 4.1 Let (ΩT,F1,P) be a probability space. Then,

1) P∆(∅) = 0.

2) P∆ is finitely additive: if A1, . . . ,An are (pairwise) disjoint, then

P∆(
n⋃

i=1

Ai) =

n∑

i=1

P∆(Ai).

3) For each A, P∆(Ac) = 1 − P∆(A).

4) If A ⊆ B, then

P∆(B\A) = P∆(B) − P∆(A).

5) P∆ is monotone: if A ⊆ B then P∆(A) ≤ P∆(B).

6) For all A and B (disjoint or not),

P∆(A ∪ B) + P∆(A ∩ B) = P∆(A) + P∆(B).

7) P∆ is (finitely) subadditive: for all A and B, disjoint or not,

P∆(A ∪ B) ≤ P∆(A) + P∆(B).

Proof 1) If we use the definition of ∆−Probability

P∆(∅) = P∆([a, a)) =
µ∆([a,a))
µ∆(ΩT) = a−a

µ∆(ΩT) = 0.
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2) This property can be showed easily by using Axiom3 of being ∆−Probability.

3) We know that A ∪ Ac = Ω,

1 = P∆(Ω) = P∆(A ∪ Ac) = P∆(A) + P∆(Ac).

4) Since A and B ∩ Ac are disjoint sets,we can write B = A
⋃

(B
⋂

Ac),

Take the µ∆measure of both sides and divide by µ∆(ΩT) then we get

µ∆(B)
µ∆(ΩT)

=
µ∆(A)
µ∆(ΩT)

+
µ∆(B ∩ Ac)
µ∆(ΩT)

P∆(B) = P∆(A) + P∆(B\A)

5) We know that if A ⊆ B then µ∆(A) ≤ µ∆(B).

and divide both sides by µ∆(ΩT) then we get

µ∆(A)
µ∆(ΩT)

≤ µ∆(B)
µ∆(ΩT)

P∆(A) ≤ P∆(B).

6) Since

(A ∩ B) ∪ (A\B) = A (4.1)

(A ∩ B) ∪ (B\A) = B (4.2)

take the measure of both sides of (4.1) and (4.2) and divide by µ∆(ΩT) then we get;

µ∆(A ∩ B)
µ∆(ΩT)

+
µ∆(A \ B)
µ∆(ΩT)

=
µ∆(A)
µ∆(ΩT)

µ∆(A ∩ B)
µ∆(ΩT)

+
µ∆(B \ A)
µ∆(ΩT)

=
µ∆(B)
µ∆(ΩT)

then we have

P∆(A ∩ B) + P∆(A\B) = P∆(A) (4.3)

P∆(A ∩ B) + P∆(B\A) = P∆(B) (4.4)

By adding these equations we get

P∆(A ∩ B) + P∆(A\B) + P∆(A ∩ B) + P∆(B\A) = P∆(A) + P∆(B)

which is

P∆(A ∩ B) + P∆(A ∪ B) = P∆(A) + P∆(B)

7) This property can be showed easily by using Property 5. �
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Example 4.1 An experiment is performed. During a day, the first observation is taken

at any time from midnight to one p.m., second observation is taken at any time from 2 to

3 p.m. and so on. The sample space is

ΩT = [0, 1]∪ [2, 3]∪ ...∪ [22, 23]. Let A be the event which observations have been either

during [2, 3] or [8, 9] that is A = [2, 3] ∪ [8, 9] and these two intervals are disjoint, by

using the Theorem 3.2 we can compute

µ∆(ΩT) = µ∆([0, 1] ∪ [2, 3] ∪ ... ∪ [22, 23]) = 23

P∆(A) = P∆([2, 3]) + P∆([8, 9])

P∆(A) =
µ∆([2, 3])
µ∆(ΩT)

+
µ∆([8, 9])
µ∆(ΩT)

=
4

23

Example 4.2 A bus stops at the station every day at some time between

[0, 1],[8, 9], [12, 13], [16, 17], [18, 19], [20, 21], [22, 23]. Evaluate the probability of the

bus arrive the station during [1, 9] or [1, 9) or (1, 9] or (1, 9).

Solution:

ΩT = [0, 1] ∪ [8, 9] ∪ [12, 13] ∪ [16, 17] ∪ [18, 19] ∪ [20, 21] ∪ [22, 23]

µ∆(ΩT) = µ∆([0, 1] ∪ [8, 9] ∪ [12, 13] ∪ [16, 17] ∪ [18, 19] ∪ [20, 21] ∪ [22, 23]) = 23

P∆([1, 9]) =
11
23

P∆([1, 9)) =
8
23

P∆((1, 9]) =
4
23

P∆((1, 9)) =
1
23
.

4.3. ∆−Probability Density Function on Time Scale

∆−Probability Density Function on time scale satisfies the following con-

ditions:

1) f∆(x) ≥ 0 for all x ∈ T.

2)
∫ ∞
−∞ f∆(x)∆x = 1.
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4.4. ∆−Distribution Function

For the density function f∆ on time scale ∆−Distribution Function is defined

as follows:

F∆(x) = P∆(X ≤ x) =

∫ x

−∞
f∆(t)∆t

∆−Distribution Function has the following conditions:

1)F is increasing function.

2)limx→−∞ F∆(x) = 0 and limx→+∞ F∆(x) = 1

where F∆(a) = P∆(X ≤ a) =
∫ a

−∞ f∆(t)∆t

Proof 1) A = {x : X < a} and B = {x : X < b} where a < b. Since A ⊂ B

P∆(X ≤ a) ≤ P∆(X ≤ b) then

F∆(a) ≤ F∆(b).

2)limx→−∞ P∆(X ≤ x) = P∆(Ø) = 0

limx→+∞ P∆(X ≤ x) = P∆(Ω) = 1. �

4.5. Some ∆−Distribution Functions

In this section we are going to adapt some well known distribution func-

tions on time scale. Uniform and Normal Distributions are studied on time scale.

In addition, some Mathematica applications for Normal Distribution on time scale

are given.

4.5.1. Uniform Random Variable on Time Scale

Let T = [t0, t1] ∪ [t2, t3]... ∪ [t2n, t2n+1] where t0 = a and t2n+1 = b and

SR = {t1, t3, ..., t2n+1} be the set of all right scattered points of T. Uniform

∆−probability function on T can be defined as follows:

f∆(t) =


1

µ∆([a,b)) , if tε T

0, otherwise.
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µ∆(
∞⋃

i=1

(Ai) =

∞∑

i=1

µ∆(Ai) for pairwise disjoint sets (Ai)

µ∆(
∞⋃

i=1

Ai) =

∞∑

i=1

µ∆(Ai)

=

∞∑

i=1

µ∆([ti−1, ti))

= µ∆([a, b)).

and since this function satisfies the following condition:
∫ ∞

−∞
f∆(t)∆t =

∫ a

−∞
f∆(t)∆t +

∫ b

a
f∆(t)∆t +

∫ ∞

b
f∆(t)∆t

=

∫ t1

a
f∆(t)∆t +

∫ t2

t1

f∆(t)∆t +

∫ t3

t2

f∆(t)∆t + ... +

∫ t2n

t2n−1

f∆(t)∆t +

∫ t2n+1

t2n

f∆(t)∆t +

∫ σ(t2n+1)

t2n+1

f∆(t)∆t

since
∫ σ(t)

t
f (s)∆s = µ(t) f (t), for scattered points ti, where i = 1, 3, 5, ..., 2n + 1.

=
1

µ∆([a, b))

{ n∑

i=0

µ∆([t2i+1, σ(t2i+1))) +

n∑

i=0

µ∆([t2i, t2i+1))
}

=
1

µ∆([a, b))
[t2 − t1 + t1 − t0 + t4 − t3 + t3 − t2 + ... + σ(t2n) − t2n−1 + t2n+1 − t2n + b − b]

=
t2n+1 − t0

µ∆([a, b))
=

b − a
b − a

= 1.

then f∆(t) is a probability density function on ΩT. Also Uniform ∆−Distribution

function on time scale is defined as follows:

F∆(t) =



0, t < a or tε(ti, σ(ti)) where ti is right scattered
µ∆([a,t)∩Ω)
µ∆([a,b)) , if tεT

1, t ≥ b

This function satisfies the all distribution function properties:

lim
t→+∞

F∆(t) = lim
t→+∞

µ∆([a, t) ∩Ω)
b − a

= lim
t→+∞

µ∆[a, t]T
b − a

= lim
t→+∞

σ(t) − a
b − a

=
b − a
b − a

= 1
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since a is right dense σ(a) = a and max(T) = b = σ(b)

lim
t→−∞

F∆(t) = lim
t→−∞

µ∆([a, t) ∩Ω)
b − a

= lim
t→−∞

µ∆({a})T
b − a

=
σ(a) − a

b − a

=
a − a
b − a

= 0.

4.5.2. Normal Random Variable on Time Scale

Simon (Simon et al 2005) studied on Gaussian Bell for time scales. He

introduced a function f (x) such that

f (x) = c
∏

tε[0,x)

(1 + µ(t))−t.

We take this function as probability density function on time scale T+ every x ∈ T+

such that T+ = {x ∈ T|x ≥ 0}.
f∆(x) = c

∏
t∈[0,x)(1 + µ(t))−t every x ∈ T+

If we take T = hZ+ and h > 0, then this function satisfies the following condition:

∞∑

n=1

f∆(hn) = 1

since

f∆(hn) = c
∏n−1

k=0 (1 + h)−kh = c(1 + h)−h
∑n−1

k=0 k = c(1 + h)hn(1−n)/2 every n ∈ N0.

By substituting x = hn then we get

f∆(x) = c[(1 + h)1/h]−x(x−h)/2 (4.5)

and every x ∈ T+ and for all functions of f∆(x) we can find the values of c’s which

satisfy the following condition

∞∑

n=1

f∆(x) =

∞∑

n=1

c[(1 + h)1/h]−x(x−h)/2 = 1

If we take h = 1, 1/2, 1/4, 1/8, 1/32 then by using Mathematica we can find

the values of c respectively which are c = 0.60915, c = 0.350264, c = 0.187143,

c = 0.0966356, c = 0.0248695. Then f∆(x) is a probability density function on time
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Figure 4.1. Graph of f∆(1n), f∆( 1
4n), and f∆( 1

32n)

scale T.

The graph of f∆(x) for h = 1, 1/4, 1/32 are respectively given as follows:

By observing Figure 4.1, it is easy to see that if h → 0 then the function

f∆(x) will coincide with the Gaussian Bell density function. Now, let us see this

result by analytically.

Lemma 4.1 limh→0 f∆(x) = ce−x2/2

Proof Let take f∆(x) in Equation (4.5)

f∆(x) = c[(1 + h)1/h]−x(x−h)/2

By taking the natural logarithm of both sides,

ln f∆(x) = ln c − x(x−h)
2 ln[(1 + h)1/h]

by taking the limit of both sides when h→ 0

lim
h→0

ln f∆(x) = lim
h→0

ln c − x(x − h)
2

ln[(1 + h)1/h]

= ln c − lim
h→0

x(x − h)
2

lim
h→0

ln[(1 + h)1/h]

= ln c − x2

2
ln(e)

= ln c − x2

2
ln(lim

h→0
ln f∆(x)) = eln c−x2/2

= ce−x2/2.

�

We get Gaussian Probability density function.
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4.6. ∆−Expected Value on Time Scale

Expected value is an averaging process for random variables xk’s on time

scales. The expectation gives an idea of the central tendency which is used as a

parameter of location of the probability distribution of X.

Since the definition of ∆−integral on time scale involves discrete and continuous

case, and besides expected value on time scale involves discrete and continuous

case, then the Expected value on time scale is given by

E∆[X] =

∫ ∞

−∞
x f∆(x)∆x.

where f∆ is a ∆−probability density function on time scale.

Definition 4.3 (Simple random variable:) The function IAk defined by

IAk =


1, if w ε Ak

0, otherwise.

is called characteristic function of ΩT and a linear combination of the characteristic

functions as

X =

n∑

k=1

xkIAk

is called a simple random variable on time scale ΩT where Ak are pairwise disjoint sets

with

Ak = {w : X(w) = xk} i = 1, 2, ...n.

and
⋃n

i=1 Ak = ΩT.

The indefinite ∆ − integral or indefinite ∆−expectation of X over A ∈ F1 on hN is

defined as follows:

E∆[XIA] =
∫

A
X∆P = E∆(

∑
k xkIAAk) =

∑
k xkP∆AAk.

4.6.1. Properties of ∆−Expected Value on Time Scale

Theorem 4.2

1) If X and Y are jointly distributed random variables, then;

E∆[X + Y] = E∆[X] + E∆[Y]

where a, b ε R.
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2) E∆[cX] = cE∆[X].

3) If X ≥ 0 then E∆[X] ≥ 0.

4) For any two independent jointly distributed random variables X and Y,

E∆[XY] = E∆[X]E∆[Y].

5) If Xn → X, then E∆[Xn]→ E∆[X].

Proof

1)

E∆[X + Y] =

∫ ∞

−∞

∫ ∞

−∞
(x + y) f∆(x, y)∆x∆y

=

∫ ∞

−∞

∫ ∞

−∞
x f∆(x, y)∆x∆y +

∫ ∞

−∞

∫ ∞

−∞
y f∆(x, y)∆x∆y

chance of order

=

∫ ∞

−∞
x
∫ ∞

−∞
f∆(x, y)∆y∆x +

∫ ∞

−∞
y
∫ ∞

−∞
f∆(x, y)∆x∆y

=

∫ ∞

−∞
x fX(x)∆x +

∫ ∞

−∞
y fY(y)∆y

= E∆[X] + E∆[Y].

2) E∆[cX] =
∫ ∞
−∞ cx f∆(x)∆x = c

∫ ∞
−∞ x f∆(x)∆x = cE∆[X].

3) Since f∆(x) ≥ 0 for all x ε T. then E∆[X] =
∫ ∞
−∞ x f∆(x)∆x ≥ 0.

4) Let X and Y be any two independent jointly distributed random variables, then

E∆[XY] =

∫ ∞

−∞

∫ ∞

−∞
xy fX(x) fY(y)∆x∆y

change of order

E∆[XY] =

∫ ∞

−∞
x fX(x)

∫ ∞

−∞
y fY(y)∆y∆x

= E∆[Y]
∫ ∞

−∞
x fX(x)∆x

= E∆[X]E∆[Y].
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5) There exist a monotone increasing sequence of simple functions Xn converging

to X. E∆[Xn] is a monotone increasing sequence which converges to a limit value

related with Xn sequences. By using the Monotone Convergence Theorem on time

scale,

E∆[Xn] =

∫ ∞

−∞
xn fXn(x)∆x

= lim
n→∞

∫ ∞

−∞
xn fXn(x)∆x

=

∫ ∞

−∞
lim
n→∞

xn fXn(x)∆x

=

∫ ∞

−∞
x fX(x)∆x

= E∆[X].

�

Corollary 4.1 If X ≤ Y a.s., then E∆[X] ≤ E∆[Y].

Proof Since Y > X a.s., Y − X > 0 a.s. and since 3.th property of the expected

value

E∆[Y − X] ≥ 0. By linearity property

E∆[Y − X] = E∆[Y] − E∆[X] ≥ 0.

This implies E∆[X] ≤ E∆[Y]. �

4.7. ∆−Variance on Time Scale

Let X be a random variable on (ΩT,F1,P). If k > 0, the number E∆[Xk] is

called the k.th moment of X. If k=1 then E∆[X] is called the ∆−mean of X.

Var∆[X] = E[(X−E∆[X])2] is called the ∆−Variance of X. ∆−Variance on time scale

has the following properties:

1. Var∆[X] = E∆[X2] − (E∆[X])2.

2. Var∆[cX] = c2Var∆[X].

4.7.1. Moments

E∆[X − a]k (k = 1, 2, 3...) is the k’th ∆−moment of X about a. E∆[X]k is called

the k’th ∆−moment about the origin.
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E∆[|X − a|]k (r > 0) is called the r’th ∆−absolute moment of X about a. E∆[|X|]k is

called the k.th ∆−absolute moment.

E∆[(X − E∆[X])2] the second ∆−moment about the ∆−expected value is called the

∆−variance of X on a time scaleT and as we discussed above denoted by Var∆[X].

E∆[(X − E∆[X])2] = E∆[X2] − (E∆[X])2 ≥ 0.

∆−Moment Generating Function

If ∆−moments of all orders exist and are finite then

M(θ) = 1 + (E∆[X])θ + (E∆[X2])
θ2

2
+ ... + (E∆[Xn])

θn

n
...

is called the ∆−moment generating function of X and also

E∆[Xn] =
dnM(θ)

dθn

∣∣∣
θ=0
.

4.7.2. Probabilistic Inequalities on Time Scale

M. Bohner and R.Agarval (Agarwal and Bohner 2001) studied about

inequalities on time scales. In this section we modify some important Probabilistic

Inequalities on time scales.

Lemma 4.2 (Cr−Inequality on time scale)

E∆|X + Y|r ≤ CrE∆|X|r + CrE∆|Y|r

Cr =


1, if r ≤ 1

2r−1, if r > 1

Proof If a > 0 and b > 0 then

( a
a + b

)r
+

( b
a + b

)r ≥ 1 f or all r ≤ 1

ar + br > (a + b)r

Hence for all w, a = |X(w)|, b = |Y(w)| and r ≤ 1 we get

|X(w)|r + |Y(w)|r ≥ (|X(w)| + |Y(w)|)r

≥ |X(w) + Y(w)|r.

now let us consider the function

Ψ(p) = pr + (1 − p)r (r ≥ 1) (0 < p < r)
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This function has a minimum value when p = 1
2 . Thus a > 0 and b > 0,

( a
a + b

)r
+

( b
a + b

)r ≥ 2−(r−1)

2r−1(ar + br) ≥ (a + b)r.

So for all w and all r > 1

2r−1(|X(w)|r + |Y(w)|r) ≥ (|X(w)| + |Y(w)|)r

≥ |X(w) + Y(w)|r.

The proof is completed. �

Lemma 4.3 (Hölder’s Inequality on time scale)

E∆|XY| ≤ r
√

E∆|X|r. s
√

E∆|Y|s

where r > 1 and 1
r + 1

s = 1.

Proof For nonnegative real numbers a and b, the basic inequality

a
1
r .b

1
s ≤ a

r
+

b
s

(4.6)

holds. Now suppose without lost of generality, that

(E∆|X|r)1/r.(E∆|Y|s)1/s , 0.

Apply (4.6) to a = |X(w)|r/E∆|X|r and b = |Y(w)|s/E∆|Y|r and taking expectations

of both sides then we get

E∆

[ |X(w)|
(E∆|X|r) 1

r

.
|Y(w)|

(E∆|Y|s) 1
s

]
≤ E∆

[1
r
|X(w)|r
E∆|X|r +

1
s
|Y(w)|s
E∆|Y|s

]

=
1
r

E∆|X(w)|r
E∆|X|r +

1
s

E∆|Y(w)|s
E∆|Y|s

=
1
r

+
1
s

= 1.

This directly yields Hölder’s Inequality adapted to time scales.

E∆|X(w)Y(w)| ≤ (E∆|X|r) 1
r .(E∆|Y|s) 1

s .

�
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Corollary 4.2 (Cauchy-Schwartz Inequality on time scale) If we put r = s = 2

then

E∆|XY| ≤
√

E∆|X|2.E∆|Y|2

is called Cauchy Schwartz Inequality on time scale.

Proof We can show the proof easily by using Lemma 4.3 above. �

Lemma 4.4 (Minkowski’s Inequality on time scale)

r
√

E∆|X + Y|r ≤ r
√

E∆|X|r +
r
√

E∆|Y|r.

where r ≥ 1.

Proof If we separate the expectation and applying Hölder’s inequality

E∆|X + Y|r = E∆(|X + Y|.|X + Y|r−1)

≤ E∆(|X|.|X + Y|r−1) + E∆(|Y|.|X + Y|r−1)

≤ (E∆|X|r) 1
r .(E∆|X + Y|(r−1)s)

1
s + (E∆|Y|r) 1

r .(E∆|X + Y|(r−1)s)
1
s

≤ (E∆|X + Y|(r−1)s)
1
s {(E∆|X|r) 1

r + (E∆|Y|r) 1
r }

(E∆|X + Y|r)(1− 1
s ) ≤ (E∆|X|r) 1

r + (E∆|Y|r) 1
r

with 1 − 1
s = 1

r we get the desired result.

(E∆|X + Y|r) 1
r ≤ (E∆|X|r) 1

r + (E∆|Y|r) 1
r .

�

Convex Function: Let f be a real valued Borel function defined on an open interval

I which is finite or infinite subset of real numbers, is said to be convex if for every

pair of points x1, x2 of I,

f
(x1 + x2

2

)
≤ 1

2
f (x1) +

1
2

f (x2).

An alternative definition of a convex function is that, for every x0 ε I, there exist a

number λ(x0) such that for all x εI,

λ(x0)(x − x0) ≤ f (x) − f (x0). (4.7)
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Lemma 4.5 (Jensen’s Inequality on time scale) If f is convex and E∆[X] is finite,

then

f (E∆[X]) ≤ E∆[ f (X)].

Proof Let X be a random variable whose values lie in I, replacing x0 by E∆[X]

and x by X in Inequality (4.7), then we have

λ(E∆[X])(X(w) − E∆[X]) ≤ f (X(w)) − f (E∆[X]).

Taking expectations and left hand side vanished, so we get the desired result. �

Lemma 4.6 (Markov’s Inequality on time scale) If X ≥ 0 and a > 0

P∆(X ≥ a) ≤ E∆[X]
a

.

Proof If we separate the ∆−integral

E∆[X] =

∫ ∞

0
x f∆(x)∆x =

∫ a

0
x f∆(x)∆x +

∫ ∞

a
x f∆(x)∆x

≥
∫ ∞

a
x f∆(x)∆x

Since x f∆(x) ≥ a f∆(x) when x ≥ a,

≥
∫ ∞

a
a f∆(x)∆x

= a
∫ ∞

a
f∆(x)∆x

= aP∆(X ≥ a)

E∆[X] ≥ aP∆(X ≥ a)

P∆(X ≥ a) ≤ E∆[X]
a

.

�

Lemma 4.7 (Chebyshev’s Inequality on time scale) Let X ≥ 0 be a random vari-

able with mean E∆[X], and ∆−variance Var∆[X] = σ2
∆

and a > 0, then

P∆(|X − E∆[X]| ≥ kσ∆) ≤ 1
k2

Proof Since (X−E∆[X])2

σ2
∆

≥ 0 (nonnegative random variable)

E∆

[ (X − E∆[X])2

σ2
∆

]
=

E∆[(X − E∆[X])2]
σ2

∆

= 1
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by using Markov’s inequality

P∆

( (X − E∆[X])2

σ2
∆

≥ k2
)
≤ 1

k2

which means that

P∆(|X − E∆[X]| ≥ kσ∆) ≤ 1
k2 .

�
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