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ABSTRACT 

 

DEVELOPMENT OF MULTI AND DOUBLE WALLED CARBON 

NANOTUBES (CNTs)/ VINYLESTER NANOCOMPOSITES 
 

 This study focuses on development and characterization of thermosetting resin 

based nanocomposites containing multi and double walled carbon nanotubes with and 

without amine functional groups (MWCNT, DWCNTs, MWCNT-NH2 and DWCNT-

NH2). A novel 3-roll milling technique was conducted to prepare the resin suspensions 

with carbon nanotubes (CNTs). Rheological measurements performed on the resin 

suspensions showed that addition of very low contents (0.05, 0.1 and 0.3 wt. %) of 

MWCNTs and MWCNT-NH2 affected the flow characteristic of the resin, significantly. 

Further, the curing behavior of a vinylester-polyester hybrid resin suspensions 

containing 0.3 wt % of MWCNTs and MWCNT-NH2 was intensively studied. It was 

found that regardless of amine groups, presence of CNTs affected the polymerization of 

the hybrid matrix resin. Final individual fractional conversion rates of styrene and 

vinylester monomers were found to be vastly dependent on the type of CNTs. Glass 

transition temperature (Tg) values of the nanocomposites with MWCNTs and MWCNT-

NH2 were found to increase with filler content. Moreover, nanocomposites containing 

MWCNTs and MWCNT-NH2 were found to possess higher tensile strength, elastic 

modulus as well as fracture toughness and fracture energy as compared to the neat 

hybrid resin. On the other hand, electrical properties of the nanocomposites were also 

investigated and it was found that nanocomposites with MWCNTs exhibited the lowest 

percolation threshold value. In addition, nanocomposites with amino functionalized 

CNTs were found to exhibit lower electrical conductivity as compared to those with 

untreated CNTs. Nanocomposites with AC electric field induced aligned CNTs were 

also prepared. Finally, based on the findings obtained for CNT/ resin suspensions, as a 

case study, electrically conductive glass fiber reinforced composite laminates were 

successfully produced, using the CNT modified resin suspensions as matrix material, 

via Vacuum Assisted Resin Transfer Molding (VARTM) and Resin Transfer Molding 

(RTM) methods.  
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ÖZET 

 
ÇOK VE İKİ TABAKALI KARBON NANOTÜP / VİNİLESTER 

NANOKOMPOZİTLERİN GELİŞTİRİLMESİ 
 

Bu çalışma, amin gruplu ve grupsuz iki ve çok tabakalı nanotüpleri (MWCNTs, 

DWCNTs, MWCNT-NH2 ve DWCNT-NH2) içeren vinilester ve poliester hibrid esaslı 

reçinelerin geliştirilmesi ve karakterizasyonu üzerine odaklanmıştır. Üç silindirli 

değirmen tekniği, karbon nanotüp ihtiva eden reçine süspansiyonlarını hazırlamak için 

kullanılmıştır. Reçine süspansiyonları üzerinde gerçekleştirilen reolojik ölçümler, çok 

düşük konsantrasyonda (% ağ. 0.05, 0.1 ve 0.3) ilave edilen MWCNTs ve MWCNT-

NH2 nin hibrid reçinenin akış özelliklerini belirgin bir biçimde etkilediğini göstermiştir. 

Ağ. % 0.3 MWCNTs ve MWCNT-NH2 içeren hibrid reçinelerin kürlenme davranışı 

oldukça kapsamlı çalışılmıştır. Sonuçta, amin fonksiyonel grupları olsun ya da olmasın, 

nanotüplerin hibrid reçinenin polimerizasyonunu etkilediği bulunmuştur. Ayrıca, sitiren 

ve vinilester monomerlerinin son dönüşüm oranlarının, karbon nanotüp çeşidine göre 

değiştiği bulunmuştur. Nanokompozitlerin camsı geçiş sıcaklıklarının nanotüp oranı ile 

arttığı gözlemlenmiştir. MWCNTs ve MWCNT-NH2 içeren nanokompozitler, katkısız 

hibrid reçineye göre daha yüksek çekme mukavemeti, elastik modulus, kırılma tokluğu 

ve enerjisi değerleri göstermişlerdir. Diğer taraftan, nanokompozitlerin elektriksel 

özellikleri de incelenmiştir. Sonuçta, MWCNTs ihtiva eden nanokompozitlerin en 

düşük elektriksel iletkenlik eşik (percolation threshold) değerine sahip olduğu 

bulunmuştur. AC elektrik alanı altında yönlendirilmiş nanotüp içeren nanokompozitler 

de ayrıca üretilmiştir. Son olarak, CNT/ reçine süspansiyonlarından elde edilen 

sonuçlara dayalı olarak, bir durum çalışması olarak, CNT modifiye edilmiş reçine 

süspansiyonları kullanılarak elektriksel iletkenliğe sahip cam elyaf takviyeli kompozit 

laminalar vakum destekli reçine kalıplama metodu (VARTM) ve reçine kalıplama 

metodu (RTM) kullanılarak başarı ile üretilmiştir.                                                                   
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CHAPTER 1 

 

INTRODUCTION 

 
1.1. Background 

 
Polymers and polymer based composites have been study of interest over the last 

two decades due to their relatively low costs and ease of processing. However, polymers 

exhibit poor damage tolerance, low mechanical strength and stiffness relative to other 

engineering materials such as metals (Tanoglu and Seyhan 2003). Therefore, their 

utilization as construction materials in industrial applications has been restricted to 

some extent. For that reason, various different methods including use of relevant 

chemical stabilizers and reinforcement constituents or blending of different types of 

polymers have been conducted to tailor mechanical and physical properties of polymers 

(Gojny 2006, Mccrum, et al. 1997). Of all, the most commonly utilized method to 

improve the performance of polymers is to turn them into composite structures, using 

reinforcing materials with high strength and modulus such as glass fibers. However, due 

to continuing innovations in the industrial applications, the sustainable evolutions 

expected from polymer based composite structures have been amended continuously.   

            At this stage, nanotechnology opens up a new perspective to shape new 

generations of composite structures. Nanoparticles possess unique mechanical and 

physical properties which make them one of the most promising fillers to develop the 

future composite materials (Harris 2000). Further, nanotechnology intends to reveal the 

size-related effects of nano particles to design innovative products with novel properties 

and functions (Ajayan, et al. 1999). Therefore, nanocomposites, which are encompassed 

under nanotechnology, have aroused great scientific and industrial attention during the 

last years. As very recent example, carbon nanotubes (CNTs) with extraordinary 

mechanical, thermal and electrical properties have been applied for various types of 

polymers to manufacture electrically conductive nanocomposites with at least retained 

or improved mechanical properties (Gojny, et al. 2006, Schandler, et al. 1998, Gojny, et 

al. 2004). Unlike micro-sized filler particles that usually compromise mechanical 

properties of polymers, for instance, resulting in a high strength but low toughness, 
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CNTs are anticipated to stimulate a synchronized increase in mechanical strength, 

stiffness, ductility and toughness of polymers in which they are embedded.   

 However, despite the fact that there are many published studies on CNT 

reinforced polymer composites, realization of the expected enhancement in the overall 

response of the resultant composites has not clearly been demonstrated so far (Ajayan 

and Schandler 2000, Gong, et al. 2000, Fidelus, et al. 2005). At this point, two major 

issues need to be solved to accomplish the so-pronounced improved properties in the 

resulting CNT filled nanocomposites (Gojny and Schulte 2004, Aizawa and Schaffer 

2003). These are; 

• Weak interfacial bonding between the carbon nanotubes and the matrix resin due 

to very inert surfaces of CNTs   

• Strong tendency of CNTs to form agglomerates because of their huge surface 

area and aspect ratio  

 A good bonding of CNTs to the matrix polymer is essential to benefit the 

potential of CNTs as structural reinforcement. Some chemical functional groups such as 

amino and carboxyl groups have been applied over the surfaces of CNTs in order to 

promote the compatibility at the interface between CNTs and the surrounding polymer 

matrix (Hiura, et al. 1995, Duesberg, et al. 1998, Gojny, et al. 2003). However, in 

general, the length of the CNTs is ruptured and their perfect structure is partially 

distorted during any chemical treatment (Hiura, et al. 1995, Dillon, et al. 1999). In other 

words, aspect ratio of CNTs is reduced. This leads to CNT modified composites to 

exhibit mechanical strength values very far below the theoretical expectations. It is for 

this reason that proper functionalization of CNTs is highly critical to the ultimate 

performance of their resulting nanocomposites. 

 The huge surface area of carbon nanotubes leads to strong attractive forces to 

occur between the CNTs themselves (Ge, et al. 1994, Harris 2000). Therefore, 

accomplishment of homogeneous dispersion of carbon nanotubes within the polymer 

matrix has also been big challenge. In general, CNTs have a huge surface area, several 

orders of magnitude larger than the surface of their micro-sized counterpart particles 

such as carbon black (CB) (Treacy, et al. 1996, Fiedler, et al. 2006). This provokes 

CNTs to form relatively large agglomerates. Extent of agglomeration is highly critical to 

mechanical properties of CNT modified composites. A number of different techniques 

including high speed mechanical stirring, direct mixing and sonication have been used 

for proper dispersion of CNTs within polymers. In general, these methods are incapable 
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to break up the agglomerates into individual nanotubes. Of all, sonication has been the 

most widely utilized technique to process CNT/ thermosetting resins such as epoxy, 

polyester and vinylester (Gong, et al., Gojny. et al. 2003). In this technique, a pulsed 

ultrasound with certain amplitude is intended for uniform dispersion of CNTs by 

dividing their agglomerates into smaller ones or individuals. However, the magnitude of 

vibration energy applied is limited to distance from the sonicator tip. Therefore, it is not 

scalable from laboratory to industrial manufacturing settings and not cost effective any 

more. Sonication technique may also diminish the length of nanotubes, applying a local 

energy input nearby the sonicator tip. Remaining the high aspect ratio of CNTs 

unchanged during blending processing is expected to make it possible to achieve 

enhanced properties in their resulting nanocomposites. 

         On the other hand, mechanical and physical properties of the CNTs are highly 

dependent on the production techniques such as chemical vapor deposition (CVD), 

electric arc discharge method and laser ablation (Ajayan, et al. 1999, Journet and 

Bernier 1998, Che, et al. 1998). This means that production techniques affect the 

physical properties of CNTs such as the defect density, degree of graphitization, the 

aspect ratio (in other words, the length and diameter distribution) and the density. All 

these properties are vastly critical to the ultimate properties of the polymers in which 

they are embedded (Biercuk, et al. 2002, Gojny 2006).    

         In summary, regardless of production method, proper dispersion of CNTs within 

polymers and enhanced interface between CNTs and the surrounding polymer matrix 

resin are required to accomplish the so-pronounced superior properties in the resulting 

nanocomposites.   

 

1.2. Objectives 

 
         This study focuses on establishing a fundamental science base to improve the 

properties of a cost effective matrix resins by the addition of nano particles. More 

specifically, this study aims to obtain electrically conductive thermosetting resins with 

enhanced or at least retained mechanical and thermal properties. For this purpose, 

vinylester and unsaturated polyester resins that are commonly used as matrix resins in 

composite industry were studied to prepare polymer nanocomposites containing very 

low amounts of CNTs with and without chemical functional groups.  
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      The specific objectives of this work are as follows; 

• Develop CNT / polymer nanocomposites via 3-roll milling technique. 

• Enhance dispersion of CNTs within the vinylester and polyester resin blends 

with the help of amine (NH2) surface functional groups over the surfaces of 

CNTs.  

• Reveal the effects of CNTs with and without amine functional groups on the 

cure behavior of the hybrid resin systems. 

• Examine the applicability of CNTs as structural reinforcement in polymers, 

evaluating rheological, thermal and mechanical properties of their resulting 

nanocomposites.    

• Establish a structure property relationship by associating the microstructure of 

the nanocomposites with their final properties 

• Investigate potential of CNTs as conductive filler, performing electrical 

conductivity measurements on the composite samples, beginning from room 

temperature to 77 K. 

• As an application of the prepared CNT/polymer suspensions, manufacture CNT 

modified glass fiber reinforced composites using Vacuum Assisted Resin 

Transfer Molding (VARTM) and Resin Transfer Molding (RTM) techniques. 

• Relate the measured mechanical properties of the matrix resin to the response of 

CNT modified glass fiber composites under various mechanical loading 

configurations.      

 

1.3 Dissertation Outline 

 
 The foregoing discussions establish the significance of formation of the 

interphase region between CNTs and polymer matrices. The background information 

given in this present chapter implies the effects of interfacial interactions between CNTs 

and the surrounding polymer matrix on the ultimate performance of their resulting 

nanocomposites. Importance of homogenous dispersion of CNTs within polymers was 

also emphasized, considering briefly common dispersion methods in comparative 

manner.   

 Relevant literature regarding structure and properties of CNTs as well as their 

manufacturing techniques are presented in Chapter 2 in order to better interpret the 
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structure property relationship in their related nanocomposites. Moreover, some recent 

studies focused on mechanical, thermal and electrical properties of CNT modified 

nanocomposites are also summarized in this chapter.  

 The materials systems used in this work, experimental techniques conducted to 

disperse CNTs within polymer systems to produce nanocomposites were highlighted in 

Chapter 3. Principles of 3-roll milling technique and its advantages over other common 

techniques including mechanical stirring, direct mixing and sonication are discussed in 

details. Rheological and mechanical properties of the several types of hybrid resin 

systems containing different types of CNTs with and without amine functional groups 

are also given in the same chapter. Dispersion state of different types of CNTs with and 

without amine functional groups within the matrix resins revealed by Transmission 

Electron Microscopy (TEM) are given in this chapter as well.  

 In Chapter 4, the rheological behavior of vinylester/polyester hybrid resin 

suspensions containing MWCNTs, MWCNT-NH2, DWCNTs and DWCNT-NH2 is 

reported. Dynamic viscoelastic and steady shear measurements via parallel plate 

oscillatory rheometer were performed for this purpose. In this respect, liquid samples 

without curing agents were taken from 3-roll milling processed resin suspensions 

containing different content of CNTs with and without amine functional groups. 

Rheological behavior of the suspensions was evaluated based on the content and type of 

CNTs, besides amine functional groups over their surfaces.    

In Chapter 5, a number of analytical techniques including Dynamic Scanning 

Calorimetry (DSC), Fourier Infrared Spectroscopy (FTIR), Raman Spectroscopy (RS) 

and Thermal Gravimetric Analyzer (TGA) were conducted to demonstrate the effects of 

MWCNTs and MWCNT-NH2 on the curing behavior of the hybrid resin, with particular 

emphasis on amine functional groups over the surfaces of CNTs. For DSC and FTIR 

measurements, catalyzed liquid resin samples were used to follow the reactions that take 

place within the resin system. DSC results showed the overall response of the resin 

system with the presence of CNTs with and without amine functional groups. An 

autocatalytic model was also used to fit the experimental data obtained from DSC 

measurements. FTIR investigation was carried out to reveal the effects of non-

functionalized and amino-functionalized CNTs on the individual conversions of styrene 

and vinylester resin monomers in the system. Moreover, RS measurements were further 

done on the cured hybrid polymer and its nanocomposites to follow the conversion of 

double carbon bonds of hybrid resin in the presence of CNTs with and without amine 
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functional groups. TGA measurements were executed on the cured samples to interpret 

the effects of CNTs on thermal degradation mechanism of the hybrid polymer matrix 

resin.   

In Chapter 6, thermo-mechanical properties of the nanocomposites obtained via 

polymerization of the suspensions containing various amounts of MWCNTs, MWCNT-

NH2, DWCNTs and DWCNT-NH2 were investigated, using Dynamic Mechanical 

Analyzer (DMA). The findings were evaluated in conjunction with rheogical behavior 

of their corresponding suspensions, as discussed in details in Chapter 4. TEM was also 

used to highlight the dispersion state of CNTs within the polymer matrix resin.  

In Chapter 7, tensile mechanical properties and fracture toughness of the 

nanocomposites were presented. Modified Halpin-Tsai model was also applied to 

correlate the predicted elastic moduli of the nanocomposites containing various types of 

CNTs with the experimentally measured values. Scanning Electron Microscopy (SEM) 

was employed to relate the failure modes that occurred in fracture surfaces of the 

specimens to the measured tensile strength and fracture toughness values of the 

nanocomposites.  

  In Chapter 8, temperature dependence of electrical conductivity of CNT 

modified nanocomposites was investigated from room temperature to 77 K, by using 

four-point probe test method. Room temperature conductivity of the same 

nanocomposites was also measured using impedance spectroscopy technique. Further 

experiments aimed to align the CNTs within the hybrid resin were also performed, using 

AC electrical field at various concentrations below the percolation threshold. DSC 

measurements were then performed on the nanocomposites containing randomly 

oriented and AC field induced aligned CNTs to interpret the effect of alignment on the 

thermal properties of the resulting nanocomposites.  

 In Chapter 9, composite laminates with and without CNT modification were 

manufactured using VARTM and RTM methods. The matrix dominated mechanical 

properties including interlaminar fracture toughness (mode I and mode II) and 

interlaminar shear strength of the VARTM processed composites were investigated to 

relate the properties of CNT modified matrix resin to the mechanical response of their 

fabric reinforced structures. Moreover, mechanical tensile properties of RTM processed 

laminates with and without CNT modification were also evaluated in comparative 

manner.   

 Finally in Chapter 10, conclusions of these studies and overall outlook are given.      
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1.4 Unique Contributions 

 
 This dissertation aims to establish a fundamental science base to produce 

nanocomposites based on a very cost effective polymer resin with very low filler 

content of CNTs.  

 To our knowledge, this study is the first in the literature on the preparation of 

electrically conductive thermosetting polyester and vinylester resins based 

nanocomposites with retained mechanical properties. A novel dispersion technique 

called 3-roll milling was used to disperse CNTs within polymers without rupturing their 

lengths, or distorting their physical properties. This study also developed a new 

methodology to make it possible to work on commercial styrene containing 

thermosetting resins via 3-roll milling. For this purpose, a specially formulized styrene 

free polyester resin with an appropriate viscosity was used to disperse CNTs under 

intensive shear by the help of 3-roll milling. The resin stuff achieved was then blended 

with vinylester resin. 

 Temperature dependency of electrical conductivities of the nanocomposites was 

also revealed, using four point probe test. It was shown that electrical conductivity of 

the nanocomposites is a function of temperature. Further, nanocomposites with 

anisotropic electrical properties were achieved with application of alternating current 

(AC) field during curing.  

 This work also shows that RTM and VARTM techniques are highly applicable 

to manufacture CNT modified fabric reinforced composites. The findings showed that 

CNTs could be used as distributed sensors to detect onset, propagation and evolution of 

damages that occur in the composite parts during their service life.    
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CHAPTER 2 

 

RELEVANT LITERATURE 
 

2.1 Nanotechnology 
 

 A broad and interdisciplinary research area called nanotechnology has come into 

view as a consequence of the recent explosive developments in materials science. 

Nanotechnology involves the production and application of structures, devices and 

systems, controlling shape and size at the nanometer scale (Calvert 1999). A nanometer 

is one millionth of a millimeter. Therefore, the use of nanotechnology is believed to 

make it possible to realize new materials with novel properties and functionality 

(Ajayan, et al. 1999). On behalf of these expectations, significant resources are being 

allocated worldwide for research and development in nanostructure science and 

technology. These efforts have been devoted to various different aims, including 

controlling the nanoscale size and synthesis, characterizing electrical, optical, magnetic, 

and chemical properties of the materials obtained, and establishing the relationship 

between the nanostructure and final properties of the materials (Smalley 1997). The 

applications to which nanotechnologies can be applied covers materials manufacturing, 

nano-electronics and computer technology, medicine and health, aeronautics and space 

exploration, environment and energy, biotechnology and agriculture, and security 

(Biercuk, et al. 2002, Lau and Hui 2002). Therefore, the range of materials that are 

encompassed under the nanotechnology definition is widespread. Nanoparticles, 

nanocrystals, nanodots, self-assembly monolayers, and more importantly nanotubes 

have been the recent examples due in this definition.   

 The potential uses and benefits of nano-materials and nano-devices are expected 

to lead to breakthroughs of many frontiers. The recent discovery of some nanostructures 

including carbon nanotubes, molecular motors, DNA-based assemblies, quantum dots, 

and molecular switches offers an unprecedented opportunity to further accomplish the 

sophisticated design of the new functional materials (Ebbesen 1997, Smalley 1997). For 

example, since variations at the nanometer scale affect electronic and atomic 

interactions, the nanoscale material design should enable one to control the material 

properties such as magnetization, and catalytic activity without inducing any change to 
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the chemical composition. Moreover, in the medical field, nanoscience and technology 

could allow one to place artificial components and assemblies inside the cells and to 

pattern new materials by imitating the self-assembly rules of nature (Lau and Hui 2002). 

Finally, nanoscale structures display a high surface-to-volume ratio, which is ideal for 

applications that involve composite materials, chemical reactions, drug delivery, and 

energy storage. 

 

2.2. Carbon Nanotubes (CNTs) 
 

 Carbon nanotubes (CNTs) are long cylinders of covalently bonded carbon 

atoms. They are composed of thin tubes with diameters of only a few nanometers, but 

thousands of times of this dimension in length (Ebbesen and Ajaian 1992). There are 

two basic types of CNTs. These are single walled carbon nanotubes (SWCNTs) and 

multi walled carbon nanotubes (MWCNTs). SWCNTs are generally regarded as a single 

graphene sheet that is monolayer of sp2-bonded carbon atoms rolled into a seamless 

cylinder (Iijima 1991). Figure 2.1 show the illustration of a single walled carbon 

nanotube structure, as an example.  

 

                   

Figure 2.1. Illustration of a single walled carbon nanotube structure  

(Source: Gojny 2006) 

 

 The carbon atoms in the cylinder have partial sp3 character that increases as the 

radius of curvature of the cylinder decreases. MWCNTs are made of nested graphene 

cylinders coaxially arranged around a central hollow core with interlayer separations of 

0.34 nm. A particular sort of MWCNTs is double walled carbon nanotubes (DWCNTs) 

that consist of two concentric graphene cylinders. DWCNTs are hypothetically 

supposed to have higher flexural modulus than SWCNTs and higher toughness than 
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MWCNTs due to the two walls and their relatively small size. In particular, CNTs 

exhibit an extremely desirable combination of unique mechanical, thermal and electrical 

properties based upon its hexagonal lattice arrangement and chiral vector. Theoretical 

and experimental studies showed that they have tensile elastic modulus specifically 

greater than 1 TPa, which is comparable to that of diamond 1.2 TPa. Moreover, they are 

at least 100 times stronger than steel, but only one-sixth heavy with a tensile strength of 

11-200 GPa (Lu 1997). As well, they conduct heat and electricity along their length 

with very little resistance acting like tiny electrical wires or paths for rapid diffusion of 

heat. They are supposed to have an electric-current carrying capacity of 1000 times 

higher than copper wires. As conductive filler, they are more effective than traditional 

micro carbon black particles (Lau and Hui 2002). In addition to these superior 

properties, carbon nanotubes have an enormous surface area per gram of 500 times 

more than a regular carbon fiber does. Actually, specific surface area of carbon 

nanotubes depends on their diameter and the number of sidewalls. SWCNTs possess the 

largest surface area. Peigney et al. (2001) theoretically found that the larger the diameter 

of the CNTs and the higher the numbers of graphitic layers, the lower the surface area 

is. Surface area is vastly critical to the modification of the mechanical and physical 

properties of polymers. These subjects of interest will be also discussed in details in the 

next sections.          

 

2.2.1. Atomic Structure of CNTs 
 

 There are two possible high symmetry structures for nanotubes known as zig-zag 

and armchair. Nanotubes do not have symmetric forms, but have structures in which the 

hexagons are arranged helically around the tube axis (Moniruzzaman and Winey 2006). 

These structures are generally known as chiral, because they can exist in two mirror-

related forms. Figure 2.2 depicts the diagram of a sheet of graphite to be rolled to form a 

carbon nanotube with different symmetry. The material properties of carbon nanotubes 

strongly depend on the arrangement of the carbon atoms in the lattice. In particular, the 

electronic properties are influenced by the tube chirality significantly. The cylinder is 

produced by rolling up the sheet such that the two end points of the vector are 

superimposed. So, the chiral vector, often known as the roll up vector can be described 

by the following equation. 
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                                                     Ch= na1 + ma2                                                           (2.1) 

 

 Where the integers (n, m) are the number of steps along the zig-zag carbon 

bonds of the hexagonal lattice a1 and a2 are the unit cell base vectors of the grapheme 

sheet. 

 

 

Figure 2.2. Diagram of a sheet of graphite to be rolled to form a carbon nanotube  

(Source: Lau and Hui 2002) 

 

The chiral angle (Θ) teta is measured an angle between the chiral vector Ch with respect 

to zigzag direction (n, 0) where (Θ) = 0 and the unit vectors of a1, a2. The armchair 

nanotube is defined as the (Θ) =30 and the translation indices is (n, n). All other types of 

nanotubes could be defined as a pair of indices (n, m), where n is not equaled to m (Lau 

and Hui 2002). The chirality of the carbon nanotubes affects the material properties. 

Especially, the electronic conductivity is highly sensitive to a slight change of these 

parameters (Thostenson, et al. 2001).  
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2.2.2. Mechanical Properties of CNTs 

 
 CNTs with extraordinary mechanical properties have been study of interest in 

materials science to produce functional polymer based nanocomposites with enhanced 

mechanical properties. In this manner, theoretical calculations were first carried out to 

predict the mechanical properties of carbon nanotubes. Different theoretical results 

regarding elastic modulus and its dependence on the nanotube diameter and helicity 

were reported in comparative manner. The predictions were found to vary with the types 

of calculation method to describe the interatomic bonding. It was found that elastic 

modulus of the CNTs ranges from 1 to 5 TPa, depending on theoretical methods used. 

Lu (1997) calculated the elastic properties of MWCNTs, using the empirical lattice 

dynamic models. He found that elastic properties are independent of chirality, tube 

radius, and number of layers and elastic properties are the same for all nanotubes with a 

radius larger than 1nm. Ru (2000) used the elastic shell model to study the effect of van 

der Waals forces on the axial buckling of DWCNTs. The analysis showed that the van 

der Waals forces do not increase the critical axial buckling strain of the nanotubes. 

Based on the multiple column representation that considers interlayer radial 

displacements along with van der Waals forces, he indicated that the effect of interlayer 

displacements can not be neglected unless the van der Waals forces are extremely 

strong.      

 In fact, experimental observations are beyond the theoretical expectations. In 

general, elastic modulus of any material can be measured using an extensiometer, 

provided that there is a large quantity of the material and possibility to shape it into a 

rod prior to experiment. However, it is a challenging issue to determine experimentally 

mechanical properties of the CNTs due to their nanometer size that causes difficulties 

with precision of the experiments. The first measurement of the elastic modulus of 

MWCNTs came from Treacy et al. (1996). They used TEM to measure the mean square 

vibration amplitudes of arc grown MWCNTs over a temperature range from room 

temperature to 800°C. The average value of the modulus obtained from this technique 

was reported to be about 1.8 TPa. In consequence, they concluded that the higher 

moduli were obtained from nanotubes with smaller tube diameters.   

    On the other hand, AFM is also useful tool to measure the elastic modulus of the 

carbon nanotubes with respect to their deflection. In general, once a suspended nanotube 
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is located with AFM, their diameter, suspended length, and deflection along the 

suspended length was determined based on a series of images taken at different loads. 

Salvetat et al. (1999) used this technique to measure the modulus of arc grown 

nanotubes. They found that the average modulus value of eleven individual nanotubes 

was 810 GPa. Similarly, the properties of carbon nanotubes were investigated via AFM 

(Yu, et al. 2000a, Yu, et al. 2000b). In general, it was generally observed that elastic 

modulus of SWCNTs and MWCNTs vary from 0.32 to 1.47 and 0.27 to 0.95 TPa, 

respectively.   

  It must be recalled that the strength of a material is not defined as the elastic 

modulus. It depends on actually type of material and process history covering different 

temperature and pressure cycles. Like all covalent materials, CNTs are brittle at low 

temperature regardless of their diameter and helicity (Thostenson, et al. 2001, 

Thostenson, et al. 2005). The flexibility of CNTs at room temperature is not because of 

any plastic deformation but to their high strength and the unique capability of the 

hexagonal network to distort for relaxing stress. Nardelli et al. (1998) showed that the 

behavior of CNTs under tensile strain at elevated temperatures depends on their 

symmetry and diameter. The bending strength of large diameter MWCNTs was 

measured by Wong et al. (1997) and an average value of 14.2 GPa was reported. The 

similar experiments were conducted using the lateral force of an AFM tip to compare 

qualitatively the bending strength of arc grown and catalytic grown carbon nanotubes. 

The bending strength of arc grown nanotubes was found to be lower than that of 

catalytic grown nanotubes, which contain relatively much defects. The presence of local 

defects causes a local distortion of the graphite lattice structure. Mechanical properties 

of CNTs are highly associated with the sum of local defects in their structure. On the 

other hand, electrical conductivity of the carbon nanotubes is also reduced when any 

kind of structural change in the lattice structure due to process induced defects or 

chemical treatment of CNTs.     

            

2.3. Manufacturing of CNTs 
         

 The production of the nanotubes with a high order of purity and uniformity has 

been still interesting subject of interest for the researchers. Nanotubes come in different 

types, and vary significantly depending on the syntheses procedures. The manufacturing 
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of the carbon nanotubes mainly include arc discharge, laser ablation, thermal and 

plasma enhanced chemical vapour deposition (CVD and PECVD).  

 

2.3.1. Arc Discharge Process 
 

  In arc discharge method, two high purity graphite electrodes as anode and 

cathode are held a short distance apart under a helium atmosphere as seen in Figure 2.3. 

Under these conditions, some of the carbon evaporated from the anode re-condensed as 

a hard cylindrical deposit on the cathodic rod. The key point in the arc–evaporation 

method is the current applied. Higher current application will result in a hard, sintered 

material with few free nanotubes (Thostenson, et al. 2001). Therefore, the current 

should be kept as low as possible. Using arc-discharge method, individual carbon 

nanotubes could be achieved in generally several hundred microns long.  

 

 
 

Figure 2.3. Schematic of arc-discharge method for carbon nanotubes  

(Source: Saito, et al. 1996) 

  

 Arc discharge process has scale up limitations and also sometimes requires the 

addition of a small amount of metal catalysts, which increases the yield of nanotubes 

(Zhang, et al. 1999). So the resulting products contain some catalyst particles, 

amorphous carbons, and non-tubular fullerenes (Journet and Bernier 1998). Therefore, 

subsequent purification steps are to be required. High temperatures are also necessary 
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for this technique. Arc discharge technique needs 5000-20000°C and 4.000-5.000°C, 

respectively. So, the differences in lattice arrangements could exist in the tubes and also 

there may be a difficulty in the control of chirality and diameter of the nanotubes 

(Harris 2000). 

 

2.3.2. Laser Ablation Process 

 
Laser ablation has been known as tool for mass production of single wall 

nanotubes (SWNTs). Schematic of laser ablation is given in Figure 2.4. In laser 

ablation, a laser is employed to vaporize a graphite target held in a controlled-

environment oven (Zhang and Iijima 1999). The carrier gas used can be argon or 

helium, and the oven temperature was approximately 1200°C (Thostenson, et al. 2001). 

The condensed material is collected on a cool target (water cooled Cu collector). The 

condensed material is found to have a significant amount of nanotubes and 

nanoparticles. In improved laser ablation method, cobalt and nickel catalyst were used 

either to dope the graphite targets or to coat the silica plate in order to align the growth 

of the carbon nanotubes (Qin and Iijima 1997).  

 

 
 

Figure 2.4. Configuration of laser ablation method 

(Source: Collins and Avouris 2000) 

 

2.3.3. Chemical Vapor Deposition Process 
           

 In arc-discharge and laser ablation processes, the volume of the sample produced 

is highly dependent on the size of the carbon source (the anode in arc-discharge and the 
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target in laser ablation) (Thostenson, et al. 2001). Moreover, as explained earlier, 

intensive purification steps are required to take apart the tubes from the undesired by-

products. These drawbacks led to gas phase techniques to be developed. Of all, the 

chemical vapor deposition (CVD) has been regarded as the best method to produce high 

purity carbon nanotubes. Generally, the CVD process includes catalyst-assisted 

decomposition of hydrocarbons, usually ethylene or acetylene, in a tube reactor at 550–

750°C and growth of carbon nanotubes over the catalyst upon cooling the system 

(Nikolaev, et al. 1999). Fe, Ni or Co nanoparticles are usually employed as catalyst (Ge 

and Sattler 1994). This is a continuous process since the carbon source is always 

refreshing by flowing gas of interest. Another important aspect related to CVD 

techniques is its ability to synthesize aligned arrays of carbon nanotubes with controlled 

diameter and length. CVD can fabricate aligned CNT on a selected area on the 

substrate. Large-scale synthesis of aligned carbon nanotubes can be achieved by the 

CVD technique. On the other hand, aligned CNT would be able to be produced with 

higher yield at lower substrate temperature by using plasma enhanced (PECVD) 

technique (Bower, et al. 2000).  

 

             

2.4. Chemical Functionalization of CNTs 
 

        Local strain in carbon nanotubes that mainly come from misalignment of the Л 

orbitals of sp2 hybridized carbon atoms allows CNTs to be more reactive than a flat 

graphene sheet (Moniruzzaman and Winey 2006). This means that chemical species can 

be easier covalently attached to surfaces of CNTs. This covalent functionalization can 

improve dispersion of nanotubes in solvents and polymers. For example, SWCNTs 

functionalized with pyrrolidine show the solubility of 50 mg/ml. in chloform even 

without sonication (Dillon, et al. 1999, Moniruzzaman and Winey 2006). However, 

untreated SWCNTs were entirely insoluble in this solvent. In this manner, chemical 

functionalization can offer also the potential to engineer the interface between polymer 

and the nanotube to optimize composite properties. To improve the mechanical 

properties, for example, the interfacial adhesion can be modified through covalent or 

non-covalent interactions between functional groups grafted onto CNTs and the 

polymer matrix resin. Amino, carboxyl and glycidyl – groups are, for instance, highly 

compatible with epoxy resins. Amino groups are also believed to be very compatible 
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with vinylester epoxy resins. The common route, namely the open end functionalization 

method followed to functionalize CNTs is schematically shown in Figure 2.5. 

           In particular, the open end functionalization process involves refluxing of CNTs 

in pure nitric acid or in a mixture of sulphiric and nitric acid to generate carboxylic 

groups over the surfaces of CNTs (Hiura, et al. 1995). The generated reactive carboxylic 

groups are modified with relevant multi functional groups such as amines via 

condensation reactions. The amines are bonded via an amide bond to the CNT, while 

the other amino groups are accessible to a reaction with the matrix resin such as epoxy 

or vinylester resin (Gojny, et al. 2003). A remarkable disadvantage of covalent 

functionalization is the disruption of the extended Л conjugation in nanotubes.  

 

 
Figure 2.5. Schematic of chemical functionalization of carbon nanotubes  

(Source: Gojny, et al. 2003, Gojny 2006) 

 

 Although the disrupted Л conjugation is supposed to encompass an impact on 

the mechanical and probably thermal properties of the nanotubes, so their effect on 

electrical properties is expected to be more reflective because each covalent 

functionalization site scatters electrons (Moniruzzaman and Winey 2006, Duesberg, et 

al. 1998). Non-covalent functionalization is an alternative method for tuning the 

interfacial interactions of CNTs with polymers. Such functionalizations can be achieved 

by adsorbing different polymers onto surfaces of CNTs.       
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 The CNTs used in this study are amino-functionalized in ammonia solution via 

ball-milling process, during which their lengths are reduced and diminished to some 

extent. In consequence, the break of the CNTs creates highly reactive open ends ready 

to react with the chains of the surrounding matrix resin. Moreover, the balling process 

results in CNTs with reduced aspect ratio, which has some significant influences on the 

performance of their resulting nanocomposites. These effects will be discussed in details 

in the following chapters.  

 

2.5. CNTs/ Polymer Nanocomposites 
 

         Scientific and industrial efforts have been recently focused on nanotechnology and 

nanomaterials for the future engineering applications. As elucidated earlier, 

nanomaterials are exhibiting some superior properties, as compared to their micro or 

macro size counterparts. Polymer nanocomposites have recently emerged as a 

revolutionary new class of materials that have demonstrated vastly enhanced properties. 

In this perspective, CNTs with large aspect ratio have recently gained great interest in 

materials science due to their extraordinary mechanical, thermal and electrical 

properties (Schandler, et al. 1998, Kolmorov and Crespi 2000). Therefore, substantial 

effort has been committed to evaluating experimental and theoretical examination of 

their physical, electrical, and mechanical properties. Due to their so-pronounced 

astonishing properties, the most common commercial application of carbon nanotubes is 

based on their use as filler constituents in polymer matrices. This is because carbon 

nanotubes may have characteristics that can be very beneficial to polymers. They are 

expected to improve structural properties of polymers.  

 On the other hand, the use of carbon nanotubes as reinforcing filler for polymer 

matrix would offer various advantages over the conventional reinforcements, including 

continuous and short fibers such as glass and carbon (Tibbets and Mchough 1999). It is 

established that the fiber aspect ratio is the critical factor affecting the resulting 

structural properties of short-fiber reinforced composites. As the aspect ratio increases, 

the composite stiffness and strength increase. However, the packing of short fibers in a 

polymer matrix is highly associated with a percolation phenomenon such that the 

maximum packing decreases with increasing aspect ratio and may not be sufficient to 

manufacture a very strong material (Coleman, et al. 1998, Lau and Hui 2002, Shaffer 



 19

and Windle 1999a). Carbon nanotubes could overcome these problems by combining 

their higher aspect ratio, smaller size, and greater strength and stiffness than the 

corresponding macroscopic forms. In addition, they can not be damaged as easily as 

carbon fibers during processing due to their inborn ability to withstand large strains 

(Lordi and Yao 2000). As a result, they are superior over other fillers in composite 

processing and manufacturing. The incorporation of carbon nanotubes into polymers 

could enhance not only the mechanical properties, but also the thermal stability and the 

electrical conductivity of the resulting composites. Moreover, the addition of the carbon 

nanotubes into insulating polymer systems makes them electrically conductive, enabling 

other applications in aeronautical such as vertical stabilizers of the aircraft, automotive 

such as antistatic coating of exterior parts, and consumer goods such as computer 

housings (Jia, et al. 1999). Therefore, carbon nanotubes with high aspect ratio and the 

small size are excellent alternatives to the common conductive fillers, such as carbon 

black. However, it must be considered that, even if the conductive filler is useful to 

provide a conductive path through an insulating component, its content has to be 

minimized due to the possible reduction of the mechanical properties of the matrix and 

the increase in the viscosity, which affects the ease of processing (Gojny, et al. 2003).   

 The effective use of the carbon nanotubes in polymer composite applications 

depends strongly on uniform dispersion and orientation of the nanotubes as well as on 

good interfacial bonding between nanotubes and the surrounding polymer matrix. In 

fact, the achievement of homogeneous dispersions is vastly critical to the final 

properties of the composite materials, affecting the fiber–matrix stress transfer ability 

and, as a consequence, the efficiency and the quality of the composite interface. To 

attain stable nanotube modified resin dispersions prior to composite processing, since 

the as-received carbon nanotubes are composed of many entanglements, high shear 

mechanical stirring or ultrasonic treatments are generally performed. Different solvents 

(ethanol, toluene, chloroform) and times are employed during sonication. Qian et al. 

(2000) produced multiwalled carbon nanotube polystyrene composites by a solution 

evaporation method assisted by high-energy sonication. The process covers separate 

dispersion and high-energy sonication of the polymer and the nanotubes in toluene 

(from half a minute to 120 min), followed by mixing, casting into a culture dish, and 

solvent evaporation. They eventually found that, with addition of 1% of CNTs by 

weight, elastic modulus and tensile strength of the resulting nanocomposites were 

improved by 36 and 25 %, respectively. Similarly, Loruie et al. (1999) produced single-
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wall nanotube epoxy composites by ethanol sonication of the nanotubes for 2 h, 

followed by mechanical mixing with the polymer resin, solvent evaporation in a 

vacuum oven at 50°C, and curing at 72°C for 3 h. They observed that tensile mechanical 

properties of the epoxy resin were altered in the presence of nanotubes.  

 The homogeneity of the nanotube dispersion is often investigated by using 

scanning electron microscopy (Ajayan and Schandler 2000, Sandler, et al. 1999, 

Schaffer and Windle 1999) and transmission electron microscopy (Ajayan, et al. 1994, 

Loruie, et al. 1999). Uniform distributions of carbon nanotubes into the polymer 

matrices are usually accomplished at low loading rates (below 1 wt %) of the nanotube 

concentrations. This effect is more pronounced in thermoplastics. Geng et al. (2002) 

obtained 145 % increase in tensile modulus and 300 % increase in yield strength with 

addition of 1 wt. % fluorinated SWCNTs to polyethylene oxide matrix. Gao et al. 

(2005) found that composite fibers based on nylon and carboxylated SWCNTs exhibited 

153 % higher elastic modulus and 103 % larger tensile strength as compared to neat 

nylon. On the other hand, nanotube addition has not demonstrated the same improved 

properties in thermosetting resins. For instance, the epoxy matrices did not seem to be 

compatible with the pristine carbon nanotubes, forming a weak interfacial bond between 

the two phases (Ajayan and Sandler 2000, Sandler, et al. 1999). Despite the ultrasonic 

treatment and long mechanical stirring, many entangled nanotubes were observed in the 

resulting nanocomposites. Recently, to improve the nanotube dispersion in an epoxy 

matrix and modify the interfacial bonding, a surfactant was used (Gong, et al. 2000).The 

surfactant addition was found to influence both the composite thermo mechanical 

properties and the interfacial adhesion. As a result, improved dispersion and good 

interfacial bonding of the nanotubes in the epoxy matrix led to a 30 % increase in elastic 

modulus with only addition of 1 wt. % nanotubes. In addition, when a good dispersion 

is achieved with the use of a surfactant, the addition of 1 wt% nanotubes could increase 

the glass transition temperature by a substantial amount (from 63 to 88°C). These results 

suggest that the nanotubes could find applications both as reinforcing systems and as 

polymer modifiers for high-temperature uses .In particular, the authors hypothesize that 

the surfactant can introduce a steric repulsive force between the distributed carbon 

nanotubes and those aligned along one direction. In another study, Schaffer and Windle 

(1999), multiwalled carbon nanotubes at different loading rates ranging from 10 to 50 

wt% were added to the matrix of poly (vinyl alcohol). As a result, the nanotube addition 

was found to moderately increase the glass transition temperature (Tg). 
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 On the other hand, increasing attention is paid for the modification of CNT 

surface, namely the interface between the CNT and the surrounding polymer matrix. If 

the surface of a CNT, essentially an exposed graphene sheet, is considered, it is seen 

that it is the weak inter-planar of graphite that provides its solid lubricant quality and 

resistance to polymer matrix adhesion. This mechanism is enhanced by the chemically 

inert nature of graphene structure. Numerous researchers ascribed lower than predicted 

properties of CNT modified nanocomposites to a lack of interfacial bonding (Lourie, et 

al. 1999, Ajayan and Schandler 2000, Qian, et al. 2000). They agreed that the effective 

reinforcement of the polymer matrix and the improvement in the composite mechanical 

properties was a function of the interfacial shear stress between the two phases. As an 

example, based upon the estimated values of nanotube axial normal stress and elastic 

modulus, Wagner et al. (1998) concluded that the nanotube/polymer interfacial stress is 

on the order of 500 MPa and higher, which is an order of magnitude higher than the 

stress transfer ability of current advanced composites. In their another study (Barber, et 

al. 2003), they found that the average stress required to remove a single MWCNT from 

polyethylene butane matrix is 47 MPa, which is about 10 times larger than the adhesion 

level between the same type of polymer and carbon fibers. These studies demonstrated 

also the importance of filler size to the interfacial strength. Lordi and Yoa (2000) 

calculated theoretically the molecular mechanics of binding in-nanotube based polymer 

composites. They found that the binding energies and frictional forces played only a 

minor role in determining the strength of the interface, and that the key to forming a 

strong bond at the interface is having a helical conformation of the polymer around the 

nanotube. They claimed that the strength of the interface results from entanglement of 

polymer and nanotubes with each other at molecular level. In brief, it is the shear stress 

that determines the load transfer efficiency from the matrix to the carbon nanotubes.    

 Stress transfer between polymers and nanotubes can be also determined using 

Raman spectroscopy (Frogley, et al. 2002). Raman spectroscopy is a common technique 

used to characterize carbon materials. It gives information about the amount of ordering, 

the degree of sp2-to-sp3 bonding, and the size of the graphitic crystallites in the material 

(Dresselhaus, et al. 2005). In particular, when a strain is applied to the material, a 

Raman peak shift is observed due to the changing of the inter-atomic distances and the 

vibration frequencies of the normal modes. Cooper et al. (2001) prepared composite 

specimens by applying an epoxy resin/nanotube mixture to the surface of an epoxy 

beam. Following the curing of the specimens, stress transfer between nanotubes and 
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polymer was detected, observing a shift in G Raman band to a lower wave number 

(Gupta et al., 2004, Frogley, et al. 2002 ). This shift implies that there is a stress transfer 

by nanotubes. Ajayan et al. (2000) investigated single walled carbon nanotubes 

(SWCNTs) modified epoxy resin. They suggested that almost unchanged Raman peak 

of the nanocomposites in tension mode is due to tube sliding within the nanotube 

bundles, indicating poor interfacial load transfer between the bundles. Schadler et al. 

(1998) found the similar results on MWCNTs/ epoxy nanocomposites tested in both 

tension and compression such that the compressive modulus was higher than tensile 

modulus of the nanocomposites and the Raman peak shifted only in compression. In 

principle, observation of a larger shift in compression than in tension showed that the 

nanotubes carry less strain in tension than in compression due to the poor load transfer 

between the outer and inner layers. However, in compression, the load was transferred 

to the inner layers through nanotube bent sections and the slipping was prevented due to 

the tube structure and geometrical constraint (Zhao and Wagner 2004).     

 The addition of the carbon nanotubes to a polymer matrix also strongly affects 

the electrical properties of the composites. This effect can be used for several 

applications, including optoelectronic, electromagnetic induction shielding, and 

membrane technologies. These types of systems typically show a percolation behavior. 

The percolation phenomenon is characterized by the presence of a conductive path 

through the matrix due to the formation of a three-dimensional network of conductive 

fillers (Celzard, et al. 1996). A sharp drop characterizes the percolation threshold in the 

electrical resistance. A significant increase of the electrical conductivity was also found 

for the nanotube epoxy composite. The polymer matrix (Araldite LY556), investigated 

by Sandler et al. (1999) is usually used for aircraft applications where high electrical 

conductivity is required to avoid electrostatic charging and electromagnetic radio 

frequency interference. For this type of applications the carbon black is commonly used 

as the conductive filler and its percolation threshold is accomplished at the 

concentration of 0.5 vol %. The replacement of carbon black with carbon nanotube 

reduced the required concentration from 5 to 0.04 % and increased the overall 

conductivity. Finally, it was observed that no negative influence existed on processing 

and on the finished surface of samples.   

 The subjects of interest mentioned so far will be discussed later separately in 

details in the introduction part of each corresponding chapter.  
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            On the other hand, the dispersion of carbon nanotubes in polymer systems 

attracted research interests not only to reinforce the polymer, but also to improve the 

electronic properties based on the morphological interactions between the two 

constituents. Although this subject of interest is beyond the scope of this dissertation, it 

is worth having an idea about the current applications. In particular, combining the 

nanotubes and the conjugate polymers, active materials have been obtained for light-

emitting diodes, field effect transistors, and photovoltaic devices (Ago, et al. 1999). 

Curran et al. (1998) investigated the optical properties of a nanotube/PMPV composite 

that was then used as an emissive layer to fabricate an organic light-emitting diode. The 

addition of the nanotube to the PMPV polymer caused a gradual decrease of the 

luminescence intensity due to absorbing, quenching, and scattering phenomena from the 

nanotubes. Further, the nanotubes acted as a heat sink, avoiding the polymer 

degradation that can occur at high laser intensities. The LED device showed a better 

stability in air than that of the polymer. Since, the polymer was chemically undoped; the 

big advantage of using the nanotube in conjugated polymers was the resulting 

unchanged electronic processes, which, on the other hand, led to higher mobility of 

charge carriers due to the increase of the electrical conductivity (Ago, et al 1999, 

Curran, et al. 1998, Coleman, et al. 1998)   

           As outlined above, the improvement of the final properties of the composite 

material depends on the degree of dispersion and the alignment of the carbon nanotubes 

into the polymer matrix. In fact, as the orientation is critical to the behavior of carbon 

nanotube based composites, an important issue is the improvement of the processing 

techniques to control and optimize the microstructure of these nanocomposites, 

accurately. In the summarized studies above, carbon nanotube modified composites are 

commonly produced by blending the polymer matrix with the nanotubes, or by 

sonication followed by solvent evaporation. The suspensions are then cast into molds 

and allowed to cure at room temperature or in a vacuum oven in the case of 

thermosetting matrices (Ajayan and Schandler 2000, Sandler, et al. 1999, Schaffer and 

Windle 1999, Gojny, et al. 2003). More recently, in order to facilitate the dispersion of 

the nanotubes, 3-roll milling technique was proposed (Gojny, et al. 2004). The 

principles of this technique and its advantages over other traditional methods such as 

direct mechanical mixing and sonication will be evaluated in the following chapter.  

 In summary, CNTs seem to be ideal carbon fibers that can be stiff, at the same 

time flexible, combining high modulus with high strength. Therefore, they promise the 
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potential to accomplish multi-functional polymeric materials with enhanced mechanical 

properties. However, if the advantages of these tubes are to be fully realized, one must 

overcome some of the barriers that are precluding their use on a large scale. The one 

challenge is to obtain high yields from the current preparation methods or to invent new 

methods to produce them on a large scale with preferred orientation. The second one is 

to explore purification techniques that are simple, relatively inexpensive, do not damage 

the structure of the nanotubes. The last one is to develop the ability to disperse them 

effectively as fillers in a matrix with good adhesion and bonding properties. All these 

issues will be discussed in the following chapters for the resin system studied in this 

dissertation. 
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CHAPTER 3 

 

CRITICAL ASPECTS RELATED TO POLYMER 

NANOCOMPOSITE PROCESSING 
 

3.1. Introduction 

 
          In this chapter, an overall view towards to processing of carbon nanotubes with 

styrene containing thermosetting resins such as polyester and vinylester was addressed. 

The challenges encountered during various types of dispersion processes including 

sonication, direct mechanical mixing and 3-roll milling were discussed in concise 

manner. Based on some experimental results obtained, the advantages of the 3-roll 

milling over the other mentioned techniques were highlighted. For this purpose, benefits 

and drawbacks of three different types of resin systems used to produce CNT modified 

polymer nanocomposites were compared in details.     

 

3.2. Principles of 3-Roll Milling Processing 

 
       Having achieved many promising results on the final properties of epoxy based 

nanocomposites, (Gojny, et al. 2003, Gojny, et al. 2004) proved that 3-roll milling 

technique is highly capable of dispersing carbon nanotubes homogeneously within 

thermoset polymers without leading to a rupture and damage of CNTs by reducing 

drastically their aspect ratio, unlike the other solvent based techniques or treatments do. 

Figure 3.1 shows the photo of resin suspension being processed on the rolls at t = 30 

seconds after it was fed.  

          3-roll milling technique differs principally from other types of mills in that 

it applies almost pure shearing rather than compressive impact. The first (1), the second 

(2) and the third (3) rolls labeled in Figure 3.1 are commonly called feed, center and 

apron rolls, respectively. Feed and apron rolls rotate in the same direction, while the 

center roll does in the opposite one (Thostenson and Chou 2006). Arrows on the figure 

refer to the corresponding rotating direction for each roll. In order to induce high shear 

rates, angular velocity of the center roll must be higher than that of feed roll (w2>w1). 
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As the resin suspension is fed into the narrow gap between fed and center rolls, the 

liquid stuff flows down, covering the adjacent rolls through its surface tension under 

intensive shear forces. At the end of each given subsequent dwell time, the processed 

resin suspension is collected by using a scraper blade in contact with the apron roll. 

 

 
 

Figure 3.1. Nanotube hybrid resin suspension on the rolls at time t =30 seconds after it  

 was fed.   

 

3.3. Approaches to Processing of CNT/Polymer Systems  

   
 An isophthalic commercial unsaturated polyester resin Cam Elyaf 266 with 35 

wt. % of styrene was obtained from CAM ELYAF Inc, Turkey. In addition, Poliya 240 

an allylic based polyester resin with negligible amount of styrene, Poliya 420 without 

any styrene and Polivel 701 vinylester resin containing 35wt.% of styrene were obtained 

from POLİYA POLYESTER Corp, Turkey. Double-wall carbon nanotubes (DWCNTs) 

and multi-walled carbon nanotubes (MWCNTs) with and without amine functional 

group (NH2) produced by chemical vapor deposition (CVD) were obtained from 
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Nanocyl (Namur Belgium) and used as additives in the involved resin systems.  Table 

3.1 gives the physical properties of the CNTs used in this thesis. Figure 3.2 depicts the 

SEM photos of CNTs provided by the producer. CoNAP (Cobalt naphhanate) and 

MEKP (Methyl Ethyl Ketone Peroxide) were used as an accelerator and initiator, 

respectively, to polymerize the resin suspensions that contain various amounts of CNTs.  
 

Table 3.1. Physical dimensions and calculated densities of various carbon nanotubes 

(Source: Gojny, et al. 2006) 

 

NANOTUBE 

TYPES 

 

      L (µm) 

 

di  (nm) 

 

dout (nm) 

 

ρCNT (gr/cm3)

DWCNT 10  2.1  2.8  0.98   

DWCNT-NH2 5  2.1  2.8  0.98   

MWCNT 50  4   15  2.09  

MWCNT-NH2 10  4  15  2.09 

 

To prepare CNT/polyester nanocomposites, the first approach was the utilization 

of the 3-roll milling process using a commercial unsaturated polyester resin. In this 

manner, 0.1, 0.3 and 0.5 wt. % of CNTs were homogenously dispersed in Cam Elyaf 

266 resin under intensive shear force with the dwell time of 2 minutes. The achieved 

resin suspensions were polymerized with the addition of 0.3 wt. % of CoNAP and         

1 wt. % of MEKP into the resin system. During the application of this technique, we 

encountered some difficulties. The major concern was evaporation of styrene from the 

polyester resin during the process, which caused a dramatic increase of the viscosity. 

Styrene evaporation was accelerated due to heat evolved on the rolling mills via viscous 

dissipation. In fact, viscous dissipation arises from viscous shear stresses and viscous 

normal stresses. In our case, it accounts for the rate at which mechanical energy induced 

by the rotating rolls is irreversibly converted to thermal energy due to viscous effects in 

the resin suspensions. So, the relatively high viscosity polyester resin left on the rolls 

caused some difficulties with the collection of the resin suspension.  
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Figure 3.2. SEM photos of the CNTs used in this thesis. 

   

On the other hand, because of the uncontrolled evaporation of styrene, the final 

styrene compositions within the resin blends were unknown, which makes it very 

difficult to reproduce the results obtained. Alternatively, the sonication technique was 

employed with the same CNT/resin systems. The same problems with the sonication 

technique as in 3-roll milling were again observed (Seyhan, et al. 2007a). Even tough 

the sonication bath was cooled by water, the local heating due to energy created within 

the resin system caused styrene to evaporate from the polymer suspension. This leads to 

a more viscous resin. In addition, it was observed that nanotubes were agglomerated in 

the volumes closer to the tip of the sonicator. This is because van der Waals attractive 

forces between the carbon surfaces are sensitive to heat, thus leading to higher 

agglomeration to occur nearby the sonicator tip. To overcome the difficulty with 

evaporation of styrene, another resin system was proposed to try.  

The second approach to preparation of nanocomposites was to use a blend of 

polyester resin system with reduced styrene content, appropriate gelation time and 

viscosity for the 3-roll milling process. In this respect, we employed a special styrene-

MWCNT 

DWCNT- NH2 

DWCNT MWCNT 

MWCNT-NH2 
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free polyester Poliya 420 styrene free and Poliya 240 with very low amount of styrene 

were utilized as two components for the resin blend. The styrene was later added to the 

3-roll milling processed system at a certain amount to promote the degree of cross-

linking. After some experimental trials, polyester resin blend was formulated based on 

45 wt. % of Poliya 420, 30 wt. % of Poliya 240 and 25 wt. % of styrene with the 

presence of 0.2 wt. % of CoNAP and 1.5 wt. % of MEKP. The resin blend to be used 

during 3-roll milling process was prepared by hand-mixing of two types of the polyester 

resin at a certain ratio (Poliya 420 45 wt. %, Poliya 240 30 wt. %) for 10 minutes. 

Nanocomposite samples were prepared with dispersion of 0.1, 0.3 and 0.5 wt. % of the 

carbon nanotubes within the polyester resin blend. After collecting the CNT containing 

polyester suspension by spatula from the 3-roll milling, 25 wt. % of styrene was further 

added to the corresponding resin system. The whole system was then subjected to the 

intensive mixing for half an hour, using magnetic stirrer and finally cast into an 

aluminum mold and allowed to cure at room temperature followed by a post curing in 

an oven at 110oC for 2h. Although polyester blend with a lower amount of styrene was 

introduced to 3-roll milling, the problem with instant evaporation of styrene from the 

resin system was not entirely overcome. However, difficulties with styrene evaporation 

and unknown styrene amount in the final product were eliminated by using negligible 

content of styrene containing resin. In other words, there occurred no resin residues 

sticking on the surfaces of the rolls, which enables the repeatability of the results 

obtained. In this manner, the collected resin suspensions were polymerized and the 

resulting nanocomposites were mechanically characterized.  

 Considering the relevant experiences in the last two resin systems, the third 

approach emerged as use of a hybrid resin blend composed of styrene free polyester 

resin POLİYA 420 and a bisphenol A epoxy based vinylester resin POLİVEL 701 

containing 35 % styrene. The point herein is to tailor the interface between amine 

functionalized CNTs and hybrid matrix resin containing bisphenol A epoxide groups.  

To prepare the suspensions, various amounts of MWCNTs, MWCNT-NH2 DWCNTs, 

DWCNT-NH2 (0.05, 0.1 and 0.3 wt. %) were first mixed manually with styrene free 

polyester resin prior to 3-roll milling processing for 10 minutes. A three roll mill (Exakt 

120 S Exakt Gmbh) with alumina ceramic rolls was then used to produce the 

nanocomposites. The gap size between the ceramic rolls was kept constant at 5 µm. The 

speeds of feed, center and apron rolls were set to 20, 60 and 180 rpm, respectively. The 

dwell time of polyester/ CNT suspension was about 2 minutes. The collected CNT/ 
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polyester resin suspensions were then blended with vinylester resin at a weight ratio of 

1/3 by high speed mechanical stirrer for about 30 min. After the addition of the styrene 

emission agent (1 wt. %) to the prepared mixture, the CoNAP and MEKP were 

subsequently introduced into the system at a ratio of 0.2 and 1 wt. %, respectively to 

polymerize the involved hybrid resin system. Note that emission agent used helps 

styrene remain the resin system till the end of the reaction. The catalyzed resin 

suspensions were then allowed to cure at room temperature followed by post curing at 

120οC for 2h. Figure 3.3 shows the schematic illustration of nanocomposite processing 

used throughout the rest of this thesis.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. The schematic of nanocomposite processing used throughout the rest of this 

 thesis.     

 

With this technique, evaporation of styrene from the resin system was absolutely 

prevented. In addition, the viscosity of the corresponding styrene-free polyester resin is 

highly proper to apply higher shear rates within gaps of the rolls to break up the 

agglomerates and to disentangle nanotube bundles within the intentional dwell time.  
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3.4. Experimental Characterization of Nanocomposites  

 
 In this chapter, the general trend observed for the effects of various types of 

carbon nanotubes including MWCNTs, DWCNTs, MWCNT-NH2 and DWCNT-NH2 on 

the properties of the matrix resin system used in our second approach was presented in 

concise manner. This is because the other chapters presented in this thesis cover the 

studies exploring the chemical and physical interactions of the CNTs with the third 

matrix resin system in greater details.  

 The dispersion of the CNTs within the composites obtained were characterized 

by Transmission electron microscopy (TEM) using a Philips EM 400 at 120 kV 

acceleration voltages. The ultra thin TEM samples with a thickness of 50 nm were 

prepared using a microtome cutting at room temperature.  

 TA Instruments rheometer with parallel plate geometry (500 micrometer gap, 

and 50 mm plate diameter) was used to analyze the rheological behavior of the polyester 

suspensions with different loading rates of CNTs. Tests were performed in steady 

modes at room temperature in order to avoid styrene evaporation during the 

measurements. For this reason, liquid samples were taken from the collected resin 

suspension from the 3-roll milling technique without adding any further styrene into it. 

Steady shear sweeps (SSS) were used to investigate the flow properties of the polyester 

suspensions by considering the viscosity as a function of increasing shear rates.  

Mechanical tensile properties of the composites were determined according to 

DIN EN ISO 527.1. Dog bone specimens were prepared by countersinking using a 

mutronic dear drive 2000. The tensile samples were tested using a Zwick servohydrolic 

machine at a cross head speed of 1 mm/sec. The elongation of the specimen during the 

test was also measured. 
 

3.5. Results and Discussion  

 
 3-roll milling process seems to be more convenient technique than traditional 

ones such as sonication and direct mixing to disperse carbon nanotubes within a liquid 

polymer resin. Figure 3.4 are the TEM micrographs showing dispersion state of 

MWCNTs and DWCNTs with and without functional group in the polyester resin blend 

at 0.3 wt. % of loading rate. Regardless of amine functional groups, MWCNTs 
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exhibited better local dispersion in the polyester matrix, as compared to DWCNTs.  

This is because DWCNTs have relatively high surface area, thus exhibiting higher 

tendency to form relatively large agglomerates within the matrix resin. In fact, degree of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.TEM micrographs of nanocomposites prepared from POLIYA polyester at 

 0.3 wt. % loading of (a) MWCNT (b) MWCNT-NH2 (c) DWCNT (d) 

 DWCNT- NH2 

 

dispersion of CNTs is vastly critical to the final properties of the nanocomposites. In 

principle, the better dispersion of CNTs within the surrounding polymer matrix resin, 

the better final properties in the resulting nanocomposites are observed.  

In the literature, rheological behavior of the polymer suspensions was related to 

dispersion state of carbon nanotubes within the polymer matrix resin. Figures 3.5 and 

3.6 give the viscosity as a function of shear rate for the Poliya polyester based 

suspensions (the second approach) containing MWCNTs and MWCNT-NH2 at different 

loading rates, respectively. As it can be seen in the figures, shear thinning behavior was 

observed for the samples containing either MWCNT or MWCNT-NH2, such that 

viscosity is reducing with the increase of shear rates. The viscosity of polyester 
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suspensions with MWCNT decreases sharply at 0.1 wt. %, but MWCNT-NH2 does not 

have the same behavior. This might be due to the fact that nanotubes with amine 

functional group has better compatibility and thus enhanced chemical interaction with 

the polyester chains or styrene monomers within the system. In order to investigate the 

nanofiller effect with and without chemical functional groups on the mechanical 

properties of the composites, tensile mechanical testing was conducted. In consequence, 

the tensile properties of Poliya polyester blend polymer were found to be much lower, 

as compared to those of a common commercial polyester resin in the market. Note that 

both of the resin components were specially synthesized in collaboration with Poliya. 

This is the major reason that their individual mechanical properties were low relative to 

those of a commercial polyester resin.  
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Figure 3.5. Viscosity of the polyester suspension with MWCNTs as a function of shear 

 rate. 

 

 Figures 3.7 a and b show the tensile strength of the nanomaterials containing 

MWCNTs and DWCNTs with and without amine functional groups, respectively. As it 

can be seen in the figures, MWCNT and DWCNT modified nanocomposites with and 
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without amine functional group exhibited better mechanical properties as compared to 

neat polyester resin. Moreover, at each loading rate, composite specimens containing 

MWCNTs with amine functional group have higher values than those with MWCNTs 

without any functional group. For instance, the nanocomposites with 0.5 wt. % of 

MWCNT-NH2 exhibit about 15 and 6 % higher strength values as compared to the neat 

polymer and those with similar content of MWCNTs, respectively. This shows the 

influence of chemical functional group on the interfacial interactions. The same findings 

were also valid for the composites with DWCNTs and DWCNT-NH2. 
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Figure 3.6. Viscosity of the polyester suspension with MWCNT-NH2 as a function of 

 shear rate. 

 

 The nanocomposites containing 0.5 wt. % of DWCNT-NH2 have about 17 and 5 

% higher strength values than the neat polymer and those with DWCNTs, respectively. 

Note that nanocomposites with DWCNTs with either functional group or not have 

higher strengths than those with MWCNTs or MWCNT-NH2 at each loading rate. This 

can be explained by the higher surface area of the double wall carbon nanotubes, which 

may result in a better load transfer efficiency at the interface region.  
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Figure 3.7. Ultimate tensile strength (UTS) of the CNT / polyester nanocomposites as a 

 function of CNT filler ratio a) with MWCNT and MWCNT-NH2 b) 

 DWCNT and DWCNT-NH2 

a) 

b) 
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 However, note that the strength of the neat polyester resin system in principal 

was not taken as a major concern for comparison in this chapter. Instead, processing of 

CNT/thermosetting polyester nanocomposites was rather discussed in this chapter with 

a particular emphasis on three common key issues i) availability of blending of 

polyester resin with lower amount of carbon nanotubes ii) degree of carbon nanotube 

dispersion in the corresponding resin and iii) interfacial adhesion / interactions of 

carbon nanotubes within the resin. 

 

3.6. CONCLUSIONS 

 

In this chapter, the critical aspects and some limitations regarding the processing 

of thermosetting polyester resins with very low contents of carbon nanotubes were 

briefly discussed. In this manner, various different techniques including mechanical 

stirring, sonication and 3-roll milling were conducted to disperse CNTs within 

thermosetting polyester resins with and without styrene and vinylester resins with 

styrene.  

In consequence, it was revealed that, regardless of dispersion technique, instant 

evaporation of styrene from the resin systems due to heat evolved via viscous 

dissipation is the major issue to be considered when blending a thermosetting polyester 

or vinylester resin with carbon nanotubes. It was also found that 3-roll milling technique 

is superior over other techniques such as sonication and direct mechanical mixing to 

disperse CNTs within a thermosetting polyester resin blend. Moreover, it was also 

found that interaction of functional groups with the surrounding polymer matrix is 

crucial to final properties of the resulting nanocomposites.  

Note that this chapter covers the preliminary results on the processing issues. In 

the following chapters, interactions of CNTs with matrix resin will be evaluated based 

on mainly the third approach in details.      
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CHAPTER 4 

 

RHEOLOGICAL BEHAVIOR OF CNT MODIFIED 

HYBRID RESIN SUSPENSIONS 
 

4.1 Introduction 
 

         Solid-in-liquid suspensions containing non-colloidal particles are 

characteristically involved in the processing of both thermoplastic and thermosetting 

polymers (Weg, et al. 2002, Andrews, et al. 2002, Pötschke, et al. 2002). CNTs with 

high aspect ratio as well as excellent mechanical, thermal and electrical properties are 

the most promising fillers to fabricate various types of polymer based nanocomposites 

(Aizawa and Shaffer 2003, Alloui, et al. 2002). Therefore, the understanding of 

rheological properties of CNT/ polymer suspensions is of primary importance in 

nanocomposite processing (Rosen, et al. 2002, Song and Youn 2005). However, before 

all, the study of dispersion state of nanotubes and their relative motion in polymers 

emerge as the first step to interpret the feasibility of their application as fillers for any 

type of processing method (Moniruzzaman and Winey 2006). In addition, since the 

starting material often consists of curved and intertwined carbon nanotubes with 

different length distribution, the formation of stable polymer dispersions is also a 

challenge to achieve. Shaffer et al. (1998) and Shaffer and Windle (1999b) oxidized 

nanotubes, using a mixture of concentrated nitric and sulfuric acid. To characterize 

dispersion of nanotubes with different length distributions, they also performed bromine 

pretreatment to achieve a short tube suspension. The two dispersions were characterized 

in terms of length distribution by TEM image analysis and viscosity measurements by 

capillary rheometry. The viscosity of both dispersions displayed the same behavior as a 

function of the tube concentration such that a slight increase occurs at low 

concentrations up to 0.1 % by volume, followed by a sudden increase above a critical 

concentration, estimated around 0.5 and 1% by volume for the longer and shorter 

nanotube suspensions, respectively.  

 In fact, it is very well known that rheological behavior of particle filled polymer 

systems is greatly associated with particle-particle interactions, particle polymer 
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interactions, the dispersion state of particles as well as the shape and orientation of 

dispersed particles (Yasmin, et al. 2003, Shirono, et al. 2001, Amari, et al. 1997). In this 

respect, it was stated that the Brownian motion of CNT particles with huge aspect ratio 

results in more considerable viscoelastic rheological behavior as compared to that of 

micro-scaled size short fibers or particles such as carbon black (Shaffer, et al. 1998, 

Shaffer and Windle 1999b, Amari, et al. 1997, Seyhan, et al. 2007b). In particular, it is 

of primary significance to understand rheological behavior of CNT modified polymer 

suspensions in order to optimize the manufacturing process of their resulting 

nanocomposites (Moniruzzaman and Winey 2006). The rheological behavior of 

concentrated aqueous nanotube dispersions was studied by Kinloch et al. (2002). They 

disperse the oxidized CNTs within water. They found that the behavior of the 

dipsersions was found to be similar to that of a reversibly flocculated dispersion, and 

that, under steady shear, the dispersions rapidly shear thinned. Kim et al. (2005) 

investigated the rheological behaviour of MWCNTs in polyelectrolyte dispersants based 

on poly acrylic acid and poly aspartic acid. They concluded that MWCNTs slurries had 

high intrinsic viscosity and the low maximum solid loading resulting from the high 

aspect ratio and the strong van der Waals force of MWCNTs. Pötsche et al (2004a) 

investigated the rheological behavior of the CNT/polycarbonate composites. It was 

found that viscosity increase of the nanocomposites prepared with CNTs was much 

higher than those composites prepared with carbon fibers and carbon black (CB) 

particles. They associate it with the higher aspect ratio of the CNTs. In their later study 

(Pötsche, et al. 2004b), they performed dynamic measurements on melt mixed 

polycarbonate MWCNT /polycarbonate nanocomposites and made a comparison 

between the rheological properties and electrical conductivity of nanocomposites. They 

found that the electrical threshold (at about 1 wt. %) at room temperature coincided with 

rheological threshold value. In addition, they concluded that dispersion state of 

MWCNTs was highly sensitive to the applied strain in the linear viscoelastic region, and 

that the storage and loss modulus were independent of frequency. Mitchell et al. (2002) 

investigated the linear viscoelastic properties of polystyrene (PS) nanocomposites 

containing SWCNTs with and without surface functional groups. They found that the 

nanotubes with functional groups have better dispersion in PS than those without any 

functional group. They also revealed that nanocomposites with functionalized nanotubes 

gave higher storage modulus and complex viscosity values at low frequency. Song and 

Youn (2005) performed a similar study and stated that poorly dispersed CNTs within 
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epoxy resin leads to higher storage, loss modulus and complex viscosity values. The 

rheological behavior of epoxy resin suspensions containing amine, acid and plasma 

treated carbon nanotubes were also studied by Kim et al. (2006). It was found that the 

surface modified CNTs/epoxy suspensions exhibited a very strong shear thinning 

behavior and higher shear viscosity than those with untreated CNTs due to the enhanced 

interfacial bonding between CNTs and the corresponding epoxy resin in their resulting 

resin suspensions as compared to homogenously dispersed CNTs.           

In this chapter, the rheological behavior of vinylester /polyester hybrid resin 

suspensions containing various types of fillers including MWCNTs, MWCNT-NH2, 

DWCNTs and DWCNT-NH2 was experimentally determined, performing dynamic 

viscoelastic and steady shear measurements via parallel plate oscillatory rheometer. All 

the experimental results obtained were discussed with a particular emphasis on the type 

of CNTs and amine functional groups over the surfaces of CNTs.    

 

4.2. Experimental  

 

4.2.1 Rheological Measurements 

 
A TA Instruments oscillatory rheometer with parallel plate geometry (500 

micrometer gap, and 50 mm plate diameter) was used to analyze the vinylester/polyester 

resin blend suspensions with different amounts of CNTs with and without amine 

functional groups. Tests were performed in both dynamic and steady modes at room 

temperature in order to avoid evaporation of styrene during the measurements. All 

measurements were taken in Linear Viscoelastic Region (LVR) in which the storage 

modulus (G’) and loss modulus (G”) were independent of strain amplitude. Dynamic 

frequency sweeps (DFS) were then performed in the LVR to investigate the structure of 

the suspensions. In the DFS, the strain amplitude was remained constant 35 % through 

whole frequency range. Please note that prior to main experiments, the corresponding 

value of the strain amplitude was proved to be in the LVR, conducting Dynamic Strain 

Sweeps (DSS) at a constant frequency. During the DFS, the frequency varied stepwise 

from 0.1 to 80 rad /sec. Storage modulus (G’) and loss modulus (G”) values were then 

measured as a function of frequency. Furthermore, Steady Shear Sweeps (SSS) were 
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employed to investigate the flow properties of the suspensions by considering the 

viscosity as a function of increasing shear rates. 

 

4.3. Results and Discussion  

 

4.3.1 Rheological behavior of the resin suspensions with MWCNTs 
 

 The storage modulus (G’) of the resin suspensions with different loading rates of 

MWCNTs and MWCNT-NH2 as a function of oscillatory frequency is shown in Figures 

4.1 a and b, respectively. Consequently, G' values were observed to monotonically 

increase with an increase in the oscillatory frequency. Moreover, the more CNTs 

incorporated into the corresponding resin blend, the higher G' values were obtained 

from the resulting resin suspensions. At 0.3 wt. % loading rate, the flow regime of the 

resin suspensions was significantly altered at low frequencies and a pseudo-solid like 

behavior becomes more visible. We referred to it as pseudo-solid like because in true-

solid like behavior the storage modulus (G’) becomes fully independent of frequency 

(Shaffer, et al. 1998, Shaffer and Windle 1999b, Amari, et al. 1997). In addition, 

suspensions with 0.1 and 0.3 wt. % of MWCNTs exhibit slightly higher storage 

modulus values, especially apparent at low frequencies, as compared to those with 

MWCNT-NH2. It was reported that carbon nanotubes with very small sizes are very 

likely to make strong particle-polymer interactions even at very low filling rate because 

the interfacial area between particles and polymer significantly increases 

(Moniruzzaman and Winey 2006). So, the high aspect ratio and huge surface area of 

CNTs may lead to formation of physical network structure, which may give rise to the 

apparent storage modulus of the corresponding resin suspensions. Similarly, Chan et al. 

(2002) concluded that, unlike mechanical properties, rheological properties of a sytem 

are altered substantially, as the size of fillers embedded in the corresponding system 

decreases. In this respect, the changes in rheological properties of the resin suspensions 

are highly proportional to the characteristics of physical network structure formed by 

the strong particle polymer interactions as in the case of CNTs/polymer systems.       

 Figures 4.2 a and b give the loss modulus values (G") of resin suspensions 

containing MWCNTs and MWCNT-NH2, respectively. In fact, the loss modulus is less 

sensitive to particle morphology and dispersion state of additives than storage modulus.  
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Figure 4.1. The frequency dependence of the storage modulus (G’) for the CNT/ resin 

 suspensions with various a) MWCNTs and b) MWCNT-NH2 contents. 
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Figure 4.2. The frequency dependence of the loss modulus (G”) for the CNT/ resin 

 suspensions with various a) MWCNT b) MWCNT-NH2 contents. 
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 Loss modulus values as a function of angular frequency increased with respect 

to content of carbon nanotubes, just in the same manner as storage modulus values. In 

addition, at 0.3 wt. % loading rate, resin suspension containing untreated carbon 

nanotubes exhibits viscous behavior (G’’>G’), whereas that with amino functionalized 

carbon nanotubes shows viscoelasticity (G’’≈ G’). This verifies that amine functional 

groups over CNTs surfaces alter the flow characteristic of the resin suspensions.  

 Figures 4.3 and 4.4 give shear viscosity as a function of shear rate for the neat 

resin blend and resin suspensions containing MWCNTs and MWCNT-NH2, 

respectively. In principle, shear viscosity of pure polymer is divided into two distinct 

regions including the Newtonian and shear thinning regions (Andrews, et al. 2002, 

Pötschke, et al. 2002, Seyhan, et al. 2007b). At low shear rate, the Newtonian region 

with independence of shear rate is observed followed by shear thinning region through 

which shear viscosity linearly declines with shear rate. As seen in the figures, shear-

thinning behavior was observed for each resin suspension with nanotubes such that the 

viscosity is reducing with an increase in the shear rates. Moreover, the neat resin blend 

shows almost the Newtonian fluid behavior. In other words, the Newtonian region 

disappeared when even very low contents of CNTs (0.05 wt. %) was added to the resin 

blend. This implied that strong particle-particle interactions of CNTs are one major 

factor leading to an increase in shear viscosity of the corresponding suspensions. On the 

other hand, at 0.1 wt. % loading rate, the initial shear viscosity of the resin suspension 

with amino-functionalized nanotubes is slightly lower than that of the suspension with 

non-functionalized nanotubes. Moreover, resin suspensions containing 0.3 wt. % of 

MWCNTs and MWCNT-NH2 exhibited similar initial viscosity values. Based on the 

experimental findings obtained so far, it seems that amine functional groups do not 

significantly contribute to the enhancement of dispersion state of CNTs within the 

corresponding resin blend. Actually, it is not easy to make a single and very precise 

comment on rheological behavior of polymeric suspensions. This is because it 

extremely depends on dispersing state of fillers inside, particle-particle interactions, and 

interaction between particles and disperse medium (polymer resin). In our case, since 

carbon nanotubes have high aspect ratio, surface area and amine functional groups over 

their surfaces, both particle-polymer resin blend and particle-particle interactions 

become more crucial, as elucidated in details during analysis of rheological data above.  
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Figure 4.3. Shear rate dependency of viscosity of neat resin blend and CNT/resin 

 suspensions with MWCNTs.  

 

 Please note that the amino-functionalized nanotubes used in our experiments 

were processed in ammonia solution via ball milling process, during which CNTs are 

broken in length and their aspect ratios are partially diminished. According to 

information provided by the manufacturer of CNTs (Nanocyl, Belgium), the aspect ratio 

of multi walled nanotubes with amine functional groups is eventually five times less 

than that of the nanotubes without any surface treatment. From that point of view, the 

incorporation of amino functionalized nanotubes (MWCNT- NH2) with their reduced 

aspect ratio into the resin system is expected to result in relatively lower storage and 

loss modulus values as well as much reduced shear viscosity in their corresponding 

resin suspensions compared to those with MWCNTs. However, in our case, the effect of 

the surface functionalization on the rheological behavior is relatively insignificant 

especially at higher loading rate of CNTs embedded into the resin blend. This implies a 

conceivable occurrence of chemical interactions to some extent between CNTs and 

disperse medium (resin blend) through the amine functional groups over the surfaces of 

CNTs.  
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Figure 4.4. Shear rate dependency of viscosity of resin blend and CNT/resin 

 suspensions with MWCNT-NH2 

 

  On the other hand, the transition from liquid like to solid like behavior is highly 

proportional to the existence of yield stress, which is an expression of the strong 

particle-particle interactions (Seyhan, et al. 2007b). Note that non-interacting particle 

filled polymer systems do not show the yield stress. However, in our case, regardless of 

amine functional groups, at 0.3 wt. % loading rate, a perceptible transition zone 

occurred, which is ample evidence to the presence of strong polymer particle 

interactions within the resin matrix.   

 

4.3.2 Rheological behavior of the resin suspensions with DWCNTs 
 

        Figures 4.5 and 4.6 give the frequency dependency of the storage modulus (G’) 

values for the hybrid resin suspensions containing various amounts of DWCNTs and 

DWCNT-NH2, respectively. At each given concentration, G’ values of DWCNT and 

DWCNT-NH2 modified resin suspensions were found to increase with increasing 

frequency. Regardless of filler content, the resin suspensions containing DWCNTs 
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showed almost the same G’ modulus values as those with DWCNT-NH2, apparent 

especially at low frequencies. However, the suspensions with DWCNT-NH2 showed 

dependency of G’ values with respect to CNT content. The highest G’ values were 

obtained from the resin suspensions containing 0.05 wt. % of DWCNT-NH2. Moreover, 

at each given concentration, DWCNT-NH2 modified resin suspensions possessed higher 

G’ values as compared to those with DWCNTs. On the other hand, incorporation of 

DWCNTs and DWCNT-NH2 into hybrid resin at the given concentration did not alter 

significantly the flow regime of their corresponding resin suspensions across the 

frequency range studied. Some of these findings are contradictory to the results obtained 

from the suspensions containing MWCNTs or MWCNT-NH2. It was found that G’ 

values of the resin suspensions with MWCNTs or MWCNT-NH2, increased with the 

increment of CNTs content. In addition, regardless of amine functional groups, a 

noticeable change in G’ values was observed when increasing the concentration of 

CNTs from 0.1 to 0.3 wt. %. Consequently, at 0.3 wt. % loading rate, MWCNTs or 

MWCNT-NH2 modified resin suspensions showed a pseudo-solid like behavior, 

particularly visible at low frequencies. It is very well known that the dependence of 

storage modulus values on filler concentration is related to geometrical aspect of 

particles as well as the density of structural networks formed by dispersed particles with 

polymer chains (Shaffer, et al. 1998, Shaffer and Windle 1999b, Amari, et al. 1997, 

Seyhan, et al. 2007a). For the present case, orientation of nanotubes with their huge 

aspect ratio within the hybrid resin is also expected to induce a substantial impact on the 

characteristic of network structure to be formed. Depending upon the interactions at the 

interface between CNTs and the chains of the surrounding polymer matrix, this effect is 

anticipated to be more pronounced when the concentration of CNTs within the system 

increases, provided that CNTs are uniformly dispersed. Since DWCNTs have larger 

specific surface area (SSA) and lower density (density of 0.98 gr/cm3) as compared to 

MWCNTs (density of 2.09 gr/cm3), they have higher tendency to form relatively large 

agglomerates within the resin medium. Therefore, DWCNT modified resin suspensions 

demonstrate the same rheological behavior as the suspensions containing large micro 

particles, such as carbon black or glass beads due to inferior particle-particle 

interactions arising from relatively large condense agglomerates of DWCNTs.   

  According to the percolation theory, the network structure is formed between the 

fillers and the dispersed medium, when the fraction of inter-particle bonding exceeds 

the threshold level (Amari, et al. 1997, Pötsche, et al. 2004a). 
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Figure 4.5. The frequency dependence of the storage modulus (G’) for the neat resin 

 blend and its suspensions with different content of DWCNTs 

   

  From that point of view, presence of relatively large agglomerates of DWCNTs 

within the matrix resin due to their relatively poor dispersion may shift the rheological 

threshold value to higher values as compared to MWCNTs. As mentioned earlier, 

rheological threshold value refers to critical filler loading rate at which the flow regime 

changes, showing frequency independency at relatively low frequency values. Another 

reason may be associated with high tendency of DWCNTs to reagglomerate within the 

resin matrix due to their relatively high particle-particle interactions and attractive 

forces in between individual particles. As a result, we did not observe a clear frequency 

independency for resin suspensions with DWCNTs regardless of amine functional 

groups. Despite lower aspect ratio of DWCNT-NH2 (two times lower than that of the 

untreated ones) due to functionalization process via ball milling method, DWCNT-NH2 

modified resin suspensions exhibited higher G’ values than those prepared with 

DWCNTs.G’ values of MWCNTs and MWCNT-NH2 filled resin suspensions were 

found to be similar, despite the fact that the aspect ratio of MWCNTs is five times 

larger than that of MWCNT-NH2. From that point of view, it is reasonable to conclude 

that amine functional groups over CNTs contribute to the formation of a combined  
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Figure 4.6. The frequency dependence of the storage modulus (G’) for the neat resin 

 blend and its suspensions with different content of DWCNT-NH2 

 

nanotube-polymer network structure based upon geometrical percolation of nanotubes 

via their huge aspect ratios.         

          Figures 4.7 and 4.8 show loss modulus (G”) values of the hybrid resin 

suspensions containing different contents of DWCNTs and DWCNT-NH2, respectively. 

It is known that G” values are less sensitive to the properties and morphology of filler 

constituents as compared to G’ values. As a result, change in the slope of G’ (in the 

terminal zone at low frequencies) is expected to be more remarkable than that in the 

slope of G”. However, comparison of storage and loss modulus values with each other 

may assist in qualitative determination of the dispersion state of particles within 

suspension of interest. In consequence, at each given loading rate, resin suspensions 

containing DWCNTs were found to exhibit viscous behavior (G” > G’), while those 

with DWCNT-NH2 showed viscoelasticity (G” ≈ G’). This implies alteration of flow 

characteristics of resin suspensions to some extent via amine functional groups over 

surfaces of CNTs. These findings are also very consistent with those for the resin 

suspensions containing MWCNTs and MWCNT-NH2.    
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Figure 4.7. The frequency dependence of the loss modulus (G”) for the neat resin blend 

 and its suspensions with different content of DWCNTs   
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Figure 4.8. The frequency dependence of the loss modulus (G”) for the neat resin blend 

 and its suspensions with different content of DWCNT-NH2 
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 Figures 4.9 and 4.10 give shear viscosity values with respect to shear rate for the 

neat resin blend and its related suspensions containing different amount of DWCNTs 

and DWCNT-NH2, respectively. As seen in the figures, regardless of amine functional 

groups or content of CNTs, shear thinning behavior was observed for each nanotube 

modified resin suspension such that viscosity values reduce with increasing shear rate. 

The neat resin blend is almost the Newtonian fluid behavior. At 0.05 and 0.1 wt. % 

CNTs content, initial shear viscosity of DWCNT-NH2 modified resin suspension was 

found to be higher than that of resin suspension with DWCNTs. This may be attributed 

to the relatively good dispersibility of amino functionalized nanotubes within the resin 

medium. Unlike the observed behavior of MWCNTs and MWCNT-NH2 modified resin 

suspensions, as the content of DWCNTs or DWCNT-NH2 increased within the resin 

blend, shear viscosity of their corresponding resin suspensions decreased at low 

frequencies with steeper slope. This may be associated with the unstable degree of 

dispersion and distinct orientation of nanotubes within the resin blend, depending upon 

their different specific surface area, aspect ratio and distinct particle-particle 

interactions.                 
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Figure 4.9. Shear rate dependency of viscosity for the neat resin blend and its 

 suspensions with different content of DWCNTs. 
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Figure 4.10. Shear rate dependency of viscosity for the neat resin blend and its 

 suspensions with different content of DWCNT-NH2. 

 

 In brief, these findings support the motivations given earlier for the elucidation 

of frequency dependent storage and loss modulus values of resin suspensions with 

respect to CNTs.  

 

4.4. Conclusions   

 
          Rheological behavior of CNT modified hybrid resin suspensions was 

characterized by performing linear dynamic viscoelastic measurements and steady shear 

tests conducting an oscillatory rheometer with parallel plate geometry. Linear dynamic 

viscoelastic measurements revealed that storage modulus (G’) and loss modulus (G’’) 

values of resin suspensions as a function of angular frequency increased with respect to 

MWCNTs regardless of amine functional groups. In contrary to what is observed for 

MWCNTs and MWCNT-NH2, it was found that storage and loss modulus values of 

DWCNTs and DWCNT-NH2 modified resin suspensions decreased with increasing filler 

content. At 0.3 wt. % loading rate, the rheological threshold (pseudo-solid like 
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behavior) was obtained for MWCNT modified resin suspensions regardless of amine 

functional groups. This transition zone is highly visible at lower frequencies. However, 

no transition zone was obtained from the resin suspensions with either DWCNTs or 

DWCNT-NH2. Steady shear measurements revealed that, regardless of type of CNTs or 

amine functional groups, each CNT modified resin suspension exhibited shear thinning 

behavior with steeper slope, while the hybrid resin was almost the Newtonian fluid. 

Nevertheless, under steady shear, the response of resin suspensions containing 

MWCNTs with and without amine functional groups differs contradictorily from that of 

resin suspensions with DWCNTs or DWCNT-NH2. Specifically, the shear viscosity 

values for resin suspensions containing MWCNTs and MWCNT-NH2 increased with an 

increase in the content of CNTs, while these values reduced gradually for DWCNTs in a 

different manner.  
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CHAPTER 5 

 

CURE KINETICS OF CNT MODIFIED HYBRID RESIN 

SUSPENSIONS 
 

5.1 Introduction 

 
High performance reinforced composite materials are typically composed of 

high modulus fibrous reinforcing materials embedded in a thermosetting polymer 

matrix. The final properties of the resulting composite structures vary, depending on the 

properties of the reinforcement, interphase and the matrix resin. In this respect, 

unsaturated polyester (UP) and vinylester (VE) resins are the most common matrix 

materials utilized for reinforced composite structures (Tanoglu and Seyhan 2003). The 

both resins possess some superior properties including chemical resistance, low 

viscosity, relatively high mechanical properties as well as low cost and ability to cure at 

room temperature (Yang and Lee 2001).  

A good understanding of cure kinetics of matrix resins is critical to the 

understanding of structure and behavior of their resulting reinforced composites. In 

other words, the cure kinetics provides substantial information regarding the final 

network structure in matrix resins, which has a significant effect on the properties of the 

resultant product (Bae, et al. 2000, Jannesari, et al.2005). The information obtained 

from cure processing is also accessible to composite processing parameters.   

CNTs are widely being used as fillers to improve thermal, mechanical and 

electrical properties of polymers. As compared to their micro sized counterparts such as 

carbon black (CB) micro particles, CNTs with high aspect ratio and surface area are 

expected to affect more significantly the curing behavior of the polymer matrix in which 

they are embedded ( Xie, et al. 2004, Puglia, et al. 2003, Roşu, et al. 2004)      

Various experimental methods have been conducted by researchers to monitor 

the progress of cure. Thermal analysis by Differential Scanning Calorimeter (DSC) in 

both isothermal and dynamic modes is widely applied to study the kinetics of cure 

reactions (Roşu, et al. 2002, Macan, et al. 2004). Isothermal DSC measurements differ 

from the non-isothermal ones in that they have complete separation between the 
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variables of time and temperature. However, a significant development of the cure state 

can occur before DSC reaches and stabilizes at the desired temperature. As a result, the 

reaction may not reach the completion at lower temperatures. Alternatively, dynamic 

DSC measurements could result in a better capture of the cure kinetics at both the on-set 

and the end of the reaction (Xie, et al. 2004, Puglia, et al. 2003). However, DSC 

measures in principle only the overall heat release during the reaction, but can not 

distinguish multiple overlapping reactions which occur in the system (Malek 2000, Lu, 

et al. 1998). The main emphasis with DSC is on obtaining data to develop empirical 

models like the autocatalytic kinetic model, which are system specific and thus not 

representative for all styrene / VE or UP systems (Sanchez, et al. 2000, Caba, et al. 

1998). At this stage, researches focused their attention on FTIR spectrometry, which 

offers the potential to differentiate the rate of isothermal reactions dependent on the 

spectral changes of different functional groups (Caba, et al. 1998, Li, et al. 1999). In 

other words, depletion of the reactive species in a sample can be monitored by FTIR in 

a separate manner, provided that their absorption peaks are noticeable from the product 

peaks.  

Raman spectrometry (RS) is a simple non-destructive technique. Like FTIR 

spectrometry, it can provide a spectrum of characteristic bandwidths which help identify 

the chemical species and bond types present in the material of interest (Zhao and 

Wagner 2004). One advantage of the Raman technique over FTIR is that any shift in 

characteristic Raman peaks can be attributed to straining of the material, through 

external and internal stressing (Stevanovic, et al. 2000). In this respect, Raman 

spectrometry has recently been used to identify CNTs, evaluate their dispersion in 

polymers, and highlight the interaction between polymer matrix and CNTs in 

nanocomposites (Zhao and Wagner 2004, Frogley, et al. 2002). In this technique, 

interaction of CNTs with polymers is reflected by a peak shift or a peak width change.     

Understanding of thermal stability of polymer composites is of significance to 

interpret the effect of filler constituents embedded in polymer matrices on the chemical 

degradation mechanism of the final product (Ho, et al. 2006, Shih, et al. 2002). Thermo-

gravimetric analysis (TGA) is one of the most commonly used thermal analysis 

techniques to monitor the thermal decomposition of polymeric materials (Ferreira, et al. 

2005). In principle, the thermo-analytical curves, like DSC curves, provide only basic 

information about the process and do not make fine distinction between partial chemical 

reactions during thermal degradation. However, interpretation of TGA data helps get 
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also a relevant opinion regarding the curing behavior of polymeric materials in 

conjunction with the presence of filler constituents.     

In summary, the combination of experimental techniques mentioned above helps 

assess any chemical interaction between reinforcement constituent and the surrounding 

polymer matrix.         

In this chapter, analytical techniques including DSC, FTIR, RS and TGA were 

employed to explore the effect of MWCNTs and MWCNT-NH2 on polymerization of 

the hybrid resin, with particular emphasis on amine functional groups over the surfaces 

of CNTs. Please note that we ignored to study the curing mechanism of the resin 

suspensions with DWCNTs and DWCNT-NH2. This is because they exhibit relatively 

large dense agglomerates, which may lead to inconsistency and difficulty with 

reproducibility of the curing data to be obtained. In other words, the more homogenous 

distribution of CNTs within the polymer matrix, the more accuracy in the experimental 

results obtained. Therefore, aim herein is to simply monitor what is going during free 

radical polymerization based on the chemical interactions between monomers and CNTs 

within the involved suspensions.    

 

5.2 Vinylester and Polyester Resin Systems 
        

Vinylester (VE) monomers are addition products of various epoxide resins and 

ethylenically unsaturated monocarboxylic acids such as acrylic or methacrylic acids. On 

the other hand, the term unsaturated polyester (UP) resin is used to describe a class of 

thermosetting resins consisting of an unsaturated backbone dissolved in a reactive 

monomer (Kosar and Gomzi 2004). The polyester backbone is synthesized by 

condensation polymerization. Polyester resins are commonly categorized as ortho and 

iso resins depending on the nature of the saturated acid portion of the backbone 

polymer. The difference between them is that ortho and iso resins use orthophthalic acid 

and isophtalic acid, respectively. Ortho resins are used in contact molding such as 

marine applications, while iso resins are used in matched die molding, corrosion 

resistant applications and gel coats (Tanoglu and Seyhan 2003). VE and UP resins are 

similar to each other in that they both contain styrene as a reactive diluents. Figure 5.1 

shows the chemical structure of polyester and vinylester resins.  
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Figure 5.1. The chemical structure of a) thermosetting polyester and b) vinylester  

 resins  
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As seen in the figure, the UP monomers have usually more than two double 

bonds per molecule that are located inside the chain, while VE monomers have one 

double bond at either end of the molecule. In most of the commercial vinylester or 

polyester resins, the styrene concentration varies from 30 to 55 wt. %. However, the 

research done on UP can not be directly used for VE resins due to one major difference 

between the two resins which arises from the number and the location of reactive groups 

(namely (C=C) bonds in VE and UP monomers ( Dua, et al. 1999, Scott, et al. 2002)   

VE and UP monomers react via free radical chain growth copolymerization, 

forming cross-linked polymer networks by the aid of styrene in the system. Note that 

the term cross-links form between different polymer chains and assist in the formation 

of a network that tightens as long as the conversion increases. As an example, Figure 

5.2 depicts schematically the polyester monomers cross-linked by styrene monomers. 

As seen in the figure, styrene acts as a bridge between two polyester monomers, just 

reacting with the opened double carbon bonds of these corresponding monomers.             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Illustration of two polyester monomers cross-linked via styrene 

 

Degree of cross-linking is highly associated with the final properties of the 

matrix resin. For instance, the glass transition temperature (Tg) of the resin increases 
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described as a combination of chemical and physical processes during which 

transformation of thermosetting resin systems into a cross-linked network takes place.  

Two major features associated with the curing process of VE and or UP includes 

gelation and vitrification (Batch and Macossa 1992, Tollens and Lee 1993). Gelation of 

a resin system is characterized by the formation of chemical structures of macroscopic 

dimensions to which the term infinite network is applied. The infinite network reaches 

the dimension of the sample itself. The onset of formation of an infinite network is 

apparent as the asymptotic increase of viscosity and the weight average molecular 

weight of the resin towards infinity. On the other hand, vitrification occurs when the Tg 

exceeds the cure temperature. A curing resin system experiences vitrification when the 

material begins to solidify. Once the material reaches vitrification, the molecular 

motions of polymer are severely restricted and the reaction is ceased to diffusion 

limitations on the growing radical species, as well as on the monomers (Dua, et al. 

1999, Hsu and Lee 1993).              

 

5.3 Free Radical Chain Growth Copolymerization 
 

          The VE or UP cure process is a free radical chain growth copolymerization. For 

such systems, the polymerization can be divided into three main stages. These are 

initiation, propagation and termination (Lam and Blauman 1990, Lee and Lee 1994, 

Dua, et al. 1999, Scott, et al. 2002).    

           Initiation takes place when the peroxide initiator decomposes into primary free 

radicals followed by the formation of monomer radicals. With this respect, monomer 

radicals provide the active sites required to overcome inhibition and to sustain chain 

reaction. The process of chain initiation is generally considered to involve two steps; the 

first is the decomposition of the initiator I to yield a pair of free radicals R● 

               

⋅→ RI 2                                                                                            

 

           The second one is the addition of a monomer M to a primary radical R to yield a 

chain radical as follows 

       
⋅→+⋅ 1MMR                                                      
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           The most commonly utilized initiators are organic peroxides and hydro 

peroxides. These initiators decompose into free radicals typically via two methods. The 

first one is thermal decomposition at elevated temperatures and the second one is the 

redox decomposition in the presence of metal catalyst such as cobalt naphatane 

(CoNAP) at low temperatures. In principle, since there are two monomers in either 

vinly ester or unsaturated polyester resins, two types of monomer radicals are formed. 

VE is used as a notation for the following formulas.                           

 

⋅→+⋅ VEVER                                                                                                                                     

⋅→+⋅ STSTR                                                  

       

 The free radicals have odd number of electrons, and thus they are formed in 

pairs, either or both of which may initiate polymerization according to the reactions 

given above. Please note that not all of the radicals in step 1 yield chain radicals, some 

of them may be lost through side reactions. Radicals generated by initiator 

decomposition are initially trapped in a solvent cage in which they may either 

recombine or terminate with another nearby radical to initiate chain polymerization 

(Dua, et al. 1999, Scott, et al. 2002, Hsu and Lee 1993).     

           Propagation involves the growth of polymer molecules by successive addition of 

monomers to the monomer radicals as follows; 

 

⋅→+⋅ 21 MMM                                              

⋅→+⋅ 32 MMM                                             

 

           In general, it can be defined as follows 

 

⋅→+⋅ +1xx MMM                                                         

 

           In vinylester resin systems, there are two monomers which can involve in the 

following types of propagation reactions 
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⋅−→+⋅ VEVEVEVE                                     

⋅−→+⋅ STVESTVE                                     

⋅−→+⋅ VESTVEST                                     

⋅−→+⋅ STSTSTST                                    

 

            The first two reactions lead to homo-polymerization of VE and styrene, while 

the last two reactions refer to the copolymerization of VE and styrene, respectively.  

            Termination is composed of two mechanisms including bimolecular termination 

and unimolecular termination. Bimolecular termination can also be divided into two 

types. The first one; bi molecular termination via coupling as follows 

 

yxyx MMM +→⋅+⋅                                      

 

            The second one is bimolecular termination via disproportionation through a 

hydrogen atom. In general, for bimolecular termination, two free radical species have to 

come close together. In other words, the radical species should have enough 

translational and segmental diffusivity that the two radicals can react with each other. In 

cross linking systems, unimolecular termination also plays an important role. This type 

of termination is mostly caused by entrapment of radicals (Batch and Macossa 1992). 

Due to extensive cross linking in thermosetting polymers, a large majority of free 

radicals is trapped within the polymer network and is no longer accessible to monomers 

or other radicals.      

 

5.4. Interactions of Matrix Resin with CNTs  
 

Interactions of CNTs with the surrounding matrix resin are highly critical to the 

ultimate properties of the resulting nanocomposites. Figure 5.3 is the illustration of 

chemical interaction between the amino functionalized CNTs and vinylester resin. As 

seen in the figure, C-N covalent bonding is supposed to occur between the surfaces of 

amino functionalized carbon nanotubes as a consequence of opened carbon double 

bonds of vinylester resin. In addition, weak hydrogen bonds are also supposed to occur 

as a result of interaction between the hydrogen molecules in vinylester and those 
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coming from structure of amine groups over the surfaces of CNTs. Please note that the 

chemical mechanism illustrated in the figure is hypothetical and does not necessarily 

take place within the resin structure. In fact, there are many factors associated with the 

complex reactions that occur in the resin system. 

Since CNTs exhibit huge surface area and aspect ratio, their interactions with the 

free radicals generated by the decomposition of the initiator is vastly critical to the 

characteristics of the network structure formed in the resultant system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Illustration of chemical interaction between the surfaces of amino 

 functionalized CNTs and vinylester polymer chains 

 

 In this respect, the probability of amine groups over the surfaces of CNTs to 

react with the double bonds of the vinylester resin should also be taken into account. 

Figure 5.4 depicts one of the worst scenarios for the resin system as an example. In this 

case, amine groups on the surfaces of DWCNTs react with the opened double carbon 

bonds of polyester resin which are in fact supposed to react with styrene monomers. As 

a consequence, residual styrene monomers would be most probably polymerized as 

polystyrene without cross-linking the polyester molecules. This may affect the cross-

linking density, just tuning the individual fractional conversion of the monomers in the 

resin system. Investigation of these interactions encompasses the motivations of this 

chapter.   
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Vinyl ester resin 
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Figure 5.4. An example to the interaction between matrix resin, styrene and CNTs 

 

5.5. Experimental 

 

5.5.1. DSC Measurements 

 
All measurements were performed by a Shimadzu DSC-50 scanning calorimeter. 

A small quantity of the sample (10-25 mg) was used for the DSC studies in a sealed 

aluminum pan. Dynamic runs were carried out on the suspensions, using another 

aluminum empty cell as a reference. The curing thermal data for each sample was 

obtained from dynamic scans at different heating rates (5, 10, and 20 °C/min) from 

room temperature up to 200°C in a nitrogen atmosphere. The total heat of the reaction 

was estimated for each sample from the non-isothermal experiments by integrating the 

area under peaks of the DSC exotherms obtained. 

 

5.5.1.1. Cure Kinetics Approach via DSC  
 

The basic kinetic approach of thermosetting polymers is that the heat flow 

measured in DSC is proportional to both overall heat release and the rate of the kinetic 

process, as given below (Roşu, et al. 2004, Kessler and White 2002, Roşu, et al. 2002)      

                                            Qdt
d φα

=                                                            (5.1) 
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where Q is the enthalpy of the curing reaction and φ  is the measured heat flow, (α) is 

the extent of the reaction. For the non-isothermal conditions, α is obtained by 

integrating the equation (5.1) by utilization of constant heating rate (Malek, 2000, Roşu 

et al. 2002).  

∫=
T

T İ

dT
Q

φ
β

α 1
                                                 (5.2) 

 

where β is the heating rate (β=dT/dt) and Ti refers to the beginning of the baseline 

approximation. The rate of kinetic process can be expressed as a function of temperature 

dependent rate constant. The rate constant K (T) and (α) dependent kinetic model 

function f (α) is as follows (Roşu,  et al. 2002, Roşu, et al. 2004, Puglia, et al. 2003)   

 

                                                  )()( αα fTK
dt
d

=                                                     (5.3) 

 

K (T) in equation 3 follows Arrhenius form, as given in equation (4) (Xie, et al. 2004) 

  

)exp()(
RT
EATK a−=                                                  (5.4)       

   

Where A is the pre-exponential factor, Ea is the apparent activation energy, R is the gas 

constant and T is the absolute temperature. In the case of non-isothermal conditions with 

constant heating rate β=dT/dt, equation (3) and (4) can be combined and revised into the 

form, as given below (Roşu,  et al. 2002, Roşu, et al. 2004, Jannesari, et al. 2005)   

 

       )()exp( α
β

α f
RT
EA

dT
d a−=                                             (5.5) 

 

Ea values are determined from the plot of 1/Ti versus ln (βi/T2
i) (Kessler and 

White 2002). Ti refers to the temperatures which correspond to different degree of cure 

(α). A very well known autocatalytic equation (Bae, et al. 2002) given below for 
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thermosetting resin systems was proposed in the present study to model the 

experimental data.  

 

                               nmf )1()( ααα −=                                                       (5.6) 

 

In this equation, m and n are reaction orders. Note that the total order of 

autocatalytic curing reaction is assumed to be 2 [m+n=2] (Kessler and White 2002, 

Roşu, et al. 2004). Using the value of Ea and the proposed kinetic model, the pre-

exponential factor A is calculated according to the equation below (Roşu, et al. 2002, 

Roşu, et al. 2004).   

 

                                 
exp

( )
p

p
p

x
A x

Tf
β
α

= −
′

                                             

 

where xp is reduced activation energy (Ea/RT) at the maximum peak, f’ (αp) is the 

differential form of the kinetic model αp is the conversion corresponding to the 

maximum on each DSC curve. After the calculation of the pre exponential factor, using 

the autocatalytic equation, m and n values are achieved through non-linear regression at 

each specific value of degree of conversion (α).   

 

5.5.2. FTIR Measurements  

 

           Cure monitoring of vinylester resin containing 0.3 wt. % of MWCNTs and 

MWCNT-NH2 were performed by utilizing Schimadzu 8201 FTIR spectrometer in 

transmission mode. Please note that only neat vinylester resin was used as matrix 

material to ease the interpretation of data because, in the case of a complex mixture of 

polymers, it would be hard to differentiate which bands come from which molecules 

(Dua, et al. 1999, Scott, et al. 2002, Li, et al. 1999). Since vinylester resin contains 

styrene, CNTs were blended with vinylester resin via high shear mechanical stirring to 

avoid evaporation of styrene as much as possible. The FTIR spectra of MWCNTs and 

MWCNT-NH2 were also taken to correlate the data obtained for their corresponding 

  (5.7) 
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nanocomposites. The point herein is to just reflect the effect of individual CNTs or their 

agglomerates on the free radical polymerization. In this manner, the same specified 

quantity of CoNAP and MEKP as in the production of the nanocomposites was added to 

neat liquid vinylester resin and its CNT modified suspensions in order to initiate the 

polymerization reaction. A drop of this catalyzed mixture was then taken and 

compressed between two potassium bromide (KBr) transparent crystal plates. This plate 

of sample was placed into a sealed infrared liquid cell which allows the curing process 

to be monitored in real time while preventing instant evaporation of styrene. The 

samples prepared were eventually scanned from 500 cm-1 to 4000 cm-1 at a resolution of 

4 cm-1.         

 

5.5.2.1. Cure Kinetics Approach via FTIR  
 

               FTIR spectroscopy was used to monitor the depletion of carbon-carbon double 

bonds (C=C) for styrene and vinylester systems in separate manner. In this respect, the 

absorbance at 945 and 910 cm-1 were monitored during curing to determine the 

conversion of both of the monomers. Note that the peaks at 945 and 910 cm-1 

correspond to out of plane bending of carbon-hydrogen bonds in the vinyl group of the 

vinylester monomer and wagging of CH2 in the vinyl group of the styrene monomer, 

respectively. Aromatic carbon-hydrogen bonds at 830 cm-1 in vinylester and 700 cm-1 in 

styrene were used to correct for the changes in the thickness of the samples during 

reaction. Equations 1 and 2 were then employed to compute normalized fractional 

conversion of vinylester and styrene double bonds, respectively (Dua, et al 1999, Caba, 

et al. 1998).     
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          In the equation, α is the fractional conversions of double bonds associated with 

each corresponding monomer at time t, and Ao and At are the normalized absorbance 



 66

peaks before the reaction starts and after a certain time t. The magnitudes of the relevant 

absorbance peaks were then measured, considering slight shifts that occurred due to 

reaction in peak locations and base lines. In this respect, automatic sampling was 

performed at the specified time intervals and the measurements were terminated once no 

changes were observed in the absorbance peak area.  

 

5.5.3. Raman Spectroscopy    

 
          Raman spectrometry were performed on CNTs, the cured hybrid polymer and its 

nanocomposites prepared with MWCNTs and MWCNT-NH2, using Renishaw 2000 

Ramanscope, equipped with He-Ne laser, 50 cm-1 notch filter, and a 600 groove per mm 

grating. The wave length and power of laser were set to 633 nm and 20mW, 

respectively. The spectra collection time was set to 60 seconds in order to achieve a low 

noise to signal ratio. The spectra were acquired from 100 to 3500 cm-1 to detect 

especially the D and G bands of the CNTs. Please note that Raman spectrometry of 

CNTs used in this study was already measured by Gojny (Gojny 2006). We used the 

same spectra for interpretation of the data observed for nanocomposites. For the sake of 

accurate interpretation, the effect of MWCNTs and MWCNT-NH2 upon the depletion of 

C=C of neat hybrid resin was evaluated by subtracting the spectrum of the resultant 

nanocomposites from the spectrum of each corresponding CNTs. The consequent 

spectrum and the obtained spectrum of the cured neat hybrid polymer were mutually 

compared for evaluation. For this approximation, the corresponding peak areas were 

considered.  

 

5.5.4. Dynamic TGA Runs  

 
          A Perkin Elmer, Thermal Gravimetric Analyzer (TGA), was used for 

investigation of thermal degradation response of the cured hybrid polymer and its 

resultant nanocomposites containing 0.3 wt. % of MWCNTs and MWCNT-NH2. A 

sample of about 10 mg for each batch was placed into alumina crucible. The samples 

were then heated from ambient temperature up to 700oC in a 50 ml/min nitrogen flow at 

different heating rates (5, 10, and 20oC/min.). Eventually, sample temperature, sample 

weight and its first derivative were recorded as a function of time.   
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5.5.4.1. Kinetic Approach to Thermal Decomposition  
          

 It was proved that at a constant degree of conversion, C, the activation energy of 

thermal degradation, Ed for a reaction is related to the heating rate, β, and the 

temperature, T, by the following Arrhenius equation ( Shih and Yeng 2002); 

         

                                         
)/1(
)(log)/(

T
bREd Δ
Δ

−=
β

                                                      (5.10) 

 

where b is a constant with a value of 0.475 K-1. The value of Ed can be determined from 

a plot of logarithm of heating rate versus the reciprocal of the absolute temperature at 

constant conversion level such that the slope of log β versus 1/T equals to Ed. Note that 

Ed values considered in this study was calculated based upon 5 wt % of conversion.  

 

5.6. Results and Discussion 

 

5.6.1. DSC Results 

 
 Figures 5.5-5.7 show the non-isothermal DSC exotherms observed at various 

constant heating rates (5, 10 and 20 °C/min.) for the neat resin blend and its suspensions 

containing MWCNTs and MWCNT-NH2, respectively. Considering the initial (Ti), the 

peak (Tp), and the final (Tf) temperatures, and calculating reaction enthalpy (Q) values 

from each corresponding DSC exotherm, the impact of CNTs on the cure kinetics of the 

entire resin system was evaluated. The data obtained was given in Table 5.1. As seen in 

the table, incorporation of CNTs into the polymer blend increases the reaction enthalpy 

at each given heating rate. The resin suspensions with MWCNTs and MWCNT-NH2 

exhibited 3 and 10 % higher enthalpy values than the neat hybrid resin, respectively. 

Furthermore, at each heating rate, less curing times were observed for polymer 

suspensions containing MWCNT-NH2 than for those with MWCNTs.  
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Figure 5.5. Non-isothermal DSC exotherm at different heating rates for the neat vinyl  

        ester/polyester resin blend  
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Figure 5.6. Non-isothermal DSC exotherm at different heating rates for CNT/vinylester         

polyester suspensions containing 0.3 wt. % of MWCNT 
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Table 5.1. Kinetic data obtained from DSC exotherms for neat polymer and 

 CNT/polymer suspensions.  

 

Sample 

Heating 

Rate 

(°C/min) 

Ti (°C) Tp (°C) Tf (°C) 
Cure Time 

(min) 
Q (J/g) 

5 59 88 112 11.0 216 

10 71 96 127 5.6 238 
Neat resin 

blend 

20 82 110 142 3.0 287 

5 58 86 115 11.4 228 

10 69 95 125 5.6 242 

Resin 

blend 

MWCNTs 20 76 114 152 3.8 296 

5 52 76 99 9.4 234 

10 60 88 102 4.2 247 

Resin 

blend 

MWCNT-

NH2 
20 72 100 130 2.9 312 

  

On the other hand, Ti value of the neat hybrid resin was lower than that of CNTs 

modified resin suspensions. This consequence is more pronounced for the suspension 

with MWCNT- NH2.   

Figure 5.8 gives the variation of Ea for the neat resin blend and CNTs modified 

suspensions with respect to the degree of cure. Note that Ea values were calculated at 

0.05 increments of α values. The results obtained showed that activation energy of each 

suspension varies with the degree of cure in a different manner from each other. 

Moreover, it was also found that resin blend with carbon nanotubes featured moderately 

lower Ea values as compared to neat hybrid resin blend at each stage of cure. This trend 

is more obvious for the suspensions with MWCNT-NH2 such that the Ea values 

decrease at lower degree of cure followed by increase till the end of the curing reaction.  
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Figure 5.7. Non-isothermal DSC exotherm at different heating rates for CNT/polymer   

 suspensions containing 0.3 wt. % of MWCNT-NH2  
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These predictions show the consistency with our main approach that nanotubes 

alter somewhat the chemical interactions within resin media during curing, and that 

amine groups alter the curing mechanisms. With the cure kinetic calculations via the 

proposed autocatalytic reaction model, the mean value of Ea for the neat resin blend and 

resin suspensions containing MWCNTs and MWCNT-NH2 were predicted to be 57, 52 

and 43 kj/mol, respectively. Table 5.2 gives the related kinetic parameters which 

account for the curing behavior of the resin suspensions. As seen in the table, no 

significant differences appear between values for each sample at different heating rates. 

Figures 5.9-5.11 give the comparison of the experimental and the predicted values for 

the neat resin blend and its suspensions containing MWCNTs and MWCNT-NH2, 

respectively. In consequence, the predicted values were found to be in good agreement 

with those experimentally obtained. Note that there are some deviations especially at the 

peak points of the corresponding curves. This may come from the fact that the sum of 

the kinetic orders (m+n) is not precisely equaled to 2, as presumed, due to some 

unidentified or sight chemical reactions dependent on interactions of CNTs with the 

surrounding matrix resin.  
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Table 5.2. The related kinetic parameters which account for the curing behavior of the 

 resin suspensions. 

 

Sample 

 

Heating rate 

(°C/min) 

 

Ea  

(kJ/mol) 

 

ln A 

 

m 

 

n 

5 57 15.425 0.056 1.944 

10 57 16.142 0.139 1.861 

 

Neat resin 

blend 
20 57 15.986 0.088 1.912 

5 52 14.082 0.134 1.866 

10 52 14.869 0.216 1.784 

 

Resin blend 

MWCNT 
20 52 14.293 0.185 1.815 

5 43 12.831 0.0321 1.968 

10 43 13.024 0.0296 1.971 

 

Resin blend 

MWCNT-NH2 20 43 12.682 0.0447 1.955 

 

Similar findings were reported in the literature. Puglia et al. (2003) found that, 

with increasing MWCNTs contents in an epoxy system, the initial reaction rates 

increased, while the time to the maximum cure rate decreased. The authors ascribed this 

compromise to the acceleration effect of MWCNTs. Xie et al. (2004) found similar 

results on the behavior of CNTs in another epoxy resin system. Moreover, Bae et al. 

(2002) revealed that surface functional groups over the surfaces of CNTs lowered the 

corresponding activation energy while at the same time reducing the heat of cure, 

significantly. However, polymerization reaction of epoxy is different from that of 

vinylester. In our case, primary amine groups over the CNTs are likely to react with the 

double carbon bonds of the hybrid resin blend and inhibit radical reaction to some 

extent, thus reducing the cross linking density of the resulting cured polymer. 
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Figure 5.10.  Comparison of experimental and predicted values of DSC exotherms for    

 the suspensions with MWCNT scanned at different heating rates 
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The schematic illustration of this case was already given at the beginning of this 

chapter. On the other hand, amine groups are grafted onto the surfaces of CNTs by ball 

milling, during which the lengths of the CNTs are partially diminished. In brief, the 

length of MWCNT-NH2 is five times less than that of MWCNTs. In another respect, 

relatively low aspect ratio of MWCNT-NH2 due to functionalization process may play a 

major role in resin cure reactions. Gryschuk, et al (Gryschuk, et al. 2006) stated that 

aspect ratio and surface area of CNTs are critical to final properties of polymers, and 

that lower aspect ratio of MWCNTs would probably more beneficial to ultimate 

properties of highly cross-linked resins like vinylester. Moreover, they also concluded 

that the amount of MEKP and CoNAP subjected to the entire resin system needs to be 

optimized dependent upon the type of CNTs.   

Although thermal analysis by DSC in both isothermal and dynamic modes is 

widely used to study the kinetics of cure reactions, DSC does not give information 

about the individual conversion profiles of VE, UP and styrene. However, in our case, 

the presence of CNTs in the hybrid resin system that polymerize via decomposition of 

radicals could change the relative conversion rates of vinylester, polyester and styrene 

double bonds, which produces significant differences in the network structure to be 

formed. In fact, it is interesting to know whether the promising results obtained from 

DSC measurements come mainly from amine functional groups over the surfaces of 

CNTs or from the reduced aspect ratio of CNTs due to ball milling. Therefore, it is 

reasonable to further investigate the interaction of untreated and amino functionalized 

CNTs with the hybrid matrix resin, utilizing more sophisticated analytical tools such as 

FTIR and Raman spectroscopy.  

 

5.6.2. FTIR Results 
 

 As previously elucidated in details, neat vinylester resin was utilized as matrix 

material for FTIR studies to avoid complexity with polymer blends. The aim herein is to 

reveal the impact of the presence of CNTs with and without amine functional groups on 

the chain growth co-polymerization. Figures 5.12 a and b show the transmission spectra 

for a neat vinylester styrene resin and its suspensions containing 0.3 wt. % of MWCNTs 

and MWCNT-NH2 before and after cure, respectively. Please note that the reductions in 

peak intensity for MWCNT and MWCNT-NH2 modified suspensions were calculated 
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after subtraction of the base line corrected spectra of carbon nanotubes. As seen in the 

figure, CNTs with and without amine functional groups have substantial effects on the 

peak intensity values of neat vinylester resin. In other words, conversion of individual 

monomers was altered as expected in the presence of CNTs.     

Figures 5.13, 5.14 and 5.15 give experimental plot of fractional double bond 

conversion of VE and styrene with respect to the reaction time in VE resin and its 

suspensions with MWCNTs and MWCNT-NH2, respectively. These graphs were 

obtained, using the equations given in section 5.4.2.1. Please note that double bond 

conversions of VE and styrene are based on the initial number of double bonds of VE 

and styrene, respectively. In this respect, a higher value of conversion obtained for VE 

bonds does not necessarily mean that more number of VE double bonds would react 

when compared to styrene double bonds. As given in Figure 5.11, in the very beginning 

of the reaction, the rate of fractional conversion of VE is more than that of styrene. 

After a while, the rate of styrene fractional conversion becomes almost equal to that of 

VE. Almost at the end of the reaction, the rate of conversion of styrene exceeded VE 

conversion rate. These findings are very consistent with those in other similar studies 

reported in the literature (Dua, et al. 1999, Scott et al. 2002, Lee and Lee 1994)  

However, as depicted in Figures 5.14 and 5.15, it was observed that the 

individual fractional conversion rates of styrene and vinylester were altered dependent 

on the amine functional groups over the surfaces of CNTs. The final conversion of 

styrene exceeded the final conversion of vinylester double bonds in the resin 

suspensions with MWCNT-NH2. Nevertheless, final conversion of vinylester double 

bonds is slightly higher than that of styrene in the resin suspensions with MWCNTs. In 

this respect, one can conclude that some of amine groups over the surfaces of CNTs 

react with double bonds of vinylester resin during curing, which are in fact supposed to 

react with styrene. In this scenario, residual styrene monomers would be polymerized as 

polystyrene without cross linking the vinylester molecules. In fact, this behavior is very 

similar to that illustrated in Figure 5.4. Moreover, regardless of amine functional 

groups, conversions of styrene and vinylester double bonds were found to be slightly 

lower in the CNT modified resin suspensions than neat vinylester resin. This is 

astoundingly remarkable because we have obtained better properties from the 

nanocomposites as compared to neat hybrid polymer. However, degree of dispersion 

and the distribution of the agglomerates within the resin system are highly capable to 

change the results obtained.   
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Figure 5.13. Fractional double bond conversions of vinylester and styrene in neat vinyl  

 ester resin as a function of time 
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Figure 5.14. Fractional double bond conversions of vinylester and styrene in vinylester           

resin with 0.3 wt. % of MWCNTs as a function of time 
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In thermosetting resin systems, diffusion limitation is the major factor that 

affects polymerization kinetics, changing the mobility of the reacting species (Dua, et 

al. 1999, Hsu and Lee 1993). Following the gelation of the resin, the decrease in 

mobility of the growing radical species reduces the bimolecular termination rate 

(Tollens and Lee 1993). This reduction leads to an increase in the free radical 

concentration and accelerates the polymerization reaction during the propagation stage. 

This mechanism is called Trommsdorf effect (Dua, et al. 1999, Scott, et al. 2002, Batch 

and Macossa 1992). Moreover, this effect is the reason why we observed autocatalytic 

behavior in the cure reaction of the resins, as already proved via DSC measurements. 

Please note that diffusion limitation is also critical towards the end of the 

polymerization reaction. However, in this case, the system starts behaving like a glass 

because of the vitrification, during which no further reaction takes places due to the lack 

of ability of monomers and growing species to move (Lam and Plaumann 1990, Dua et 

al. 1999).  

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120

VE
ST

Fr
ac

tio
na

l c
on

ve
rs

io
n 

of
 C

=C
 b

on
ds

T ime [min.]

Neat vinyl ester resin w ith 0.3 w t. % MWCNT-NH
2

 
Figure 5.15. Fractional double bond conversions of vinylester and styrene in vinylester 

 resin with 0.3 wt. % of MWCNT-NH2 as a function of time 

 

When the individual conversions of VE and styrene monomers are compared, it 

can be seen that, at the very beginning of the reaction, VE monomers have more affinity 
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to react with the free radicals in neat vinylester resin, however this trend becomes 

invalid when CNTs with and without amine functional groups are added into the resin 

system. During propagation stage, conversion of VE monomers exceeds that of the 

styrene monomers in the suspensions with MWCNTs. However, in the suspensions with 

MWCNT-NH2 styrene conversion is always higher than that of VE during propagation 

stage. In the light of the theoretical issues mentioned in the previous paragraph, it can be 

said that CNTs substantially influence the diffusion enhanced reaction during 

propagation stage in the resin system dependent on functional groups on their surfaces. 

This may be probably due to the fact that presence of CNTs alters the rate of 

bimolecular termination, beginning from the progression of the reaction till the end of 

gelation of the resin in a different manner, depending on amine functional groups on 

their surfaces and thus on their aspect ratios.  Moreover, the results obtained from FTIR 

measurements are highly proportional to those obtained by DSC measurements. In 

general, we can safely say that amine groups over the surfaces of CNTs promote the 

dispersion state of CNTs, and that regardless of amine groups, CNTs changed the 

individual conversion of monomers in the resin system.     

 

5.6.3. Raman Spectroscopy Results 

 
 Figures 5.16-5.17 show the Raman spectra of the CNTs used in this study and 

their nanocomposites, respectively. Note that the data on Figure 5.16 was taken from 

Gojny (2006). In principle of RS, it is required that area of peaks is compared on the 

same spectrum, not from one Raman spectrum to another (Gupta, et al. 2004). However, 

the intensity ratio of one peak to another can be used across the same Raman spectrum 

in order to monitor chemical reactions involved (Stevanovic, et al. 2000). In this 

manner, a regular peak unchanged throughout the measurements is taken into account to 

trace the differences in the areas of the corresponding peaks. As depicted in Figure 5.14, 

Raman spectrum of CNTs is typically comprised of four different regions (Zhao and 

Wagner 2004, Dresselhaus, et al. 2005). These are the graphite lattice vibrations, G 

band (1600 cm-1), structural defects D band (1300 cm-1) the G' band (2600 cm-1) and the 

low frequency Radial Breathing Modes (RBMs), which corresponds to the collective 

radial movement of the carbon atoms. RBM is considered to get information regarding 

diameter and chirality's of the CNTs. 
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Figure 5.16. Raman spectra of CNTs 
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Figure 5.17. Raman spectra of the cured hybrid polymer and its corresponding 

 nanocomposites with 0.3 wt. % MWCNTs and MWCNT-NH2 
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Our main emphasis herein is on the G and D bands of the CNTs because they are 

hypothetically remained constant without being affected by the reaction that takes place 

in the system. So, the ratio of G and D peak intensities (IG/ID) were used to follow the 

reactions. In Raman spectroscopy, C=C bonds for vinylester resin are visible at 1582 

cm-1 (aromatic), 1604 cm-1 (aromatic), 1667 cm-1 (aliphatic) (Stevanovic, et al. 2002). 

As stated before, these peaks are overlapped with the peaks of G and D bands. Note that 

the hybrid resin was used for RS measurements, but we followed the shifts in peaks of 

Vinylester resin, as in the case of FTIR to ease the process of data interpretation. 

Following the procedure described in section 5.5.2.1., the spectra obtained from the RS 

measurements were evaluated.   

As a result, it was found that CNTs with and without amine functional groups 

partially interrupted the C=C bonds of hybrid resins, which is principally proportional to 

the findings obtained from FTIR studies. In greater details, after the subtraction of the 

peaks from each other, the reduction in the peak areas relative to neat hybrid resin was 

observed to be 5 % larger for nanocomposites with MWCNTs than those with 

MWCNT-NH2. This is ample evidence that amine groups over the surfaces of CNTs 

changed the individual conversions of the monomers in the hybrid resin system, which 

is consistent with the findings obtained from FTIR studies. On the other hand, 

regardless of amine functional groups, the peak intensities at G and D bands in the 

nanocomposites shifted to the right direction. This shows that carbon nanotubes tuned 

the interfacial interactions to some extent. Puglia, et al. (Puglia, et al. 2003) followed 

the same methodology when investigating effect of SWCNTs on the cure kinetics of 

epoxy resin. They presented a relationship between Raman peak shifting and the curing 

behavior of SWCNT modified epoxy resin.             

 

5.6.4. TGA Results 

 
Figures 5.18 and 5.19 depict the thermal weight curvatures achieved at constant 

heating rates (5 and 10 °C/min.) and 20°C/min for the cured neat hybrid polymer and its 

nanocomposites containing 0.3 wt. % of MWCNTs and MWCNT-NH2, respectively. 

There was no significant difference in 5 wt. % degradation temperatures (Td) of the 

cured neat hybrid polymer and its nanocomposites with MWCNTs and MWCNT-NH2, 

at each constant heating rate. 
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Figure 5.18. TGA thermograms of the cured neat hybrid resin and its corresponding  

 nanocomposites containing 0.3 wt. % of MWCNTs and MWCNT-NH2 

 at a constant heating rate of a) 5oC/min. b) 10oC/min   
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Figure 5.19. TGA thermograms of the cured neat hybrid resin and its corresponding 

 nanocomposites containing 0.3 wt. % of MWCNTs and MWCNT-NH2 at a 

 constant heating rate of 20oC/min.    

 

However, the char yields at 700oC were always higher for nanocomposites with 

MWCNT-NH2 as compared to neat hybrid resin and those with MWCNTs. This implies 

that relatively high thermal stability was accomplished with incorporation of MWCNT-

NH2. This result shows consistency with the other findings obtained from DSC, FTIR, 

and RS studies. On the other hand, the first derivative (DTG) of the neat hybrid resin 

and its nanocomposites showed that just one peak occurs between 250 and 490oC. This 

implies that degradation of the nanocomposite samples is one-stage process regardless 

of whether they contain MWCNTs or MWCNT-NH2. From that point of view, we can 

conclude that CNTs restrict the entanglement and mobility of polymer chains, thus 

increasing the Tg and thermal stability of the polymers without disrupting the major 

steps of free-radical polymerization, significantly. Furthermore, thermal degradation 

activation energies of the cured hybrid resin and its nanocomposites with MWCNTs and 

MWCNT-NH2 were calculated at 5 wt. % conversion level, following the procedure 

described earlier in this chapter. As a result, degradation activation energies of neat 

hybrid resin and its nanocomposites containing MWCNTs and MWCNT-NH2 were 
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predicted to be 62, 65 and 69 kj/mol, respectively. From that point of view, it can be 

concluded that MWCNT-NH2 modified nanocomposites exhibit somewhat higher 

thermal stability as compared to neat hybrid resin and those with MWCNTs. This is 

very consistent with earlier findings obtained from DSC, FTIR and RS measurements.  

 

5.7. Conclusions 

 
 In this chapter, the cure kinetics of a vinylester/polyester based hybrid resin 

containing 0.3 wt. % of MWCNTs and MWCNT-NH2 were pinpointed. In this respect, 

various experimental techniques including DSC, FTIR, RS and TGA were 

systematically conducted to reveal the effects of CNTs on free radical polymerization.  

Non-isothermal DSC measurements at different constant heating rates revealed that the 

presence of CNTs within the resin system alters the polymerization reaction by 

increasing the heat of cure while decreasing the activation energies (Ea). It was 

emphasized that relatively low aspect ratio of amino functionalized nanotubes may play 

a crucial role in alteration of the interfacial chemical interactions during polymerization. 

Consequently, the suspension with MWCNT-NH2 exhibits much heat of cure, besides 

lower activation energies as compared to neat resin blend and the suspension with 

MWCNTs. The predicted DSC curves via autocatalytic kinetic model were in good 

agreement with those experimentally obtained. Furthermore, FTIR studies aimed to 

elucidate the impact of CNTs on the development of the network in a polymer matrix 

that polymerizes via radicals was performed on neat vinylester resin and its suspensions 

with the same content of MWCNTs and MWCNT-NH2 as the hybrid resin. As a result, 

the final conversion of styrene exceeded the final conversion of vinylester double bonds 

in the resin suspensions with MWCNT-NH2, while final conversion of vinylester is 

higher than that of styrene in the resin suspensions with MWCNTs. RS studies 

performed on the cured hybrid polymer and its nanocomposites show consistency with 

FTIR findings such that amine functional groups over the surfaces of CNTs altered the 

chemical reactions within the resin system. On the other hand, TGA measurements 

revealed that CNTs increased the thermal stability of the hybrid matrix resin such that 

Ed values of the nanocomposites prepared with MWCNTs and MWCNT-NH2 are higher 

than that of the cured hybrid polymer. Moreover, at each constant heating rate, it was 

found that nanocomposites with MWCNT-NH2 exhibited higher char yields as 
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compared to neat hybrid resin and those prepared with MWCNTs. On behalf of the 

findings achieved, it was concluded that amine functional groups over the surfaces of 

CNTs enhanced the dispersibility of CNTs and influenced the relative individual 

fractional conversions of double bonds in the resin system. In summary, it can be said 

that presence of CNTs within the resin system alters the conversions of monomers in the 

system. In other words, amino groups over the surfaces of CNTs induce a compromise 

such that they enhance the dispersion of CNTs in the resin system while impeding 

partially the polymerization reaction by disrupting C=C bonds of hybrid resin matrix 

that are supposed to react with styrene. However, this brings a synergy to the final 

performance of the nanocomposites. We could safely say that overall improvement of 

the properties observed for CNT modifed composites results from the competing effects 

of reinforing efficiency of CNTs and the altered free radical polymerization of the 

hybrid resin system in the presence of CNTs with and without amine functional groups. 

The extent of enhancement observed for the ultimate performance of the hybrid polymer 

with the addition of CNTs will be discussed in the following chapters based on the 

findings obtained in this chapter.    
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CHAPTER 6 

 

THERMO-MECHANICAL BEHAVIOR OF CNT 

MODIFIED NANOCOMPOSITES 
 

6.1 Introduction 
    

Measuring and understanding the temperature dependent material properties 

is critical to predict the behavior of polymeric components during their service life 

(Gojny, et al. 2003, Gojny and Schulte 2004, Gojny, et al. 2005a). In Chapter 4, 

CNTs with huge aspect ratio and surface area were found to alter significantly 

rheological properties of polymers in which they are embedded, depending on the 

type of CNTs. It was also shown that dispersion state of CNTs is highly 

proportional to rheological behavior of the suspensions in which they are embedded. 

The dispersion state of carbon nanotubes is also expected to be highly related to the 

dynamic mechanical properties of their resulting nanocomposites. Fidelus et al. 

(2005) investigated the dynamic mechanical properties of an epoxy based 

nanocomposites containing MWCNTs and SWCNTs. They found that incorporation 

of SWCNTs improved the storage modulus of the epoxy resin by 8%. However, 

addition of MWCNTs into the same epoxy resin did not change the elastic modulus 

values of the final product in a comparable manner. They also revealed that glass 

transition temperatures of the nanocomposites containing SWCNTs or MWCNTs 

increased slightly with respect to nanotube content. Liao et al. (2004) determined 

thermo mechanical properties of a SWCNT modified epoxy resin. They used 

relevant solvents and surfactants to ease the dispersion of carbon nanotubes within 

epoxy resin via sonication. They found that degree of dispersion of CNTs is highly 

proportional to mechanical properties of their resulting nanocomposites. Moreover, 

they conclude that solvent assisted preparation of SWCNT modified epoxy 

nanocomposites shifted the glass transition temperature to lower values. The authors 

attributed it to the reduced interfacial adhesion due to the use of surfactant and the 

solvent. Miygawa and Drzal (2004) utilized fluorinated SWCNTs as nano-fillers to 

improve thermo-mechanical properties of an epoxy resin. However, they observed a 
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linearly decreasing glass transition temperature with increasing filler content. In this 

respect, they concluded that not only dispersion state of CNTs but also 

compatibility of functional groups over surfaces of CNTs with polymer matrix resin 

is critical to final properties of the nanocomposites.                

 The effects of interfacial interactions and particle-particle interactions via 

distinct aspect ratios of CNTs upon the shear viscosity and dynamic rheological 

properties of the CNT/resin systems were investigated in Chapter 4. It was found 

that rheological properties of the hybrid resin vary, depending on the type of CNTs 

and presence of amine groups over their surfaces. From that point of view, it is 

reasonable to conclude that CNTs affect also the solid state properties of these 

corresponding liquid suspensions in considerable manner. Therefore, it is interesting 

to monitor the thermo-mechanical properties of the nanocomposites (solid state) 

achieved via polymerization of the resin suspensions containing different types of 

carbon nanotubes (MWCNTs, DWCNTs, MWCNT-NH2 and DWCNT-NH2).  

 In this chapter, CNT/polymer suspensions, rheological properties of which 

were already presented in Chapter 4 were cross-linked, using peroxide (MEKP) 

initiator.  Dynamic mechanical behaviour of the resulting nanocomposites was 

determined by Dynamic Mechanical Thermal Analyser (DMTA) to relate the 

influence of dispersion state of CNTs within the blend to final thermal properties of 

the corresponding nanocomposites. Transmission electron microscopy (TEM) was 

also conducted to highlight the achieved dispersion state of CNTs within the matrix 

resin.  

 

6.2 Experimental 

 

6.2.1. Dynamic Mechanical (DMA) Measurements 

 
Dynamic mechanical properties of the nanocomposites obtained from curing 

of each sort of resin suspension were investigated by dynamic mechanical thermal 

analyser, (DMTA) using a GABO EPLOXOR 500 N. For the measurements, 

rectangular specimens of 50 mm in length, 5 mm in width and 2 mm in thickness 

were sectioned from larger samples. The tests were performed in tensile mode at a 

frequency of 10 Hz with a static strain of 0.6 % and dynamic strain of 0.1%, in a 
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temperature range between –50 and 200o C with a heating rate of 3oC/min. The 

storage modulus (E’), loss modulus (E”) and the loss tangent (tan δ) were 

determined as a function of temperature. 

 

6.2.2. TEM Investigation 
  
           The transmission electron microscopy (TEM) was conducted to investigate 

the dispersion state of CNTs with and without amine functional groups within the 

resulting nanocomposites. The TEM images were taken using a Philips EM 400 at 

120 kV. Ultra thin films of each type of composites (50 nm) were obtained by ultra 

microtome cutting. 

     

6.3. Results and Discussion 

 

6.3.1.Thermomechanical Properties of MWCNT Modified  

 Nanocomposites  

 
Figures 6.1 and 6.2 give storage modulus (E’) and loss factor (tan δ) values 

as a function of temperature obtained from dynamic mechanical measurements for 

the nanocomposites containing MWCNT and MWCNT-NH2, respectively. The 

addition of non-functionalized and amino functionalized carbon nanotubes into the 

polymer system has some considerable effects on the storage modulus in both the 

glassy and the rubbery states, depending on the nanotube contents within the resin 

blend. This is due to the stiffening effect of CNTs and interfacial interactions along 

a huge interfacial area between the CNTs and the polymer matrix. Consequently, 

CNTs reduced the mobility of the surrounding polymer matrix to some extent 

leading to an increase in the modulus values. This effect is more pronounced in the 

glass transition region. As mentioned above, amino functionalized nanotubes have 

shorter length (lower aspect ratios) compared to that without surface treatment as a 

result of the functionalization process (ball milling process). So, one can expect 

relatively lower elastic modulus values from the nanocomposites containing 

MWCNT- NH2 compared to those with MWCNTs.  
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    Figure 6.1. Storage modulus and loss factor of nanocomposites containing non-

 functionalized nanotubes (MWCNT) 

 

Figure 6.2. Storage modulus and loss factor of nanocomposites containing non-

 functionalized nanotubes (MWCNT-NH2) 
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However, we obtained opposing results in the present case. As an example, 

the storage modulus values at 20 οC for the nanocomposites containing 0.3 % wt. of 

MWCNT-NH2 and MWCNTs were found to be 3170 and 2930 MPa, respectively, 

which are also higher than that of the neat resin blend (2430 MPa). These results 

reveal that relatively enhanced dispersion state of the MWCNT-NH2 within the 

matrix compensates the lower aspect ratio of these tubes and provides higher 

modulus values to their resulting nanocomposites. 

 In Figures 6.3 and 6.4, the loss modulus (E”) values of the nanocomposites 

containing MWCNTs and MWCNT- NH2 were given as a function of temperature, 

respectively. It was found that the loss modulus values at the peak points gets 

higher, as the nanotube contents increases. In addition, nanocomposites containing 

amino functionalized nanotubes results in somewhat higher peak values compared 

to those with non-functionalized nanotubes. In brief, the loss modulus indicates the 

energy converted into heat and can thus be used as a measurement of viscous 

component or unrecoverable oscillation energy dissipated per cycle.  
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Figure 6.3. Loss modulus values of nanocomposites containing non-functionalized 

 nanotubes (MWCNT)  
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Figure 6.4. Loss modulus values of nanocomposites containing non-functionalized 

 nanotubes (MWCNT-NH2) 

 

 From that point of view, we could furthermore conclude that the 

satisfactorily dispersed nanotubes with and without treatment would assist in 

dissipating energy under visco-elastic deformation of the surrounding resin blend 

matrix. Moreover, higher loss modulus values observed for nanocomposites with 

MWCNT- NH2 compared to those with MWCNTs showed that amine functional 

groups promoted partially the involved chemical interactions at the interface, owing 

to the same reasons as previously explained above.  

 Figure 6.5 shows the glass transition temperature (Tg) values of the 

nanocomposites with MWCNT and MWCNT- NH2, obtained from the slope of the 

storage modulus values in the glass transition zone. As seen in the figure, the 

addition of nanotubes within the resin blends increases the corresponding Tg values 

significantly. The mobility of the polymer matrix around the nanotubes is reduced 

due to the presence of the nanotubes. In fact, interfacial covalent bonds are expected 

to occur between the polymer matrix and the amino functionalized nanotubes, thus 

resulting in a stronger bonding at the interface with improved Tg. In association with 

the experimentally determined cure kinetics parameters for the resin suspensions, 
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we can additionally conclude that incorporation of MWCNTs improved the thermal 

properties of the hybrid resin system regardless of amino groups over their surfaces, 

although they affected the fractional conversion of monomers within the resin 

system.   
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Figure 6.5. Glass transition temperatures of the nanocomposites as a function of 

 nanotube content with and without any functional groups.  

 

 In addition, the reduced aspect ratio of amino functionalized nanotubes may 

have also some effects on the degree of polymerization. Gryschuck et al. (2006) 

stated that lower aspect ratio of MWCNTs would give better results for highly cross 

linked thermosetting resins such as vinyl-ester.  

 Figures 6.6 a and b are the TEM micrographs showing achieved dispersion 

state of MWCNT and MWCNT-NH2 at 0.3 wt. % loading within the corresponding 

resin systems, respectively. Functionalized nanotubes exhibit relatively good 

dispersion within the matrix resin blend without any significant agglomerates. The 

TEM characterizations also support our findings that amine functional groups over 

CNTs improve their dispersion state within the resins enhancing their compatibility 

with resin blend matrix.    
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a) 

 

 
b) 

 

 

Figure 6.6. TEM micrographs showing achieved (a) dispersion state of MWCNT 

 and (b) MWCNT-NH2 at 0.3 wt. % loading within the corresponding 

 resin systems. 
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6.3.2.Thermomechanical Properties of DWCNT Modified  

 Nanocomposites  

 
Figures 6.7 and 6.8 show storage modulus (E’) values with respect to 

temperature obtained from DMA measurements for the nanocomposites containing 

various amounts of DWCNTs and DWCNT-NH2, respectively. It is obvious that 

incorporation of DWCNTs with and without amine functional groups influenced   

storage modulus values in both the glassy and rubbery states depending upon their 

content within resin blend. Based upon E’ values at 20oC, nanocomposites 

containing 0.05 wt. % of DWCNTs was observed to have a modulus value of 2819 

MPa, while those containing 0.3 wt. % of DWCNT-NH2 give a value of 2757 MPa..  

It was earlier revealed that despite lower aspect ratio of amino functionalized 

nanotubes, at each given concentration, MWCNT-NH2 modified nanocomposites 

were found to exhibit higher E’ values as compared to those with MWCNTs 

(Seyhan, et al. 2007b). This may be associated with relatively good dispersion of 

MWCNT-NH2 within the resin blend. Unlike the nanocomposites with MWCNT-

NH2, lower E’ values were obtained from the nanocomposites with 0.3 wt. % of 

DWCNT-NH2., as their concentration increases in the resin system. This may be 

related to the fact that DWCNTs with relatively low density values occupy higher 

volume within resin blend as compared to MWCNTs. It was already shown that free 

radicals released by the initiator (MEKP) are too vulnerable to be trapped within the 

galleries of CNTs (Peng, et al. 2003). Therefore, resin suspensions containing 

MWCNTs and DWCNTs with and without amine functional groups may have 

distinct thermal curing properties even at the same given concentration of curing 

agents due to their different surface area and aspect ratios. Tg values of DWCNTs 

and DWCNT-NH2 modified nanocomposites were obtained from the slope of the 

storage modulus values in the glass transition zone. In conclusion, incorporation of 

the nanotubes into the resin system shifted the corresponding Tg value of the neat 

polymer (88oC) to about 95oC, regardless of weight content or amine functional 

groups. However, Tg values of the MWCNTs and MWCNT-NH2 modified 

nanocomposites were found to increase with increasing content of nanotubes within 

the system.  
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Figure 6.7. Storage modulus of nanocomposites containing non-functionalized 

 nanotubes (DWCNTs). 
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Figure 6.8. Storage modulus of nanocomposites containing amino-functionalized 

 nanotubes (DWCNT-NH2). 
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It was also observed that MWCNT and MWCNT-NH2 modified 

nanocomposites exhibited larger Tg values than those with DWCNTs and DWCNT-

NH2. In brief, it can be concluded that Tg is highly dependent on the type of CNTs. 

This is highly consistent with the conclusions regarding the curing behavior of 

polymer suspensions highlighted in Chapter 5.        

 Figure 6.9 and 6.10 show the loss modulus values of DWCNTs and 

DWCNT-NH2 filled nanocomposites with respect to temperature, respectively. 

Consequently, for the nanocomposites containing DWCNTs and DWCNT-NH2 the 

maximum loss modulus values at the peak points were observed at 0.3 wt. % 

loading rate. However, at the same concentration, no significant difference in the 

peak values of the nanocomposites was observed. 

 Figures 6.11a and b are the TEM micrographs showing the achieved 

dispersion state of DWCNTs and DWCNT-NH2 at 0.3 wt. % concentration within 

the cured hybrid resin, respectively. TEM micrographs reveal that small separate 

agglomerates of nanotubes within the cured matrix resin blend still exist, regardless 

of amine functional groups. Since DWCNTs possess great tendency to form dense 

agglomerates due to their larger surface area than MWCNTs, as expected, there is 

no significant difference in the dispersion state between DWCNTs and DWCNT-

NH2.  

 

6.4. Conclusions 

 
 The thermo-mechanical properties of the nanocomposites containing 

MWCNTs, MWCNT-NH2, DWCNTs and DWCNT-NH2 were investigated in 

association with rheological behavior of their corresponding resin suspensions. 

Consequently, the storage (E’) and loss modulus (E’’) values of the nanocomposites 

containing MWCNTs, MWCNT-NH2 were found to increase with an increase in 

contents of CNTs. In a similar manner, Tg values of the nanocomposites with 

MWCNTs and MWCNT-NH2 were found to shift to higher values as compared to 

that of neat hybrid polymer, as their concentration within the matrix resin was 

increased. This trend is more obvious for the nanocomposites containing MWCNT-

NH2. TEM studies showed that dispersion of MWCNT-NH2 is better than that of  
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Figure 6.9. Storage modulus of nanocomposites containing amino-functionalized    

 nanotubes (DWCNTs). 
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Figure 6.11.TEM micrographs showing the achieved dispersion state of (a) 

 DWCNTs and (b) DWCNT-NH2 at 0.3 wt. % concentration  within 

 the resin blends. 
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MWCNTs in the hybrid polymer, which shows consistency with the findings 

obtained.    

 In contrary to what was observed for MWCNT modified nanocomposites, 

regardless of amine functional groups, incorporation of DWCNTs was found to 

decrease the Tg values of the hybrid resin. This trend becomes worse as their 

concentration increases in the hybrid resin. As a result, it was observed that 

nanocomposites containing 0.05 wt. % of DWCNT-NH2 possessed the highest Tg 

and largest storage and loss modulus values. TEM investigations performed on the 

cured resin samples demonstrated that the dispersion of DWCNTs within the 

polymer matrix was poor. As already highlighted in Chapter 5, individual 

conversions of the monomers in the resin system are dependent on the type of CNTs 

and amine functional groups over their surfaces. In brief, it may be concluded that 

higher specific surface area (SSA), lower aspect ratio and inferior dispersion state of 

DWCNTs within polymer matrix are critical parameters to accomplish the desired 

properties in the resultant nanocomposites. In other words, they occupy higher 

volume in the resin system than MWCNTs and thus interact more with radicals 

released into the resin system. Since amine groups does not adversely affect the 

final properties of the cure resin system as discussed in Chapter 5, their length less 

than that of MWCNTs and relatively huge surface area seem to be the major reasons 

for the reduced thermo mechanical properties observed for DWCNTs in this 

chapter.  
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CHAPTER 7 

 

MECHANICAL PROPERTIES OF CNT MODIFIED 

NANOCOMPOSITES 
 

7.1 Introduction 

 
           Nano-particles have recently gained great interest in science and industry owing 

to their highly considerable promises in enabling the future nano-structured materials 

with novel properties (Thostenson, et al. 2005). In this manner, CNTs with 

extraordinary properties offer the potential to improve the mechanical properties of 

polymers (Park, et al. 2004, Fiedler, et al. 2006). However, amazing large specific 

surface area (SSA) of the CNTs, several orders of magnitude larger than that of 

commercial micro-sized reinforcing materials, makes CNTs form relatively larger 

agglomerates (Peignay, et al. 2001, Gojny and Schulte 2004). This leads to mechanical 

performance of their resulting nanocomposites to be far below the theoretical 

predictions. To promote the compatibility at the interface between CNTs and the 

surrounding polymer matrix, some chemical functional groups are grafted onto the 

surfaces of CNTs (Gojny, et al. 2003, Seyhan, et al. 2007b). Kim et al. (2006) found 

that incorporation of untreated, acid and amine treated MWCNTs into an epoxy resin 

improved tensile strength of the epoxy resin by 61, 69 and 73 %, respectively, without 

significantly reducing the elastic modulus of the epoxy. Yaping et al. (2006) 

investigated the effect of MWCNT-NH2 on the mechanical properties of the epoxy 

resin. They stated that flexural bending stress and modulus of the nanocomposites were 

significantly enhanced as compared to those of neat epoxy resin. Moreover, in the same 

study, impact strength of the corresponding nanocomposites was measured to be two 

times higher than that of neat epoxy resin. Frankland et al. (2002) theoretically showed 

that covalent attachment of only one percent of the carbon atoms of the CNT-surface to 

the matrix polymer improved the interfacial shear strength by over an order of 

magnitude without decreasing the elastic modulus significantly. In a similar manner, 

Grujicic et al. (2007) studied the atomic level mechanical properties of three-walled 

carbon nanotubes (3 WCNT) reinforced vinylester resin with epoxy group, using 
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molecular mechanics to interpret the effect of covalent functionalization. They revealed 

that covalent functionalization has a profound impact on the interactions between matrix 

and nanotubes, as the loads are especially applied in a direction orthogonal to nanotube 

axis. Allaoui et al. (2003) investigated the effects of MWCNTs on the properties of a 

rubbery epoxy matrix. They found that tensile strength and modulus were improved 

with the addition of up to 4 wt. % of MWCNTs into epoxy resin. However, the 

experimental procedure which they followed to disperse the CNTs homogenously in the 

matrix resin, using methanol did not make sense. They observed large dense 

agglomerates via optical microscopy. Bai and Allaoui (2003) addressed the effects of 

length and aggregate size of MWCNTs on the enhancement in mechanical properties of 

another epoxy based nanocomposites. They showed that nanocomposites containing up 

to 4 wt. % of MWCNTs possessed high elastic modulus but low fracture strain relative 

to neat epoxy resin. The authors attributed this response of the nanocomposites to local 

defects due to existence of larger agglomerates enhancing early failure. The effects of 

oxo-fluorinatizied MWCNTs on the fracture toughness of an epoxy based 

nanocomposites was evaluated, using single edge notch bending (SENB) testing fixture 

(Park, et al. 2004). They found enhanced bonding of CNTs to the matrix resin via polar 

interactions, thus leading to better toughness values in the resulting structures. Gojny, et 

al. (2004) revealed based upon TEM investigations that DWCNTs have moderately fine 

dispersion in 3-roll milling processed epoxy resin. In the same study, they also showed 

that blending of very low content (0.1 wt. %) of DWCNTs with epoxy resin via 3-roll 

milling improved the mechanical properties, such as elastic modulus and fracture 

toughness of the epoxy resin. Thostenson and Chou (2006) investigated recently the 

influence of processing parameters on the final dispersion state of carbon nanotubes 

during 3-roll milling. In this manner, they produced epoxy/nanotube suspensions at 

various gap settings ranging from subsequently 5 to 50 µm through 3-roll milling by 

means of Teflon guides which help keep the blend centered on the rollers. They 

observed that the relatively high fracture toughness values were obtained from the 

nanocomposites processed at gap settings of 5 and 10 µm.  

 In this chapter, the influence of CNTs, including MWCNTs, MWCNT-NH2, 

DWCNTs and DWCNT-NH2 upon the tensile mechanical response and fracture 

toughness of the nanocomposites were evaluated along with the fracture modes on the 

surfaces of the failed specimens via Scanning Electron Microscopy (SEM) examination. 
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The dispersion state of the nanotubes in the resulting nanocomposites was also 

highlighted via Transmission Electron Microscopy (TEM) studies.  

 

7.2. Experimental 

 

7.2.1. Tensile Test 
 

 Tensile mechanical properties of the nanocomposites were determined according 

to DIN EN ISO 527.1. Dog bone shape specimens were prepared by countersinking 

through Mutronic dear drive 2000. The tensile samples were tested on Zwick Universal 

testing machine 1445 at a cross head speed of 1 mm/min. The elongation of the 

specimen during the test was measured by means of distance encoder with a gauge 

length of 5 mm. Figure 7.1 depicts the tensile test specimen under load.   

 

 
Figure 7.1. A tensile test specimen under load. 

 

7.2.2. Fracture Test  

 
 The fracture toughness of the nanocomposites was measured according to 

ASTM-D 5045-96. Compact tension (CT) specimens were prepared in the same dear 

drive machine and tested at a crosshead speed of 1.3 mm/min employing the universal 

testing machine with a 500 N load cell. Figure 7.2 shows a fracture test specimen under 
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load. The deformation of the specimens was monitored by detecting the crack opening 

displacement with the encoder. A sharp incipient crack was accomplished watchfully by 

hammering a razor blade into the corresponding notch. Six specimens of each sample 

were tested for statistical evaluation. The fracture energy IcG  was calculated based on 

the equation below.   

                                                   E
K

G Ic
Ic

2

=                                                              (7.1) 

In the above equation, KIc is fracture toughness and calculated as an average of values 

for each batch and E is elastic modulus of each corresponding composite.      

 

 
Figure 7.2. A fracture test specimen under load. 

 

7.2.3. Microscopic Investigation 
 

 Philips SEM at 3 kV voltages was also used to examine macro-scale fracture 

failure modes which occurred within each corresponding specimen under tensile 

mechanical loading. For this purpose, fracture surfaces of tensile and CT specimens 

failed under loading were examined. The effects of carbon nanotubes with and without 

amine functional groups on the damage mechanisms of the nanocomposites were then 

evaluated. Failure modes were also related to the experimentally determined ultimate 

performance of the nanocomposites.     
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7.3. Results and Discussion 

 

7.3.1. Dispersion of nanotubes within polymer matrix 

 
 Figures 7.3 a, b, c and d are the TEM micrographs showing achieved dispersion 

of DWCNTs, DWCNT-NH2, MWCNT and MWCNT-NH2 at 0.3 wt. % loading rate 

within the corresponding hybrid polymer resin, respectively. In consequence, MWCNTs 

and MWCNT-NH2 were found to exhibit relatively good dispersion within the 

corresponding hybrid resin system without possessing any significant size agglomerates. 

However, DWCNTs and DWCNT-NH2 demonstrated some dense agglomerated zones 

visible within the hybrid resin. Of all, DWCNTs have the highest tendency to form 

dense agglomerates within the resin system because of their relatively high surface area. 

In fact, this is very proportional to rheological properties of the resin suspensions. As 

the content of DWCNTs increases, lower storage and loss modulus values were 

obtained form the resin suspensions in which they are embedded, regardless of amine 

functional groups. This subject of interest was already highlighted in Chapter 4.       

 

7.3.2. Tensile Properties of Nanocomposites 

 
 The ultimate tensile strength (UTS) of the nanocomposites containing 

MWCNTs, MWCNT-NH2 DWCNTs and DWCNT-NH2 as a function of filler content is 

shown in Figure 7.4. In brief, existence of CNTs within the hybrid resin did not improve 

the UTS of the resultant nanocomposites, significantly. In the literature, a number of 

studies have expressed that utilization of CNTs with higher surface area and larger 

aspect ratio resulted in enhanced tensile strength and fracture toughness in epoxy resin 

based nanocomposites (Allaoui, et al. 2003, Gojny and Schulte 2004, Gojny, et al. 

2004). However, the same profound effect of CNTs is not likely to occur in free-

radically polymerized resins such as vinylester and polyester. This is because free 

radicals generated by decomposition of initiator (MEKP) added into the resin system 

could be too vulnerable to be trapped within the galleries of carbon nanotubes. In this 

case, use of lower amount of MEKP than the required for the given amount of the resin 

would lead to heterogeneous polymerization of the resin system, thus decreasing the 

cross-linking density of the final part. Furthermore, post curing subsequently applied at  
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Figure 7.3. TEM micrographs showing achieved dispersion state of nanotubes within  

 hybrid resin at 0.3 wt. % loading rate (a, b, c, d refer to DWCNT, 

 DWCNT-NH2, MWCNT and MWCNT-NH2, respectively.)     

 

elevated temperature would further cause the built-in thermal residual stresses to take 

place, which induces voids and micro-cracks preferably located nearby the zone of 

agglomerated CNTs within the entire composite part. This may reduce especially the 

mechanical strength of the resulting nanocomposites. Similarly, Peng et al. (2003) 

reported that single walled carbon nanotubes are able to effectively trap free radicals 

released by initiator during room temperature polymerization, thus leading to relatively 

low cross-linking density across the part. In our case, this is somewhat more relevant for 

the nanocomposites containing DWCNTs because DWCNTs have relatively high 

surface area and tendency to form relatively large agglomerates. In other words, when 

used as fillers, more amounts of free radicals would be possibly entrapped within the 

galleries of DWCNTs. This is because, at any given weight percentage, DWCNTs 

occupy higher volume within the resin system than MWCNTs. 

200 nm

200 nm 200 nm

200 nm a b

dc



 106

0

20

40

60

80

100
MWCNTs
MWCNT-NH

2

DW CNTs
DW CNT-NH

2

U
lti

m
at

e 
te

ns
ile

 s
tr

en
gt

h 
[M

Pa
]

Nanotube content [wt.%]
0 0.05 0.1 0.3

 
Figure 7.4. Ultimate tensile strength of the nanocomposites containing MWCNT, 

 MWCNT-NH2, DWCNT and DWCNT-NH2 with respect to nanotube  

 content.   

 

 Amine functional groups over the surfaces of CNTs are expected to improve not 

the final dispersion state of CNTs within the resin matrix, but the chemical interactions 

at the interface by increasing the surface polarity of CNTs. In general, regardless of type 

of CNTs, the nanocomposites containing amino functionalized nanotubes were found to 

exhibit higher tensile strength compared to those with untreated nanotubes. This is 

ample evidence that reinforcing efficieny of amine groups is critical to alteration of 

interfacial interactions between CNTs and the matrix resin. In fact, this expression 

shows consistency with the results regarding the curing behavior of the resin 

suspensions, already given in Chapter 5.    

 Figures 7.5 a and b give the elastic modulus values of the nanocomposites with 

MWCNTs and MWCNT-NH2 and those with DWCNTs and DWCNT-NH2, 

respectively. It was found that incorporation of MWCNT-NH2 and MWCNTs into the 

hybrid resin leads to higher elastic modulus values in the consequent nanocomposites 

compared to those with DWCNTs and DWCNT-NH2. At 0.1 wt. % loading rate, elastic 

modulus of the nanocomposites with MWCNT-NH2 and MWCNTs is 18 and 15 %  
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Figure 7.5. Elastic modulus of the nanocomposites with respect to nanotube content a) 

 with MWCNTs and MWCNT-NH2, b) with DWCNTs and DWCNT-NH2 
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higher than that of neat hybrid resin, respectively. However, neither the addition of 

similar contents of DWCNTs, nor of DWCNT-NH2 had considerable impact on the 

modulus values of the hybrid polymer. In a similar manner, the mechanical and thermal 

properties of vinylester based nanocomposites prepared with untreated MWCNTs were 

investigated by Gryschuck et al. (2006). The aspect ratio of the CNTs was reported to 

have substantial effects on the chemical interactions at the interface. In addition, they 

conclude that cure kinetics of the resin may vary, depending on the volume content of 

CNTs that the resin contains. Note that the amine treated CNTs used in our study were 

functionalized using ball milling. During ball milling, CNTs lose their strength partially 

via their broken carbon-carbon bonds and hence their aspect is reduced. Similarly, Zhu 

et al. (2007) concluded that the presence of SWCNTs in the vinylester resin retards the 

radical polymerization rate of vinylester resin during room temperature curing. To 

promote the local polymerization of vinylester resin,    they, therefore, suggested using 

high temperature initiators that initiate the polymerization at elevated temperature.   

 At that point, one can expect drastically lower elastic modulus values from the 

nanocomposites containing MWCNT-NH2 as compared to those with MWCNTs. 

However, nanocomposites with MWCNT-NH2, at each given loading rate, possessed 

significantly higher elastic modulus than those with MWCNTs, just in the same manner 

as tensile strength. This is ample evidence that NH2 functional groups enhance the 

adhesion at the interface between the CNTs and the polymer matrix and assist in 

improving dispersion of CNTs within the resin system. We revealed that resin 

suspensions containing MWCNTs and MWCNT-NH2 showed similar rheological 

response, despite five times lower aspect ratio of MWCNT-NH2 as compared to that of 

MWCNTs (Seyhan, et al. 2007b). This implies obviously the effectiveness of NH2 

functional groups in dispersion of CNTs. Moreover, the modified Halphin Tsai equation 

for random orientation of short fibers within nanocomposites was utilized in order to 

better interpret the reinforcement mechanism of CNTs with and without NH2 functional 

groups within corresponding hybrid resin. The final equation employed to calculate the 

maximum achievable elastic modulus in the resultant nanocomposites is as in the 

following (Gojny, et al. 2004). Note that this corresponding equation presumes that 

short fibers posses a perfect distribution and very well impregnation with the 

surrounding polymer matrix resin. Please note that the predictions obtained via this 

suggested very well known equation does not necessarily show the CNT induced 

effects. This is because, at nano level, everything behaves in different manner.            
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                          (7.2) 

 

 Here Ec is the elastic modulus of the composite, l is the length of corresponding 

nanotube, d is the average outer diameter of nanotubes, ENT is the elastic modulus of the 

nanotubes (1 TPa for each type of CNTs), Em is the modulus of the hybrid resin, t is the 

thickness of graphite layer (0.34 nm.), VNT is the volume content of nanotubes. The 

volume content of the nanotubes is in fact difficult to calculate because of its 

dependence on the density, which is related to the diameter distribution and defects as 

well. In this manner, we employed an approach suggested by Thostenson and Chou 

(2003) to calculate the density of CNTs (ρCNT).   

 

                                     
( )
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22

a

iag
CNT

d

dd −
=
ρ

ρ                                    (7.3) 

 

          The equation above considers the inner and outer diameters of CNTs (di and da) 

and the density of graphite (ρg). The density of hybrid resin was calculated based on the 

rule of mixture and taken as 1.13 gr/cm3 in the calculations. Density of the graphite was 

considered to be 2.25 gr/cm3.                    

          Figure 7.6 gives the experimentally obtained elastic modulus of the 

nanocomposites containing DWCNTs and MWCNTs with and without functional 

groups in comparison with the predicted ones via Halphin and Tsai equation. Based 

upon the statistical R2 values predicted via linear regression of the modulus values of 

nanocomposites with respect to each given concentration, it can be concluded that the 

elastic modulus values of nanocomposites with MWCNTs (0.83) and MWCNT-NH2 

(0.60) are in better agreement with the proposed model, as compared to those of the 

nanocomposites with DWCNTs (0.36) and DWCNT-NH2 (0.44).   
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Figure 7.6. Predicted elastic modulus values as a function of experimentally obtained 

  ones at CNT content.  

 

Hence, hypothetically, MWCNTs and MWCNT-NH2 turned out to exhibit better 

dispersion and thus stronger interfacial chemical bonding to the matrix resin as 

compared to DWCNTs and DWCNT-NH2. This is also consistent with the experimental 

findings obtained so far. In brief, the results obtained showed that MWCNTs and 

MWCNT-NH2 modified vinyl-ester polyester based nanocomposites featured better 

tensile mechanical properties as compared to those with DWCNTs and DWCNT-NH2. 

Also, aspect ratios, surface area, volume content, and NH2 functional groups over the 

surfaces of CNTs are particularly critical to final degree of polymerization and ultimate 

performance of the nanocomposites. The detailed work on these issues was already 

given in Chapter 5. We have shown that MWCNTs with and without amine functional 

groups affected the individual conversions of styrene and vinylester monomers in the 

resin system. 

 The fact that we achieved reduced properties in DWCNT modified 

nanocomposites relative to those with MWCNTs may be the evidence that the higher 

surface area and thus the larger agglomerates may have adverse effects on the degree of 

polymerization. This expression is highly proportional to the findings obtained in the 
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literature such that the higher the surface area, the lower degree of polymerization 

(Peng, et al. 2003, Zhu, et al. 2007). Note that the findings obtained so far are very 

consistent with those addressed in the previous chapters.     

 

7.3.3. Fracture Toughness of Nanocomposites 
 

          Figures 7.7 and 7.8 give the fracture toughness values of the nanocomposites 

prepared with various types and amounts of carbon nanotubes, including MWCNTs, 

MWCNT-NH2, DWCNTs and DWCNT-NH2. At each loading rate, nanocomposites 

with MWCNTs and MWCNT-NH2 exhibited higher fracture toughness values than 

those with DWCNTs and DWCNT-NH2. Moreover, nanocomposites with MWCNT-

NH2 have high fracture toughness values relative to those with MWCNTs. However, 

addition of DWCNTs with and without amine functional groups has almost no 

significant influence on the fracture toughness values of the resultant nanocomposites. 

Incorporation of 0.3 wt. % of MWCNT-NH2 resulted in the highest fracture toughness 

values, which corresponds to an improvement by 40 % as compared to that of neat 

hybrid resin. Table 7.1 gives the calculated fracture energy of the nanocomposites with 

various types of CNTs.  As seen in the table, the highest energy, which is almost twice 

as much as that of neat hybrid polymer, was obtained from the nanocomposites with 

MWCNT-NH2, while the lowest one was achieved in the nanocomposites with 

DWCNTs. These results are proportional to those achieved in tensile mechanical 

response of their corresponding nanocomposites. Nanotubes with their huge aspect ratio 

are supposed to show fiber-like structure behavior.  

 As discussed earlier, partially agglomerated morphology was in general 

observed for each type of CNTs, but especially for DWCNTs due to their relatively high 

surface area. It was concluded that large surface area leads to a more efficient 

improvement of fracture toughness, and that improper impregnated agglomerates act as 

defects in the polymer based nanocomposites (Bai 2003, Meguid and Sun 2004, Fiedler, 

et al.2006). Gojny et al. (2004) suggested that a combination of well dispersed 

nanotubes with well impregnated smaller agglomerates is the most promising state of 

dispersion which enhances substantially the fracture toughness of the corresponding 

resin system. However, this corresponding approach is not entirely valid for our case. 

As elucidated in the previous sections, nano-fillers with high surface area turn out to be 

not appropriate for free radically polymerized resins. 
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Figure 7.7. Fracture toughness values of nanocomposites with MWCNT and MWCNT-

       NH2 with respect to nanotube content.   
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Figure 7.8. Fracture toughness values of nanocomposites with DWCNT and DWCNT-      

        NH2 with respect to nanotube content. 
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Table 7.1. Calculated fracture energy of each corresponding nanocomposite (J/m2). 

 

Weight % 

 

MWCNTs 

 

MWCNT-NH2 

 

DWCNTs 

 

DWCNT-NH2 

0.05 140.5 197.6 114.3 98.15 

0.1 114.8 119.1 96.3 121.3 

0.3 129.1 172.5 104.1 134.3 

  Neat hybrid polymer = 105.7 

 

 In other words, the larger the surface area of CNTs is, the more probable it 

would be for free radicals to be trapped within galleries of nanotubes. This lowers the 

degree of polymerization while at the same time reducing the cross-linking density. As a 

result, the final mechanical properties of the nanocomposites are decreased. Regardless 

of type of CNTs or amine functional groups, anomalous fracture behavior was observed 

for the nanocomposites such that a conflict occurs between weight content of CNTs and 

the fracture toughness values of their resulting nanocomposites, as seen in the figures. 

This may be highly associated with the chemical interactions between the dense 

nanotube agglomerates and the free radicals in the resin system dependent on amine 

functional groups. The reason of this conflict was discussed in details together with the 

fracture surface of the samples under the following title.    

 

 7.3.4. Analysis of Failure Modes by SEM Examination  

 
The fracture surfaces of the failed tensile and fracture test specimens are worth 

examining to relate the CNT induced fracture mechanisms and failure modes to the 

fracture behavior of the resultant nanocomposites. Figures 7.9 a, b, c and d are the SEM 

tensile fracture surfaces of the nanocomposites prepared with 0.3 wt. % of MWCNTs, 

MWCNT-NH2, DWCNTs and DWCNT-NH2, respectively. As seen in the photo (Figure 

7.9 a), MWCNTs have homogenous dispersion with very few separate agglomerates in 

the surrounding matrix resin. However, DWCNTs (Figure 7.9 c) exhibited relatively 

dense large agglomerates and few individuals around them. In fact, this trend is 

expected because DWCNTs have relatively high surface area. Therefore, hypothetically 
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more energy is needed than applied for MWCNTs via 3-roll milling to disperse their 

agglomerates into individual ones. On the other hand, the matrix cracking passing 

through mid-plane of agglomerated MWCNT-NH2 is highly visible, as indicated by a 

white arrow on the photo (Figure 7.9 b). Moreover, agglomerates of DWCNT-NH2 

(Figure 7.9 d) exhibited relatively weak adhesion to the matrix resin in such a way that 

extensive de-bonding and incurable matrix cracking that occur around the agglomerates 

(as indicated by white arrow) are highly noticeable.  

Please note that the SEM photos showing the dense agglomerates of amino 

functionalized nanotubes were intentionally selected to associate the mechanical 

properties of the nanocomposites with curing behavior of the nanocomposites. In fact, 

these observations showed that amine functional groups, degree of nanotube 

agglomeration, size of the nanotube agglomerates and their distribution within the 

surrounding matrix are vastly critical to the ultimate response of the nanocomposites.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9. SEM image of tensile fracture surface of nanocomposites with a) MWCNT 

 b) MWCNT-NH2 c) DWCNT d) DWCNT-NH2 at 0.3 wt. % CNT content. 
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Figures 7.10 a and c are the SEM fracture surfaces of the compact tension (CT) 

composite specimens prepared with 0.3 wt. % of DWCNT-NH2 and MWCNT-NH2, 

respectively. Figures 7.10 b and d show the magnified zone indicated by the arrows on 

Figures 7.10 a and c, respectively. The same trend as in the case of tensile fracture 

surfaces is observable. In terms of fracture mechanics, dense agglomerates act probably 

as defects, triggering void nucleation and/or micro-crack coalescences at the interface 

between CNTs and the surrounding matrix resin.  At this stage, the characteristics of the 

bulk matrix may also play a crucial role in overall response of the entire nanocomposite 

part. In other words, one could further say that the property of the bulk matrix around 

the larger agglomerates may be locally different from the overall response of the entire 

composite dependent on the type of CNTs and amine functional groups.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10. SEM photos of compact tension fracture surfaces of nanocomposites 

 containing 0.3 wt. % CNT a) DWCNT-NH2 b) the same of (a) at higher 

 magnification c) MWCNT-NH2  d) the same of (c) at higher 

 magnification. 

 

a b 

c d 
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This is because the amount of free radicals trapped within galleries of CNTs is 

highly dependent on the physical properties of CNTs, including aspect ratio and surface 

area. This would alter the array of crack paths across the corresponding part prior to its 

failure under load. In fact, all these expressions could explain the reason of the 

anomalous trend observed for the fracture toughness of the nanocomposites.      
   

7.4. Conclusions  
 

         In this chapter, the effect of various types of CNTs including MWCNTs and 

DWCNTs with and without NH2 functional groups on the tensile mechanical behavior 

and fracture toughness of vinylester-polyester hybrid resin system was investigated. It 

was found that addition of CNTs has no significant effect on the tensile strength of the 

resulting nanonanocomposites. It was also revealed that nanonanocomposites containing 

MWCNTs with and without NH2 functional groups resulted in higher tensile modulus, 

fracture toughness and fracture energy values in comparison to those prepared with 

DWCNTs or DWCNT-NH2. Moreover, experimentally measured elastic moduli of the 

nanonanocomposites were fitted to Halphin-Tsai’s analytical model. The predicted and 

the measured values of nanonanocomposites with MWCNTs and MWCNT-NH2 were 

found to be in good agreement with each other. On behalf of the experimental findings 

achieved, we conclude that reinforcing efficiency of DWCNTs and DWCNT-NH2 is 

low relative to MWCNTs and MWCNT-NH2, when incorporated into free radically 

polymerized thermosetting resins such as polyester or vinylester. This is due to the fact 

that DWCNTs have low aspect ratio and high SSA relative to MWCNTs. This leads to 

DWCNTs to show greater tendency to form relatively large and dense agglomerates 

within the cured polymer matrix, which may trap the free radicals released by MEKP 

during polymerization at room temperature. Entrapment of free radicals decreased the 

degree of polymerization and cross-linking density. This may significantly influence the 

cure kinetics of the resin system by altering the chemical interactions at the interface, 

which are directly related to ultimate performance of the final composite parts. This 

subject of interest was already discussed in details in Chapter 5.  
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CHAPTER 8 

 

ELECTRICAL PROPERTIES OF CNT MODIFIED 

NANOCOMPOSITES 

 
8.1. Introduction 

 
          Polymer based materials are expected to dissipate static electric to avoid 

electrostatic charging in their various applications, such as automotive parts and some 

household products (Sandler, et al. 1999a, Gojny et al. 2006). In this manner, 

conductive fillers such as carbon black (CB) have been commonly added to polymers. 

However, in most cases, CB content required to attain the desired level (σ=10-6 Sm-1) of 

electrical conductivity in polymers leads to reduction in mechanical properties such as 

tensile strength of the final product (Şimşek, et al. 2007) On the other hand, application 

of highly conductive nanoparticles to an isolating polymer matrix is supposed to induce 

a higher electrical conductivity at relatively low filler contents, as compared to CB 

particles. In this respect, potential of carbon nanotubes as conducting filler in polymer 

nanocomposites has been successfully recognized. At very low loading rates of 

nanotubes, several orders of magnitude improvement in electrical conductivity was 

accomplished in the polymer matrices, while sustaining mechanical properties of 

polymers (Allaoui, et al.2003, Bai and Allaoui 2003). These conductive nanocomposites 

have widespread use in various types of applications such as electrostatic dissipation, 

electrostatic painting, and electromagnetic interference (EMI) shielding.       

The electrical conductivity of nanocomposites is mainly based upon percolated 

pathways of conductive particles. The percolation theory is used to account for the 

conductivity of polymer nanocomposites (Sandler, et al. 1999a). In this theory, 

percolation threshold refers to onset of the electrical conductivity due to conductive 

pathways formed once a critical filler concentration is accomplished in the system of 

interest (Munson 1991). In other words, percolation threshold can be distinguished by a 

prompt significant increase in the conductivity by many orders of magnitude due to the 

formation of three dimensional conductive networks of fillers within the corresponding 

matrix resin (Prasse, et al. 2003, Sandler, et al. 1999a). Nevertheless, the percolation 
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theory was formerly established for spherical particles. Therefore, it shows relatively 

poor validity for rod-like fillers, such as chopped carbon fibers, carbon nanofibers 

(CNFs) and CNTs which possess huge aspect ratio (l/d>>1) and low percolation 

threshold relative to spherical ones (Martin, et al. 2004). An advanced percolation 

theory which considers also the aspect ratio of fillers was proposed to predict the critical 

volume fraction at which a percolated network of conductive fillers is formed (Sandler, 

et al. 1999a, Martin, et al. 2004). Accordingly, critical volume contents for percolation 

threshold of rod-like fillers with an aspect ratio of more than 100 were predicted to vary 

from 0.24 to 1.35 vol. %. Therefore, replacing CB micro particles, generally in 

spherical form, with the CNTs that have huge aspect ratio is relatively more effective to 

achieve a percolation threshold at very low filler contents. In the literature, reported 

amount of CNT loading within polymer matrices for a percolation threshold varies 

widely from less than 1 % to over 10 % in weight (Sandler, et al. 2003). This is because 

of the some dependent parameters affecting the composite conductivities, such as aspect 

ratio of CNTs, orientation of nanotubes in the resin system (alignment), dispersion state 

of nanotubes as well as processing temperature and curing conditions of their resulting 

nanocomposites (Martin, et al. 2005). Brying et al. (2005) studied the conductivity of 

epoxy nanocomposites prepared with SWCNTs having two different aspect ratios (150 

and 380). They found a lower percolation threshold with higher aspect ratio nanotubes. 

Bai and Allaoui (2003) concluded that the threshold concentration of MWCNT within 

epoxy resin was 8-fold lower when the length of MWCNTs was increased from 1 to 

50µm.      

            Process-induced negative surface charges on carbon black or carbon nanotubes 

may be utilized to produce initially charged stabilized dispersions, which become then 

capable of forming aligned networks under application of either direct current (DC) or 

alternating current (AC) fields (Prasse, et al. 1998, Martin, et al. 2005).  Alignment of 

the CNTs in the polymer matrix has profound effect on the electrical conductivity and 

its percolation threshold. In principle, the resulting structure of the conductive filler 

networks is highly dependent upon the type of electric field applied during curing. 

Prasse et al. (2003) applied AC fields for the alignment and network formation of 

carbon nanofibers (CNFs) within an epoxy resin during curing. However, this attempt 

possessed poor results with regard to the required content for the formation of a 

conductive filler network (>1 wt. %). In addition, they revealed that the maximum 

composite conductivity achieved by CNFs is not significantly larger than that of CB 
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within the same epoxy matrix. It was also revealed that both AC and DC electric fields 

can be utilized to induce the formation of aligned CNT networks by adjusting the gap 

between electrodes in contact with the dispersion (Martin, et al. 2005, Martin, et al. 

2004). Moreover, they also stated that more uniform and more aligned networks can be 

accomplished in AC field as compared to DC field. This is because DC field leads to 

relatively inhomogeneous and branching network structures. In other words, AC fields 

result in more homogeneous networks as compared to DC fields.  

 A number of theoretical percolation models have been proposed to identify the 

critical filler volume content, at which a network is formed in conductive polymer 

compounds. In addition, temperature variation of conductivity can also be investigated 

and transport mechanisms are explained by various models, including Luttinger liquid, 

one dimensional disordered wire, activated process, variable range hopping and 

fluctuation-induced tunneling through the barriers between the metallic regions model 

(Kymakis, et al. 2002, Astorga and Mendoza 2005, Jiang, et al. 2005, Mischenko, et al. 

2001, Kymakis, et al. 2006, Bajpai, et al. 2007).             

            In this chapter, temperature dependency of the electrical properties of polyester 

based nanocomposites produced by the second approach, containing various amounts of 

multi walled carbon nanotubes (MWCNTs) and double walled carbon nanotubes 

(DWCNTs) with and without amine functional groups (-NH2) were evaluated. Please 

note that the same results were also obtained from the vinylester-polyester 

nanocomposites produced by the third approach under identical processing conditions. 

Since the experimental data for the nanocomposites produced by the second approach 

was already published (Şimşek, et al. 2007), we did not find it necessary to mention 

about the same subject of interest for vinylester-polyester based nanocomposites in this 

dissertation. Moreover, the effects of amine functional groups over the surfaces of the 

CNTs on the electrical behavior of their final nanocomposites were also discussed in 

details. Some analytical models were used to be able to identify the mechanisms for 

electrical conductivity of the nanocomposites with respect to temperature. Furthermore, 

room temperature electrical conductivity of the vinylester polyester based 

nanocomposites (the third approach) was measured. The influence of randomly oriented 

and electric field induced aligned CNTs on the electrical conductivity and thermal 

behavior of a vinylester polyester hybrid matrix was also pinpointed. Note that room 

temperature electrical measurements and alignment of CNTs were carried out just on 
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vinylester-polyester based nanocomposites. This is because we already switched the 

resin system while these experiments were done.  

    

8.2. Experimental 

 

8.2.1. Four Point Probe Test 

       Temperature dependence electrical conductivity of nanocomposites was measured 

by conventional DC method from room temperature to 77 K. Figure 8.1 illustrates the 

corresponding experimental set up.  

 
 

Figure 8.1. Illustration of the experimental set up for the measurement of the 

 conductivity with respect to temperature.   

 
 The rectangular samples were sectioned from the cast samples in two different 

directions. Homogeneity of the samples was tested by performing measurements with 

contacts obtained from each face of the rectangular samples. The four-point probe was 

contacted on rectangular bulk samples with silver paint. Resistance versus temperature 

data of the nanocomposites was obtained using computer controlled data acquisition 

system.   
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8.2.2. Impedance Spectroscopy 
 

         Room temperature electrical conductivity of the CNTs modified nanocomposites 

cured with and without application of AC electric field was measured by dielectric 

spectroscopy using a HP 4284a Impedance Analyzer. Figure 8.2 shows the experimental 

set up. For each set, at least three specimens with a dimension of 10x10x1 mm. were 

tested with voltage amplitude of 1.0 V in a frequency range between 20 Hz and 1MHz. 

The corresponding electrical conductivity of the samples was calculated from the 

complex impedance │Z*│ with respect to the frequency according to the equation 

below. 

 

                                                    ( ) ( ) AtvZv //1 *=σ                                               (8.1) 

 

Where σ  is the electrical conductivity, v is the frequency, t is the thickness of the 

sample, and A is the cross sectional area of the specimens.   

  

 
Figure 8.2. The experimental set up for the measurement of the room temperature   

 conductivity of the samples.   

 

8.2.3. Alignment of CNTs under AC electric field  

 
 To align the CNTs within the polymer matrix, resin suspensions with 0.005, 0.02 

and 0.05 wt % of MWCNTs were exposed to sinusoidal AC electric field of 400 V/cm 

during curing by utilization of parallel brass plates. Typical electrode dimensions 

embedded in the brass plates are 9 x 18 mm2 with a spacing of 4.5 mm. Note that 
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MWCNTs were selected as filler constituents to perform these corresponding 

experiments because their nanocomposites exhibited the highest conductivity values at 

each loading rate, just in the same manner as in the second approach resin system 

(Şimşek, et al. 2007). Figure 8.3 depicts the experimental set up. After the resin 

suspensions were cured with application of the AC electric field, the resulting 

nanocomposites were subjected to post-curing at 120oC for 2 hours. The samples were 

subsequently cut and contacted in the directions parallel and perpendicular to the 

direction of the applied electric field to assess the anisotropy of electrical conductivity 

in the nanocomposites. Note that given field strength refers to the peak value of the AC 

field, which was applied at a frequency of 1 kHz throughout the experiments.   

      

 
 

Figure 8.3.  The experimental set up used to align CNTs within the hybrid matrix resin. 

 

8.2.4. DSC measurements 

 
  DSC was utilized to investigate the Tg value of the corresponding 

nanocomposites cured with and without the application of AC electric field. The 

measurements were performed by TA Instruments Q-10 scanning calorimeter. For the 

measurements, a small quantity of the samples (5-10 mg) was taken from neat hybrid 

polymer and its nanocomposites containing 0.05 wt. % of randomly oriented and AC 
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electric field-induced aligned MWCNTs. Runs were carried out, using an aluminum 

empty pan as a reference. Each sample was first heated from room temperature up to 

200°C with a constant heating rate of 5oC/min. in nitrogen atmosphere. After cooled 

down to room temperature, the same samples were subsequently reheated up to 200°C 

with a heating rate of 5oC/min. to determine their Tg values.    

 

8.3. Results and Discussion 

 

8.3.1.Temperature dependence of electrical conductivity in 

 nanocomposites 

 
 Figures 8.4a and b show the measured electrical conductivity of nanocomposites 

at room temperature and 77 K with respect to volume content of CNTs, respectively. 

The volume fraction of CNTs corresponding to weight percentages is seen in Table 1. 

 

Table 8.1.  The volume fraction of CNTs corresponding to weight percentages. 
 

 
Wt.% 

Volume fraction % 
(DWCNT) 

(DWCNT-NH2) 

Volume fraction % 
(MWCNT) 

(MWCNT-NH2) 
0.1 0.105 0.049 
0.3 0.316 0.149 
0.5 0.523 0.247 

  

 Figure 8.4a indicates that the presence of very low amount of CNTs within the 

polyester resin blend stimulated an electrical conduction to the resulting 

nanocomposites. Furthermore, increasing CNT volume content gives a rise to the 

conductivity of the nanocomposites with MWCNTs and DWCNTs. However, 

regardless of type of CNTs, nanocomposites containing amino functionalized nanotubes 

possessed lower electrical conductivity compared to those with untreated CNTs. As an 

example, electrical conductivities of nanocomposites containing 0.247 and 0.149 vol. % 

of MWCNT-NH2 are six and hundred times lower than those of nanocomposites with 

untreated CNTs. On the other hand, the conductivity of the nanocomposites containing 

0.105 vol. % of DWCNT–NH2 could not be measured because the value was not in the 

sensitivity range,  
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Figure 8.4.Electrical conductivity of two different types of CNT polymer 

 nanocomposites  with and without amine functional groups, including 

 MWCNT and DWCNT  with different volume content. (a) room 

 temperature, (b) 77 K. 

 

while those of the nanocomposites with 0.316 and 0.523 vol. % of DWCNT-NH2 were 

easily obtained From theoretical point of view, depending upon volume fraction, the 

carbon nanotubes with relatively high densities are anticipated to possess the lowest 

percolation threshold, which is very proportional to our findings as well. On the other 
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hand, it was concluded that nanocomposites with the amino functionalized nanotubes 

have a higher percolation threshold than those with untreated nanotubes. These findings 

may be attributed to surface functionalization process. The amino groups are chemically 

attached onto the surfaces of CNTs via ball-milling process performed in ammonia 

solution by the manufacturer. During the process, the CNTs are broken in length and 

their aspect ratios are reduced to some extent. As a result, the percolation threshold, 

which is particularly interrelated to the aspect ratio and volume content of the tubes, 

shifted to higher filler contents for nanocomposites containing amino functionalized 

nanotubes. Moreover, incorporation of amine functional groups into a conjugated л-

electron system as in the case of graphite structures like carbon nanotubes leads to 

formation of sp3-carbons, which carry the functional groups. Thus, the consequent 

modifications in structure interrupt the conjugation and induce a distortion of the 

graphitic layer. When handled in term of electron conduction, sp-3 carbons are very 

likely to be considered as defects, which reduce drastically the maximum conductivity 

of the individual nanotube. In brief, functionalization of the CNTs is presumed 

detrimental for the overall conductivity of their final polymer based products. This is 

because a thin isolating polymer layer forms around the nanotubes as a consequence of 

improved interactions between CNTs and the polymer, which causes higher contact 

resistance to occur between CNTs. In other words, enhanced chemical  interactions at 

the interface between CNTs and the polyester chains is very likely to occur with some 

chemical reactions between the polymer chains and amine groups over CNT surfaces, 

which raises the resistivity of the corresponding nanocomposites. However, it is a big 

challenge to monitor these complex reactions, including the interactions between 

styrene, polyester resins and amine functional groups due to complicated free radical 

polymerization of the corresponding resin systems. The intensive determination of these 

reactions and interactions were addressed in Chapter 5. However, we can safely say that 

amino groups over the surfaces of CNTs alter the chemical characteristics of the bulk 

matrix. This corresponding alteration may also play substantial role in the reduced 

electrical conductivity values observed for amino functionalized nanotubes.        

The results obtained indicated that the variations in conductivity of 

nanocomposites containing DWCNTs are relatively larger than those with MWCNTs. 

This implies that DWCNTs need to be added into polyester resin blend at relatively high 

concentrations to achieve the same electrical conductivity of the nanocomposites 

containing MWCNTs. A relatively high tendency of DWCNTs for agglomeration 
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within the corresponding resin system due to their so pronounced large surface area may 

associate with higher resistivity of the nanocomposites with DWCNTs as compared to 

those with MWCNTs.  

 Figure 8.4b gives the conductivity values at 77 K. It was found that the 

conductivity of the samples at 77 K is one and half to three and half times lower than 

those of the samples at room temperature. Figure 8.5 shows normalized resistivity 

versus temperature curves of nanocomposites with MWCNT at 0.3 wt. % loadings. The 

data shown in the figure were taken from two different samples to evaluate the 

homogeneity of the nanocomposites. The samples exhibited a conductivity of 0.49 and 

0.44 mS/cm at room temperature. As seen in the figure, both of the samples showed the 

same temperature dependence, as it is expected. A similar behavior was obtained for all 

the nanocomposites prepared with various CNT contents as well. So, the presented 

resistivity curves in this article are representative of the material properties. On the other 

hand, the maximum deviation of resistivity values was found to be 75% in 

nanocomposites containing 0.3 wt. % of DWCNT-NH2. A relatively large deviation of 

the resistivity for this group of samples might be related with the reduced aspect ratios 

and higher agglomeration tendency of the DWCNT-NH2 in the matrix, as discussed in 

detail previously. Another reason may be the altered chemistry of the resin system with 

presence of amine groups in the resin system. 
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Figure 8.5. Normalized resistivity versus temperature of MWCNT 0.3 wt. % from two 

  distinct samples. 
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 Since DWCNTs have larger surface are than MWCNTs, it could be expected 

that DWCNTs may probably interact more with free radicals generated by 

decomposition of initiators than MWCNTs do. As a result, polymerization reaction in 

the system could be adversely affected, thus resulting in an inconsistency with local 

bulk properties across the cured system. This could explain the reason why much higher 

deviation of resistivity values was obtained from DWCNT-NH2 modified 

nanocomposites compared to the other ones. Figure 8.6 shows the normalized resistivity 

versus temperature for MWCNT and DWCNT nanocomposites at various CNT contents 

with and without amine functional groups for comparison. The results of temperature 

dependence of resistivity showed that nanocomposites exhibited semiconductor like 

behavior regardless of the types of carbon nanotubes (MWCNT or DWCNT) or the 

presence of functional groups over the CNTs. On the other hand, the resistivity values 

exhibits very rapid increase below 100 K. A similar finding was reported in the 

literature that nanocomposites exhibit a valley in temperature dependence data (Sheng 

1980). It was revealed that the metallic conduction is a dominant mechanism around 

room temperature while at low temperatures the tunneling becomes foremost in 

conduction mechanism. In our samples, we obtain only increasing resistivity with 

decreasing temperature, so tunneling is likely the dominant mechanism.  

 

8.3.1.1 Tunneling Fit 

 
 The electrical conductivity mechanisms in CNT/polymer nanocomposites were 

investigated using various models in the literature; such as Luttinger liquid model 

(Bockrath, et al. 1999), one dimensional disordered wire model (Mischenko, et al. 

2001), and fluctuation induced tunneling through the barriers between the metallic 

regions model (Kymakis and Amaratunga 2006, Astorga and Mendoza 2005, Jiang, et 

al. 2005, Mischenko, et al. 2001, Kymakis, et al. 2006). Of all these models, the 

fluctuation induced tunneling model (FITM) based on thermally activated voltage 

fluctuations across insulating gaps in disordered materials such as CNT/polymer 

nanocomposites was found to match best with our temperature dependent experimental 

data. In our nanocomposites, there are large conduction regions, i.e.; CNTs separated by 

small insulating barriers (polyester resin). 
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Figure 8.6. Normalized resistivity versus temperature of CNT polymer nanocomposites  

  with various weight fractions (a) CNTs 0.1 wt%  (b) CNTs 0.3 wt% (c) 

  CNTs  0.5 wt.%.  
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 The thickness and height of the tunneling barrier plays an important role in 

determining the temperature and magnetic field dependence of conductivity since 

electrons tunnel between insulator regions. In other words, the electron tunneling 

probability exponentially depends on the insulating barrier thickness changing with 

temperature. Also, it is known that that the degree of nonlinearity of tunneling current 

decreases as the temperature increases, due to narrowing of barrier by fluctuation. 

According to FITM the temperature dependence of electrical resistivity, ρ is given by 

the equation below (Sheng 1980). 

                                                ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
TT

T

s

texp0ρρ                                                 (8.2) 

where ρo is the resistivity at T >> Tt and Ts.  In other words, at very high temperature 

resistivity is independent of temperature. In the equation, Tt is a measure of the energy 

required to move an electron across the insulating gap where magnitude of the thermal 

fluctuations become comparable to the magnitude of the tunneling barriers. Ts is a 

temperature much below which the resistivity reduces to temperature independent 

tunneling. Tt and Ts are the fitting parameters. They are predicted, using experimental 

data. Figures 8.7 (a) and (b) show the experimental results of temperature dependence of 

resistivity for nanocomposites prepared with DWCNT at 0.1 and 0.3 wt% loading rates 

in comparison with FITM predictions. The parameters Tt and Ts were found to be 132 

and 8 K for nanocomposites with 0.1 wt% of DWCNT and 91 and 2 K for 

nanocomposites with 0.3 wt% of DWCNT. As seen in the figures, the FITM model fits 

well with the experimental data obtained at high temperatures; however, below 100 K a 

deviation becomes more visible from the fitting curve. A similar behavior was reported 

in the literature recently for single walled carbon nanotubes (SWCNTs)/polymer 

nanocomposites (Kymakis and Amaratunga 2006). Based on analysis of Figure 8.7 

using FITM, temperature dependence of resistivity shows that above Ts=8 K thermally 

activated conduction over the barrier begin to occur. In addition, the change in 

resistivity above the temperature Tt=132 K begin to decrease because of reducing 

domination of charge carrier tunneling through the barrier. After this temperature, 

electron-electron and electron-phonon interactions begin to occur and contribute to 

resistivity. In general, resistivities predicted by these fit parameters correlates well with 

our experimental results at temperatures between 100 and 300 K. 
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Figure 8.7. Temperature dependence of resistivity (solid lines) and FITM model fits 

 (dashed lines) for (a) DWCNT %0.1 wt., (b) DWCNT %0.3 wt. The fits 

 follow experimental data for high temperatures and there is a strong 

 deviation at low temperatures.   

 

However, they are not explicit values to form general aspect with respect to different 

filler content and attachment of amine functional groups over the surface.  

 Figures 8.8 (a) and (b) show temperature dependence of resistivity for the 

nanocomposites containing 0.3 wt. % of MWCNT with and without amine functional 

groups. The dashed lines represent FITM fits. The presence of amine functionalized 

nanotubes in the resin system increases Tt from 42 to 152 K, in which the tunnel barrier 

is increasing between the CNTs. Since CNTs with amine functional groups have higher 

Tt values than those without amine functional groups, the conduction is dominated by  
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Figure 8.8. Temperature dependence of resistivity (solid lines) and FITM model fits 

 (dashed lines) for (a) MWCNT %0.3 wt., (b) MWCNT-NH2 %0.3 wt., Tt is 

 considerably larger for functionalized CNT loadings. 

 

tunneling of charge carriers for nanocomposites with amino functionalized CNTs at 

room temperature.  

 

8.3.2. Room Temperature Electrical Conductivity of Nanocomposites 

 
            Figure 8.9 shows the specific conductivity of the nanocomposites containing 

randomly oriented CNTs as a function of weight content. Please note that vinylester -

polyester resins were used as a matrix material in these measurements.   
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 In principle, the percolation threshold, defined as the filler content to achieve a 

conductivity of 10-6 S/m, is observed to be lower for fiber-shaped fillers than for 

spherical ones ( Sandler, et al. 2003).  As seen in the figure, in general, nanocomposites 

with NH2 functionalized CNTs showed lower electrical conductivity values than 

nanocomposites with untreated ones. In addition, the lowest percolation threshold 

(below 0.05 wt. %) was observed for MWCNTs. On the other hand, the percolation 

threshold value for DWCNTs was found to be in the range of 0.05 and 0.1 wt. %. 
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Figure 8.9. The specific conductivity of the nanocomposites containing randomly   

 oriented CNTs as a function of weight content. 

 
 As a result, the NH2 functionalized CNTs seemed to show percolation threshold 

at much higher concentrations than given in this study. This is due to the presence of 

amino-groups grafted onto the surfaces of CNTs. Introduction of amine functional 

groups disturbed the graphitic structure of CNTs and reduced the conductivity of the 

tubes by forming an electrically insulating layer between CNTs and the matrix resin, 

enhancing the compatibility in between (Simsek, et al. 2007). As a result, the 

percolation threshold, which is highly related to the aspect ratio, shifted to higher values 
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for NH2 functionalized CNTs, as earlier discussed in details in this chapter (Prasse, et al. 

2003, Martin, et al. 2004).  

 

8.3.3. Electrical Conductivity of Nanocomposites Containing Aligned 

  CNTs 

 
 On behalf of the results obtained from Figure 8.9, MWCNTs emerged as the 

most promising candidate that induced the highest electrical conductivity to the hybrid 

polymer matrix. Therefore, MWCNTs were used as filler constituents in the further 

experiments aimed to accomplish the aligned CNTs in nanocomposites with the 

application of AC electric field. Figure 8.10 shows the typical specific conductivity of 

the nanocomposites cured with application of the AC electric field with respect to 

frequency on a log-log scale in the directions parallel and perpendicular to the electric 

field.  
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Figure 8.10. Typical specific conductivity of the nanocomposites cured with application 

 of the AC electric field with respect to frequency on a log-log scale in the 

 directions parallel and perpendicular to the electric field.  
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          Note that the nanocomposites containing 0.005 wt.% of MWCNTs shows typical 

dielectric behavior like pure neat hybrid resin such that its electrical conductivity 

steadily increase on the log-log scale. The samples with 0.05 wt. % of MWCNTs, 

exposed to the given AC electric field, showed a frequency independent electrical 

conductivity. However, samples with 0.02 wt. % of MWCNTs have a similar response 

up to a specific knee frequency, above which a transition to dielectric behavior was 

observed. Furthermore, nanocomposites with 0.02 wt. % of MWCNTs were observed to 

exhibit almost an order of magnitude higher conductivity parallel to AC field than 

perpendicular to AC field. In the same manner, nanocomposites containing 0.05 wt. % 

of MWCNTs showed slightly higher conductivity parallel to AC field than 

perpendicular to AC field. These findings can be regarded as ample evidence for 

achievement of anisotropy in the resultant nanocomposites. Moreover, at 0.05 wt. % 

concentration, conductivity of the nanocomposites (10-6 S/m as seen in Figure 9) cured 

without application of AC electric field is about three orders of magnitude lower as 

compared to that (10-3 S/m as seen in Figure 10) of the nanocomposites cured with 

application of the AC electric field. This implies that the AC electric field applied 

during curing may alter the orientation, size and array of CNTs agglomerates to some 

extent, thus reducing percolation threshold value of the resultant nanocomposites.  

 Figure 8.11 a and b show the optical micrographs of thin polished film samples 

sectioned from composites containing 0.05 wt. % of MWCNTs, cured with and without 

application of the AC electric field, respectively. Note that there is a slight variation in 

thickness of the samples due to polishing, which leads to a change in contrast in 

micrographs. As seen in Figure 4 a, uniform and partially aligned CNTs were observed 

in the composites cured with application of the AC electric field. On the other hand, 

relatively large CNT agglomerates with inhomogeneous distribution are visible within 

the composites cured without application of the AC electric field, as depicted in Figure 

4b. Martin et al. (2004) pointed out that polarization of CNTs in an electric field leads to 

an additional attractive interaction between individual nanotubes and existing nanotubes 

bundles, which is of great importance in characteristics of conductive network formed 

within the surrounding matrix resin. During the cutting, the tubes may have displayed 

an alignment along the cutting direction. Ajayan et al. (1994) showed, based on the 

results of TEM image analysis, that longer and thinner nanotubes were oriented, while 

the thicker and shorter ones were randomly dispersed within thermosetting polymer 

matrices. 
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Figure 8.11. The optical micrographs of thin polished film samples sectioned from 

 composites containing 0.05 wt. % of MWCNTs, (a) cured with and (b) 

 without application of the AC electric field.  
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They ascribed this behavior to the action of the directional cutting that created shear 

within the material such that the tubes in contact with the knife were pulled out or 

deformed from the matrix and showed preferred orientation.  

 On the other hand, aligned and polarized CNTs may have had profound effects 

upon entanglements of polymer chains during free radical polymerization, affecting the 

distribution of radicals generated by decomposition of initiators in a different manner 

compared to room temperature curing. Therefore, it is reasonable investigate the thermal 

response of the CNT modified composites cured with and without application of the AC 

electric field in a comparative manner. This issue will be highlighted in the following 

section. 

 

8.3.3.1. DSC results  

 
 Figure 8.12 depicts the measured Tg of the neat hybrid polymer and their 

composites containing 0.05 wt. % of AC field induced aligned and randomly oriented 

MWCNTs. As a result, it was found that there was almost no significant change in the 

Tg values between neat polymer matrix and composites cured without application of the 

AC electric field. However, composites containing aligned MWCNTs were observed to 

exhibit relatively high Tg value (107 oC), which corresponds to an improvement by 

about 10 % as compared to neat hybrid polymer. Gryschuck et al. (2006) reported that 

MWCNTs, depending on their surface area and aspect ratio, may have some adverse 

effects on the chemical reactions during free-radical polymerization of vinylester resin. 

They emphasized that the amount of accelerator and initiator to be added into the resin 

suspensions with CNTs may need to be accordingly optimized. They additionally 

concluded that nanotubes with higher aspect ratio would be more beneficial to the 

ultimate performance of brittle polymers such as vinylester. In a similar manner, Peng, 

et al. (Peng, et al. 2003) showed that free radicals released by the initiator (MEKP) are 

partially trapped within the galleries of carbon nanotubes during room temperature 

curing, which impedes the polymerization reaction to some extent, thus reducing the 

cross-linking density of the final product. Zhu et al. (2007) concluded that, in the 

presence of CNTs, the type of initiators used for room temperature and elevated 

temperature curing may have substantial effects on the chemistry of the resulting cured 
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products. In fact, free radicals are charged particles and may be capable of moving 

across the AC electric field. From that point of view, the application of AC electric field 

during curing of the resin suspensions may alter free-radical polymerization to some 

extent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 8.12. The measured Tg of the neat hybrid resin and their nanocomposites 

containing  0.05 wt. % of AC field induced aligned and randomly oriented MWCNTs. 

 

 In the most probable scenario, the radicals trapped within the galleries of CNTs 

were encouraged by AC electric field to move, recombine and terminate with another 

nearby radical, thus contributing to the ongoing chain polymerization. In other words, 

thanks to the applied AC electric field, CNTs discontinue to act as inhibitors which 

react with radicals and convert them to lower reactivity species that do not react any 

more. 
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 In brief, it was found, based on the DSC measurements, that reorientation of 

larger CNT agglomerates as well as alignment of individual CNTs bring a synergy to 

the resultant composites. In other words, we could make an assumption that the 

enhancement observed for Tg  values of the nanocomposites containing AC induced 

aligned CNTs comes from the competing effects of the heat evolved form the brass 

plates with application of AC electric field during curing and partially alignment of 

CNTs in the resin system under AC electric field. Moreover, the improved Tg values of 

aligned CNT modified nanocomposites support our claim that CNTs were partially 

aligned under AC field, as seen in Figure 8.11 a.   

 

8.4. Conclusions 

 
Polyester based nanocomposites (produced by the second approach) containing 

CNTs with amine functional groups exhibited lower electrical conductivity as compared 

to those with untreated ones. These findings were attributed to surface functionalization 

process in which the amino groups are chemically attached onto the surfaces of CNTs. 

During the process, the aspect ratio of the CNTs is reduced and the distortion of the 

graphitic structure which leads to the reduced conductivity is expected to occur. 

Moreover, the presence of the amine groups over the CNT surfaces may react with the 

polymer chains and form an electrically thin insulating layer, which may act as a barrier 

between the individual tubes and increases the resistivity of the nanocomposites.  

Electrical conductivity of nanocomposites with MWCNT was obtained to be 

higher than those with DWCNTs at the same loading rate due to relatively higher 

tendency of DWCNTs for agglomeration within the corresponding resin system. 

The results of temperature dependence of resistivity showed that nanocomposites 

exhibited semiconductor like behavior regardless of the types of carbon nanotubes 

(MWCNT or DWCNT) or the presence of functional groups over the CNTs. Also, we 

obtain only increasing resistivity with decreasing temperature, so tunneling is likely the 

dominant mechanism.       

It was observed the results predicted by the fluctuation induced tunneling model 

were in very good agreement with those experimentally obtained temperature 

dependence of resistivity. The parameters Tt, Ts and ρ0 were found for each 

CNT/polymer nanocomposites based on the model.   
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Room temperature electrical properties of the CNT modified vinylester polyester 

composites cured with and without application of AC electric field were also 

investigated by means of an impedance dielectric spectroscopy. Consequently, the 

composites with amino functionalized CNTs were found to exhibit lower electrical 

conductivity than those with untreated CNTs. At each given concentration, the highest 

electrical conductivities were achieved in composites prepared with untreated 

MWCNTs as in the case polyester based nanocomposites.  MWCNTs was then selected 

as the most appropriate filler and resin suspensions were prepared with 0.005, 0.02 and 

0.05 wt. % of MWCNTs to align the tubes within matrix resin with application of the 

AC electric field during curing. Based upon optical microscopy investigation and 

electrical conductivity measurements, it was revealed that partial alignment of CNTs 

within polymer matrix was achieved by AC electric field.  Furthermore, Tg values of the 

composites cured with and without application of the AC electric field were measured 

via DSC to reflect the effect of the electrical inducement on the thermal properties of the 

composites. As a result, composites with aligned MWCNTs were found to demonstrate 

higher Tg value than neat hybrid polymer and composites with similar content of 

randomly oriented MWCNTs. The synergetic effect observed in the Tg values of the 

composites cured with the application of AC electric field was attributed to the 

interactions between the charged free radicals and the aligned CNTs within the resin 

system.   

Overall, it can be concluded that, regardless of matrix types (polyester based or 

vinylester polyester hybrid resin), of all, the MWCNTs is the most appropriate nanotube 

to stimulate electrical conductivity to the isolating polymer matrix.    
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CHAPTER 9 

 

AN APPLICATION: CNT MODIFIED GLASS FIBER 

REINFORCED COMPOSITES 

 
 In the previous chapters, novel processing routes to prepare CNT modified 

polyester and vinylester based resin suspensions were developed. In particular, CNTs 

were reported to possess electrically conductive polymer systems with retained 

mechanical properties. Of all, MWCNTs emerged as the most appropriate filler 

candidate. Regardless of amine functional groups, incorporation of MWCNTs enhanced 

the electrical, mechanical and thermal properties of the hybrid polymer. With the 

addition of CNTs, average toughness values of the hybrid polymer were improved by 

almost 30 %. MWCNTs were found to be highly capable of stimulating electrical 

conductivity to the non-conductive polymer system without reducing its mechanical 

properties. As a result, it seems to be beneficial to use a MWCNT modified resins as the 

matrix polymer with high performance conventional fiber reinforcements such as glass 

fibers. It was attempted to prepare novel electrically conductive multi-functional 

composites. On behalf of this purpose, in this chapter, the utilization of CNT modified 

hybrid resin suspensions as matrix for long glass fiber reinforcements was pinpointed. 

For this purpose, CNT modified composite laminates were manufactured, using 

Vacuum Assisted Resin Transfer Molding (VARTM) and Resin Transfer Molding 

(RTM) techniques. The extent of enhancement in the matrix dominated mechanical 

properties of VARTM processed glass fiber reinforced composite laminates with very 

low content (0.1 wt.%) of amino functionalized CNTs was investigated. In addition, 

fiber dominated properties of RTM processed laminates with relatively high content 

(0.3 wt. %) of CNTs were undertaken. In addition, electrical conductivity measurements 

were carried out on the RTM processed CNT modified laminates. Accomplishment of 

homogenous distribution of electrical conductivity across the composite panel promises 

that CNTs would be used as distributed sensors to detect onset, nature and evolution of 

damages that occur within the CNT modified laminates. Application of such composite 

materials would shed light on accurate detection of any relevant damage in the 

corresponding composite parts during their service life. At a first glance, composite 
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parts used in wind energy turbines and in aviation sector seem to be ideal candidate for 

such demonstration.        

         
9.1. Introduction 
      

 Fiber reinforced polymer composites have gained substantial attention as 

structural engineering materials in automotive, marine and aircraft industry as well as in 

civil engineering applications (Tanoglu and Seyhan 2003, Gojny and Schulte 2004). 

This interest is due to their outstanding mechanical properties, impact resistance, high 

durability and flexibility in design capabilities and light weight. These composites have 

generally good fiber dominated in-plane properties capable of meeting the design 

requirements for various types of structural applications. However, Z-axis (through the 

thickness) properties of the composites, such as delamination resistance, have often 

been far below the expectations due to inadequate performance of the matrix dominated 

interlaminar region (Wichmann, et al. 2006, Zhu, et al. 2007) Therefore, in some special 

applications, these materials may exhibit lower overall structural integrity in accordance 

with their presumed properties. Delamination has the potential for being the major life 

limiting failure process. It may even occur during processing of the laminates due to 

contamination or regions of high void content of prepreg that leads to poor ply adhesion 

locally (Lee 1997, Albertsen, et al. 1995, Srivastana, et al. 1998). In general, 

delamination corresponds to a crack-like discontinuity between the plies and it may 

typically extend during application of mechanical or thermal loads or both during 

service life of composites (Wichmann, et al. 2006, Tanoglu and Seyhan 2003). Fracture 

toughness of polymer matrix and interfacial shear strength between the matrix and the 

fiber are of prime importance in monitoring through the thickness properties of the 

composites. The most common way to improve the delamination resistance of 

reinforced polymer composites is to incorporate some toughening agents or 

thermoplastic binders into the brittle matrix resins, such as epoxy, polyester or 

vinylester (Alveraz, et al. 2003, Tanoglu and Seyhan 2003). A treatment of fiber surface 

with matrix resin compatible sizing is another way to improve the interlaminar strength 

of the composites by enhancing the interfacial strength between the polymer matrix and 

the fiber. However, some of these modifications induce sometimes a compromise with 

other mechanical properties.  
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          The incorporation of nano-sized fillers into polymer matrices offers the potential 

to accomplish nanocomposites with better mechanical properties as compared to 

composites containing traditional macro-scale sized fillers. In this manner, carbon 

nanotubes (CNTs) have gained relatively high interest as alternative filler materials for 

the modification of polymers, owing to their extraordinary mechanical, thermal and 

electrical properties, combined with their huge aspect ratio and specific surface area 

(SSA) (Fiedler, et al. 2006, Gojny, et al. 2005a,  Simsek, et al. 2007). Gojny, et al. 

(Gojny, et al. 2004) found that 3-roll milling processed epoxy based nanocomposites 

containing 0.3 wt. % of amino functionalized double walled carbon nanotubes 

(DWCNT-NH2) exhibited 42 % higher fracture toughness values as compared to neat 

epoxy resin, while retaining their tensile strength and modulus values. Thus, it is 

reasonable to merge the carbon nanotubes, which improve strength, stiffness and 

toughness of the polymer matrix resin, with high performance long fibers. As explained 

in the very beginning of this chapter, it would be a good point of view when CNT 

modified polymer resins are used as matrix materials to produce fabric reinforced 

structures. At this point, use of CNT modified matrix resin with fiber reinforcements is 

expected to tailor the matrix resin dominated mechanical properties (Z-direction) of the 

resultant glass fiber reinforced composites (Gojny 2006, Alveraz, et al. 2003, Zhu, et al. 

2007).  

 Gojny, et al. (Gojny, et al. 2005b) showed that interlaminar shear strengths 

(ILSS) of glass fiber / 0.3 wt. % DWCNT-NH2 modified epoxy matrix composites is 19 

% higher than those of glass fiber / neat epoxy composites. Similar finding was also 

reported by Wichmann, et al. (Wichmann, et. al. 2006) such that the interlaminar 

strength of glass fiber reinforced composites with nano-particle modified epoxy matrix 

were significantly improved (16 %) with addition of only 0.3 wt. % of DWCNTs. 

However, they also stated that interlaminar fracture toughness values of the 

corresponding composites were, astonishingly, not affected in comparable manner. In 

brief, enhancement in fracture toughness of the matrix resin due to CNTs addition 

seems to be beneficial for the improvement of the matrix dominated mechanical 

properties such as interlaminar shear strength and fracture toughness of their associated 

long fiber reinforced composites. For this purpose, interlaminar fracture toughness (GIc 

and GIIc) and the interlaminar shear strength of glass fiber non-crimp fabrics / VARTM 

processed CNT modified vinylester polyester based composites were investigated in 

conjunction with the values of the base composite laminates prepared with neat hybrid 
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resin. The enhancement in the tensile mechanical properties of the RTM processed glass 

fiber reinforced composites was also discussed with an emphasis on the distribution of 

CNTs within the glass fabric.    

 

9.2. Experimental 

 

9.2.1. Materials 

 
 Two layers of non-crimp glass fabrics (NCFs) with a [-45ο / 90ο / +45ο / 0ο]s 

stacking sequence from TELETEKS, Istanbul, Turkey, were employed as reinforcement 

to accomplish the composite laminates. Note that this stacking sequence was selected 

because interlaminar fracture tests are restricted in unidirectional [0]n composite 

laminates in which a delamination propagates between the plies all along the fiber 

direction appropriate to the coplanar assumption in fracture analysis ( Tanoglu and 

Seyhan 2003, Alveraz, et al. 2003).  The vinylester / polyester hybrid resin suspensions 

(at least 500 gr.) were prepared via 3-roll milling based on the same procedure as in the 

preparation of the nanocomposites.   
 

9.2.2.Manufacturing of CNT Modified Glass Fiber Reinforced      

 Composites 

 
            CNT modified composite laminates were produced using, two different 

sophisticated manufacturing methods including Vacuum Assisted Resin Transfer 

Molding (VARTM) and Resin Transfer Molding (RTM). In this manner, glass fiber 

reinforced composite laminates modified with 0.1 wt. % of MWCNT-NH2 and 0.3 wt. 

% of MWCNTs were manufactured via VARTM and RTM methods, respectively.     

 

9.2.2.1. Vacuum Assisted Resin Transfer Molding (VARTM) 

 
            Composite laminates (with about 42% fiber volume fraction) with 0.1 wt. % of 

MWCNT-NH2 were manufactured using VARTM technique. In this technique, 

preforms were placed on a flat tool coated with a release agent in order to ease the 



 144

peeling of the composite part at the end (Tanoglu and Seyhan 2003, Seyhan, et al. 

2008). Preforms were then vacuum-infiltrated with the CNT modified resin suspensions. 

Figure 9.1 depicts the schematic of the VARTM process and the catalyzed resin 

infiltrated composite parts allowed to cure at room temperature under vacuum. The 

cured parts were demolded and subsequently subjected to post-curing at 120°C for 2 

hours. For the preparation of DCB and ENF specimens, a polyamide film was inserted 

in the mid-plane of the fabrics as a crack initiator prior to processing of the real 

composite parts. 

  

9.2.2.2. Resin Transfer Molding (RTM) 

 
           Composite laminates with 0.3 wt. % of MWCNTs were manufactured, using 

RTM technique. Despite a slight increase in viscosity, composite laminates having a 

size of 21 x 36 cm, (with about 60 % fiber volume fraction) with and without CNT 

modification were successfully accomplished. Figure 9.2 gives the photos of cut fabric 

pre-form placed into mold prior to infusion and the set up of resin injection system. 

Following the placement of perform into the mold, the mold assembled of two brass 

plates was closed, sealed and subjected to a pressing force. Applying low pressure, the 

resin was forced to fill the mold through the injection ports. Once the resin injection was 

terminated, the infiltrated laminates were allowed to cure at room temperature under 

load for 2 h. The parts were then demolded and subsequently subjected to post curing at 

120°C for 2h. Please note that the flow characteristic of the CNT modified resin 

suspensions is significantly different under VARTM and RTM processes due to the 

distinct flow boundaries of each process. For instance, laminates with 0.3 wt. % of 

MWCNTs would not be produced via VARTM technique. This is because the viscosity 

of the resin suspension would be too high to fill the entire glass fabric preform by means 

of a vacuum pump within the intended time.  

 As elucidated under previous section, 0.3 wt. % is a rheological threshold at 

which the viscosity of the resin suspensions significantly increases. This may lead to 

processing problems with VARTM configuration. However, in the case of RTM 

technique, the pressure difference applied between the source and the trap is high 

enough to compensate for the resistance of the resin suspensions to flow. As a result, the 

fibers are wet out with the CNT modified resin suspension, homogenously.        
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Figure 9.1. a) The schematic of the VARTM process and b) the catalyzed resin 

 infiltrated  composite parts allowed to cure at room temperature under 

 vacuum. 
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Figure 9.2. The photos of cut fabric pre-form placed into mold and the resin injection 

 system.  
       

9.2.3.Mechanical Characterization of CNT Modified Glass Fiber 

 Reinforced Composites 

 
          Several different mechanical properties of VARTM and RTM processed 

laminates with and without CNT modification were evaluated with a particular 

emphasis on the effect of presence of CNTs between fiber bundles and their distribution 

across the part.   

 
9.2.3.1. Double Cantilever Beam Test (DCB) 
 

Mode I interlaminar fracture toughness (Gıc) of the base and the CNT modified 

composite laminates was measured based on DCB test. The DCB specimens were 

sectioned from the VARTM processed composite laminates with the length of 180 mm 

and a width of 25 mm, using a diamond saw. Aluminum loading blocks were bonded to 

each side of the specimens such that the initial crack length, ao, was set to 50 mm with 

reference to the inserted thin polyamide film. Figure 9.3 shows a typical DCB test 

specimen and a photo under load during testing. The DCB specimens were tested at a 

crosshead speed of 5 mm/min using a Schimadzu test machine with 5 kN loading cell. 

At least 5 specimens were tested to evaluate the interlaminar response of the composite 

laminates with and without CNT modification. The experimental fracture data were 
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recorded in the form of complete load/ displacement curve as well as load / point 

displacement values which correspond to crack extension length.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.3. A typical DCB test specimen and a photo under load during testing. 

 

The critical strain energy release rate (Gc) was computed based on the general 

formula from linear elastic fracture mechanics (LEFM), as follows; 
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Where Pc is the critical load at which the crack propagates, b is the width of the 

specimen, C is the compliance, δ  is the displacement and a is the crack length. 

           The simple beam theory was then used to obtain the relationship between 

compliance and the crack length for a perfectly clamped at delamination front double 

cantilever beam. The equation (1) then becomes as the following (ASTM 2001a, 

Albertsen, et al. 1995).  
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 In practice, this expression overshoots the G values because the relationship 

above is only valid for the ideal conditions assumed in the beam theory. In reality, 

correction is needed for large displacements, shear deformation, the stiffening effect of 

the end tabs, and for displacement and rotation at the delamination front (ASTM 2001a, 

Tanoglu and Seyhan 2003). Some of these effects can be excluded by correcting the 

crack length. The crack length correction, Δ for each specimen is determined by plotting 

the cube root of the compliance, (C) as a function of delamination length. This gives a 

straight line which intersects the crack length axis at - Δ. Note that the compliance, C is 

the ratio of load point displacement to its corresponding applied load (δ /P). GIc values 

were then calculated based on the corrected LEFM (modified beam theory) formula 

using the equation below (Tanoglu and Seyhan 2003, Albertsen, et al. 1995);  
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9.2.3.2. End notched flexure test (ENF) 
 

          The purpose of the ENF test was to determine the critical strain energy release 

rate in pure Mode II loading (GIIc) of unidirectional composites. The ENF specimens 

were prepared in 120 mm long and 20 to 25 mm wide. This test was performed in a 

three point bend fixture with a span length of 100 mm. Figure 9.4 shows the ENF 

specimen geometry parameters and ENF specimen under load. The specimens were 

placed onto supports in such a way that the crack length-to-half span ratio (a/L) is 0.5 at 

propagation of the crack. The load was applied with a displacement control of 1 

mm/min. (Alveraz, et al. 2003, Albertsen, et al. 1995). At least 5 specimens were tested 

for ach type. The ENF specimen produces shear loading at the crack tip without 

introducing excessive friction between the crack surfaces.  

 However, the crack propagation is inherently unstable under displacement 

control. During the experiment, the load versus cross head displacement was recorded. 

Once the crack starts propagating, a sudden load drop was observed and the test was 

terminated. The ultimate load recorded and its corresponding point beam deflection 

measured from the cross head displacement corrected for the machine compliance were 

used in the data reduction. 
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Figure 9.4. The ENF specimen geometry parameters and ENF specimen under load. 

 

  Simple beam theory allows the calculation of the compliance, C, which can be 

expressed for a ENF specimen as below (Albertsen, et al. 1995); 
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where E1 is the flexural modulus and h is one half the total thickness of the beam, (in 

other words, the thickness of each sub-beam of the delaminated region). If C value is 

inserted into the Equation 1, the strain energy release rate for an ENF specimen can be 

obtained as follows;                           
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C is also the ratio of load point displacement to its corresponding applied load   (δ /P). 

GIIc can be finally rewritten as in the equation below (Lee. 1997, Lee, et al. 2000, 

Albertsen, et al. 1995, Alveraz, et al. 2003).     
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9.2.3.3. Short Beam Shear Test 
 

 The interlaminar shear strength (ILSS) of the base and CNT modified composite 

laminates was measured using the short beam shear (SBS) test method (ASTM 2001b). 

This test method involves loading a beam under three-point bending in such a way that 

an interlaminar failure is induced along the mid-plane rather than a tensile failure on the 

bottom surface of the beam. In this manner, the specimens of 21 mm in length and 10 

mm in width were sectioned from the composite laminates. The length to thickness ratio 

and span to thickness ratio were kept constant at 7 and 5, respectively. The crosshead 

speed was set to 5 mm/min. At least six specimens from each set were tested using 

universal testing machine with 5 kN loading cell and load at break was recorded. The 

interlaminar shear strength (τmax) was calculated based on the Equation given below.  
 

                                                        
bd
P75.0max =τ                                                   (9.7) 

 

where P is the maximum applied load, b is the width and d is the thickness of the 

specimens.  

 

9.2.3.4. Tensile test 

 
      The specimens sectioned from RTM processed glass fiber reinforced composites 

with and without CNT modification were tested by tensile testing in 0 and 90 direction 

using a Schimadzu servohydraulic testing machine according to DIN EN/ ISO 527/3. In 

this manner, the end tabbed specimens, having dimensions of 250x25x3 mm. were fixed 

between the grips of the machine.       

 

9.2.3.5. Microscopic investigation 

 
             A Nikon Optical microscopy was used to evaluate the distribution of CNTs 

across the composite part. Philips SEM at 3 kV voltages was also conducted to examine 

macro-scale fracture failure modes that occurred within the specimens under mechanical 
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loading. The effects of carbon nanotubes on the damage mechanisms of the composite 

laminates were then evaluated. 

 

9.3. Results and Discussion 

 

9.3.1. Distribution of nanotubes and VARTM processing  
 
 
  0.1 wt. % of MWCNT-NH2 was dispersed within the resin system using a high 

shear mixing process called 3-roll milling technique as described above. This method 

was already found to be better in dispersion of CNTs within thermosetting resin systems 

as compared to other common methods such as sonication and mechanical stirring 

(Gojny, et al. 2004). Moreover, it must be emphasized that incorporation of CNTs 

significantly increases the viscosity of the corresponding resin blend, which causes 

difficulties with the VARTM processing. It was revealed, based upon rheological 

examinations, that transition from liquid like to pseudo-solid like behavior occurs with 

the resin suspensions containing 0.3 wt. % of MWCNTs and MWCNT-NH2. It was also 

revealed that resin suspensions with CNT additives exhibit shear thinning behavior, 

regardless of type or content of nanotubes    ( Seyhan, et al. 2007b). On the basis of the 

previous findings, the content of nanotubes to be incorporated into the resin system for 

the present study was selected as 0.1 wt. %, which is lower than rheological threshold 

value of 0.3 wt. %. One reason of this selection lies in avoiding extremely high viscosity 

value of the resin blend during manufacture of composite laminates via VARTM 

process. Another one is to prevent CNT agglomerates within matrix resin due to the 

huge specific surface area of nanotubes that leads to enormous attractive forces to occur 

between the individual tubes. A comprehensive discussion with a particular emphasis on 

the problems regarding the dispersion of carbon nanotubes within the resin systems used 

in this study was already addressed in the previous sections.  

Figure 9.5 shows the photos of CNTmodified hybrid resin infiltrated composite 

laminates cured at room temperature under vacuum and the corresponding optical 

micrograph of the mid-plane distribution of CNTs at the inlet, in the middle and at the 

vent points of the composite laminates. It seems that nanotube distribution at mid-plane 

of the composite laminates across its length is generally adequate. However, the 

specimens taken from nearby the vent region contain relatively low amount of 
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nanotubes. Fan et al. (2004) investigated the role of glass fabric porous media effect on 

the dispersion of MWCNTs during flow of MWCNT modified vinylester resin injected 

into the mold cavity containing glass fiber mats. They observed that the resin 

suspensions flow faster between the fiber tows than within the fiber tows. After some 

experimental trials, they concluded that the shear rate which occurs during resin flow 

disentangle very condensed aggregates into smaller ones due to a filtering effect, which 

is, however, at the same time insufficient to separate relatively tiny aggregates into 

individual nanotubes within the suspension. From that point of view, one could say 

hypothetically that uniform small sized agglomerates of CNTs within resin matrix prior 

to the VARTM process would be beneficial to accomplishing an overall homogeneous 

distribution of CNTs within the fiber tows of glass fabrics.  

 

 

 
 

Figure 9.5. Photos of CNT modified hybrid resin infiltrated composite laminates cured 

 at  room temperature under vacuum and the corresponding optical 

 micrograph of the mid-plane distribution of CNTs at the inlet, in the 

 middle and at the vent points of the composite laminates. 
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This may explain the appearance of relatively poor nanotubes impregnated fiber 

bundles located at the mid-plane of the fabric closer to the vent region. Another point is 

that the presence of both ± 45 angle plies in the glass fabric decreased the fiber 

permeability, which makes it difficult for the resin to fill the part with uniform flow 

front.  
 

9.3.2.Interlaminar Fracture Toughness of VARTM processed CNT 

 Modified Glass Fiber Reinforced Composites 

 
 Figure 9.6 shows the representative load-deflection curves of the DCB 

specimens for the base and CNT modified laminates. As seen in the figure, both the 

base and CNT modified laminates show a well defined linear load-displacement 

relationship up to the point of crack initiation, after which they demonstrate distinct 

crack growth mechanism. In details, crack propagates within the base laminates by 

small incremental jumps without causing any sharp decrease in the load values. This 

indicates that the stick-slip crack growth mechanism is dominant for the base laminates 

across the non-linear region. However, steady crack growth mechanism within the 

CNTmodified laminates is visible such that no significant rise or decrease is observed 

for the load values with respect to displacement. In principle, at the first loading 

increment, the delamination starts propagating from the tip of the film insert (crack 

starter) without taking any influence from fiber bridging (on-set values). In other words, 

the onset values refer to the critical load and displacement associated with the first 

deviation from the linear response in the corresponding curve. As the crack further 

propagates, bridged fibers may crack or be pulled out from the matrix due to the 

progressively separated crack surfaces, which gives rise to the apparent fracture 

toughness (Alveraz, et al. 2003, Wichmann, et al. 2006). Once equal number of bridged 

fibers is achieved per unit crack area during crack propagation, steady state fracture 

toughness is eventually supposed to occur, which is commonly referred to as 

propagation fracture toughness value (Albertsen, et al. 1995, Srivistana, et al. 1998). 

Figure 9.7 a and b show mode I interlaminar fracture toughness (GIC) values of the base 

and nanotubes modified composite laminates as a function of crack growth, 

respectively. The solid curves on the both graphs represent the general trend of the 

fracture toughness for the corresponding laminate as a function of crack extension.    
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Figure 9.6. The representative load-deflection curves of the DCB specimens for the base    

 and CNT modified laminates. 

 

 Dissimilar to behavior of the nanotube modified composite laminates within the 

first stage of crack extension, the GIC of the base composite laminates rise sharply 

followed by a moderate increase for further crack extension. At about 25 mm extension, 

steady state fracture toughness (propagation) was observed for the base composite 

laminates, while this value for the CNT modified composite laminates switched to 35 

mm, which shows the consistency with their load deflection curves. The presence of 

CNTs within the glass fiber bundles may alter the adhesion mechanism of two adjacent 

glass plies at the laminate mid-plane where the delamination takes place. Fiber bridging 

is vastly critical to the propagation toughness values of the composites because the 

instant increase in apparent fracture energy is highly associated with de-bonding of the 

larger surface area of the bridged fibers and breaking of these fibers. Fiber nesting is 

one major source of fiber bridging (Alveraz, et al. 2003, Tanoglu and Seyhan 2003). In 

our case, CNTs randomly oriented in the matrix resin would be capable of limiting fiber 

nesting, just diffusing into fiber tows and filling the gaps between fiber bundles by 

accumulating around them. This may be the reason for inconsistency in the behavior of 

base and the CNTmodified laminates during the extensions of crack at which the 

propagation of the fracture begins.   
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Figure 9.7. Mode I interlaminar fracture toughness (GIC) values of the a) base and b) 

  nanotubes modified composite laminates as a function of crack growth.  
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Figure 9.8 depicts the interpreted onset and propagation fracture toughness values of the 

base and nanotubes modified composite laminates. As seen in the figure, there is no 

significant difference in the onset fracture toughness values between the base and 

nanotubes modified composite laminates. However, the propagation fracture value of 

the base composite laminates was found to be 40 % higher than that of nanotube 

modified composite laminates. The fact that no significant difference exists in the on-set 

fracture toughness values between the base and CNT laminates supports our conclusion 

that presence of CNTs hinders the fiber bridging effects in a considerable manner, thus 

reducing the degree of fiber nesting. As a result, despite the same onset toughness 

values obtained, the reduced propagation toughness values were obtained from CNT 

modified composite laminates.     
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Figure 9.8. The interpreted onset and propagation fracture toughness values of the base 

 and nanotubes modified composite laminates. 

 

 Figures 9.9 a and b are the SEM micrographs showing the mid plane fracture 

surfaces of the DCB specimens without and with CNT modification, respectively. 

Figure 9.9 c is a magnified image of a local area on Figure 9.9 b. The image shows 

individual glass fibers coated with CNT-rich matrix resin. As seen in the figures, the 

major failure mechanism is the debonding of the fiber matrix interface and matrix 
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fracture. It was observed that the de-bonding is more extensive for the composites with 

CNT modification. This implies that CNTs suppress the degree of fiber bridging to 

some extent, which leads to lower Gıc propagation toughness values for the composites 

modified with CNTs. This expression is proportional to our presumptions. Inn other 

words, we can roughly consider the propagation toughness values of CNT modified 

laminates as the fiber bridging induced effect free value of the base laminates.             

 

 
 

a) 
 

 

 
                           b)                                                                                 c) 
 
Figure 9.9. SEM micrographs showing the mid plane fracture surfaces of the DCB 

 specimens a) without and b) with CNT modification, respectively. Figure 

 9.9 c is a magnified image of a local area on Figure 9.9 b. 
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          Figure 9.10 shows the representative load-deflection curves of the ENF tests for 

the base and nanotube modified laminates. The calculated mode II fracture toughness 

values of the base and nanotubes modified composite laminates were depicted in Figure 

9.11.  
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Figure 9.10. The representative load-deflection curves of the ENF tests for the base and 

 nanotube modified laminates. 

 

 As mentioned earlier, the ENF test measures only the initiation fracture 

toughness. As seen in the figure, mode II fracture toughness values of the nanotube 

modified composite laminates are slightly higher (8 %) than those of the base composite 

laminates. Under mode II loading, fiber bridging does not occur. Two other important 

mechanisms; friction and hackles are responsible for the energy absorption. Unlike 

DCB specimens that exhibit continuous crack growth along the fiber /matrix interface, 

ENF specimens show discontinuous crack growth by micro-crack coalescence which 

leads to many hackles to occur at the fracture surface (Alveraz, et al. 2003). For that 

reason, the same CNT induced promotion observed for mode II toughness values are 

expected to occur as in the values of interlaminar shear strength values. This is because 

the both specimens failed under the same loading mode. This will be discussed in the 

following section. It seems that nanotube bundles act as rigid fillers which arrest the 
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crack, preventing or delaying the expansion of micro-cracking within the matrix rich 

interface area. So, it is realistic to anticipate a higher amount of hackles present at the 

fracture surface of the CNTmodified composite laminates as compared to that of the 

base composite laminates. This leads to a relatively high energy absorption by friction 

in nanotubes modified composite laminates. In other words, nanotubes may improve the 

adhesion between the interlayer and the adjacent composite layers at the same time 

under Mode II loading.        
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Figure 9.11. Mode II fracture toughness values of the base and nanotubes modified 

 composite laminates.  

 

9.3.3.Interlaminar Shear Strength of VARTM processed CNT   

 Modified Glass Fiber Reinforced Composites 
            

           Figure 9.12 gives representative load-deflection curves of the SBS tests for the 

base and nanotube modified laminates. Figure 9.13 shows the ILSS of the base and 

nanotubes modified composite laminates together. It was found that the use of the CNT 

modified hybrid resin significantly increased (11 %) the interlaminar shear strength of 

the composite laminates.  
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Figure 9.12. The representative load-deflection curves of the SBS tests for the base and     

           nanotube modified laminates. 
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Figure 9.13. ILSS of the base and nanotubes modified composite laminates together. 
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 The average value of the base composite laminates is 25.7 MPa, while this value 

increased up to 28.6 MPa for the CNT modified composite laminates. This may be 

attributed to larger tensile strength, modulus and fracture toughness values of a CNT 

modified polymer matrix as compared to those for neat hybrid resin, as addressed in 

details earlier. Figure 9.14 a, b, c and d show the mid-plane fracture surface of a failed 

short beam shear specimen taken from the CNT modified composite laminates. Note 

that Figure 9.14 b and d are the higher magnification of Figure 9.14 a and c, 

respectively. 

 

 
 
Figure 9.14. a, b, c and d show the mid-plane fracture surface of a failed short beam 

 shear specimen taken from the CNT modified composite laminates. Note 

 that Figure 9.14 b and d are the higher magnification of Figure 9.14 a 

 and c, respectively. 
 
 On the other hand, CNT rich regions on the fracture surfaces are also visible on 

the micrographs. From that point of view, a strengthened region at interface may form 
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due to accumulation of nanotubes around the glass fibers. In other words, nanotube 

bundles and aggregates smaller than glass fiber tows may alter the interfacial strength, 

acting as additional reinforcement at the interlaminar region between polymer matrix 

and glass fiber. This leads to relatively large interlaminar shear strength values to be 

obtained from the nanotube modified composite laminates.  

 

9.3.4. Distribution of CNTs and RTM processing 

   
     Figure 9.15 shows the CNT modified laminates produced by RTM. In principle, 

no significant filtering effect was observed for the laminates. To interpret better the 

distribution of CNTs around and inside the fiber tows across the entire composite 

panels, the samples were taken at the vent, in the middle and at the injection port of the 

composite laminates and their electrical conductivity values were measured using the 

same methods as in nanocomposites. Conductivity measurements were performed on 

each sample in 0o, 90o and Z directions, as illustrated in Figure 9.16. Note that at least 3 

specimens were tested for each direction at each location. Figure 9.17 gives the 

measured conductivities of the samples taken from different regions across the part in 

the corresponding directions.              

  

 
Figure 9.15. CNT modified laminates produced by RTM 

 
     In particular, the electrical properties of the composite laminates result from 

conductive networks formed by CNTs located in matrix channels in between and around 

the glass fiber tows. Regardless of location, in plane (0o and 90o directions) electrical 

Flow direction

vent  inlet  middle 
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conductivity values of the composites were found to be several orders of magnitude 

higher than out of plane (Z direction) electrical conductivity values. This is because 

glass fabric layers act as barrier, which precludes the formation of conductive paths.  

 

 
Figure 9.16.  Illustration of directions in which the measurements were performed. 
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Figure 9.17. The measured conductivities in different directions for the samples taken 

           from different regions along the part 

 On the other hand, the fact that in plane electrical conductivity values scattered 
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conductivity of the composite laminates because of the disrupted conductive paths 

during shrinkage. From that point of view, one could expect to observe slightly higher 

values in non-post cured samples as compared to post-cured samples.                    

 

9.3.5.Tensile properties of RTM processed CNT Modified Glass Fiber 

 Reinforced Composites 

 
            The tensile properties of the composites were performed by tensile testing in 0o 

and 90o directions because non-crimp fabrics were used as reinforcement which exhibits 

different fiber volume content in different directions. Figure 9.18 and 9.19 show the 

measured tensile strength and modulus values for the RTM processed composite 

laminates with and without CNT modification, respectively. There is not any significant 

contribution of CNTs to the strength of the laminates. The average tensile strength of 

the base laminates in 0o direction was found to be 6 % higher than that of CNT modifed 

composite laminates. However, there is no difference in strength values in 90o direction 

between the base and CNT modified laminates. This trend is slightly different for the 

elastic modulus values such that, regardless of the direction, slightly higher modulus 

values obtained from CNT modified laminates as compared to the base laminates. The 

laminates showed fiber dominated behavior, as expected. In fact, this is contradictory to 

what is achieved in mechanical properties of VARTM processed laminates with and 

without modification.  We can safely say that presence of CNTs within the matrix resin 

contributes to the out of plane properties such as enhanced resistance to delamination, 

rather than in-plane properties such as tensile strength that is vastly dependent on the 

reinforcing efficiency of the fibers.    

 

 

9.4. Conclusions   

 
          In this chapter, the matrix dominated mechanical properties of long glass fiber 

reinforced composite laminates, including Mode I, Mode II fracture toughness and 

interlaminar shear strength of glass fiber / carbon nanotube (CNT) modified vinylester-

polyester based composites were investigated.  
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Figure 9.18.  Measured tensile strength values of the base and MWCNT modified  
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 In this manner, the base and nanotubes modified composite laminates were 

successfully manufactured via Vacuum Assisted Resin Transfer Molding (VARTM) 

and Resin Transfer Molding (RTM) processes, using E-glass fiber non-crimp fabrics 

with a [-45o / 90o / +45o / 0o]s stacking sequence. To produce hybrid resin to be utilized 

as matrix material during VARTM and RTM processes, 0.1 wt. % of MWCNT-NH2 and 

0.3 wt. % of MWCNTs were first dispersed within specially synthesized styrene-free 

polyester resin, conducting 3-roll milling technique followed by blending the collected 

resin suspension with vinylester resin. In consequence, the mode I interlaminar fracture 

toughness value of the nanotubes modified composite laminates was found not to be 

significantly affected, while their mode II fracture toughness value was found to be 

about 8 % higher compared to the base laminate. It was also observed that the 

interlaminar shear strengths of the nanotubes modified composite laminates was 11 % 

higher than those of the base composite laminates.  

           Electrical measurements performed on the samples taken from different regions 

of the RTM processed CNT modified laminates showed that there is no significant 

filtration effects of glass fabrics for CNTs in the matrix resin. It was found that in plane 

conductivity of the laminates was more than a few orders of magnitude higher than out 

of plane conductivity. However, no significant differences were observed for the 

conductivity measured in 0o and 90o directions. This implies that RTM is an appropriate 

tool to manufacture such functional composites structures. Tensile mechanical 

properties of the RTM processed laminates with and without CNT modification was 

also pinpointed in 0o and 90o directions. It was found that strength values of the 

laminates were not adversely affected by the presence of CNTs, and that their modulus 

values were slightly enhanced with the presence CNTs.          

 As a general statement, despite a pronounced increase in the matrix toughness, it 

seems that it is still a big challenge to transfer the improved nanotube modified matrix 

properties such as fracture toughness or shear strength into conventional long fiber 

composites due to some difficulties with composite processing. Overall, a stronger 

interfacial bonding and a higher level of uniform CNT distribution within and around 

the glass fiber tows are the key parameters to accomplish the desired properties in their 

resultant composite parts. On the other hand, almost constant in plane conductivity 

across the RTM part could offer the potential to enable in-situ damage monitoring of the 

sectioned composite laminates under load.   
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CHAPTER 10 

 

CONCLUSIONS AND FUTURE WORK 

 
10.1 Conclusions 

 
           This work showed the benefits and drawbacks of CNTs as filler constituent to 

alter the thermal, mechanical and electrical properties of the vinylester and polyester 

based hybrid polymers. Dispersion of CNTs and their interfacial interactions with the 

surrounding polymer matrix are vastly critical to ultimate properties of the resulting 

nanocomposites. 

           3-roll milling was shown highly efficient to disperse CNTs homogenously within 

the matrix resin. The properties of the nanocomposites were discussed with a particular 

emphasis on various factors including surface area, filler content and aspect ratio of 

CNTs and amine functional groups over their surfaces. The micro structure property 

relationships were then established to interpret better the CNT induced effects on the 

characteristics of the final nanocomposites. It was found that at very low filler loading 

rates (0.05, 0.1 and 0.3) CNTs exhibit the potential to improve the mechanical, thermal 

but especially electrical properties of their resulting nanocomposites.                     

            In Chapter 3, difficulties with processing of carbon nanotubes with 

thermosetting resins containing styrene such as polyester and vinylester was addressed. 

The challenges encountered during various types of processes including sonication, 

mechanical mixing and 3-roll milling were discussed in details. It was found that 3-roll 

milling technique was capable to disperse the CNTs within the matrix resin in 

homogenous manner. Since both commercial thermosetting resins (polyester and 

vinylester) contain styrene, traditional methods such as direct mixing, mechanical 

stirring and sonication were found to be inconvenient. It is because styrene evaporates 

instantly when the temperature rises due to heat induced to the resin system by rotating 

propeller or sonication tip. In fact, this comprises the grounds of utilizing hybrid resin 

system to produce nanocomposites via 3-roll milling technique. Rheological behavior 

and mechanical properties of the resins suspensions and their resulting nanocomposites 

were also given in a brief manner. It was found that mechanical strength of the 
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polyester based hybrid resin system was improved by 12 % with the addition of 0.3    

wt. % of MWCNTs.                

          In Chapter 4, rheological properties of the resin suspensions were investigated. 

Based upon linear dynamic viscoelastic measurements, it was found that storage 

modulus (G’) and loss modulus (G’’) values of MWCNT modified resin suspensions as 

a function of angular frequency increased with respect to content regardless of amine 

functional groups. Moreover, at 0.3 wt. % loading rate, both MWCNT and MWCNT-

NH2 modified resin suspensions showed rheological threshold (pseudo-solid like 

behavior), especially very observable at lower frequencies. However, this trend became 

reverse when DWCNTs and DWCNT-NH2 were incorporated into the same hybrid 

resin such that storage and loss modulus values decreased as the content of DWCNTs 

and DWCNT-NH2 increased in the resin system. Moreover, no transition from liquid-

like to solid-like behavior was observed in the corresponding resin suspensions. Steady 

shear measurements revealed that regardless of type of CNTs or amine functional 

groups, each suspension showed shear thinning behavior with steeper slope, while the 

hybrid resin was almost the Newtonian fluid. These results showed that surface area and 

aspect ratio of CNTs are more critical to the flow characteristics of the polymers than 

functional groups over their surfaces.   
 In Chapter 5, the cure kinetics of the hybrid resin containing 0.3 wt. % of 

MWCNTs and MWCNT-NH2 were pinpointed. In this respect, various experimental 

techniques including DSC, FTIR, RS and TGA were systematically conducted to reveal 

the effects of CNTs on free radical polymerization. Non-isothermal DSC measurements 

at different constant heating rates revealed that the presence of CNTs within the resin 

system alters the polymerization reaction by increasing the heat of cure while 

decreasing the activation energies (Ea). In greater details, the suspension with 

MWCNT-NH2 exhibits much heat of cure, besides lower activation energies as 

compared to neat resin blend and the suspension with MWCNTs. Autocatalytic kinetic 

model defines well the curing mechanism involved. Furthermore, FTIR studies were 

carried out to reveal the impact of CNTs on the development of the network in a 

polymer matrix that polymerizes via radicals. In this manner, neat vinylester resin and 

its suspensions with the same content of MWCNTs and MWCNT-NH2 as the hybrid 

resin were employed. In consequence, very interesting results were obtained. The final 

conversion of styrene exceeded the final conversion of vinylester double bonds in the 

resin suspensions with MWCNT-NH2, while final conversion of vinylester is higher 
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than that of styrene in the resin suspensions with MWCNTs. RS studies performed on 

the cured hybrid polymer and its nanocomposites show consistency with FTIR findings 

such that amine functional groups over the surfaces of CNTs altered the chemical 

reactions within the resin system. On the other hand, TGA measurements revealed that 

CNTs increased the thermal stability of the hybrid matrix resin such that Ed values of 

the nanocomposites prepared with MWCNTs and MWCNT-NH2 are higher than that of 

the cured hybrid polymer. Moreover, at each constant heating rate, it was found that 

nanocomposites with MWCNT-NH2 exhibited higher char yields as compared to neat 

hybrid resin and those prepared with MWCNTs. On behalf of the findings achieved, it 

was concluded that amine functional groups over the surfaces of CNTs enhanced the 

dispersibility of CNTs and influenced the relative individual fractional conversions of 

double bonds in the resin system at the same time. We can safely say that amine groups 

over the surfaces of CNTs enhance the dispersion of CNTs in the resin system while at 

the same time significantly affecting the individual monomer polymerization reactions. 

In general, it needs to be emphasized that chemical functional groups over the surfaces 

of CNTs are vastly crucial to the monomer conversion in free radical chain growth 

copolymerization.  

 In Chapter 6, the thermo-mechanical properties of the nanocomposites 

containing MWCNTs, MWCNT-NH2, DWCNTs and DWCNT-NH2 were investigated 

in association with rheological behavior of their corresponding resin suspensions. 

Consequently, the storage (E’) and loss modulus (E’’) values of the nanocomposites 

containing MWCNTs, MWCNT-NH2 were found to increase with an increase in 

contents of CNTs. Furthermore, nanocomposites containing MWCNTs, and MWCNT-

NH2 were found to exhibit higher glass transition temperature value as compared to neat 

hybrid polymer. As the filler content of MWCNTs increases, higher Tg values obtained 

from the resultant nanocomposites. This trend is more evident for the nanocomposites 

containing MWCNT-NH2. TEM studies showed that dispersion of MWCNT-NH2 is 

better than that of MWCNTs in the hybrid polymer, which shows consistency with the 

findings obtained. However, regardless of amine functional groups, incorporation of 

DWCNTs was found to decrease the Tg values of the hybrid resin. This trend becomes 

even worse, as their concentration increases in the hybrid resin. TEM investigations 

performed on the cured resin samples demonstrated that the dispersion of DWCNTs, 

regardless of amine functional groups, within the polymer matrix was also inferior. 

Overall, we could say that rheological properties of the resin suspensions are highly 
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proportional to the thermal properties of their resulting nanocomposites independent of 

type of CNTs.  

         In Chapter 7, the effect of MWCNTs and DWCNTs with and without NH2 

functional groups on the tensile mechanical behavior and fracture toughness of 

vinylester-polyester hybrid resin system was investigated. It was found that addition of 

CNTs has insignificant influence on the tensile strength of the resulting 

nanocomposites. It was also revealed that nanocomposites containing MWCNTs with 

and without NH2 functional groups leads to higher tensile modulus, fracture toughness 

and fracture energy values in comparison to those prepared with DWCNTs or DWCNT-

NH2. Moreover, experimentally measured elastic moduli of the nanocomposites were 

fitted to Halphin-Tsai’s analytical model. The predicted and the measured values of 

nanocomposites with MWCNTs and MWCNT-NH2 were found to be in good 

agreement with each other. On behalf of the experimental findings achieved, it was 

concluded that the reinforcing efficiency of DWCNTs and DWCNT-NH2 is lower as 

compared to those of MWCNTs and MWCNT-NH2, when incorporated into free 

radically polymerized thermosetting resins such as polyester or vinylester. Entrapment 

of free radicals decreased the degree of polymerization and cross-linking density. This 

may significantly influence the cure kinetics of the resin system by altering the 

chemical interactions at the interface, which are directly related to ultimate performance 

of the final composite parts. This subject of interest was already discussed in details in 

Chapter 5. The findings obtained form this chapter show consistency with those 

addressed in the previous chapters so far.   
In Chapter 8, electrical conductivity of nanocomposites were investigated based 

on two different matrix resin systems including polyester based and vinylester polyester 

based hybrid resins. At both resin systems, nanocomposites with MWCNTs were 

obtained to be higher than those with DWCNTs. This result was attributed to the 

relatively high tendency of DWCNTs to agglomerate within the corresponding resin 

system. The results of temperature dependence of resistivity showed that polyester 

based nanocomposites exhibited semiconductor like behavior regardless of the types of 

carbon nanotubes (MWCNT or DWCNT) or the presence of functional groups over the 

CNTs. Also, increasing resistance with decreasing temperature was obtained, so 

tunneling was decided to be the dominant mechanism. Room temperature electrical 

properties of the CNT modified vinylester polyester composites cured with and without 

application of alternating (AC) electric field were also investigated by means of an 
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impedance dielectric spectroscopy. Consequently, the composites with amino 

functionalized CNTs were found to exhibit lower electrical conductivity than those with 

untreated CNTs. At each given concentration, the highest electrical conductivities were 

achieved in composites prepared with untreated MWCNTs.  MWCNTs was then 

selected as the most appropriate filler and resin suspensions were prepared with 0.005, 

0.02 and 0.05 wt. % of MWCNTs to align the tubes within matrix resin with application 

of the AC electric field during curing. Based upon optical microscopy investigation and 

electrical conductivity measurements, it was revealed that alignment of CNTs within 

polymer matrix was achieved by AC electric field. The synergetic effect observed in the 

Tg value of the composites cured with the application of AC electric field was attributed 

to the interactions between the charged free radicals and the aligned CNTs within the 

resin system. Therefore, location and distribution of the radicals in between CNTs is 

substantially important to the final performance of the resulting nanocomposites. In 

addition, it can be concluded that any kind of chemical treatment is unfavorable for the 

conductivity.   

In Chapter 9, mechanical properties of VARTM and RTM processed composite 

laminates with and without CNT modification were highlighted. . In consequence, the 

mode I interlaminar fracture toughness value of the nanotubes modified composite 

laminates produced by VARTM was found not to be significantly affected, while their 

mode II fracture toughness value was found to be about 8 % higher compared to the 

base laminate. It was also observed that the interlaminar shear strengths of the 

nanotubes modified composite laminates was 11 % higher than those of the base 

composite laminates. On the other hand, tensile mechanical properties of RTM 

processed composite laminates were not improved by the use of CNT modified hybrid 

resin as matrix material. Moreover, anisotropic electrical conductivity was 

accomplished in the composite laminates such that in plane conductivity (0 and 90 

directions) is several orders of magnitude higher than out of plane conductivity (z-

direction). In fact, utilization of conventional fabric reinforcement together with a CNT 

modified matrix resin has the potential for the development of future functional 

nanocomposites. For example, carbon nanotubes (CNTs) embedded in polymer matrix 

resin can be used as in-situ sensors due to their inherent electrical properties in order to 

detect the onset and evolution of damage in glass fiber reinforced polymer composite 

(GFRP) under mechanical load.  
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10.2 Outlook and Future Work      
        
          CNTs have been highly promising filler constituents to tune thermal, 

mechanical and electrical properties of the polymers in which they are embedded. 

However, due to the challenging problems with processing, it is very hard to answer the 

question regarding the selection of appropriate type of CNTs (aspect ratio, surface area 

and functional groups) to realize the so pronounced properties in the resultant parts. For 

free radical growth copolymerization reactions, the surface area of CNTs and functional 

groups over their surfaces are the most substantial parameters to be considered. Free 

radicals generated by decomposition of initiator are too vulnerable to be trapped within 

the galleries of CNTs. The more radicals trapped within the galleries of CNTs, the 

lower degree of polymerization and cross-linking density, which leads to reduced 

ultimate performance in the final composite parts. Although the curing mechanism of 

the CNT modified resin suspensions were intensively studied in this dissertation, more 

information regarding the chemical interactions between CNTs and the polymer matrix 

resin is needed. Additional valuable information can be gathered by NMR spectroscopy 

in the further studies to gain an in-depth understanding of these mechanisms. In this 

case, more appropriate chemical functional groups rather than amine groups could be 

used to tailor the interface between nanotubes and matrix polymer. In addition, different 

types of initiators suitable for room temperature and high temperature curing could be 

utilized to promote the monomer conversion in the resin system. Another approach to 

getting a stronger interfacial bonding lies in using peroxide grafted CNTs as initiators 

via novel functionalization and dispersion route.         

 Another major point is the alignment and orientation of CNTs within the matrix 

resin. It was found that nanocomposites with aligned CNTs possessed higher glass 

transition temperature as compared to those with similar content of randomly oriented 

CNTs. This implies that movement of charged radicals between CNTs within polymer 

matrix under electrical field applied may have substantial effects on the characteristics 

of polymer networks formed. Therefore, new methodology and strategy can be applied 

to control dispersion of CNTs under electrical field. On behalf of this purpose, for 

example, parameters of 3-roll milling (dwell time, rotation speed and the gap between 

the rolls) could be optimized to prepare the resin suspensions with better dispersed 

CNTs.   
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            On the other hand, in general, the nanotubes with high aspect ratio can be 

further utilized as filler in polymers to benefit a stronger and more lightweight 

composite material that could be used in several fields, including automotive, 

aerospace, infrastructure, and military. We already showed that RTM and VARTM 

techniques work well to manufacture reinforced composites with CNT modification. 

Especially, electrically conductive long fiber reinforced composites could promise the 

potential to develop the conventional aeronautical engineering structures. Since the 

composites become conductive, it would be possible to detect the onset, nature and 

progression of the damage during service life.    
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