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ABSTRACT

PARAMETER ESTIMATION FOR LINEAR DYNAMICAL SYSTEMS

WITH APPLICATIONS TO EXPERIMENTAL MODAL ANALYSIS

In this study the fundamentals of structural dynamics and system identification

have been studied. Then some fundamental parameter estimation algorithms in the liter-

ature are provided. These algorithms will be applied to an experimental and an artificial

system to extract their structural properties. Consequently, the main objective of this study

is constructing the mathematical model of a structure by using only the measurement data.

To process measurement data, three fundamental modal analysis algorithms are

examined. Least-Squares Complex Exponential(LSCE), Eigensystem Realization Algo-

rithm(ERA) and Polyreference Frequency Domain(PFD) algorithms are implemented in

MATLAB environment. We applied these algorithms to artificial and experimental data,

then we compared the performance of these algorithms. State estimation for linear dy-

namical systems have also been studied, and details of the Kalman filter as a state esti-

mator are provided. Kalman filter as a state estimator has been integrated with the ERA

algorithm and the performance of the Kalman-ERA is provided.

iv



ÖZET

DOĞRUSAL DİNAMİK SİSTEMLER İÇİN DEĞİŞKEN KESTİRİMİ

VE DENEYSEL MODAL ANALİZ UYGULAMALARI

Bu çalışmada yapı dinamiği ve sistem tanılamanın temelleri gözden geçirilecektir.

Ardından literatürdeki bazı temel parametre kestirim algoritmaları anlatılacaktır. Bu al-

goritmalar yapay ve deneysel sistemlere uygulanacak ve bu sistemlerin yapısal özellikleri

bulunmaya çalışılacaktır. Kısaca çalışmadaki asıl amaç sadece yapıdan alınan ölçümleri

kullanarak yapının matematiksel modelini oluşturmaktır.

Ölçüm verilerini işleyebilmek için üç temel Modal Analiz algoritması

incelenmiştir. En Küçük Kareler Karmaşık Üstel Metodu, Özsistem Gerçekleştirme

Algoritması ve Çoklu Referans Frekans Bölgesi algoritmaları MATLAB ortamında

gerçeklenmiştir. Bu algoritmalar yapay ve deneysel verilere uygulanmış ve algoritmaların

performansları karşılaştırılmıştır. Ayrıca Kalman süzgeci bir durum kestiricisi olarak kul-

lanılarak doğrusal dinamik sistemler için durum kestirimi işlemi incelenmiş ve daha doğru

bir parametre kestirimi yapmak adına Kalman süzgeci Özsistem Gerçekleştirme Algorit-

ması ile birleştirilmiştir.
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CHAPTER 1

INTRODUCTION

1.1. Overview

Mechanical , aeronautical or civil structures need to be lighter, stronger and more

flexible because of the demands of safety and reliability. Furthermore predicting the re-

sponse of a structure to an excitation is so critical. Because of these facts, vibration

analysis of structures become a popular subject for engineers. Making experiments on a

structure, constructing a mathematical model, controlling the structure or designing strong

and stabilized structures are the main studies of vibration analysis. As an example, the

vibration properties of Transamerica Building in Figure 1.1 were determined by forced

vibration tests. The fundamental natural vibration periods of this 60-story steel building

are 2.90 sec for north-south vibration and also for east-west vibration (Chopra 1995).

By using these vibration tests, the health of a building can be judged or the response of

a building to an earthquake can be predicted. Before making experiments on a complex

Figure 1.1. Transamerica Pyramid Building in San Francisco

structure as Transamerica Building, learning the mathematical background of vibrational

analysis and applying them to an experimental setup is necessary.

In this study, civil engineers and electronics engineers worked together to investi-

gate the vibrational characteristics of an experimental system. The experimental setup is
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shown in Figure 1.2 . There is a steel beam which is connected to an accelerometer. The

impact hammer is used to create an impulse on the beam and the acceleration response is

measured by using the accelerometer on the beam. The data acquisition device is used for

transferring the acceleration data from accelerometer to the computer. Then measurement

data can be processed to find the characteristics of the system. At the end of the experi-

ment, we have the acceleration response of the beam and the excitation data . We will use

this data to identify the system and construct a mathematical model of the beam.

Figure 1.2. Experimental Setup

Constructing mathematical model of a real structure is not an easy procedure.

Mathematical model of a system includes important system characteristics by sets of dif-

ferential equations. These differential equations can be written easily by applying physi-

cal laws to the system. Mathematical modelling procedure is a 3-step process. First step

is drawing a schematic diagram of the system and defining the variables as in Figure 1.3.

Second step is writing the differential equations for each independent component by using

physical laws and constructing the model. The last step is verifying the model by compar-

ing with experimental results. The last step is for performance prediction of the system.

Experiment is the only way to verify the mathematical model. If the experimental results

2



are different from the prediction, then a modification must be done for the mathematical

model. The process must be repeated until a satisfactory agreement is obtained between

experimental results and prediction.

Figure 1.3. Schematic Diagram for a 4 story frame

Mathematical modelling of dynamical systems and analyzing the dynamical be-

havior of the structures are the subjects of System Dynamics. A system is called dynamical

if its present output depends on past input. If the system’s current output depends only

on the current input, system is called as static. As said before, dynamical systems can

be modelled by differential equations. Classifying differential equations is important for

the classification of the system. According to this classification, the analysis for mod-

elling can be changed. For example if a system has nonlinear differential equations, its

mathematical model will be a nonlinear model and nonlinear analysis must be done for

this system. Mathematically linearity means that the relationship between the input and

the output of the system satisfies the superposition property. According to superposition

property, if the input to the system is the sum of two component signals as

x(t) = ax1(t) + bx2(t) , (1.1)

then the output of the system will be,

y(t) = ay1(t) + by2(t) , (1.2)

where yk(t) for k = 1, 2, are the output signals resulting from the input signals xk(t) for

k = 1, 2, and the coefficients a, b are complex valued scalars.

3



Time invariance is another important system property for dynamical system analysis.

Time invariance means that if the input is affected by a time delay, the output should

be affected by the same time delay. Consider a linear system with impulse response h(t)

where the input-output relationship is given by

y(t) = x(t) ∗ h(t) , (1.3)

where x(t) is the input, y(t) is the output and ∗ is the convolution operator. If a time shift

in the input signal results in an identical time shift in the output signal, as

y(t− t0) = x(t− t0) ∗ h(t) , (1.4)

then h(t) is said to be a linear time-invariant system. If a system satisfies both the linear-

ity and the time invariance properties, this system is called Linear Time Invariant (LTI)

system.

In this study we will deal with the mathematical models of LTI dynamical systems

and we will try to find the characteristics of the system by using System Identification,

Structural Dynamics and Modal Analysis concepts.

System identification is the process of building dynamical models from measured

data by using several mathematical tools and algorithms. In this study, some system iden-

tification techniques will be investigated and these techniques will be verified by MAT-

LAB simulations.

Structural dynamics is the analytical study of the structures which covers the be-

havior of structures when subjected to dynamical loading. Buildings, bridges, satellites,

aircrafts, vehicles can be considered as examples of structures. Dynamical loading can be

wind, wave, earthquake, blasts. Dynamical loading means that the load on the structure

changes with time.

Since the problem of mathematical modelling is so complex, engineers generally

use Finite Element Analysis as a design tool to solve this complexity. Finite element

analysis is a computer modelling approach based on numerical analysis. Modal analysis

is an important part of dynamical finite element analysis and it is a powerful tool for

civil engineers. The main objective of modal analysis can be defined as determining,

improving and optimizing the dynamical characteristics of structures by utilizing modal

analysis and system identification procedures. Modal analysis is a 3-step process. First the

dynamical properties of systems are investigated under vibrational excitation. Then the

4



dynamical characteristics of the system are determined in the form of natural frequencies

and damping ratios. Consequently, these modal parameters can be used to formulate a

mathematical model.

Modal analysis is based upon the fact that the vibration response of a LTI dy-

namical system can be expressed as the linear combination of a set of harmonic motions

called the natural modes of vibration. Actually it is a complicated waveform which can

be represented as a combination of sine and cosine waves. Natural modes of vibration are

special characteristics to dynamical systems and they can be determined by its physical

properties where the physical properties are mass, stiffness, and damping. Natural modes

can be described in terms of natural frequency, modal damping factor and mode shape.

These are also called modal parameters.

In the last 20 years, data acquisition systems and processing capabilities of com-

puters have developed rapidly. This technological development makes the experimental

technique of modal analysis useful. The experimental part of modal analysis is called

modal testing. Modal testing is an experimental procedure which is used to find the dy-

namical characteristics of the structure. In practice measuring the impulse response of

a structure is first accomplished and then the Frequency Response Function (FRF) and

other desired parameters, such as natural frequency and damping ratio, of the system are

obtained.

In this study, fundamentals of system dynamics will be used to define the problem

of mathematical modelling, and then modal analysis techniques will be used to identify

the parameters of the dynamical system and estimating the model.

1.2. Background

Vibration is a motion that repeats itself. It can be regarded as the transfer between

the kinetic energy and potential energy, so it can be said that there must be storing and

releasing energy in a vibratory system. This type of motion can be modelled easily by a

mass and a spring. Figure 1.4 shows a typical vibratory system. In this system mass is

responsible for kinetic energy and the spring is responsible for potential energy. There

are several types of vibration. The list of vibration types are shown in Table 1.1 . Our

study will begin from the free vibration of a system. Systems could be discretised to

inertia, spring and damper elements to define the vibrational models. In Figure 1.5, the

5



Figure 1.4. A Vibratory System

Table 1.1. Vibration Types

Reference Terms Vibration Type Description

External Excitation Free Vibration Vibration induced by initial input(s) only.

Forced Vibration Vibration subjected to one or more continuous external inputs.

Presence of Damping Undamped Vibration Vibration with no energy loss or dissipation.

Damped Vibration Vibration with energy loss.

Linearity of Vibration Linear Vibration Vibration for which superposition principle holds.

Nonlinear Vibration Vibration that violates superposition principle.

Predictability Deterministic Vibration The value of vibration is known at any given time.

Random Vibration Only the statistical properties of vibration are known.

basic mechanical elements and their force equations are shown. In these force equations

x represents the displacement, dots on the top of variable x represents derivatives with

respect to time; therefore ẋ and ẍ becomes the velocity and acceleration. After defining

the system by using these mechanical elements, mathematical model of the system in

Figure 1.4 can be developed by applying physical laws to the system. In vibrational

Figure 1.5. Mechanical Elements

systems, inertia elements are the masses. Mass is the property of a body that gives inertia

to the body, whereas the inertia is commonly known as the resistance to starting motion

6



and resistance arriving to a full stop while in motion. Newton’s second law, known as law

of acceleration, is used to define the equations of motion of the masses. Newton’s second

law says that (Cohen and Whitman 1999):

Law 1.1 The rate of change of momentum of a body is proportional to the resultant force

acting on the body and is in the same direction.

Mathematical representation of this law is

F = ma , (1.5)

where F is the force, m is the mass and a is the acceleration.

A spring element is a flexible elastic object which is used to store mechanical energy. It

can be deformed by an external force such that the deformation is directly proportional to

the force applied to it. Hooke’s law is used to define the model of a spring mathematically.

Hooke’s law says that (Ugural and Fenster 2003):

Law 1.2 As the extension, so the force.

Mathematical representation of this law is

Fk = kx , (1.6)

where Fk is the force on the spring, k is the spring constant and x is the distance that the

spring has been stretched.

Damping is any effect that reduces the amplitude of oscillations of an oscillatory

system. Damper elements shows a damping effect in an oscillatory system. Generally

damper element absorbs energy and the absorbed energy is dissipated as heat. Viscous

damping is a common form of damping which is inherently found in many engineer-

ing systems. As a result, the characteristic of damping is generally modelled as viscous

damping for civil structures. In physics, viscous damping is mathematically defined as a

force synchronous with the velocity of the object but opposite direction to it. The force

equation of a viscous damper can be written as

Fc = cv , (1.7)

where Fc is the force seen on damper, c is the viscous friction constant and v is the

velocity.

7



In a vibratory system, the force equations that are acting on the masses can be

combined in an equation by using D’Alembert’s principle. D’Alembert’s principle is a

statement of the fundamental classical laws of motion. The principle states that since the

sum of the forces acting on a DOF ‘i ’results in its acceleration ai, the application of a

fictitious force −mir̈i would produce a state of equilibrium (Jimin and Zhi-Fang 2001).

This explanation can be written mathematically as

∑
i

(Fi −miai)δiri = 0 , (1.8)

where Fi are the applied forces, δiri is the virtual displacement of the system, mi are the

masses of the particles in the system, ai are the accelerations of the particles in the system.

miai represents the time derivatives of the system momenta. By using Newton’s Laws,

Hooke’s Law and D’Alembert’s Principle, one can write the equations of motion of any

vibratory system.

1.2.1. Analysis of Single Degree of Freedom Systems

In vibration studies, “degree of freedom” number is a critical point. Before the

analyzing procedure, degree of freedom number must be known. This term is defined as

the minimum number of independent coordinates required to determine completely the

motion of all parts of the system at any instant of time. A structure has as many natural

frequencies as its degrees of freedom. If it is excited at any of these natural frequencies,

a state of resonance exists, so that a large amplitude vibration response occurs. For each

natural frequency, the structure has a particular way of vibrating, so that it has a mode

of vibration at each natural frequency. Many real structures can be represented by a

single degree of freedom (SDOF) model. Besides, there are many real structures that

have several bodies and therefore several degrees of freedom. For example the system in

Figure 1.6 can be represented by a single coordinate x mathematically , so this is a SDOF

system. Now by using the physical laws that are mentioned, the free vibration behavior

of this system will be investigated. Free vibration is the motion of a structure without any

dynamical excitation or external forces. Actually all of the three schemes in Figure 1.6

represents an undamped SDOF vibrational system with a single mass and a single spring.

But Civil engineers use the right one for the civil structures and mechanical engineers use

the middle one. If the degree of freedom in Figure 1.6 is represented as x(t), the following

8



Figure 1.6. Mass-Spring System

equation can be derived by using physical laws that are mentioned before:

mẍ = −kx (1.9)

mẍ + kx = 0 (1.10)

Equation 1.10 can also be derived from energy approach. To derive this equation, first

the kinetic energy must be written as T = 1
2
mẋ2 and potential energy as U = 1

2
kx2 by

choosing x as an equilibrium point. Lagrangian function for this vibrational system can

be defined as,

L = T − U =
1

2
mẋ2 − 1

2
kx2 . (1.11)

The compact form of Lagrange’s equation for a conservative system is given by,

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 . (1.12)

By taking derivatives of Equation 1.11, terms that are necessary for Equation 1.12 can be

found as

∂L

∂ẋ
= mẋ ,

d

dt

∂L

∂ẋ
= mẍ ,

∂L

∂x
= −kx .

(1.13)

By using Equations 1.12 and 1.13, the general equation for SDOF undamped vibration

system can be written as

mẍ + kx = 0 . (1.14)

9



Equation 1.10 is a linear, homogeneous 2nd order differential equation with constant co-

efficients. The solution of this equation for x(t) begins with assuming x(t) = est. By

writing the Equation 1.10 with this assumption,

m
∂2est

∂t2
+ kest = 0 , (1.15)

(ms2 + k)est = 0 . (1.16)

Since est cannot be equal to zero, (ms2 + k) must be equal to zero. The value of s can be

found as

[ms2 + k] = 0 , (1.17)

s1,2 =

√
−k

m
= ±jωn , (1.18)

ωn =

√
k

m
, (1.19)

where ωn is the natural frequency of the system in rad/s. General solution of differential

equation is,

x(t) = A1e
s1t + A2e

s2t = A1e
jwnt + A2e

−jwnt . (1.20)

By using the relations

cos x =
ejx + e−jx

2
, (1.21)

sin x =
ejx − e−jx

2j
, (1.22)

Equation 1.20 can be written by means of cosine and sine functions,

x(t) = A cos ωnt + B sin ωnt . (1.23)

To find the coefficients A and B, the initial displacement and initial velocity of the mass

body must be known.

x(0) = A cos 0 + B sin 0 = A (1.24)

ẋ(t) = −ωnA sin ωnt + ωnB cos ωnt (1.25)

ẋ(0) = ωnB (1.26)

From Equations 1.24 and 1.26 , the coefficients A and B can be written by means of the

initial displacement and initial velocity.

A = x(0) (1.27)

B =
ẋ(0)

ωn

(1.28)
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The solution of Equation 1.10 will be,

x(t) = A cos ωnt + B sin ωnt

= x(0) cos

√
k

m
t +

ẋ(0)√
k
m

sin

√
k

m
t . (1.29)

The graphical illustration of Equation 1.29 is shown in Figure 1.7. As shown in this

Figure 1.7. Free Vibration of SDOF Undamped System

figure, the amplitude of the free vibration response of an undamped system depends on

the initial displacement and velocity. Amplitude remains the same cycle after cycle and

motion does not decay because of the absence of damping.

The former equations describe the free vibration of the structure, however they

don’t explain why the system oscillates. The reason for oscillation is “conservation of

energy”. The conversion of potential energy in the spring and kinetic energy in the mass

creates these oscillations. In our model in Figure 1.6, the mass will continue to oscil-

late forever, but in a real system there is always damping that dissipates the energy and

therefore the system eventually comes to rest. Now assume that system also has a viscous

damper with damping value C as in Figure 1.8. C is equal to the damping force for a

unit velocity. Schematic diagrams in Figure 1.8 represents a damped SDOF vibrational

system with a single mass, a single spring and a single damper. The equation of motion

can be written as

F + Fc + Fk = 0 , (1.30)

mẍ(t) + cẋ(t) + kx(t) = 0 . (1.31)

11



Figure 1.8. Mass-Spring-Damper System

The solution of the damped system can be found by using the solution method of Equation

1.10. By assuming x(t) = est,

m
∂2est

∂t2
+ c

∂est

∂t
+ kest = 0 , (1.32)

(ms2 + cs + k)est = 0 . (1.33)

Since est cannot be equal to zero, it follows that,

ms2 + cs + k = 0 . (1.34)

Equation 1.34 is also called as characteristic equation. The roots of this equation can be

found as,

s1,2 =
−c±√c2 − 4mk

2m
. (1.35)

Now there are three cases according to discriminant in Equation 1.35,

∆ = c2 − 4mk . (1.36)

When ∆ is positive, s1 and s2 will be negative real number, then x(t) will become an

exponentially decaying function. These systems are called overdamped systems. When

∆ is negative, s1 and s2 will be complex conjugate numbers with negative real part. In

that case, x(t) will oscillate while it decays exponentially. When ∆ = 0, s1 and s2

will be equal to −c/2m, so x(t) decays exponentially, and this is a critically damped

system. The graphical illustration of these three cases is shown in Figure 1.9. Structural

systems usually have small dampings. Because of this, we only consider the case ∆ < 0,

underdamped systems. The damping value that makes discriminant zero is called critical

damping coefficient. It is given by,

cc = 2
√

mk . (1.37)
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Figure 1.9. Free Vibration of SDOF Damped System

Damping ratio of the system is defined as the ratio of damping value and critical damping

coefficient.

ξ =
c

cc

=
c

2
√

mk
(1.38)

Let us write Equation 1.35 as

s1,2 =
−c

2m
± j

√
k

m
− c2

4m2
. (1.39)

In this equation the imaginary part of the root is usually referred as damped natural fre-

quency, given as,

ωd =

√
k

m
− c2

4m2
. (1.40)

By using the damping ratio, the mathematical definition of damped natural frequency can

be written as,

ωd = ωn

√
1− ξ2 . (1.41)

The real part of the roots can be written by means of natural frequency and damping factor

as,

ξωn =
c

2m
. (1.42)

Roots of the Equation 1.34 can be written as,

s1,2 = σ ± jωd = −ξωn ± jωd , (1.43)
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where σ is the decay rate. The solution of Equation 1.31 is,

x(t) = eσt [A cos ωdt + B sin ωdt] . (1.44)

To find the coefficients A and B, the initial displacement and initial velocity of the mass

body must be known. From Equation 1.44:

x(0) = A cos 0 + B sin 0 = A

ẋ(0) = −ωnA + ωdB .
(1.45)

From Equation 1.45, the coefficients A and B can be written by means of the initial

displacement and initial velocity as,

A = x(0)

B =
ẋ(0)− σx(0)

ωd

.
(1.46)

Therefore, the solution of the Equation 1.31 can be written as,

x(t) = eσt

[
x(0) cos ωdt +

ẋ(0)− σx(0)

ωd

sin ωdt

]
. (1.47)

The graphical illustration of Equation 1.47 is shown in Figure 1.10. The comparison

between damped and undamped system can be seen from that figure. Coefficient p in

Figure 1.10. Comparison of Undamped System and Underdamped System

Figure 1.10 is magnitude of the solution. It can be derived as,

p =

√
[x(0)]2 +

[
ẋ(0)− σx(0)

ωd

]2

. (1.48)
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Figure 1.11. Mass-Spring-Damper System with Input

Free vibration behavior of SDOF systems is investigated until now. When any continuous

input disturbs the system, it is called forced vibration. As shown in Figure 1.11, external

input can be represented by u(t) in system schemes and equations. By using physical

laws again, the vibrational system in Figure 1.11 can be mathematically defined as,

F + Fc + Fk = u , (1.49)

mẍ(t) + cẋ(t) + kx(t) = u(t) . (1.50)

In that case, the response of the system to any external input can be found by writing the

Impulse Response Function (IRF) of the system. Assuming initial conditions are zero, the

transfer function of the system can be found easily by applying Laplace transformation to

Equation 1.50.

s2mX(s) + scX(s) + kX(s) = U(s) (1.51)

H(s) =
X(s)

U(s)
=

1

s2m + sc + k
(1.52)

The transfer function can be shown as,

H(s) =
1

s2m + sc + K
=

1/m

s2 + s(c/m) + (k/m)
. (1.53)

The roots of the denominator of Equation 1.53 is evaluated as s1 and s∗1 in Equation 1.43.

Since these roots are the poles of the transfer function, λ1 and λ∗1 symbols can be used

instead of s1 and s∗1.

H(s) =
1/m

(s− λ1)(s− λ∗1)
=

A1

s− λ1

+
A2

s− λ∗1
(1.54)

The IRF of the system can be found by taking inverse Laplace transform of Equation 1.54,

h(t) = A1e
λ1t + A2e

λ∗1t = eσt(A1e
jwdt + A2e

−jwdt) , (1.55)
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λ1,2 = −σ ± jwd , (1.56)

where σ is the decay rate and wd is the damped natural frequency.

The main objective of this study is to estimate the values of wd and σ from the measure-

ments. Besides that Civil engineers are also interested in the values of m, c, and k.

1.2.2. Analysis of Multi Degree of Freedom Systems

For Multi Degree of Freedom (MDOF) systems, system parameters are M, C and

K matrices. There are N natural frequencies and N damping ratios for a N-degree of

freedom system. For example in Figure 1.12, there are 2 mass blocks and they can move

Figure 1.12. 2-DOF System

independently. If any of the masses is excited by an external force, the other one can move

by the affect of this force. This system is a two degree of freedom system (2-DOF).

While constructing the mathematical model of the system, the degree of freedom number

must be known. Equations of motion can be written according to degree of freedoms as

shown in Equations 1.57 and 1.58.

−m1ẍ1 − (c1 + c2)ẋ1 + c2ẋ2 − (k1 + k2)x1 + k2x2 + u1(t) = 0 (1.57)

−m2ẍ2 + c2u̇1 − c2ẋ2 + k2x1 − k2x2 + u2(t) = 0 (1.58)

Equations 1.57 and 1.58 can be combined in a matrix equation as,

 m1 0

0 m2





 ẍ1

ẍ2


 +


 c1 + c2 −c2

−c2 c2





 ẋ1

ẋ2




+


 k1 + k2 −k2

−k2 k2





 x1

x2


 =


 u1(t)

u2(t)


 .
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(1.59)

Equation 1.59 can be written as,

M ẍ + Cẋ + Kx = u . (1.60)

MDOF damped vibrational systems can be defined by Equation 1.60. The transfer func-

tion of this 2-input, 2-output system can be written in a matrix form as,

H(s) =


 H11(s) H12(s)

H21(s) H22(s)


 , (1.61)

where Hij(s) for i, j = 1, 2, is the transfer function from ith input to jth output.

2-DOF system has 2 natural frequency and 2 modal damping factor as wd1, wd2 and σ1,

σ2. IRF of 2-DOF system can be written as,

h(t) =
2∑

i=1

eσit(ai sin wdit + bi cos wdit) . (1.62)

Transfer function and IRF of MIMO vibrational systems can be generalized in a form

such that,

h(t) =
N∑

i=1

eσit(ai sin wdit + bi cos wdit) , (1.63)

Hij(s) =
N∑

r=1

[
Aij(r)

s− sr

+
A∗

ij(r)

s− s∗r

]
, (1.64)

where N is the number of degree of freedom in the system. Mathematically, our aim is to

find system parameters as wdi, σi in Equation 1.63 by using the measurement of h(t).

As mentioned before, natural frequency values can be easily calculated from dif-

ferential equations for SDOF systems. The solution for MDOF systems begins with un-

damped case. Equation 1.65 is a general equation for undamped vibrational systems. All

mass-spring systems can be defined by this equation.

M ẍ(t) + Kx(t) = 0 (1.65)

The displacement response based on the nth mode can be given as,

x(t) = qn(t)φn , (1.66)
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where qn(t) is the time variation of displacement and φn is the mode shape which does

not vary with time. qn(t) and φn can be written as,

qn(t) = An cos ωnt + Bn sin ωnt for n=1,2,..,N , (1.67)

φn =




φ1n

φ2n

.

.

φNn




. (1.68)

The displacement function can be written as,

x(t) = φn[An cos ωnt + Bn sin ωnt] . (1.69)

The second derivative of x(t), acceleration function, can be found easily from Equation

1.69.

ẍ(t) =
∂ [−φnAnωn sin ωnt + φnBnωn cos ωnt]

∂t

= −φnAnω2
n cos ωnt− φnBnω

2
n sin ωnt

= −φnω2
nqn(t) (1.70)

By using Equation 1.65, 1.66 and 1.70,

M(−φnω2
nqn(t)) + Kφnqn(t) = 0 , (1.71)

qn(t)
[−ω2

nMφn + Kφn

]
= 0 . (1.72)

Since qn(t) is the time variation of displacement, it can’t be zero, so [−ω2
nMφn + Kφn]

will be equal to zero.

[−ω2
nMφn + Kφn

]
= 0 (1.73)

Kφn = ω2
nMφn (1.74)

Equation 1.74 is a matrix eigenvalue problem and it can be written as,

[
K − ω2

nM
]
φn = 0 . (1.75)

By using Equation 1.75, N equations for φjN (j=1,2,..,N) can be written. A homogeneous

system of N equations in N unknowns has a solution different from the obvious one, if
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and only if the determinant of the coefficient matrix is zero. The solution of the Equation

1.75 exists if and only if

det
[
K − ω2

nM
]

= 0 . (1.76)

This equation is called frequency equation, because natural frequencies can be found from

this equation. There are N real and positive roots for ω2
n. Since the natural frequencies are

found, mode shapes, φn , can be found from Equation 1.75.

1.3. Main Goal

Our main goal is to find the structural parameters of the system in our experiment.

We want to find the natural frequencies, damping ratios and the mode shapes of the

system in Figure 1.2. To do this, first the simple estimation methods that can be applied

to SDOF systems will be examined in the next chapter. After that advanced estimation

algorithms will be investigated and we will try to identify our experimental system

mathematically by using these algorithms.

Table 1.2. Most Common Modal Analysis Algorithms

Algorithm Domain

Complex Exponential Algorithm Time

Least-Squares Complex Exponential Algorithm Time

Polyreference Time Domain Algorithm Time

Presence of Damping Time

Ibrahim Time Domain Algorithm Time

Multi-reference Ibrahim Time Domain Algorithm Time

Eigensystem Realization Algorithm Time

Polyreference Frequency Domain Algorithm Frequency

Simultaneous Frequency Domain Frequency

Multi-reference Frequency Domain Frequency

Rational Fraction Polynomial Frequency

Orthogonal Polynomial Frequency

Complex Mode Indicator Function Frequency
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There are many advanced algorithms about system identification. In this study

algorithms in the literature is reviewed and the most common ones for our experiment is

listed in the Table 1.2.

Three fundamental and reliable algorithms are chosen from this list. We tried to

use two time-domain algorithms and one frequency-domain algorithm for the experimen-

tal data. These are the bold ones in the Table 1.2, “Least Squares Complex Exponential

(LSCE) Method ” , “Polyreference Frequency Domain Algorithm ” and “Eigensystem

Realization Algorithm ” . Initially, we will try to understand the theoretical background

of these methods. These methods will be verified for an artificial N degree of freedom

systems by using MATLAB simulations. Then these MATLAB scripts will be applied to

real measurement data and we will try to find the characteristic parameters of the system

in our experiment.
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CHAPTER 2

SIMPLE ESTIMATION METHODS

2.1. Frequency Domain Estimation

In the first chapter, it was shown that the transfer function of a damped vibrational

system can be written as

H(s) =
1/m

s2 + s(c/m) + (k/m)

=
1/m

(s− λ1)(s− λ∗1)
=

A1

s− λ1

+
A2

s− λ∗1
, (2.1)

where A1 and A2 are the residues of the transfer function. The residues of the transfer

function directly related to the amplitude of the IRF. By multiplying both sides of the

transfer function expression by s− λ1 and evaluating the result at s = λ1, residue A1 can

be found as

[ (s− λ1)H(s)] |s−λ1 = [ A1 +
(s− λ1)A2

(s− λ∗1)
] |s−λ1 ,

A1 =
1/m

λ1 − λ∗1
=

1/m

j2ω1

. (2.2)

By the same way, A2 can be found easily,

A2 =
1/m

−j2ω1

. (2.3)

As shown in Equations 2.2 and 2.3, A1 and A2 are complex conjugates of each other, so

A∗
1 can be written instead of A2. Transfer function can be written as

H(s) =
A1

(s− λ1)
+

A∗
1

(s− λ∗1)
. (2.4)

By evaluating the transfer function along the jω axis, the frequency response of the system

can be found.

H(jω) =
A1

(jω − λ1)
+

A∗
1

(jω − λ∗1)
(2.5)

Experimentally when somebody is talking about measuring the transfer function, actually

the FRF is measured. At damped frequency, transfer function is such that,

H(jω1) =
−A1

σ1

+
A∗

1

(j2ω1 − σ1)
. (2.6)
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Second term in Equation 2.6 approaches zero when ω1 gets large. H(ω1) can be repre-

sented as

H(ω1) =
−A1

σ1

. (2.7)

Frequency response of SDOF system can be represented as

H(ω) =
A1

jω − λ1

. (2.8)

Assuming that our system is a lightly damped SDOF system, parameters needed for a par-

tial fraction model can be estimated directly from the measured FRF. While this approach

is based upon a SDOF system, as long as the modal frequencies are not too close together,

the method can be used for multiple degree of freedom (MDOF) systems as well.

As shown in Equation 2.5, A1 and λ1 must be estimated to identify the FRF. Since

λ1 = σ1 + jω1 , decay rate and the natural frequency of the system must be estimated to

find the pole of the transfer function.

The estimation process begins with estimating the damped natural frequency, ω1. Damped

natural frequency could be estimated in one of three ways :

1)Damped natural frequency is the frequency where magnitude of FRF reaches maxi-

mum.

2)Damped natural frequency is the frequency where the real part of FRF crosses zero.

3)Damped natural frequency is the frequency where imaginary part of FRF reaches a rel-

ative minima or maxima.

The last approach generally gives the most reliable results. The estimation process can

be shown by an example simulation on MATLAB environment. Assume that we have a

SDOF vibrational system which has a mass of 1 kg, 100 N/m spring constant and 1 Ns/m

damping coefficient value. The frequency response of this system is shown in Figure

2.1 and 2.2. As shown in Figure 2.2, imaginary part of FRF reaches a relative minima

at nearly 10 rad/s. We can say that damped natural frequency of this system is equal to

10 rad/s from the frequency response of the system. Analytically, the real damped natural

frequency can be calculated as 9.9875 rad/s from Equation 1.40. Error is caused from the

sampling rate of the measurement device. Actually the damped natural frequency of the

system is 9.9875 rad/s but we saw that value as 10 rad/s.

Once the damped natural frequency w1 has been estimated, then the damping ratio ξ1 can

be estimated from the magnitude of the FRF. Damping ratio ξ1 can be estimated by using
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Figure 2.1. Real part of the FRF

the half-power bandwidth method. This method uses the data from the FRF in the region

of the resonance frequency to estimate the fraction of critical damping from the formula:

ξ1 =
ωb − ωa

2ω1

, (2.9)

where ω1 is the damped natural frequency as previously estimated. ωa is the frequency,

below ω1, where the magnitude is 0.707 of the peak magnitude of the FRF. This corre-

sponds to a half power point. ωb is the frequency, above ω1, where the magnitude is 0.707

of the peak magnitude of the FRF. This is also a half power point. For our example, we

can see that the half power frequency values are ωa = 9.46 rad/s and ωb = 10.47 rad/s.

Therefore the fraction of critical damping can be calculated from Equation 2.9 as 0.0506.

Once ξ1 is estimated, the decay rate, σ1 can be estimated as,

σ1 = −ξ1ω1 = 0.505 . (2.10)

The pole of the transfer function is λ1,2 = −0.505± j9.9875 . Once λ1,2 has been

estimated, the residue A1 can be estimated by evaluating the partial fraction model at a

specific frequency. If the specific frequency is chosen to be ω1, the following result is

obtained.

H(jω1) =
A1

jω − (σ1 + jω1)
+

A∗
1

jω − (σ1 − jω1)
(2.11)

As long as ω1 is not too small, the above equation could be approximated as,

H(ω1) =
−A1

σ1

→ A1 ≈ (−σ1)H(ω1) . (2.12)
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Figure 2.2. Imaginary part of the FRF

In our example H(ω1) = 0.0025 − 0.1001j, so the residue A1 can be calculated as

0.0013− 0.0506j from Equation 2.12. Now the transfer function can be written as shown

in Equation 2.13. We showed that the frequency response can be mathematically defined

from measurements for a SDOF damped vibrational system.

H(jω) =
0.0013− 0.0506j

(jω − (−0.505 + j9.9875))
+

0.0013 + 0.0506j

(jω − (−0.505− j9.9875))
(2.13)

Estimated transfer function can be written as,

H(s) =
0.026s + 1.023

s2 + 1.01s + 100.005
. (2.14)

From Equation 1.53, the exact transfer function can be written as

H(s) =
1

s2 + s + 100
. (2.15)

We can say that estimated transfer function is satisfactory, the natural frequencies ap-

proach the exact value. But this is a simple estimation method, so it will fail for noisy

measurement data. As a summary, clear frequency response measurement can be used to

estimate the parameters of the system. MATLAB code in Appendix-A1 is used to obtain

the frequency response figures and values for our example.

2.2. Time Domain Estimation

A simple time domain method will be investigated for parameter estimation. Free

vibration test of a structure with M,C,K is used to explain this method. The relationship
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Figure 2.3. Magnitude of the FRF

between the damped and undamped natural frequency is known. Since TD = 2π
ωd

From

Equation 1.41, the relationship between the damped and undamped natural period can be

written as,

TD =
Tn√
1− ξ2

. (2.16)

Two consecutive peaks from the acceleration response data of the structure will be used

for estimation. Assume that the first peak is at time t, then the next peak must be at time

t + TD. By using Equation 1.44, the ratio of the acceleration function at these two time

instants can be taken and the Equation 2.17 can be derived easily.

x(t)

x(t + TD)
= exp(ξωnTD) = exp(

2πξ√
1− ξ2

) (2.17)

If the peaks in the time domain response is numbered as ith, i + 1th peak, one can write

that,

xi

xi+1

= exp(
2πξ√
1− ξ2

) . (2.18)

The natural logarithm of the ratio in Equation 2.18 is called the logarithmic decrement

which is denoted by δ.

δ = ln
xi

xi+1

=
2πξ√
1− ξ2

(2.19)

Since the damping ratio is so small, the term of
√

1− ξ2 will be approximately one. The

logarithmic decrement, δ will be,

δ = 2πξ . (2.20)
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Figure 2.4. Phase of the FRF

By using Equation 2.18 and 2.19, logarithmic decrement coefficient can be written by

means of xi’s.

x1

xj+1

=
x1

x2

x2

x3

x3

x4

...
xk

xk+1

= ekδ (2.21)

A relationship between the damping coefficient and the peak values can be written as,

δ =
1

j
ln

x1

xj+1

= 2πξ , (2.22)

ξ =
1

2πj
ln

xi

xi+j

. (2.23)

We showed that the damping ratio of a vibrational structure can be determined from ac-

celeration measurements. This method will be verified with an example computer simu-

lation. Assume that we have a SDOF vibrational system again which has a mass of 1 kg,

100 N/m spring constant and 1 Ns/m damping coefficient value. The impulse response of

this system is shown in Figure 2.5. Assume that we measure the impulse response data

at the first peak and the eleventh peak. MATLAB code in Appendix-A1 is used to obtain

the impulse response figure. Natural vibration period and frequency can be found as,

Td =
t11 − t1
11− 1

=
6.44− 0.16

10
= 0.628 sec , (2.24)

ωd =
2π

Td

≈ 10.0051 rad/s . (2.25)
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Figure 2.5. Impulse Response Function

Damping ratio can be determined by using Equation 2.23.

ξ =
1

2π10
ln

0.0924

0.004
= 0.05 (2.26)

Exact damping factor and damped natural frequency can be found by using Equations

1.38 and 1.40.

ξ =
c

2
√

mk
=

1

2
√

100
= 0.05 (2.27)

ωd =

√
k

m
− c2

4m2
=

√
100

1
− 1

4
≈ 9.9875 rad/s (2.28)

We showed that structural parameters of a SDOF vibrational system can be found

from time-domain measurements. Results of the time domain method is satisfactory.

However these simple estimation methods can’t be applied to a real system because of the

measurement noise. Advanced algorithms must be used for SDOF and MDOF systems to

counteract the noise.
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CHAPTER 3

PRE-PROCESSING TECHNIQUES

Before applying system identification algorithms, some pre-processing techniques

must be applied to experimental measurements. By using these techniques, noise in mea-

surements can be reduced, then the IRF or FRF data of the system can be found clearly.

Windowing, averaging, filtering are the main pre-processing techniques.

The experimental system in this study is a single-input multi-output(SIMO) system. We

repeated the experiment 5 times and we obtained 5 input-output data pair for each ref-

erence point. Acceleration measurements are taken from 10 reference point. At the end

of the experiment, we had 50 measurement files. By using all of these data files and

pre-processing techniques, IRF or FRF estimate of each data pair can be found.

3.1. Frequency Domain Division Method

To eliminate the noise from input data, we assumed that the noise signal is equal

to the input signal measurement after first 100 data points, as shown in Figure 3.1. By

Figure 3.1. Noise Estimation from Input Signal

taking the d.c. component of the noise signal and subtracting it from the input data, the

input data can be cleared from noise approximately.

After making a noise reduction, windowing process can be applied to input/output

data. Windowing is simply defined as multiplying the signal by a typical window func-
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tion. This process is used to minimize edge effects that results in spectral leakage in the

FFT spectrum. Exponential window is used for measurement data in our experiment.

Mathematically this process can be given as,

xw(t) = x(t)e−(t/τ) , (3.1)

where τ is called the exponential time constant. Also σ = 1/τ is called as damping or

decay rate. Generally decay rate is selected as,

σ = − ln(w(T )

T
, (3.2)

where w(T ) is the value of exponential window at the end of analyzer’s time record and

T is analyzer’s time record length.

To find the FRF’s of each input-output pair, FFT of the input and the output data

can be taken by using MATLAB. Then FRF of each pair can be found by,

H(f) =
Re[X(f)X∗(f)]

Y (f)X∗(f)
. (3.3)

By averaging all FRF’s of one reference point, the error in the estimate of the FRF’s can

be reduced. Then impulse response data of the system can be obtained by using inverse

FFT transform.

h̃(t) = IFT {H(f)} (3.4)

Pre-processing part of the study can be shown in a block diagram as in Figure 3.2.

Instead of division in frequency domain, an alternative method can be used to es-

timate the FRF. The autocorrelation and cross-correlation functions of input and output

data can be used to obtain a FRF estimation. The autocorrelation function and cross cor-

relation function are the inverse Fourier transforms of power spectral density and cross

spectral density of the input/output signals. The relation of correlation and spectral den-

sity functions can be given as,

SXY (f) = F{RXY (τ)} , (3.5)

SY Y (f) = F{RY Y (τ)} . (3.6)

By dividing the power spectral density of output signal by cross power spectral density of

input and output, the estimate of FRF can be obtained.

SXY (f) = H∗(f)SX(f) SY Y (f) = H∗(f)H(f)SX(f) (3.7)

Ĥ(f) =
SY Y (f)

SXY (f)
(3.8)
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Figure 3.2. Pre-processing

Finally we can take the IFFT of FRF estimate to obtain the IRF estimate of the experi-

mental system.

3.2. Time Domain IRF Estimation Method

For a successive modal parameter estimation, it is important to obtain the IRF after

making a well-arranged experiment. The output of a continuous time LTI system can be

obtained by taking the convolution integral of the input signal and the IRF of the system.

y(t) = x(t) ∗ h(t) =

∫ +∞

−∞
x(τ)h(t− τ)dτ (3.9)

It was shown that, FRF of an LTI system can be found by dividing the Fourier transform

of output signal by the Fourier transform of input signal as,

H(w) =
Y (w)

X(w)
. (3.10)

Once FRF is found, IRF can be found easily by taking the inverse Fourier transform of

the FRF. But there are two inconvenient cases for Equation 3.10.

1) At some frequencies the value of X(w) can be approximately zero and the

result of the division in Equation 3.10 can be extremely large.

2) The measurement noise can’t be modelled as a gaussian white or random gaus-

sian noise.

Because of these 2 serious problem, we searched a new method for estimating the

IRF. Consequently, we developed a correlation based IRF estimation algorithm.
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Assume that the sampling period of the continuous time LTI system is T seconds

and the duration of the IRF is LT seconds, so the sampled IRF can be written as,

h[n] =





0 n < 0

h(t)|t=nT , n = 0, · · · , L− 1,

0, n ≥ L.

. (3.11)

By assuming the duration of the input signal is M << L, the discrete time input signal

can be written as,

x[n] =





0 n < 0

x(t)|t=nT , n = 0, · · · ,M − 1,

0, n ≥ M.





. (3.12)

Since the input and output signals of the system is sampled, this system is a discrete

time system. The output of the system can be found by using convolution sum instead of

convolution integral.

y[n] = x[n] ∗ h[n] =
+∞∑

m=−∞
x[m]h[n−m] (3.13)

By using Equations 3.11 , 3.12 and 3.13, the output of the system can be written as,

y[n] =
M−1∑

k=0

x[k]h[n− k], n = 0, · · · ,M + L− 2 . (3.14)

By making the matrix definitions below,

h = [h[0], h[1], · · · , h[L− 1]]T , (3.15)

x = [x[0], x[1], · · · , x[M − 1]]T , (3.16)

y = [y[0], y[1], · · · , y[M + L− 2]]T , (3.17)

and the convolution operator X ,

X = Toeplitz{[x;0(L−1,1)], [x[0],0(1,L−1)]}

=




x[1] 0 . . . . . . . . . . . . 0

x[2] x[1] . . . . . . . . . . . . 0
...

... . . . . . . . . . . . .
...

x[M ] x[M − 1] . . . x[1]
... . . . 0

0 x[M ] x[M − 1] . . .
. . . . . . 0

... . . . . . . . . . . . . . . . ...

0 . . . 0 x[M ] . . . . . . x[1]




, (3.18)
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Equation 3.14 can be written as a matrix equation,

y = Xh , (3.19)

where y is the sampled response of the system, h is the impulse response vector and X

is the convolution matrix. The important point at Equation 3.19 is only h is unknown,

output and the input signal can be measured.

To estimate the impulse response vector of the system, the observation of the input can be

used. For this reason, the correlation of the input and output signal can be written as,

xcorr{x[n], y[n]} = XTy = XTXh . (3.20)

From Equation 3.20, estimate of IRF can be given as,

h̄ = (XTX)−1XTy , (3.21)

which is known as the least squares estimate of the system impulse response (Louis L.

Scharf 2001).

Input signal in our experiment is taken as a dirac delta function. Thus the rightmost

term in the Equation 3.20, XTXh can be taken as a multiplication of impulse response

vector by a scalar. The Equation 3.20 can be written as,

XTy = XTXh ≈ αIh = αh . (3.22)

The approximation in Equation 3.22 is acceptable when the input signal is obtained by

“hitting a hammer ”which closely resembles a Dirac Delta function. Note that the approx-

imation in Equation 3.22 becomes an equality when the input signal is a perfect Dirac

Delta function. The term of XTX is the autocorrelation of the input signal x[n], and this

can be represented by a diagonal matrix αI where α is the total energy of the input signal

x[n]. This relation can be shown as,

α = XTX =
M−1∑

k=0

x2[k] . (3.23)

By using Equation 3.22, an estimate of impulse response of the system can be written as,

ĥ =
1

α
XTy . (3.24)

In each case, Equation 3.21 gives more reliable results than Equation 3.24, because there

must be an approximation error from Equation 3.22. We compared the results of these

two equations in the next section.
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By using the estimates of the impulse response in Equation 3.24 and Equation

3.21, inconvenient cases in Equation 3.10 are solved. Now any parameter estimation

algorithm can be applied to estimated impulse response data to find the parameters of the

system.

3.3. Comparison of IRF Estimation Methods

IRF of the structure which is obtained from experimental data by using IRF es-

timation methods explained in former sections. A MATLAB simulation is performed to

compare these methods for one reference point. In Figures 3.3 and 3.5, estimated IRF’s

from frequency division method and time domain estimation methods are compared. In

Figures 3.4 and 3.6, the absolute relative error graphs are given for each method. Error

function in Figure 3.4 can be given as,

Absolute Relative Error =
|h̃− ĥ|
|h̃| . (3.25)

Also the error function in Figure 3.6 can be given as,

Absolute Relative Error =
|h̃− h̄|
|h̃| . (3.26)

From error graphics, we can say that IRF estimation which is obtained from Equation

3.21, h̄, is more reliable than ĥ. We expect this result because approximation in Equation

3.22 makes this error. h̄ or h̃ can be used for system identification algorithms. Figures

are obtained by using the MATLAB routine in Appendix-3. Also we will use the results

of this routine for system identification algorithms in next chapters.
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Figure 3.3. Comparison of h̃ and ĥ

Figure 3.4. Error Graph for h̃ and ĥ
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Figure 3.5. Comparison of h̃ and h̄

Figure 3.6. Error Graph for h̃ and h̄
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CHAPTER 4

POLYREFERENCE FREQUENCY DOMAIN METHOD

4.1. State Space Representation

In order to understand the polyreference frequency domain method, state-space

concept and its applications to vibrational systems must be known. In this section the

state-space representation will be introduced and an example about a vibrational system

will be given.

State space representation is a mathematical description of a physical model. General

equations of this representation are,

˙̄x = Ax̄ + Bu , (4.1)

y = Cx̄ + Du , (4.2)

where,

x̄ =




x1

.

.

xn




(4.3)

is the state vector which includes state variables as velocity or acceleration of a cart,

y =




y1

.

.

yq




(4.4)

is the output vector which includes outputs of the system, it can be the measurements in

an experiment,

u =




u1

.

.

up




(4.5)
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is the input vector, which contains the inputs that are applied to the system. In this repre-

sentation A is called state matrix, B is called input matrix, C is called output matrix and

D is called feedforward matrix . By using Laplace transform, one can describe the whole

system with a rational transfer function. Derivation of the transfer function begins with

taking the Laplace transform of the state equation,

˙̄x = Ax̄ + Bu , (4.6)

sX̄(s) = AX̄(s) + BU(s) , (4.7)

sX̄(s)− AX̄(s) = BU(s) , (4.8)

(sI − A)X̄(s) = BU(s) , (4.9)

X̄(s) = (sI − A)−1BU(s) . (4.10)

Equation 4.10 represents a relation between the input and the state. Another relation

between the input and the output can be written as,

y = Cx̄ + Du , (4.11)

Y (s) = CX̄(s) + DU(s) , (4.12)

Y (s) = C(sI − A)−1BU(s) + DU(s) , (4.13)

Y (s) = [C(sI − A)−1B + D]U(s) . (4.14)

From Equation 4.14, the transfer function of the system can be written as,

H(s) =
Y (s)

U(s)
, (4.15)

= [C(sI − A)−1B + D] . (4.16)

From Equation 4.16, it can be said that if A, B, C and D matrices is known, the transfer

function and IRF can be easily found. To understand the usage of state space representa-

tion for vibration systems, we will make an example for 2-DOF system in Figure 4.1. By

choosing the system states as the displacement and velocity of each cart,

x̄ =




x1

ẋ1

x2

ẋ2



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Figure 4.1. 2-DOF System

becomes the state vector and

u =


 u1

u2




becomes the input vector. Now a state-space representation can be defined by using differ-

ential equations of the system. From Figure 4.1, the equations of motion can be written.

From the first cart;

−m1ẍ1 − (c1 + c2)ẋ1 + c2ẋ2 − (k1 + k2)x1 + k2x2 + u1(t) = 0 , (4.17)

ẍ1 = −(k1 + k2)

m1

x1 +
(k2)

m1

x2 − (c1 + c2)

m1

ẋ1 +
c2

m1

ẋ2 +
1

m1

u1 , (4.18)

and from the second cart;

−m2ẍ2 + c2u̇1 − c2ẋ2 + k2x1 − k2x2 + u2(t) = 0 , (4.19)

ẍ2 =
k2

m2

x1 − k2

m2

x2 +
c2

m2

ẋ1 − c2

m2

ẋ2 +
1

m2

u2 . (4.20)

Equations of motion can be combined in state equation as,

˙̄x =




ẋ1

ẋ2

ẍ1

ẍ2




= Ax̄ + Bu =




0 0 1 0

0 0 0 1

− (k1+k2)
m1

(k2)
m1

− (c1+c2)
m1

c2
m1

k2

m2
− k2

m2

c2
m2

− c2
m2




x̄ +




0 0

0 0

1
m1

0

0 1
m2




u .

(4.21)

The output equation will be written according to the measurements. In our experiment

the acceleration is measured, so we must write the output equation for acceleration mea-

surement.

y =


 ẍ1

ẍ2


 = Cx̄ + Du =


 − (k1+k2)

m1

(k2)
m1

− (c1+c2)
m1

c2
m1

k2

m2
− k2

m2

c2
m2

− c2
m2


 x̄ +




1
m1

0

0 1
m2


 u
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(4.22)

If the displacement response is measured instead of acceleration, output equation could

be written as,

y =


 x1

x2


 = Cx̄ + Du =


 1 0 0 0

0 0 1 0


 x̄ . (4.23)

Many advantages of state space representation is used in this study. This representation

will be used frequently in the Frequency Domain Algorithm section. Once the A,B, C

and D matrices is known, it is easy to find transfer function and IRF of the system. By

using these matrices, system’s response to any input can be found in time domain or

frequency domain. Furthermore, this representation is useful for constructing the math-

ematical model in MATLAB environment. As seen from the MATLAB programs in the

Appendices, the artificial mathematical models is created easily and by using these mod-

els the modal analysis algorithm is verified easily.

4.2. Frequency Domain Algorithm

In first chapter, it was shown that a linear mechanical system can be defined by

M ẍ(t) + Cẋ(t) + Kx(t) = u(t) , (4.24)

where M , C and K are the mass, damping and stiffness matrices. For a time invariant

system , these matrices are constant and real. Vector x represents the displacement Then

ẋ(t) and ẍ(t) becomes velocity and acceleration. Transfer function of the system can be

written as,

H(s) =
X(s)

U(s)
=

output

input
. (4.25)

If the external input, u, is a dirac delta function, laplace transform of input function will

be unity,

U(s) = 1 , (4.26)

then displacement response of the cart will be equal to the IRF.

H(jw) = X(jw) ⇐⇒ H(s) = X(s) ⇐⇒ h(t) = x(t) (4.27)
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The Equation 4.24 can be written as,

M ḧ(t) + Cḣ(t) + Kh(t) = uδ(t) . (4.28)

Since M is a non-singular matrix, by multiplying with M−1 each side of the Equation

4.28,

M−1M ḧ(t) + M−1Cḣ(t) + M−1Kh(t) = M−1uδ(t) , (4.29)

ḧ(t) + M−1Cḣ(t) + M−1Kh(t) = M−1uδ(t) . (4.30)

By setting A0 = M−1K , A1 = M−1C and B0 = M−1, Equation 4.30 can be written as,

ḧ(t) = −A1ḣ(t) − A0h(t) + B0uδ(t) . (4.31)

If the states of the system is chosen as

x̄ =


 ḣ(t)

h(t)


 , (4.32)

then a state-space representation can be written for our system. It is important to note

that x̄ represents the state vector and x represents the displacement response, they are

different from each other.

˙̄x =


 ḧ(t)

ḣ(t)


 =


 −A1 −A0

I 0


 x̄ +


 B0

0


 u (4.33)

Equation 4.33 is the state equation. In this equation, vector x represents the states and

vector u represents the inputs. To complete the state space representation, output must be

written. The output can be taken as the displacement of the structure.

y = h(t) =
[

0 I
]
x̄ (4.34)

Equation 4.34 is also called the observation equation. The state space representation of

the system defined in Equation 4.24 is obtained as

˙̄x = Ax̄ + Bu

y = Cx̄ , (4.35)

where A, B and C are given in Equations 4.33 and 4.34. Transfer function for the me-

chanical system can be written by using Equation 4.35 ,

H(s) = C[sI − A]−1B ⇐⇒ h(t) = CeAtB . (4.36)
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The input-output relationship for a linear time-invariant system can be written as,

Y (s) = H(s)U(s) , (4.37)

y(t) = h(t) ∗ u(t) , (4.38)

where y(t) is output, u(t) is input and h(t) is the impulse response, note that ∗ is the

convolution operator and Y (s) = L{y(t)} , H(s) = L{h(t)} and U(s) = L{u(t)} .

Output of the system can be written as,

y(t) = CeAtBu(t) . (4.39)

By taking the derivative of Equation 4.39, ẏ(t) and ÿ(t) can be derived easily.

ẏ(t) = CAeAtBu(t) + CeAtBu̇(t) (4.40)

L{ẏ(t)} = sY (s)− y(0) (4.41)

ÿ(t) = CA2eAtBu(t) + 2CAeAtBu̇(t) + CeAtBü(t) (4.42)

L{ÿ(t)} = s2Y (s)− sy(0)− ẏ(0) (4.43)

By applying Laplace transform to the Equation 4.31,

L{ḧ(t)}+ A1L{ḣ(t)}+ A0L{h(t)} = M−1 . (4.44)

To find L{ḣ(t)} and L{ḧ(t)} in Equation 4.44, the differentiation properties of Laplace

transform can be used.

df(t)

dt
⇐⇒ sF (s)− f(0−) (4.45)

d2f(t)

dt2
⇐⇒ s2F (s)− sf(0−)− ḟ(0−) (4.46)

By setting L{h(t)} = H(s) and applying the Laplace properties in Equation 4.45 and

4.46 to Equation 4.36,

L{ḣ(t)} = sH(s)− h(0−) = sH(s)− CB , (4.47)

L{ḧ(t)} = s2H(s)− sh(0−)− ḣ(0−) = s2H(s)− sCB − CAB . (4.48)

Lets consider the input-output relation of the mechanical system,

ÿ(t) + A1ẏ(t) + A0y(t) = M−1u(t) (4.49)

[ s2Y (s)− sy(0)− ẏ(0) ] + A1[ sY (s)− y(0)] + A0Y (s) = M−1U (s) (4.50)
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y(0) and ẏ(0) must be evaluated to simplify the Equation 4.50 and to obtain the identifi-

cation equation.

y(0) = [CeAtBu(t)]t=0 = CBu(0) = 0 , (4.51)

since CB = 0.

ẏ(0) = [ CAeAtBu(t) + CeAtBu̇(t) ]t=0 (4.52)

In Equation 4.52 the term [ CeAtBu̇(t) ]t=0 is taken as zero in the original article (Lem-

bregts and Leuridan 1990). But we found that that term is not zero, this error affects the

identification equation. To find the value of this term, a property and its proof is given,

Property :

eatδ(t)′ = −aδ(t) + δ(t)′ (4.53)

eAtδ(t)′ = −Aδ(t) + Iδ(t)′ (4.54)

Proof :
∫ +∞

−∞
f(t)δ′(t)dt = −

∫ +∞

−∞
f ′(t)δ(t)dt = −f ′(0) (4.55)

∫ +∞

−∞
φ(t)[eatδ′(t)]dt =

∫ +∞

−∞
[φ(t)eat]δ′(t)dt (4.56)

= −[φ(t)aeat + φ(t)′eat]t=0 (4.57)

= −[φ(0)a + φ(0)′] (4.58)

= −
∫

aφ(t)δ(t)dt +

∫
φ(t)δ(t)′dt (4.59)

=

∫
φ(t)[−aδ(t) + δ(t)′]dt (4.60)

The wrong term can be written as,

[ CeAtBu̇(t) ]t=0 = [ −CABu(0) + CBu̇(t) ]t=0

= −CABu(0) , (4.61)

since CB = 0. Then by putting this result to Equation 4.52,

ẏ(0) = CABu(0)− CABu(0)

= 0 . (4.62)
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Equation 4.50 can be written as,

s2Y (s) + A1sY (s) + A0Y (s) = M−1U(s) , (4.63)

[ s2I + A1s + A0]Y (s) = M−1U(s) . (4.64)

When input is dirac delta function, u(t) = δ(t), its laplace transform becomes U(s) = 1

and output will be the impulse response of the linear system.

[ s2I + A1s + A0]H(s) = M−1 (4.65)

In our experiment, the acceleration response of the system can be measured only, so the

system must be identified according to the acceleration measurements. Equation 4.65

must be written according to the acceleration transfer function, Ha(s). It was shown that

ḧ(t) is the acceleration response, since h(t) is the displacement response. Let L{ḧ(t)} =

Ha(s) = s2H(s), then

H(s) = Ha(s)/s
2 , (4.66)

L{ḣ(t)} = sH(s) = Ha(s)/s . (4.67)

By putting Equations 4.66 and 4.67 into equation 4.65,

Ha(s) + A1
Ha(s)

s
+ A0

Ha(s)

s2
= M−1 , (4.68)

s2Ha(s) + A1sHa(s) + A0Ha(s) = s2M−1 , (4.69)

[ s2 + A1s + A0]Ha(s) = s2M−1 . (4.70)

By setting B0 = M−1 , the equation for identification can be completed as,

[s2I + A1s + A0]Ha(s) = s2B0 . (4.71)

There are 3 unknowns in Equation 4.71, A0, A1 and B0. To find these unknowns, least

square solution methods will be used. The Equation 4.71 can be written in frequency

domain, by setting s = jw,

[(jw)2I + A1jw + A0]Ha(jw) = (jw)2B0 . (4.72)
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where j is the square root of−1 and w is the angular frequency. For s = jw1, jw2, ..., jwm

one can write that,

[ (jw1)
2 + A1jw1 + A0]Ha(jw1) = (jw1)

2B0 (4.73)

[ (jw2)
2 + A1jw2 + A0]Ha(jw2) = (jw2)

2B0

[ (jw3)
2 + A1jw3 + A0]Ha(jw3) = (jw3)

2B0

.

.

.

Equation set 4.73 can be combined in a matrix notation.

[
jwHa(jw) Ha(jw) −(jw)2

]



A1

A0

B0


 = −(jw)2Ha(jw) (4.74)

Consequently, the matrix Equation 4.74 can be written as,

FG = H . (4.75)

Equation 4.74 is the last part of the identification. The exact value of F and H matrices

can be written easily from acceleration measurements. We want to find G matrix which

includes A1 , A0 and B0 . According to acceleration measurements, the row number of

F is much more than the column number. These systems are called as overdetermined

systems, equation number is much more than the number of unknowns. Generally these

systems can be solved by using least-square techniques like QR decomposition or Singu-

lar value decomposition. After solving G vector by least-square techniques, M , C and

K matrices and other system parameters can be easily calculated.

Derivation of the least-square approximation of the matrix Equation 4.75 is given be-

low. F is a m × n matrix and m ≥ n, so the inverse of this matrix can’t be taken. By

multiplying each side of the Equation 4.75 with F T ,

F T FG = F T H . (4.76)

Since F is a m× n matrix, F T F is a m×m matrix, and the inverse of this matrix can be

taken, then finding G matrix becomes possible.

[F T F ]−1[F T F ]G = [F T F ]−1F T H (4.77)

G = [F T F ]−1F T H (4.78)
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The term [F T F ]−1F T is called the “pseudo inverse ”. Once matrix G is found, A1 , A0

and B0 can be written easily. It was shown that B0 = M−1, so mass matrix can be found.

If mass matrix is known, stiffness and damping matrices can be found from equations

A0 = M−1K and A1 = M−1C.

To verify this method in a computer simulation, a MATLAB script is written. The

MATLAB routine in Appendix-A2 takes the Mass, Stiffness, Damping matrices and the

model order from user, then it creates an artificial N -degree of freedom vibrational system

and its frequency domain response functions by using the state-space representation in

Equation 4.33. By using only the FRF’s, polyreference frequency domain identification

algorithm is used to obtain the damped natural frequencies and the damping ratios of the

system.

For an example simulation, mass, stiffness and damping matrices are taken as below.

M =


 10 0

0 5


 C =


 12 −6

−6 6


 K =


 1200 −600

−600 600


 . (4.79)

FRF’s of this system can be obtained as in Figure 4.2 and 4.3.

Figure 4.2. Magnitude of the FRF’s of 2-DOF System
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By using the frequency response datas in Figure 4.2 and 4.3, the parameters of the

system can be extracted from PFD algorithm. The results of the MATLAB routine is in

the Table 4.1. Relative error in this table can be defined as,

Absolute Relative Error =
|fexact − festimated|

fexact

. (4.80)

It can be said that from any FRF, the natural frequencies of the system can be extracted.

These results shows that, if the frequency response data of the system is measured clearly,

modal parameters of the system can be extracted by using PFD algorithm.

Figure 4.3. Phase of the FRF’s of 2-DOF System

Table 4.1. Results of PFD Simulation

Theoretical Natural Frequency Estimated Natural Frequency Relative Error

14.31268017327243 14.27598321867646 0, 0025

5.92850624167794 5.925901040354 0, 00044
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After this verification, we tried to find the modal parameters of our experimental

material. First the time domain response and the input of the system is measured, then we

took the Fast Fourier Transform (FFT) of them. By dividing the frequency response of

the output and input, we found the FRF of the whole system. Then we applied the PFD

algorithm for this data. Estimated natural frequencies and damping ratios were not sat-

isfactory. Because of the noise in the measurement, we couldn’t successfully implement

the PFD algorithm for real measurement data. We decided to search any other advanced

algorithm for experimental data.
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CHAPTER 5

LEAST SQUARES COMPLEX EXPONENTIAL

METHOD

As shown in Equation 1.64, a N-DOF MIMO system’s transfer function from ith

node to jth node can be written as,

Hij(s) =
N∑

r=1

[
Aij(r)

s− sr

+
A∗

ij(r)

s− s∗r

]
. (5.1)

For Aij(r) = A∗
ij(r) and sr = s∗r , transfer function can be written as,

Hij(s) =
2N∑
r=1

Aij(r)

s− sr

. (5.2)

Then by using inverse Laplace transform, IRF of the system can be found as,

hij(t) =
2N∑
r=1

Aij(r)e
srt . (5.3)

If this IRF is sampled by equally spaced time intervals k∆, we will have a discrete data

about the impulse response of the system. Actually at the end of the experiment, we have

only this discrete data. This data will be used to find the parameters of the system.

h(k∆) =
2N∑
r=1

Aij(r)e
srk∆ (k = 0, 1, ...., 2N) (5.4)

By setting zr = esr∆, the IRF can be written as,

h[k] = h(k∆) =
2N∑
r=1

Aij(r)z
k
r (k = 0, 1, ...., 2N) . (5.5)

At this point a fitting method called Prony’s method will be used for the discrete impulse

response data. This method was developed by Gaspard Riche de Prony in 1795. Prony’s

method extracts valuable information from a uniformly sampled signal and builds a series

of damped complex exponentials or sinusoids. This allows for the estimation of fre-

quency, amplitude, phase and damping components of a signal. By using this method the

poles of the system can be found. First assume that zr is the solution of the polynomial,

β0 + β1zr + β2z
2
r + .... + β2N−1z

2N−1
r + β2Nz2N

r = 0 (Prony Equation) . (5.6)
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The aim is to find all β’s and by using them zr values can be found. By multiplying hk

with βk in Equation 5.5 and take a sum from k = 0 to 2N ,

2N∑

k=0

βkh[k] =
2N∑

k=0

βk

2N∑
r=1

Aij(r)z
k
r , (5.7)

2N∑

k=0

βkh[k] =
2N∑
r=1

Aij(r)

2N∑

k0

βkz
k
r . (5.8)

From the assumption in the Equation 5.6, the term
∑2N

k=0 βkz
k
r is zero.

2N∑

k=0

βk[k] = 0 (5.9)

β0h[0] + β1h[1] + β2h[2] + .... + β2N−1h[2N − 1] = −β2Nh[2N ] (5.10)

By setting β2N = −1, Equation 5.10 can be written as,

β0h[0] + β1h[1] + β2h[2] + .... + β2N−1h[2N − 1] = h[2N ] . (5.11)

The values of h[0], h[1], ... are known from IRF data. If 4N samples are taken from the

IRF and the hankel matrix is constructed as,



h[0] h[1] h[2] . . . h[2N − 1]

h[1] h[2] h[3] . . . h[2N ]

. . . . . . .

. . . . . . .

. . . . . . .

h[2N − 1] h[2N ] h[2N + 1] . . . h[4N − 2]







β0

β1

.

.

.

β2N−1




=




h[2N ]

h[2N + 1]

.

.

.

h[4N − 1]




,

(5.12)

β values can be found easily by using matrix inversion. Also the number of rows in

Equation 5.12 can be increased for a least-square solution. Last matrix equation can be

renamed as Hβ = h. From least-square approximation, β vector can be found easily.

Then zr values can be found from the Equation 5.6. After that, natural frequencies and

damping ratios can be found by using zr values from,

β = (HT H)−1HT h , (5.13)

wr =
1

∆

√
ln zr ln z∗r , (5.14)

ζr =
− ln(zrz

∗
r )

2wr∆
. (5.15)
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Consequently, the identification matrix equation must be constructed initially and then

this equation must be solved for all β values. By using the polynomial assumption and

β values zr values can be found. Then by using zr’s, natural frequencies and damping

factors can be found.

To verify this method in a computer simulation, a MATLAB script is written. The MAT-

LAB routine in Appendix-A3 takes the Mass, Stiffness, Damping matrices and the model

order from user, then it creates an artificial N -degree of freedom vibrational system and

its time domain IRF’s by using the state-space representation in Equation 4.33. By using

only the IRF’s, the time domain identification algorithm is used to obtain the damped nat-

ural frequencies and the damping ratios of the system.

For an example simulation mass, stiffness and damping matrices are taken as,

M =


 10 0

0 5


 C =


 12 −6

−6 6


 K =


 1200 −600

−600 600


 . (5.16)

Then the IRF’s of this 2-DOF system can be obtained as in Figure 5.1. By using the data

sets in Figure 5.1, the parameters of the system can be extracted from LSCE algorithm.

The results of the MATLAB routine is in the Table 5.1. Relative error in this table can be

defined as,

Absolute Relative Error =
|fexact − festimated|

fexact

. (5.17)

These results shows that, if the impulse response data of the system is measured clearly,

the modal parameters of the system can be estimated by using LSCE algorithm.

After this verification, we tried to find the modal parameters of our experimen-

tal material. The MATLAB routine in Appendix-5 performs the LSCE algorithm for the

data which is obtained from pre-processing part. An overdetermined system is built and a

block of natural frequency is found from LSCE algorithm. Natural frequencies which are

close to X-Modal Analysis and SAP2000 results are selected as estimated natural frequen-

cies, these are given in Tables 5.2 and 5.3. SAP2000 is a software which makes a finite

element analysis for a given structural material’s dimensions and parameters. For our

experiment, the dimension of the beam is given to this software, then SAP2000 program

finds the natural frequency of the experimental structure by utilizing a modal analysis al-

gorithm. X-Modal program applies a modal analysis algorithm and a complex mode indi-

cator function for real measurement data. By using X-Modal program, any measurement
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Figure 5.1. IRF’s of 2-DOF System

data set can be processed and the natural frequency values of the experimental structure

can be found. All X-Modal Analysis and SAP Model results are taken from (Karakan

2008). Three of the estimated natural frequencies is very close to analytical results, it

can be said that three of them is estimated succesfully. Lowest frequency couldn’t be

detected, its relative error is so large. As shown in Tables Tables 5.2 and 5.3, we couldn’t

successfully run the LSCE algorithm for real measurement data because of the noise. We

decided to search any other advanced algorithm for experimental data.
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Table 5.1. Results of LSCE Simulation for Artificial Data

IRF Theoretical Natural Frequency Estimated Natural Frequency Relative Error

h11 14.31268017327243 14.31268017326813 3.10−13

h11 5.92850624167794 5.92850624166910 1, 5.10−12

h12 14.31268017327243 14.31268017326593 4.10−13

h12 5.92850624167794 5.92850624169114 2.10−12

h21 14.31268017327243 14.31268017328763 1.10−12

h21 5.92850624167794 5.92850624166432 2.10−12

h22 14.31268017327243 14.31268017326908 2.10−13

h22 5.92850624167794 5.92850624168014 3, 7.10−13

Table 5.2. Comparison of X-modal Analysis and LSCE Simulation Results

Modal Analysis Frequency in Hz Estimated Frequency in Hz Relative Error(%)

24 30.58 27

85.1 87.78 3.1

192.3 192.37 0.03

341.7 360.07 5.3

Table 5.3. Comparison of SAP2000 Analysis and LSCE Simulation Results

Sap Model Frequency in Hz Estimated Frequency in Hz Relative Error(%)

23.5 30.58 30.1

87.7 87.78 0.1

194.5 192.37 1.1

343.7 360.07 4.7
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CHAPTER 6

EIGENSYSTEM REALIZATION ALGORITHM

One of the popular modal analysis techniques for civil structures is the eigensys-

tem realization algorithm. In this chapter a summary of this algorithm will be given and

after that the verification of the algorithm will be made by a MATLAB simulation. Jer-

Nan Juang and Richard Pappa developed ERA at the NASA Langley Research Center in

1985. ERA is a minimum order realization technique and it is an extension of the Ho-

Kalman algorithm that uses singular value decomposition technique for denoising. ERA

begins with the definition of the Markov parameter of a state-space model. Consider a

discrete time state space model such that,

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k] . (6.1)

To obtain the impulse response of the system, the input must be an impulse, it can be a

dirac delta. If u[k] = δ[k], the output y[k] will be the impulse response of the system

h[k]. If we start to write the h[k]’s beginning from the zero-state by assuming the system

is initially at rest,

h[0] = Cx[0] + Dδ[0] = D

x[1] = Ax[0] + Bδ[0] = B

h[1] = Cx[1] + Dδ[1] = CB

x[2] = Ax[1] + Bδ[1] = AB

h[2] = Cx[2] + Dδ[2] = CAB

h[3] = CA2B

.

.

h[n] = CAn−1B (6.2)
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The impulse response of the system can be written as,

h[n] =





D, n = 0

CAn−1B, n > 0.
. (6.3)

The term of CAn−1B is called the Markov parameter of the system. By using these

parameters one can define the impulse response of the system.

Y [k] = CAk−1B (6.4)

Consequently, the identification problem is: Given values of Y [k]’s, construct the constant

matrices A, B and C to identify the system. The algorithm begins by constructing a rxs

generalized Hankel matrix,

Hrs[k] =




Y [k] Y [k + t1] . . . . Y [k + ts−1]

Y [j1 + k] Y [j1 + k + t1] . . . . Y [j1 + k + ts−1]

. . . . . . .

. . . . . . .

. . . . . . .

Y [jr−1 + k] Y [jr−1 + k + t1] . . . . Y [jr−1 + k + ts−1]




.

(6.5)

where ji(i = 1, ..., r − 1) and ti(i = 1, ..., s − 1) are arbitrary integers. Controllability

and observability matrices of a state-space system can be written by using A, B and C

matrices as in,

Vr =




C

CAj1

CAj2

.

.

CAjr−1




, (6.6)

Ws = [B, At1B,At2B, ..., Ats−1B] , (6.7)

where Vr is the observability matrix and Ws is the controllability matrix. The Hankel ma-

trix in Equation 6.5 can be written by means of observability and controllability matrices

as,

Hrs[k] = VrA
kWs . (6.8)
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Assume that there exists a matrix H# satisfying the relation,

WsH
#Vr = In , (6.9)

where In is an identity matrix of order n. From Equations 6.8 and 6.9,

Hrs[0]H#Hrs[0] = VrWsH
#VrWs = VrWs = Hrs[0] . (6.10)

It can be said that H# is the pseudoinverse of the matrix Hrs[0].

H# = [[Hrs[0]]T [Hrs[0]]]−1[Hrs[0]]T (6.11)

Now a general solution for H# will be given. By writing the singular value decomposition

of Hrs[0] as,

Hrs[0] = PDQT , (6.12)

where D is a diagonal matrix which consists the singular values of Hrs[0]. By combining

the matrices P and D,

Hrs[0] = PDQT = [PD][QT ] = PdQ
T . (6.13)

The matrices Pd, QT , Ws and V T
r has rank and row number n. By using Equation 6.8

with k = 0,

VrWs = Hrs[0] = PdQ
T . (6.14)

Multiplying left side by P T
d and solving for QT ,

TWs = (P T
d Pd)

−1P T
d VrWs = QT . (6.15)

Consider a U matrix such as,

U = WsQ(QT Q)−1 = WsQ . (6.16)

It can be seen that TU = I from Equations 6.15 and 6.16. T is nonsingular. By using the

relation TU = I and Equations 6.15 and 6.16,

Ws[Q(P T
d Pd)

−1P T
d ]Vr = In . (6.17)

Now matrix H# can be extracted as,

H# = [Q][(P T
d Pd)

−1P T
d ] = [Q][D−1P T ] = QP#

d . (6.18)
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By defining ET
p = [Ip, 0p, ..., 0p] and ET

m = [Im, 0m, ..., 0m] where 0p is a null matrix of

order p and Ip is an identity matrix of order p and by using Equations 6.8, 6.9 and 6.18, a

minimum order realization can be obtained.

Y [k + 1] = ET
p Hrs[k]Em = ET

p VrA
kWsEm

= ET
p VrWsH

#VrA
kWsH

#VrWsEm

= ET
p Hrs[0]QP#

d VrA
kWsQP#

d Hrs[0]Em

= ET
p Hrs[0]Q[P#

d Hrs[1]Q]kP#
d Hrs[0]Em

= ET
p Pd[P

#
d Hrs[1]Q]kQT Em

= ET
p PD1/2[D−1/2P T Hrs[1]QD−1/2]kD1/2QT Em

The minimum order realization of the matrices [A,B,C] is

[D−1/2P T Hrs[1]QD−1/2, D1/2QT Em, ET
p PD1/2]. The system in Equation 6.1 can

be written with these parameters,

x[k + 1] = D−1/2P T Hrs[1]QD−1/2x[k] + D1/2QT Emu[k]

y[k] = ET
p PD1/2x[k] , (6.19)

where

x[k] = WsQD−1/2x[k] . (6.20)

Consequently, we can say that a discrete time LTI dynamical system can be identified

from the measurement functions if the system is controllable and observable. Matrices

Vr and Ws must be full rank for controllability and observability of the system. Natu-

ral frequencies and the damping ratios of the vibrational system can be found from the

eigenvalues of the realization of the matrix A. Remember that the imaginary part of the

eigenvalues of matrix A gives us the natural frequencies of the system.

To verify ERA in a computer simulation, a MATLAB script is written. The MAT-

LAB routine in Appendix-A4 takes the Mass, Stiffness, Damping matrices and the model

order from user, then it creates an artificial N -degree of freedom vibrational system and

its time domain IRF’s by using the state-space representation in Equation 4.33. By using

only the impulse response functions, ERA is used to obtain the damped natural frequen-

cies and the damping ratios of the system.
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For an example simulation mass, stiffness and damping matrices are taken as,

M =


 10 0

0 5


 C =


 12 −6

−6 6


 K =


 1200 −600

−600 600


 . (6.21)

IRF’s of this 2-DOF system is given in Figure 5.1. By using the data sets in Figure

5.1 only, the parameters of the system can be extracted from ERA. The results of the

MATLAB routine is in the Table 6.1. Relative error in this table can be defined as,

Absolute Relative Error =
|fexact − festimated|

fexact

. (6.22)

As shown, the natural frequencies and damping ratios of any system can be extracted

from any IRF. These results shows that, if we can measure the impulse response data

of the system clearly, we can extract the modal parameters of the system by using ERA

algorithm.

Table 6.1. Results of ERA Simulation for Artificial Data

IRF Theoretical Natural Frequency Estimated Natural Frequency Relative Error

h11 14.31268017327243 14.27598321866659 25.10−4

h11 5.92850624167794 5.92590104035906 4.10−4

Table 6.2. Comparison of X-modal Analysis and ERA Simulation Results

Modal Analysis Frequency in Hz Estimated Frequency in Hz Relative Error(%)

24 25.11 4.6

85.1 85.55 0.5

192.3 194.33 0.03

341.7 346.65 1.0

After this verification, we apply the ERA algorithm for experimental data in a

MATLAB simulation. An overdetermined system is built and a block of natural frequency

is found from LSCE algorithm. Some frequencies are eliminated by using a consistent

mode indicator function(Pappa and Elliott 1992), finally 4 natural frequency is found.

As shown in Tables 6.2 and 6.3, estimated natural frequencies were so close to analytical

results. In spite of the measurement noise, performance of the ERA is satisfactory. It can

be said that ERA is more effective than LSCE or PFD for noisy systems.
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Table 6.3. Comparison of SAP2000 Analysis and ERA Simulation Results

Sap Model Frequency in Hz Estimated Frequency in Hz Relative Error(%)

23.5 25.11 6.8

87.7 85.55 2.4

194.5 194.33 0.08

343.7 346.65 0.86
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CHAPTER 7

STATE ESTIMATION FOR DYNAMICAL SYSTEMS

In this chapter, we study the state estimation problem of a linear dynamical system

with a Kalman filter. In addition, we integrated ERA with Kalman filter to find more

accurate estimates. As shown in Figure 7.1, ERA supplies an initial estimate for this

method. The initial estimate of state space matrices found from ERA will be used in this

algorithm to construct a successful mathematical model. Now lets begin with introducing

the state estimation with Kalman filter.

Figure 7.1. Usage of ERA and Kalman Filter

A discrete time LTI system can be defined by state space equations as,

x[k] = Ax[k − 1] + Bu[k − 1] + w[k − 1]

y[k] = Cx[k] + v[k] , (7.1)

where process noise, w, is normally distributed with zero-mean and covariance Q, the

measurement noise, v, is normally distributed with zero-mean and covariance R. During

the estimation process the term of x̂[n|m] represents the estimate of x at time n, given

observations up to and including time m. The filter can be defined mathematically by

using two variables, first one is the estimate of state at time k , x̂[k|k], and the second one

is the error covariance matrix, P [k|k] which gives us the accuracy of the state estimate
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(Bar-Shalom and Kirubarajan 2001). There are 2 steps for filtering process; Prediction

and Update. In prediction step, a state from previous time instant is taken and it is used to

obtain a present-time state estimate. The mathematical definition of the prediction step is

such as,

x̂[k|k − 1] = Ax̂[k − 1|k − 1] + Bu[k − 1] , (7.2)

P [k|k − 1] = AP [k − 1|k − 1]AT + Q[k − 1] , (7.3)

where x̂[k|k − 1] is the predicted state and P [k|k − 1] is the predicted state covariance.

After the prediction, the estimate of the state must be improved by using the measurement.

This step is called as update and it can be defined as,

Inn[k] = y[k]− Cx̂[k|k − 1] , (7.4)

S[k] = CP [k|k − 1]CT + R[k] , (7.5)

K[k] = P [k|k − 1]C[k]T S[k]−1 , (7.6)

where Inn[k] is the innovation or measurement residual, S[k] is the innovation covariance

and K[k] is the optimal kalman gain. State and the error covariance can be updated by

using these parameters.

x̂[k|k] = x̂[k|k − 1] + K[k]ŷ[k] (7.7)

P [k|k] = [I −K[k]C]P [k|k − 1] (7.8)

x̂[k|k] is the updated state estimate and P [k|k] is the updated estimate covariance. By

using these steps iteratively, the states of a linear dynamical system can be estimated

successfully.

An example is done for state estimation with Kalman filter. Consider a SDOF

vibrational system which has a mass of 5 kg, 80 N/m spring constant and 4 Ns/m damping

coefficient value. By assuming that the system has no process noise, state space equations

can be written as

x[k] = Ax[k − 1] + Bu[k − 1]

y[k] = Cx[k] + v[k] . (7.9)

To verify Kalman filter in a computer simulation, a MATLAB script is written. The

MATLAB routine in Appendix-A5 takes the Mass, Stiffness, Damping matrices and the
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model order from user, then it creates an artificial N -degree of freedom vibrational system

by using the state-space representation in Equation 4.33. The input, u, is taken as a dirac

delta function and the measurement noise, v, is taken as a zero mean, unity variance white

noise. By using only the measurement data and initial state values, state estimation of the

system is found by Kalman filter.

Figure 7.2. State Estimation and Error with SNR=0dB

Position and velocity states of the structure and the estimation error variances is

shown in Figure 7.2, 7.3 and 7.4 for different signal-to-noise ratio (SNR) values. SNR

is a term that compares the level of a desired signal to the level of background noise.

Mathematically, SNR is defined as the power ratio between a signal and the noise,

SNR(dB) = 10 log

(
Psignal

Pnoise

)
, (7.10)

where dB is decibel. As shown in Figures 7.2, 7.3 and 7.4, when SNR value gets larger, so

that the signal power gets larger, error variances gets smaller. Exact states and estimated

states are so close to each other.
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Figure 7.3. State Estimation and Error with SNR=20dB

As comparison graphs of the estimated states and exact states, consistency of the

filter is also important. Consistency of a filter is the convergence of the estimate to the

true value. Consistency in the mean square sense can be defined as,

lim
k→∞

E[[x̂(k, Y k)− x0]
2] = 0 . (7.11)

To decide the consistency of our filter, we made a statistical test. The error function is

taken as,

ε(k) = x̃[k|k]T P [k|k]−1x̃[k|k], x̃[k|k] = x[k|k]− x̂[k|k] . (7.12)

ε(k) is also called Normalized State Estimation Error Squared (NEES) and this variable

can be taken as a chi-square random variable. Chi-square Distribution is defined as

ε ∼ χ2
nx
→ ε =

k∑
i=1

x2
i , (7.13)

where xi’s are k independent, normally distributed random variables with mean 0 and
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Figure 7.4. State Estimation and Error with SNR=40dB

variance 1. The statistical properties of a chi-square random variable can be shown as,

f(x; k) =





1
2k/2Γ(k/2)

x(k/2)−1e−x/2 x > 0

0 x ≤ 0





E(X) = k

V ar(X) = 2k , (7.14)

where f(x; k) is the probability density function, E(X) is the expected value, V ar(X) is

the variance and k is the degree of freedom of the random variable X . Also its probability

density function is shown as in Figure 7.5. Tail probability values for chi-square PDF can

be found from a chi-square table. An example table is shown in Figure 7.6. For a single

Kalman filter run, given probability value, Q, the one-sided probability region of a 2-DOF

chi-square random variable is [0, χ2
2(1 − Q)], and the two-sided probability region of a

2-DOF chi-square random variable is [χ2
2(

Q
2
), χ2

2(
1−Q

2
)]. These regions can be used to test

the consistency of the filter. If NEES function stays in these regions with probability Q,

we can say that filter is consistent. In filtering process, random noise is used for obtaining
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Figure 7.5. Chi-square PDF

Figure 7.6. Tabulated values for Chi-Square PDF

noisy output data, so noise data changes for every single run. To reduce this error, Monte

Carlo simulation method is used to test the consistency again. Monte Carlo Simulation

is repeating random sampling to compute any algorithm. It is generally used to examine

the performance of an estimation algorithm. For N Monte Carlo simulations, the error

function gets smaller and our interval for statistical test gets smaller.

εx =
1

N

N∑
i=1

εi
x → Nεx ∼ χ2

Nnx
(7.15)

where εx are the sample average NEES from N independent runs. P = 1 − Q two-sided
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probability region for Nεx is [ε
′
1, ε

′
2] where,

ε
′
1 = χ2

Nnx

(
Q

2

)
,

ε
′
2 = χ2

Nnx

(
1− Q

2

)
. (7.16)

So probability region for εx is,

[ε1, ε2] = [ε
′
1/N, ε

′
2/N ] . (7.17)

To verify the consistency of our Kalman filter in a computer simulation, a MATLAB script

is written. In this routine, we run the Kalman filter algorithm for a single-run, 2, 5, 10,

25 and 50 Monte Carlo runs with probability values Q = 0.05, Q = 0.02 and Q = 0.01.

For example, Q = 0.05 means that, NEES, error function, must be in probability region

with 95% probability. NEES graphs are shown in Figure 7.7, 7.8 and 7.9. As shown in

these figures, NEES function always stays in the probability regions, so it can be said that

our Kalman filter is consistent and we can use it to estimate the states of our system from

noisy output data sets.

Figure 7.7. NEES with probability Q=0.05
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Figure 7.8. NEES with probability Q=0.02

Figure 7.9. NEES with probability Q=0.01
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A MATLAB routine is written to implement the block diagram in Figure 7.1. An-

alytical results are shown in Tables 7.1 and 7.2, they are so close to the results of ERA

and Kalman filter. We can say that Kalman filter is working successfully with ERA. We

showed that the states of a LTI dynamical system can be estimated from noisy observa-

tions by using a consistent Kalman filter.

Table 7.1. Comparison of X-modal Analysis and ERA&Kalman Simulation Results

Modal Analysis Frequency in Hz Estimated Frequency in Hz Relative Error(%)

24 24.91 3.8

85.1 85.64 0.6

192.3 194.34 1.06

341.7 346.5 1.4

Table 7.2. Comparison of SAP2000 Analysis and ERA&Kalman Simulation Results

Sap Model Frequency in Hz Estimated Frequency in Hz Relative Error(%)

23.5 24.91 6

87.7 85.64 2.3

194.5 194.34 0.08

343.7 346.5 0.81
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CHAPTER 8

COMPARISON OF SIMULATION RESULTS

In this chapter, we made a noise analysis for each modal analysis algorithm. An

artificial system is created for mass, stiffness and damping matrices which is given as,

M =


 10 0

0 5


 C =


 12 −6

−6 6


 K =


 1200 −600

−600 600


 . (8.1)

Artificial system is created by using the state-space representation in Equation 4.33. Then

white gaussian noise is added to the impulse response of this artificial system for different

noise levels. Our SNR definition for noise levels can be given as,

SNR(dB) = 10 log

(
Psignal

Pnoise

)
, (8.2)

where dB is decibel. We tried to estimate natural frequencies from noisy data by using

ERA, PFD and LSCE algorithms. These algorithms are simulated 10 times and the av-

erages of estimated frequencies and absolute relative errors are taken. Results are shown

in Table 8.1. In this table, wex is the exact natural frequency values, west is the aver-

ages of estimated natural frequency values and σw is the standard deviation of estimated

frequencies. Relative error in this table can be defined as,

Absolute Relative Error =
|wexact − westimated|

wexact

. (8.3)

As shown in results, when SNR value gets larger, LSCE and PFD algorithms fails, but

the performance of ERA is good. For example, when SNR is zero, this means that noise

power is equal to signal power, the average relative errors for ERA algorithm are accept-

able.
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Table 8.1. Comparison of Modal Analysis Algorithms for Different Noise Levels

Algorithm SNR wex west σw Average Absolute Relative Error

(dB) (rad/s) (rad/s) (%)

80 14.31 14.36 0.0416 0.37

80 5.93 6.04 0.1073 1.92

60 14.31 14.27 0.004 0.28

60 5.93 0.78 0.0532 86.2

LSCE 40 14.31 14.32 0.0254 0.17

40 5.93 31.32 4.4171 422.32

20 14.31 212.52 26.48 1384.9

20 5.93 12.60 0.0869 112.68

50 14.31 14.30 0.0243 0.14

50 5.93 5.92 0.0138 0.21

PFD 30 14.31 13.24 0.3084 7.4

30 5.93 5.12 0.1930 13.5

10 14.31 0.78 0.6163 94.53

10 5.93 0.49 0.2753 91.72

10 14.31 14.25 0.0143 0.18

ERA 10 5.93 5.93 0.1483 0.89

0 14.31 14.45 0.0430 0.6

0 5.93 5.91 0.5571 3.2
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CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1. Conclusion

Structural health monitoring(SHM) became an important problem and developing

technology in civil, mechanical, and aerospace engineering. It is used to examine the

damage analysis of any building. SHM can be defined as the analysis of the dynamical

behavior of civil structures to observe the reliability of them. The challenge of SHM is

finding a mathematical model of a structure by which the health of a structure can be

judged. The process of SHM is like in Figure 9.1. Modal analysis techniques are gener-

ally used to obtain the mathematical model of the structures. In this study fundamental

modal analysis techniques and algorithms are examined. During the study, three fun-

Figure 9.1. The process of SHM

damental system identification algorithm is reviewed; LSCE algorithm, PFD algorithm

and ERA. After examining the theoretical background of these algorithms, application

and verification of these algorithms is done by using MATLAB. Simulations shows that
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the parameters of a structure can be identified correctly from clear measurements. The

response of artificial 1-DOF and 2-DOF systems are used in MATLAB simulations to

verify the methods.

Although the verification of the PFD method for artificial models is implemented

successfully, the parameters of experimental system can not be identified from experi-

mental measurements because of the measurement noise. PFD algorithm is so sensitive

to noise. Also performance of LSCE is good when there isn’t noise in measurement, but

when noise is present in the data, this method performs poorly.

ERA incorporates singular value decomposition to counteract inherent noise and

it gives satisfactory results for the experimental measurement data. We can say that ERA

is a more robust algorithm than LSCE or PFD. We used ERA and Kalman filter together

to update the system parameters and we have found good results.

9.2. Future Work

Since EM is an efficient algorithm for communication systems, it can be used for

linear dynamical systems as vibrational systems. To use EM for vibrational systems, the

states of the system must be estimated. Kalman filter estimates the state of a dynamical

system from a series of incomplete and noisy measurements. By using the estimated

state at each time instant, the parameters of the system can be estimated by using EM

algorithm.

Because of the measurement noise and the nonlinearity of the structures, a new

advanced method for identification of a structure can be established. The basis of this

new method will be upon the variants of Kalman filter and EM algorithm. To set up this

new method successfully, we need an initial estimate of system parameters. We can use

the result of the ERA algorithm as an initial guess of parameters and try to estimate the

real parameters iteratively by using EM algorithm. Also Extended Kalman filter can be

used with EM algorithm for nonlinear models. This will be a new solution approach for

SHM problem. Now an introductory knowledge about EM algorithm will be given.

The main objective of EM algorithm is to build a probabilistic model of a real-life

structure which can be defined by some parameters. By using EM algorithm, the noise in

observation data can be eliminated during the identification procedure, so the identified

system parameters becomes more realistic, this is the advantage of the EM. To understand
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Figure 9.2. Usage of ERA, Kalman Filter and EM Algorithm

EM, Maximum Likelihood Estimation (MLE) concept must be known. MLE is a popular

probabilistic method for fitting a mathematical model to observed data. As it can be

understood from its name, the objective is maximizing the likelihood of the data. It can

be said that some terms must be defined like likelihood, to define MLE mathematically.

Equation 9.1 and 9.2 represents the likelihood and logarithmic likelihood of the data,

PΘ(Yi) = P (Yi = yi|Θ) , (9.1)

log PΘ(yi|Θ) = L(Θ) , (9.2)

where Θ is a random vector that consists the parameters of the system and yi’s are the

observation data samples. The best model that fits the observation data will be found by

using these terms. Actually the best model is the model that assigns the highest probability

to the observation for a given parameter vector. To find the best model,
∏

i PΘ(Yi) or
∑

i PΘ(Yi) must be maximized by using optimization methods. A typical example to

understand MLE can be a coin tossing experiment. Assume that a coin is tossed N times

and probability of ôa Head comes is p. The result is a set of Heads and Tails and we know

that Head comes m times. To find the probability of a head come according to MLE, first

the log-likelihood function of the problem must be written as,

L(Θ) = log PΘ(yi|Θ) = log pm(1− p)N−m . (9.3)
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Then log-likelihood function must be maximized. By taking the derivative of the Equation

9.3 and equalize it to zero, parameter p can be found.

dL(Θ)

dΘ
=

m

p
− N −m

1− p
= 0 (9.4)

p =
m

N
(9.5)

In this example problem, there was no unobserved data or any noisy measurement, MLE

worked successfully for this case, but what happens if any unobserved data or noisy mea-

surement data set occurs. The answer is an intuitive and iterative algorithm, EM. There

are 3 steps for EM algorithm;

⇒ Create an initial parameter vector Θ0

⇒ Use Θ0 to obtain new model , with Θ1, that provides L(Θ1) > L(Θ0)

⇒ Obtain a sequence like L(Θ0) < L(Θ1) < .... < L(ΘN)

ΘN is the parameter vector of our system and we can define the mathematical model of

the structure by using it. For example Θ can be defined as [A,B, C]T for the system in

Equation 7.3. If the states that are estimated from Kalman filter used together with EM

algorithm, it can be possible that the parameters of the state-space system in Equation 7.3

can be estimated iteratively.

As shown in Figure 9.2, theoretical underwork of this method is ready but it must

be verified by a computer simulation. We run the ERA and Kalman filter together, but we

haven’t used the EM algorithm yet. The simulation of EM algorithm is left as a future

work for this study.
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APPENDIX A

MATLAB SCRIPTS

A.1 Time and Frequency Response of a SDOF Vibrational Sys-
tem

clear

M=1;

C=1;

K=100;

num=[1/M];

den=[1 C/M K/M];

sys = tf(num,den);

w = 0:0.0025:30;

H = freqresp(sys,w);

M=real(H);

M1=squeeze(M);

plot(w,M1) \\ Sketches the real part of the frequency response function

N=imag(H);

N1=squeeze(N);

figure plot(w,N1) \\ Sketches the imaginary part of the frequency response function

L=abs(H);

L1=squeeze(L);

figure

plot(w,L1) \\ Sketches the magnitude of the frequency response function

G=angle(H);

G1=squeeze(G);

figure

plot(w,G1) \\ Sketches the phase of the frequency response function

figure

impulse(sys) \\ Sketches the impulse response function
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A.2 Pre-processing of Experimental Data

This routine begins from defining “data ”variable, this variable consists all measurement

data and it has 3 dimension. First dimension, D1, is the number of the experiment,

second dimension, D2, is the number of samples and the third dimension, D3, is the

number of column in the measurement file. In measurement files, first column is the

time, second column is the input data, and other three columns are acceleration outputs.

[D1,D2,D3]=size(data); \\All data for 1 reference point is collected in ”data”

variable

data orig=data;

for i=1:D1

noise=data(i,100:18010,2);

noise dc=mean(noise);

data(i,:,2)=data(i,:,2)-noise dc; \\Eliminating noise from input data

end

a=zeros((D3-2),size(data,2),D1); \\acceleration data

v=zeros((D3-2),size(data,2)-1,D1); \\velocity data

d=zeros((D3-2),size(data,2)-2,D1); \\displacement data

for d3=1:D3-2

for d1=1:D1

for d2=1:D2

a(d3,d2,d1) = a(d3,d2,d1) + data(d1,d2,d3+2); \\taking acceleration from ”data”

end

end

end

\\”hammer” variable is the input data

flen=300;

hammer=zeros(D1,flen);

for d1=1:D1

hammer(d1,1:100)=hammer(d1,1:100) + data(d1,2:101,2);

end

for d1=1:D1

Hammer all(d1,:) = (fft(hammer(d1,:),Nfft)) \\taking fft of input
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for index=1:Nfft

if(Hammer all(d1,index)==0)

if (index==0) Hammer all(d1,index)=Hammer all(d1,index+1)/2

elseif (index==Nfft) Hammer all(d1,index)=Hammer all(d1,index-1)/2

else

Hammer all(d1,index)=(Hammer all(d1,index-1) + Hammer all(d1,index+1)) /2

end

end

end

GFF all(d1,:)=real(Hammer all(d1,:) .* (conj(Hammer all(d1,:))))

for d3=1:D3-2

v(d3,:,d1)=(a(d3,1:size(data,2)-1,d1)+a(d3,2:size(data,2),d1)) .* (Dt/2) \\numerical

integration

d(d3,:,d1)=(v(d3,1:size(data,2)-2,d1)+v(d3,2:size(data,2)-1,d1)) .* (Dt/2)

dlow(d3,1:Nfft,d1)=zeros(1,Nfft)

dlow(d3,1:Nfft-flen,d1)=d(d3,1:Nfft-flen,d1)

dlow(d3,:,d1)=filter(B,A,dlow(d3,:,d1))

end

end

\\taking average of input

for k=1:Nfft

Hammer ave(k,1)=mean(Hammer all(:,k))

end

hammer ave=real(ifft(Hammer ave))

for d3=D3-2:D3-2

for d1=1:D1

Output freq1(d3,:,d1)=(fft(dlow(d3,:,d1),Nfft))

end

end

\\taking average of output

Output freq=Output freq1(3,:,:)

for k=1:Nfft
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Output freq ave(k,1)=mean(Output freq(1,k,:))

End

output ave=real(ifft(Output freq ave))

\\frequency domain division

for d3=D3-2:D3-2

fd5dec=zeros(D3-2,Nfft)

for d1=1:D1

GXd5F(d3,:,d1)=(fft(dlow(d3,:,d1),Nfft)).* (conj(Hammer all(d1,:)))

end

GXd5Fav=sum(GXd5F(d3,:,:),3)

GFFav=sum(GFF all(:,:))

end

fd5dec(d3,:)=real(ifft(GXd5Fav ./ GFFav))

hf(:,1)=fd5dec(d3,:) \\estimated IRF from frequency domain division

u(:,1)=hammer ave \\input time domain data

y(:,1)=output ave \\ output time domain data

L=800 \\length of impulse response

M=200 \\length of input

for i=1:M

x1(i,1)=u(i,1) \\taken samples from input

end

for i=1:(M+L-1)

y1(i,1)=y(i,1) \\taken samples from output

end

z1=zeros(L-1,1) \\for toeplitz matrix

z2=zeros(1,L-1) \\for toeplitz matrix

C=[x1

z1] \\for toeplitz matrix

R=[x1(1,1) z2] \\for toeplitz matrix

X = toeplitz(C,R)

alfa=x1’*x1 \\scalar number

h(:,1)=(1/alfa)*X’*y1 \\Estimated IRF-1
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h1(:,1)=inv(X’*X)*X’*y1 \\Estimated IRF-2

end
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A.3 PFD Algorithm

clear all

N = input(’model order : ’);

M = input(’mass matrix : ’) ;

C = input(’damping matrix : ’) ;

K = input(’stiffness matrix : ’) ;

A1=inv(M)*C;

A0=inv(M)*K;

B0=inv(M);

I=eye(N,N);

Z=zeros(N,N);

A=[-A1 -A0;I Z];

B=[B0;Z];

C1=[-A1 -A0];

D=[B0];

sys=ss(A,B,C1,D);

w = 1:100;

H = freqresp(sys,w); \\Frequency response of the artificial system

for j=1:100

Asys(:,:,j)=[H(:,:,j) i*w(j)*H(:,:,j) (w(j)2)*I];

Bsys(:,:,j)=(w(j)2)*H(:,:,j);

end

sat=1;

p=1;

for k=1:100

for i=1:N

Asys1(p,:)=Asys(sat,:,k);

p=p+1;

sat=sat+1;

end

sat=sat-N;

k=k+1;
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end

sat=1;

p=1;

for k=1:100

for i=1:N

Bsys1(p,:)=Bsys(sat,:,k);

p=p+1;

sat=sat+1;

end

sat=sat-N;

k=k+1;

end

[Q,R] = qr(Asys1);

x=pinv(R)*(Q’)*Bsys1 \\ estimated A1, A0 and B0 matrices

for n=1:N

A12(n,:)=[x(n,:)]; \\estimated A0 matrix

end

f=1;

for n=(N+1):(N2)

A11(f,:)=[x(n,:)]; \\estimated A1 matrix

f=f+1;

end

A111=[-A11 -A12;I Z]; \\ estimated A matrix

roots=eig(A111); \\estimated roots

for n1=1:N

estfreq(n1)=imag(roots(n1)); \\estimated natural frequency

estdamp(n1)=-real(roots(n1))/estfreq(n1); \\estimated damping ratio

end
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A.4 LSCE Algorithm for Artificial Data

clear all

N = input(’model order : ’);

M = input(’mass matrix : ’) ;

C = input(’damping matrix : ’) ;

K = input(’stiffness matrix : ’) ;

A1=inv(M)*C;

A0=inv(M)*K;

B0=inv(M);

I=eye(N,N);

Z=zeros(N,N);

A=[-A1 -A0;I Z];

B=[B0;Z];

C1=[-A1 -A0];

D=[B0];

sys=ss(A,B,C1,D);

Fs =20; \\ Sampling Frequency

Dt=1/Fs;

T=250; \\ Duration of the signal

t=0:Dt:T; \\ Time interval

y=impulse(sys,t); \\ Impulse response functions of the system

num=Fs*T+1; \\ Number of samples

\\ Maps the impulse responses to variables h11,h12,h21,h22..

for k=1:N

for l=1:N

for j=1:num

eval(sprintf(’h1%d%d(j,1)=y(j,k,l);’,k,l));

end

eval(sprintf(’h%d%d=h1%d%d”;’,k,l,k,l));

end

end

r0=50; \\ Reading offset
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L=N*2; \\ Number of samples to be used for cosntructing the Hankel matrix

odet=4; \\ Overdetermine factor

for k=1:N

for l=1:N

eval(sprintf(’Y%d%d = hankel(h%d%d(r0+1:r0+L*odet)”,

h%d%d(r0+L*odet:r0+L*odet+N*2-1));’,k,l,k,l,k,l)); \\ Hankel matrix

eval(sprintf(’x%d%d=[h%d%d(r0+N*2+1:r0+L+L*odet)]”;’,k,l,k,l));

eval(sprintf(’betavec%d%d = inv(Y %d %d”*Y %d %d)*Y %d %d”*x %d

%d;’,k,l,k,l,k,l,k,l,k,l)); \\ Beta vector

eval(sprintf(’rootspoly %d%d = roots(flipud([betavec % d % d ; -1]));’,k,l,k,l));

eval(sprintf(’w%d%d =

Fs*(sqrt(log(rootspoly%d%d).*log(conj(rootspoly%d%d))));’,k,l,k,l,k,l)); \\ Identified

natural frequencies for h11,h12...

end

end

\\ Following routine calculates the real natural frequencies from M, C, K matrices

syms w

A=det(K-w2*M);

Realfreq=eval(solve(A));

n=1;

for i=1:(N*2)

if Realfreq(i)>0

W(n,:)=Realfreq(i);

n=n+1;

end

end

W
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A.5 LSCE Algorithm for Experimental Data

[N,nout]=size(data); \\ size of impulse response data

m=1; \\ number of output

len=min(ceil(N/5),205);

xlen=len;

nrow=floor((N-m)/len)*(len/xlen)-2;

\\ constructing Hankel matrix

datat=data’;

for i=1:(nrow)

H0((i-1)*nout+1:i*nout,1:len)=datat(1:nout,(i-1)*xlen+1:(i-1)*xlen+len);

X0((i-1)*nout+1:i*nout,1)=datat(1:nout,i*len+1);

end

beta vec = inv(H0’*H0)*H0’*X0; \\ beta vector for prony polynomial

roots poly = roots(flipud([beta vec ; -1])); \\ roots of polynomial

Fs=1/deltat; \\ sampling frequency

w = Fs*(sqrt(log(roots poly).*log(conj(roots poly)))); \\ Natural Frequencies

ksi = -log(roots poly.*conj(roots poly))*Fs/(2*w); \\ Damping ratio values
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A.6 ERA Algorithm for Artificial Data

clear all

N = input(’model order : ’);

M = input(’mass matrix : ’) ;

C = input(’damping matrix : ’) ;

K = input(’stiffness matrix : ’) ;

A1=inv(M)*C;

A0=inv(M)*K;

B0=inv(M);

I=eye(N,N);

Z=zeros(N,N);

A=[-A1 -A0;I Z];

B=[B0;Z];

C1=[-A1 -A0];

D=[B0];

sys=ss(A,B,C1,D); \\defining the state-space model

Fs = 100; \\sampling frequency

Dt=1/Fs;

T=100; \\duration of the signal

t=0:Dt:T; \\time interval

y=impulse(sys,t); \\impulse response of the system

num=Fs*T+1; \\number of samples

for k=1:N

for l=1:N

for j=1:num

eval(sprintf(’h1end

eval(sprintf(’hend

end

r0=10; \\reading offset

L=100; \\number of samples to be used for cosntructing the Hankel matrix

H0 = hankel(h11(r0+1:r0+L)”, h11(r0+L:r0+L+N*2-1)); \\hankel matrix H0

H1 = hankel(h11(r0+2:r0+L+1)”, h11(r0+L+1:r0+L+N*2)); \\hankel matrix H1
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order=rank(H0); \\order of the system

[Pmax,Dmax,Qmax] = svd(H0); \\singular value decomposition of Hankel matrix

P=Pmax(:,1:order); \\reducing order of P

D=Dmax(1:order,1:order); \\reducing order of D

Q=Qmax(:,1:order); \\reducing order of Q

A=[D( − 0.5)]*P’*H1*Q*[D( − 0.5)]; \\ state matrix of minimum order realization

z=eig(A); \\ eigenvalues of the system

a=1;

for i=1:2:order

omega(a)=imag(log(z(i))*Fs); \\estimated natural frequencies

dampratio(a)=-real(log(z(i))*Fs)/omega(a); \\ estimated damping ratios

a=a+1;

end
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A.7 ERA Algorithm for Experimental Data

[N,nout]=size(data); \\ size of impulse response data

m=1; \\ number of output

len=min(ceil(N/10),205);

xlen=len;

nrow=floor((N-m)/len)*(len/xlen)-2;

\\ constructing Hankel matrix

datat=data’;

for i=1:nrow

H0((i-1)*nout+1:i*nout,1:len)=datat(1:nout,(i-1)*xlen+1:(i-1)*xlen+len);

H1((i-1)*nout+1:i*nout,1:len)=datat(1:nout,(i-1)*xlen+2:(i-1)*xlen+len+1);

end

dimH=size(H0);

[Plong,Dlong,Qlong]=svd(H0,’econ’); \\ singular value decomposition of Hankel

matrix

dimD=size(Dlong);

nfreqmax = min(50,dimD(2)/2);

nfreq=nfreqmax;

P=Plong(:,1:nfreqmax);

D=Dlong(1:nfreqmax,1:nfreqmax);

Q=Qlong(:,1:nfreqmax);

clear dimD;

dimD=size(D);

dimP=size(P);

dimQ=size(Q);

invrootD=zeros(dimD);

invrootD(1:nfreq,1:nfreq)=(D(1:nfreq,1:nfreq))(̂-0.5);

A=invrootD * P’ * H1 * Q * invrootD; \\ estimate of state matrix

(V, LAMBDA) = eig (A);

dimLAMBDA=size (LAMBDA);

LAMBDAv = LAMBDA * ones(dimLAMBDA(2),1);

for i=1:nfreq
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if(abs(angle(LAMBDAv(i))) ¡ 1e-3) invrootD(i,i)=0; end

if(abs(abs(angle(LAMBDAv(i)))-pi) ¡ 1e-3) invrootD(i,i)=0; end

if(abs(LAMBDAv(i))¿1) invrootD(i,i)=0; end

end

Sv=(log(LAMBDAv))/deltat;

Lv=abs(log(LAMBDAv))/deltat;

zeta=-real(Sv(1:nfreq))./Lv(1:nfreq);

angular resonant freq=abs(imag(Sv(1:nfreq))./ sqrt(1 - zeta)); \\ frequency estimates

in rad/s

freq=(angular resonant freq angular resonant freq(2*pi)); \\ frequency estimates in

Hz
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A.8 State Estimation with Kalman filter

clear

N = input(’model order : ’);

M = input(’mass matrix : ’) ;

C = input(’damping matrix : ’) ;

K = input(’stiffness matrix : ’) ;

A1=inv(M)*C;

A0=inv(M)*K;

B0=inv(M);

I=eye(N,N);

Z=zeros(N,N);

A=[0 I;-A0 -A1];

B=[Z;B0];

C=[I Z]; \\ continous time system

D=0;

dt=0.01; \\ sampling period duration=20;

sys=ss(A,B,C,D); \\ continuous time system

sysd=c2d(sys,dt);

(a,b,c,d) = ssdata(sysd); \\ discrete time system

x(:,:,1)=[0;0]; \\ initial state

xest(:,:,1)=x(:,:,1); \\ initial state estimate

P(:,:,1)=b*b’; \\ initial error covariance

snr=10; \\ signal to noise ratio

u(1)=10000;

for j=2:5000

u(j)=0.0001; \\ dirac delta

end

i=1;

for t=0:dt:duration

x(:,:,i+1)=a*x(:,:,i)+b*u(i);

y1(:,:,i)=c*x(:,:,i+1);

i=i+1;
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end

y2=squeeze(y1);

y=awgn(y2,snr); \\ adding noise to observation

k=1;

Sz=0.1;

\\ Kalman Filter Equations

for t=0:dt:duration

xest(:,:,k+1)=a*xest(:,:,k)+b*u(k);

P(:,:,k+1)=a*P(:,:,k)*a’;

Inn=y(k)-c*xest(:,:,k);

S=c*P(:,:,k+1)*c’+Sz;

K=P(:,:,k+1)*c’*inv(S);

xest(:,:,k+1)=xest(:,:,k)+K*Inn;

P(:,:,k+1)=(I-K*c)*P(:,:,k+1);

k=k+1;

end
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