DEVELOPMENT OF A WEB SERVICES
SECURITY ARCHITECTURE BASED ON .NET
FRAMEWORK

A Thesis Submitted to
The Graduate School of Engineering and Sciences of
Izmir Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by
Recep BACI

October 2008
IZMIR

We approve the thesis of Recep BACI

Assist. Prof. Dr. Tugkan TUGLULAR
Supervisor

Assoc. Prof. Dr. Ahmet KOLTUKSUZ
Committee Member

Assist. Prof. Dr. Gokhan DALKILIC
Committee Member

07 October 2008
Prof. Dr. Sitki AYTAC Prof. Dr. Hasan BOKE
Head of the Computer Engineering of Dean of the Graduate School of

Department Engineering and Sciences

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Assist. Prof. Dr.
Tugkan TUGLULAR, for his guidance, patience and encouragement. He was the one
who supported me when I was in trouble with critical decisions. His valuable support

and confidence have been the driving force of this thesis work.

I would also like to thank Msc. Statistician Kivang YUKSEL who cooperated

with me in statistical studies.

Finally, I should thank to my family who always supported me throughout my

education in my graduate study.

ABSTRACT

DEVELOPMENT OF A WEB SERVICES SECURITY ARCHITECTURE
BASED ON .NET FRAMEWORK

Service Oriented Architecture (SOA) is an architectural style which allows
interaction of diverse applications regardless of their platform, implementation
languages and locations by utilizing generic and reliable services that can be used as
application building block. SOA includes methodologies and strategies to follow in
order to develop sophisticated applications and information systems. SOA is different
from the traditional architectures as it has its own unique architectural characteristics
and regulations, which needs to be analyzed and clarified so as to apply the information
that should be included in the architectural model of SOA correctly to service based
application development. The newest technology for SOA is web service technology
which gains more and more importance as a technology to develop distributed service-
oriented applications. Web services are an emergent paradigm for implementing
business collaborations over the web. Each service has an interface that is accessible
through standard protocols and that describes the interaction capabilities of the service.

This master's thesis primarily examines the web services concept of the .NET
platform having the emphasis on secure communication. A case study demonstrates
securing the communication between a web service and its clients through RIINDAEL,
3DES and RSA algorithms implemented on code based structure which uses the identity
token, provided from identity web service, to validate the identity of the client and the
status token provided from status web service in order to validate the status of the client.
A number of tests are performed using different cryptographic algorithms and network

settings for the communication in order to obtain operational values of these algorithms.

v

OZET

NET CERCEVESI TEMELLI BIR WEB SERVIS GUVENLIGI
MIMARISI GELISTIRILMESI

Servis yonelimli mimari, platform, uygulama dilleri ve konumlar1 ne olursa
olsun uygulama temel ilke olarak kullanilabilen kapsamli ve giivenli servislerden
faydalanilarak farkli uygulamalarin etkilesimine izin veren mimari bir stildir. Servis
yonelimli mimari karmasik uygulamalar ve bilisim sistemleri gelistirmek i¢in yontem
ve stratejiler igerir. Servis yonelimli mimari geleneksel mimariden farklidir ¢iinkii dogru
olarak servis bazli uygulama gelistirmeye servis yonelimli mimarinin mimariye iliskin
modele dahil olmasi gereken bilgiyi uygulamak i¢in analiz etmeye ve aciklamaya
ihtiyag duyulan kendine 06zgii essiz mimariye iliskin karakteristiklere ve kurallara
sahiptir. Servis yonelimli mimari i¢in en yeni teknoloji dagitik servis yonelimli
uygulamalar gelistirmek i¢in bir teknoloji olarak daha fazla 6nem kazanan web servis
teknolojisidir. Web servisleri web lizerinde ticari ortakliklar uygulamak icin gelistirilen
bir paradigmadir. Her servis standart protokollerce erisilebilinen ve servisin etkilesim
kabiliyetlerini tanimlayan bir ara yiize sahiptir.

Bu tez oOncelikle giivenli iletisimde 6nemle ilizerinde durulan. NET platformu
kullanilarak gelistirilen web servisleri kavramini incelemektedir. Yapilan 6rnek olay
incelemesi, istemcinin statiisiiniin gegerliligini denetlemek i¢in, web servisince
saglanilan kimlik belirteci kullanilmis olup, kod bazli yapilarca uygulanan RIINDAEL,
3DES ve RSA algoritmalar kullanilarak, web servisleri ve onlarin istemcileri arasinda
giivenli iletisim saglamay1 ispatlamada kullanilmistir. Bu algoritmalarin iglevselligini
elde etmek ic¢in iletisim boyunca farkli kriptografik algoritmalar ve ag ortamlar
kullanilarak bu algoritmalarin operasyon degerlerinin belirlenmesi i¢in testler

yapilmistir.

TABLE OF CONTENTS

LIST OF TABLESottt eneens X
CHAPTER 1. INTRODUCTIONoooiiiiieiieieieeieeeese et 1
CHAPTER 2. SERVICE ORIENTED ARCHITECTUREccccoiiiiiieiee 2
2.1. Service Oriented Architecture OVerviewccocceeeveerieeneeenen. 2

2.1.1. SOA Entities and Characteritics..........cevvereeruervuervenennns 4

2.1.2. Service Oriented Developmentcccceeeverieecieenneennen. 6

2.1.3. SOA Layered Architecture..........ccceeevveeerveeecieeeiieeeieeeene 8

2.2. Technologies for Service Oriented Architecture...................... 10

2.3. Web Services of NET Frameworkcccceveviinenniniencne 13

2.4. Security MeChaniSmsccceevvierieerieenieeniiesieesieeereesieeeneens 13

2.4.1. Symmetric Encryption and Message Confidentiality....... 15

2.4.2. Public Key Cryptography and Message Authentication .. 17

2.4.3. NET Cryptographycccceevereiienieeiieieeeieeie e 17

CHAPTER 3. WEB SERVICES SECURITY ...cceeiiiiiiiiienienieeieseeeeeeneene 20
3.1. Web Services Security OVEIVIEW.........cccueeevveeecieeeniereenieeennnennn 20

3.2. Web Services Security Approachesccccceeveveercveenciieennnn. 21

3.2.1. Web Services Security Technologies...........cccceeeruennennne. 23

3.2.2. WS-Security OVerVIEW......ccccueeruieriieriieeieeniieeieeniee e 24

3.3. WS-Security EXample.........cccoovvieviieniiiiieeiieieciecee e 25

vi

CHAPTER 4. WEB SERVICES SECURITY ARCHITECTURE 28

4.1. Web Services Security Arhitecture............coceeveevveeveneenieneene 28

4.2. Web Services Security SCenarioc.eceeveeecveenieecieennenneane 30

4.3. Overview of Security System of Scenarioccceeuvereveennenn. 32

4.3.1. Identity Security Token Service Process..........cccccveenneee. 34

4.3.2. Credit Security Token Service Processc...cccccveeuennnee 35

4.3.3. ServiCe PrOCESS...c..vievieiiiiiieeieeiieee ettt 36

4.3.4. CipherToken Class Model............cccceeviinciiinieniienieeens 36

4.3.5. Domain Model.........ccooouiriiiiniiinienieieceeeee e 37

4.3.6. Client Class Modelcooeeiiieiiiniiiiinicceeeeeee 38

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTScccevieienee. 39

5.1. Client ApplICAtioNcc.evviriiiriieiiniieieeiereeeeeeeee e 39

5.2. Identity Security Token Servicesccceevvievierieeniienieeeenne. 40

5.3. Credit Rating Security Token Services.........ccceevveerurerveenenne. 42

5.4. Service Security Token Services........ccocvevvieeveieeeiieeecieeenen. 43

5.5, EXPEIIMENLS ...ooouiiiiiiiiieiieeieeee et 44

5.6. Evaluation of the Experiments in Statistical Methods............. 47

CHAPTER 6. CONCLUSIONccotiiiiiiiniiiieniieieeiestee et 52

REFERENCES ...ttt 54
APPENDICES

APPENDIX A. WS-SECURITY EXAMPLE SOAP MESSAGES.................. 58

APPENDIX B. CLASS DIAGRAMS ...ttt 64

APPENDIX C. WEB SERVICES SOAP MESSAGE EXAMPLES................. 70

vii

LIST OF FIGURES

Figure Page
Figure 2.1. Abstract Definition of Software Architectureccoccceeeevieecieeeiieeeieens 2
Figure 2.2. Service-based workflow for an e-commerce businesscccceceeveevecnncene 3
Figure 2.3. Conceptual SOA SOIUtIONcciiiiiiiiriiieiierie ettt 4
Figure 2.4. Service Oriented Architecture Conceptual Modelcccoeevvievienciieniennnnn. 5
Figure 2.5. Service Based Development...........cccvieeiiieniieeiiie et 7
Figure 2.6. Two-tier and Three-tier Architectural Modelscccccoeviiiiiiniiiiiinniee. 9
Figure 2.7. The Layers of Service Oriented Architecture............coceevervenienienieneenennns 9
Figure 2.8. Web Service ATChIteCtUITccuvievieiieeiiecie ettt 10
Figure 2.9. SOAP oVer HTTP.......ooiiiiieeeeeeeeeee et 11
Figure 2.10. Schematic layout of WSDL........ccccooiiiiiiiiiniiiecceceeeeee 12
Figure 2.11. Simplified Model of Conventional Encryption...........cccceeevveevienienniennene 15
Figure 2.12. Encryption across a Packet-Switching Networkccccevirieninnennene. 16
Figure 2.13. The symmetric algorithm hierarchy.ccccooovieviiiiiiiiiiiieeeeeee, 18
Figure 2.14. The asymmetric algorithm class hierarchy.............cccccooiiiiiiniinninnnn. 18
Figure 3.1. Web Services Scenario with NO Security..........ccceeeveevieniienienieeieeieene. 21
Figure 3.2. Point-to-point vs. End-to-end Security..........cccoevveeiiieniieiiieniieiieieeieee. 22
Figure 3.3. Evolution of WS-Security Specificationcccceeeieeeriieeniieeiee e, 24
Figure 3.4. Web Services Security Specifications.........c.ccecueveeverieneinienieneenienieneene 25
Figure 3.5. SOAP Message Security with WS-Security........c.cccceeveieeiiienieeciienieeieenen. 26

Figure 4.1. Architecture of WS-Security Handler in IBM WebSphere.......................29
Figure 4.2. Scenario FIOW.........oooiiiiiii e 31

Figure 4.3. Sequence Diagram of the Scenarioc.cccccevvverieniniiniininicnicecee 32

Figure 4.4. Authentication Process FIOW..........ccccvveiiiieiiiieiiie e 32

Figure 4.5. Integrity Process FIOW.........c.cooiiiiiiiiiiiiieeeee e 33
Figure 4.6. Key EXchange FIOWccccooiiiiiiiiiiiciec et 34
Figure A.1. SOAP message without WS-Securityccccevvveeiiieniiiciienieeiieieeieeee. 57
Figure A.2. SOAP Message with Authentication...........ccceccvveerieeeniiieeniieeiee e, 57
Figure A.3. SOAP Message with INtegrityccoceeviiriiiiniiniiiinicneceececeecne 58
Figure A.4. SOAP Message with Confidentiality.........c.cccoceeviriiniininiiniiiniiienecene 61
Figure B.1. Class Diagram of Identity STS......cccoeiiiiiiiiiiieeceeeceee e 63
Figure B.2. Class Diagram of Credit Status STS........ccovevviieiiieiiieieeieeeeeeeee e 64
Figure B.3. Class Diagram of Service STScooiiiiiiieiiieeeeeeeeee e 65
Figure B.4. Cipher Token Class Diagram...........ccccocevveniriinienieniicniineeieeiesieeeeeene 66
Figure B.5. Domain MOdel.........cccooiiiiiiiiieiiieieeieee ettt 67
Figure B.6. Client Class DIagram..........c.ccoueeriieriieeiiieniieeieeiee e enieeeveeseeeeveeseessneesnes 68

Figure C.1. SOAP Message Example For Identity Token Request From Client To
Identity Token Web Servicecoceeveriiiiinieiiiniiniiiieccseceeeeneeeen 69

Figure C.2. SOAP Message Example For Identity Token Response From Identity

STS 0 CHENL.....eiuiiiieiieieeeeee ettt e 72
Figure C.3. Client Request Information Open MeSsage.........ccevuveeeceveeerieenieeeeieeeennnen. 75
Figure C.4. IDToken Open MESSAZEcccuevueeruieieriieniieiinieniteieete et 75

Figure C.5. SOAP Message Example For Credit Status Token Request From Client
To CreditStatusSTS Web Service.......cooeviirieiinieniiiieceeeeeeseeeee 75

Figure C.6. SOAP Message Example For Credit Status Token Response From
Credit Status Token Web Service To Client..............ccoovviiiiiiiiiiannnn. 80

Figure C.7. Credit Status Token Open MeSSage........c.ccecevuereerienieneinenieneenieeeeneenne 82

Figure C.8. SOAP Message Example For Service Request From Client to

SEIVICE WED SOIVICE. . . e 82

X

Table

Table 2.1.
Table 2.2.
Table 2.3.
Table 5.1.
Table 5.2.
Table 5.3.
Table 5.4.
Table 5.5.
Table 5.6.

LIST OF TABLES

Page

Comparison of Architectural Development Modelsc..oeee 8
Security Mechanisms (X.800)ovviiiiiiiiiiiiieiiei e, 14
Relationship between Security Services and Mechanisms 15
ANOVA Table of Complete Analyses of Variance Model 47
Means of Network Settings Effects ... 48
Means of Symmetric Cryptographic Methods Effects 48
Means of Experiment Repetitionsooeiiiiiiiiiiiiiiiiieie e, 49
The Analysis of Variance Table For Each Effects49
Tukey's Studentized Range (HSD) Test To Compare The

Levels of Network Settingscooovuiiiiiiiiiiiiiiiei e 50

CHAPTER 1

INTRODUCTION

There is an increasing demand for technologies that support the connecting or
sharing of resources and data in a very flexible and standardized manner. Because
technologies and implementations vary across companies and even within divisions or
departments, unified business processes could not be smoothly supported by
technology. Integration is achievable only between units that are already aware of each
other and that use the same static applications.

Web services technology, which enables disparate systems to interoperate at a
high level with ease, lacked a common framework for security. Although some attempts
have been made to solve this problem, most of these attempts bring a solution using
variations of technologies already in use. These techniques, which are actually proven
in the field, do not fit with the interoperable and loosely coupled nature of web services
technology. The new emerging Web Service Security (WS-Security) standard, along
with other extensions of the WS-* group of technologies aims this lack of a common
security framework (Atkinson, et al. 2002).

The Web Services Security standard is formed by independent organizations
backed by big vendors of the industry such as IBM, Microsoft, RSA, and Verisign.
Although, some alignment in vision has been achieved, in practice there is an on going
debate. This debate, although a good thing for advancement of technology, results in a
slow penetration of technology. Proven products leveraging these technologies are still
missing.

This thesis aims to comprehensive and extensible suggested web services
security architecture and provide and provide an implementation, understanding and
efficiency of this new technology. The design and architecture of the case study
examined in this thesis, is implemented using a mix of several web services security
specifications. Although there are alternative specifications still competing to become
de facto standards, we believe the selection of specifications had recently gained

momentum and success in becoming a de facto standard is in the near future.

CHAPTER 2

SERVICE ORIENTED ARCHITECTURE

2.1 Service Oriented Architecture Overview

Service Oriented Architecture (SOA) is an architectural style which utilizes
methods and technologies that provides for enterprises to dynamically connect and
communicate software applications between different business partners and platforms
by offering generic and reliable services that can be used as application building blocks.
In this way it is possible to develop richer and more advanced applications and
information systems (Sun Microsystems Inc. 2006).

Software development turns out to be more challenging as the needs and desires
grows to have complex infrastructures capable of solving real-world problems.
Similarly, technological improvements through many tendencies and alternatives
grounds to build compound architectures for developing software systems. The
architecture of software explores the software system infrastructure by describing its
components and high level interactions between each of them. These components are
abstract modules built as a “unit” with other components. The high level interactions
between components are called “connectors”. The configuration of components and
connectors describes the way a system is structured and behaves (McGovern, et al.

2003), shown in Figure 2.1.

Component] r Component

Connector

Figure 2.1. Abstract Definition of Software Architecture
(Source: McGovern, et al. 2003)

The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally visible
properties of those components, and the relationship among them (Bass, et al. 1997). To
simplify the complexity of the architecture, conventionally, the system is built with
modules, which involves functions, objects, components and services.

Service Oriented Architecture (SOA) is a particular type of software architecture
which has distinguished features and characteristics. The concept of SOA emerged in
the early 1980s (Magedanz, et al. 2007) and become a significant architectural style
especially after invention of web services. Before examining the architecture in detail, it
is important to evaluate the existing software development concepts and related
technologies to discover the revolution of SOA so as to not to develop SOA from
scratch.

The concept of services is familiar to anyone who shops online at an e-
commerce web site. Once you place your order, you have to supply your credit card
information, which is typically authorized and charged by an outside service vendor.
Once the order has been committed, the e-commerce company coordinates with a
shipping service vendor to deliver your purchase. E-commerce applications provide a
perfect illustration of the need for an SOA. If the credit card billing component is
offline or unresponsive, you do not want the sales order process to fail. Instead, you
want the order to be collected and the billing operation to proceed at a later time.
Figure 2.2 provides a conceptual workflow for an e-commerce business that uses

multiple services to process orders (Hasan 2006).

Authorize sale/Charge card > Credit Card
Authorization
and Billing
E-Commerce Shopping Web Site < Confirm sale/Charge Service
e Displays catalog information
* Processes customer order Request shipment
information
Shipping
Service
Confirm shipment

Figure 2.2. Service-based workflow for an e-commerce business
(Source: Hasan 20006)

Figure 2.3 shows a conceptual SOA that summarizes the three main entities in a
typical SOA solution:

— Service providers

— Service consumers

— Service directories

Request Request
Service Service Service
Consumer < Provider #1 (Provider #2
Response Response
Discovery Discovery

ubDI
Registry

Figure 2.3. Conceptual SOA solution
(Source: Hasan 2006)

2.1.1 SOA Entities and Characteristics

Service Oriented Architecture is an architectural style that defines an interaction
model between three main functional units, in which the consumer of the service
interacts with the service provider to find out a service that matches its requirements
through searching registry. A meta-model describing this interaction is shown in Figure

2.4 below.

Consumer obtains Service Deseription from
Registry, or directly from Provider.

use realize

Service Consumer || _ _ _ | Service Description <} === Service Provider

+ mvokeService ()

I
. I . + bindToService ()
contains | described
" in
Service Registry
+ findService ()

Figure 2.4. Service Oriented Architecture Conceptual Model
(Source: McGovern, et al. 2003)

SOA contains 6 entities in its conceptual model, described as follows
(McGovern, et al. 2003):

— Service Consumer

— Service Provider

— Service Registry

— Service Contract

— Service Proxy

— Service Lease

Service oriented architecture reflects specific principles and characteristics that
need to be applied when building service-oriented application infrastructures (Sun

Microsystems 2001), which are described as follows:

Services are discoverable and dynamically bound
Services are self contained and modular

Services are interoperable

Services are loosely coupled

Services have a network-addressable interface
Services have coarse-grained interfaces

Services are location transparent

Services can be composed into new applications

SOA supports self-healing

2.1.2 Service Oriented Development

Services are the evolution of components in which multiple component

interfaces form into a single interface to perform a specific function. A service is an

abstract resource with the capability of performing a task (Booth and Haas 2004).

Services have the potential reflection of business functions as well as technical task

definitions.

Services are designed and developed to support the following characteristics

(Sehring 2006):

Each service defines a specific business function and can match to real-life
activities

A service may have various procedures and operations

Services interact with other services and system components in a loosely
coupled, message-oriented environment to accomplish business goals
Services has clearly defined interfaces and can be used by many different
other services and applications

Services do not need to be in a distributed environment

Figure 2.5 illustrates service based development in the context of components

and objects.

Service

Component

~

Object

—
\

Service

/ Component

/

Object

Figure 2.5. Service Based Development
(Source: Sehring 2006)

The early architecture of software is based on structured design, which has rigid
rules for the development of software constructs and limited support to enable robust
and sophisticated application development. Object oriented technologies result in
flexible software development that supports encapsulation of business logic through
more coarser-grained functions and classes; however, the tangible benefits of robust
application development are gained through the progression of components and
services. The Table 2.1 discusses the characteristics and features of each software

architectural models.

Table 2.1. Comparison of Architectural Development Models
(Source: Sehring 2006)

system structuring
Low reusabality
Tight coupling

Have compile time
dependencies

Intra-application
communication
scope

system structuring
Low reusability
Tight coupling

Have compile time
dependencies

Building blocks are
individual classes

Encapsulation,
Inheritance,
Polymorphism

Functionality 1s
described by class
declarations

Dynamic but large
number of
connected object

system structuring
Medmm reusability
Loose coupling

Have compile time
dependencies

Building blocks
consist of several
classes (components)

Interactivity,
connectivity, and
exchangeability of
components

Functionality is
described by
interface
declarations

Structured Object Oriented Component Based Service Based
Development Development Development Development
Very fine Small — grain Medmm — grain Coarse — grain

system structuring
High reusabality
Loose coupling

Have only run time
dependencies

Building blocks
consist of
components

Published mnterface
defimition

Dynamically
discoverable
distributed services

Functionality 1s
described by
network addressable
component mnterface
declarations

Inter-enterprise
commumcation
scope

2.1.3 SOA Layered Architecture

Currently the most frequently used application development model is based on
three-tier architectural structure, which supports an additional layer between client and
data storage tiers as shown Figure 2.6. The additional layer, called as business logic
layer, provides code isolation from client and sharing of the application logic between

various client implementations. It is a competent approach to software development for

flexible managing of data and usage of system resources.

Presentation Laver
. A
[Presentation Laver Business Logic Laver
-
' It
L Data Access Layer J Data Access Layer
b, A
r
e—
[
Two-tier architecture Three-tier architecture

Figure 2.6. Two-tier and Three-tier Architectural Models
(Source: Sehring 2006)

SOA is based on n-tier application development in which services are layered on
top of components that are responsible for providing certain functionalities and

maintaining quality of service requirements for services (Sehring 2006), as shown in

Figure 2.7.
Presentation Portlets Ul WSEP
Business Process ?
Chereography, s
Composite Services g
3
e =
Services O é 2 E
\ / . =
= | | &
E
Enterprise =
Components 5?"
= 58 El
R s | §
: O0- CEM, Business -
Operational Systems ERP.. Intelligence
Systems

Figure 2.7. The Layers of Service Oriented Architecture
(Source: Sehring 2006)

2.2 Technologies for Service Oriented Architecture

The initial service-oriented technology was introduced in the late 1990s from
Sun Microsystems, which is called as Jini Network Technology (Sun Microsystems
2001). Jini is a lightweight environment for dynamically discovering and using services
on a network. Its main aim is to allow devices such as printers to dynamically connect
to the network and register their available services.

Since Service Oriented Architecture (SOA) is an evolution of Object Oriented
(component based architecture for separating functionality into individual objects that
work together) and Distributed Systems such as J2EE, CORBA, and DCOM. Defining
Web Services, .NET, J2EE and, CORBA as specialized SOA implementations that
represent the core aspects of a service-oriented approach to service oriented
architecture.

Web services are distributed software components that can be accessed through
standard web protocols as shown Figure 2.8. The advantage of web services is that they
can be consumed by any application that is able to parse and XML-formatted stream
transmitted through HTTP. XML is the key technology in web services.

A web service is a component running on a web server that communicates to the
world with standard Internet protocols such as: HTTP GET, HTTP POST, and SOAP
(Simple Object Access Protocol).

Service Requestor | Bind | Service Provider

/
/

SOATD Mcssages ,

J'f".
5
s
]

Registry (UDDI) r Service Description
\ W
" / (WSDL)

Figure 2.8. Web Service Architecture
(Source: Sehring 2006)

10

XML is a standard that provides encoding to data as plain text files. This has the
significant advantage that almost anything can read it, as text files are standard
across platforms. There are standards to adhere to, such as, what encoding language
to use, and how much data is used for each character, but these are
surmountable on all devices likely to be interested in web services (Microsoft
Corporation 2002).

SOAP was originally designed as a means of manipulating objects remotely
(W3Schools 2007). Now its use is more specialized, and is used almost
exclusively with web service implementation. The two technologies looked at above,
XML and XML schemas, are enough to exchange data with web services. The way
two systems interact with each other across the Internet using SOAP is shown in Figure

2.9 (RSA Laboratories 2007).

| Coret R R N T H D
l- _-:1 [“f et H-: __...E'_ - —
User '\ J ¥eb Service
- YL _\k . f « XML
Lacation A - Location B

Figure 2.9. SOAP over HTTP
(Source: RSA Laboratories 2007)

Web services have an associated WSDL (Web Service Description Language)
document describing all operations that a web service can perform. The description of a
web service operation consists of the data structures used, the combinations of these
data structures present in requests to and responses from the service, the format of
messages containing these requests and responses, and the specific method of access
required for the different operations that are supported by the service as shown Figure
2.10. In order to achieve this, WSDL documents which are written in XML contain
schema information, information associating schema definitions with message structure,
and some HTTP and SOAP specific information. Given a WSDL document it is
possible to write code to access the web service it pertains to without any additional

information (Bustos and Watson 2002).

11

Service

Port (SOAP)
| End poin[[\\ Binding J\\

5 /| (soap, | Pottiee

JN

ot Port (HTTP GET)
o -

g End Point e
/ N

7) “~—"\[" Binding

aw, A L~| (HTTP GET) Port Type

Client \vd {
LR

Message =
R o
[Part —
o | Message
. / /', I I'{ Extnl. Scherra
S/ Part B ™
s Part
7
w4
// /
&Yy
' /7)
{ \/
Type Type

Figure 2.10. Schematic layout of WSDL
(Source: Bustos and Watson 2002)

A Proxy resides on the consumer’s machine and acts as a relay between
the consumer and the web service. When a proxy is built, it uses a WSDL file to create
a map that tells the consumers what are the methods are available and how to call them
(Birdwell and Cornes 2001). The consumer then calls the web method that is mapped in
the proxy, which in turn, makes calls to the actual web service over the Internet.
The proxy handles the entire network related work including sending of data, as well as
managing the underlying WSDL.

WSDL accurately defines web services, but this is not sufficient to allow
people to find the web service (Curbera and Duftler 2002). If the web site is not
known, it will not be possible to find the WSDL that describes it. Some central access
or a repository that people can query in order to find web services is needed and UDDI

is used for this purpose.

12

2.3 Web Services of .NET Framework

All web services in .Net have the following elements (Thai and Lam 2000):

1.

2.

3.

4.

An asmx file for the web service. This must contain the <% webser vi ce
% directive, as well as the class that provides the web service

implementation. To the web wervice clients, this asmx file is the entry

point to the web service. Instead of deploying as it is with Java

Enterprise Edition (JEE) with .NET framework this file should be in a

virtual directory with permits.

Inherit from the web service class of the System.Web.Services

namespace. This allows the derived class to access all the normal ASP

objects exposed in the web service base class.

Tag the methods that are going to be accessed on the web with

WebMethod attributes.

A configuration file called web.config is placed in the same directory as

the asmx file. This configuration file controls many settings from the

virtual directory.

2.4 Security Mechanisms

Table 2.2 lists the security mechanisms defined in X.800. As can be seen from

the list, the mechanisms are divided into those that are implemented in a specific

protocol layer and those that are not specific to any particular protocol layer or security

service. X.800 distinguishes between reversible encipherment mechanisms and

irreversible encipherment mechanisms (Stallings 2003). A reversible encipherment

mechanism is simply an encryption algorithm that allows data to be encrypted and

subsequently decrypted. Irreversible encipherment mechanisms include hash algorithms

and message authentication codes, which are used in digital signature and message

authentication applications.

13

Table 2.2 X.800 Security Mechanisms
(Source: Stallings 2003)

SPECIFIC SECURITY MECHANISMS

May be incorporated into the appropriate
protocol layer in order to provide some
of the OS5I security services.

nt
The use of mathemarical algorithms to trans-
form data into a form that is not readily
intelligible. The transformation and
subsequent recovery of the data depend
“on an algorithm and zero 01 More enciyp-
tion keys. g

Diigital Signatare
Data appended to, or a cryplographic
transformation of, a data unit that allows
a recipient of the data unit to prove the
source and integrity of the data unit and
protect against forgery (c.g., by the

Routing Control
Enables selection of particular physically
secure routes for certain data and allows
routing changes. especially when a breach
of security is suspected.

MNotarization
The use of a trusted third party to assure
certain properties of a data cxchange.

PERVASIVE SECURITY MECHANISMS

Mechanisms that are not specific Lo any
particular O8I security service or protocol
laver.

Trusted Functionality
That which is perceived to be correct with
respect to some criteria (.. as established
by a security policy).

TGRS Security Label
.Amu ; The marking bound to a resource (which
; 'A'wri[:etu}r i e Haskisis may be a data unﬂ]_th&t names or
i S designales the security attributes of that
'8 SR TES0Urce.
Data Integrity Event Detection

A variety of mechanisms used to assure

1 3 : Detection of security-relevant events.
the integrity of a data unit or stream of

data units, Security Aundit Trail i
i Data collected and potentially used to
Aunthentication Exchange facilitate a security audit, which is an

A mechanism intended to ensure the
identity of an entity by means of
_ information exchange.

independent review and examination
of system records and activities.

Security Recovery
Dieals with requests from mechanisms,
such as event handling and management
Funetions, and takes recovery actions.

Traffic Padding
- The insertion of bits into gaps in a data
stream to frustrate traffic analysis attempts.

Table 2.3, based on one in X.800, indicates the relationship between security
services and security mechanisms. X.800 defines a security service as a service
provided by a protocol layer of communicating open systems, which ensures adequate
security of the systems or of data transfers. A security service is a processing or
communication service that is provided by a system to give a specific kind of protection
to system resources; security services implement security policies and are implemented

by security mechanisms (Stallings 2003).

14

Table 2.3 Relationship between Security Services and Mechanisms
(Source: Stallings 2003)

Mechanism

Authenti-

Enciph- Digital Access Data cation Traffic | Routing Notari-
Service erment signature costrol integrity cxchange padding | control zation
: Peer entity authentication XY Y X
| Data origin alllhl:nllcnliml_ o Y
[Access control Y
|" {ZL;nl'ide;ﬁnl_‘lr}'_ - ¥ ¥ .
Traffic flow confidentiality ¥ Y Y l
ey | Y v
T
Nonrepudiation - b 3
Availability Y

2.4.1 Symmetric Encryption and Message Confidentiality

The most commonly used symmetric encryption algorithms are block ciphers. A

block cipher processes the plaintext input in fixed-size blocks and produces a block of

cipher text of equal size for each plaintext block. This thesis focuses on the three most

important symmetric block ciphers: the Data Encryption Standard (DES) and Triple

DES (3DES), and Rijndael.

A symmetric encryption scheme has five ingredients shown on Figure 2.11.

Secret key shared by
sender and recipient

¥

Transmitted
ciphertext

Secret key shared by
sender and recipient

T

il

Encryption algorithm
(e.z.. DES)

Plaintexi
input

| ©

Decryplion algorithm
(reverse of encryption
algorithm)

Plaintext
output

Figure 2.11. Simplified Model of Conventional Encryption

(Source: Stallings 2003)

15

The most powerful, and most common, approach to countering the threats to
network security is encryption. In using encryption, we need to decide what to encrypt
and where the encryption gear should be located. There are two fundamental
alternatives; link encryption and end-to-end encryption; these are illustrated in use over

a packet-switching network in Figure 2.12.

i
>3 |
‘ ‘ @ Pacl-wt-sta'itching @ 35 . ;::_-:
network 4
P, .
X

. = End-to-end encryption device

@ = Link encryption device

PSMN = Packet-switching node

Figure 2.12. Encryption across a Packet-Switching Network
(Source: Stallings 2003)

One big issue with using symmetric algorithms is the key exchange problem.
The other main issue is the problem of trust between two parties that share a secret
symmetric key. Problems of trust may be encountered when encryption is used for
authentication and integrity checking. A symmetric key can be used to verify the
identity of the other communicating party, but this requires that one party trust the other

(Thorsteinson and Ganesh 2003).

Key distribution can be achieved in a number of ways. For two parties A and B,
1. A key should he selected by A and physically delivered to B.
2. A third party could select the key and physically deliver to A and B.
3. If A and B have previously and recently used a key, one party could
transmit the new key to the other, encrypted using the old key.
4. If A and B each have an encrypted connection to a third party C, C could
deliver a key on the encrypted links to A and B.

16

2.4.2 Public Key Cryptography and Message Authentication

A message authentication code (MAC) is an authentication tag (also called a
checksum) derived by applying an authentication scheme, together with a secret key, to
a message. Unlike digital signatures, MACs are computed and verified with the same
key, so that they can only be verified by the intended recipient. There are four types of
MACs: unconditionally secure, hash function-based, stream cipher-based, or block
cipher-based (RSA Laboratories 2007).

The use of cryptographic hash functions like MD5 or SHA for message
authentication has become a standard approach in many Internet applications and
protocols. Though very easy to implement, these mechanisms are usually based on ad
hoc techniques that lack a sound security analysis (Bellare, et al. 1996).

The SHA-1 is called secure because it is computationally infeasible to find a
message which corresponds to a given message digest, or to find two different messages
which produce the same message digest. Any change to a message in transit will, with
very high probability, result in a different message digest, and the signature will fail to
verify. SHA-1 is a technical revision of SHA (FIPS 180) (Federal Information
Processing Standards Publication 1995).

Public key cryptography, which uses a public key to encrypt the message and a
private key to decrypt it. Public key systems are also known as asymmetric key
cryptography. Public key cryptography is most often used for creating digital signatures
on data, such as electronic mail, to certify the data's origin and integrity (Garfinkel and

Spafford 1996).

2.4.3 .NET Cryptography

SymmetricAlgorithm has only one public constructor that takes no parameters.
This constructor initializes the new instance with a randomly generated secret key. Of
course, SymmetricAlgorithm also supports the standard methods Equals, Finalize,
GetHashCode, ToString, GetType, and MemberwiseClone, which are defined in the

base class Object. Figure 2.13 shows the symmetric algorithm class hierarchy.

17

MNamespace: System.Security. Cryptography

SymmetricAlgorithm

— DES

LD DESCryptoServiceProvider

- TripleDES

L-{ TripleDESCryptoServiceProvider

— RC2

l—a» RC2CryptoServiceProvider
e Rijndael

|—> RijndaelManaged

Figure 2.13. The symmetric algorithm hierarchy
(Source: Thorsteinson and Ganesh 2003)

AsymmetricAlgorithm has the similar methods and Figure 2.14 shows where
AsymmetricAlgorithm class resides in the class hierarchy, under the abstract

AsymmetricAlgorithm class.

MNamespace: System.Security. Cryptography

AsymmetricAlgorithm
- RSA
L RSACryptoServiceProvider
o DSA

L DSACryptoServiceProvider

Figure 2.14. The asymmetric algorithm class hierarchy
(Source: Thorsteinson and Ganesh 2003)

18

For digital signatures, it turns out that it is not actually necessary to encrypt the
entire original message. It is entirely sufficient, as well as much more efficient, to
generate a hash of the original message, and then just encrypt that smaller hash value
with the private key. Anyone with the matching public key (i.e., everybody) can then
decrypt that hash with the public key for verification purposes. If the decrypted hash
matches the recalculated hash of the actual message received, then the receiver can be
quite confident that the original message that generated the hash must also match the
received message. This comes from the fact that it is extremely difficult to find any two

inputs that produce the same hash output (Thorsteinson and Ganesh 2003).

19

CHAPTER 3

WEB SERVICES SECURITY

3.1 Web Services Security Overview

There are seven requirements that must be addressed by a general security
framework as defined by the ISO Security Standard (Wabhli, et al. 2006):
1. Identification

Authentication

Authorization

Integrity

Confidentiality

Auditing

S A R

Non-repudiation

Web services security is one of the most important web services subjects. When
using web services, similar security exposures exist as for other Internet, middleware-
based applications and communications. To demonstrate the web services security
exposures, we are going to explain several major risk factors for a system with no

security. Most common security risks have been depicted in Figure 3.1.

20

Authorized
User

<SOAP Message in clear text>
<user=User 1<fuser=>
=data>xyz=</data=>
<{30AP Message in clear text>

Tampering:
Na Integrit
Eavesdropping:

@ No confidentiality
Spoofing:

No Authentication

<SOAP Message in clear text>
<user=User 1</user>
<data=klm=/data>
</SOAP Message in clear text>

Figure 3.1. Web Services Scenario with No Security
(Source: Wabhli, et al. 2006)

3.2 Web Services Security Approaches

Three fundamental concepts related to web services security exist from the
perspective of web services architecture: the resources that must be secured, the
mechanisms by which these resources are secured, and policies, which are machine-
processable documents describing constraints on these resources.

Policies can be logically broken into two main types: permission policies and
obligatory policies. A permission policy concerns those actions that an entity is
permitted to perform and an obligatory policy concerns those actions that an entity is
required to perform. Due to their nature, these two different kinds of policies have
different types of enforcement mechanisms. A permission policy guard mechanism can
be used to verify that a requested action is permitted to be performed by the entity,
while the obligatory guard mechanism can only verify after the fact that an obligation
has not been met. The architecture is principally concerned with the existence of such

guard mechanisms and their role in the architecture.

21

Not all guards are active processes. For example, confidentiality of messages is
provided by encryption. The guard here is the encryption itself, although this may be
further backed up by active guards that apply policy.

Traditional network level security mechanisms such as Transport Layer Security
(SSL/TLS), Virtual Private Networks (VPN), IPSec (Internet Protocol Security), and
Secure Multipurpose Internet Mail Exchange (S/MIME) are point-to-point technologies.
Although these traditional technologies may be used for web services security, they are
not sufficient for providing an end-to-end security context, ad web services use a
message oriented approach that enables complex interactions that can include the
routing of messaged across various trust domains.

Therefore, message level security is important as opposed to point-to-point
transport level security. As can be seen in Figure 3.2 below, the security context of
SOAP message is end-to-end. However, there may also be a need for the intermediary
to have access to some information in the message. This is illustrated as a security
context between the intermediary and the original requester agent, and the intermediary
and the ultimate receiver

You can send secured messages over many different protocols such as Simple
Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP), and Transmission
Control Protocol (TCP) without having to rely on the protocol for security (Microsoft
Patterns and Practices Developer Center 2005).

Security Context : Point-to-point Security Context: Point-to-point

. N

Original Requester S0AP Sacurity Intarmediary Ultimate Receiver

. J

T "Sacurity Context: End-fo-end™ -

Figure 3.2. Point-to-point vs. End-to-end Security
(Source: W3C Working Group 2004)

22

HTTP, the most widely used Internet communication protocol, is currently also
the most popular protocol for web services. HTTP is an inherently insecure protocol
since all information is sent in clear text between unauthenticated peers over an insecure
network. To secure HTTP transport-level security can be used. Transport-level security
is a well known and often used mechanism for securing Internet and Intranet
communications. It is based on Secure Sockets Layer or Transport Layer Security that
works beneath HTTP.

If a message needs to go through multiple points to reach its destination, each
intermediate point must forward the message over a new SSL connection. In this model,
the original message from the client is not cryptographically protected on each
intermediary because it traverses intermediate servers and additional computationally
expensive cryptographic operations are performed for every new SSL connection that is

established (Microsoft Patterns and Practices Developer Center 2005).

3.2.1 Web Services Security Technologies

In web services, the SOAP envelope is defined in XML, thus, web services can
use many of the existing XML security technologies and standards, such as XML
encryption and XML Digital Signatures. In addition many new standards such as WS-
Security have emerged. The WS-Security is the cornerstone of all the efforts in pulling
all these requirements together. The abstract of WS-Security specification document
says that WS-Security describes enhancements to SOAP messaging to provide quality
of protection through message integrity, message confidentiality, and single message
authentication. These mechanisms can be used to accommodate a wide variety of
security models and encryption technologies (IBM Feeds 2002). Other technologies in
the process of standardization are XML Key Management Specification (XKMS) (Ford,
et al. 2001), Secure Assertion Markup Language (SAML) (Campbell and Lockhart
2007), Extensible Access Control Markup Language (XACML) (Parducci and Lockhart
2008), and Identity Federation (Raskin 2008).

23

3.2.2 WS-Security Overview

Multiple parts of a message can be secured in different ways. Multiple security
requirements can be applied, such as integrity on the security token, and confidentiality
on the SOAP body. End-to-end message level security can be provided through any
number of intermediaries. WS-Security works across multiple transports and is
independent of the underlying transport. Authentication of multiple party identities is
possible.

The latest core specification, Web Services Security: SOAP Message Security
1.0 (WS-Security 2004) was standardized in March 2004. The two profiles, Web
Services Security Username Token Profile, and Web Services Security X.509
Certificate Token Profile 1.0 were standardized at the same time. This evolution is

presented in Figure 3.3.

WE-Security WS-Security Addendum
ersion 1.0 Wersion 1.0
April 2002 August 2002

;- 1 1 OASIS Activities)

WS-Sacurity 2004
March 2004

|
| |
WE-Security 2004 WS-Security 2004
X509 Cert Token Username Token
Profile 1.0 Profile 1.0
March 2004 March 2004
b i

Figure 3.3. Evolution of WS-Security Specification
(Source: Wabhli, et al. 2006)

24

The web services security model introduces a set of individual interrelated

specifications to form a layering approach to security (Wabhli, et al. 2006). This layered

architecture is presented in Figure 3.4. It includes several aspects of security:

identification, authentication, authorization, integrity, confidentiality, auditing, and non-

repudiation.

i Sy iy .
WE-Secure Comvearsation WS-Federation WS-Authorization
% N = =
' ™ R 2
WS-Policy WS-Trust WS-Privacy
e ARG > G =
a ™
WES-Secunty

Yd

SOAP Foundations

_AS

Figure 3.4. Web Services Security Specifications

3.3 WS-Security Example

(Source: Wahli, et al. 2006)

This section provides examples of SOAP messages with WS-Security. Using

WS-Security, the authentication mechanism integrity, and confidentiality can be applied

at the message level. As an overview, Figure 3.5 shows an example of web service

security elements when the SOAP body is signed and encrypted.

25

SOAP Envelope

SOAP Headers P
- Security Token
~
Misc. Headers %
b 4 Time stamp
&
Security Header
Signature
T E ted Ke
SOAP Body e =

Encrypted Data

Figure 3.5. SOAP Message Security with WS-Security
(Source: Wabhli, et al. 2006)

Figure A.1 shows the sample SOAP message without applying WS-Security. As
you can see, there is only a SOAP body under the SOAP envelope. Applying WS-
Security, the SOAP security header will be inserted under the SOAP envelope.

1. In Figure A.2, we show a message with authentication. As can be seen,
we have username and password information as a <UsernameToken> tag
in the message (Madsen 2006). When the username token is received by
the web service server, the username and password are extracted and
verified. Only when the username and password combination is valid
will the message be accepted and processed at the server.

Integrity is applied to the application to ensure that no one illegally modifies the
message while it is in transit. Essentially, integrity is provided by generating an XML
digital signature on the contents of the SOAP message. If the message data changes
illegally, the signature would no longer be valid.

Figure A.3 shows a sample SOAP message with integrity. Here the message
body part is signed and added to the SOAP security header as signature information.

A signature is based on a key that the sender is authorized to have. Unauthorized
sniffers do not have this key. When the receiver gets the message, it too creates a
signature using message contents. Only if the two signatures match does the receiver
honor the message. If the signatures are different, a SOAP fault is returned to the

sender.

26

Figure A.4 shows a sample SOAP message with confidentiality. Here, the
message body part is encrypted and a security header with encryption information
added. Confidentiality is the process in which a SOAP message is protected so that only
authorized recipients can read the SOAP message. Confidentiality is provided by
encrypting the contents of the SOAP message using XML encryption. If the SOAP
message is encrypted, only a service that knows the key can decrypt and read the

message.

27

CHAPTER 4

WEB SERVICES SECURITY ARCHITECTURE

4.1 Web Services Security Architecture

We focus on WS-Security which is a basis for our implementation process on
this thesis. Figure 4.1 is presented in order to understand WS-Security architecture. The

processing of the architecture is performed as follows (Nakamura, et al. 2005):

1. Requester invokes WSSGenerator.

2. WSSGenerator invokes TokenGenerator to create a SecurityContextToken
(SCT).

3. Since no SCT is cached initially, TokenGenerator invokes CallbackHandler.

4. CallbackHandler interacts with STS to get a Generic Service Security (GSS)
Token and an SCT.

5. TokenGenerator stores a GSS token associated with an identifier of the SCT.

6. WSSGenerator invokes SigEngine, giving the SCT identifier.

7. During the sign operation, SigEngine eventually needs a key indicated by the
SCT identifier, so KeyLocator is invoked.

8. KeyLocator finds a key with the identifier.

9. SigEngine signs the message, using the provided key.

28

Request SCT
CallbackHandler = STS

¥

'I{J TokenGenerator || KeylLocator

L F rF 3 s

= |- Sig/Enc
E., Message

L 4 L 4

SigEngine EncEngine

Figure 4.1. Architecture of WS-Security Handler in IBM WebSphere
(Source: Nakamura, et al. 2005)

On the other hand, when we focus on the implementation of the architecture the

whole process explained step by step as follows:

1.

Requester invokes WSSGenerator: The client class manages the generation
process on the Client application.

WSSGenerator invokes TokenGenerator to create a SecurityContextToken
(SCT): IDTokenGenerator and CreditTokenGenerator classes manage the token

generation process.

. Since no SCT is cached initially, TokenGenerator invokes CallbackHandler:

Client class manages this process.

. CallbackHandler interacts with STS to get a Generic Service Security (GSS)

Token and an SCT: On STS side; token generator classes manages this process.

. TokenGenerator stores a GSS token associated with an identifier of the SCT:

This operation isn’t implemented due to the performance analysis.

. WSSGenerator invokes SigEngine, giving the SCT identifier: Signature

Generation class manages that process.

During the signing, SigEngine eventually needs a key indicated by the SCT
identifier, so KeyLocator is invoked: KeyExchange class manages key Exchange
operation between client and STS. Client creates KeyExchangeToken object

which includes SessionKey object encrypted with RSA algorithm with STS’s

29

public key and sends to the STS. SignatureGeneration class operates signature
process. SignatureClass signs the data with STS’s private key.

8. KeyLocator finds a key with the identifier: STS’s main class finds the Certificate
stored on the local machine.

9. SigEngine signs the message, using the provided key: Certificate’s public and
private keys uses for signature operations.

10. For EncEngine process: Crypt interface is manages all symmetric encryption

processes.
After the introduction of the web services security architecture in the following

topic, a scenario based on web services security architecture will be explained.

4.2 Web Service Security Scenario

The scenario which will be used for demonstration of proposed architecture is a
real-life example of the WS-Security scenario. The requester is a citizen who would like
to apply for a credit account to a bank. For his application to be honored, the service
requests the applicant to present two security tokens, one obtained from the government
verifying his identity, and another token from the factious agency of Board of Credit
Rating which rates people’s credit status. When both tokens are acquired, the requester
invokes the services web service and presents these tokens. The service verifies these
tokens and according to the credit rating of the applicant, and decides to approve the
credit request or not.

There are 6 steps of the scenario shown in Figure 4.2 (Hendrickson 2006):

1. The client requests an identification token from the identity security token
service (IdentitySTS).

2. The identity security token service processes the request security token (RST)
and sends a response.

3. The client requests a status token from the credit rating security token service

(Credit Rating STS).

4. The Credit Rating STS processes the request status token and sends a response

5. The client sends a request to the service

30

6. The service processes the request, which includes identity security token and

status token, and sends a response.

Validale Credentials

< S

& entity
a @~ STS

Validate Status

Respon

Validate Status

Credit Rating
STS

Figure 4.2. Scenario Flow
(Source: Hendrickson 2006)

The sequence diagram for the scenario flow is illustrated in Figure 4.3. Client
application creates username, password information and transmits them to IdentitySTS
web services. IdentitySTS web service uses information to verify the client and creates
an identity token. Client application transmits the identity token, taken from
IdentitySTS web service, to CreditRatingSTS web service to receive the credit status
token. CreditRatingSTS uses identity token to determine the credit status and to create
credit status token. Client application transmits the identity token and credit status token
to service web service and service web service returns a response data after the

verification processes of the tokens.
31

% Identity

Client 2=
L .R;q“e“ securty Token (Usemametoken) |
(string userMame) - (string password) - (DateTime requestTims)
2o | Verify Credentials andI Create [dentity Token |- of- e
Reqguest %ecurit\f Token Response - IderﬁtityToken
(DateTlme -I\.fg:rime) - (string requestType) - :(strlngtokenType) --
PR ! RSTR - Reguest Security To!»(en Response (ldentity Token)h __
(string userMame) - (string password) - (DateTime requestTime)
R R R | Werify Credentials anclj Create Status Token f--- - et
o . RSTR - Request Security Toiken Respanse (Status Token) ! ...
(DateTime lifeTime) - (string r?questType) - [string tokenType)I
T Request (ldentity Token, Status Token) Jdoo
= S P N Werify Tokens and Evaluate Request
o T - Response |

Figure 4.3. Sequence Diagram of the Scenario.

4.3 Overview of Security System of Scenario

The authentication security layer is provided between message level
communication of client and IdentitySTS as shown Figure 4.4. Client creates username
and password information. After the encryption approach with session key, client sends
to the IdentitySTS to take an identity token behind the verification process by

IdentitySTS.

*kiL based Encrypts “ith Dairspts s ith xhiL based plain
plain t=-t sacanh be s sacaonie, tastlorriattacl, Craates
fpprriatte d /.J x Uszrnariz and IGToken < hen
Ussrnarms and /J pases ord senficahon
passsord ~ ~ Inforriatien performes
forriation Transmitting

@

- -

l

ciplvaitaxt ~ A |
-
«N" I

Figure 4.4. Authentication Process Flow

32

The integrity security layer is provided between client and STS’s
communication as shown Figure 4.5. After IDToken creation process of IdentitySTS,
IdentitySTS firstly encrypts the IDToken with session key and signs the encrypted
IDToken data through asymmetric private key of own certificate to perform the
integrity security layer. When the client achieved the signed and encrypted IDToken
sends to the CreditRatingSTS to obtain a CreditStatusToken. CreditRatingSTS first
verifies the signature using with public key of the certificate of IdentitySTS. Behind
verification complete, CreditRatingSTS creates a CreditStatusToken and encrypts the
token with session key and signs the encrypted token data through asymmetric private
key of own certificate to perform the integrity security layer. As the client achieved the
signed and encrypted CreditStatusToken sends to the ServiceSTS to obtain an account.
ServiceSTS verifies IDToken using the signature using with public key of the certificate
of IdentitySTS and CreditStatusToken using the signature using through public key of
the certificate of CreditRatingSTS. After verification process the service sends

encrypted response.

Encrypts with

5i ing Verifiesth
session kev “l&rl_%_usm M.
TR S certificate of signature using
i Eri\rai.:e key of certificate of Decrvots with
/-3 IdentitySTsS public kevof ceccion kew
IdentitysSTS
ety
CERTIFICATE HAS % h‘f/f)
PUBLIC AND)
Creates, PRIVATE KEY Creates
IDToken when — CERTIFICATE HAS PUBLIC CreditStatusToken
wverification . | LW, AND PRIVATE KEY when verification
psrformss, fa A .' i) performes
’ . e f
Transmittin Transmittin __,
nﬂ‘ mgher‘text ciphertext ﬁ u
\"* Ay
den‘tl STS

CLIENT CredltRatmgSTS

Figure 4.5. Integrity Process Flow

The confidentiality security layer is provided between client and STS’s
communication. All communications between client and STS’s can be applied through a
symmetric session key in cipher based. Session Key is selected by the user as Rijndael
or Triple Des symmetric based algorithms. Session Key created by the client

application. In order to perform this, as illustrated Figure 4.6, the session key is

33

performed into a key exchange method by using the asymmetric RSA algorithm.

Ciphered session key is transmitted to STS’s by an attribute of web method.

D crypet oath FSA
agarthry using
STS sFrivats Fey

§er

Encroptoith R34 CERTIFICATE HAS

algorthm using

STS 2 Pubhic k- PUEBLI¢. AND PRIVATE
P KEY :
— T - . j [
- ransmitting SN 1)
53 & ciphartext B q .
\s\ e
Session Kay CLIENT SECURITY Sassion Key
XML Typad TOKEN ¥ML Typad
Plain text form at SERVICE Plain taxt form at

Figure 4.6. Key Exchange Flow

4.3.1 Identity Security Token Service Process

In the first step of the scenario, the client has two choices which are
cryptographic based communication or plain text based communication. Client calls the
requestIDToken method in order to communicate in the cryptographic based. However,
client calls the requestIDTokenPlain method in order to communicate in the plain text
based communication.

When the client calls the requestiIDTokenPlain method, client sends a username
token to the identity security token service (Identity STS) in plain text format. The
identity STS is in charge of verifying credentials of the client using the username and
password information. Identity STS verifies the username and password information by
searching in a data store which involves the information about authorized clients. As
seen on the Figure B.1, client calls the requestIDToken web method with the XML
serialized ClientRequestInfos class type object attribute of the IdentitySTS web service
in order to receive the identity token from the STS. The STS deserializes the XML

serialized object and verifies the username and password information into the

34

ClientRequestInfos object by using check method of the IDCheck class which searches
the data into the data store.

As the second step, according to the verification process, the identity security
token service response the requested identity token which includes the type of requested
token, the type of token and the lifetime of the requested token. In order to create the
identity token, which is an object would be able to create from IDToken class, the STS
calls the generate method of IDTokenGenerator class. Behind of the creation of the
identity token, the STS performs the XML type serialization approach and returns the
IDToken object to the client.

However, all these processes performed by the cryptographic based
communication by the session key created by the client and sent to the IdentitySTS by
the attribute of the requestIDToken web method.

4.3.2 Credit Security Token Service Process

In the third step of the scenario, the client again has two choices which are plain
text or cryptographic based communication. Client calls the requestCreditStatus method
in order to communicate in the cryptographic based but client calls the
requestCreditStatus PlainText method in order to communicate in the plain text based
communication.

When the client calls the requestCreditStatus PlainText method, client sends an
identity token taken from IdentitySTS to the credit status security token service (Credit
STS) in plain text format. The Credit STS is in charge of verifying credentials of the
IdentitySTS token which has been signed by private key of the IdentitySTS. As seen on
the Figure B.2, client calls the requestCreditStatus web method with the XML serialized
CipherToken class type object attribute of the IdentitySTS web service in order to
receive the credit status token from the STS.

As the forth step, according to the verification process, the credit status token
service response the requested credit status token which includes the type of requested
token, the type of token and the lifetime of the requested token. In order to create the
credit status token, which is an object would be able to create from CreditStatusToken
class, the STS calls the generate method of CreditStatusTokenGenerator class. Behind

35

of the creation of the credit status token, the STS performs the XML type serialization
approach and returns the CreditStatusToken object to the client. However, all these
processes performed by the cryptographic based communication by the session key
created by the client and sent to the CreditSTS by the attribute of the

requestCreditStatus web method.

4.3.3 Service Process

In the fifth step of the scenario, the client has two choices which are plain text or
cryptographic based communication. Client calls the request method in order to
communicate in the cryptographic based but client calls the request Plain method in
order to communicate in the plain text based communication.

When the client calls the request Plain method, client sends identity token taken
from IdentitySTS and credit status token taken from CreditSTS to the service in plain
text format. The service is in charge of verifying credentials of the IdentitySTS token
and CreditSTS token which has been signed by private key of the IdentitySTS and
CreditSTS. As seen on the Figure B.3, client calls the request Plain web method with
the XML serialized CipherToken class type object attributes of the IdentitySTS web
service and CreditSTS web service in order to receive the data from the service.

As the sixth step, according to the verification process, the service responses the
requested data.

However, all these processes performed by the -cryptographic based
communication by the session key created by the client and sends to the service by the

attribute of the request web method.

4.3.4 CipherToken Class Model

The communication, made between client and STS’s, is based on ciphered data
communication. The creation process for the cipher token first the data, which is a token
(IDToken, CreditStatusToken), ciphered by a symmetric session key and stores into

CipherData class. The creation times of the created tokens stores into the CreationTime
36

class which will be used for the statistical analysis. As shown Figure B.4,
AuthenticationStatement class is utilized for storing the authentication time values
which will be used for the statistical analysis and a pointer for Keylnfo class.
CipherToken may also sign the ciphered data to ensure the integrity of the
communication and the signature stores into the Signature class. The SignedInfo class

which is pointed by the Signature class has all data for signature.

4.3.5 Domain Model

The domain model, represented on Figure B.5, designed for controlling all the
messaging processes between client and web services. The Client calls the request
method creates the three objects of ClientldentitySTS, ClientCreditStatusSTS and
ClientServiceSTS which are responsible for performing the communication by web
services.

ClientldentitySTS class has requestiIDToken which firstly checks the
cryptographic communication approach chosen by the user on the graphic user
interface, secondly if plain text based communication is chosen then calls the
IdentitySTSservices requestlIDTokenPlain web method by the attribute of client
information data else if creates symmetric session key by the chosen cryptographic
method, thirdly ciphers the session key by wusing the RSA algorithm with
IdentitySTSservices private key, fourthly ciphers the client information by the session
key, fifthly calls IdentitySTSservice web services requestiIDToken web method by the
attributes of session key and client information data.

ClientCreditStatusSTS class has requestCipherToken CreditStatusToken
method which firstly checks the cryptographic communication approach chosen by the
user on the graphic user interface, secondly if plain text based communication is chosen
then calls the CreditStatusSTSservices requestCreditStatus PlainText web method by
the attribute of IDToken which received from IdentitySTSservice web service else if
creates symmetric session key by the chosen cryptographic method, thirdly ciphers the
session key by using the RSA algorithm with CreditStatusSTSservices private key,
fourthly ciphers the IDToken by the session key, fifthly calls CreditStatusSTSservice

37

web services requestCreditStatus web method by the attributes of session key and
IDToken data.

ClientServiceSTS class has requestCipherToken Service method which firstly
checks the cryptographic communication approach chosen by the user on the graphic
user interface, secondly if plain text based communication is chosen then calls the
Service web service’s request plain web method by the attribute of IDToken and
CreditStatusToken which received from IdentitySTSservice and CreditStatusSTSservice
web services else if creates symmetric session key by the chosen cryptographic
method, thirdly ciphers the session key by using the RSA algorithm with Services
private key, fourthly ciphers the IDToken and CreditStatusToken by the session key,
fifthly calls Service web services request web method by the attributes of session key,

IDToken and CreditStatusToken data.

4.3.6 Client Class Model

Except Client, ClientldentitySTS, ClientCreditStatusSTS, ClientServiceSTS
classes there are supporting classes as it is seen on the Figure B.6. Crypt interface
manages the Cryptographic business to support the client. All token classes as IDToken,
CreditStatusToken samples are also support client when XML serialization process.
Client uses KeyExchange class to exchange the session key with web service by using
the web services private keys. KeyExchangeToken has all information about session
key and key Exchange information. Static type Serializer class operates the XML
serialization approach between web services and client communication based on XML
messaging system. XML messages converting the class object samples by using the
Serializer class. Static type CryptAttribute class stores the information about

cryptogragraphic keys and methods.

38

CHAPTER 5

IMPLEMENTATION AND EXPERIMENTS

5.1 Client Application

The client application, which requests tokens and demands a service from
service security token service, has console application interface which presents to enter
symmetric encryption type and test number options.

All time costs are saved to the files. All data will be used for performing

statistical methods in order to test the communication type’s efficiency.

All steps are described below for client application:

1. Create an instance of IdentitySTS web service.

2. Create a KeyExchange object to generate KeyExchangeToken object which
contains sessionKeys encrypted with RSA algorithm utilizing with
certificate of public key of IdentitySTS web service.

3. Perform an XML serialization operation for CipherToken object which
encapsulates encrypted KeyExchangeToken and encrypted
ClientRequestInfos objects with session key, and pointed by cipherValue
field, in order to send IdentitySTS web service.

4. Request a CipherToken which encapsulates IDToken including digital
signature from IdentitySTS web service by sending the attributes
CipherToken objects encapsulates ClientRequestinfos and KeyExchange
Token objects. Web method returns IDToken into the byte array encrypted
by symmetric sessionKey algorithm.

5. Perform an XML deserialization operation for CipherToken object
encapsulates IDToken object to achieve performance time costs.

6. Create an instance of CreditStatusSTS web service.

39

7. Perform XML serialization operation for CipherToken objects encapsulates
encrypted KeyExchangeToken and encrypted IDToken objects, pointed by
cipherValue field, in order to send CreditStatusSTS web service.

8. Request a CipherToken object encapsulates CreditStatusToken object
including digital signature from CreditStatusSTS web service by sending the
attributes ~ CipherToken objects encapsulates = IDToken and
KeyExchangeToken objects. Web method returns CreditStatusToken into
the byte array encrypted by symmetric sessionKey algorithm.

9. Create an instance of ServiceSTS web service.

10. Perform XML serialization operation CipherToken for KeyExchangeToken,
CipherToken for IDToken, and CipherToken for CreditStatusToken in order
to send to service web service.

11. Request a service encapsulated into CipherToken object including digital
signature from ServiceSTS web service by sending the attributes IDToken,
CreditStatusToken and KeyExchangeToken objects encapsulated into
CipherToken object. Web method returns a response as affirmative or
negatory into the byte array encrypted by symmetric sessionKey algorithm.

All communication between client and STSs has been provided by SOAP

envelopes. An example SOAP message taken the time of requesting IDToken is
illustrated on Figure C.1. The open message of ClientRequestInfos object pointed to the
cipherValue field of CipherToken object may be shown on Figure C.3. An example
SOAP message taken the time of requesting CreditStatusToken is presented on Figure
C.5. An example SOAP message taken the time of requesting the service data is

illustrated on Figure C.8.

5.2 Identity Security Token Services

IdentitySTS web service has two web methods to provide options for client to
choose plain text based communication or secured based communication.
RequestIDTokenPlain web method using for plain text based communication requires
one attribute which is ClientRequestInfos encapsulated by CipherToken object on plain
text format. RequestlIDToken web method using for secure based communication

40

requires two attribute KeyExchangeToken object which has encrypted fields with

asymmetric RSA algorithm and ClientRequestinfos encrypted with session key

encapsulated by CipherToken object. Fundamentally, the structure of the web methods

is very similar. Only the decryption, encryption and signature creation processes added

to the requestIDToken web method. All steps are described below for requestIDToken
web method of IdentitySTS:

1.

9.
10.
11.
12.
13.

Perform XML deserialization operation for Cipher Token object which

encapsulates KeyExchangeToken object comes from client.

. Decrypt KeyExchangToken object fields to obtain session key with RSA

algorithm uses private key of certificate of IdentitySTS.

. Create a SessionKey object which contains sessionKey information into

plain text format. All information has been taken from decrypted

KeyExchangeObject.

. Decrypt CipherObject which encapsulates ClientRequestinfos object with

session key.
Verify the identity information taken from decrypted ClientRequestInfos

object using data store.

. If verified create an IDToken.

. Encrypt the IDToken with session key.

Sign the encrypted IDToken data using with private key of certificate of
IdentitySTS.

Create a CipherToken object.

Include encrypted IDToken data to cipherValue field of CipherToken object
Include signature signatureValue field of CipherToken Object.

Add all the time cost values to the CipherToken object fields.

Return the CipherToken object.

An example SOAP message taken the time of responding IDToken is illustrated

on Figure C.2. The open message of IDToken object pointed to the cipherValue field of

CipherToken object may be shown on Figure C.4.

41

5.3. Credit Rating Security Token Services

CreditRatingSTS web service has two web methods to provide options for client
to choose plain text based communication or secured based communication.
requestCreditStatus PlainText web method using for plain text based communication
requires one attribute which is IDToken encapsulated by CipherToken object on plain
text format. RequestCreditStatus web method using for secure based communication
requires two attribute KeyExchangeToken object which has encrypted fields with
asymmetric RSA algorithm and IDToken object encrypted with session key
encapsulated by CipherToken object. Fundamentally, the structure of the web methods
is very similar. Only the decryption, encryption and signature verification-creation
processes added to the requestCreditStatus web method. All steps are described below
for requestCreditStatus web method of IdentitySTS:

1. Perform XML deserialization operation for CipherToken object which
encapsulates KeyExchangeToken object.

2. Decrypt KeyExchangeToken object fields to obtain session key with RSA
algorithm uses private key of certificate of CreditRatingSTS.

3. Create a SessionKey object which contains sessionKey information into
plain text format. All information has been taken from decrypted
KeyExchangeObject.

4. Decrypt CipherObject which encapsulates encrypted IDToken object and its
signature data with session key.

5. Verify the signature using with the public key of certificate of IdentitySTS
and lifetime of the IDToken.

6. Create a CreditStatusToken if verified.

7. Encrypt the CreditStatusToken with session key.

8. Sign the encrypted CreditStatusToken data using with private key of
certificate of CreditRatingSTS.

9. Create a CipherToken object.

10. Include encrypted CreditStatusToken data to cipherValue field of

CipherToken object.
11. Include signature signatureValue field of CipherToken Object.

42

12. Add all the time cost values to the CipherToken object fields.

13. Return the CipherToken object.

An example SOAP message taken the time of responding CreditStatusToken is
illustrated on Figure C.6. The open message of CreditStatusToken object pointed to the
cipherValue field of CipherToken object may be shown on Figure C.7.

5.4 Service Security Token Services

ServiceSTS web service has two web methods to provide options for client to
choose plain text based communication or secured based communication.
Request Plain web method using for plain text based communication requires two
attribute which is IDToken encapsulated by CipherToken object on plain text format
and CreditStatusToken encapsulated by CipherToken object on plain text format.
Request web method using for secure based communication requires three attribute
KeyExchangeToken objects which has encrypted fields with asymmetric RSA
algorithm, IDToken object encrypted with session key encapsulated by CipherToken
object and CreditStatusToken object encrypted with session key encapsulated by
CipherToken object. Fundamentally, the structure of the web methods is very similar.
Only the decryption, encryption and signature verification-creation processes added to
the request web method. All steps are described below for request web method of
ServiceSTS:

1. Perform XML deserialization operation for CipherToken object which
encapsulates KeyExchangeToken object.

2. Decrypt KeyExchangToken object fields to obtain session key with RSA
algorithm uses private key of certificate of ServiceSTS.

3. Create a SessionKey object which contains sessionKey information into
plain text format. All information has been taken from decrypted
KeyExchangeObject.

4. Decrypt CipherObject which encapsulates encrypted IDToken object and its
signature data with session key.

5. Decrypt another CipherObject which encapsulates encrypted
CreditStatusToken object and its signature data with session key.

43

10.
11.
12.
13.
14.

To

. Verify both signatures using with the public key of certificate of

IdentitySTS, CreditStatusSTS and lifetimes of the IDToken,
CreditStatusToken.

. Create a service data if both verified.
. Encrypt the service data with session key.

. Sign the encrypted service data using with private key of certificate of

ServiceSTS.

Create a CipherToken object.

Include encrypted service data to cipherValue field of CipherToken object.
Include signature signatureValue field of CipherToken Object.

Add all the time cost values to the CipherToken object fields.

Return the CipherToken object.

sum up, all the processes of the implementation of our scenario has been

explained step by step. In the next topic, experiments and its results will be presented in

detail.

5.5 Experiments

In order to obtain operational values of distributed web services security

architecture, a number of tests are performed using different cryptographic based

algorithms. These tests are performed into the laboratory on four different computers

the specifications of the computers written below:

1. Client Computer Specifications

e Pentium 4 CPU 3.4 GHZ
e 2.00 GB RAM
e Windows XP SP2 Operating System

e Net Framework 2.0

44

2. IdentitySTS Computer Specifications
e Pentium 4 CPU 2.00 GHZ
e 512 MBRAM
e Windows XP SP2 Operating System
e _Net Framework 2.0
3. CreditStatusSTS Computer Specifications

Pentium 4 CPU 3.00 GHZ

2.00 GB RAM

Windows XP SP2 Operating System
e _Net Framework 2.0
4. ServiceSTS Computer Specifications
e Pentium 4 CPU 3.40 GHZ
e 2.00 GB RAM
e Windows XP SP2 Operating System

e Net Framework 2.0

Service Security Services built into Internet Information Service 5.1 (IIS 5.1) on
the top of .Net Framework 2.0 environment. Client application executes on the .Net
Framework 2.0 environment. The results also affected operational system and .Net
framework noises and background processes. Eliminating these problems is impossible.
Due to that, evaluation of the performance results must be performed considering the

background noise problem. The cryptographic algorithms specification is listed below:

45

1. Triple DES Algorithm
e Triple DES BlockSize = 64
e Triple DES FeedBackSize = 8
e Triple DES Initialization Vector Length = 8
e Triple DES Key Size = 192
e Triple DES Mode = CBC
e Triple DES Padding Mode = PKCS7
2. Rijndael Algorithm
¢ Rijndael BlockSize = 128
¢ Rijndael FeedBackSize = 128
¢ Rijndael Initialization Vector Length = 16
¢ Rijndael Key Size =256
¢ Rijndael Mode = CBC
¢ Rijndael Padding Mode = PKCS7
3. RSA Algorithm
e RSA KeyExchangeAlgorithm = RSA-PKCS1-KeyEx
e RSA KeySize = 1024
e RSA SignatureAlgorithm = http://www.w3.0rg/2000/09/xmldsig#rsa-
shal

The target is the observation statistically of Rijndael, Triple DES
communications measurements on the .Net Framework 2.0 in different network settings.
In order to obtain the time cost of each cycles test samples have been taken for each
cryptographic based communication algorithms.

In order to observe the network settings effects three different network location
has been used which are local, distributed and two computer network locations. In local
structure all service and client application has been set up to client computer. In
distributed structure all services and client application has been set up own machine. In
two computer structure is all service has been set up to CreditStatusSTS computer and

client application has been set up to client computer.

46

5.6 Evaluation of the Experiments in Statistical Methods

The analysis of variance (ANOVA) (Montgomery 1997) has been utilized for
statistically evaluation of the data of the experiments. Analysis of variance is a
statistical technique for analyzing experimental data. It subdivides the total variation of
a data set into meaningful component parts associated with specific sources of variation
in order to test a hypothesis on the parameters of the model.

16 replicated 2*3 factorial experiment (Montgomery 1997), which has
symmetric cryptographic methods (Rijndael and Triple DES) and network settings
(Local, Distributed and Two Computer) are factors, has been used. In this design, the
symmetric cryptographic methods factor which is Rijndael and Triple DES is two level
and the network settings factor consists of three level (Local, Distributed and Two
Computer). All data has been obtained by calculating the means of 500 measurements.

The aim of the choice of factorial design is to determine the interactions between
the factors which are to designate the effects. All experiments, which have been
performed four times a day, have been consummated in four days (08-11.09.2008).

The ANOVA table shown in Table 5.1, which has been obtained complete
analyses of variance model, is below. The model involving symmetric cryptographic
methods, network settings and interaction effects. This model has been determined as

statistically significant model (F =32.19, P <0.0001).

Table 5.1. ANOVA Table of Complete Analyses of Variance Model

Source DF SLm @ hifen F Value| Pr>F
Squares Square
Model 20 0.4813713110.02406857 | 32.19 <.0001
Error 75 0.0560723810.00074763
Corrected
Total 95 0.53744369

47

Means of main effects of response times which has been included in the model
presented on Table 5.2, Table 5.3 and Table 5.4. After the analysis of variance, network
settings effect included in model has been determined as statistically significant
(F=103.86, P<0.0001). If time effects considered as block effect, time effects has been
determined as statistically significant (F = 29.05, P < 0.0001). Symmetric cryptographic
effect has been determined as statistically insignificant (F= 0.29, P = 0.5899). The
interaction of symmetric cryptographic methods and network settings has been
determined as statistically insignificant (F = 0.06, P = 0.9448) as shown on Table 5.5.
Statistically insignificant interaction affects exhibits that symmetric cryptographic
methods (Rijndael and Triple DES) react as independently through network settings

(Local, Distributed and Two computer) vice versa.

Table 5.2. Means of Network Settings Effects

Level of score
NETWORK N
SETTINGS Mean Std Dev
2 Computer

32 0.44743359 0.05480471
Distributed

32 0.50733984 0.05762563
Local

32 0.54511914 0.07748063

Table 5.3. Means of Symmetric Cryptographic Methods Effects

Level of score

Cryptographic Mean Std Dev
Methods

Rijndael

48 0.49845378 | 0.07529177

Triple DES
48 0.50147461 | 0.07590430

48

Table 5.5. The Analysis of Variance Table For Each Effects

Table 5.4. Means of Experiment Repetitions

Level of score
N
Repetition Mean Std Dev
1 6 0.41628125 | 0.03436473
2 6 0.41517708 | 0.03352135
3 6 0.42054688 | 0.03689504
4 6 0.47943229 | 0.12119088
5 6 0.58668229 | 0.06460875
6 6 0.58857813 | 0.05572307
7 6 0.59486979 | 0.06464872
8 6 0.58821354 | 0.05668958
9 6 0.49957292 | 0.02650188
10 6 0.48925000 | 0.03510945
11 6 0.49131250 | 0.02896885
12 6 0.48823438 | 0.03706502
13 6 0.48945313 | 0.03684678
14 6 0.48391667 | 0.03262721
15 6 0.48425000 | 0.04101718
16 6 0.48365625 | 0.03248284

Source DF Type I SS Mean Square | F Value Pr>F
NETWORK

SETTINGS 2| 015529067 | 0.07764533 103.86 <0001
Cryptographic| |) ;117190 0.00021901 0.29 0.5899
Method

Repetition 15| 0.32577668 0.02171845 29.05 <0001
Network

1 %*

Settings® |, | (00008495 | 0.00004247 0.06 0.9448
Cryptographic

Method

49

After the analysis of variance, Tukey's Studentized Range (HSD) Test has been
used to compare the levels of network settings effect determined as statistically
significant as shown on Table 5.6. The statistically significant difference has been

determined for all network settings levels.

Table 5.6. Tukey's Studentized Range (HSD) Test To Compare The Levels of Network

Settings
Comparisons significant at the 0.05 level are indicated by ***.
Network
Settings Difference
Comparison Between Simultaneous 95%
Means Confidence Limits
Local - 0.037779 0.021434 0.054124 oA
Distributed
Local - 0.097686 0.081340 0.114031 ok
2 Computer
Distributed — | -0.037779| -0.054124 -0.021434 oA
Local
Distributed — 0.059906 0.043561 0.076251 o
2 Computer
2 Computer — | -0.097686| -0.114031 -0.081340 oAk
Local
2 Computer - | -0.059906| -0.076251 -0.043561 oA
Distributed

At the beginning of the experiments, the expected experiment results are
definition of difference between network settings effect and symmetric cryptographic
methods effect considering interaction with each other. Although expected results were
determination of the statistically significant difference between symmetric
cryptographic methods effect, statistical analysis couldn’t discover the statistically
significant effect for cryptographic methods Rijndael and Triple DES and interaction
between network settings. The expected result for the network settings has been
observed since the network settings effect has been determined statistically significant.
As illustrated on Table 5.2, while considering the response times of our implementation

of development of a web services security architecture based on .Net framework, the

50

shortest response time belongs to two computer network setting the second belongs to
distributed network setting and the longest response time belongs to local network
setting. These results must be commented considering the background noise of .Net
Framework 2.0 and Windows XP since it is impossible eliminating and forecasting the

noise of these platforms.

51

CHAPTER 6

CONCLUSION

In this thesis, the foundations for a more comprehensive framework for securing
web services have been laid. The suggested architecture demonstrates an example of
trust brokering for various purposes. The fact that each of the actors is located in
different security domains can be considered as a hint for implementing a federation
framework for service oriented architectures.

The Scenario have been chosen by considering four fundamental ingredients,
which are authentication, authorization, integrity and confidentiality, of distributed web
services security architecture. This scenario is implemented on the .NET Framework.

Web Service Security Architecture application only runs with tokens by using
cryptographic algorithms on .NET Framework 2.0. The service verifies the tokens are
valid or not and response a message by considering the tokens validation process. All
processes time costs calculated and saved on a file to comment the efficiency and
performance of the security ingredients cost of the architecture. 16 replicated 2*3
factorial experiment (Montgomery 1997), which has symmetric cryptographic methods
(Rijndael and Triple DES) and network settings (Local, Distributed and Two Computer)
are factors, has been used. In this design, the symmetric cryptographic methods factor
which are Rijndael and Triple DES is two level and the network settings factor consists
of three level (Local, Distributed and Two Computer). All data has been obtained by
calculating the means of 500 measurements. Statistical analysis couldn’t discover the
statistically significant effect for cryptographic methods Rijndael and Triple DES and
interaction among network settings. While considering the response times of our
implementation of development of web service security architecture based on .Net
framework, the shortest response time belongs to two computer network setting the
followed by distributed network setting and the longest response time belongs to local
network setting. These results must be commented considering the background noise of
.Net Framework 2.0 and Windows XP since it is impossible eliminating and forecasting

the noise of these platforms.
52

As a future work, other extensions such as support for different security tokens
like Kerberos tokens can be added to this architecture. In order to discover the shortest
response time, the properties of symmetric algorithms (Rijndael and Triple DES) may
also be modified and a new experiment design can be performed for these new
properties. For more robust key exchange operation, the properties of asymmetric
algorithm (RSA) may be modified and the response times may be analyzed statistically.
Background noises, which are impossible to eliminate, may be deeply analyzed

statistically to find a function or a period to understand the attitude of the effects.

53

REFERENCES

Atkinson B., Libera M., Hada M. and Hondo I. 2002. Web Services Security (WS-
Security), IBM, Microsoft, VeriSign, http://www-106.ibm.com/developerworks/
webservices/library/ws-secure/ (accessed August 19, 2007).

Bass L., Clements P., Kazman R. 1997. Software Architecture in Practice. Addision-
Wesley.

Bellare M., Canetti R. and Krawczyk H. 1996. Keying Hash Functions for Message
Authentication. http://www-cse.ucsd.edu/~mihir/papers/’kmdS.pdf (accessed
February 5, 2008).

Birdwell R., Cornes O. 2001. Beginning ASP. NET using VB.NET. Wrox Press.

Booth D., Haas H. 2004. World Wide Web Consortium (W3C Working Goup).
http://www.w3.org/TR/ws-arch/ (accessed November 22, 2007).

Bustos J. and Watson K. 2002. Beginning .NET Web Services using Visual Basic.NET.
Wrox Press Ltd.

Campbell B., Lockhart H. 2007. OASIS Security Services (SAML), http://www.oasis-
open.org/committees/tc_home.php?wg abbrev=security (accessed September
30, 2007).

Curbera F., Duftler M. 2002. Unraveling web services web. IEEE, Internet Computing.

Federal Information Processing Standards Publication 1995. Secure Hash Standard.
http://www.itl.nist.gov/fipspubs/fip180-1.htm (accessed January 4, 2008).

Ford W., Hallam-Baker P., Fox B., Dillaway B., LaMacchia B., Epstein J. and Lapp J.
2001. XML Key Management Specification (XKMS). http://www.w3.org/TR
/xkms/ (accessed February 28, 2008).

Garfinkel S., Spafford G. 1996. Practical Unix and Security. O’Reilly, 2nd edition.

54

Hasan J. 2006. Expert Service-Oriented Architecture in C#2005. Springer-Verlag New
York, Inc.

Hendrickson S. 2006. Web Services Security a Proposed Architecture For Interdomain
Trust Relationship. IYTE Master of Science.

IBM Feeds 2002. Web Services Security. http://www.ibm.com/developerworks/
library/specification/ws-secure/ (accessed December 24, 2007).

Magedanz T., Blum N., Dutkowski S. 2007. Evolution of SOA Concepts in
Telecommunications, http://doi.ieeecomputersociety.org/10.1109/MC.2007.384
(accessed February 15, 2008).

Madsen P. 2006. WS-Trust: Interoperable Security for Web Services. http://webservices
xml.com/pub/a/ws/2003/06/24/ws-trust.html?page=1 (accessed May 28, 2008).

McGovern J., Tyagi S., Stevens M. and Mathew S. 2003. Java Web Services
Architecture. Morgan Kaufmann Publishers.

Microsoft Corporation 2002. Microsoft Corporation. http://samples.gotdotnet.com/quick
start/aspplus/doc/webservicesintro.aspx (accessed December 3, 2007).

Microsoft Patterns and Practices Developer Center 2005. Implementing Transport and
Message Layer Security. http://msdn2.microsoft.com/en-us/library/aa480582
.aspx (accessed April 7, 2008).

Montgomery D. 1997. Introduction to Statistical Quality Control. John Wiley & Dons,
Inc.

Nakamura Y., Tatsubori M., Imamura T. and Ono K. 2005. Model-Driven Security
Based on a Web Services Security Architecture. IBM Tokyo Research
Laboratory.

Parducci B., Lockhart H. 2008. OASIS Extensible Access Control Markup Language
(XACML), http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xa
cml (accessed September 20, 2007).

Raskin D. 2008. Identity Federation: The Inside Story (Literally). http://www.sun.com/

emrkt/campaign_docs/idmgmt/newsletter/1107feature.html (accessed October 5,
2007).
55

RSA Laboratories 2007. RSA Laboratories, What are Message Authentication Codes.
http://www.rsa.com/rsalabs/node.asp?id=2177 (accessed December 19, 2007).

Sehring H. 2006. Software Architectures. http://www.sts.tu-harburg.de (accessed
December 18, 2007).

Stallings W. 2003. Network Security Essentials Applications and Standards. Prentice
Hall.

Sun Microsystems Inc. 2006. The Soa Platform. http://www.sun.com/software/white
papers/soa/soa_platform guide.pdf (accessed February 18, 2008).

Sun Microsystems 2001. Sun Microsystems, Jini Network Technology. http://www.sun.
com/software/jini/ (accessed November 27, 2007).

Thai T., Lam H. 2000. .Net Framework Essentials. O’Reilly, 3rd edition.

Thorsteinson P., Ganesh G. 2003. .NET Security and Cryptography. Prentice Hall.

W3Schools 2007. W3 Schools, Introduction to SOAP. http://www.w3schools.com/soap/
soap_intro.asp (accessed December 12, 2007).

Wahli U., Kjaer T., Robertson B., Satoh F., Schneider F., Szczeponik W. and Whyley
C. 2006. WebSphere Version 6: Web Services Handbook: Development and
Deployment. IBM Press.

56

APPENDIX A

WS-SECURITY EXAMPLE SOAP MESSAGES

<soapenv: Envel ope

xm ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/"

xm ns: soapenc="http://schenas. xnm soap. or g/ soap/ encodi ng/"

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance" >
<soapenv: Header/ > <soapenv: Body>
<p821: get DayFor ecast xm ns: p821="http://bean.itso">

<t heDat €>2004- 11- 25T15: 00: 00. 000Z</ t heDat e>
</ p821: get DayFor ecast ></ soapenv: Body>
</ soapenv: Envel ope>

Figure A.1 SOAP message without WS-Security
(Source: Wahli, et al. 2006)

<soapenv: Envel ope
xm ns: soapenv="htt p://schenmas. xm soap. or g/ soap/ envel ope/ "
xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" >
<soapenv: Header > <wsse: Security soapenv: nust Under st and="1"
xm ns: wsse="http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s-
200401 - wsswssecurity- secext-1.0.xsd">
<wsse: User naneToken><wsse: User nane>Davi d</ wsse: User nane>
<wsse: Password Type="http://docs. oasi s-
open. or g/ wss/ 2004/ 01/ oasi s- 200401- wssuser nane- t oken-
profile-1. 0#Passwor dText " >di vaD</ wsse: Passwor d>
</ wsse: User nameToken>
</wsse: Security>

</ soapenv: Header ><soapenv: Body> <p821: get DayFor ecast
xm ns: p821="http://bean.itso"><t heDat e>2004- 11-
25T15: 00: 00. 000Z</ t heDat e> </ p821: get DayFor ecast >

</ soapenv: Body>
</ soapenv: Envel ope>

Figure A.2 SOAP Message with Authentication
(Source: Wahli, et al. 2006)

57

<sam : Assertion Assertionl D="SecurityToken-07dc7cl16-9a42-
4100- ad21-13013b975f 3c"

Maj or Ver si on="1" M nor Ver si on="1"

| ssuer="http://1ocal host/ Sam SecurityTokenServi ce/ Sanl Token
| ssuer. ashx"

| ssuel nst ant =" 2005- 11- 29T22: 36: 032"

xm ns: sam ="urn: oasi s: nanes: tc: SAM.: 1. 0: assertion">

<sam : Condi ti ons Not Bef or e="2005- 11- 29T22: 36: 032"

Not OnOr Af t er =" 2005- 11-

30T02: 36: 032" >

<sam : Audi enceRestricti onConditi on>

<sam : Audi ence>

http://schemas. xm soap. or g/ ws/ 2004/ 08/ addr essi ng/ r ol e/ anony
nous

</ sam : Audi ence>

</ sam : Audi enceRestrictionCondition>

</ sam : Condi ti ons>

<sam : Aut henti cati onSt at enent

Aut henti cati onMet hod="ur n: oasi s: nanes: tc: SAML.: 1. 0: am passwo
rd"

Aut hent i cati onl nst ant ="2005- 11-29T22: 36: 032" >
<sam : Subj ect >

<sam : Nanel dentifier

Format ="http://schemas. xm soap. or g/ ws/ 2004/ 01/ Feder at i on/ us
er name" >RDALAPTOP02\ wseuser </ sani : Nanel denti fier>

<sam : Subj ect Confirmati on>

<sam : Confirmati onMet hod>ur n: oasi s: nanes:tc: SAM_: 1. 0: cm hol
der - of key</

sam : Confi rmati onMet hod>

<ds: Keyl nfo xm ns:ds="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" >
<xenc: Encr ypt edKey

xm ns: xenc="http://ww. w3. org/ 2001/ 04/ xm enc#" >

<xenc: Encrypti onMet hod

Al gorithm"http://ww. w3. org/ 2001/ 04/ xm enc#rsa-1 5" />
<Keylnfo xm ns="http://ww. w3. org/ 2000/ 09/ xnl dsi g#" >

<wsse: SecurityTokenRef er ence>

<wsse: Keyl dentifier Val ueType="http://docs. oasi sopen.

or g/ wss/ oasi s- wss- soap- nessage-security-1. 1#Thunbpri nt SHAL"
Encodi ngType="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s-
200401- wss- soapnessage-

security-

1. O#Base64Bi nar y" >aAl 1zTgHbhsUNGj 2Hs| ef WHODs=</ wsse: Keyl de
ntifier>

</wsse: SecurityTokenRef er ence>

</ Keyl nf 0>

Figure A.3 SOAP Message with Integrity

(Source: Wahli, et al. 2006)
(Cont. on next page)

58

<xenc: G pher Dat a>

<xenc: G pher Val ue>cSr RHLh8DWeELh5Naf 3425150 sOswehp4/ zUl Onb
OFN 1l xQJdXCTi 7z3aalLu4Xi

Wws8vF3YdzDOLD/ bQLl+Qzzl 7qcR4eDLNnxj ZU87Dk CBx| 4ygqyB+Mx4J2| KL
Yl +r x1

OvOvcj bd64/ YngQu5

AgZKBxNZv7Qd cl a0d3l kebyr 4=</ xenc: Ci pher Val ue>

</ xenc: G pher Dat a>

</ xenc: Encr ypt edKey>

</ ds: Keyl nf 0>

</ sam : Subj ect Confi rnmati on>

</ sam : Subj ect >

<samnl : Subj ect Local ity | PAddress="192. 168. 0. 10"

DNSAddr ess=" CLI ENTHOST" />

</ sam : Aut henti cati onSt at ement >

<sam : Attri but eSt at enent >

<sam : Subj ect >

<sam : Nanel dentifier

Format ="http://schemas. xm soap. or g/ ws/ 2004/ 01/ Feder at i on/ us
er nanme" >RDALAPTOP02\ wseuser </ sani : Nanel dentifier>

<sam : Subj ect Confirmati on>

<sam : Confirmati onMet hod>ur n: oasi s: nanmes: tc: SAM.: 1. 0: cm hol
der - of key</ sam : Confi r mati onMet hod>

<ds: Keyl nfo xm ns:ds="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" >
<xenc: Encr ypt edKey

xm ns: xenc="http://ww. w3. or g/ 2001/ 04/ xm enc#" >

<xenc: Encrypti onMet hod

Al gorithme"http://ww. w3. org/ 2001/ 04/ xm enc#rsa-1 5" />
<Keylnfo xm ns="http://ww. w3. org/ 2000/ 09/ xnl dsi g#" >

<wsse: SecurityTokenRef erence>

<wsse: Keyl dentifier Val ueType="http://docs. oasi sopen.

or g/ wss/ oasi s- wss- soap- nessage- security-1. 1#Thunbpri nt SHAL"
Encodi ngType="http:// docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s-
200401- wss- soapnessage-

security-

1. O#Base64Bi nar y" >aAl 1zTgHbhsUNGj 2Hs| ef WHODs=</ wsse: Keyl de
ntifier>

</wsse: SecurityTokenRef er ence>

</ Keyl nf 0>

<xenc: G pher Dat a>

<xenc: G pher Val ue>cSr RHLh8DWeELh5Naf 3425150 sOswehp4/ zUl Onb
OFN 1l xQJdXCTi 7z3aalLu4Xi

Wws8vF3YdzDOLD/ bQLl+Qzzl 7qcR4eDLNnxj ZU87Dk CBx| 4ygqyB+Mx4J2| KL
Yl +r x1 OVOvVcj bd64/ YngQu5

AgZKBxNzZv7d cl a0d3l kebyr 4=</ xenc: Ci pher Val ue>

Figure A.3 (cont.) SOAP Message with Integrity
(Source: Wahli, et al. 2006)
(Cont. on next page)

59

</ xenc: G pher Dat a>

</ xenc: Encr ypt edKey>

</ ds: Keyl nf o>

</ sam : Subj ect Confi rmati on>

</ saml : Subj ect >

<sam : Attribute AttributeNane="group"

Attri but eNanmespace="http://schenmas. xnm soap. or g/ ws/ 2004/ 01/ F
eder ati on/ group" >

<sam : Attri but eVal ue>BU LTI N\ User s</ sanl : Attri but eVal ue>
</sam : Attribute>

</sam : Attri but eSt at enent >

<Si gnature xm ns="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" >
<Si gnedlI nf 0>

<ds: Canoni cal i zat i onMet hod

Al gorithm="http://ww. w3. org/ 2001/ 10/ xm - exccl4n#"

xm ns:ds="http://ww.w3. org/ 2000/ 09/ xm dsi g#" />

<Si gnat ur eMet hod

Al gorithm="http://ww. w3. org/ 2000/ 09/ xm dsi g#r sa- shal"/ >
<Ref erence URI ="#SecurityToken-07dc7cl16-9a42-4100-ad21-
13013b975f 3c" >

<Tr ansf or ne>

<Tr ansform

Al gorithm="http://ww. w3. org/ 2000/ 09/ xm dsi g#envel opedsi gha
ture”

/>

<Transform Al gorithnm="http://ww. w3. org/ 2001/ 10/ xm - exc-
clan#" | >

</ Transf or ns>

<Di gest Met hod

Al gorithm="http://ww. w3. org/ 2000/ 09/ xm dsi g#shal" />

<Di gest Val ue>k2PBlI DwJLI Q h/ GAAbVPgk1544=</ Di gest Val ue>

</ Ref erence>

</ Si gnedl nf o>

<Si gnat ur eVal ue>CZPQvc2vpj Kyi 06EEJTQShHGE Jf f 1hZubOANSDCbRr b
SFkK53f Op9Ugul f el 6vvs9y

Zf FIB2i eRAPK3ywUr RWMTKv O7vj XPOHRGgr vgGC2PpQNAEYNn7ci BkLM+VoJV
5vW | opVevEYvnxFMFZI JTI

LSOr On+GWaZuUYFJECE HaE=</ Si gnat ur eVal ue>

<Keyl nf 0>

<wsse: SecurityTokenRef erence>

<wsse: Keyl dentifier Val ueType="http://docs. oasi s-

open. or g/ wss/ oasi swss-

soap- message-security-1. 1#Thunbpri nt SHA1"

Encodi ngType="http://docs. oasi sopen.

Figure A.3 (cont.) SOAP Message with Integrity
(Source: Wahli, et al. 2006)
(Cont. on next page)

60

or g/ wss/ 2004/ 01/ oasi s- 200401- wss- soap- nessage- security-

1. O#Base64Bi nary" >vLfj dZyxgwtzt c YkVVQX8wy Xp50=</ wsse: Keyl de
ntifier>

</wsse: SecurityTokenRef er ence>

</ Keyl nf 0>

</ Si gnhat ur e>

</ sam : Assertion>

Figure A.3 (cont.) SOAP Message with Integrity
(Source: Wahli, et al. 2006)

<soapenv: Envel ope

xm ns: soapenc="http://schenmas. xm soap. or g/ soap/ encodi ng/ "

xm ns: soapenv="htt p://schenmas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_.Schema- i nst ance" >
<soapenv: Header >
<wsu: Ti nest anp
xm ns: wsu="http://docs. oasi s-
open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- ws
security-utility-1.0.xsd">
<wsu: Cr eat ed>2004- 11-
26T09: 34: 50. 838Z</ wsu: Cr eat ed>
</ wsu: Ti mest anp>
<wsse: Security soapenv: nust Under st and="1"
xm ns: wsse="http://docs. oasi s-
open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-w
ssecurity-secext-1.0.xsd">
<Encr ypt edKey
xm ns="http://ww.w3. org/ 2001/ 04/ xm enc#" >

<Encrypti onMet hod
Al gorithm="http://ww. w3. org/ 2001/ 04/ xm enc#rsa-1_5"/>
<ds: Keyl nfo
xm ns: ds="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" >

<wsse: SecurityTokenRef er ence>
<wsse: Keyl dentifier

Val ueType="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s-
200401- wss- x509- t oken-

Figure A.4 SOAP Message with Confidentiality
(Source: Wahli, et al. 2006)
(Cont. on next page)

61

profile-1. 0#X509v3Subj ect Keyl dentifier">
Vni y7MJOXBunPoH1M\bDpi | WOPA=
</wsse: Keyl dentifier>
</wsse: SecurityTokenRef er ence>
</ ds: Keyl nf 0>
<Ci pher Dat a>
<G pher Val ue>
Ot2misR ULli Nl wWANv 1k Gdzpk RV1GQ5epAT3p5Eg5UNAI3H3YAXSVr dgMQm
i1
wzdSZLDEz Bt cHPJq3c8c0AgMAY 9EVdcgXIl n/ ZeV+80j MDn/ HN2Hf odY] URt
| YBg48

0SSkot Of y+YpBSXNR/ MIf s1HT2H M w/ Cyl bomNQZHE=
</ Ci pher Val ue>
</ Ci pher Dat a>
<Ref er enceli st >

<Dat aRef er enceURI =" #wssecurity_encryption_i d_68669508378406
88804"/ >
</ Ref er encelLi st >
</ Encr ypt edKey>
</wsse: Security>
</ soapenv: Header >
<soapenv: Body>
<Encrypt edDat a

| d="wssecurity encryption_id 6866950837840688804"
Type="http://ww. w3. org/ 2001/ 04/ xm enc#Cont ent "

xm ns="http://ww. w3. org/ 2001/ 04/ xm enc#" >
<Encrypti onMet hod

Al gorithm="http://ww. w3. org/ 2001/ 04/ xm enc#tri pl edes-
chc"/ >
<Ci pher Dat a>
<Ci pher Val ue>
OvLekd buzZhFBI | BNL4Kos195YHWYWOk Sbivkkbl 2pk7nl 17g0pr PS2Bazhy
r XHABGQVmosWhgqt +zi j CPHUQCMMMBggFr ak11DPMwP94Hvgx| gBnPwlU
nt +VWHhaKLNr HDnwwe QX5 RO7KT+f hFp4wx FEABW Hgz v TGNK3x RwJ E=
</ G pher Val ue>
</ Ci pher Dat a>
</ Encr ypt edDat a>
</ soapenv: Body>
</ soapenv: Envel ope>

Figure A.4 (cont.) SOAP Message with Confidentiality
(Source: Wahli, et al. 2006)

62

APPENDIX B

CLASS DIAGRAMS

| IDToken

Class

=l Fields
4¢ iteTime
&7 _requestType
o _tokenType
=| Properties
2 feTime
5 requestType
i@f‘ tokenType

2 I0Token

IDTokenGeneratar (% |

s

= Fields

' IDToken

>

| IdentitySTSservice
Clazs
='iebService

=l Fields
4¢ _CientRequestinfos
¢ DToken
3¢ _DTokenGenerator

Serializer

= Methods

i IdentityST3service
iy requestiDTaken

' ClientRequestinfos

| ClientRequestInfos &
Class

= Figlds 5 ClientRequestinfos

47 _requestTime F—
4f UserPass
=/ Properties

P requestTime

S IDTokenGenerator

4 ClientRequestInfos

47 _ClientRequestIn...
o _IDTaken

=I Methods
a7 generdte
v generatellToken...
v [DTokenGeneratar

o UserPass

| UserPass B
Class

= Fields
@ _password
¢ _userblame
=I Properties
P passord
P Userhlame
= Methods
W UsetPass (+ 1 ov..

Class

8 I0Chedk.
(ICheck 7

Class

= Fields
@ _ClentRequestin...
= Methods
@ chieck (+ 1 overlo..,
W 1DCheck

Figure B.1. Class Diagram of Identity STS

63

CipherToken
Class

= Fields

4* _huthenkicationStatement

4 _Condi

Ions

4# _CreationTime
4# _lssuelnstant

gF _ssuer

gf KeyEx
g¢ _Signat
=| Properties

changeToken S Crypt

Ure

0 AuthenticationStatement
%2 Canditions

0 CreationTime

0 issuelnstant

2 ssuer

50 KeyExchangeToken

ﬁ‘ Signatul

re

4 CipherToken

>

CreditStatusTokenGenerator

Class 3 3 3
CreditStatusToken (%
Class
= Fiel
Lo 5 CreditStatus
4¢ _CreditstatusToken) =/ Figlds
B Metheds ¥ _lfeTime 0 Credit3tatusToken
¢ CreditStatusTokenGenerator o tequestType l
¢ generate 4 _takenType
= =l Properties
j‘ ifeTime:
7 requestType
ﬁ“ tokenType
KeyExchange A
Class ' KeyExchange
KeyGeneration A (= Fields
Class o _asymmetrickeySize
g¢ Cropt

= Fields

A _keyaize

o _sessionkey

o _sessionkeyly
=| Properties

j“ keySize

S sessionkey

0 sessiorkeyly
[Methods

4 Keyaeneration

 KeyGeneration

Crypt ¥ |

. Interface

= Crypt

CreditStatussTs (2
Class

=/ Fields

4¢ _authenticationB. ..
¢ _authenticatiorn...
¢ _Certificate_Credi...
¢ _Certficate_Iden.

o _CipherToken

A _CrediStatusToken

_Crypt 3
il IDToken

A _IDToken il
4 _KeyExthange
o _Key;xchangeTo.u B
gf _Sessionkey .
4# _tokenCreationBe... & DToken A _lifeTime
¢ _tokenCreationEn .| # _requestType
=l Properties o _tD.kenType
2 authenticatioren... = P'r_opernes
2 autheticationBeqi .. ;‘T' IfeTime
P Certificate_Credt.. L requestType
P Certficate_Identi | & tokenType
ﬁ) TokenCreationBe . -
2 TokenCreationEn.
=l Methods
4 craateCipherToke .
4 craateCipherToke . — -
W CredtStatussTs EE;ﬂonKev &

4 decryptiDToken
o* QetTypeCfCripter
9 requestCreditStat...
9 requestCreditStat..

7 Sessionkey
= Fields
g¢ _asymmetrickeyS.
g¢ _sessionkey
g¢ _sessionkeyly

o Sessionkey & _symmetricAlgor .

4¢ JeyExchangeToken
¢ _KeyGeneration

g? _symmetrickeySize

0 Tsesonkey ' KeyExchangeToken Properties

4 _Sessionfey KeyExchangeToken A ﬁ" agymimetrickeySize
o _sessionkeyly Clazs j_“ sessionkey

¢ _symmetrichlgonthmType j‘ sessionKe.yIV ‘
4 _symmetrickey Size = Fields 2 symmetricAlgort.

g¢ 5092
Iz Propetties
5‘ asymmetrickeysize
ﬁ_" sessionkey
ﬁ" sessionkeyly
f symmetricalgorithmType
ﬁ] symmekrickeySize
#5092 % KeyExchang..
= Methods |
W KeyExchange
v keyExchangeDeformatter
W keyExchangeFarmatter (+ 1 av. ..

._q/ _asymmetrickeySize |
o _encrypedSessionkey

o _encryptedSessionkeyTy

47 Keylnfo

o _symmetricAlgothmType

g¢ _symmetrickeySize

j‘ symmetrickeySize

= Properties
j“ asymmetrickeysize
ﬁ“ encrypted3essionkey
ﬁ“ encrypted3essionkeyly
keylnfo
7 symmetricalgorithmType
ﬁ" symmetrickeySize

Figure B.2. Class Diagram of Credit Status STS

64

7| 7 KeyExchangeToken

&

| KeyGeneration 2 | | KeyExchangeToken A
Class Class
= Felds = Fields (1DToken A
A feysice 4f _asymmetrickeySize Class
gf _sessionkey P _encryptedaessionkey
g¢ _sessiorkeylV o _encryptedSessionkeyly =l Fields
& Properties o Kevlnfo o _ifeTine
;‘«»;4 keySize o _symmetricAlgorithmType o _requestType
F sessionkey o _symmetticKeydize 4 fokenType
ﬁ" sessionkeyly =/ Properties =/ Properties
= Methods 2 asymmetrickeysis 2 ffeTime
 KeyGeneration 2 encryptedsessionkey 7 requestType
; j‘ encryptedsessionkeyly ff‘ tokenType
Keyheneration 2 keylnfo
B symmetrichlgorithmType "7 IDTaken
j‘ symmetrickeyaize
i VeyExchangeTaken
| KeyExchange 3
Class
= Fields
& _asymmetrickeySize { oy 2
g ot Class -
47 _eyExchangeToken Service A
i Class
#¢ _KeyGeneration 3 Fields
o _sesslarkey = irebService
o Sessirkey 7 _asymmetrickeys...
'JJ _sesswonKeyIV ot _sessionkey = Fields
o# _symmetrictlgorthmType 7 Sessionkey Eid _sesswonKe.ylv 5,"! _authenticationg...
o _symietrickeySize B _symmet‘ncnlgoln. o Sessionkey 44 _authenticationE...
s 2 off _symmetrickeySize o Cetficate Cred..
I Praperties) Praperties jf _Certificate_Iden
ﬁ“ Esymietrickeyize ﬁ‘ asymmetricKeySize o _Certificate_Sevi...
B sessionkey j‘ sessionkey o CipherToken_Cr ..
B sessonkeyli A sessiorkeylv o CipherToken ID...
S symmetricilgorithmwpe 2 symmetricAlgort.. ¢ CipherTaken_Fe...
B symmebikaysice j‘ symmetrickeySize g _CreditStatusToken
A 2 — J: -IC;DLB
= Methods BT =l CreditstatusToken (2
5 KeyExchange g{ _KeyExchange Cliss
 KeyExchange o _KeyExchangeTo
¥ keyExchangeDeformatter o Sessioiey _
W kevExchangeFormatter (+ 1 ov... ;‘i" tokenCreationBe... e
o _tokenCreationgn 2 CreditStatus... | &7 e
o . @ _requestType
= liir?pert|es o o takenType
R Gt % authenticationBe... B Proparties
i s ! % authenticationEn... R feTne
Crypt 5) P Certificate_Cred .
b]] 7 requestType
Inkerface 7 Certificate_Identi !
o - TRy : 5 tokenType
S Crypt 2 Certificate_Service L
= Methods ﬁ‘ CipherToken_Cre
¥ Decrpt 7 CipherToken_IDT...
o oot % CipherToken Key .
P TokenCrestionge...
% TakenCreationEn
= Methods
4¥ createCpherToke ..
¥ createCpherToke...
47 decryptObject
2% getTypeCFCripter
v request
v request_Plan
iy Service

Figure B.3. Class Diagram of Service STS

65

| Conditions Al

Class

= Fields & Candtions
3¢ TotBefore

| CiphetToken
Class

=l Fields

4f _uthentication3tatement

g nobOnOrdfter

= Properties

o natfefore
5 natOnOrfter

| CreationTime
Class

=| Fields
gf _TokenCreztiond ...
gf _TakenCreation ...
= Praperties

i TakenCraationds .
5 TakenCraationtn..

/

| KeyInfo

Cles 5 eyl

=l Fields

4# _CipherData
o _encryptianiethod
o Keyldentfier
= Properties
j“ encryptioniethiod

i

9 Keyldentifier

@ |

'\ KeyIdentifier A

Class
=| Fields

@ _encodingType
o _valueType

= Properties
ﬁ” encadngType
ﬁ valueType

2l] .| . "
2R CreationTine

g¢ _Condiions
gf _CreationTime
4 Jssuelnstant
of Jssuer
3 KeyExchangeToken
¢ _Signature
- Properties
o fssulnstant

o e
ﬁ‘ KeyExchangeToken

5 huthenticationStatement

| AuthenticationStatement
Class

| Figlds

4f _authenticationBeginTime
¢ _authenticationEndTime
¢ _authenticationMlethod
g Keylnfo

=l Prapetties

ﬁ“ authenticationBeginTime
5 autherticationEndTime
1 atherticationMetha

= Cpherbits | -EipherData A
Class

=| Fields
4t _ciphieryalue

= Properties
15 cipharahie

' Signature
Class

7 oagatre O Rl
gf _dqaturetale
4 Signedinfa
=l Propetties
ﬁ\‘ signaturetalue

> |

& Signedinfo

| SignedInfo
Class

- Fields
4 _digestitethodal .
o _dgestidue
& _signaturedigort...
= Propetties
ﬁ\‘ digestiethodAly...
ﬁ‘ digestyalus
ﬁ‘ signatureAlgorithin

> |

> |

Figure B.4. Cipher Token Class Diagram

66

i ClientServicesTs Class
&Y creteCipherToke.. & ClientServicesaTa
v requestCip:erTut_. [7 Fields
! ¥ requestCipherTok. .
@ .) :
B 5" requestCipherTak.. 7 eyt
.) =l Methods
B Client {+ 1 overload)
+ WebService \ request
' CipherToken_ CipherToken
Fields iy 2
. | CipherToken A |
Properties - d:g %' CipherToken_
< Methods 2 Cipher Token —
i createC?pherTuke... | & Fils # CipherTaken_
a’ createClph.erToke... Properties
¥ decryptObiect .
¥ getTypeCFCripter :
) CipherTaken .
¥ request o - CipherToken_
 request_Plain
¥ Service
' CreditStatussTS (2| | OientIdentitySTS (% |
Class Class
3 Felds 3 Fiskk “ ClientdentitysSTS

o CreditstatusToken_

> |

[CreditstatusToken
Class

t Filds

+ Properties

#

| IdentitySTSservi..
Class
HiifebSarvice

#l Fields
+| Properties
= Methods

a7 createCinherToke . |
4" creakeCipherToke.

F

(ClientServiceSTs
Class

4| Figlds
+ Properties
=l Methods

> |

' Client

* Properties

B Crediotets.. > e

" createCipherToke .

" createCipherToke .
v CreditStabusaTs
4 decryptIDTaken
2 getTypeOfiCripter
) requestCreditStat. .
W requestCreditStat. .

' CredtStatusaTs

+| Properties

= Methods
i ClientIdentitysT3
5" createCpherToke...
¥ deserislize
a* encryptObect
" getTypeCfCripter
 requestiDTaken

2 ClientCredtatatussSTal

=1}

{ ClientCreditstatussTs
Class

& TdenlityST3service

4 Figlds

+ Properties

IDToke
4" decryptDeseriliz.) U_ - !) e
i B 4 - cDI‘stc dStatussTS
¥ generateEncrypte... ; ClientCreditStatus
o > IDToke
& oetTypeOF Cripter ' Dlden_ 2 0 ¥ createCipherTaken_KeyExc .
@ TderkiySToservice | | # Fields requestCiherTaken_Credt..
¥ requestiiToken ; 2 requestCipherToken_Credt..
Propetties 4 herToken Cred
 requestiDToken? .. (3" requestCipherTaken_Credt..
Figure B.5. Domain Model

67

% CipherToken_

(CipherToken O -
Class il CipherToken_ i
3 UserPass ¥
ol Class
A UsarPass_ |
(CryptAttributes ¥
Class
(Gerializer ¥
Class
 trypt ¥4 ClertRequestinfos | ClientRequestinfos (¥
—f_ Tnterface A S
Writer ¥ =
Class = i T 'I
Ay Gyt
(KeyGeneration (¥
Class
5 4 KeyExchangeTok..
& : "% Sessionkey_ ~__ M s i
7 Sessonkey Sessionkey ¥ [ClientIdentitySTS & Tl TI “| KeyExchangeToken ¥
= Class W sessonkey_ | claw 9 WeyErchangeToken_ | g
\ - (]| “ ' |
8 | ClientTdentitysTS_ 1 5 KeyExchangeToken_
" SO A o
9 WToken_ |
(KeyExchange Ak KeyEl)lcc!wange_ | IDToken & ' Client 3
Class — Clazs Class
- T : . b . ® Y o
7 Key'StieyExchange iy IDTr.'j?erIPToken
ST T " O T
[s IS] [S ¢ o N PSR oy O B |
ﬁ.}_ ClientServicesTs j‘ CIientCreditStatusSTS_
CredictatisToken | 1 ClientServicesTs % | ClientCreditStatussTs ¥

-

Class

—

CreditStatusToken ¥ j' CreditStatusTokelj.

Class

Class

—

Figure B.6. Client Class Diagram

68

APPENDIX C

WEB SERVICES SOAP MESSAGE EXAMPLES

<?xm version="1.0" encodi ng="utf-8"?>
<soap: Envel ope xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-
I nstance” xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma"
xm ns: soap="http://schemas. xn soap. or g/ soap/ envel ope/ " >
<soap: Body>
<request | DToken xm ns="http://tenpuri.org/">
<seri al i zedC pher Token_KeyExchangeToken>
<Ci pher Token xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema-
i nstance" xnlns:xsd="http://ww.w3. org/ 2001/ XM_Schenma" >
<Condi ti ons>
<not Bef or e>2008- 05- 25T21: 41: 52. 546875+03: 00</ not Bef or e>
<not OnOr Af t er >2008- 05-
25T21: 56: 52. 546875+03: 00</ not OnOr Af t er >
</ Condi ti ons>
<Aut henti cati onSt at enent >
<Keyl nf 0>
<C pher Dat a>
<ci pher Val ue>PD94bWwydmVyc2l vbj 0i M54w i Bl bnmi\vZd uzZz0i dXRnLT
E21] 8+DQ08S2V5RXhj aGruz2VUb2t | bi BAbWuczp4c2k9l mhOdHA6LY93d
3cudzMub3JnLzl WDEVWELIMJU2ZNoZWLhLW uc3RhbmNl | i B4bWuczp4c2(®
| MhOdHA6LY93d3cudzMib3JnLz| WWDEVWELIMU2NoZWLhI j 4NCi AgPGVUY3J
5¢HRI ZFNI ¢3Npb25LZXk+cl dUbl | Ba&Zl dOpQOHZPaUl1EUEXUQULi ZElI PMUJ

Figure C.1. SOAP Message Example For Identity Token Request From Client To
Identity Token Web Service
(Cont. on next page)

69

Fvc1FUT3A3NTklaFd5NkpoZl Vr UTINZI | nV2pQcOxFaj hOaEx EUFJBZDJI Xb
WFKbDVRa2hxa0ZGS29POvdOvhiFudUlneHdURESLUNU2RGor M huhpminiZJ
axXdLaz JQVDVECORaWUdpTH BZKRRRFNFTUNOQ UxREFI Tl pz SXpi aEt gaVWN
t ON i d2xPSCOJIPTw ZWbj cnl wdGvkU2Vzc 2l vbkt | eTANC AgPHNSbWAI dH
JpYOFsZ29yaXRobVR5¢c GHQUVTPCIOzeWLt ZXRyaVWNBbGdvcm 0aGLUeXBl P
gOKI CA8ZWBj cnl wdGvkU2Vzc2l vbkt | eUl WPnd50XR4b3gr VWFSUULQVFEX
TTRTZ3| qUUIOVDFUUEQz S0g5d3RualJ4wea1lc0J LUt UWFRVL2FXc Wbz V
ENXgr UHBniVDl y QLdFSGpr KO9KdWY3b2x Fal NubE9LSKNFUUt uZzl FI Ukt BV1
UYmhRKyt t ckl 4eUl0bj FBeC8x0OS91 eGgz YTRAL2pGekdBMT t RVU3RTZJU
2NQR2s4bFRgRHdabj NETGVDUM5WI08L2VuY3J5¢cHRI ZFNI ¢3Npb25LZXI J
Vj 4NCi AgPHNSbWLI dHIpYOt | eVNperH+N QBL3NS5bWLI dHIpYOt | eVNpenlJ
+DQogl Dxhc3l t bW0cm j S2V5U21 6ZT4xMDI OPCOhc3l t bWWOcm j S2V5U2
| 6ZTANC AgPEt | eU uZnB+DQogl CAgPGVUY3J5cHRpb25NZXRob2Q+Ul NBL
UFFUzw ZW5j cnl wdd@ vbk 1l dGhvZDANG AgPCILZXI JbnZv PgOKPCIOLZXI F
e@NoYWbnZVRva2VuPg==</ ci pher Val ue></ G pher Dat a>
<encrypt i onMet hod>RSA- AES</ encr ypti onMet hod>
</ Keyl nf 0>
<aut hent i cati onEndTi me>2008- 05-
25T21: 41: 52. 546875+03: 00</ aut hent i cati onEndTi me>
<aut hent i cati onMet hod>User Nanme_Passwor d</ aut henti cati onMet h
od>
<aut hent i cat i onBegi nTi ne>0001- 01-
01TO0O0: 00: 00</ aut hent i cat i onBegi nTi ne>
</ Aut henti cati onSt at enent >
<i ssuel nst ant >2008- 05-
25T21: 41: 52. 5625+03: 00</ i ssuel nst ant >
<i ssuer>Client</issuer>
</ Ci pher Token>
</ serializedG pher Token_KeyExchangeToken>

Figure C.1. (cont.) SOAP Message Example For Identity Token Request From Client
To Identity Token Web Service

(Cont. on next page)
70

<seri al i zedC pher Token_CRI >
<Ci pher Token xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema-
i nstance"” xm ns: xsd="http://ww.w3. org/ 2001/ XM_Schema" >

<Condi ti ons>
<not Bef or e>2008- 05- 25T21: 41: 52. 953125+03: 00</ not Bef or e>
<not OnOr Af t er >2008- 05-
25T21: 56: 52. 953125+03: 00</ not OnOr Aft er >
</ Condi ti ons>
<Aut hent i cati onSt at enent >
<Keyl nf 0>
<C pher Dat a>
<ci pher Val ue>y2Y67t nzZzTXNGvZQU2EIl 4sKbc32/ cJr Zkf / p2/ UDAW s
r pRhsv1le8t | W VFI Ldt EX5dKgcRxdH8nj Gt Qonbt NCc2+p5pAr En26L40Cp
P5EyaX5nQFzzoMBUQQBBgMIHONRLPY/ Xr KTo8k6Nf 817cMBCnf hAUr j 7Sp
F7eWESUXHYQXmQTpc QTRFZRP5U2| r N6eW 5Ye+t i QVpTsJt +D3K6hOKI Sx
/11 hcAyGOPROB74KTvTQQII 3r 12RA2EQ | ucl yS/ zAnhj Mzbr gbl 6n~Ct Dp
50LgGxy2Ht TKI 1a2cr O+4YRQKCnT Ke+0al 9t U+bf 10gQoMcqOBJ22ce66sl
ZYoVEhNT YyAL609GGxdS92z171EhvMYEZG8j f znUi xol TDDr RPob9r gl sHb3
3Gatt FkDLeCenH7spa@BBKLsKI r PcObTgP2r i nWBphj aZ0D

</ ci pher Val ue>

</ Ci pher Dat a>
<encrypt i onMet hod>RSA- AES</ encr ypti onMet hod>
</ Keyl nf 0>
<aut henti cati onEndTi ne>2008- 05-
25T21: 41: 52. 953125+03: 00</ aut henti cati onEndTi me>
<aut hent i cati onMet hod>User Nane_Passwor d</ aut henti cati onMet h

od>

Figure C.1. (cont.) SOAP Message Example For Identity Token Request From Client
To Identity Token Web Service
(Cont. on next page)

71

<aut hent i cat i onBegi nTi ne>0001- 01-
01TO0O0: 00: 00</ aut hent i cati onBegi nTi ne>
</ Aut henti cati onSt at enent >
<i ssuel nst ant >2008- 05-
25T21: 41: 52. 953125+03: 00</ i ssuel nst ant >
<i ssuer>Client</issuer></Ci pher Token>
</ seri al i zedC pher Token_CRI >
</ request | DToken>
</ soap: Body>
</ soap: Envel ope>

Figure C.1. (cont.) SOAP Message Example For Identity Token Request From Client
To Identity Token Web Service

<?xm version="1.0" encodi ng="utf-8"7?>
<soap: Envel ope xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena-
i nstance” xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body>
<request | DTokenResponse xm ns="http://tenpuri.org/">
<r equest | DTokenResul t >
<Ci pher Token xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma-
i nstance"” xm ns: xsd="http://ww.w3. org/ 2001/ XM_Schema" >
<Condi ti ons>
<not Bef or e>2008- 05- 25T21: 41: 54. 3125+03: 00</ not Bef or e>
<not OnOr Af t er >2008- 05-
25T21: 56: 54. 3125+03: 00</ not OnOr Af t er >
</ Condi ti ons>

<Aut henti cati onSt at enent >

Figure C.2. SOAP Message Example For Identity Token Response From Identity STS
to Client

(Cont. on next page)
72

<Keyl nf 0>
<Ci pher Dat a>

<ci pher Val ue>y2Y67t nzZzTXNGvZQsU2EIl 4sKbc 32/ cJr Zkf / p2/ UODyUJ
2REy QvKZZn5gz0caNdnmXT3nTc CeVKxgJNY5JAg! 3i Hg/ XJo1D6h99Q RpTh
LI 7t z7LdGaj mAKZ+g1hQef +zMDx9gkzh8+qSk AE84Dnilt ScPOc RTwunst JT
+dzEdx| pM f SNvj XLOszdf Xyl j 0qi 1HDEo/ xCWXXUDI j z2i YbqQHI S2zdeG
zCgEi | u3t 741 Tzeh2gFMLLOobwbhqLyGo2801Ei Cf t qoj eok MRHNXKFAz XHk
u/ 1 z+5hN1CH 2Cdp4 4 09j UaVFUSAHeRLGy 7+KTLCA+Nnol Miz1Xc6cpU36X
Pr +kcsWyszt Ri RFLdy OTy WWC+GRQR8301 Mhaf +Y4wnl
</ ci pher Val ue>
</ G pher Dat a>
<encrypti onMet hod>RSA- AES</ encr ypt i onMet hod>
</ Keyl nf 0>
<aut hent i cati onEndTi me>2008- 05-
25T21: 41: 54. 3125+03: 00</ aut hent i cati onEndTi nme>
<aut hent i cati onMet hod>User nanmePasswor d</ aut hent i cati onMet ho
d>
<aut hent i cati onBegi nTi me>2008- 05-
25T21: 41: 53. 640625+03: 00</ aut henti cati onBegi nTi ne>
</ Aut henti cati onSt at enent >
<Si gnat ur e>
<Si gnedlI nf 0>
<si gnat ur eAl gori t hnPSHAL</ si gnat ur eAl gori t hne
</ Si gnedl nf o>

<si gnat ur eVal ue>G6x PMaN2V®+j MBwTv CbM P3dqU+gh5l dUxOS6vdERt
X6VKUCE4szcf 3QunbM/9JL5GPn6+0+badyr Kb2i DB4AqQV 81 VyOB9buPcf
0SoeQVAMhbl NI 1 G TNmvdRf ghpqr KhDAUVZHZ7z/ xPv XM/ Sz Ut YDs 86+xwWJ

Figure C.2. (cont.) SOAP Message Example For Identity Token Response From
Identity STS to Client

(Cont. on next page)
73

i Eudl 9zDp0=</ si gnat ur eVal ue>
</ Si gnhat ur e><i ssuel nst ant >2008- 05-
25T21: 41: 54. 46875+03: 00</i ssuel nst ant >
<i ssuer>Client</issuer>
<KeyExchangeToken>
<encr ypt edSessi onKey>r WinYAhf ewdP8vQO MDPLN9MbdI OLA0sQTOp759
5h\W6Jhf UkQ2M YgW PsLEj 8t hLDPRAd2WraJ| 5Qkhgk FFKoOOWN2anuMyx
WIDNKRU6D] k28n2zf Nf | i wKk2PT5DsDZYG Ly Af DQDSEVH BULDAeNZs| zb
hKj i cmBkbwl OH | =</ encr ypt edSessi onKey>
<symmetri cAl gori t hniType>AES</ synmetri cAl gorit hnlype>
<encrypt edSessi onKeyl V>gy9t xox+UQRQVWPTQAMMA Sgy] QOt X1 TPD3KHIOw
t NnkRxXl 5sBKQKTXTo/ aWjc305D5x+Ppf T9r CWEH k+QJuf 7ol Ej Snl OKJCE
Knf QGHRKAWUBbhQ++nr | xyM n1Ax/ 19/ Hxh3a4x/ j FzGA19nEU7E6I ScPCk
8l Tj DwZn3DLeCRl yY=</ encr ypt edSessi onKeyl V>
<synmet ri cKeySi ze>64</ symmet ri cKeySi ze>
<asynmet ri cKeySi ze>1024</ asymetri cKeySi ze>
<Keyl nf 0>
<encrypt i onMet hod>RSA- AES</ encr ypti onMet hod>
</ Keyl nf 0>
</ KeyExchangeToken>
<CreationTi ne>
<TokenCr eat i onBegi nTi me>2008- 05-
25T21: 41: 54. 3125+03: 00</ TokenCr eat i onBegi nTi ne>
<TokenCr eat i onEndTi ne>2008- 05-
25T21: 41: 54. 46875+03: 00</ TokenCr eat i onEndTi me>
</ CreationTi me>
</ Ci pher Token>
</ request | DTokenResul t ></ request | DTokenResponse>
</ soap: Body>

</ soap: Envel ope>

Figure C.2. (cont.) SOAP Message Example For Identity Token Response From
Identity STS to Client

74

<?xm version="1.0" encodi ng="utf-16"7>
<d i ent Request | nf os
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >
<User Pass>
<user Name>user 0</ user Nane>
<passwor d>pass0</ passwor d>
</ User Pass>
<request Ti me>0001- 01- 01TOO: 00: 00</ r equest Ti ne>
</ d i ent Request | nf os>

Figure C.3. Client Request Information Open Message

<?xm version="1.0" encodi ng="utf-16""?>
<| DToken xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma-
I nstance” xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema" >
<l'i feTi me>2008- 05-26T21: 41: 54. 3125+03: 00</ | i f eTi ne>
<r equest Type>pass0</request Type>
<t okenType>user 0</t okenType>
</ | DToken>

Figure C.4. IDToken Open Message

<?xm version="1.0" encodi ng="utf-8"7?>
<soap: Envel ope xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-
I nstance” xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: soap="http://schenas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body>
<requestCreditStatus xm ns="http://tenpuri.org/">

Figure C.5. SOAP Message Example For Credit Status Token Request From Client To
CreditStatusSTS Web Service

(Cont. on next page)
75

<serializedCipherToken KeyExchangeToken>

<Ci pher Token xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema-
i nstance"” xml ns:xsd="http://ww.w3. org/ 2001/ XM_Schenma" >
<Condi ti ons>
<not Bef or e>2008- 05- 25T21: 41: 55. 109375+03: 00</ not Bef or e>
<not OnOr Af t er >2008- 05-
25T21: 56: 55. 109375+03: 00</ not OnOr Af t er >
</ Condi ti ons>
<Aut hent i cati onSt at enent >
<Keyl nf 0>
<C pher Dat a>

<ci pher Val ue>PD94bWwydmVyc2l vbj 0i M54w i Bl bnmi\vZd uZz0i dXRnLT
E21 j 8+DQ08S2V5RXhj aGruz2VUb2t | bi BAbWuczp4c2k9l mhOdHA6LY93d
3cudzMub3JnLzl WDEVWELIMU2NoZWLhLW uc3RhbmNI | i BAbWkuczp4c2@
| mMh0dHA6LY93d3cudzMub3JnLzl WDEVWELMJU2NoZWLhI j ANCi AgPGVUY3J
5cHRI ZFNl ¢3Npb25LZXk+RTF1OUNSbTZJcD EZHZ1V3BXaUx0ZTdTeEhZ(O
FUMVUX Y2t kb0J50E9I bHBj Ukt QU25pdWZs SkV3MIcr azYydGnzZUZOVOpPU
j VCRUdaSXB3cy8zeUnhuU dnT3Zt dUdWJGHJZHVKVHBr bE16Z22x XTGI4ZDJs
QLIgMy9r Rkw N1IR3MDp2WIRt S3By NEt WeVJ YWhZs VExi TnRDYmJ4M& z SEd
VL3Vr VZVMMWKBPTwW ZWsj cnl wdGvkU2Vzc 2l vbkt | eTANG AgPHNSbWLI dH
JpYOFsZ29yaXRobVR5¢c GHQUVTPCOzeWLt ZXRyaVWNBbGdvcm 0aGLUeXBl P
gOKI CA8ZWbj cnl wdGvkU2Vzc2| vbkt | eU WPk 1wc EZRbVg3aGRzZ2V2dXl v
czVXYUxDSFdZN3@THpuY2dNSn6M2x Zenl 3b1hCeUdBSy9QaXRacldpVlh
| c044VCt hUTINSEZWUN2 MFZEUTJ BZOdFWEL VK1 RpNFB2SndQK2FaVGsy Sk
UsenYyNk1palt 4AMAgxcWNMUThQel JpSj MAQmhl ckt udOl UZDc2VS9pV1ZNd
0QOMzN6Cc1BTRKI 1cER6MBRAQRITRTO8L2VUY3J5¢cHRI ZFNI ¢3Npb25LZXI J
Vj 4NCi AgPHNS5bWLI dHIpYOt | eVNpemH+N) @BL3NS5bWLI dHIpYOt | eVNperJ

Figure C.5. (cont.) SOAP Message Example For Credit Status Token Request From
Client To CreditStatusSTS Web Service
(Cont. on next page)

76

+DQogl Dxhc3l t bW/0cm j S2V5U21 6ZT4xNMDI OPCOhc3l t bW/Ocm j S2V5U2
| 6ZTANCI AgPEt | eUl uZnB+DQogl CAgPGVUY3J5cHRpb25NZXRob2Q+U NBL
UFFUzw ZW5j cnl wdd vbk1l dGhvZDANC AgPCIOLZXI JbnzvPgOKPCIOLZXI F
eGNoYWbnZVRva2VuPg==</ ci pher Val ue>
</ Ci pher Dat a>
<encrypti onMet hod>RSA- Tri pl eDES</ encr ypti onMet hod>
</ Keyl nf 0>
<aut henti cati onEndTi me>2008- 05-
25T21: 41: 55. 109375+03: 00</ aut henti cati onEndTi ne>
<aut hent i cati onMet hod>User Nane_Passwor d</ aut henti cati onMet h
od>
<aut hent i cati onBegi nTi ne>0001- 01-
01TOO: 00: 00</ aut hent i cati onBegi nTi ne>
</ Aut henti cati onSt at enent >
<i ssuel nst ant >2008- 05-
25T21: 41: 55. 109375+03: 00</ i ssuel nst ant >
<i ssuer>Client</issuer> </ C pher Token>
</ seri al i zedC pher Token_KeyExchangeToken>
<seri al i zedC pher Token_I| Dt oken>
<Ci pher Token
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena" >
<Condi ti ons>
<not Bef or e>2008- 05-
25T21: 41: 54. 3125+03: 00</ not Bef or e>
<not OnOr Af t er >2008- 05-
25T21: 56: 54. 3125+03: 00</ not OnOr Af t er >
</ Condi ti ons>

<Aut henti cati onSt at enent >

Figure C.5. (cont.) SOAP Message Example For Credit Status Token Request From
Client To CreditStatusSTS Web Service

(Cont. on next page)

71

<Keyl nf 0>
<Ci pher Dat a>
<ci pher Val ue>y2Y67t nzZzTXNGvZQU2EI 4sKbc32/ cJr Zkf / p2/ UODy UJ
2REy QvKZZn5gz0caNdnXT3nTcCeVKxgJNY5JAQ! 3i Hg/ XJo1D6h99Qxr RpTh
LI 7t z7LdGaj mAKZ+g1lhQef +zMDx9gkzh8+qSk AE84DnmTt Sc POCRTwWUNnst JT
+dzEdx| pM f SNvj XLGszdf Xyl j 0qi 1HDEo/ xCWXUDI j z2i YbqQHI S2zdeG
zCgEi | u3t 741 Tzeh2gFMLLOobwhqLyGo2801Ei Cf t qoj eok MRHNXKFAz XHk
u/ I z+5hN1CH 2Cdp44) UaVFUSAHeRLGY 7+KTLCA+Nnol Miz1Xc6cpU36X
Pr+kcsWyszt Ri RFLdy OTy WWC+GRQR8301 Mhaf +Y4wnl </ ci pher Val ue>
</ G pher Dat a>
<encrypti onMet hod>RSA- AES</ encr ypti onMet hod>
</ Keyl nf 0>
<aut henti cati onEndTi ne>2008- 05-
25T21: 41: 54. 3125+03: 00</ aut henti cati onEndTi ne>
<aut hent i cati onMet hod>User nanmePasswor d</ aut hent i cati onMet ho
d>
<aut henti cat i onBegi nTi me>2008- 05-
25T21: 41: 53. 640625+03: 00</ aut henti cati onBegi nTi ne>
</ Aut henti cati onSt at enent >
<Si gnat ur e>
<Si gnedl nf 0>
<si gnat ur eAl gori t hmPSHAL1</ si gnat ur eAl gori t hne
</ Si gnedl nf o>
<si gnat ur eVal ue>G6x PMaN2V®+j MBwTv CbM P3dqU+gh5l dUxOS6vdERt
X6VKuCE4szcf 3QunbM/9JL5GPn6+0+badyr Kb2i DB4AqQM 8| VyOB9buPcf
0SoeQVAMhbI NI I G TNmvdRf ghpgqr KhDAUWVZHZ7z/ xPvXMr Sz Ut YDs86+xwWJ
i Eudl 9zDp0=</ si gnat ur eVal ue>
</ Si gnat ur e>

<i ssuel nst ant >2008- 05-

Figure C.5. (cont.) SOAP Message Example For Credit Status Token Request From
Client To CreditStatusSTS Web Service

(Cont. on next page)

78

25T21: 41: 54. 46875+03: 00</i ssuel nst ant >

<i ssuer>Client</issuer>
<KeyExchangeToken>
<encr ypt edSessi onKey>r WinYAhf ewdP8vQO MDPLN9MbdI OLA0sQTOp759
5h\W6Jhf UkQ2M YgW PsLEj 8t hLDPRAd2WraJ| 5Qkhgk FFKoOOWN2anuMyx
WIDNKRU6D] k28n2zf Nf | i wKk2PT5DsDZYG Ly Af DQDSEVH BULDAeNZs| zb
hKj i cmBkbwl OH/ | =</ encr ypt edSessi onKey>
<synmmetri cAl gori t hniType>AES</ synmmetri cAl gorit hnilype>
<encr ypt edSessi onKeyl V>gy9t xox+UQRQVWPTQAMMA Sgy] QO X1 TPD3KHIOw
t NnkRxXl 5sBKQKTXTo/ aWjc305D5x+Ppf T9r CWEH k+QJuf 7ol Ej Snl OKJCE
Knf QGHRKAWUBbhQ++nr | xyM n1Ax/ 19/ Hxh3a4x/ j FzGA19nEU7E6I ScPCk
8l Tj DwZn3DLeCRl yY=</ encr ypt edSessi onKeyl V>
<symmetri cKeySi ze>64</symetri cKeySi ze>
<asynmetri cKeySi ze>1024</ asymretri cKeySi ze>
<Keyl nf 0>
<encrypti onMet hod>RSA- AES</ encr ypt i onMet hod>
</ Keyl nf 0>
</ KeyExchangeToken>
<CreationTi ne>
<TokenCr eat i onBegi nTi me>2008- 05-
25T21: 41: 54. 3125+03: 00</ TokenCr eat i onBegi nTi ne>
<TokenCr eat i onEndTi me>2008- 05-
25T21: 41: 54. 46875+03: 00</ TokenCr eat i onEndTi me>
</ CreationTi me>
</ G pher Token>
</serializedC pher Token_I Dt oken>
</ request Credit St at us>
</ soap: Body>

</ soap: Envel ope>

Figure C.5. (cont.) SOAP Message Example For Credit Status Token Request From
Client To CreditStatusSTS Web Service

79

<?xm version="1.0" encodi ng="utf-8"7?>
<soap: Envel ope xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena-
I nstance” xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body>
<request Credi t St at usResponsexm ns="http://tenpuri.org/">
<request Credit St at usResul t >
C pher Token
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena-i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" >
<Condi ti ons>
<not Bef or e>2008- 05-
25T21: 41: 56. 28125+03: 00</ not Bef or e>
<not OnOr Af t er >2008- 05-
25T21: 56: 56. 28125+03: 00</ not OnOr Af t er >
</ Condi ti ons>
<Aut henti cati onSt at enent >
<Keyl nf 0>
<Ci pher Dat a>
<ci pher Val ue>y2Y67t nzZzTXNGvZQsU2EIl 4sKbc32/ cJr Zkf / p2/ UDANpr
20eH50HcgQzZi el TODC GL8Mt+ y2i aZXFnxNSR7bLi D3Bt eyt XPOLuj YBZk
Pkdf r 9Jqt bSRj Blvs83uGF2k AVZ6A82By EQTD4hr 7t e0l / QGIHPOCKkgBI d1
aLWrb5KnnBNSEW 2aWei W EVOMZ| | i kZh9SUs GIHBqVj gmXQAXUYLH5ql f Y
gJReFi oKVi 6KOcv906q0061 9yqWhPo+7 YWk Qy XahNEOMKc MFH5H41UuJhc 1
42r JGLPi DTRvf B+l zvyOj | GrJQEC06] d6f 4DnKuTAHKKEL hCoMOWUIl WH3 M-
KRBR5sNd 7y mhR0qJ GZAahQl bf W CNyr O5hPTJOW nULBpJPVI Dki f JChLVu
lagy&Krs/ z3HG nGL7r TEl eUbvf | aQ+ty 7ECc SGMTsHvhJOC+</ ci pher Val
ue>
</ Ci pher Dat a>

Figure C.6. SOAP Message Example For Credit Status Token Response From Credit
Status Token Web Service To Client

(Cont. on next page)

80

<encrypti onMet hod>RSA- AES</ encr ypti onMet hod>
</ Keyl nf 0>
<aut henti cati onEndTi ne>2008- 05-
25T21: 41: 55. 984375+03: 00</ aut henti cati onEndTi me>
<aut hent i cati onMet hod>Si gnat ur eAut henti cati on</ aut henti cati
onMet hod><aut hent i cat i onBegi nTi ne>2008- 05-
25T21: 41: 55. 453125+03: 00</ aut henti cati onBegi nTi ne>
</ Aut henti cati onSt at enent >
<Si gnat ur e>
<Si gnedI nf 0>
<si gnat ur eAl gori t hm>SHAL1</ si gnat ur eAl gori t hne
</ Si gnedl nf 0>
<si gnat ur eVal ue>qt/ oNoCHxYTI r LI / F/ vuaE4DuL6LgCsBxsOGXZj 4QXH
R a7@2xESaFD2i hBAs6c5yeh3Yrt NY] ZXasSor bJenbsRM | nHRuG 7Ri zE
5F63WI+XCf 88nEl i | Pl 0oBI 0of 15T/ eDt pFxK5TJ26r 5v47nTNI nokvOkwK
vDIWAF6FVE=</ si gnat ur eVal ue>
</ Si gnat ur e> <i ssuel nst ant >2008- 05-
25T21: 41: 56. 28125+03: 00</ i ssuel nst ant >
<i ssuer>Credi t St at usSTS</ i ssuer >
<CreationTi ne>
<TokenCr eat i onBegi nTi me>2008- 05-
25T21: 41: 55. 453125+03: 00</ TokenCr eat i onBegi nTi ne>
<TokenCr eat i onEndTi me>2008- 05-
25T21: 41: 56. 28125+03: 00</ TokenCr eat i onEndTi me>
</ CreationTi me>
</ G pher Token>
</request Credi t St at usResul t >
</ request Credi t St at usResponse>
</ soap: Body>

</ soap: Envel ope>

Figure C.6. (cont.) SOAP Message Example For Credit Status Token Response From
Credit Status Token Web Service To Client

81

<?xm version="1.0" encodi ng="utf-16"7>
<Credi t St at usToken
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >
<l'i feTi me>2008- 05-26T21: 41: 56. 125+03: 00</ | i f eTi me>
<request Type>Credi t St at usRequest </ r equest Type>
<t okenType>Credi t St at usSTSToken</t okenType>
</ Credit StatusToken>

Figure C.7. Credit Status Token Open Message

<?xm version="1.0" encodi ng="utf-8"7?>
<soap: Envel ope xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-
I nstance” xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body>
<request xm ns="http://tenpuri.org/">
<seri al i zedC pher Token_KeyExchangeToken>
<Ci pher Token
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena-i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" >
<Condi ti ons>
<not Bef or e>2008- 05-
25T21: 41: 52. 546875+03: 00</ not Bef or e>
<not OnOr Af t er >2008- 05-
25T21: 56: 52. 546875+03: 00</ not OnOr Af t er >
</ Condi ti ons>
<Aut henti cati onSt at enent >

<Keyl nf 0>

Figure C.8. SOAP Message Example For Service Request From Client to Service Web
Service

(Cont. on next page)
82

<Ci pher Dat a>
<ci pher Val ue>PD94bWwdnmvyc2l vbj 0i M54wl i Bl bm\vZAE uZz0i dXRmLT
E21 j 8+DQ08S2V5RXhj aGruz2VUb2t | bi BAbWuczp4c2k9l mhOdHA6LY93d
3cudzMub3JInLzl WDEVWELIMJUZNoZWLhLW uc3RhbmNl | i B4bWuczp4c2(®
| MhOdHA6LY93d3cudzMib3JnLz| WWDEVWELIMU2NoZWLhI j 4NCi AgPGVUY3J
5¢cHRI ZFNI ¢3Npb25LZXk+cl dUbl | Ba&Zl dOpQOHZPaU1EUEXUQULi ZEI PMJ
Fvc1FUT3A3NTklaFd5NkpoZl Vr UTINZI | nV2pQcOxFaj hOaExEUFJIBZDJI Xb
WFKbDVRa2hxa0ZGS29POvd OvimFudUlneHdURES LUNU2RGpr M huhpnilrnizJd
aXdLazJQVDVECcORaWUdpTH BZKkRRRFNFTUhOQ UxREFI Tl pz SXpi aEt gaWN
t ON i d2xPSCOIPTw ZWbj cnl wdGvkU2Vzc 2l vbkt | eTANC AgPHNSbWI dH
JpYOFsZ29yaXRobVR5c GHQUVTPCIzeWLt ZXRyaWNBbGdvcm 0aGlUeXBl P
gOKI CA8ZWbj cnl wdGvkU2Vzc2l vbkt | eU WPnmd50XR4b3gr VWFSUULQVFFX
TTRTZ3| qUUIOVDFUUEQz S0g5d3RualJ4wea1c0J LUt UWFRVL2FXc Wbz Vv
ENXgr UHBniVDI y QLdFSGpr KO9KdWY3b2x Fal NubE9LSKNFUUt uZl FI Ukt BV1
UAYmhRKyt t ckl 4eUL0bj FBeC8x0OS91 eGgz YTRAL2pGekdBMTI t RVU3RTZJU
2NQR2s4bFRgRHdabj NETGVDUMX5WI08L2VuY3J5¢cHRI ZFNI c¢3Npb25LZXI J
Vj 4NCi AgPHNS5bWLI dHIpYOt | eVNpemH+N) @BL3NS5bWLI dHIpYOt | eVNperJ
+DQogl Dxhc3l t bW/0cm j S2V5U21 6ZT4xNMDI OPC9hc3l t bW/Ocm j S2V5U2
| 6ZTANCI AgPEt | eUl uZnB+DQogl CAgPGVUY3J5cHRpb25NZXRob2Q+U NBL
UFFUzw ZW6j cnl wdd vbk1l dGhvZDANC AgPCILZXI Jbnzv PgOKPCILZXI F
eGNoYWbnZVRva2VuPg==</ ci pher Val ue>
</ G pher Dat a>
<encrypti onMet hod>RSA- AES</ encr ypti onMet hod>

</ Keyl nf 0>

<aut henti cati onEndTi ne>2008- 05-
25T21: 41: 52. 546875+03: 00</ aut henti cati onEndTi me>
<aut hent i cati onMet hod>User Nane_Passwor d</ aut henti cati onMet h
od>

<aut hent i cati onBegi nTi mne>0001-01-

Figure C.8. (cont.) SOAP Message Example For Service Request From Client to
Service Web Service

(Cont. on next page)

83

01TO0O0: 00: 00</ aut henti cati onBegi nTi ne>

</ Aut henti cati onSt at enent >
<i ssuel nst ant >2008- 05-
25T21: 41: 52. 5625+03: 00</ i ssuel nst ant >
<i ssuer>Client</issuer>
</ G pher Token>
</ seri al i zedC pher Token_KeyExchangeToken>
<seri al i zedC pher Token_I| DToken>
<Ci pher Token
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena-i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" >
<Condi ti ons>
<not Bef or e>2008- 05-
25T21: 41: 54. 3125+03: 00</ not Bef or e>
<not OnOr Af t er >2008- 05- 25T21: 56: 54. 3125+03: 00
</ not OnOr Aft er >
</ Condi ti ons>
<Aut henti cati onSt at enent >
<Keyl nf 0>
<Ci pher Dat a>
<ci pher Val ue>y2Y67t nzZzTXNGvZQsU2EIl 4sKbc32/ cJr Zkf / p2/ UODy UJ
2REy QvKZZn5gz0caNdmXT3nTcCeVKxgJNY5JAql 3i Hg/ XJ01D6h99Qx RpTh
LI 7t z7LdGaj mAKZ+g1hQef +zMDx9gkzh8+qSkAE84Dnt ScPOCRTWUNst JT
+dzEdx| pM f SNvj XLOszdf Xyl j 0qi 1HDEo/ xCWXUDI j z2i YbqQHI S2zdeG
zCgEi | u3t 741 Tzeh2gFMLLOobwbqLyGo2801Ei Cf t qoj eok MRHnXKFAz XHk
u/ 1 z+5hN1CH 2Cdp4 Q) UaVFUSAHeRLGy 7+KTLCA+nol Miz1Xc6cpU36X
Pr+kcsWyszt R RFLdy OTy VWWC+GRQR830l1 Mhaf +Y4wnl </ ci pher Val ue>
</ G pher Dat a>

Figure C.8. (cont.) SOAP Message Example For Service Request From Client to

Service Web Service

(Cont. on next page)

84

<encrypti onMet hod>RSA- AES</ encr ypti onMet hod>
</ Keyl nf 0>
<aut henti cati onEndTi ne>2008- 05-
25T21: 41:54. 3125+03: 00
</ aut henti cati onEndTi me>
<aut henti cati onMet hod>User nanePasswor d
</ aut henti cati onMet hod>
<aut henti cati onBegi nTi ne>2008- 05-
25T21: 41: 53. 640625+03: 00</ aut henti cati onBegi nTi ne>
</ Aut henti cati onSt at enent >
<Si gnat ur e>
<Si gnedI nf 0>
<si gnat ur eAl gori t hm>SHAl1</ si gnat ur eAl gori t hne
</ Si gnedl nf 0>

<si gnat ur eVal ue>G6xPMaN2V®+j MBwTvCbM P3dqU+gh5l dUxOS6vdERt
X6VKuCE4szcf 3QunbM/9JL5GPn6+0+badyr Kb2i DB4AqQM 8| VyOB9buPcf
0SoeQVAMhbI NI I G TNmvdRf ghpgqr KhDAUVZHZ7z/ xPvXMr Sz Ut YDs86+xwJ
i Eudl 9zDp0=</ si gnat ur eVal ue>

</ Si gnat ur e>

<i ssuel nst ant >2008- 05-
25T21: 41: 54. 46875+03: 00</i ssuel nst ant >

<i ssuer>Cient</issuer>

<KeyExchangeToken>
<encrypt edSessi onKey>r WinYAhf ewd P8vQO MDPLn9Mbdl OLAosQTOp759
5hWw6Jhf UkQ2M YgW PsLEj 8t hLDPRAd2WraJl 5Qkhgk FFKoO9WN2anuMgx
WTDNKRu6Dj k28n2zf Nf | i wKk2PT5DsDZYG Ly Af DQDSEMHt BULDAeNZs| zb
hKj i cmBkbwl OH/ | =</ encr ypt edSessi onKey>
<symetri cAl gorithnType>AES</ symmetri cAl gorithnmType>

Figure C.8. (cont.) SOAP Message Example For Service Request From Client to
Service Web Service

(Cont. on next page)

85

<encrypt edSessi onKeyl V>gy9t xox+UQRQVWPTQAMMA Sgyj QCt X1 TPD3KHIOw
t NkRx Xl 5s BKQKTXTo/ aWjc305D5x+Ppf T9r CWEH k+QJuf 7ol Ej Snl OKJCE
Knf QGHRKAWUBbhQ++nr | xXyM nl1Ax/ 19/ Hxh3a4x/ j FzGA19nEU7E6I ScPCk
8| Tj DWwZn3DLeCRI yY=</ encr ypt edSessi onKeyl V>
<symmetri cKeySi ze>64</ symetri cKeySi ze>
<asymmet ri cKeySi ze>1024</ asymet ri cKeySi ze>
<Keyl nf 0>
<encr ypti onMet hod>RSA- AES</ encr ypti onMet hod>
</ Keyl nf 0>
</ KeyExchangeToken>
<CreationTi me>
<TokenCr eat i onBegi nTi ne>2008- 05-
25T21: 41: 54. 3125+03: 00</ TokenCr eat i onBegi nTi ne>
<TokenCr eat i onEndTi me>2008- 05-
25T21: 41: 54. 46875+03: 00</ TokenCr eat i onEndTi me>
</ CreationTi me>
</ G pher Token>
</serializedC pher Token_| DToken>
<seri al i zedC pher Token_Credit St at usToken>
<Ci pher Token
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena" >
<Condi ti ons>
<not Bef or e>2008- 05- 25T21: 41: 56. 28125+03: 00</ not Bef or e>
<not OnOr Af t er >2008- 05-
25T21: 56: 56. 28125+03: 00</ not OnOr Af t er >
</ Condi ti ons>
<Aut hent i cati onSt at enent >

<Keyl nf 0>

Figure C.8. (cont.) SOAP Message Example For Service Request From Client to
Service Web Service

(Cont. on next page)

86

<C pher Dat a>
<ci pher Val ue>y2Y67t nzZzTXNGvZQsU2EIl 4sKbc32/ cJr Zkf / p2/ UDANpr
20eH50HcgQz Zi el TODG) GL8Mt/ y2i aZXFnxNSR7bLi D3Bt eyt XPOLuj YBZK
Pkdf r 9Jqt bSRj Blvs83uGF2k AVZ6A82By EQTD4hr 7t e0l / QGIHPOCKkgBI d1
aLWrb5KnnBNSEW 2aWei W EVOMZ| | i kZh9SUs GIHBqVj gmXQAXUYLH5ql f Y
gJReFi oKVi 6KOcv906q0061 9yqWhPo+7 YWk Qy XahNEOMKc MFH5H41UuJhc 1
42r JGLPi DTRvf B+l zvyOj | GrJQEC06! d6f 4DnKuTAHKKEL hCoMOWUIl WH3 M-
KRBR5sNd 7y mhR0qJ GZAahQl bf W CNyr O5hPTJOW nULBpJPVI Dki f JChLVu
lagyKrs/ z3HE nGL7r TEl eUbvf | aQty 7TECc SGMTsHvhJOC+</ ci pher Va
ue> </ G pher Dat a>
<encrypti onMet hod>RSA- AES</ encr ypt i onMet hod>
</ Keyl nf 0>
<aut henti cati onEndTi ne>2008- 05-
25T21: 41: 55. 984375+03: 00</ aut henti cati onEndTi ne>
<aut hent i cat i onMet hod>Si gnat ur eAut henti cati on</ aut henti cati
onMet hod>
<aut hent i cati onBegi nTi me>2008- 05-
25T21: 41: 55. 453125+03: 00</ aut hent i cati onBegi nTi ne>
</ Aut henti cati onSt at enent >
<Si ghat ur e>
<Si gnedI nf 0>
<si gnat ur eAl gori t hn>SHAL</ si gnat ur eAl gori t hne
</ Si gnedl nf o>
<si gnat ur eVal ue>qt / oNbCHxYTI r LI / F/ vuaE4DuL6LgCsBxsOGXZj 4QXH
R a7@xESaFD2i hBAs6c5yeh3Yrt NYj ZXasSor bJenbsRM | nHRuG 7Ri zE
5F63WI+XCf 88nEl i | Pl 0oBl 0of 15T/ eDt pFxK5TJ26r 5v47nTNI nokvOkwK
vDIWAF6FVE=</ si gnat ur eVal ue>
</ Si gnhat ur e>

<i ssuel nst ant >2008- 05-

Figure C.8. (cont.) SOAP Message Example For Service Request From Client to
Service Web Service

(Cont. on next page)

87

25T21: 41: 56. 28125+03: 00</i ssuel nst ant >
<i ssuer>Credit St at usSTS</i ssuer >
<CreationTi ne>
<TokenCr eat i onBegi nTi ne>2008- 05-
25T21: 41: 55. 453125+03: 00</ TokenCr eat i onBegi nTi ne>
<TokenCr eat i onEndTi me>2008- 05-
25T21: 41: 56. 28125+03: 00</ TokenCr eat i onEndTi ne>
</ CreationTi me>
</ C pher Token>
</serializedCG pher Token_Credit St at usToken>
</ request >
</ soap: Body>
</ soap: Envel ope>

Figure C.8. (cont.) SOAP Message Example For Service Request From Client to

Service Web Service

88

