
TIME SYNCHRONIZATION IN WIRELESS
SENSOR NETWORKS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by
Ali Burak KULAKLI

October 2008
İZMİR

We approve the thesis of Ali Burak KULAKLI

Prof. Dr. Sıtkı AYTAÇ
Supervisor

Prof. Dr. Kayhan ERCİYEŞ
Co-Supervisor

Assist. Prof. Dr. Aylin KANTARCI
Committee Member

Assist. Prof. Dr. Tolga AYAV
Committee Member

Dr. Belgin ERGENÇ
Committee Member

16 October 2008

Prof. Dr. Sıtkı AYTAÇ Prof. Dr. Hasan BÖKE
Head of the Computer Engineering Dean of the Graduate School of
Department Engineering and Sciences

ACKNOWLEDGEMENTS

I would like to thank my co-supervisor, Prof. Dr. Kayhan Erciyeş, for his guid-

ance and patience. He was my supervisor until he left the institute and he continued to

support me as co-supervisor after.

Also, I would like to thank my supervisor, Prof. Dr. Sıtkı Aytaç, for his guidance

after he became my supervisor.

Furthermore, I would like to thank my friends, especially Esra Aycan, helping

me when writing this thesis using LATEX. Without them, it may have taken too much

time to write this document.

Finally, I would like to thank my family who always supported me whole the

time as well as my graduate education.

ABSTRACT

TIME SYNCHRONIZATION IN WIRELESS SENSOR NETWORKS

In this thesis, an enhanced synchronization algorithm for Wireless Sensor Net-

works is proposed. This algorithm uses TPSN (Timing-sync protocol for sensor net-

works) as a base synchronizer and does modifications on it to achieve a better synchro-

nization with a lower message overhead. Basically, there are three improvements that can

be applied onto TPSN, which are clustering the network, chain synchronization among

nodes and adaptive synchronization interval. In the first phase of the thesis, a simulation

environment is provided for TPSN using pthreads on a Linux computer. This environ-

ment helps understanding the parameters that TPSN relies on and testing the algorithm in

different simulated environments with different characteristics using the enhancements

onto TPSN algorithm. In the second phase, ns2 simulator environment is used to get

more precise results and test the modifications. Finally, latest modifications are done on

TPSN and all the results are gathered from ns2.

iv

ÖZET

KABLOSUZ DUYARGA AĞLARINDA ZAMAN EŞUYUMLULUĞU

Bu tezde amaç kablosuz duyarga ağları için geliştirilmiş bir zaman eşuyumluluğu

algoritması sunmaktır. Bu algoritma temelde bir alıcı-verici tipinde algoritma olan

TPSN’i kullanmakta olup, daha iyi bir zaman eşuyumluluğunu az bir mesaj yükü

artışıyla sağlamak üzere değişiklikler yapılmıştır. Aslında, burada 3 adet iyileştirme bu-

lunmaktadır ki bunlar ağın kümelendirilmesi, zincir halinde zaman eşuyumluluğunun

sağlanması ve şartlara göre zaman eşuyumluluğu algoritmasının işlem aralığının

değiştirilmesidir. Tezin birinci aşamasında bir Linux bilgisayar üzerinde pthread’ler kul-

lanılarak bir simulasyon ortamı hazırlanmıştır. Bu ortam, TPSN’nin dayandığı parame-

treleri anlamamıza ve algoritmanın farklı ortamlar ile karakteristiklerde, TPSN üzerine

yapılan geliştirmelerin de eklenmesiyle test edilmesine yardımcı olmuştur. İkinci

aşamada, daha kesin sonuçlar edinmek ve geliştirmeleri test edebilmek için ns2 sim-

ulasyon ortamı kullanılmıştır. Sonuçta, son değişiklikler TPSN üzerine uygulanmış ve

ns2 üzerinden tüm sonuçlar alınmıştır.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

CHAPTER 1 . INTRODUCTION . 1

CHAPTER 2 . BACKGROUND . 4

2.1. Synchronization Problem . 4

2.1.1. Clock Drift . 4

2.1.2. Clock Offset . 5

2.2. Synchronization Algorithms 6

2.3. Timing-sync Protocol for Sensor Networks (TPSN) 6

2.3.1. Pair-wise Synchronization 6

2.3.2. Network-wide Synchronization 7

CHAPTER 3 . ENHANCEMENTS . 9

3.1. Clustering . 9

3.1.1. Dividing into Clusters . 9

3.1.1.1 . Balance Children Count 12

3.1.1.2 . Balance Cluster Node Count 15

3.1.2. Inter Cluster Synchronization 17

3.1.2.1 . Using the Existing Spanning Tree 17

3.1.2.2 . Building a New Path Among Cluster Heads 17

3.2. Chain Synchronization . 18

3.3. Adaptive Synchronization Interval 20

3.3.1. Runtime or Boottime . 21

CHAPTER 4 . SIMULATION . 22

4.1. Simulation Using Posix Threads 22

4.2. Simulation Using ns2 . 23

vi

4.2.1. Reference TPSN Results 24

4.2.2. Enhancement Results . 28

4.2.2.1 . Clustering . 28

4.2.2.2 . Chain Synchronization 30

4.2.2.3 . Adaptive Synchronization Interval 32

4.2.2.4 . Balanced Children Count 34

4.2.2.5 . Balanced Cluster Node Count 35

CHAPTER 5 . CONCLUSION . 37

REFERENCES . 41

APPENDICES

APPENDIX A. SIMULATION USING POSIX THREADS (SOURCE CODE) . 42

APPENDIX B. SIMULATION USING NS2 (SOURCE CODE) 46

vii

LIST OF FIGURES

Figure Page

Figure 3.1. Clustered Spanning Tree . 10

Figure 3.2. Algorithm To Form Clusters . 11

Figure 3.3. Dense Network Spanning Tree . 11

Figure 3.4. Balanced Dense Network Spanning Tree 12

Figure 3.5. Algorithm To Balance Children Count 13

Figure 3.6. Balanced Children Spanning Tree 14

Figure 3.7. Algorithm To Balance Cluster Node Count 15

Figure 3.8. Balanced Clustered Spanning Tree 16

Figure 3.9. Spanning Tree For Chain Synchronization Example 18

Figure 3.10. Algorithm To Adjust Synchronization Interval 21

Figure 4.1. Clock Drifts Of Nodes . 23

Figure 4.2. TPSN Spanning Tree . 24

Figure 4.3. Spanning Tree Construction Time With Level Discovery 25

Figure 4.4. Spanning Tree Construction Time(Init) With Level Request 25

Figure 4.5. Spanning Tree Construction Time(Join) With Level Request 26

Figure 4.6. Clock Drifts Of Nodes (Reference TPSN) 27

Figure 4.7. Clock Difference Of Nodes (Reference TPSN) 27

Figure 4.8. Clock Difference Of Nodes (Reference TPSN) 28

Figure 4.9. Clock Difference Of Nodes (Clustering) 29

Figure 4.10. Message Complexity (Clustered TPSN) 29

Figure 4.11. Clock Difference Of Nodes (Chained TPSN) 30

Figure 4.12. Message Complexity (Chain Synchronization) 31

Figure 4.13. Adaptive Synchronization Interval Change 32

Figure 4.14. Clock Difference Of Nodes (Adaptive Synchronization Interval) . . 33

Figure 4.15. Message Complexity (Adaptive Synchronization) 33

Figure 4.16. Clock Difference Of Nodes (Balanced Children) 34

viii

Figure 4.17. Message Complexity (Balanced Children) 35

Figure 4.18. Clock Difference Of Nodes (Balanced Cluster) 36

Figure 4.19. Message Complexity (Balanced Cluster) 36

Figure 5.1. Individual Results Of The Enhancements 37

Figure 5.2. Cumulative Results Of The Enhancements 38

ix

CHAPTER 1

INTRODUCTION

Wireless Sensor Networks(WSN) are large scale networks of sensors running on

wireless environment dedicated to observe physical world (Sundararaman, et al. 2005).

For an application running on a WSN, gathered data by the sensors are time critical at

most of the cases. Synchronization is crucial to many sensor network applications that

require precise mapping of the collected data from the sensors with the time information

such as in tracking and surveillance (Li and Rus 2006). However, almost all the nodes

suffer from a problem named clock drift and skew. That problem causes clock difference

among nodes as time goes because the processors do not run at exactly the same speed.

That will possibly cause application errors eventually because the input data is incor-

rectly timestamped and they will not be interpreted correctly by the application. For the

time critical applications running on WSN, clock drift problem should be reduced to a

reasonable level or completely eliminated if possible. Chapter 2 gives basic information

about synchronization problems and current possible solutions.

A network does have at least two nodes and all the nodes have their internal

oscillators inside. Although they might have same frequencies as labelled, they may

not be running at exactly same speed. This tiny difference cumulates as time goes and

after a while, if there is no interference occured to synchronize the nodes, clocks will

have significant differences. Section 2.1.1 describes the synchronization problem and

the clock drift. In addition to the clock drift, some nodes might be started later then the

other nodes in the network or some can be added to the network later. In such cases, there

would be a fixed clock difference offset. Section 2.1.2 describes the synchronization

problem and the clock offset.

With the emergence of WSNs, current LAN synchronization methods will not

work efficiently. For example, although GPS provides good synchronization accuracy,

it requires a very large amount of power. NTP is also infeasible since it is designed for

1

traditional computer networks and will not scale well for wireless sensor networks and

requires processing power (Saravanos 2006). Sensor nodes are very tiny instruments and

running with a limited energy so it is not easy to synchronize nodes effectively because

of energy consumption. Also, they usually do not have much processing power and this

prevents any complex algorithms to run on WSN. There are some other synchronization

methods specifically for sensor networks which are described in Section 2.2 such as

the Timing-sync Protocol for Sensor Networks (TPSN) and the Reference Broadcast

Synchronization method (RBS). RBS is a receiver-receiver based protocol. On the other

hand, TPSN is a sender-receiver based protocol. A dedicated Section 2.3 gives detailed

information about TPSN because it is the base algorithm that will have enhancements

onto it.

Chapter 3 describes the proposed modifications to have a better synchronization.

First modification is clustering the network, which is shown in Section 3.1. This will

reduce complexity of the network and lets us have parallel synchronization where one of

them is the inside cluster synchronization and the other one is the inter cluster synchro-

nization. That means, different synchronization algorithms can be used inside and inter

cluster synchronization. However, TPSN is used here for both inside and inter cluster

synchronization with different parameters. Clustering does have two extra enhancements

inside which are balancing children count in Section 3.1.1.1 and balancing cluster node

count in Section 3.1.1.2. Another enhancement is doing synchronization in chains when

available and updating clocks of more than one node in a synchronization state. This is

described in Section 3.2. Last enhancement is given in Section 3.3 which is using dif-

ferent but optimized synchronization intervals for each node. This will bring a balanced

message load on the network and possibly increase precision.

Simulation is the critical part of this algorithm optimization and enhancements

so Chapter 4 gives detailed information about the simulation environments and the re-

sults of the enhancements. During the preparation of this thesis, two simulations are

done independently. First one is a new simulation environment built from scratch that

lets test the TPSN behaviour and do simple changes on it. Details of this simulation can

be found in Section 4.1 however, the results from this simulation may not be consid-

2

ered as a reliable source for the effects of the modifications onto TPSN so well-known

ns2 environment is used primarily to test the enhancements. Section 4.2 has all the im-

plementation information and the results gathered from ns2. All the other details are

available in Appendix section.

3

CHAPTER 2

BACKGROUND

2.1. Synchronization Problem

Time synchronization problem consists of giving all the nodes of the network a

common time scale to operate. This common time scale is usually achieved by periodi-

cally synchronizing the clock at each node to a reference time source, therefore the local

time seen by each element of the system is approximately the same. Also, time synchro-

nization plays an important role in wireless sensor networks because it allows the entire

system to cooperate (Hu and Servetto 2005).

The differences on the clocks of sensor nodes at any time is referred as the offset

error between them. There are three reasons for the nodes to be representing different

times in their respective clocks. The nodes might be started at different times as de-

scribed in Section 2.1.2, the quartz crystals at each of these nodes might be running at

slightly different frequencies, causing the clock values to gradually diverge (clock skew)

or the frequency of the clocks can change variably over time because of environment

conditions such as temperature (clock drift) (Ganeriwal, et al. 2005a). Section 2.1.1

gives the details about clock drift and skew problem. In this document, term skew will

not be used and it should be considered in drift.

2.1.1. Clock Drift

Let a wireless network has K sensors, where each node has a discrete-time clock

with period Tk. If the nodes are isolated, the timing clock of the kth sensor evolves as

tk(n) = nTk + τk(0) (2.1)

4

where 0 ≤ τk (0) < Tk is an initial arbitrary phase and n = 1, 2, ... runs over the

periods of the timing signal (Simeone and Spagnolini 2007).

Each sensor has a clock generator crystal in it and those crystals generates a clock

for the sensor and the period is Tk. Although all the sensors have labelled as the same

working frequency, they all have a margin of errors. That means they may not be running

at exactly same speed. That difference then causes a clock drift. As a result, after some

time, although all the sensors are started exactly the same time, they may not be at the

same clock. Basically, the clock drift is a hardware problem caused by variation in the

crystal frequency due to noise, temperature, aging, voltage change etc. and the cost of

the crystal increases with the accuracy and the low-cost nodes in the sensor network

generally use less accurate crystals which has larger margin of errors (Tjoa, et al. 2004).

This is the main synchronization problem because most of the times a sensor data with

a time data provides an information for an application. That is, without a correct time

information, data is not valuable and even it might affect application’s accuracy.

2.1.2. Clock Offset

When there were no clock drift problem, all network nodes would be started at

the same time to have no clock difference in the network. If not, there would be a fixed

clock difference between nodes and this difference must be handled by the application

(Ganeriwal, et al. 2005a). Assume that a node starts at n = 0 and another node starts

at n = 5. If those nodes have exactly same periods (T), there would be a fixed clock

difference between two nodes and the formula 2.1 becomes

∆(t2− t1) = 5T + τ2− τ1 (2.2)

The 5T here is the clock offset must be handled with a synchronization algorithm.

Also, it is obvious that, even all the nodes start at exactly the same time (n), there will

be a tiny fixed clock offset, which is ∆(t2− t1) = τ2 - τ1.

5

2.2. Synchronization Algorithms

There are several time synchronization protocols because of varying require-

ments, such as precision or degree of mobility. Time synchronization procedure typi-

cally is a message exchange containing the timestamp and the measurement of delay.

There are three basic solutions for time synchronization in sensor networks (Chen, et al.

2007):

1. Sender-Receiver Based Synchronization

2. Receiver-Receiver Based Synchronization

3. Delay Measurement Synchronization

Receiver-Receiver based synchronization algorithms use one-way message ex-

change commonly such as in the Reference Broadcast Synchronization (RBS) (Elson,

et al. 2002). On the other hand, two-way message exchange is used in Sender-Receiver

based synchronization protocols, such as the Timing-sync Protocol for Sensor Networks

(TPSN) (Ganeriwal, et al. 2003). There are also some synchronization protocols based

on one-way message exchange as well as the measurement of delay. An example of a

such protocol is Delay Measurement Time Synchronization (DMTS) (Ping 2003).

2.3. Timing-sync Protocol for Sensor Networks (TPSN)

TPSN is a Sender-Receiver based time synchronization protocol for wireless sen-

sor networks. It has two main steps to synchronize the network. Firstly, pair-wise syn-

chronization will be explained and then network-wide synchronization.

2.3.1. Pair-wise Synchronization

Let’s have 2 nodes i and j which will be synchronized and node i starts the

synchronization. Here are the steps to synchronize node i to node j:

6

1. Node i creates a synchronization pulse packet and hands over packet to the oper-

ating system and network stack for transmission.

2. Just before transmission, the packet is timestamped with T1 and delivered to the

medium. This prevents uncertainties of network stack and medium access delay.

3. After propagation delay and packet transmission time, the packet will be delivered

to node j. Then it is timestamped with T2 immediately to prevent uncertainty

again.

4. Node j then prepares a synchronization acknowledgment packet and hands it over

to the operating system and network stack.

5. Like in step 2, just before transmission, the packet is timestamped with T3 and

delivered.

6. Node i receives the packet and timestamps again with T4 for last time.

7. Finally, node i calculates the clock offset and fixes its clock.

The calculation is simple and can be computed very fast by the nodes. Let’s say

there is an offset O and it needs to be calculated when reply package comes. Assuming

there is no timestamping uncertainties, the formula is just like below (Ganeriwal, et al.

2003):

O =
(T2−T1)− (T4−T3)

2
(2.3)

After computing the offset, the clock difference is known between node i and

node j. It depends on the implementation to change local clock using the offset or keep

the offset in a separate place and use it when needed.

2.3.2. Network-wide Synchronization

TPSN builds a spanning tree where each node knows the level of itself and the

parent. Level 0 is assigned to one node which is named as root node. This node has

7

the responsibility to build tree by triggering level discovery phase. To start the tree

construction, root node sends a level discovery packet with its level 0 in it. When all

the one hop neighbors receive this packet, they set their level to 1, parent to 0 and send

another level discovery packet with the level 1 in it. However, before sending another

packet, each node waits for random time to avoid collisions. This process is done for all

other nodes. In summary, when a node receives a level discovery packet, it sets its level

to the level one more in the packet and sets the sender node as its parent.

What if a node fails to receive level discovery packet or a node is added to a

network later? After a period of time, if a node could not get any level discovery packet,

it sends a level request packet. This also occurs when sync requests fail. When its

neighbors receive this level request message, they reply the message with their level in

it. Then the node sets its level to the minimum received level + 1 and sets it parent to the

sender of minimum level.

Synchronization is done for each node periodically. Each node sends a sync

pulse packet to its parent periodically to be synchronized. When a node cannot get a

synchronization acknowledgment packet from its parent, that may mean that its parent

is dead therefore it sends a level request packet to set a new level itself (Ganeriwal, et al.

2003).

8

CHAPTER 3

ENHANCEMENTS

3.1. Clustering

In this method, a spanning tree which is clustered using a level depth is used. So,

there will be clusters in the network. All nodes except cluster roots will keep running

the existing synchronization algorithm to synchronize their clocks however, another way

will be introduced to synchronize cluster roots in parallel. If this can be achieved, there

will be a better synchronized network. Because, pure TPSN has a problem that when

the level of a node increases, the clock difference may also increase. With clustering, it

is possible to decrease levels of the nodes and with a good inter cluster synchronization,

a better synchronized network can be available even using pure TPSN without the other

enhancements described here.

3.1.1. Dividing into Clusters

There is a directed spanning tree that TPSN algorithm generates. In order to

divide the network into clusters, node level parameter in TPSN is used and a similar

level parameter is introduced for clusters. Therefore, each node will have a level and a

cluster (or group) level. With a reasonable fixed level of nodes for clusters, next level

nodes in the cluster will be in the next cluster and levels of the nodes are reset to 0 again

but the cluster level is increased by one. Figure 3.2 shows the level setting algorithm

when clustering is enabled. When 4 is used as maxLevelInClusters for each cluster, the

reference spanning tree becomes just like in Figure 3.1.

If the message complexity of this clustering algorithm is considered as the num-

ber of messages exchanged between nodes until a valid clustering structure is achieved,

it has the same complexity to build a spanning tree, which is O(n2) where n is the number

9

of nodes. The reason behind this complexity is the message broadcast at level discovery

phase. In a very dense network, a node may get (n−1) messages from other nodes and

there are n nodes, so the message complexity becomes O(n2).

Figure 3.1. Clustered Spanning Tree

On the other hand, if the time complexity of this clustering algorithm is consid-

ered the total time required to form a valid clustering, the time complexity becomes O(n)

because a node can wait at most all other nodes to be initialised one by one.

However, such simple no-overheaded clustering might not produce balanced

clusters. Consider a dense network which all the nodes are very close to each other.

Then, it is likely that the spanning tree will have only two levels which level 0 is the root

10

and all the children are at level 1 as shown in Figure 3.3. In that case, it is not possible

to use clustering enhancement effectively on such spanning tree.

input : parentNodeLevel, parentNodeClusterLevel, maxLevelInClusters where
parentNodeLevel ≥ 0, maxLevelInClusters≥ 1 and
parentNodeClusterLevel ≥ 0.

candinateNodeLevel = parentNodeLevel +1;
if candinateNodeLevel < maxLevelInClusters then

nodeLevel = candidateNodeLevel;
nodeClusterLevel = parentClusterLevel;

else
nodeLevel = 0;
nodeClusterLevel = parentClusterLevel +1;

end

Figure 3.2. Algorithm To Form Clusters

In another scenario, although there may be enough levels to divide a network into

clusters, that clustering might make clusters whose number of nodes are not balanced.

As shown in Figure 3.1, node 41 is a root of a cluster which has 18 nodes however, there

are a couple of clusters that has only 1 node such as 47.

Figure 3.3. Dense Network Spanning Tree

That is why two other enhancements are introduced to provide mored balanced

clusters. First enhancement balances children count of a parent and second enhancement

balances number of nodes in a cluster. These enhancements use existing TPSN synchro-

nization messages and run over the initialized spanning tree. That means, they provide

dynamic balancing after initialization phase.

11

3.1.1.1. Balance Children Count

In simple TPSN spanning tree construction in dense networks, an unexpected

type of spanning tree can be constructed which a node might have many children as

shown in Figure 3.3. This is not proper because the parent consumes too much energy

and lasts shorter because of replying synchronization request messages. This is a down-

side of current method and should be fixed.

In order to balance children count, existing TPSN synchronization messages can

be used, that means no extra message overhead will occur. However, each node must

store their children information to meet the requirements. That also means, if at most

4 children is expected for a node, each node will reply requests from only 4 of their

children and other children will eventually disconnect and find a new parent.

Figure 3.4. Balanced Dense Network Spanning Tree

At first, each node does not know any of their children. However, when syn-

chronization starts, each node starts to get requests from their children. Therefore, as

algorithm in Figure 3.5 shows, if a node requests a synchronization from its parent, the

parent checks the number of children, which is 0 at the beginning, and if the number

of children is less than maximum number of children allowed, then the parent adds the

child to its children list and replies the request. On the other hand, if the parent already

has maximum allowed number of children, then it replies the request but this reply mes-

12

sage is different and causes child node to disconnect from its parent. In this situation, not

replying the request is also reasonable but not recommended because it might decrease

precision of synchronization.

The disconnection then causes the child to request a new parent. A short time

after initialization, there will be a balanced network. Figure 3.4 shows how a dense

network spanning tree is changing dynamically where maxChildrenCount parameter is

used as 4.

input : activeChildrenCount, maxChildrenCount where maxChildrenCount ≥ 1,
activeChildrenCount ≥ 0.

if activeChildrenCount < maxChildrenCount then
add child to list;
++activeChildrenCount;
reply sync request as usual;

else
reply sync request with disconnect request;

end

Figure 3.5. Algorithm To Balance Children Count

This obviously increases time complexity of spanning tree construction however,

this is related to the fact that we use existing TPSN pair-wise synchronization messages

to update spanning tree. Also, this enhancement does not need to be run at initialization,

which means this is actually not increasing the time of spanning tree construction. Time

synchronization may continue on some nodes during this balancing process. Adding an

extra message to say child node to disconnect immediately does not increase message

complexity because, otherwise, child node keeps trying to synchronize for a while up to

the implementation which will definitely increase the messages required to balance the

network.

One important issue here to handle is keeping active children list up to date. So,

a timeout should be enabled for each children and each request should reset that timeout.

When a child is timeouted, it can be safely removed from the list. However, it is possible

13

to add that node again to the list and such will not affect the synchronization results

because these are all done in parent node, that means no message exchange is required.

Figure 3.6. Balanced Children Spanning Tree

Figure 3.6 shows the spanning tree after balancing the children count and node

29 has less children now. maxChildrenCount parameter is used as 4 here.

14

3.1.1.2. Balance Cluster Node Count

Clustering is dividing the network to distribute synchronization work. However,

the clustering algorithm just sets a group level to a node using its level parameter in

TPSN and it can be seen in Figure 3.1, it is highly likely to have very big and very small

clusters in a network. If more balanced clusters exist, then a better message complexity

can be possible.

input : descendantCount, otherDescendantCount, maxNumberO f NodesInCluster,
currentLevelInCluster, maxLevelInCluster where descendantCount ≥ 0,
otherDescendantCount ≥ 0, maxNumberO f NodesInCluster ≥ 1,
currentLevelInCluster ≥ 0, maxLevelInCluster ≥ 1.

if otherDescendantCount >= maxNumberO f NodesInCluster and
descendantCount >= maxNumberO f NodesInCluster then

disconnect node;
else

if currentLevelInCluster < maxLevelInCluster and (descendantCount == 0
or (otherDescendantCount < maxNumberO f NodesInCluster and
descendantCount > maxNumberO f NodesInCluster)) then

join node;
end

end

Figure 3.7. Algorithm To Balance Cluster Node Count

This enhancement is a dynamic clustering algorithm again using TPSN pair-wise

synchronization messages. If a maxNumberO f NodesInCluster is provided, then the

algorithm calculates descendant counts using the children count calculated in Section

3.1.1.1. That means, each node will know its descendant count which root node will

have numberO f Nodes−1.

The algorithm simply disconnects nodes from and joins nodes to a cluster using

a simple decision algorithm. That says, if descendant count of a node except node to

disconnect is enough, then disconnect that node. If descendant count of a node except

node to join is not enough, then join that node. Algorithm in Figure 3.7 shows the details.

15

This algorithm is dependent to the maxLevelInCluster parameter. Therefore,

joining may not be possible because of the maxLevelInCluster parameter. This discon-

nect/check condition can be improved or changed according to environment.

Figure 3.8. Balanced Clustered Spanning Tree

Figure 3.8 shows the change in clustering after balancing. maxLevelInCluster

parameter is 4 at this figure and it is run with the balanced children enhancement de-

scribed in Section 3.1.1.1.

16

3.1.2. Inter Cluster Synchronization

When the network spanning tree is available with the clusters, now it is required

to find a way to synchronize cluster roots. There are two ways to achieve this. First is

using the current available path to synchronize, second is building a new path among

cluster heads.

3.1.2.1. Using the Existing Spanning Tree

There is already a spanning tree for clusters and a path is available among be-

tween all child cluster roots to their parent cluster roots. That means, it is possible to

use that path to send and receive packets to synchronize cluster roots. This can be ef-

fective if the levels in cluster are not many because, from child cluster root node to

parent cluster root node, there will be level number of hops which will increase mes-

sage count. Therefore, with a reasonable level count in a cluster, this method will work

well enough to improve synchronization in the network. The method described in 3.2

can be used to synchronize cluster heads. The idea in this enhancement is not doing as

much synchronization requests as in the cluster. For instance, if a cluster node requests

synchronization for every 100s, cluster root requests for every 200s. Getting similar

synchronization results with less message exchange in the network is expected here. In

Section 4.2, simulation results of this behavior can be found.

3.1.2.2. Building a New Path Among Cluster Heads

Another way of doing inter cluster synchronization is providing another path

among cluster root nodes which can be considered another process running on the same

tree in parallel. In this method, a better synchronization than using existing tree as

described in 3.1.2.1 can be achieved and required messages will be decreased because

hop counts for the messages will be less. However, this increases application complexity.

In this thesis, existing spanning tree is used to show there is no reason to make another

17

path between clusters.

3.2. Chain Synchronization

In pure TPSN, only the child and its parent are involved to synchronize the child’s

clock. In this proposed method, at some convenient cases, it should be possible to syn-

chronize child clock to any of the parent nodes even the root node of the tree or the cluster

root if clustering is done as described in 3.1.2. This will increase messages required but

it also increases the precision.

Figure 3.9. Spanning Tree For Chain Synchronization Example

Here is a simple scenario for the network shown in Figure 3.9 to understand how

chain synchronization works. In this scenario, Node i is the child, requesting synchro-

nization. Node j is the intermediate node and node k is the root to be synchronized.

When node i starts the synchronization, it asks for the time to its parent, which

is node j. TPSN says, Node j answers this request packet with acknowledge packet

however, this time it forwards the synchronization request to node k. Before forwarding

the request packet, node j has 3 important jobs to do.

1. Store requester node address: Because TPSN tree structure is directed and only

the children know their parent. Therefore node j stores node i as requester node.

2. Store requester sent time: This is crucial for TPSN offset calculation and it will be

18

used when sending acknowledge packet to node i.

3. Replace requester sent time in the packet: To update intermediate node j’s clock,

a new TPSN packet must be prepared. Therefore, requester sent time information

is replaced with the node j’s sent time as TPSN requires.

When node k receives the forwarded packet, it is just a TPSN packet from node j.

So, node k replies the request with its time information. When node j receives the packet,

this packet can be used to update node j’s clock and so, node j updates it clock. However,

after updating the clock, node j replaces requester sent time information with the original

one, which is stored before forwarding the request and forwards acknowledge packet to

node i. With this packet, node i updates its clock correctly.

The assumption here is that TPSN does only use 4 timestamps to synchronize

the clock so the time passes on the parent node logically is not important. It is easy to

see that node j’s request forwarding and acknowledge waiting times can be considered

as node j’s internal process. With this way of thinking, what is done here is actually

nothing different than TPSN.

This operation can be done for all nodes but nodes with low level will be too busy

for synchronization in that case, especially the root. That might reduce precision because

they cannot answer synchronization requests when doing another chain synchronization.

It is possible to do chain synchronization for all request by implementation but that is not

acceptable because it will also increase message traffic drastically. Therefore, a simple

solution may prevent this problem.

If a node is in chain synchronization and cannot answer child node’s chain syn-

chronization request, then it can reply request just like in TPSN. No chain request is

required. TPSN like behaviour is kept here when an intermediate node is busy with

chain synchronization. As another exception, if a node has just synchronized it’s time,

then there is no reason to forward the packet. It can just break the chain and reply the

request immediately. Such decisions will absolutely decrease message traffic.

The chain synchronization here is actually a multi-hop TPSN with extra break

decisions are added. That means, when a node i is being synchronized, it may do dif-

19

ferent count of hops for the synchronization and this depends to its parent’s state as

described above. That is how chain synchronization increases the precision without

increasing message traffic significantly. The exception here is the inter cluster synchro-

nization. That synchronization must be done between cluster roots whenever possible

and no extra chain break conditions should done during the inter cluster synchronization.

Initially, this chain synchronization was suggested for inter cluster synchroniza-

tion between cluster roots as Section 3.1.2 describes however, because of the fact that no

different synchronization algorithms are used inside the clusters, which is possible by

the way, this enhancement can be used with those break conditions in the cluster only

synchronizations to improve inside cluster synchronization. The simulation results can

be seen in Section 4.2.

3.3. Adaptive Synchronization Interval

In most cases, a clock difference up to some value is acceptable. If such a value

is available or predictable, than there is a good option to use. Some nodes have bigger

drifts and some nodes have smaller. This can also be changed after initialization of the

network. So, it is not an optimized solution to use same intervals for all the nodes and

initializing interval at the beginning. Gradually increasing or decreasing the interval

using the last synchronization results may give better results. Small steps such as 1% is

reasonable. After some time, there will be a network which is optimized for message

load. It is obvious that, if the expected value for clock difference is kept small, than it

will increase the message count. So, expected or the acceptable clock difference should

be carefully selected. Algorithm in Figure 3.10 shows how adaptive synchronization

works. As an exception, an allowed maximum change in interval value can be used such

as 20%. So, the adaptive interval change will not go below 80% or over 120%.

The goal here is balancing message traffic and getting more precise results.

Therefore, if a node does not have a high drift rate, there is no reason to synchronize

it at same frequency with a high drift rated node. With selecting an adaptive synchro-

nization interval, the message traffic can be reduced while increasing the precision.

20

input : currentInterval, currentClockO f f set, expectedClockO f f set where
currentInterval ≥ 0, currentClockO f f set ≥ 0, expectedClockO f f set ≥ 0.

candinateNodeLevel = parentNodeLevel +1;
if currentClockO f f set < expectedClockO f f set then

currentInterval = currentInterval ∗ (101/100);
else

if currentClockO f f set > expectedClockO f f set then
currentInterval = currentInterval ∗ (99/100);

else
// No change in currentInterval is required.

end
end

Figure 3.10. Algorithm To Adjust Synchronization Interval

3.3.1. Runtime or Boottime

It is possible to set different synchronization intervals during boottime by analyz-

ing clock drift of the node. This might reduce the message traffic if handled correctly but

it is not guaranteed to improve precision all the time. Because clock drift is not fixed. It

depends on the environment and might be changed during node’s life (Ganeriwal, et al.

2005b). Therefore, updating the interval during runtime with tiny steps will give the best

results.

21

CHAPTER 4

SIMULATION

Time synchronization is an important service of wireless sensor networks. As

proposed here, researchers have already proposed some other time synchronization al-

gorithms and existing time synchronization algorithms often need to be adapted. Soft-

ware simulation is a valid and quick way to evaluate these algorithms before using them

(Chao-Nong, et al. 2006). In this chapter, information is given about the custom wire-

less network simulation for TPSN in Section 4.1 and the ns2 implementation to test the

enhanced time synchronization algorithm in Section 4.2.

4.1. Simulation Using Posix Threads

At first, a simple simulation environment is implemented using threads for each

node. The idea behind this is understanding the behaviour of TPSN and implement-

ing the protocol simply before migrating the enhancements described in Chapter 3 and

applying some modifications over it to discover the effects of the parameters.

What is needed initially is a clock drifting simulation. That means, a way is re-

quired to create a clock drift for nodes. In order to achieve this, counters are used as node

clocks and created a global thread to update counters. This global thread should increase

some counters more than the others. In order to create a drift, uniform distribution is

used. In the final simulation results, which is done in ns2 described in Section 4.2, more

suitable distributions are used as required. This simulation is actually done to get basic

ideas about the time synchronization.

The global thread first resets all the clocks to 0 then increases counters for each

node. It also increases counters again with a simple way (by creating a random drift rate)

to create a drift. There is also a wrap point, which can be changed as required. Wrap

point can be changed if the clock counter is 16 bit, 32 bit or any other.

22

For each node, a thread is used to handle the implementation of the node. This

thread waits for TPSN messages and replies to them as TPSN requires. IPC message

queue routines are used to send/receive messages among threads. Then TPSN behaviour

is experimented and the enhancements over it on this new simulator to understand how it

synchronizes the network. The source code is available in Appendix A. No other details

are given here because results are needed from a well known simulator to show our

enhancements effects.

4.2. Simulation Using ns2

In order to analyze enhancements done over TPSN, a simulation of a wireless

sensor network with 50 nodes is prepared using ns2 (v2.31) simulator. All nodes are lo-

cated in a 1000m x 1000m area randomly using uniform distribution. To generate clock

drift for nodes, normal distribution is used with parameters µ=1 and σ2=0.1. Simula-

tion duration is 10000s and periodic interval is 100s. This will be used as a reference

result before synchronization is done. Figure 4.1 shows drifts of the nodes when no

synchronization is done. The divergence of the clocks here is obvious.

Figure 4.1. Clock Drifts Of Nodes

23

4.2.1. Reference TPSN Results

In this phase, TPSN is directly applied to the network. At first, level discovery

phase is run. In Figure 4.2, the structure after level discovery phase can be seen. There

are 14 levels in this network. Each row represents the level in TPSN protocol not the

physical location of the node.

Figure 4.2. TPSN Spanning Tree

Figure 4.3 shows how long it takes to build spanning tree. This part of the al-

gorithm is not changed except dynamic balancing enhancements described in Section

3.1.1. So, this figure shows the time complexity of reference TPSN to build a spanning

24

tree.

Figure 4.3. Spanning Tree Construction Time With Level Discovery

At most, 30ms is required for a node to be initialized in the spanning tree. That

is really a tiny value. Also, as shown in the Figure 4.2, it takes longer for higher level

nodes to be initialized as expected. Because, they wait their parent nodes to set their

levels and sent level discovery packet. After getting a level discovery packet, each node

waits around 10us to avoid collisions. So, it is possible to say that, it takes 30ms to build

a TPSN spanning tree.

Figure 4.4. Spanning Tree Construction Time(Init) With Level Request

Another time complexity measurement is measuring the time of adding a new

node to the network (Bettstetter and König 2002). To simulate this, only the root node is

25

set and level initialization phase is skipped. That means each node will now send level

request packet. Figure 4.4 shows the initialization time for each node requesting level.

Figure 4.5. Spanning Tree Construction Time(Join) With Level Request

It is clear that level requesting takes less time because it waits just a reply packet

from one-hop neighbour. So, it requires less time to initialize new level. However, to

start a level request, implementation should wait for a while to be sure, which makes

level request initialization very longer. This wait time is included in the Figure 4.5

which nodes use 100s wait time and adaptive synchronization interval enhancement is

enabled, which is described in Section 3.3. The reason seeing join times up to 400s is,

each node waits their parent to join the network. Therefore, more than one request might

be required to join the network.

After spanning tree is constructed, it is now possible to synchronize the network

using reference TPSN behaviour. Figure 4.6 shows the results of TPSN applied with no

change using a sync interval of 100s. The improvement in synchronization can be seen

easily. However, there is still a considerable clock difference. Decreasing the interval

will improve the synchronization but it will also increase the message load of the system.

Figure 4.7 shows the clock difference on each node. Form now on, this type

of figure will be used for the enhancement results. Because, as shown in Figure 4.6, it

seems completely synchronized, which is not totally true as Figure 4.7 shows. Table B.1

is available in appendices in order to see all the gathered data for the results of reference

TPSN implementation.

26

Figure 4.6. Clock Drifts Of Nodes (Reference TPSN)

In addition to time complexity, results are available after measuring message

complexity of reference TPSN. Figure 4.8 shows the messages sent/received in order to

synchronize the network. As seen from the figure, node 29 is highly loaded and sent/re-

ceived counts are not balanced well in the network. The enhancements should get more

balanced results and decrease message complexity while increasing clock precision.

Figure 4.7. Clock Difference Of Nodes (Reference TPSN)

27

4.2.2. Enhancement Results

In this part, the enhancements described in Chapter 3 are applied to the simu-

lation and gathered the results. In short, it is observed that all the enhancements made

positive difference in synchronization results and provided higher precision in synchro-

nization.

Figure 4.8. Clock Difference Of Nodes (Reference TPSN)

4.2.2.1. Clustering

Using max level of depth value as 4, clustered spanning tree as shown in Fig-

ure 3.1 becomes available. The synchronization interval is kept at 100s however, inter-

cluster synchronization uses two times longer interval, which is 2 ∗ 100s. Figure 4.9

shows the results for clustering enhancement.

There is no change in synchronization inside a cluster. They continue to use

pure TPSN synchronization method inside. However, between cluster roots, the chain

synchronization method is used which is described in Section 3.2 with a longer interval

(200s). By using chain synchronization between cluster roots, time precision of cluster

roots is increased directly and other nodes indirectly.

28

Figure 4.9. Clock Difference Of Nodes (Clustering)

As expected, synchronization between cluster roots increased the precision and

decreased total clock difference. As TPSN causes bigger clock differences at higher

levels, dividing the network into clusters and synchronizing the cluster heads causes

cluster intermediate nodes to have a better synchronized clocks. However, as Figure 4.9

shows, there are still some problems with the higher level nodes in the clusters such as

12 and 17.

Figure 4.10. Message Complexity (Clustered TPSN)

If the messages required are analysed, it is seen that the total messages sent/re-

29

ceived are decreased. That’s very important because the precision is increased here by

decreasing message count as shown in Figure 4.10. The decrease is caused by the new

synchronization interval of cluster roots, which is two times longer. The improvement

can easily be seen for nodes such as 0, 5 or 9 on the Figure 4.8 and 4.10.

At first, using another path among cluster roots had been preferred however,

after seeing the effect of this method, it is decided to use existing tree and not to increase

implementation complexity. As shown in Figures 5.1 and 5.2, the clock offset difference

and message count are both decreased. This might not be the case all the time but such an

improvement is expected. Because, although message count is increased to synchronize

cluster roots, the interval is decreased to synchronize. Detailed results are available in

appendices at Table B.2

Simulation results of dynamic balancing enhancements introduced in sections

3.1.1.1 and 3.1.1.2 will be explained in sections 4.2.2.4 and 4.2.2.5.

4.2.2.2. Chain Synchronization

In clustering enhancement, pure TPSN is kept running inside the clusters. In this

enhancement, chain synchronization is used inside clusters with some break conditions

as described in Section 3.2 without disabling clustering described in Section 4.2.2.1,

Figure 4.11. Clock Difference Of Nodes (Chained TPSN)

30

As Figure 4.11 shows, there is a better synchronization among nodes with a

small message count increase. This message overhead again is expected because, in this

enhancement, chain synchronization is done for all the nodes when available. Results

for nodes, such as 12, show the effect of the enhancement.

As shown in Figures 5.1 and 5.2, less messages are used to have better syn-

chronization however the number of messages required are increased over clustering

enhancement. Figure 4.12 shows message count of each node.

Figure 4.12. Message Complexity (Chain Synchronization)

Because of the fact that chain synchronization requires more messages, such an

increase is expected in the message complexity results. Having this little increase in

precision, this enhancement may not be suitable all the time but it can be used where

higher precision is required with a little message count increase. As shown in Figure

4.12, the node 29 is now loaded more. These message counts should be balanced while

not decreasing the precision. Table B.3 at appendices shows all the data gathered from

ns2.

31

4.2.2.3. Adaptive Synchronization Interval

If the nodes had fixed clock drift, then there would not be any need for such

an enhancement. However, that is not the case. Clock drifts can be changed after a

while. Also, it can be very costly to set interval values for each nodes individually at the

beginning. Therefore, this enhancement might be a good synchronization optimizer.

As described in Section 3.3, it changes synchronization interval in small steps

(1%) until a limit value is reached. In this simulation, an interval change limit is not

used but clock difference allowed maximum value is used as 1/10 of the synchronization

interval. So, a 10s clock difference is expected using this enhancement.

Figure 4.13. Adaptive Synchronization Interval Change

Figure 4.13 shows how synchronization intervals are changed to meet the off-

set requirements. For instance, it can be seen that node 9 and 29 has lower drift rates

however, nodes 17 and 43 has higher drift rates.

This enhancement is here to balance message traffic to reduce message count if

possible. So, the enhancement is enabled in the implementation without disabling the

others and the results are shown in Figures 5.1 and 5.2.

The goal here is reducing the message traffic which is done perfectly. However,

interestingly the precision is increased again. This might be possible after selecting a

good expected clock difference value for adaptive synchronization. This parameter is

very important to make adaptive synchronization interval work properly.

32

Figure 4.14. Clock Difference Of Nodes (Adaptive Synchronization Interval)

As Figure 4.14 shows, best clock difference results are achieved now and in

total, minimum number of messages are used. Figure 4.15 shows number of messages

sent/received for each node and the decrease can easily be seen in this figure. For the

nodes the interval is increased, the messages are decreased. However, for the nodes the

interval is decreased, the messages are increased as seen from the figures.

Figure 4.15. Message Complexity (Adaptive Synchronization)

Although, the results are very good here, a balanced message count for nodes

is still not available. Following enhancements should fix this. Table B.4 in appendices

33

shows the details of the results.

4.2.2.4. Balanced Children Count

Balancing is here mainly for dense network protection. The effects of this en-

hancement over dense networks can be seen in Section 3.1.1.1. However, to see the

effects on the reference network, 4 is used as maximum child count on spanning tree

shown in Figure 4.2 so this new spanning tree is constructed as shown in Figure 3.6.

After applying this enhancements, node 29 has less children now.

Figure 4.16. Clock Difference Of Nodes (Balanced Children)

This will reduce the synchronization request load on node 29 so it will reduce

message complexity on that node. However, nodes disconnected from 29 connect to

other nodes so the message load is increased on new parents. This balances message

count on nodes. For instance, node 43 is disconnected from node 29 and connected to

node 26. As shown in Figure 4.17, node 26 sent and received more messages than before

but node 29 has less.

There is no important decrease or increase in the clock difference as shown in

Figure 4.16. However, some individual nodes has higher clock difference now such as

node 43. The reason must be increased level of that node.

In Figures 5.1 and 5.2, this enhancement reduces total number of messages sen-

34

Figure 4.17. Message Complexity (Balanced Children)

t/received and the standard deviation is now less than the reference. Although the preci-

sion of clock difference is affected a bit from this situation, it is still relatively good.

4.2.2.5. Balanced Cluster Node Count

Balancing cluster node count enhancement can avoid big cluster node count dif-

ferences and this should decrease the message load of the network as well. If 12 is used

as maximum node count in a cluster and all other enhancements are not disabled, Figure

3.8 shows the spanning tree after using this dynamic clustering algorithm. The balanc-

ing algorithm is rather primitive however, it really improves the balance of the clustering.

So, complex algorithms may not be needed to get better results all the time.

Figure 4.18 shows the clock difference results of the simulation. Average value

is the worst among all enhancements (still far better than reference TPSN) however,

standard deviation of clock difference is the minimum among all of other enhancements.

That means, the clocks become very close to each other with this enhancement.

For message complexity, standard deviation is again minimum as clock differ-

ence. Figure 4.19 shows the results. Having minimum standard deviation in message

counts means that the most balanced network for message complexity is achieved.

35

Figure 4.18. Clock Difference Of Nodes (Balanced Cluster)

As Figures 5.1 and 5.2 show, balancing cluster node count work well but results

in losing some clock difference precision here. This may usually be acceptable because

with such enhancements, it is possible to keep the network longer with all the nodes

running.

Figure 4.19. Message Complexity (Balanced Cluster)

36

CHAPTER 5

CONCLUSION

Although TPSN produces a good synchronization in the WSN, the improvement

methods given here are providing reasonable precision improvement with low message

overhead. Figures 5.1 and 5.2 shows the improvements on the synchronization of the

methods given here. Individual results mean that each enhancement is enabled while all

the others are disabled. Cumulative results show the results where each enhancement is

enabled without disabling the previous enhancements in order.

Figure 5.1. Individual Results Of The Enhancements

First improvement is making network hierarchy clustered and doing chain syn-

37

chronization between cluster roots. As seen in the Figures 5.1 and 5.2, both average

clock difference and the standard deviation are decreased and message traffic is not in-

creased. Using longer intervals between cluster roots is the key here to reduce message

count.

Figure 5.2. Cumulative Results Of The Enhancements

Second enhancement is applying chain synchronization to all nodes. In this

method, all nodes try to chain synchronize at first. However, it might not be possible

to do it all the time so not continuing the chain is more convenient. If that is the case,

parent node replies to the request as similar to what reference TPSN does. Now, the

precision of synchronization is improved again however there is a message overhead

onto clustered TPSN. This enhancement introduces some break conditions to stop chain

synchronization on any intermediate node to reduce huge message overhead of using

multi-hop synchronization without interfering the precision too much.

Last improvement is a bit tidying up method to remove extra message overhead.

38

However, it shows that it also enhances the synchronization results. The reason behind

this might be balanced message traffic. Adaptive interval offset parameter is absolutely

crucial here. Any improper value given can make network traffic down or synchroniza-

tion bad.

In addition to those three enhancements to improve synchronization, there are

two other enhancements to make more balanced spanning tree and clusters. First en-

hancement limits the children of a node can have so this distributes message overhead

of the nodes which have many children especially in dense networks. Although this en-

hancement affects clock difference a bit, it optimizes message load of the nodes. Second

enhancement uses some primitive but effective conditions to join nodes to or disconnect

nodes from a cluster. Applying this enhancement produces the best balanced message

traffic among all but it cannot be said for the clock difference.

Adaptive synchronization seems the most effective method among all those en-

hancements especially used with clustering. It has good results individually as well.

However, chain synchronization itself increases message count too much so practically

cannot be used without clustering. Also, clustering itself makes an important difference

in the precision without increasing message count. Enabling all these there enhance-

ments at the same time gives the best result in the simulation. That means they all work

properly and there is no conflict among them. On the other hand, balancing enhance-

ments seems not mature enough and they can be improved.

In conclusion, all the methods above provides significant improvements onto

TPSN except balancing enhancements. However, balancing enhancements may be cru-

cial when the nodes are getting closer to each other.

39

REFERENCES

Bettstetter, C. and S. König. 2002. On the message and time complexity of a distributed

mobility-adaptive clustering algorithm in wireless ad hoc networks. In Proceed-

ings of the 4th european wireless. Florence, Italy.

Chao-Nong, Xu, Zhao Lei, Xu Yong-Jun, and Li Xiao-Wei. 2006. Simsync: A time

synchronization simulator for sensor networks. Acta Automatica Sinica 32(6):

1008 – 1014.

Chen, Shujuan, Adam Dunkels, Fredrik Österlind, Thiemo Voigt, and Mikael Johans-

son. 2007. Time synchronization for predictable and secure data collection in

wireless sensor networks. In Proceedings of the sixth annual mediterranean ad

hoc networking workshop (med-hoc-net 2007). Corfu, Greece.

Elson, Jeremy, Lewis Girod, and Deborah Estrin. 2002. Fine-grained network time

synchronization using reference broadcasts. In Osdi.

Ganeriwal, Saurabh, Srdjan Capkun, Chih-Chieh Han, and Mani B. Srivastava. 2005a.

Secure time synchronization service for sensor networks. In Workshop on wire-

less security, ed. Markus Jakobsson and Radha Poovendran, 97–106. ACM.

Ganeriwal, Saurabh, Deepak Ganesan, Hohyun Shim, Vlasios Tsiatsis, and Mani B. Sri-

vastava. 2005b. Estimating clock uncertainty for efficient duty-cycling in sensor

networks. In Sensys, ed. Jason Redi, Hari Balakrishnan, and Feng Zhao, 130–

141. ACM.

Ganeriwal, Saurabh, Ram Kumar, and Mani B. Srivastava. 2003. Timing-sync protocol

for sensor networks. In Sensys, ed. Ian F. Akyildiz, Deborah Estrin, David E.

Culler, and Mani B. Srivastava, 138–149. ACM.

Hu, An-Swol and Sergio D. Servetto. 2005. On the scalability of cooperative time syn-

chronization in pulse-connected networks. CoRR abs/cs/0503031. Informal pub-

lication.

40

Li, Qun and Daniela Rus. 2006. Global clock synchronization in sensor networks. IEEE

Trans. Computers 55(2):214–226.

Ping, Su. 2003. Delay measurement time synchronization for wireless sensor networks.

Tech. Rep., Intel Research.

Saravanos, Yanos. 2006. Energy-aware time synchronization in wireless sensor net-

works. University of North Texas, thesis of MS.

Simeone, O. and U. Spagnolini. 2007. Distributed time synchronization in wireless

sensor networks with coupled discrete-time oscillators. EURASIP Journal on

Wireless Communications and Networking 2007:57054.

Sundararaman, Bharath, Ugo Buy, and Ajay D. Kshemkalyani. 2005. Clock synchro-

nization for wireless sensor networks: a survey. Ad Hoc Networks 3(3):281–323.

Tjoa, R., K.L. Chee, P.K. Sivaprasad, S.V. Rao, and J.G. Lim. 2004. Clock drift re-

duction for relative time slot tdma-based sensor networks. Personal, Indoor and

Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE International

Symposium on 2:1042– 1047.

41

APPENDIX A

SIMULATION USING POSIX THREADS (SOURCE

CODE)

main.c

#include <pthread.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "message_interface.h"

//#define DYNAMIC_SYNC_INTERVAL

//#define TRACE_CLOCK_CHANGE

#ifdef TRACE_CLOCK_CHANGE

#define TRACE_CLOCK_CHANGE_INTERVAL 10000

#endif

#define TRACE_LEVEL_DISCOVERY_PHASE

#define NUMBER_OF_NODES 10

#define MAX_DEPTH NUMBER_OF_NODES

#define LEVEL_REQUEST_TIMEOUT (NUMBER_OF_NODES * 200)

#define LEVEL_ANSWER_TIMEOUT 1000

#define PACKET_PREPARATION_DELAY 5

unsigned int clocks[NUMBER_OF_NODES];

#define WRAP_POINT ((unsigned int) -1)

typedef enum

{

INITIALISING,

REQUESTING_LEVEL,

READY,

SYNCING,

END

} node_state_type;

int estimatedSourceTimeOffset(unsigned int Ljt4, unsigned int Lit2, unsigned int Lit7, unsigned int Ljt6)

{

unsigned int offset = 0;

while(Ljt6 < Ljt4 || Lit7 < Lit2)

{

if(Ljt6 < Ljt4)

{

offset += WRAP_POINT - Ljt4;

}

else

{

offset += WRAP_POINT - Lit2;

}

Ljt4 = (offset + Ljt4) % WRAP_POINT;

Lit2 = (offset + Lit2) % WRAP_POINT;

Lit7 = (offset + Lit7) % WRAP_POINT;

Ljt6 = (offset + Ljt6) % WRAP_POINT;

}

return (((int)(Ljt4 - Lit2) - (int)(Lit7 - Ljt6))) / 2;

}

void *clockTicker(void *param)

{

unsigned int ticks = 0;

unsigned int drift[NUMBER_OF_NODES];

int i;

for (i = 0; i < NUMBER_OF_NODES; ++i)

42

{

clocks[i] = 0;

drift[i] = 5 + (rand() % 10);

}

for (;;)

{

ticks++;

for (i = 0; i < NUMBER_OF_NODES; ++i)

{

clocks[i] = (clocks[i] + 1) % WRAP_POINT;

if(0 == ticks % drift[i])

{

clocks[i]++;

}

}

#ifdef TRACE_CLOCK_CHANGE

if(0 == ticks % TRACE_CLOCK_CHANGE_INTERVAL)

{

for (i = 0; i < NUMBER_OF_NODES - 1; ++i)

{

printf("%u,",clocks[i]);

}

printf("%u\n", clocks[NUMBER_OF_NODES - 1]);

}

#endif

my_sleep(1);

}

return 0;

}

void *nodeFunction(void *param)

{

int node_id = (int) param;

int my_parent;

int my_level;

int my_state;

if(0 == node_id) // Root node

{

my_msg_data_t msg_data;

my_parent = 0;

my_level = 0;

my_state = READY;

// Value has our level which is 0

msg_data.value = my_level;

#ifdef TRACE_LEVEL_DISCOVERY_PHASE

printf("%d: Sending LEVEL_DISCOVERY_PACKET with level %d\n", node_id, my_level);

#endif

Send_Message(0, -1, msg_data, LEVEL_DISCOVERY_PACKET);

}

else

{

// -1 means uninitialised

my_parent = -1;

my_level = -1;

my_state = INITIALISING;

}

// Level Request Timeout

int level_request_time = 0;

int next_sync_time = 1000;

int msg_timeout = 50;

int interval = 10 * msg_timeout;

for(;;)

{

my_msg_t msg;

msg = Receive_Message_Timeout(node_id, msg_timeout);

if(INITIALISING == my_state || REQUESTING_LEVEL == my_state)

{

if(0 < my_level)

{

if(LEVEL_ANSWER_TIMEOUT < clocks[node_id] - level_request_time)

{

// Waited enough. Set state to Ready. Ignore other LEVEL_ANSWER_PACKETs

#ifdef TRACE_LEVEL_DISCOVERY_PHASE

printf("%d: Time:%d, Requested and setting level to %d - parent %d\n", node_id, clocks[node_id], my_level, my_parent);

#endif

my_state = READY;

}

}

else

{

if(LEVEL_REQUEST_TIMEOUT < clocks[node_id] - level_request_time)

{

// No level has been set. Request level

43

my_msg_data_t msg_data;

level_request_time = clocks[node_id];

#ifdef TRACE_LEVEL_DISCOVERY_PHASE

printf("%d: No level has been set. Sending LEVEL_REQUEST_PACKET\n", node_id);

#endif

my_state = REQUESTING_LEVEL;

Send_Message(node_id, -1, msg_data, LEVEL_REQUEST_PACKET);

}

}

}

else if(clocks[node_id] > next_sync_time)

{

int start_time = ((node_id) * interval) % WRAP_POINT;

if(clocks[node_id] > start_time)

{

if(0 != node_id)

{

// Every node except root will synchronise itself with its parent periodically

if(SYNCING == my_state)

{

// Timeouted. Reset

my_state = READY;

}

if(READY == my_state)

{

my_msg_data_t msg_data;

my_state = SYNCING;

msg_data.value = 0;

msg_data.s_sent_ts = clocks[node_id];

Send_Message(node_id, my_parent, msg_data, SYNC_PULSE_PACKET);

next_sync_time = clocks[node_id] + interval;

while(WRAP_POINT < next_sync_time)

{

next_sync_time -= WRAP_POINT;

}

}

}

}

}

switch (msg.msg_type)

{

case LEVEL_DISCOVERY_PACKET:

if(INITIALISING == my_state)

{

int level = msg.data.value + 1;

if(0 < level && 0 > my_level)

{

my_msg_data_t msg_data;

#ifdef TRACE_LEVEL_DISCOVERY_PHASE

printf("%d: Time:%d, Setting level to %d - parent %d\n", node_id, clocks[node_id], level, msg.source);

#endif

my_level = level;

my_parent = msg.source;

my_state = READY;

my_sleep(1000 * (rand() % NUMBER_OF_NODES));

msg_data.value = my_level;

if(my_level < MAX_DEPTH)

{

#ifdef TRACE_LEVEL_DISCOVERY_PHASE

printf("%d: Sending LEVEL_DISCOVERY_PACKET with level %d\n", node_id, my_level);

#endif

Send_Message(node_id, -1, msg_data, LEVEL_DISCOVERY_PACKET);

}

}

}

break;

case SYNC_ACK_PACKET:

if(my_state == SYNCING)

{

unsigned int clock = clocks[node_id];

int offset = estimatedSourceTimeOffset(msg.data.r_received_ts, msg.data.s_sent_ts, clock, msg.data.r_sent_ts);

unsigned int estimated_time = (clock + offset) % WRAP_POINT;

#ifdef DYNAMIC_SYNC_INTERVAL

int desired_avg_drift = 50;

if(offset > desired_avg_drift || offset < -desired_avg_drift)

{

if(msg_timeout < interval)

{

44

interval -= msg_timeout;

}

}

else

{

interval += msg_timeout;

}

#endif

if(4 == node_id)

{

printf("%d: Offset: %d, Interval: %d\n", node_id, offset, interval);

}

clocks[node_id] = estimated_time;

my_state = READY;

}

break;

case SYNC_PULSE_PACKET:

if(INITIALISING != my_state && REQUESTING_LEVEL != my_state)

{

msg.data.r_received_ts = clocks[node_id];

my_sleep(PACKET_PREPARATION_DELAY);

msg.data.r_sent_ts = clocks[node_id];

Send_Message(node_id, msg.source, msg.data, SYNC_ACK_PACKET);

}

break;

case LEVEL_ANSWER_PACKET:

if(REQUESTING_LEVEL == my_state)

{

int level = msg.data.value + 1;

if(0 < level && level > my_level)

{

my_level = level;

my_parent = msg.source;

}

}

break;

case LEVEL_REQUEST_PACKET:

if(INITIALISING != my_state && REQUESTING_LEVEL != my_state)

{

my_msg_data_t msg_data;

msg_data.value = my_level;

Send_Message(node_id, msg.source, msg_data, LEVEL_ANSWER_PACKET);

}

break;

default:

break;

}

}

return 0;

}

int main()

{

pthread_attr_t thread_attr;

pthread_t threads[NUMBER_OF_NODES];

initialise_messaging(NUMBER_OF_NODES);

pthread_attr_init(&thread_attr);

pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);

pthread_create(&threads[0], &thread_attr, clockTicker, (void *)0);

int i;

for (i = 0; i < NUMBER_OF_NODES; ++i)

{

pthread_create(&threads[i], &thread_attr, nodeFunction, (void *)i);

}

for (i = 0; i < NUMBER_OF_NODES; i++)

{

pthread_join(threads[i] , NULL);

}

pthread_attr_destroy(&thread_attr);

return 0;

}

45

APPENDIX B

SIMULATION USING NS2 (SOURCE CODE)

The ns2 simulation uses 4 files. ns2 configurations are in con f ig.tcl, simulation

main file is t psn.tcl and protocol implementation is done in C and located in t psn ud p.h

and t psn ud p.cc.

config.tcl

CONFIG

set opt(chan) Channel/WirelessChannel

set opt(prop) Propagation/TwoRayGround

set opt(ll) LL

set opt(mac) Mac/802_11

set opt(ifq) Queue/DropTail/PriQueue

set opt(ifqlen) 50

set opt(netif) Phy/WirelessPhy

set opt(rp) DumbAgent

set opt(ant) Antenna/OmniAntenna

set opt(tr) /dev/null

set opt(namtr) /dev/null

#Number

set opt(nn) 50

set opt(x) 1000

set opt(y) 1000

set opt(stop) 10000

set opt(interval) 100

set clustered 0

set chain 0

set adaptive 0

set balanced_children 0

set balanced_cluster 0

if [expr $clustered > 0] {

puts "ENABLED: Clustering"

set opt(chain_sync) 1

set max_depth 4

} else {

puts "DISABLED: Clustering"

set opt(chain_sync) 1

set max_depth $opt(nn)

}

if [expr $chain > 0] {

puts "ENABLED: Chain Synchronization"

set opt(chain_sync_all) 1

set opt(chain_sync_interrupt) 1

} else {

puts "DISABLED: Chain Synchronization"

set opt(chain_sync_all) 0

set opt(chain_sync_interrupt) 0

}

if [expr $adaptive > 0] {

puts "ENABLED: Adaptive Synchronization"

set opt(keep_diff) [expr $opt(interval) / 10]

} else {

puts "DISABLED: Adaptive Synchronization"

set opt(keep_diff) 0

}

if [expr $balanced_children > 0] {

puts "ENABLED: Balancing Children Count"

set max_child 4

46

} else {

puts "DISABLED: Balancing Children Count"

set max_child 0

}

if [expr $balanced_cluster > 0] {

puts "ENABLED: Balancing Cluster Node Count"

set max_node_in_cluster 12

} else {

puts "DISABLED: Balancing Cluster Node Count"

set max_node_in_cluster 0

}

#--------------------

set opt(seed) 0

tpsn.tcl

source config.tcl

set ns_ [new Simulator on]

set chan [new $opt(chan)]

set prop [new $opt(prop)]

set tracefd [open $opt(tr) w]

$ns_ trace-all $tracefd

set namtracefd [open $opt(namtr) w]

$ns_ namtrace-all-wireless $namtracefd $opt(x) $opt(y)

set topo [new Topography]

$topo load_flatgrid $opt(x) $opt(y)

create-god [expr $opt(nn)]

#Define a ’finish’ procedure

proc finish {} {

global ns_ tracefd namtracefd opt

$ns_ flush-trace

close $namtracefd

close $tracefd

#exec nam $opt(namtr) &

exit 0

}

$ns_ node-config -adhocRouting $opt(rp) \

-llType $opt(ll) \

-macType $opt(mac) \

-ifqType $opt(ifq) \

-ifqLen $opt(ifqlen) \

-antType $opt(ant) \

-propInstance $prop \

-phyType $opt(netif) \

-channel $chan \

-topoInstance $topo \

-agentTrace ON \

-routerTrace OFF \

-macTrace ON \

-movementTrace OFF

Reset seed

expr srand(0)

for {set i 0} {$i < $opt(nn) } {incr i} {

set node_($i) [$ns_ node]

set dest_x [expr rand() * $opt(x)]

set dest_y [expr rand() * $opt(y)]

Put node randomdy in a place

$node_($i) set X_ $dest_x

$node_($i) set Y_ $dest_y

$node_($i) set Z_ 0

No move

$node_($i) random-motion 0

$ns_ at 0 "$node_($i) setdest $dest_x $dest_y 0"

set udp_($i) [new Agent/TPSNUDP]

$ns_ attach-agent $node_($i) $udp_($i)

$udp_($i) set state_ 0

$udp_($i) set interval_ $opt(interval)

$udp_($i) set keep_clock_difference_around_ $opt(keep_diff)

$udp_($i) set chain_sync_enabled_ $opt(chain_sync)

$udp_($i) set chain_sync_enabled_for_all_ $opt(chain_sync_all)

$udp_($i) set chain_sync_interrupt_enabled_ $opt(chain_sync_interrupt)

}

for {set i 0} {$i < [expr $opt(nn) - 1] } {incr i} {

for {set j [expr $i + 1]} {$j < $opt(nn) } {incr j} {

$ns_ connect $udp_($i) $udp_($j)

47

#puts "Connecting $i to $j"

#$ns_ at [expr 100 * ($i + 1)] "$udp_($i) sync"

}

}

for {set i 0} {$i < $opt(nn) } {incr i} {

$ns_ at [expr $opt(interval) * rand()] "$udp_($i) initialise"

}

for {set i 0} {$i < $opt(nn) } {incr i} {

$ns_ at [expr $opt(interval) * rand()] "$udp_($i) enable_child_sync_timer"

}

for {set i 0} {$i < $opt(nn)} {incr i} {

$ns_ at 0 "$udp_($i) setasalive"

$ns_ at 0 "$udp_($i) setmaxdepth$max_depth"

$ns_ at 0 "$udp_($i) setmaxchild$max_child"

$ns_ at 0 "$udp_($i) setmaxnodeincluster$max_node_in_cluster"

}

$ns_ at 0 "$udp_(0) setasroot"

for {set i 0} {$i < $opt(nn) } {incr i} {

$ns_ at [expr $opt(stop) - $opt(interval)] "$udp_($i) local_clock"

}

for {set i 0} {$i < $opt(nn) } {incr i} {

$ns_ at [expr $opt(stop) - $opt(interval)] "$udp_($i) time_complexity"

}

#Call the finish procedure

$ns_ at $opt(stop) "finish"

#Run the simulation

puts "Starting Simulation..."

$ns_ run

tpsn udp.h

#ifndef NS_TPSN_UDP_H

#define NS_TPSN_UDP_H

#include "udp.h"

enum messageType

{

INVALID_PACKET,

LEVEL_DISCOVERY_PACKET,

LEVEL_REQUEST_PACKET,

LEVEL_ANSWER_PACKET,

SYNC_PULSE_PACKET,

SYNC_GROUP_PULSE_PACKET,

SYNC_ACK_PACKET,

SYNC_GROUP_ACK_PACKET,

SYNC_REQUEST_PACKET,

SYNC_ACK_DISCONNECT_PACKET,

MESSAGE_TYPE_SIZE, // Must be at the and

};

enum nodeState

{

INITIALISING,

REQUESTING_LEVEL,

READY,

SYNCING,

CHAIN_SYNCING

};

struct ChildNode

{

int node_id;

bool alive;

int descendant_count;

ChildNode(): node_id(0), alive(false)

{

}

};

class TpsnUdpAgent;

class TpsnSyncTimer : public TimerHandler

{

public:

TpsnSyncTimer(TpsnUdpAgent *agent);

TpsnSyncTimer();

virtual ~TpsnSyncTimer();

void setAgent(TpsnUdpAgent *agent);

protected:

virtual void expire(Event *event);

TpsnUdpAgent *m_agent;

private:

48

};

class TpsnUdpAgent : public UdpAgent

{

public:

TpsnUdpAgent();

TpsnUdpAgent(packet_t);

virtual void sendmsg(int nbytes, AppData* data, nsaddr_t daddr, const char *flags = 0);

virtual void recv(Packet* pckt, Handler* hndlr);

virtual int command(int argc, const char*const* argv);

void timeout(int);

protected:

static double estimatedSourceTimeOffset(double Ljt4, double Lit2,

double Lit7, double Ljt6);

double localClockCurrent();

double localClock(double global_clock);

void setOffset(double offset);

bool isMyChild(int child_node_id);

bool setAsMyChild(int child_node_id, int descendant_count = 0);

bool updateMyChild(int child_node_id, int descendant_count = 0);

bool removeFromMyChildren(int child_node_id);

int descendantCount();

bool disconnectNodeToFormNewCluster(int child_node_id);

bool connectNodeToCluster(int child_node_id);

nodeState m_state;

int m_level;

int m_group;

nsaddr_t m_parent;

nsaddr_t m_child_for_chain_synching;

double m_child_sent_ts_for_chain_synching;

double m_clock_offset;

double m_clock_drift_multiplier;

TpsnSyncTimer m_tpsn_sync_timer;

double m_interval;

double m_keep_clock_difference_around;

bool m_child_sync_timer;

int m_chain_sync_interval_count;

double m_last_sync_time;

int m_chain_sync_enabled;

int m_chain_sync_enabled_for_all;

int m_chain_sync_interrupt_enabled;

int m_received_message_count[MESSAGE_TYPE_SIZE];

int m_sent_message_count[MESSAGE_TYPE_SIZE];

int m_timeout_count;

int m_sync_fail_count;

double m_init_time;

double m_inited_time;

bool m_alive;

int m_max_depth;

int m_max_child;

int m_max_node_in_cluster;

int m_child_count;

ChildNode *m_child_list;

int m_root_wait_count;

int m_level_request_count;

};

struct TpsnData

{

TpsnData() :

type(INVALID_PACKET), level(-1), group(-1), sender(-1), s_sent_ts(-1), r_received_ts(-1),

r_sent_ts(-1), start_new_cluster(false), join_to_cluster(false)

{

}

messageType type;

int level;

int group;

int sender;

double s_sent_ts;

double r_received_ts;

double r_sent_ts;

int descendant_count;

bool start_new_cluster;

bool join_to_cluster;

};

#endif

tpsn udp.cc

#undef NDEBUG

#include "tpsn_udp.h"

#include "rtp.h"

#include "random.h"

#include "address.h"

#include "ip.h"

#include <stdio.h>

#include <string.h>

#include <unistd.h>

49

double rand_drift_multipier()

{

return (Random::normal(1, 0.1));

}

void TpsnUdpAgent::setOffset(double offset)

{

m_clock_offset += offset;

m_last_sync_time = localClockCurrent();

if (m_keep_clock_difference_around > 0)

{

double ratio = m_keep_clock_difference_around / offset;

if (ratio < 0)

{

ratio = 0 - ratio;

}

if (ratio < 1)

{

ratio = 0.99; // 1% decrement

}

else if (ratio > 1)

{

ratio = 1.01; // 1% increment

}

else

{

ratio = 1;

}

//printf("%d: Trying to keep clock offset around %lf, Current: %lf\n", (int)addr(), m_keep_clock_difference_around, offset);

//printf("%d: Ratio: %lf\n", (int)addr(), ratio);

m_interval *= ratio;

//printf("%d: New interval: %lf\n", (int)addr(), m_interval);

}

}

static class TpsnUdpAgentClass: public TclClass

{

public:

TpsnUdpAgentClass() :

TclClass("Agent/TPSNUDP")

{

}

TclObject* create(int, const char*const*)

{

return (new TpsnUdpAgent());

}

} class_tpsn_udp_agent;

TpsnUdpAgent::TpsnUdpAgent() :

m_state(INITIALISING), m_level(-1), m_group(-1), m_parent(0),

m_child_for_chain_synching(-1), m_child_sent_ts_for_chain_synching(

-1), m_clock_offset(0), m_clock_drift_multiplier(

rand_drift_multipier()), m_interval(0),

m_keep_clock_difference_around(0), m_child_sync_timer(false),

m_chain_sync_interval_count(0), m_last_sync_time(

localClockCurrent()), m_chain_sync_enabled(0),

m_chain_sync_enabled_for_all(0), m_chain_sync_interrupt_enabled(0),

m_timeout_count(0), m_sync_fail_count(0), m_init_time(0),

m_inited_time(0), m_alive(false), m_max_depth(0), m_max_child(0),

m_max_node_in_cluster(0), m_child_count(0), m_child_list(0), m_root_wait_count(0), m_level_request_count(0)

{

bind("interval_", &m_interval);

bind("keep_clock_difference_around_", &m_keep_clock_difference_around);

bind("chain_sync_enabled_", &m_chain_sync_enabled);

bind("chain_sync_enabled_for_all_", &m_chain_sync_enabled_for_all);

bind("chain_sync_interrupt_enabled_", &m_chain_sync_interrupt_enabled);

for (int i = 0; i < MESSAGE_TYPE_SIZE; ++i)

{

m_received_message_count[i] = 0;

m_sent_message_count[i] = 0;

}

m_tpsn_sync_timer.setAgent(this);

}

TpsnUdpAgent::TpsnUdpAgent(packet_t type) :

UdpAgent(type), m_state(INITIALISING), m_level(-1), m_group(-1),

m_parent(0), m_child_for_chain_synching(-1),

m_child_sent_ts_for_chain_synching(-1), m_clock_offset(0),

m_clock_drift_multiplier(rand_drift_multipier()), m_interval(0),

m_keep_clock_difference_around(0), m_child_sync_timer(false),

m_chain_sync_interval_count(0), m_last_sync_time(

localClockCurrent()), m_chain_sync_enabled(0),

m_chain_sync_enabled_for_all(0), m_chain_sync_interrupt_enabled(0),

m_timeout_count(0), m_sync_fail_count(0), m_init_time(0),

m_inited_time(0), m_alive(false), m_max_depth(0), m_max_child(0),

m_max_node_in_cluster(0), m_child_count(0), m_child_list(0), m_root_wait_count(0), m_level_request_count(0)

{

bind("interval_", &m_interval);

50

bind("keep_clock_difference_around_", &m_keep_clock_difference_around);

bind("chain_sync_enabled_", &m_chain_sync_enabled);

bind("chain_sync_enabled_for_all_", &m_chain_sync_enabled_for_all);

bind("chain_sync_interrupt_enabled_", &m_chain_sync_interrupt_enabled);

for (int i = 0; i < MESSAGE_TYPE_SIZE; ++i)

{

m_received_message_count[i] = 0;

m_sent_message_count[i] = 0;

}

m_tpsn_sync_timer.setAgent(this);

}

TpsnSyncTimer::TpsnSyncTimer(TpsnUdpAgent *agent) :

TimerHandler()

{

m_agent = agent;

}

TpsnSyncTimer::TpsnSyncTimer()

{

m_agent = 0;

}

TpsnSyncTimer::~TpsnSyncTimer()

{

}

void TpsnSyncTimer::expire(Event *e)

{

m_agent->timeout(0);

}

void TpsnSyncTimer::setAgent(TpsnUdpAgent *agent)

{

m_agent = agent;

}

void TpsnUdpAgent::timeout(int x)

{

if (m_alive)

{

bool process = true;

if (m_level == 0)

{

if(m_group == 0)

{

process = false;

}

else if(m_root_wait_count++ % 2 == 0)

{

// Inter-Cluster Synchronization Is Low Priority

process = false;

}

}

if(process)

{

//printf("%02d: Timeout\n", (int)addr());

TpsnData tpsn_data;

PacketData* data;

++m_timeout_count;

switch (m_state)

{

case SYNCING:

case CHAIN_SYNCING:

// printf("%02d: Syncing Failed\n", (int)addr());

// Request new level

// Fall through

++m_sync_fail_count;

case INITIALISING:

m_state = REQUESTING_LEVEL;

// Fall through

case REQUESTING_LEVEL:

++m_level_request_count;

m_init_time = 0 - localClockCurrent();

//printf("%02d: Requesting level, time %lf\n", (int) addr(), localClockCurrent());

tpsn_data.type = LEVEL_REQUEST_PACKET;

m_level = -1;

m_group = -1;

data = new PacketData(sizeof(TpsnData));

memcpy((char*) data->data(), &tpsn_data, sizeof(TpsnData));

sendmsg(sizeof(TpsnData), data, IP_BROADCAST);

break;

case READY:

if (m_child_sync_timer)

{

//printf("%02d: Sending SYNC_PULSE_PACKET\n", (int)addr());

tpsn_data.level = m_level;

51

tpsn_data.group = m_group;

tpsn_data.sender = (int) addr();

tpsn_data.s_sent_ts = localClockCurrent();

tpsn_data.descendant_count = descendantCount();

if (m_chain_sync_enabled)

{

if (m_level == 0)

{

//Always do chain sync for inter-cluster

//tpsn_data.to_root = true;

m_state = CHAIN_SYNCING;

tpsn_data.type = SYNC_GROUP_PULSE_PACKET;

}

else if (m_chain_sync_enabled_for_all)

{

if (m_chain_sync_interrupt_enabled)

{

if (m_chain_sync_interval_count++ % m_level

== 0)

{

m_state = SYNCING;

tpsn_data.type = SYNC_PULSE_PACKET;

}

else

{

m_state = CHAIN_SYNCING;

tpsn_data.type = SYNC_GROUP_PULSE_PACKET;

}

}

else

{

m_state = CHAIN_SYNCING;

tpsn_data.type = SYNC_GROUP_PULSE_PACKET;

}

}

else

{

m_state = SYNCING;

tpsn_data.type = SYNC_PULSE_PACKET;

}

}

else

{

m_state = SYNCING;

tpsn_data.type = SYNC_PULSE_PACKET;

}

data = new PacketData(sizeof(TpsnData));

memcpy((char*) data->data(), &tpsn_data, sizeof(TpsnData));

sendmsg(sizeof(TpsnData), data, m_parent);

}

else

{

//nothing to do

}

break;

default:

break;

}

}

}

m_tpsn_sync_timer.resched(m_interval);

}

void TpsnUdpAgent::recv(Packet* pckt, Handler* hndlr)

{

if (m_alive)

{

TpsnData *tpsn_data = (TpsnData *) pckt->accessdata();

++m_received_message_count[tpsn_data->type];

/*

printf("Tpsn node received message\n");

printf("Type: %d\n", tpsn_data->type);

printf("level: %d\n", tpsn_data->level);

printf("Sender sent ts: %lf\n", tpsn_data->s_sent_ts);

printf("Receiver received ts: %lf\n", tpsn_data->r_received_ts);

printf("Receiver sent ts: %lf\n", tpsn_data->r_sent_ts);

*/

//if(m_state == READY)

{

if (tpsn_data->type == SYNC_GROUP_PULSE_PACKET || tpsn_data->type

== SYNC_PULSE_PACKET)

{

if (m_max_child > 0)

{

bool reply = false;

hdr_ip* ih = hdr_ip::access(pckt);

52

if (!isMyChild(ih->saddr()))

{

reply = setAsMyChild(ih->saddr(),

tpsn_data->descendant_count);

}

else

{

updateMyChild(ih->saddr(), tpsn_data->descendant_count);

reply = true;

}

if (!reply)

{

tpsn_data->r_received_ts = localClockCurrent();

hdr_ip* ih = hdr_ip::access(pckt);

tpsn_data->type = SYNC_ACK_DISCONNECT_PACKET;

PacketData* data = new PacketData(sizeof(TpsnData));

hdr_cmn* packet = hdr_cmn::access(pckt);

tpsn_data->r_sent_ts = localClock(NOW + packet->txtime());

memcpy((char*) data->data(), tpsn_data, sizeof(TpsnData));

sendmsg(sizeof(TpsnData), data, ih->saddr());

Packet::free(pckt);

return;

}

if (m_max_node_in_cluster > 0)

{

if (tpsn_data->sender == ih->saddr() && (int) addr() != 0)

{

if (m_group == tpsn_data->group)

{

tpsn_data->start_new_cluster

= disconnectNodeToFormNewCluster(

ih->saddr());

}

else

{

if (m_level < m_max_depth - 1)

{

tpsn_data->join_to_cluster

= connectNodeToCluster(ih->saddr());

}

}

}

}

}

}

else if (tpsn_data->type == SYNC_GROUP_ACK_PACKET || tpsn_data->type

== SYNC_ACK_PACKET)

{

if (m_max_node_in_cluster > 0)

{

if (tpsn_data->start_new_cluster)

{

//printf("Disconnecting\n");

//printf("%02d: Setting level (%d->%d), group (%d->%d)\n", (int)addr(), m_level, 0, m_group, tpsn_data->group + 1);

m_level = 0;

m_group = tpsn_data->group + 1;

tpsn_data->start_new_cluster = false;

}

if (tpsn_data->join_to_cluster)

{

//printf("Joining\n");

//printf("%02d: Setting level (%d->%d), group (%d->%d)\n", (int)addr(), m_level, tpsn_data->level + 1, m_group, tpsn_data->group);

m_level = tpsn_data->level + 1;

m_group = tpsn_data->group;

tpsn_data->join_to_cluster = false;

}

if (m_group == tpsn_data->group)

{

if (m_level != tpsn_data->level + 1)

{

if (tpsn_data->level + 1 < m_max_depth && m_level != 0)

{

m_level = tpsn_data->level + 1;

m_group = tpsn_data->group;

}

else

{

m_level = 0;

m_group = tpsn_data->group + 1;

}

}

}

53

else

{

if (m_group < tpsn_data->group)

{

m_level = tpsn_data->level + 1;

m_group = tpsn_data->group;

}

else

{

if (m_level != 0)

{

m_level = 0;

m_group = tpsn_data->group + 1;

}

}

}

}

}

}

/*

printf("m_clock_drift_multiplier: %lf\n", m_clock_drift_multiplier);

printf("Global clock : %lf\n", NOW);

printf("Local clock : %lf\n", localClockCurrent());

*/

switch (tpsn_data->type)

{

case SYNC_PULSE_PACKET:

if (INITIALISING != m_state && REQUESTING_LEVEL != m_state)

{

//printf("%02d: Received SYNC_PULSE_PACKET\n", (int)addr());

tpsn_data->r_received_ts = localClockCurrent();

hdr_ip* ih = hdr_ip::access(pckt);

tpsn_data->type = SYNC_ACK_PACKET;

tpsn_data->level = m_level;

tpsn_data->group = m_group;

PacketData* data = new PacketData(sizeof(TpsnData));

hdr_cmn* packet = hdr_cmn::access(pckt);

tpsn_data->r_sent_ts = localClock(NOW + packet->txtime());

memcpy((char*) data->data(), tpsn_data, sizeof(TpsnData));

sendmsg(sizeof(TpsnData), data, ih->saddr());

}

break;

case SYNC_GROUP_PULSE_PACKET:

if (READY == m_state)

{

const int divide_interval = m_level + 1;

if (m_level == 0 || ((localClockCurrent() - m_last_sync_time)

< (m_interval / divide_interval)))

{

tpsn_data->r_received_ts = localClockCurrent();

hdr_ip* ih = hdr_ip::access(pckt);

tpsn_data->type = SYNC_GROUP_ACK_PACKET;

tpsn_data->level = m_level;

tpsn_data->group = m_group;

PacketData* data = new PacketData(sizeof(TpsnData));

//printf("CHAIN ACK %d->%d\n", (int)addr(), (int)ih->saddr());

hdr_cmn* packet = hdr_cmn::access(pckt);

tpsn_data->r_sent_ts = localClock(NOW + packet->txtime());

memcpy((char*) data->data(), tpsn_data, sizeof(TpsnData));

sendmsg(sizeof(TpsnData), data, ih->saddr());

}

else

{

hdr_ip* ih = hdr_ip::access(pckt);

m_state = CHAIN_SYNCING;

m_child_for_chain_synching = ih->saddr();

m_child_sent_ts_for_chain_synching = tpsn_data->s_sent_ts;

tpsn_data->s_sent_ts = localClockCurrent();

//printf("CHAIN PULSE %d->%d\n", (int)addr(), m_parent);

tpsn_data->type = SYNC_GROUP_PULSE_PACKET;

tpsn_data->descendant_count = descendantCount();

tpsn_data->level = m_level;

tpsn_data->group = m_group;

PacketData* data = new PacketData(sizeof(TpsnData));

memcpy((char*) data->data(), tpsn_data, sizeof(TpsnData));

sendmsg(sizeof(TpsnData), data, m_parent);

m_tpsn_sync_timer.resched(m_interval);

54

}

}

else

{

// Do not timeout. At least return current clock (TPSN like behaviour)

tpsn_data->r_received_ts = localClockCurrent();

hdr_ip* ih = hdr_ip::access(pckt);

tpsn_data->type = SYNC_GROUP_ACK_PACKET;

tpsn_data->level = m_level;

tpsn_data->group = m_group;

PacketData* data = new PacketData(sizeof(TpsnData));

//printf("CHAIN ACK %d->%d\n", (int)addr(), (int)ih->saddr());

hdr_cmn* packet = hdr_cmn::access(pckt);

tpsn_data->r_sent_ts = localClock(NOW + packet->txtime());

memcpy((char*) data->data(), tpsn_data, sizeof(TpsnData));

sendmsg(sizeof(TpsnData), data, ih->saddr());

}

case LEVEL_DISCOVERY_PACKET:

//printf("%02d: Received LEVEL_DISCOVERY_PACKET\n", (int)addr());

if (INITIALISING == m_state)

{

//printf("%02d: Processing LEVEL_DISCOVERY_PACKET\n", (int)addr());

int level = tpsn_data->level + 1;

if (0 < level)

{

if(m_chain_sync_enabled) // Cluster

{

if (m_max_depth > level)

{

m_level = level;

m_group = tpsn_data->group;

}

else

{

// Start a new cluster

m_level = 0; // Be the root of new group

m_group = tpsn_data->group + 1;

}

}

else

{

m_level = level;

m_group = tpsn_data->group;

}

/*

printf("%02d: Setting level to: %d group to: %d\n",

(int)addr(), m_level, m_group);

*/

hdr_ip* ih = hdr_ip::access(pckt);

m_parent = ih->saddr();

m_state = READY;

m_init_time += localClockCurrent();

m_inited_time = localClockCurrent();

usleep(10 * (unsigned int) m_clock_drift_multiplier);

PacketData* data = new PacketData(sizeof(TpsnData));

tpsn_data->level = m_level;

tpsn_data->group = m_group;

tpsn_data->sender = (int) addr();

tpsn_data->type = LEVEL_DISCOVERY_PACKET;

memcpy((char*) data->data(), tpsn_data, sizeof(TpsnData));

sendmsg(sizeof(TpsnData), data, IP_BROADCAST);

}

}

break;

case LEVEL_REQUEST_PACKET:

if (INITIALISING != m_state && REQUESTING_LEVEL != m_state)

{

if (m_child_count < m_max_child || m_max_child == 0)

{

TpsnData tpsn_data;

tpsn_data.level = m_level;

tpsn_data.group = m_group;

tpsn_data.sender = (int) addr();

tpsn_data.type = LEVEL_ANSWER_PACKET;

PacketData* data = new PacketData(sizeof(TpsnData));

memcpy((char*) data->data(), &tpsn_data, sizeof(TpsnData));

55

hdr_ip* ih = hdr_ip::access(pckt);

sendmsg(sizeof(TpsnData), data, ih->saddr());

}

else

{

//printf("%02d: Too many children. Skipping request\n", (int)addr());

}

}

//printf("LEVEL_REQUEST_PACKET\n");

break;

case LEVEL_ANSWER_PACKET:

if (REQUESTING_LEVEL == m_state)

{

int level = tpsn_data->level + 1;

if ((m_level >= level - 1 && m_group >= tpsn_data->group)

|| (m_level == -1 && m_group == -1))

{

if (m_max_depth > level)

{

m_level = level;

m_group = tpsn_data->group;

}

else

{

// Start a new cluster

m_level = 0; // Be the root of new group

m_group = tpsn_data->group + 1;

}

hdr_ip* ih = hdr_ip::access(pckt);

m_parent = ih->saddr();

m_state = READY;

m_init_time += localClockCurrent();

m_inited_time = localClockCurrent();

/*

printf("%02d: Request: Setting level to: %d, group to: %d\n",

(int)addr(), m_level, m_group);

*/

}

else

{

/*

hdr_ip* ih = hdr_ip::access(pckt);

printf("%02d:INCOMPATIBLE ROOT: %d\n", (int)addr(), ih->saddr());

printf("m_level = %d\n", m_level);

printf("level = %d\n", level);

printf("m_group = %d\n", m_group);

printf("group = %d\n", tpsn_data->group);

*/

}

}

//printf("LEVEL_ANSWER_PACKET\n");

break;

case SYNC_ACK_PACKET:

//printf("%02d: Received SYNC_ACK_PACKET\n", (int)addr());

if (m_state == SYNCING)

{

//printf("Processing SYNC_ACK_PACKET\n");

double clock = localClockCurrent();

double offset = estimatedSourceTimeOffset(

tpsn_data->r_received_ts, tpsn_data->s_sent_ts, clock,

tpsn_data->r_sent_ts);

//printf("%02d: (%lf) Local time %lf\n", (int)addr(), m_clock_drift_multiplier, localClockCurrent());

//double estimated_time = (clock + offset);

//printf("Correcting time to %lf\n", estimated_time);

setOffset(offset);

//printf("%02d: [L:%02d G:%02d P:%02d] Corrected time %lf (Ref: %lf)\n", (int)addr(), m_level, m_group, (int)m_parent, localClockCurrent(), (NOW * m_clock_drift_multiplier));

m_state = READY;

}

break;

case SYNC_ACK_DISCONNECT_PACKET:

if (m_state == SYNCING || m_state == CHAIN_SYNCING)

{

double clock = localClockCurrent();

double offset = estimatedSourceTimeOffset(

tpsn_data->r_received_ts, tpsn_data->s_sent_ts, clock,

tpsn_data->r_sent_ts);

setOffset(offset);

if(m_state == CHAIN_SYNCING)

{

PacketData* data = new PacketData(sizeof(TpsnData));

if (tpsn_data->sender != (int) addr())

{

tpsn_data->s_sent_ts = m_child_sent_ts_for_chain_synching;

56

memcpy((char*) data->data(), tpsn_data, sizeof(TpsnData));

sendmsg(sizeof(TpsnData), data, m_child_for_chain_synching);

m_child_for_chain_synching = -1;

m_child_sent_ts_for_chain_synching = -1;

}

}

m_state = REQUESTING_LEVEL;

m_init_time = 0 - localClockCurrent();

TpsnData tpsn_data_request_level;

tpsn_data_request_level.type = LEVEL_REQUEST_PACKET;

PacketData *data = new PacketData(sizeof(TpsnData));

memcpy((char*) data->data(), &tpsn_data_request_level, sizeof(TpsnData));

sendmsg(sizeof(TpsnData), data, IP_BROADCAST);

m_tpsn_sync_timer.resched(m_interval);

}

break;

case SYNC_GROUP_ACK_PACKET:

//printf("%02d: Received SYNC_GROUP_ACK_PACKET\n", (int)addr());

if (m_state == CHAIN_SYNCING)

{

PacketData* data = new PacketData(sizeof(TpsnData));

//printf("Processing SYNC_GROUP_ACK_PACKET\n");

double clock = localClockCurrent();

double offset = estimatedSourceTimeOffset(

tpsn_data->r_received_ts, tpsn_data->s_sent_ts, clock,

tpsn_data->r_sent_ts);

setOffset(offset);

if (tpsn_data->sender != (int) addr())

{

tpsn_data->s_sent_ts = m_child_sent_ts_for_chain_synching;

/*

printf("CHAIN ACK %d->%d\n", (int)addr(),

m_child_for_chain_synching);

*/

memcpy((char*) data->data(), tpsn_data, sizeof(TpsnData));

sendmsg(sizeof(TpsnData), data, m_child_for_chain_synching);

m_child_for_chain_synching = -1;

m_child_sent_ts_for_chain_synching = -1;

}

m_state = READY;

}

break;

default:

break;

}

/*

hdr_cmn* packet = hdr_cmn::access(pckt);

printf("timestamp: %lf\n", packet->timestamp());

printf("tx_time: %lf\n", packet->txtime()); // send offset

printf("type: %d\n", packet->ptype());

*/

}

Packet::free(pckt);

}

void TpsnUdpAgent::sendmsg(int nbytes, AppData* data, nsaddr_t daddr,

const char *flags)

{

if (m_alive)

{

TpsnData *tpsn_data = (TpsnData *) (((PacketData*) data)->data());

++m_sent_message_count[tpsn_data->type];

if (m_max_node_in_cluster > 0)

{

if (tpsn_data->type == SYNC_GROUP_ACK_PACKET || tpsn_data->type

== SYNC_ACK_PACKET)

{

tpsn_data->group = m_group;

if ((int) addr() == 0)

{

tpsn_data->level = m_max_depth - 1;

}

else

{

tpsn_data->level = m_level;

}

}

}

57

//printf("Tpsn node sent message\n");

Packet *p;

int n;

assert(size_> 0);

n = nbytes / size_;

if (nbytes == -1)

{

printf("Error: sendmsg() for UDP should not be -1\n");

return;

}

// If they are sending data, then it must fit within a single packet.

if (data && nbytes > size_)

{

printf("Error: data greater than maximum UDP packet size\n");

return;

}

double local_time = Scheduler::instance().clock();

while (n-- > 0)

{

p = allocpkt();

hdr_cmn::access(p)->size() = size_;

hdr_rtp* rh = hdr_rtp::access(p);

rh->flags() = 0;

rh->seqno() = ++seqno_;

hdr_ip* ih = hdr_ip::access(p);

ih->daddr() = daddr;

hdr_cmn::access(p)->timestamp() = (u_int32_t) (SAMPLERATE

* local_time);

// add "beginning of talkspurt" labels (tcl/ex/test-rcvr.tcl)

if (flags && (0 == strcmp(flags, "NEW_BURST")))

rh->flags() |= RTP_M;

p->setdata(data);

target_->recv(p);

}

n = nbytes % size_;

if (n > 0)

{

p = allocpkt();

hdr_cmn::access(p)->size() = n;

hdr_rtp* rh = hdr_rtp::access(p);

rh->flags() = 0;

rh->seqno() = ++seqno_;

hdr_ip* ih = hdr_ip::access(p);

ih->daddr() = daddr;

hdr_cmn::access(p)->timestamp() = (u_int32_t) (SAMPLERATE

* local_time);

// add "beginning of talkspurt" labels (tcl/ex/test-rcvr.tcl)

if (flags && (0 == strcmp(flags, "NEW_BURST")))

rh->flags() |= RTP_M;

p->setdata(data);

target_->recv(p);

}

}

idle();

}

int TpsnUdpAgent::command(int argc, const char*const* argv)

{

//printf("Tpsn node running command: %s\n", argv[1]);

/*

if (argc == 2 && (strcmp(argv[1], "sync") == 0))

{

TpsnData tpsn_data;

m_state = SYNCING;

tpsn_data.type = SYNC_PULSE_PACKET;

tpsn_data.level = 0;

tpsn_data.s_sent_ts = localClockCurrent();

PacketData* data = new PacketData(sizeof(TpsnData));

memcpy((char*)data->data(), &tpsn_data, sizeof(TpsnData));

sendmsg(sizeof(TpsnData), data);

return (TCL_OK);

}

*/

if (argc == 2 && (strcmp(argv[1], "setasroot") == 0))

{

TpsnData tpsn_data;

m_state = READY;

m_level = 0;

m_group = 0;

tpsn_data.type = LEVEL_DISCOVERY_PACKET;

tpsn_data.level = m_max_depth - 1;

tpsn_data.group = 0; // Root node will be a cluster alone

58

tpsn_data.sender = (int) addr();

tpsn_data.s_sent_ts = localClockCurrent();

//printf("Using m_max_depth: %d\n", m_max_depth);

//printf("%02d: Init: Setting level to: %d\n", (int)addr(), m_level);

PacketData* data = new PacketData(sizeof(TpsnData));

memcpy((char*) data->data(), &tpsn_data, sizeof(TpsnData));

sendmsg(sizeof(TpsnData), data, IP_BROADCAST);

return (TCL_OK);

}

if (argc == 2 && (strcmp(argv[1], "initialise") == 0))

{

//printf("init\n");

//printf("Interval before: %lf\n", m_interval);

m_interval /= m_clock_drift_multiplier; // Because we use global scheduler

//printf("Interval after: %lf\n", m_interval);

m_tpsn_sync_timer.resched(m_interval);

return (TCL_OK);

}

if (argc == 2 && (strcmp(argv[1], "setasalive") == 0))

{

//printf("init\n");

m_alive = true;

return (TCL_OK);

}

if (argc == 2 && (strcmp(argv[1], "setaszombie") == 0))

{

//printf("init\n");

m_alive = false;

return (TCL_OK);

}

if (argc == 2 && (strncmp(argv[1], "setmaxdepth", strlen("setmaxdepth"))

== 0))

{

const char *max_depth = &argv[1][strlen("setmaxdepth")];

m_max_depth = atoi(max_depth);

return (TCL_OK);

}

if (argc == 2 && (strncmp(argv[1], "setmaxchild", strlen("setmaxchild"))

== 0))

{

const char *max_child = &argv[1][strlen("setmaxchild")];

m_max_child = atoi(max_child);

if (m_max_child > 0)

{

m_child_list = new ChildNode[m_max_child];

}

return (TCL_OK);

}

if (argc == 2 && (strncmp(argv[1], "setmaxnodeincluster", strlen("setmaxnodeincluster"))

== 0))

{

const char *max_node_in_cluster = &argv[1][strlen("setmaxnodeincluster")];

m_max_node_in_cluster = atoi(max_node_in_cluster);

return (TCL_OK);

}

if (argc == 2 && (strcmp(argv[1], "enable_child_sync_timer") == 0))

{

//printf("init\n");

m_child_sync_timer = true;

return (TCL_OK);

}

if (argc == 2 && (strcmp(argv[1], "local_clock") == 0))

{

int total_sent_message = 0;

int total_received_message = 0;

for (int i = 0; i < MESSAGE_TYPE_SIZE; ++i)

{

total_received_message += m_received_message_count[i];

total_sent_message += m_sent_message_count[i];

//printf("%d:%d-%d\n", i, m_received_message_count[i], m_sent_message_count[i]);

}

//printf("Timeouts: %d\n", m_timeout_count);

/*

printf("%02d: [L:%02d G:%02d P:%02d] Corrected time %lf (Ref: %lf)\n",

(int)addr(), m_level, m_group, (int)m_parent,

localClockCurrent(), (NOW * m_clock_drift_multiplier));

*/

printf("%02d 0 %02d %02d %02d %lf %lf %04d %04d\n",

(int) addr(), m_level, m_group, (int) m_parent,

localClockCurrent(), (NOW * m_clock_drift_multiplier),

total_sent_message, total_received_message);

return (TCL_OK);

}

if (argc == 2 && (strcmp(argv[1], "time_complexity") == 0))

59

{

printf("%02d 0 %02d %02d %02d %lf %lf %d %lf\n",

(int) addr(), m_level, m_group, (int) m_parent,

m_init_time, m_inited_time, m_sync_fail_count, m_interval * m_clock_drift_multiplier);

return (TCL_OK);

}

else

{

return (UdpAgent::command(argc, argv));

}

}

double TpsnUdpAgent::estimatedSourceTimeOffset(double Ljt4, double Lit2,

double Lit7, double Ljt6)

{

return ((Ljt4 - Lit2) - (Lit7 - Ljt6)) / 2;

}

double TpsnUdpAgent::localClockCurrent()

{

return (NOW * m_clock_drift_multiplier) + m_clock_offset;

}

double TpsnUdpAgent::localClock(double global_time)

{

return (global_time * m_clock_drift_multiplier) + m_clock_offset;

}

bool TpsnUdpAgent::isMyChild(int child_node_id)

{

for (int i = 0; i < m_child_count; ++i)

{

if (m_child_list[i].alive && m_child_list[i].node_id == child_node_id)

{

return true;

}

}

return false;

}

bool TpsnUdpAgent::setAsMyChild(int child_node_id, int descendant_count)

{

if (m_child_count < m_max_child)

{

m_child_list[m_child_count].node_id = child_node_id;

m_child_list[m_child_count].alive = true;

m_child_list[m_child_count].descendant_count = descendant_count;

++m_child_count;

return true;

}

return false;

}

bool TpsnUdpAgent::updateMyChild(int child_node_id, int descendant_count)

{

for (int i = 0; i < m_child_count; ++i)

{

if (m_child_list[i].alive && m_child_list[i].node_id == child_node_id)

{

m_child_list[i].descendant_count = descendant_count;

return true;

}

}

return false;

}

bool TpsnUdpAgent::removeFromMyChildren(int child_node_id)

{

for (int i = 0; i < m_child_count; ++i)

{

if (m_child_list[i].alive && m_child_list[i].node_id == child_node_id)

{

--m_child_count;

if (m_child_count > 0)

{

m_child_list[i].alive = m_child_list[m_child_count].alive;

m_child_list[i].node_id = m_child_list[m_child_count].node_id;

}

else

{

m_child_list[i].alive = false;

m_child_list[i].node_id = 0;

}

return true;

}

}

return false;

60

}

int TpsnUdpAgent::descendantCount()

{

int result = 0;

for (int i = 0; i < m_child_count; ++i)

{

result += m_child_list[i].descendant_count;

}

return result + m_child_count;

}

bool TpsnUdpAgent::disconnectNodeToFormNewCluster(int child_node_id)

{

int other_nodes_count = 0;

int child_node_index = -1;

for (int i = 0; i < m_child_count; ++i)

{

if (m_child_list[i].node_id != child_node_id)

{

other_nodes_count += m_child_list[i].descendant_count;

other_nodes_count += 1; // Add child

}

else

{

child_node_index = i;

}

}

other_nodes_count += 1; // Add cluster root

if (child_node_index >= 0)

{

//printf("%d: other_nodes_count: %d\n", child_node_id, other_nodes_count);

//printf("%d: descendant_count: %d\n", child_node_id, m_child_list[child_node_index].descendant_count);

return (other_nodes_count >= m_max_node_in_cluster

&& m_child_list[child_node_index].descendant_count

>= m_max_node_in_cluster);

}

else

{

return false;

}

}

bool TpsnUdpAgent::connectNodeToCluster(int child_node_id)

{

int other_nodes_count = 0;

int child_node_index = -1;

for (int i = 0; i < m_child_count; ++i)

{

if (m_child_list[i].node_id != child_node_id)

{

other_nodes_count += m_child_list[i].descendant_count;

other_nodes_count += 1; // Add child

}

else

{

child_node_index = i;

}

}

other_nodes_count += 1; // Add cluster root

if (child_node_index >= 0)

{

//printf("%d: other_nodes_count: %d\n", child_node_id, other_nodes_count);

//printf("%d: descendant_count: %d\n", child_node_id, m_child_list[child_node_index].descendant_count);

return (m_child_list[child_node_index].descendant_count == 0

|| (m_child_list[child_node_index].descendant_count

> m_max_node_in_cluster && other_nodes_count

< m_max_node_in_cluster));

}

else

{

return false;

}

}

61

Table B.1. Reference TPSN Results
Node StartClk Lvl Grp Prnt SyncClk Clk MsgSent MsgRecv
0 0 0 0 0 9631.3 9631.3 307 308
1 0 6 0 48 9636.31 11266.43 220 223
2 0 12 0 5 9638.92 9341.3 94 97
3 0 15 0 49 9644.21 10845.34 202 205
4 0 10 0 22 9624.43 8644.21 87 88
5 0 11 0 18 9641.66 10557.07 378 380
6 0 8 0 9 9628.49 9404.6 189 194
7 0 5 0 36 9640.33 10772.7 108 115
8 0 5 0 36 9638.57 10199.24 102 106
9 0 7 0 29 9626.21 9074.93 384 390
10 0 13 0 21 9646.42 10973.58 496 503
11 0 5 0 41 9631.05 9672.16 193 196
12 0 7 0 1 9654.28 10993.48 109 111
13 0 16 0 3 9643.49 9361.29 94 97
14 0 10 0 34 9616.6 8395.73 84 87
15 0 6 0 42 9638.94 9332.19 93 95
16 0 14 0 10 9648.54 11427.32 114 119
17 0 14 0 10 9628.14 7124.93 71 77
18 0 10 0 34 9632.01 10313.83 395 397
19 0 14 0 10 9646.27 10679.13 107 111
20 0 7 0 38 9652.93 10433.73 297 302
21 0 12 0 5 9639.19 9455.77 305 309
22 0 9 0 45 9628.13 9465.85 277 279
23 0 7 0 29 9634.05 10489.06 105 111
24 0 4 0 0 9636.2 10649.9 106 107
25 0 6 0 42 9654.61 11008.82 110 112
26 0 7 0 29 9632.03 10727.9 108 114
27 0 7 0 29 9631.68 9706.84 97 105
28 0 9 0 46 9639.07 9003.69 90 94
29 0 6 0 11 9631.51 9680.3 762 768
30 0 10 0 22 9630.55 9818.35 98 99
31 0 7 0 29 9632.12 10001.19 100 107
32 0 8 0 9 9632.14 9787.78 98 106
33 0 11 0 18 9636.5 9921.8 99 100
34 0 9 0 6 9629.18 9549.99 281 284
35 0 11 0 18 9630.09 9097.28 91 91
36 0 4 0 0 9640.02 10717.88 315 316
37 0 12 0 5 9628.84 8721.34 87 94
38 0 6 0 42 9642.57 11730.43 221 224
39 0 13 0 21 9638.39 10312.96 103 111
40 0 8 0 20 9653.07 10467.73 105 110
41 0 4 0 0 9631.2 9541 394 398
42 0 5 0 41 9641.98 11427.92 432 437
43 0 7 0 29 9631.19 7829.53 79 87
44 0 7 0 29 9628.96 9304.36 196 204
45 0 8 0 44 9636.2 10440.97 197 200
46 0 8 0 20 9650.01 8923.68 179 183
47 0 8 0 9 9633.83 10548.97 105 110
48 0 5 0 41 9627.37 9011.25 201 203
49 0 14 0 10 9643.19 9882 207 212

62

Table B.2. Clustered Synchronization Results
Node StartClk Lvl Grp Prnt SyncClk Clk MsgSent MsgRecv
0 0 0 0 0 9631.3 9631.3 153 154
1 0 2 1 48 9635.37 11266.43 220 223
2 0 0 3 5 9630 9341.3 47 50
3 0 3 3 49 9642.19 10845.34 185 188
4 0 2 2 22 9633.75 8644.21 87 88
5 0 3 2 18 9628.85 10557.07 284 286
6 0 0 2 9 9625.58 9404.6 152 157
7 0 1 1 36 9640.33 10772.7 108 115
8 0 1 1 36 9638.57 10199.24 102 106
9 0 3 1 29 9626.38 9074.93 271 277
10 0 1 3 21 9629.67 10973.58 504 511
11 0 1 1 41 9631.4 9672.16 236 239
12 0 3 1 1 9653.33 10993.48 109 111
13 0 0 4 3 9625.92 9361.29 47 50
14 0 2 2 34 9616.02 8395.73 84 87
15 0 2 1 42 9629.19 9332.19 93 95
16 0 2 3 10 9641.53 11427.32 114 119
17 0 2 3 10 9610.38 7124.93 71 77
18 0 2 2 34 9628.31 10313.83 467 469
19 0 2 3 10 9629.51 10679.13 107 111
20 0 3 1 38 9644.43 10433.73 229 234
21 0 0 3 5 9626.38 9455.77 260 264
22 0 1 2 45 9637.44 9465.85 277 279
23 0 3 1 29 9633.47 10489.06 105 111
24 0 0 1 0 9645.76 10649.9 53 54
25 0 2 1 42 9644.86 11008.82 110 112
26 0 3 1 29 9631.44 10727.9 108 114
27 0 3 1 29 9631.1 9706.84 97 105
28 0 1 2 46 9629.71 9003.69 90 94
29 0 2 1 11 9630.93 9680.3 841 847
30 0 2 2 22 9639.86 9818.35 98 99
31 0 3 1 29 9631.54 10001.19 100 107
32 0 0 2 9 9633.01 9787.78 49 57
33 0 3 2 18 9632.05 9921.8 99 100
34 0 1 2 6 9626.59 9549.99 320 323
35 0 3 2 18 9626.39 9097.28 91 91
36 0 0 1 0 9640.02 10717.88 262 263
37 0 0 3 5 9620.81 8721.34 44 51
38 0 2 1 42 9649.64 11730.43 268 271
39 0 1 3 21 9624.57 10312.96 103 111
40 0 0 2 20 9644.57 10467.73 53 58
41 0 0 1 0 9630.25 9541 371 375
42 0 1 1 41 9631.29 11427.92 465 470
43 0 3 1 29 9630.61 7829.53 79 87
44 0 3 1 29 9627.8 9304.36 155 163
45 0 0 2 44 9645.52 10440.97 145 148
46 0 0 2 20 9629.44 8923.68 134 138
47 0 0 2 9 9634 10548.97 53 58
48 0 1 1 41 9627.37 9011.25 201 203
49 0 2 3 10 9631.96 9882 243 248

63

Table B.3. Chain Synchronization Results
Node StartClk Lvl Grp Prnt SyncClk Clk MsgSent MsgRecv
0 0 0 0 0 9631.3 9631.3 153 154
1 0 2 1 48 9627.01 11266.43 227 230
2 0 0 3 5 9626.53 9341.3 47 50
3 0 3 3 49 9633.73 10845.34 185 188
4 0 2 2 22 9634.18 8644.21 87 88
5 0 3 2 18 9629.58 10557.07 284 286
6 0 0 2 9 9626.24 9404.6 167 172
7 0 1 1 36 9640.33 10772.7 108 115
8 0 1 1 36 9638.57 10199.24 102 106
9 0 3 1 29 9626.75 9074.93 271 277
10 0 1 3 21 9627.93 10973.58 537 544
11 0 1 1 41 9631.24 9672.16 305 308
12 0 3 1 1 9644.98 10993.48 109 111
13 0 0 4 3 9621.23 9361.29 47 50
14 0 2 2 34 9616.83 8395.73 84 87
15 0 2 1 42 9628.4 9332.19 93 95
16 0 2 3 10 9636.84 11427.32 114 119
17 0 2 3 10 9605.7 7124.93 71 77
18 0 2 2 34 9629.03 10313.83 495 497
19 0 2 3 10 9627.77 10679.13 107 111
20 0 3 1 38 9643.64 10433.73 229 234
21 0 0 3 5 9627.11 9455.77 289 293
22 0 1 2 45 9637.88 9465.85 287 289
23 0 3 1 29 9633.8 10489.06 105 111
24 0 0 1 0 9645.76 10649.9 53 54
25 0 2 1 42 9644.07 11008.82 110 112
26 0 3 1 29 9631.78 10727.9 108 114
27 0 3 1 29 9631.46 9706.84 97 105
28 0 1 2 46 9626.04 9003.69 90 94
29 0 2 1 11 9631.26 9680.3 900 906
30 0 2 2 22 9640.3 9818.35 98 99
31 0 3 1 29 9631.87 10001.19 100 107
32 0 0 2 9 9633.67 9787.78 49 57
33 0 3 2 18 9630.09 9921.8 99 100
34 0 1 2 6 9627.32 9549.99 363 366
35 0 3 2 18 9627.12 9097.28 91 91
36 0 0 1 0 9640.02 10717.88 262 263
37 0 0 3 5 9621.87 8721.34 44 51
38 0 2 1 42 9648.85 11730.43 274 277
39 0 1 3 21 9625.11 10312.96 103 111
40 0 0 2 20 9643.77 10467.73 53 58
41 0 0 1 0 9630.25 9541 416 420
42 0 1 1 41 9630.5 11427.92 487 492
43 0 3 1 29 9630.94 7829.53 79 87
44 0 3 1 29 9627.14 9304.36 155 163
45 0 0 2 44 9646.18 10440.97 155 158
46 0 0 2 20 9625.77 8923.68 134 138
47 0 0 2 9 9634.36 10548.97 53 58
48 0 1 1 41 9625.1 9011.25 227 229
49 0 2 3 10 9626.29 9882 247 252

64

Table B.4. Adaptive Synchronization Interval Results
Node StartClk Lvl Grp Prnt SyncClk Clk MsgSent MsgRecv
0 0 0 0 0 9631.3 9631.3 188 189
1 0 2 1 48 9634.92 11266.43 261 264
2 0 0 3 5 9623.08 9341.3 41 44
3 0 3 3 49 9632.64 10845.34 162 165
4 0 2 2 22 9632.47 8644.21 85 86
5 0 3 2 18 9634.15 10557.07 252 254
6 0 0 2 9 9623.13 9404.6 119 124
7 0 1 1 36 9635.17 10772.7 119 126
8 0 1 1 36 9639.1 10199.24 99 103
9 0 3 1 29 9626.49 9074.93 247 253
10 0 1 3 21 9633.35 10973.58 593 600
11 0 1 1 41 9629.57 9672.16 202 205
12 0 3 1 1 9634.08 10993.48 125 127
13 0 0 4 3 9620.85 9361.29 41 44
14 0 2 2 34 9620.14 8395.73 106 109
15 0 2 1 42 9628.97 9332.19 74 76
16 0 2 3 10 9633.37 11427.32 153 158
17 0 2 3 10 9625.71 7124.93 115 121
18 0 2 2 34 9632.77 10313.83 377 379
19 0 2 3 10 9632.33 10679.13 105 109
20 0 3 1 38 9636.83 10433.73 230 235
21 0 0 3 5 9628.02 9455.77 264 268
22 0 1 2 45 9634.66 9465.85 236 238
23 0 3 1 29 9630.58 10489.06 90 96
24 0 0 1 0 9638.77 10649.9 74 75
25 0 2 1 42 9639.84 11008.82 128 130
26 0 3 1 29 9635.68 10727.9 107 113
27 0 3 1 29 9629.91 9706.84 69 77
28 0 1 2 46 9627.13 9003.69 86 90
29 0 2 1 11 9629.58 9680.3 763 769
30 0 2 2 22 9639.29 9818.35 70 71
31 0 3 1 29 9636.16 10001.19 70 77
32 0 0 2 9 9630.25 9787.78 41 49
33 0 3 2 18 9636.75 9921.8 74 75
34 0 1 2 6 9626 9549.99 297 300
35 0 3 2 18 9622 9097.28 75 75
36 0 0 1 0 9635.1 10717.88 292 293
37 0 0 3 5 9625.92 8721.34 55 62
38 0 2 1 42 9642.51 11730.43 295 298
39 0 1 3 21 9630.38 10312.96 87 95
40 0 0 2 20 9639.7 10467.73 62 67
41 0 0 1 0 9630.6 9541 362 366
42 0 1 1 41 9641.18 11427.92 544 549
43 0 3 1 29 9625.71 7829.53 132 140
44 0 3 1 29 9625.94 9304.36 150 158
45 0 0 2 44 9637.25 10440.97 150 153
46 0 0 2 20 9630.22 8923.68 138 142
47 0 0 2 9 9632.49 10548.97 71 76
48 0 1 1 41 9626.54 9011.25 212 214
49 0 2 3 10 9629.08 9882 206 211

65

Table B.5. Balanced Children Results
Node StartClk Lvl Grp Prnt SyncClk Clk MsgSent MsgRecv
0 0 0 0 0 9631.3 9631.3 188 189
1 0 2 1 48 9634.92 11266.43 261 264
2 0 0 3 5 9624.81 9341.3 42 45
3 0 3 3 49 9634.34 10845.34 168 171
4 0 2 2 22 9626.51 8644.21 86 87
5 0 3 2 18 9624.93 10557.07 262 264
6 0 0 2 9 9624.82 9404.6 128 133
7 0 1 1 36 9635.17 10772.7 122 129
8 0 1 1 36 9639.1 10199.24 100 104
9 0 0 2 26 9628.77 9074.93 201 218
10 0 1 3 21 9632.3 10973.58 601 608
11 0 1 1 41 9630.68 9672.16 190 193
12 0 3 1 1 9634.08 10993.48 125 127
13 0 0 4 3 9626.71 9361.29 43 46
14 0 2 2 34 9621.67 8395.73 107 110
15 0 2 1 42 9628.59 9332.19 74 76
16 0 2 3 10 9633.22 11427.32 155 160
17 0 2 3 10 9628.73 7124.93 115 121
18 0 2 2 34 9624.9 10313.83 386 388
19 0 2 3 10 9628.8 10679.13 105 109
20 0 3 1 38 9636.6 10433.73 231 236
21 0 0 3 5 9630.89 9455.77 266 270
22 0 1 2 45 9633.78 9465.85 238 240
23 0 3 1 29 9631.77 10489.06 141 147
24 0 0 1 0 9638.77 10649.9 74 75
25 0 2 1 42 9639 11008.82 128 130
26 0 3 1 29 9634.24 10727.9 226 232
27 0 3 1 29 9631 9706.84 72 80
28 0 1 2 46 9631.56 9003.69 87 91
29 0 2 1 11 9630.77 9680.3 482 491
30 0 2 2 22 9634.71 9818.35 71 72
31 0 0 2 23 9631.17 10001.19 47 64
32 0 0 2 9 9626.32 9787.78 44 52
33 0 3 2 18 9632.42 9921.8 73 74
34 0 1 2 6 9624.83 9549.99 303 306
35 0 3 2 18 9621.45 9097.28 75 75
36 0 0 1 0 9635.1 10717.88 292 293
37 0 0 3 5 9621.02 8721.34 54 61
38 0 2 1 42 9640.97 11730.43 296 299
39 0 1 3 21 9632.3 10312.96 88 96
40 0 0 2 20 9639.23 10467.73 62 67
41 0 0 1 0 9630.6 9541 360 364
42 0 1 1 41 9639.95 11427.92 545 550
43 0 0 2 26 9610.34 7829.53 53 71
44 0 3 1 29 9628.01 9304.36 153 161
45 0 0 2 44 9636.35 10440.97 152 155
46 0 0 2 20 9631.51 8923.68 139 143
47 0 0 2 9 9631.43 10548.97 70 75
48 0 1 1 41 9626.54 9011.25 212 214
49 0 2 3 10 9629.39 9882 216 221

66

Table B.6. Balanced Cluster Results
Node StartClk Lvl Grp Prnt SyncClk Clk MsgSent MsgRecv
0 0 0 0 0 9631.3 9631.3 188 189
1 0 2 1 48 9634.92 11266.43 261 264
2 0 1 4 5 9631.47 9341.3 82 85
3 0 3 5 49 9634.32 10845.34 163 166
4 0 2 3 22 9625.57 8644.21 86 87
5 0 0 4 18 9635.03 10557.07 273 275
6 0 0 3 9 9630.38 9404.6 128 133
7 0 1 1 36 9635.17 10772.7 122 129
8 0 1 1 36 9639.1 10199.24 100 104
9 0 3 2 26 9627.93 9074.93 256 273
10 0 1 5 21 9628.6 10973.58 581 588
11 0 0 2 41 9631.16 9672.16 135 138
12 0 3 1 1 9634.08 10993.48 125 127
13 0 0 6 3 9628.52 9361.29 45 48
14 0 2 3 34 9626.32 8395.73 107 110
15 0 2 1 42 9628.59 9332.19 74 76
16 0 2 5 10 9630.48 11427.32 147 152
17 0 2 5 10 9618 7124.93 108 114
18 0 2 3 34 9634.35 10313.83 315 317
19 0 2 5 10 9628.24 10679.13 102 106
20 0 3 1 38 9636.6 10433.73 231 236
21 0 0 5 5 9633.34 9455.77 266 270
22 0 1 3 45 9632.67 9465.85 238 240
23 0 2 2 29 9635.77 10489.06 167 173
24 0 0 1 0 9638.77 10649.9 74 75
25 0 2 1 42 9639 11008.82 128 130
26 0 2 2 29 9640.01 10727.9 320 326
27 0 2 2 29 9631.53 9706.84 72 80
28 0 1 2 46 9631.56 9003.69 87 91
29 0 1 2 11 9631.31 9680.3 465 474
30 0 2 3 22 9638.53 9818.35 70 71
31 0 3 2 23 9635.11 10001.19 73 90
32 0 0 3 9 9635.96 9787.78 47 55
33 0 3 3 18 9632.64 9921.8 70 71
34 0 1 3 6 9631.02 9549.99 293 296
35 0 3 3 18 9631.33 9097.28 75 75
36 0 0 1 0 9635.1 10717.88 292 293
37 0 1 4 5 9634.45 8721.34 83 90
38 0 2 1 42 9640.97 11730.43 296 299
39 0 1 5 21 9631.97 10312.96 87 95
40 0 0 2 20 9639.23 10467.73 62 67
41 0 0 1 0 9630.6 9541 322 326
42 0 1 1 41 9639.95 11427.92 545 550
43 0 3 2 26 9636.56 7829.53 100 118
44 0 2 2 29 9628.83 9304.36 152 160
45 0 0 3 44 9636.32 10440.97 153 156
46 0 0 2 20 9631.51 8923.68 139 143
47 0 0 3 9 9645.28 10548.97 73 78
48 0 1 1 41 9626.54 9011.25 212 214
49 0 2 5 10 9632.3 9882 209 214

67

	LIST OF FIGURES
	CHAPTER . INTRODUCTION
	CHAPTER . BACKGROUND
	. Synchronization Problem
	. Clock Drift
	. Clock Offset

	. Synchronization Algorithms
	. Timing-sync Protocol for Sensor Networks (TPSN)
	. Pair-wise Synchronization
	. Network-wide Synchronization

	CHAPTER . ENHANCEMENTS
	. Clustering
	. Dividing into Clusters
	. Balance Children Count
	. Balance Cluster Node Count

	. Inter Cluster Synchronization
	. Using the Existing Spanning Tree
	. Building a New Path Among Cluster Heads

	. Chain Synchronization
	. Adaptive Synchronization Interval
	. Runtime or Boottime

	CHAPTER . SIMULATION
	. Simulation Using Posix Threads
	. Simulation Using ns2
	. Reference TPSN Results
	. Enhancement Results
	. Clustering
	. Chain Synchronization
	. Adaptive Synchronization Interval
	. Balanced Children Count
	. Balanced Cluster Node Count

	CHAPTER . CONCLUSION
	REFERENCES
	APPENDICES
	APPENDIX . SIMULATION USING POSIX THREADS (SOURCE CODE)
	APPENDIX . SIMULATION USING NS2 (SOURCE CODE)

