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ABSTRACT

SOLVING THE COURSE SCHEDULING PROBLEM BY CONSTRAINT
PROGRAMMING AND SIMULATED ANNEALING

In this study it has been tackled the NP-complete problem of academic class
scheduling (or timetabling). The aim of this thesis is finding a feasible solution for
Computer Engineering Department of izmir Institute of Technology. Hence, a solution
method for course timetabling is presented in this thesis, consisting of two phases: a
constraint programming phase to provide an initial solution and a simulated annealing
phase with different neighbourhood searching algorithms. When the experimental data are
obtained it is noticed that according to problem structure, whether the problem is tightened
or loosen constrained, the performance of a hybrid approach can change. These different
behaviours of the approach are demonstrated by two different timetabling problem
instances. In addition to all these, the neighbourhood searching algorithms used in the
simulated annealing technique are tested in different combinations and their performances

are presented.
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OZET

KISITLI PROGRAMLAMA VE BENZETIMLI TAVLAMA YONTEMLERI
ILE DERS PROGRAMI PLANLAMA PROBLEMININ COZULMESI

Bu calismada, NP-tam problem sinifinda olan akademik sinif programi hazirlama
konusu ele alinmistir. Calismanin amaci Izmir Yiiksek Teknoloji Enstitiisii Bilgisayar
Miihendisligi Boliimii’nlin ders programi hazirlama konusundaki sorununa bir ¢oziim
bulmaktir. Bu amag¢ dogrultusunda ele alinan problem igin iki asamali ¢dziim yOntemi
kullamlmustir. {lk kisimda, kisith programlama teknigi ile ikinci kisimda iyilestirilmek
lizere kullanilacak bir ders programi hazirlanmaktadir. Ikinci kisimda ise birinci kisimda
elde edilen ¢oziim, benzetimli tavlama yontemi ile degisik komsu arama algoritmalariyla
birlikte iyilestirilmektedir. Calismanin sonucunda elde edilen deneysel verilerin, uygulanan
yontemin farkli zorluktaki problem yapilarinda farkli performanslar sergiledigi
gbzlenmistir. Bu sonuglar iki farkli ders programi hazirlama problemleri ele alinarak
gosterilmistir. Biitiin bunlara ek olarak benzetimli tavlama yonteminde kullanilan komsu

arama yontemleri i¢in degisik algoritmalar denenip etkinlikleri incelenmistir.
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CHAPTER 1

INTRODUCTION

The University Course Timetabling Problem (UCTP) is a common problem that
almost every university has to solve. The basic definition states that UCTP is a task of
assigning the events of a university (lectures, activities, etc) to classrooms and timeslots in
such a way as to minimize the violations of a predefined set of constraints. In other words,
no teacher, no class or no room should appear more than once in any one time period.

There are also other timetabling problems described in the literature such as
examination timetabling, school timetabling, employee timetabling, and others. All these
problems share similar characteristics and they are similarly difficult to solve. The general
university course timetabling problem is known to be NP-complete, as many of the
subproblems are associated with additional constraints.

Timetabling problem has been worked on over the years, so that many different
solutions have been proposed. Exact and heuristic solution approaches for the school and
university timetabling problem have been proposed since the 1960s by several authors, for
instance; Almond (1966), Brittan and Farley (1972), Vitanyi (1981), Tripath (1984), de
Werra (1985), Abramson (1991), Hertz (1992), Burke et al. (1994), Costa (1994), Jaffar
and Maher (1994), Gunadhi et al. (1996), Guéret et al. (1996), Lajos (1996), Deris et al.
(1997), Terashima-Marin (1998), Schaerf (1999), Brailsford et al. (1999), Abdennadeher
and Marte (2000).

1.1. Thesis Aim and Objectives

In this thesis, it is investigated the solution of the timetabling problem of izmir
Institute of Technology (IYTE) Computer Engineering Department by a hybrid algorithm
which is consisted of two solution techniques, namely; the Constraint Satisfaction

Programming (CSP) and Simulated Annealing (SA). The objectives of this thesis are:



To find a solution for timetabling problem of Computer Engineering
Department of IYTE.

To study the feasibility of solving the timetabling problem using a hybrid
approach in which CSP and SA algorithms are used.

To investigate the performances of CSP and SA optimisation approaches in

the university timetabling problem.

1.2. Organization of Thesis

The organization of this thesis is as below:

Chapter 2 presents a general university timetabling problem definition. The
problem is defined in a formal format and the solving techniques is
explained generally which are used up to now.

Chapter 3 presents the constraint satisfaction programming. It provides CSP
solving techniques such as consistency techniques, searching algorithms and
value and variable orderings. It is also argued about the CSP algorithms
which suit more to UCTP.

Chapter 4 presents the Simulated Annealing. Mathematical model of SA is
defined. Different SA techniques are discussed.

Chapter 5 defines the timetabling problem of IYTE Computer Engineering
Department. Also it represents the algorithms that are used in the
timetabling problem of IYTE Computer Engineering Department. Formerly,
the CSP algorithms used in our problem is defined with their reasons.
Afterwards, the SA technique used in the same problem is explained.
Chapter 6 is the conclusion. This chapter represents the experimental results
with the advantages and disadvantages of hybrid algorithms. The
comparison is done between the Constraint Programming and the Simulated
Annealing. More suitable algorithm is explained according to the
characteristics of the problem. (i.e. more tightened problems or more loosen

problems.)



CHAPTER 2

TIMETABLING

Timetabling is a real life scheduling task. There can be different kinds of timetable
models such as, educational, transport, sport, or employee timetabling. Timetabling
determines what time and place each course/exam will be given; when train/bus/aeroplane
will depart/arrive and from which station/airport; what time, date, and place each match
will be played; or designs each employee’s work timetable. Anthony Wren (1996) defines
timetabling as a special case of scheduling:

Timetabling is the allocation, subject to constraints, of given resources to objects
being placed in space-time, in such a way as to satisfy as nearly as possible a set of
desirable objectives.

Timetabling has long been known to belong to the class of problems called NP-
complete, i.e., no method of solving it in a reasonable (polynomial) amount of time is

known (Cooper, et al. 1996).

2.1. Educational Timetabling

Educational timetabling has different models due to different use of educational
areas. Each model has its own characteristics. The most known models are listed as below
(Schaerf 1999):

e School Timetabling: The week scheduling for all the classes of an elementary or a
high school, avoiding teacher meeting two classes in the same time, and vice versa;

e Exam Timetabling: The scheduling for the exams of a set of university courses,
avoiding overlapping exams of courses having common students, and spreading the
exams for the students as much as possible.

e Course Timetabling: The week scheduling for all the lectures of a set of university

courses, minimizing the overlaps of lectures of courses having common students;



The school timetabling describes when each class has a particular lesson and in
which room it is to be held. The actual content of the timetable is largely driven by the
curriculum; the number of hours of each subject taught per week is often set nationally.
Each class consists of a set of students, who must be occupied from the time they arrive
until the time they leave school, and a specific teacher being responsible for the class in any
one period.

Teachers are usually allocated in advance of the timetabling process, so the problem
is to match up meetings of teachers with classes to particular time slots so that each
particular teacher meets every class he or she is required to. Obviously each class or teacher
may not be involved in more than one meeting at a time.

The examination timetabling problem requires the teaching of a given number of
exams (usually one for each course) within a given amount of time. The examination
timetabling is similar to the course timetabling, and it is difficult to make a clear distinction
between the two problems. In fact, some specific problems can be formulated both as an
examination timetabling problem and a course timetabling one. Nevertheless, it is possible
to state some broadly-accepted differences between the two problems. Examination
timetabling has the following characteristics (different from course timetabling problem)
(Schaerf 1999):

e There is only one exam for each subject.

e The conflicts condition is generally strict. In fact, the student is forced to skip a
lecture due to overlapping, but not that a student skips an exam.

e There are different types of constraints, e.g., at most one exam per day for each
student, and not too many consecutive exams for each student.

e The number of periods may vary, in contrast to course timetabling where it is fixed.

e There can be more than one exam per room.

The (university) course timetabling problem consists in scheduling a set of lectures
for each course within a given number of rooms and time periods. It differs from the (high)
school problem in some cases. For instance, university courses can have common students,
whereas school classes are disjoint sets of students. If two classes have common students

then they conflict, and they cannot or should not be scheduled at the same period.



Moreover, in (high) schools the teachers are particular, whereas university teachers can
have different level of classes. In addition, in the university problem, availability of rooms
(and their size and equipment) plays an important role. On the other hand, in the high
school problem they are often neglected because, in most cases, it can be assumed that each
class has its own room.

The intention of this thesis is to study course timetabling with special emphasis to
just one university department-based timetabling as a classical application area where
various types of preferences need to be involved to obtain some acceptable solution. The

detailed problem description is in the below Section 2.2.

2.2. Problem Description

Course timetabling problem is the assignment of the slots to a set of different
constraints. These constraints are usually divided into two categories, such as; hard
constraints and soft constraints (Burke, et al. 1997).

Hard constraints must be satisfied by the solution of the timetable. They physically
can not be violated. These can be listed as below:

e Each lecturer can take only one class at a time.
e Allocation of classroom can only have one subject assigned to it at a time.
e Clashes should not occur between the subjects for students of one group.

Soft constraints are those that are desirable but not absolutely indispensable. In real
world situations it is usually impossible to satisfy all constraints. Some possible examples
of soft constraints are:

o Time assignment: A course may need to be assigned in a particular time period.

e Time constraints between events: One course may need to be arranged
before/after the other.

e Spreading events out in time: Students should not have lectures of the same

course in consecutive periods or on the same day.



o Coherence: Lecturers may demand to have all their lectures in a number of days
and to have a number of lecture free days. These constraints can conflict with the
constraints on spreading events out in time.

e Resource assignment: Lecturers may prefer to teach in a particular room or it may
be the case that a particular lecture must be scheduled in a certain room.

o Continuity: Any constraints whose main purpose is to ensure that certain features
of student timetables are constant or predictable. For instance, lectures for the same

course should be scheduled in the same room, or at the same day.

Course timetabling problem can be viewed as a multidimensional assignment
problem in which students and teachers are assigned to courses, classes, and those meetings
between teachers and students are assigned to classrooms and times. In the below, these
particular components are described:

e Course is taught one or more times a week during part of a year. Sometimes,
courses can split to multiple course sections due to the large number of students
subscribed to a course.

e Teacher is assigned to each course or course section.

e Classroom of suitable size, equipment (laboratory, computer room, classroom with
data projector, etc.), and location (part of building, building, campus, etc.) has to be
assigned to each course or course section.

e Student attends a set of courses. The selection of a student is usually predefined by
subscription either in a class taking an identical set of courses (usually at high
schools) or in some program containing compulsory and optional courses
(universities). In some universities, students are also allowed to subscribe almost

any arbitrary selection of courses within course pre-enrolment process.

Let’s formalize the course timetabling problem definition. Schaerf (1999) and
Werra (1985) define the problem as the following:

There are q courses Ki, K2, ...Kq, and for each i, course Ki consists of ki lectures.
There are r curricula Si, Sz,...Sr, which are groups of courses that have common students.

This means that courses in SI must be scheduled all at different times. The number of



periods is p, and Ik is the maximum number of lectures that can be scheduled at period k
(i.e., the number of rooms available at period k). The formulation is at the below:
Findyik(V i=1,...q; Vk=1,...p), so that;

e Vi=1,..9Z{yklk=1,.p}=k

e Vk=1,..pZ{yik|i=1,..q9} <l

o Vk=1,..pVI=1,.r Z{yik|ie Si} <l

e Vi=1,..qVk=1,...pyike{0,1}
where yik= 1 if a lecture of course Kiis scheduled at period k, and yik= 0 otherwise.

The first constraint requires that each course is composed of the correct number of
lectures. The second constraint enforces that at each time there are not more lectures than
rooms. The third constraint prevents conflicting lectures to be scheduled at the same period.

Problem from that defined formally at above can be shown to be NP-complete
through a simple reduction from the graph colouring problem (Werra 1985).

The equivalent formulation of this definition based on the conflict matrix instead of
on the curricula. The conflict matrix Cqxgqis a binary matrix such that cij= 1 if courses Ki
and Kjhave common students, and cij= 0 otherwise.

Schaerf (1999) and Werra (1985) define the course timetabling problem by
including the following objective function:

f(y)=2{dwy,Ji=L..a:k=1..p} (2.1)
where dix is the desirability of having a lecture of course Ki at period k.

The conflict matrix Cqqis considered with integer values by Tripathy (1992), such
that cij represents the number of students taking both courses Ki and Kj. In this way cij
represents also a measure of dissatisfaction in case a lecture of Ki and a lecture of Kj are
scheduled at the same time. The objective is measured by the global dissatisfaction
obtained as the sum of all dissatisfactions of the above type.

Preassignments and unavailabilities can be expressed by adding a set of constraints
of the following form:

Vi=l,.,q9 and Vk=1..,p, p,<Yy.<a,, (2.2)

where pik= 0 if there is no preassignment, and pik= 1 if a lecture of course Kiis scheduled at

period K;



e aik= 0 if a lecture of course Kicannot be scheduled at period k,
e aik=1if alecture of course Kican be scheduled at period k.

De Werra (1985) shows how to reduce a course timetabling problem to graph
colouring: Associate to each lecture li of each course Kj a vertex mij; for each course Kj
introduce a clique between vertices mij (for i = 1,...q). Introduce all edges between the
clique for Kj1 and the clique Kj2 whenever Kji and Kj2 are conflicting.

If unavailability occurs, introduce a set of p new vertices, each one corresponding to
a period. The new generated vertices are all connected each other. This ensures that each
one is assigned to a different colour. If a course cannot have lectures at a given period, then
all the vertices corresponding to the lectures of the course are connected to a vertex
corresponding to the given period. On the other hand, if a lecture should take place at a
given time, then the vertex corresponding to that class is connected to all period vertices

but the one representing the given period.

2.3. Problem Solving

In the beginning years of timetabling research, direct heuristic methods were
applied to timetabling problems. It is focused on ordering the most urgent variables. To this
problem, look-ahead techniques (variable and value ordering heuristics) are used which
include analysis of time and object constraints. Simple, problem specific heuristic methods
can produce desirable timetables, but the size and complexity of university timetabling
problems has started a trend towards more general problem solving algorithms.

In recent years, using meta heuristic methods is proved to give better results, such
as simulated annealing, tabu search techniques. Constraint Logic Programming is also a
popular approach.

The solution approaches for timetabling problems are categorized in the following

parts.



2.3.1. Operations Research

It ranges from mathematical programming to heuristics, such as graph colouring
and network flow techniques. The graph colouring problem is the most known and a well
research method.

Briefly defined, graph colouring problem is to colour the vertices of a graph

G= {V, E}, where V = {Vana---aVn} is the set of vertices, and E is the set of edges that

connects the vertices to find a colouring C :V —— N such that connected vertices always
have different colours. Finding the minimum number of K, such that a feasible K colouring
exists, is the optimal solution.

To implement this method to the timetabling problems, a simple form can be
generated, where each node represents a task, each colour represents a timeslot, and each

edge (Vi Vi ) indicates that v; and v; should not be placed within the same timeslot.

The graph colouring method gives good results in small scale problems. However,
in big scale problems, this method fails. Hence the real timetabling problem is a large scale

problem; more effective methods should be used.
2.3.2. Human Machine Interaction

It finds an initial feasible solution; subsequently it improves this initial solution
manually. This process iterates until the user satisfy with the result or no further
improvement can be obtained. Mulvey (1992) proposes “approximation, evaluation and
modification” model for Human Machine Interaction.

The major drawback of this method is its computationally expensiveness for large

problems (Gunadhi, et al. 1996).



2.3.3. Artificial Intelligence

It uses various meta-heuristic methods, for instance, simulated annealing
(Abramson 1991a), tabu search (Hertz 1992, Costa 1994), genetic algorithms (Abramson
and Abela 1991b, Burke, et al. 1994, Terashima and Marin 1998), constraint satisfaction
problem (Brittan and Farlet 1971, Jaffar and Maher 1994, Gueret, et al. 1996, Lajos 1996,
Deris, et al. 1997, Abdennadher, et al. 2000) that have been used to solve various

educational timetabling problems.

2.3.3.1. Genetic Algorithms

The logic beneath the Genetic Algorithms is the principles of evolutionary biology,
such as inheritance, mutation and natural selection. Genetic Algorithms mimic the process
of natural selection and can be used as technique for solving complex optimization
problems, which have very large search spaces.

The definition is taken from (Burke, et al. 1994): A genetic algorithm is starts by
generating a set (population) of timetables randomly. These are then evaluated according to
some sort of criteria. On the basis of this evaluation population members (timetables) are
chosen as parents for the next generation of timetables. By weighting the selection process
in favour of the better timetables, the worse are eliminated while at the same time the

search is directed towards the most promising areas of the search space.

2.3.3.2. Tabu Search

In global optimization problems based on multi level memory managment and
response exploration, tabu search can be applied. Glover (1986) described Tabu Search as
“a meta heuristic superimposed on another heuristic method”. This method is applied to
timetabling problems by Hertz (1992) and Costa (1994). Unfortunately, the tabu search is

not a very suitable technique for a big timetabling problem space.

10



2.3.3.3. Simulated Annealing

The detailed description of Simulated Annealing is mentioned in Chapter 4.

It is hard to compare these mentioned methods at above, because the problem can
response differently to different solution techniques. According to the problem
characteristics, most appropriate method should be selected. Due to timetabling problem is
NP complete problem, the running time grows exponentially as the problems size grows, so
it causes a considerable computational costs.

This thesis is concerned with the implementation of meta heuristics techniques
including constraint satisfaction problem (CSP) and simulated annealing (SA) techniques.

These methods are detailed defined in following chapters.

11



CHAPTER 3

CONSTRAINT SATISFACTION PROBLEM

3.1. Historical Perspective

Constraint Satisfaction originated in the field of artificial intelligence in the 1970s.
During the 1980s and 1990s, constraints were embedded into a programming language.
Prolog and C++ are the most used languages for constraint programming.

The CSP was first formalized in line labelling in vision research. Huffman (1971),
Clowes (1971), Waltz (1975) and Mackworth (1992) define CSPs with finite domains as
finite constraint satisfaction problems, and gives a shape to CSP problems. Haralick (1979)
and Shapiro (1980) discuss different views of the CSP from problem formalization,
applications to algorithms. Meseguer (1989) and Kumar (1992) both give concise and
comprehensive overviews to CSP solving. Guesgen and Hertzberg (1992) introduce the
concept of dynamic constraints that are themselves subject to constraints. This idea is very
useful in spatial reasoning.

Mittal and Falkenhainer (1990) extend the standard CSP to dynamic CSPs (CSPs in
which constraints can be added and relaxed), and proposed the use of assumption based
TMS (ATMS) to solve them (de Kleer 1986, de Kleer 1989). Definitions on graphs and
networks are mainly done by Carré (1979). CSP was first applied to university timetabling
problems (Brittan and Farley 1971).

3.2. Definition of the Constraint Satisfaction Problem

Constraint Satisfaction Problems (CSPs) appear in many parts of the real life, for
example, vision, resource allocation in scheduling and temporal reasoning. The CSP is a
popular research topic because it is a general problem that has unique features which can be

accomplished to arrive at solutions.
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Fundamentally, a CSP is a problem composed of a finite set of variables, each of
which is associated with a finite domain, and a set of constraints that restricts the values
the variables can simultaneously take. The task is to assign a value to each variable
satisfying all the constraints (Tsang 1993).

Formally speaking, definition of the CSP taken from Tseng’s description is as the
following:

A constraint satisfaction problem is a triple (Z, D, C) where Z is a finite set of
variables {xi, X2, ..., Xp}, D is a function which maps every variable in Z to a set of objects
of arbitrary type, D: Z is finite set of objects (of any type). Dy; is taken as the set of objects
mapped from x; by D. These objects are called possible values of x; and the set Dy; the
domain of x;. C is a finite (possibly empty) set of constraints on an arbitrary subset of
variables in Z. In other words, C is a set of sets of compound labels. CSP (P) is used for the
symbolization that P is a constraint satisfaction problem.

Each constraint C; involves some subset of the variables and specifies the allowable
combinations of values for that subset. A state of the problem is defined by an assignment
of values to some or all of the variables, {x; = v;; X; = vj,...}. An assignment that does not
violate any constraints is called a consistent or legal assignment. A complete assignment is
one in which every variable is mentioned, and a solution to a CSP is a complete assignment
that satisfies all the constraints.

Practically, for many constraint satisfaction problems it is hard or even impossible
to find a solution that assigns all the variables without any violation of the constraints of the
problem. For example, for over constrained problems, there does not exist any complete
solution satisfying all the constraints. Therefore other definitions of problem solution like
Partial Constraint Satisfaction were introduced by Freuder et al. (1992). Before mentioning
specific solution approaches for over constrained problems, it is worthy to introduce the

general solution techniques for constraint satisfaction problems.
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3.3. Problem Solving Methods

It is helpful to visualize a CSP as a constraint graph, as shown in Figure 3.2 (Chan

2008). The nodes of the graph correspond to variables of the problem and the arcs

correspond to constraints.

Western

Australia \

Northern
Territory
Queensland
South
Australia
WVictoria
Tasmania

Figure 3.1. The principal states and territories of Australia (Source: Chan 2008)

Figure 3.2. The map coloring problem represented as a constraint graph (Source: Chan

2008)
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In Figure 3.1 colouring the map can be viewed as a constraint satisfaction problem.
The aim is to assign colours to each region so that no neighbouring regions have the same
colour.

The goal of the problem is to find Romania at the map of Australia, shown in Figure
3.1. The task is colouring each region red, green, or blue in such a way that no
neighbouring regions have the same colour. To formulate this as a CSP, the variables are
defined to be the regions: WA, NT, Q, NSW, V, SA, and T. The domain of each variable is
the set {red, green, blue}. The constraints require neighbouring regions to have distinct
colours; for example, the allowable combinations for WA and NT are the pairs,

{(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)}.

The constraint can also be represented more concisely as the inequality WA#NT,
provided the constraint satisfaction algorithm has some way to evaluate such expressions.
There are many possible solutions, such as,

{WA=red, NT =green, Q=red, NSW =green, V =red, SA=blue, T =red}.

3.3.1. Consistency Techniques

In constraint satisfaction problems there are specific methods related with variables,
their domains and the constraints. To understand these relations some special notation
should be known. At the below there are some definitions to make easier to understand the

solving approaches for CSPs (Tsang 1993).

Definition 3.1: A label is a variable-value pair that represents the assignment of the value
to the variable. <x, v> is used for denoting the label of assigning the value v to the variable

X. <x, v>is only meaningful if v is in the domain of x (i.e. v Dy).

Definition 3.2: A compound label is the simultaneous assignment of values to a (possibly
empty) set of variables. (<x;,vi><Xp, V2>...<X,, V,>) 1s used for denoting the compound
label of assigning vi, vy, ..., V4 t0 Xj, X2, ..., X, respectively. A k-compound label is a

compound label which assigns k values to k variables simultaneously.
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There are 3 kinds of consistency techniques. These are:
e Node Consistency:

A CSP is node-consistent (NC) if and only if for all variables all values in its
domain satisfy the constraints on that variable.
e Arc Consistency:

An arc (X, y) in the constraint graph of a CSP (Z, D, C) is arc-consistent (AC) if and
only if for every value a in the domain of x which satisfies the constraint on x, there
exists a value in the domain of y which is compatible with <x, a>.

e Path Consistency:

A path (xo, Xi,..., Xm) in the constraint graph for a CSP is path-consistent (PC) if and
only if for any 2-compound label (<xo, vo> <xm, Vi>) that satisfies all the constraints on
X and x,, there exists a label for each of the variables x; to xn,.; such that every binary
constraint on the adjacent variables in the path is satisfied.

Let’s go back to the sample problem of which constraint graph is shown in Figure

3.2 and see how to apply consistency techniques.

SN SSE S~

WA NT Q NSW v SA T
—1 1 m E/mrE]| 11

\é/

Figure 3.3. Constraint Propagation arc consistency on the graph (Source: Chan 2008)
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Figure 3.4. Inconsistent Arc (Source: Chan 2008)
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Figure 3.5. Inconsistency (Source: Chan 2008)

Simplest form of propagation makes each arc consistent X =Y is consistent iff for
every value x of X there is some allowed y.

If X loses a value, neighbors of X need to be rechecked: i.e. incoming arcs can
become inconsistent again (outgoing arcs will stay consistent). Arc consistency detects
failure earlier than serching algorithms. It can be run as a preprocessor or after each
assignment. It’s like sending messages to neighbors on the graph.

Every time a domain changes, all incoming messages need to be resend. This
method is repeated until convergence. (No message will change any domains.)

Since only values are removed from domains when they can never be part of a

solution, an empty domain means no solution possible at all. (Back out of that branch.)
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3.3.2. Basic Search Strategies for the Constraint Satisfaction Problem

Some of the best known search algorithms for CSPs can be classified and
summarized as:

e General Search Strategies;

This includes the chronological backtracking strategy and the iterative broadening
search (IB). These strategies were developed for general applications, and do not make use
of the constraints to improve their efficiency. Iterative Broadening (IB) was introduced by
Ginsberg and Harvey (1990).

e Lookahead Strategies;

The general lookahead strategy is that following the commitment to a label, the
problem is reduced through constraint propagation. Such strategies exploit the fact that
variables and domains in CSPs are finite (hence can be enumerated in a case analysis), and
that constraints can be propagated. Algorithms which use lookahead strategies are forward
checking (FC), directional arc-consistency lookahead (DAC-L) and arc consistency
lookahead (AC-L).

e Gather Information While Searching Strategies;

The strategy is to identify and record the sources of failure whenever backtracking
is required during the search, i.e. to gather information and analyse them during the search.
Doing so allows one to avoid searching futile branches repeatedly. This strategy exploits
the fact that sibling subtrees are very similar to each other in the search space of CSPs. The
algorithms that this strategy uses are dependency-directed backtracking (DDBT), learning
nogood compound labels (LNCL), backchecking (BC) and backmarking (BM). Prosser
(1993) describes a number of jumping back strategies, and illustrates the fact that in some
cases backjumping may become less efficient after reduction of the problem. BackJumping
was introduced in (Gaschnig 1979a).

All strategies that mentione at the above, it is assumed that the variables and values
are ordered randomly. In fact, efficiency of the algorithms could be significantly affected

by the order in which the variables and values are picked.
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3.3.3. Value and Variable Ordering

The ordering in which the variables are labelled and the values chosen affects the
number of backtracks required in a search, which is one of the most important factors
affecting the efficiency of an algorithm. In lookahead algorithms, the ordering in which the
variables are labelled also affects the amount of search space pruned. Besides, when the
compatibility checks are computationally expensive, the efficiency of an algorithm could be
significantly affected by the ordering of the compatibility checks.

By appliying ordering variable methods to searching algorithms, in lookahead
algorithms, failures could be detected earlier under some orderings than others, larger
portions of the search space can be pruned off under some orderings than others. In learning
algorithms, smaller nogood sets could be discovered under certain orderings, which could
lead to the pruning of larger parts of a search space. When one needs to backtrack, it is only
useful to backtrack to the decisions which have caused the failure.

The variable ordering techniques are as listed below (Tsang 1993):

e The minimal width ordering (MWO) heuristic: By exploiting the topology of the
nodes in the primal graph of the problem, the MWO heuristic orders the variables
before the search starts. The intention is to reduce the need for backtracking.

e The minimal bandwidth ordering (MBO) heuristic: By exploiting the structure of
the primal graph of the problem, the MBO heuristic aims at reducing the number of
labels that need to be undone when backtracking is required;

e The fail first principle (FFP): The variables may be ordered dynamically during the
search, in the hope that failure could be detected as soon as possible;

e The maximum cardinality ordering (MCO) heuristic: MCO can be seen as a crude
approximation of MWO.

Let’s continue over the mentioned sample problem in Figure 3.1. To make less
tracking to the back in the used search algorithm, the variable and the value selection
should be done well. For example, after the assignments for WA=red and NT =green, there
is only one possible value for SA, so it makes sense to assign SA=blue next rather than
assigning Q. In fact, after SA is assigned, the choices for Q, NSW, and V are all forced.

This intuitive idea, choosing the variable with the fewest “legal” wvalues is the fail first
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princible. Starting from the most constrained variable causes a failure soon, thereby the
search tree is pruned at beginning of the search.

On the other hand, The FFP heuristic may not always help at all in choosing the first
region to color in Australia, because in the beginning, every region has three legal colors.
In this case, the degree heuristic comes in handy. It attempts to reduce the branching factor
on future choices by selecting the variable that is involved in the largest number of
constraints on other unassigned variables. In Figure 3.1, SA is the variable with the highest
degree, 5; the other variables have degree 2 or 3, except for T, which has 0. In fact, once
SA is chosen, applying the degree heuristic (MBO) solves the problem without any false
steps. Any consistent color cen be chosen at each choice point and still arrive at a solution
with no backtracking. The minimum remaining values (FFP) heuristic is usually a more
powerful guide, but the degree heuristic can be useful as a tie-breaker.

Once a variable has been selected, the algorithm should decide on the order in
which to examine its values. So that the least constraining value heuristic can be effective
in some cases. It prefers the value that rules out the fewest choices for the neighboring
variables in the constraint graph. For example, suppose that in Figure 3.1 the partial
assignment are generated with WA=red and NT =green, and the next choice is for Q. Blue
would be a bad choice, because it eliminates the last legal value left for Q’s neighbor, SA.
The least constraining value heuristic therefore prefers red to blue. In general, the heuristic
is trying to leave the maximum flexibility for subsequent variable assignments. Of course,
if all the solutions are tried to be found to a problem, not just the first one, then the ordering
does not matter because every value should be considered. The same holds if there are no

solutions to the problem.

3.4. Optimization Problems

In applications such as industrial scheduling, some solutions are better than others.
In other cases, the assignment of different values to the same variable incurs different costs.
The task in such problems is to find optimal solutions, where optimality is defined in terms
of some application specific functions. These problems are called Constraint Satisfaction

Optimization Problems (CSOP) to distinguish them from the standard CSP.
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Not every CSP is solvable. In many applications, problems are mostly over
constrained. When no solution exists, there are basically two things that one can do. One is
to relax the constraints, and the other is to satisfy as many of the requirements as possible.
The latter solution could take different meanings. It means labelling as many variables as
possible without violating any constraints. It also means labelling all the variables in such a
way that as few constraints are violated as possible. Such compound labels are actually
useful for constraint relaxation because they indicate the minimum set of constraints which
need to be violated. Furthermore, weights could be added to the labelling of each variable
or each constraint violation.

In other words, the problems can be for maximizing the number of variables
labelled, where the variables are possibly weighted by their importance or for minimizing
the number of constraints violated, where the constraints are possibly weighted by their
costs.

These are optimization problems, which are different from the standard CSPs

defined previouly in this chapter. This class of problems is called the Partial CSP (PCSP).

Definition 3.3: A partial constraint satisfaction problem (PCSP) is a quadruple (Tsang
1993):

(Z,D,C, g)
where (Z, D, C) is a CSP, and g is a function which maps every compound label to a
numerical value, i.e. if cl is a compound label in the CSP then:

g:cl — numerical value (3.1

Given a compound label cl, g(cl) is called the g-value of cl.

The task in a PCSP is to find the compound label(s) with the optimal g-value with
regard to some (possibly application-dependent) optimization function g. The PCSP can be
seen as a generalization of the CSOP defined above, since the set of solution tuples is a
subset of the compound labels. In a maximization problem, a PCSP (Z, D, C, f) is
equivalent to a CSOP (Z, D, C, g) where:

g:(cl)=

f(cl) if cl is a solution tuple
3.2)

—oo  otherwise ( g:(cl) =00 in a minimization problem)
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Branch and bound (B&B) is the most used optimization algorithm for solving
CSOPs. However, since CSPs are NP-complete in general, complete search algorithms may
not be able to solve very large CSOPs. Preliminary research suggests that genetic
algorithms (GAs) can be able to tackle large and loosely constrained CSOPs where near
optimal solutions are acceptable. Tsang and Warwick (1990) report preliminary but
encouraging results on applying GAs to CSOPs.

The CSOP can be seen as an instance of the partial constraint satisfaction problem
(PCSP), a more general problem in which every compound label is mapped to a numerical
value. Freuder (1989) gives the first formal definition to the PCSP. Two other instances of
PCSPs are the minimal violation problem (MVP) and the maximal utility problem
(MUP), which are motivated by scheduling applications that are normally over constrained
(Tsang 1993). Freuder and Wallace (1992) define the problem of “satisfying as many
constraints as possible” as the maximal constraint satisfaction problem and tackle it by

extending standard constraint satisfaction techniques.
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CHAPTER 4

SIMULATED ANNEALING

Simulated Annealing (SA) is a heuristic algorithm for the global optimization
problems. Its name and inspiration comes from the physical process of annealing in
metallurgy, which involves the collection of many particles in a physical system as it is
cooled.

The method was an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo
method to generate sample states of a thermodynamic system, invented by Metropolis et al.
(1953). The first complete Simulated Annealing optimization method was searched by
Kikpatrick et al. (1982).

In 1982 Cérny developed independently an simulation algorithm based on
thermodynamics which has been called later Simulated Annealing, too. However he did not

publish his work until 1984, two years after Kirkpatrick.

4.1. Physical Background

In the simulated annealing (SA) method, each point S of the search space is
analogous to a state of some physical system, and the function E(S) to be minimized is
analogous to the internal energy of the system in that state. The task is to bring the system,
from an arbitrary initial state, to a state with the minimum possible energy.

Simulated Annealing algorithm is based on the annealing process in the physics of
solids. In this physical process, the solid is first heated to a high temperature and then
cooled slowly down to the original temperature. The high temperature provides the particle
of the solid with a very high mobility. Hence, the particles can reach locations all around
the solid. If the temperature is decreased slowly enough, all the particles of the solid

arrange themselves such that the system will have minimal bounding energy.
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In the physics of the solids, the particles of the solid are characterized by the
probability P{E} of being in a state with energy E at the temperature T. The probability is

given by the Boltzman distribution:

P{E}:(Z(IT)xekejT] (4.1)

where kg is the Boltzmann constant and Z(T) is a temperature dependent normalization

factor. It is more reasonable that the particles of the system are in high energy states at high
temperatures than at lower temperatures (Metropolis, et al. 1953).

The procedure of repeating the basic step until thermal equilibrium is reached is
called a Metropolis loop. In Figure 4.1 the Metropolis loop is embedded in an outer loop, in
order to adjust the temperature. One can controll the number of steps that are executed in
each Metropolis loop by the adjust function, Adjust and ReAdjust, for the exit variable.

According to the local variation of the total energy of the system, a particle can be
moved to a new location. It is more probable that the particle will move to a lower energy
state than to a higher energy state. By first travelling over the higher energy states or just by
tunneling through the high energy barriers on the way, a new distant lower energy state can

be obtained.

algorithm Metropolis(sy,T)
/* 8¢ is the initial state */
/* T is the temperature */
exit := false;
S =8}
while exit == f alse do
exit := Adjust;
s’ := Displace(s);

—(e.'—e )/ (ks T
if random < € (8'-es)i(keT)

exit := ReAdjust;
s:=s';

then

endif
endwhile
endalgorithm

Figure 4.1. Pseudocode of the Metropolis Algorithm
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4.2. Mathematical Model

Algorithm of an annealing works on a state space, which is a set with a relation. The
elements of the set are called states. Each state represents a configuration. S is denoted to
state space and its cardinality is shown by |S|. A cost function, € : S—R., assigns a positive
real number to each state. This number is explained as a quality indicator. The lower is
chosen this number; the better is the configuration that is encoded in that state. By defining
a neighbor relation over S, @ < SxS, called a topology, is endowed to the state set S. The
elements of @ are called moves, and the states (s, s’)e @ connected via a single move are
called neighbors. Similarly, the states (s, s’) € w* are said to be connected via a set of k
moves. Due to it is wanted that any state to be connected to any other state by a finite

number of moves, it is required the transitive closure of @ to be the universal relation of S:

Ua)k=SxS. (4.2)

k=1
4.2.1. Transitions

As already mentioned, the annealing algorithm operates on a state space. At the end
of the execution of a step exactly one state is the current state. The probability that a given
state will be the current state depends only on its cost, the cost of the previous state and the
value of the control parameter i.e., the temperature, T. The theoretical model for describing
the sequences of current states generated by the annealing algorithm is known as a Markov
chain. The essential property of Markov chains is that the next state does not depend on the
states that have preceded the current state (Feller 1950, Isaacson and Madsen 1976, Seneta
1981). The probability that s" will be the next state, given that s is the current state is
denoted by 7 (s, s, T) and is called the transition probability. The transition probabilities
for a certain value of T can be conveniently represented by a matrix P(T), the transition
matrix. The transition matrix of the Metropolis loop does not change from step to step,

because T does not change. Markov chains with constant transition matrices are called
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homogeneous. The Metropolis loop can therefore be modeled by a homogeneous Markov
chain.
The transition probabilities of the states that are not connected by a move is zero.
For other pairs of distinct states, the probability is determined by the probability that, given
the first state, the second one is selected, and the probability that, once selected, the second
state is accepted as the next state. The probability that the state does not change has to be
such that the sum of all transition probabilities with that state as first state is one, because
there is always exactly one current state. The complete Markov model for the annealing is
therefore;
a(e(s),e(s"),T)B(s, s") ifs#s'
7(s,8.T)=1;_ D" a(e(s),&(s"),T)B(s, s")  otherwise 43)

where « is the acceptance probability function, and f is the selection probability function.
Note that the selection probability is never zero for a pair of states connected by a single
move. Another function, called the acceptance function, assigns a positive probability
measure to a pair of costs, and a positive real number, the temperature. Therefore, «

should be chosen in the values of;

a:RI—(0,1]cR. (4.4)
4.2.2. Convergence to Optimum

In the years of 1980s, several researchers independently proved that it is possible to
design a simulated annealing algorithm so that the probability to be in a state with the
minimum cost approaches one as the temperature approaches zero (S. German and D.
German 1984, Gidas 1984, Gelfand and Mitter 1985, Lundy and Mees 1986, Mitra, et al.
1986). This property is called convergence. Briefly, the algorithm is defined to be
convergent if the global minimum is found with certainty.

For finite search spaces S, an efficient condition for convergence is detailed balance
(Otten, et al. 1989), requiring that the probability flows between any two states s;, s; in the

state space are equal:
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7, (T)or (T)=7 (T)er (T) (4.5)
where 7, (T) is the stationary probability distribution of the state s; at temperature T. The
stationary probability distribution is a vector z(T )= (72'1 (T )z, (T ),...,72"5‘ (T )) which satisfies
the equation

7 (T)eP(T)=7"(T) (4.6)

where P(T) is the transition matrix and 7' is the transpose of 7 . In other words, the
stationary probability distribution is a left eigenvector of the transition matrix, associated
with the eigenvalue one.

Neither the existence nor the uniqueness of a stationary probability distribution is
guaranteed for a general transition matrix P. However, if the transition matrix P is
irreducible and aperiodic, then there exists a unique stationary distribution 7 (Motwani, et
al. 1995). A transition matrix P(T) is irreducible if its underlying search space graph is
strongly connected and, for all s; € S and s;e Q,;, P;(T) > 0 (Romeo, et al. 1991). The
transition matrix is called aperiodic if its underlying search space graph has no state to
which the search process will continually return with a fixed time period. A sufficient

condition for aperiodicity is that there exist a state s;e S such that P;; # 0 (Romeo, et al.

1991).

e Proof of Convergence

If the global minimum is reachable from the initial configuration then the algorithm

can be called as convergent. Finding the global minimum requires that;

=1 (4.7)

hm‘x i€ ROpt

i——
where x; can be reachable from a configuration x; if there exists a path X; Xi+1, Xi+2, . Xitn = Xj

for some n>0.

Let the probability to generate a configuration x be g(X,Sk) at temperature Ty and
the probability of not generating the configuration be 1— g(X,Sk ) The subscript k denotes

the index of the cooling cycle.
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The global minimum is found with certainty if there is a possibility that every
possible combination of optimization variables x is generated at each temperature. To be
sure that every possible combination of optimization variables is generated at least once
requires that the possibility of not generating an arbitrary configuration vanishes. That leads

to satisfying equation;
> g(x,5,)=» (4.8)
k=k

which can be said that every possible combination is visited infinitely often in time. This is

the most often used form of the proof of the convergence in Simulated Annealing.
4.3. Simulated Annealing Algorithm

In Figure 4.2, the pseudocode of the simulated annealing algorithm is given. The
particles are displaced randomly with a probability function using variance s = si at the
same temperature T = Ty as in the Monte Carlo method. The subscript k denotes the index
of the cooling cycle. Transitions at one temperature are made only until the thermal
equilibrium is reached. After reaching the equilibrium, the temperature is lowered. If the
system is not frozen nor is the global minimum found, the loop is repeated and the loop
index k is incremented. The system is frozen when T < Ty, where Tf is a user defined final
temperature.

In Figure 4.2 the variables k and 1 are the loop variables. | marks the iteration at
temperature Ty. k is increased after the thermal equilibrium at temperature Ty is reached.
The temperature Ty and the variance sx control the randomization process.

There are different kinds of Simulated Annealing algorithms. In this thesis the most

basic and the used methods are mentioned.
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Figure 4.2. The Simulated Annealing (Source: Starck 1996)
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4.3.1. Original Simulated Annealing

This method was dedicated to discrete optimization by Kirkpatrick et al. (1983). It

was not proven to be convergent. They used the cooling function as shown as below:

T,.=al ,=a'T, (4.9)
where @ €[0,1] is a scaling constant. Useful values for a have been claimed to
be 0.8 (x(0.9.

SA has shown successful applications in a wide range of combinatorial optimization

problems, and this fact has motivated researchers to use SA in simulation optimization.
4.3.2. Boltzmann Annealing

Boltzmann Annealing or Classical Simulated Annealing was studied by Geman et
al. (1984). They first gave an essential condition for the convergence of the annealing

method to the global minimum. The Gaussian distribution was used for one variable;

~(x-x,)?
g(x,s,)= ! e %Sk (4.10)

\J27S,

where Xy is the current value of the optimization variable x. The temperature was calculated

by;
To— o kel (4.11)
ln(k + 1)
If Equation 4.8, the formulation of the proof of convergence, is applied to this

algorithm;
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(x-x)2 125,

[Ms
T:

>c, > e " (4.12)

where ¢y is an arbitrary constant and ko is an arbitrary cooling cycle (Ingber, 1989). The

superscript of i marks the i™ dimension in the set of optimization variables x.
4.3.3. Fast Annealing

This method is a semi local search and consists of occasional long jumps (Szu, et al.
1987). It is the improvement of Boltzmann Annealing method. In the fast annealing,
Cauchy distribution is used instead of Gaussian Method which is used of Boltzmann
Annealing. It can be formulated as below;

Sk
al(x=x,)+s;]

g(x,s,)= (4.13)

This distribution has higher probability for values x far from X, than the Gaussian
distribution. Thus the probability of occasional long jumps is greater and leaving local
minima is more likely.

Another difference is the cooling schedule in Cauchy distribution. It has a faster
schedule;

TO
= . 4.14
1+k ( )

k

It is also proved to be convergent as Boltzmann method.
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4.3.4. Very Fast Simulated Reannealing

Very Fast Simulated Reanneling algorithm permits a fast exponential cooling
schedule rather than the cooling schedules of the Fast Annealing and the Boltzmann
Annealing (Ingber, et al. 1989).

As generation probability, they defined a new density function;

1

27r(|Ax'|+sk)ln(1+%kj

where AX' is a normalized step (X-Xo)/(Xmax-Xmin)- Xmin 1S the lower limit of optimization

g(x,s,)= (4.15)

variable x and X,y is the upper limit. Both upper and lower limits must be given for every
optimization variable. The new generation function was needed in order to satisfy the proof
of the convergence.

For the cooling function, this method has a very fast decreasing function;
T, =T  exp(—ck'") (4.16)

where c is a scaling constant.

It is also proved to be convergent as the previous methods.
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CHAPTER 5

DESCRIPTION OF THE TIMETABLING PROBLEM AND
SOLVING METHODS

In this chapter, the timetabling problem of Computer Engineering Department of
[zmir Institute of Technology (IYTE) is defined and the solving techniques are explained.
Due to the university course timetabling problem is an optimization problem in which a set
of events has to be scheduled in timeslots and located in suitable rooms, the most suitable

methods are tried to be chosen, such as CSP and SA.

5.1. Problem Representation

As a sample case, 2007-2008 Fall Semester is handled. This problem consists of 5
classes (including postgraduate classes) with 5 classrooms and a laboratory that computer
engineering has. In this case, any constraint related with classrooms is ignored such as
capacity of the rooms or room availability, because each class has its own classroom in
computer engineering department. Totally there are 20 lectures that are given by 8
instructors in this case study as shown in Table 5.2. Lecture durations can change between
3 to 5, but the lectures that take 5 time slots are divided as 3 slots for theoretical and 2 slots
for laboratory lectures. Hence, the laboratory lessons are considered as a separate lesson of
which duration is 2 time slots and they are taken in the laboratory. There can be maximum
8 time slots for one day in IYTE, which means there are 40 time slots per week.

The aim of this thesis is to fulfill more demands of the instructors and the students
than the used course timetable of the mentioned semester. Also all the additional
constraints have to be satisfied. They are divided into two categories as mentioned in
Chapter 2; hard constraints that must be satisfied and soft constraints expressing the

preferences.
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The hard constraints that are taken into account are listed as below;

Each instructor can take only one class at a time.

Clashes must not occur between the lectures for students of one class.

If any instructor has some requests that have to be satisfied, their demands
must be fulfilled.

If any class has to take lectures from other departments, the time slots that
are given from those departments must be allowed to those lectures.

All lectures must start and finish in the same day.

The soft constraints that are taken into account are:

The number of alternatives which students can attend should be maximized.
The student conflicts between lectures should be minimized.
Friday should be free for all classes.

Preferences of instructors should be fulfilled.

All these constraints, hard and soft constraints of all the instructors and classes, are

given in detailed form in the Table 5.1 and Table 5.2.

Table 5.1. Hard and Soft Constraints of the Classes

Hard Constrained SOft.
Classes Constrained
Days
Days
Monday, Tuesday
morning, .
Class 1 Wednesday, Friday Friday
evening
Monday morning, .
Class 2 Tuesday, Thursday Friday
Class 3 Thursday Friday
Class 4 ThursdayT Friday Friday
evening
Class 5 Frida
(Postgraduate class) Y
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Table 5.2. Hard and Soft Constraints of the Instructors and the list of their Lectures

Instructor Hard Soft
Course Name and Course Code Constrained | Constrained
Name
Days Days
Introduction to Computer Algorithmic &
Ahmet Programming CENQ 113 Monda All
Koltuksuz Theory of (;omputatlon CENG 213 y mornings
Asymmetrical Cryptography (Postgraduate
Course) CENG 543
Belgin Data Structures I CENG 211 Monday and
) Wednesday .
Ergeng Systems Theory & Analysis CENG 411 Friday
Artificial Intelligence and Expert Systems
Bora CENG 461
o . Wednesday
Kumova Artificial Intelligence (Postgraduate Course)
CENG 520
. Stochastic Processes CENG 315 Tuesday,
Halis . o . Monday and | Wednesday,
Piiskiilcii Introductéon to Statistical Data Processing Friday Thursday
(Postgraduate Course) CENG 510 evenings
Serap Operating Systems CENG 313
Atay Computational Number Theory
(Postgraduate Course) CENG 549
Introduction to Computer Engineering &
Orientation CENG 111
Sitki Senior Design Project & Seminar I CENG 415 Monday
A Senior Design Project & Seminar Il CENG evening and
ytag
416 Wednesday
Computer Applications in Medicine and
Biology (Postgraduate Course) CENG 581
Tolea Communication Techniques and Protocols Wednesday,
& CENG 321 Thursday
Ayav . .
Computer Architecture CENG 311 and Friday
Network Programming CENG 421 Monday,
Tugkan Object Oriented Programming CENG 352 Wednesday | Tuesday and
Tuglular Advanced Network Security (Postgraduate and Thursday Frld?)’
Course) CENG 547 mornings
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5.2. Approaches to Solve the Problem

The approach that is taken for solving the timetabling problem of the computer
engineering department of IYTE consists of two phases, providing a hybrid method:
e Constraint Programming: It is to obtain an initial feasible timetable.

e Simulated Annealing: It is to improve the quality of the timetable.

The first phase, Constraint Programming, is used primarily to obtain an initial
timetable satisfying all the hard constraints. The second phase, Simulated Annealing, aims
to improve the quality of the timetable, taking the soft constraints into account. The method
used in the second phase is optimization method, which looks for to optimize a given
objective function.

The initialization strategy for the SA algorithm has a crucial influence on the
performance of the algorithm. So it is good to make the initial solution as good as possible

in as little time as possible. Constraint programming is a good choice for this criterion.

5.2.1. Constraint Programming Phase

Constraint Programming techniques have been studied since 1990s. Due to they
base on backtracking search, at the beginning they have been developed in Prolog, where
backtracking and declarativity had been already implemented. In this way Constraint Logic
Programming (CLP) was created as an addition to Logic Programming (LP). The languages
from this area, which are still popular, are CHIP, Sicstus, Eclips to name a few. Then CP
leaves a Prolog and comes into two branches one of them is C/C++ libraries (e.g. ILOG)
and the second is multiparadigm languages (e.g. Mozart/OZ). All of these languages have
two common features constraint propagation and distribution (labeling) connected with
search.

However, real life problems are generally over constrained and these Prolog based
programs can not be enough due to their local search techniques. For tight problems that

are normally con not satisfy all constraints, one may want to find compound labels which
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are as close to solutions as possible, where closeness may be defined in a number of ways.
This approach is mentioned in Chapter 3, which is called Partial Constraint Satisfaction
Problems.

For all these reasons, the chosen tool to obtain the initial timetable is based on a
partial constraint solver. The constraint solver library (Muller 2005) contains a local search
based framework that allows modeling of a problem using constraint programming
primitives (variables, values, constraints).

The search is based on an iterative forward search algorithm. This algorithm is
similar to local search methods; however, in contrast to classical local search techniques, it
operates over feasible, though not necessarily complete, solutions. In these solutions some
variables may be left unassigned. All hard constraints on assigned variables must be
satisfied however. Such solutions are easier to visualize and more meaningful to human
users than complete but infeasible solutions. Because of the iterative character of the
algorithm, the solver can also easily start, stop, or continue from any feasible solution,

either complete or incomplete.

procedure SOLVE(initial) //initial solution is the parameter
iteration = 0; // iteration counter
current = initial; // current solution
best = initial; // best solution

while canContinue(current, iteration) do
iteration = iteration + 1;
variable = selectVariable(current);
value = selectValue(current, variable);
UNASSIGN(current, CONFLICTING VARIABLES(current, variable, value));
ASSIGN(current, variable, value);
if better(current, best) then

best = current;

endif

endwhile

return best

endprocedure

Figure 5.1. Pseudocode of Iterative Forward Search
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As seen in the Figure 5.1, during each step, a variable X is initially selected. As in
backtracking-based searches, an unassigned variable is selected randomly. Sometimes an
assigned variable can be selected when all variables are assigned but the solution found so
far is not good enough (for example, when there are still many violations of soft
constraints). Once a variable X is selected, a value x from its domain Dy is chosen for
assignment. Even if the best value is selected, its assignment to the selected variable may
cause some hard conflicts with already assigned variables. Such conflicting assignments are
removed from the solution and become unassigned. At the end of the search, the selected
value is assigned to the selected variable.

The algorithm tries to move from one partial solution s to another via repetitive
assignment of a selected value x to a selected variable X. During this search, the feasibility
of all hard constraints in each iteration step is enforced by unassigning the conflicting
assignments7 . The search is terminated when the requested solution is found or when there
is a timeout expressed, for example, as a maximal number of iterations or available time
being reached. If the best solution is found, it will return (Muller 2005).

The functions used in the above algorithm can be defined as (Muller 2005);

e The termination condition (function canContinue).
e The solution comparator (function better).
e The variable selection (function selectVariable).

e The value selection (function selectValue).

Structure of the Problem Modelling can be explained as below:

The model of the case study problem consists of a set of resources, a set of activities
and a set of dependencies between the activities. The time slots can be assigned a
constraint, either hard or soft; a hard constraint indicates that the slot is forbidden for any
activity, a soft constraint indicates that the slot is not preferred. These constraints are called
as “time preferences”. Time preferences can be assigned to each activity and each resource,

which indicate forbidden and not preferred time slots (Muller 2005).
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e Activity:

The lectures are called activities in the timetabling model. Every activity is
defined by its duration (expressed as a number of time slots), by time preferences,
and by a set of resources. Activities require these set of resources. If there is a need
of resource sets one can create a resource group that the activity requires. These
resource groups can be either conjunctive or disjunctive: the conjunctive group of
resources means that the activity needs all the resources from the group, the
disjunctive group means that the activity needs one of the resources among the
alternatives. For instance, a lecture, which will take place in one of the possible
classrooms, will be taught for all of the selected classes.

e Resource:

Resources also can be described by time preferences. Only one activity can
use the resource at the same time. Each resource can represent a teacher, a class, a
classroom, or another special resource at the lecture timetabling problem.

e Dependencies:

Dependencies define and handle the relations between the activities. It
seems sufficient to use binary dependencies only those define the constraints
between the activities. There are five operators between the activities that can be
used; before; closely before; after; closely after; no conflict; concurrently. If one
activity has to start before another activity one can use “Before” constraint in the

model.

The solution of the problem defined by the above model is a timetable where every
scheduled activity has assigned its start time and a set of reserved resources that are needed
for its execution. This timetable must satisfy all the hard constraints, those defined in the
beginning of this chapter. If they are defined again according to this structure;

e Every scheduled activity has all the required resources reserved.

e Two scheduled activities cannot use the same resource at the same time.

e No activity is scheduled into a time slot where the activity or some of its
reserved resources has a hard constraint in the time preferences.

e All dependencies between the scheduled activities must be satisfied.
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Furthermore, the number of violated soft constraints are tried to be minimized.

5.2.2. Simulated Annealing Phase

The timetable produced by the constraint programming algorithm is used as the
starting point for the simulated annealing phase of the hybrid method. This phase is used to
improve the quality of the timetable.

The application of simulated annealing to the timetabling problem is relatively
straight forward. The particles are replaced by elements. The system energy can be defined
by the timetable cost for timetable modeling. An initial allocation is made in which
elements are placed in a randomly chosen period. The initial cost and an initial temperature
are computed. To determine the quality of the solution, the cost has a critical role in the
algorithm just as the system energy role in the quality of a particle being annealed. The
temperature is used to control the probability of an increase in cost and can be likened by
the temperature of a physical particle (Abramson 1991).

The change in cost is the difference of two costs; one of them is the first cost that is
before the randomly chosen element is changed and the second one is the cost after the
randomly chosen element is changed of an activity. The element is moved if the change in
cost is accepted, either because it lowers the system cost, or the increase is allowed at the
current temperature. According to the timetabling problem model the cost of removing an
element usually consists of a class cost, an instructor cost and a room cost.

Because each class has one room, there is no room constraint in this problem. In
addition it is known that which lecture is given by which instructor. According to these
properties of the problem, the model of this studied problem is simpler than the usual ones;
the only element that can change the cost is the start times of the activities.

The typical SA algorithm accepts a new solution if its cost is lower than the cost of
the current solution. Even if the cost of the new solution is greater, there is a probability of
this solution to be accepted. With this acceptance criterion it is then possible to climb out of
local optima. The used algorithm in this study can be seen in the Figure 5.2 (Duong, et al.

2004).
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Input: Constraint programming solution of the problem s,
Select an initial temperature t, > 0
Select a temperature reduction function a;
Calculate initial cost of sq
repeat
repeat
if nrep mod 3 = 0 then
Simple Neighborhood /* s is a neighbor solution of sg */
0 =1(s) — f(so); /* compute the change in cost function*/
if 0 <0 then
So =S
else
generate random x € [0,1]; /* x is a random number in range 0 to 1 */
endif
if x <exp(- 0 /t) then
So =S
endif
endif
if nrep mod 3 = 1 then
Swap Neighborhood /* s is a neighbor solution of s, */
0 = 1(s) — f(s); /* compute the change in cost function*/
if 0 <0 then
So =S
else
generate random x € [0,1]; /* x is a random number in range 0 to 1 */
endif
if x <exp(-0 /t) then
So =S
endif
endif
if nrep mod 3 =2 then
Random Swap Neighborhood /* s is a neighbor solution of sq */
0 = f(s) — f(sp); /* compute the change in cost function*/

if 0 <0 then
So=S
else
generate random x € [0,1]; /* x is a random number in range 0 to 1 */
endif
if x <exp(-0 /t) then
So =S
endif
endif
until iteration_count = nrep;
t=a(t)

until stopping condition = true.
/* sg is the approximation to the optimal solution */

Figure 5.2. Simulated Annealing Algorithm
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From this algorithm, in Figure 5.2, it can be seen there are several aspects of the SA
algorithm that are problem oriented. Design of a good annealing algorithm is very
important, it generally comprises three components: Neighborhood structure, cost function

and cooling schedule.

5.2.2.1. Neighbourhood Structure

In order to apply the SA algorithm a neighborhood structure which defines for each
solution a set of neighboring solutions must be included. This is the key component of any
simulated annealing method. In this thesis three algorithms are tried and all of them are
used one by one. Although they are tried to be used individually in the SA algorithm, the
most effective result is obtained when they are used together. In each iteration of SA
algorithm indexed by n., these three algorithms are executed in turns.

The first one of the neighbor algorithm is simple neighborhood searching. It
randomly chooses one activity and one slot. The chosen slot is assigned as the start time of
the selected activity.

The second algorithm selects randomly two activities and swaps their start times. It
is called swap neighborhood.

The third one of the neighbor algorithms chooses randomly two activities and two
slots which are referred as random swap neighborhood in this study. These two slots are

assigned as the start times of the randomly selected activities.

5.2.2.2. Cost Calculation

For the case of course scheduling, the cost calculation tries to show the influences
of both the hard constraints and soft constraints. Penalty scores of both the hard constraints
and soft constraints can be seen in the below. Each constraint is defined by a penalty score
function.

The conditions that the timetable has penalties for hard constraints are:
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If the activity slots are hard slots that violates the hard constraints of that
activity;

F =2 (Tx10%), (5.1)

n
i=1

where n is the number of activities, T, is the number of timeslots which

are forbidden to the activities, which are also called the hard slots.
If the same class or same instructor is assigned to two activities at the
same time; (This is only to calculate the timetable solution of constraint

programming.)

F czZZZ(Iijx106)a (5.2)

where n is the number of activities, |;; is the number of instructors who

give two lectures, 1 and j, at the same time.

n-1 n

F csZZZ(CinIO6)o (5.3)

i=l j=i+l
where n is the number of activities, C;; is the number of classes which
are given to two lectures, 1 and j, at the same time.
If the activity slots are separated into two days. (Each activity must start
and finish in the same day).

X =1 if course is separated into two days, 0 otherwise.

F o= (X x10°), (5.4)

n
i=1

where n is the number of activities, X, is the number of timeslots which

are given to lectures, i.

The conditions that the timetable has penalties for soft constraints are:

If the activity slots are soft slots that violates the soft constraints of

which activity;

n

F C5=Z(Yi><102), (5.5)
i=1
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where n is the number of activities, Y ,is the number of timeslots which

depends on preferences of instructors. It can be inferred soft slots either.
e If there is any student conflict between the previously failed lectures,
which a student has to take, and the regular lectures, which are yet to be

taken.

n-1 n

F o= Z(Sijxmz)a (5.6)

i=1 j=i+l
where n is the number of activities, S; is the number of students who

take two lectures of different classes, i and j, at the same time. If a
student follows an irregular program, the lecture conflicts are minimized
by this constraint. It is taken as a soft constraint, otherwise course

scheduling problems would be very strict and had no solution.

To determine the student conflicts, the student and the lecture data are obtained
from the university database system, which can be seen in the appendices, and the irregular
situations are identified; such as if a student who is in the third class has some other
lectures from upper or lower classes and these lectures conflicts with each other, then these
kind of conflicts are tried to be minimized.

For hard constraints the given penalty is very high such as 10 to the power 6 and for
the soft constraints the given penalty is smaller such as 100.

Thus the cost function F can be calculated as the sum of those hard and soft
constraints. It can be seen in the following formula and should be minimized:

F=F +FtF+F o ,+F+F . (5.7)

5.2.2.3. Cooling Schedule

The used cooling function is called as geometric cooling schedule. In every Nrep
iterations, the temperature, t, is multiplied by o, where nrep and o are given parameters of

the algorithm (see in Figure 5.2).
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The parameter of Nrep 1s chosen as 3, which returns the best solution cost within an
acceptable run time. To determine Ny, several different values are experimented, namely,
1,2,3,6,10,5.

To determine starting temperature, a rough start temperature ty = 10000 is chosen
which is hot enough to allow moves to almost neighbourhood state, and the SA algorithm
tries to derive the real start temperature Ty basing on the functional dependence between the

starting acceptance probability y, (70% to 80%) and the starting temperature T.
The functional dependence between the starting acceptance probability y, and the

starting temperature T is given as follows (Poupaert and Deville 2000):

20=2({61.8,.810n8,).T)

Lo (5.8)
:HZexp(—é'i/T 0)+(m—n)/m

where 5= f(s,)— f(s,), so is the initial solution, s; is a neighbor solution of sy, f is the cost

function, m is the size of neighbor solution space. The solution space is calculated by
(n*(n-1)/2) formulation.
For the derivation of the starting temperature T, from the starting acceptance

probability y,(%70 to %80) using Equation 5.8, a small algorithm is used (Duong, et al.

2004). This algorithm has to be run only once for each execution of the SA algorithm. The
algorithm is given in Figure 5.3.

To determine the final temperature Ty, since there are no accurate recommendations
or the value in literature, several final temperatures are experimented, namely, 0.5, 0.05,
0.005, 0.0005, and 0.00005. Finally, 0.005 is chosen for Tf which returns the best solution

cost.
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Step 1: m :=n(n-1)/2 ; /* n is the number of exams */
compute 0;, I <i<m;

to := 10000;
ti=top;j:=0;
repeat
=3+t =t
compute y = )((to) (using Equation 5.8);
until ¥ >0.8;
Step 2: t.,q ;= t; exit := false;
repeat

t= (tO + tend)/z;

compute y = )((t) (using Equation 5.8);

if 0.7 <y <0.8 then
exit := true

elseif ¥ <0.7 then
tend =t
else
th:=t

endif

until exit;
/* t is the desired starting temperature */

Figure 5.3. Algorithm to Determine Starting Temperature

To determine the reduction parameter « for geometric cooling, the formula
proposed by Burke et al. (2001) is used which allows defining a value for the parameter «

based on the predefined time to run for the simulated annealing.
a=1=(In(T ) =In(T )}/ N e (5.9)
The time that is wanted the SA algorithm to run for is represented in the number of
SA steps, Nmove- A value can be computed for the parameter « based on the predefined
time (Nmove) that the user wants the SA algorithm to run for with the fixed values for T and
T, using Equation 5.9. This mechanism is called time predefined simulated annealing

(Burke, et al. 2001). It not only helps to increase the efficiency of the SA algorithm but also

helps to make simulated annealing experiments easier.
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CHAPTER 6

CONCLUSION

In this chapter, the experimental results are evaluated and some comparisons are
done between the different initial timetable solutions. In addition, some comments on

future works that can be performed are made.

6.1. Experimental Results

The IYTE Computer Engineering Timetabling Problem is implemented with
Eclipse SDK Version 3.1.2 with Java Programming Language and experimented on an Intel
Core(TM) Duo 2.40 GHz PC.

In the first phase, the initial timetable solution of the timetabling problem is
completed in 5 minutes. The constraint solver gives the output folder for any difficulty
level of problem (can be loosen or tighten) in the same time duration.

For the second phase, simulated annealing part, the solution can be obtained in
different time durations. According to the problem difficulty and the chosen parameter
values for the SA algorithm, the execution time can change. For instance run times on the
same computer resources with the number of SA steps, Nmove, changing from 5 to 3000 are
given in the Table 6.1. As seen from the table, if the number of SA steps high enough, such
as the rate of cooling slow enough, the solution cost will improve a lot, i.e. a good quality
solution comes out, but when the number of SA steps is already too high, the solution will
not improve much (Duong, et al. 2004). Briefly, the advantage of time predefined search
algorithms over traditional local search algorithms can be explained as; in traditional local
search algorithms there are a common practice to run the algorithm several times in order to
get the best possible value of the cost function. In contrast, in time-predefined algorithms
the aim is to use all the time effectively in a single search for a high quality solution

(Burke, et al. 2001).
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Table 6.1. Run Times

Niove 5 10 50 100 500 1000 3000
Run time
0.001 0.8 3 6 29 60 154
(second)
Cost 1016200 | 2018800 4100 3500 3300 3400 3300

In this thesis, the experimental results are obtained with the fixed value of Nyove =
500 which returns the best results in an appropriate time. Because the aim of this thesis is to
find a solution timetable to IYTE Computer Science Engineering Department, the
parameter of predefined time is not studied deeply.

Due to SA is a heuristic algorithm, several different algorithms are experimented in
different combinations. In the below tables the experimental results are given. These results
are obtained by taking the average of 8 trials of executions. Table 6.2 shows the costs and
the durations of neighborhood searching algorithms independently. Table 6.3 shows the
costs and the durations in different combinations of neighborhood searching algorithms.
Table 6.4 shows the costs and the durations of these algorithms when they are executed in
each iteration of SA algorithm indexed by n., both in turns and sequentially.

The used values of parameters are listed as below which return the best solution
costs within an acceptable run time:

Nirep: 3

Nimove: 500

Tinitiar: 10000

Tinai: 0.005

Stopping Condition: t > 0.0005E-300
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Table 6.2. Costs and the CPU Times of Neighborhood Algorithms Used Independently

Form in SA Algorithm
Simple Swap Random Swap
Initial

Neighborhood Neighborhood Neighborhood

Method

Cost CPU(s) Cost CPU(s) Cost CPU(s)

CPS 3900 29 9300 40 4300 34
Random 5500 28 257000 45 6300 43

Table 6.3. Costs and the CPU Times of Neighborhood Algorithms Used in Several Paired
Combinations in SA Algorithm

Simple-Swap Simple-Random Swap Swap-Random Swap
Initial
Neighborhood Neighborhood Neighborhood
Method
Cost CPU(s) Cost CPU(s) Cost CPU(s)
CPS 3900 28 4900 27 3700 31
Random 3900 28 5400 33 3900 32

Table 6.4. Costs and the CPU times of Neighborhood Algorithms Used in sequentially and
in turns in SA Algorithm Indexed by ny,

All sequentially All in turns
Initial Method
Cost CPU(s) Cost CPU(s)
CPS 4400 76 3500 28
Random 4100 87 3600 28
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In the Simulated Annealing stage, some different neighborhood searching strategies
are experimented. Three different neighborhood searching algorithms are tried in different
combinations as seen from the above tables. Because SA is a heuristic method, several
experiments should be done and the technique that returns the best result in an appropriate
time should be chosen.

Due to some slots remains empty after the scheduling done, trying those slots
decreases the cost and improves the result of the timetable solution. On the other hand
swapping the slots of the lessons can be useful. Hence, both techniques are tried to be used
in an effective way. Among the tables, Table 6.2, Table 6.3, Table 6.4, the best returned
result can be seen in the Table 6.4.

In the Figure 6.1 the cost distribution obtained by the two stage method can be seen.
In the first phase of the hybrid method the initial cost is 17600 which is obtained by the
CSP method. After SA method is implemented the cost is decreased to 3500.

On the other hand the SA algorithm could decreased the cost from 9020200 to 3500
levels without implementing CSP as an initial phase. This result is just same as the two
staged method. The reason of this result is the problem is simple. SA method will be
enough for Computer Engineering Department of IYTE. The cost distribution of the
timetable, which is obtained by implementation of the SA algorithm, can be seen from the
Figure 6.2. The Figure 6.3 is the closer look of the Figure 6.2.

Consequently, the aim of the thesis is successfully reached. If the reference
timetable used in which the 2007-2008 fall semester is compared with the obtained one by
SA algorithm, the difference can be seen obviously. The cost of the reference timetable
prepared by hand was 5011800. The reference timetable and the obtained timetable can be
seen sequentially in the Table 6.5, Table 6.6 (only after CSP), and Table 6.7 (after both
CSP and SA).
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Table 6.5. Used Timetable of IYTE in Winter Semester 2007-2008 (Cost is 5011800)

Days MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY
Hours
08.45— Ceng 311 (3 crdt.) | Ceng 321 (3 crdt.) | Ceng 315 (3 crdt.) Ceng 111 (3 | Ceng 520
09.30 (Tolga Ayav) (Tolga Ayav) (Halis Piiskiilcii) crdt.) (3 crdt.)
Ceng 411 (3 crdt.) | Ceng 581 (3 crdt.) (Sitki Aytac) (Bora Kumova)
(Belgin Ergenc) (Sitka Aytac) Ceng 461(3 crdt.)
(Bora Kumova)
Ceng 510
(Halis Piiskiilcii)
09.45— Ceng 311 Ceng 321 Ceng 211 (3 crdt.) Ceng 111 Ceng 520
10.30 Ceng 411 Ceng 581 (Belgin Ergenc) Ceng 461
Ceng 315 Ceng 510
10.45- Ceng 311 Ceng 321 Ceng 211 Ceng 111 Ceng 520
11.30 Ceng 411 Ceng 581 Ceng 315 Ceng 461
Ceng 510
11.45— Ceng 211
12.30
13.30— Ceng 213 (3 crdt.) | Ceng 313 (3 crdt.) | Ceng 352 (3 crdt.) Ceng 415 (3 | Cengl13
14.15 (Ahmet (Serap Atay) (Tugkan crdt.) (3 crdt.)
Koltuksuz) Ceng 416 (3 crdt.) | Tuglular) (Sitki Aytac) (Ahmet
Ceng 421 (3 crdt.) | (Sitki Aytac) Ceng 311 LAB Ceng 549 (3 | Koltuksuz)
(Tugkan Ceng 543 (3 crdt.) | (2 crdt.) crdt.) Ceng 547
Tuglular) (Ahmet (Tolga Ayav) (Serap Atay) (3 crdt.)
Koltuksuz) (Tugkan
Tuglular)
14.30- Ceng 213 Ceng 313 Ceng 352 Ceng 415 Ceng 113
15.15 Ceng 421 Ceng 416 Ceng 311 LAB Ceng 549 Ceng 547
Ceng 543
15.30- Ceng 213 Ceng 313 Ceng 352 Ceng 415 Ceng 113
16.15 Ceng 421 Ceng 416 Ceng 313 LAB Ceng 549 Ceng 547
Ceng 543 (2 crdt.)
(Serap Atay)
16.30- Ceng 313 LAB
17.15
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Table 6.6. Obtained Timetable of IYTE for Winter Semester 2007-2008 by Constraint

Programming (Cost is 17600)

Days/ MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY
Hours
08.45— Ceng 411 (3 crdt.) | Ceng 213 (3 crdt.) Ceng 111 (3 crdt.)
09.30 (Belgin Ergenc) (Ahmet (Sitki Aytac)
Ceng 311 LAB Koltuksuz)
(2 crdt.) Ceng 315 (3 crdt.)
(Tolga Ayav) (Halis Piiskiilcii)
09.45— Ceng 415 (3 crdt.) | Ceng 411 Ceng 213 Ceng 111
10.30 (Sitki Aytacg) Ceng 311 LAB Ceng 315 Ceng 510 (3 crdt.)
Ceng 520 (Halis Piiskiilcii)
(3 crdt.)
(Bora Kumova)
10.45- Ceng 352 (3 crdt.) | Ceng 321 (3 crdt.) | Ceng 213 Ceng 111
11.30 (Tugkan (Tolga Ayav) Ceng 315 Ceng 510
Tuglular) Ceng 411
Ceng 415
Ceng 520
11.45- Ceng 352 Ceng 321 Ceng 416 (3 crdt.)
12.30 Ceng 415 Ceng 581 (3 crdt.) (Sitki Aytacg)
Ceng 520 (Sitkr Aytac) Ceng 510
13.30- Ceng 352 Ceng 321 Ceng 113 Ceng 211 (3
14.15 Ceng 461(3 crdt.) Ceng 581 (3 crdt.) crdt.)
(Bora Kumova) (Ahmet (Belgin Ergenc)
Koltuksuz)
Ceng 416
14.30— Ceng 311 (3 crdt.) | Ceng421 (3 crdt.) | Ceng 313 (3 crdt.) Ceng 113 Ceng 211
15.15 (Tolga Ayav) (Tugkan (Serap Atay) Ceng 416
Ceng 461 Tuglular) Ceng 543 (3 crdt.) Ceng 549 (3 crdt.)
Ceng 547 Ceng 581 (Ahmet (Serap Atay)
(3 crdt.) Ceng 313 LAB Koltuksuz)
(Tugkan (2 crdt)
Tuglular) (Serap Atay)
15.30- Ceng 311 Ceng 421 Ceng 313 Ceng 113 Ceng 211
16.15 Ceng 461 Ceng 313 LAB Ceng 543 Ceng 549
Ceng 547
16.30— Ceng 311 Ceng 421 Ceng 313 Ceng 549
17.15 Ceng 547 Ceng 543

52




Table 6.7. Obtained Timetable of IYTE for the Winter Semester 2007—2008 after both

Constraint Programming and Simulated Annealing (Cost is 3400)

Days/ MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY
Hours
08.45— Ceng 415 (3 crdt.) Ceng 213 (3 crdt.) Ceng 510 (3 crdt.) | Ceng 211 (3
09.30 (Sitki Aytac) (Ahmet (Halis Piiskiilcii) crdt.)
Ceng 321 (3 crdt.) Koltuksuz) Ceng 111 (3 crdt.) | (Belgin Ergenc)
(Tolga Ayav) (Sitki Aytac)
Ceng 520
(3 crdt.)
(Bora Kumova)
09.45— Ceng 415 Ceng 416 (3 crdt.) | Ceng 315 (3 crdt.) Ceng 510 Ceng 211
10.30 Ceng 321 (Sitk Aytac) (Halis Piiskiilcii) Ceng 111 Ceng 311 (3 crd)
Ceng 520 Ceng 311 LAB Ceng 549 (3 crdt.) (Tolga Ayav)
(2 crdt.) (Serap Atay)
(Tolga Ayav) Ceng 213
10.45— Ceng 415 Ceng 416 Ceng 213 Ceng 510 Ceng 211
11.30 Ceng 321 Ceng 311 LAB Ceng 315 Ceng 111 Ceng 311
Ceng 520 Ceng 549
11.45- Ceng 313 LAB Ceng 416 Ceng 315 Ceng 311
12.30 (2 crdt.) Ceng 549 Ceng 581 (3 crd)
(Serap Atay) (Sitki Aytac)
13.30- Ceng 313 LAB Ceng 421 (3 crdt.) | Ceng 543 (3 crdt.) Ceng 113
14.15 (Tugkan (Ahmet (3 crdt.)
Tuglular) Koltuksuz) (Ahmet
Koltuksuz)
Ceng 581
14.30- Ceng 461(3 crdt.) Ceng 421 Ceng 313 (3 crdt.) Ceng 411 (3 crdt.) Ceng 113
15.15 (Bora Kumova) (Serap Atay) (Belgin Ergenc) Ceng 352 (3 crd)
Ceng 547 Ceng 543 (Tugkan
(3 crdt.) Tuglular)
(Tugkan Ceng 581
Tuglular)
15.30- Ceng 461 Ceng 421 Ceng 543 Ceng 411 Ceng 113
16.15 Ceng 547 Ceng 313 Ceng 352
16.30- Ceng 461 Ceng 313 Ceng 411 Ceng 352
17.15 Ceng 547
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Figure 6.1. Cost Distribution of a Timetable obtained by first CSP and then improved by
SA method
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Figure 6.2. Cost Distribution of a Random Timetable improved by SA method
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Figure 6.3. Cost Distribution of a Random Timetable improved by SA method (a closer
look to Figure 6.2)

For the second evaluation, using hybrid approach to this case study has not a very
critical role because of this problem is not a much tightened problem. Utilizing any random
timetable for the initial point instead of Constraint Programming in the SA algorithm can
give reasonable results for the Computer Engineering Department of IYTE.

On the other hand, this hybrid approach is tested on a much more tightened

problem. That problem has 200 activities with 20 instructors, 20 classrooms and 20 classes.
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Table 6.8. More Tightened Timetable Problem than the Case Problem

Random Initial Constraint Programming
Simulated Annealing
Cost Cost
Before SA 2.082161ES8 2073100.0
After SA 9571100.0 1639700.0
Total CPU Time (min) 52 43

As seen in the Table 6.8, the initialization strategy for the SA algorithm has very
crucial influence on the performance of the algorithm. The constraint programming stage
provides a fast way to the first feasible solution.

The reason of this difference between two problems is the problem structure. In the
first case (the problem of Computer Engineering Department of IYTE) the problem is very
loosen. There are 22 lessons in a week, so using 40 timeslots appropriate solution can be
obtained. However in the second case there are 300 lessons which have to be scheduled for
50 timeslots. This is a tightly constrained problem.

Evaluations on the following elements can be inferred using these tables:

e The most effective way of using neighborhood searching algorithms,

e The effect of the first phase of the hybrid approach to the SA algorithm.

6.2. Future Works

Finding a feasible timetable solution for the Computer Engineering Department of
IYTE is successfully realized in this study. While trying to find a solution effective
methods for optimization problems are tried in a hybrid way. In spite of the shortcomings
of the comparisons, the hybrid method still prove as a promising algorithm, among the best

currently is used for course timetabling. The constraint programming stage provides a fast
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way to the first feasible solution. This solution is improved by the simulated annealing
stage.

For a future work the results of the experiments demonstrated in the previous
section can be improved by some modifications in the implementation of the SA algorithm.
The stage of the hybrid approach may be integrated more fully, to yield a more powerful
and robust algorithm.

Another method for obtaining more quality results can be performing reheating
techniques in simulated annealing method in a more effective way. By reheating one can
get rid of from local minimal points and can reach to the global minimal point. Due to
performing reheating method can cause high costs for wider range of problem instances,
working on reheating worth to obtain more qualified solutions.

The other future studies about optimization problem searching methods can be
planned such as trying the hybrid two stage methods consisting of constraint programming
and tabu search for course timetabling problem, and to compare results between the two

different hybrid methods on the same data set.
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APPENDIX A

STUDENT DATA

Table A.1. Student Data

STUDENT REAL STUDENT REAL
NUMBER CLASS SEMESTER NUMBER CLASS SEMESTER
100201003 4 9 130201045 2 3
100201005 4 9 130201046 2 3
100201006 4 9 130202020 2 3
100201012 4 9 132001001 2 3
100201013 4 9 132001001 2 3
100201015 4 9 132001004 3 5
100201016 4 9 132001007 3 5
100201018 4 9 132001009 3 5
100201021 4 9 132001011 3 5
100201025 4 9 132001013 3 5
100201027 4 9 132001016 1 1
100201028 4 9 132001016 1 1
100201029 4 9 132001017 2 4
100201030 4 9 132001018 2 4
100201035 4 8 132001023 2 4
100202025 4 7 140201001 1 1
102001007 3 6 140201002 1 1
102001007 3 6 140201003 2 3
102001013 3 5 140201004 1 1
102001013 3 5 140201005 1 1
110201002 3 5 140201006 1 1
110201003 4 7 140201007 1 1
110201004 4 7 140201008 Prep S. 0
110201005 4 7 140201009 1 1
110201006 4 7 140201010 1 1
110201007 4 7 140201011 1 1
110201008 4 7 140201012 Prep S. 0
110201009 3 5 140201013 1 1
110201010 4 7 140201014 1 3
110201011 4 7 140201015 1 1
110201012 4 7 140201016 1 1

(cont. on next page)
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Table A.1. (cont.) Student Data

110201013 4 7 140201017 2 3
110201015 4 7 140201018 2 3
110201016 4 7 140201019 1 1
110201017 4 7 140201020 1 1
110201018 3 6 140201021 2 3
110201019 4 7 140201022 1 1
110201021 3 6 140201023 1 1
110201023 4 7 140201024 1 1
110201026 4 9 140201025 1 1
110201027 4 7 140201026 1 1
110201029 4 7 140201027 1 1
110201031 4 7 140201028 2 3
110201032 4 7 140201029 1 1
110201033 4 7 140201030 1 1
110201034 4 7 140201031 1 1
110201036 4 7 140201032 1 1
110201037 4 9 140201033 1 1
110201038 4 7 140201034 1 1
110201039 4 9 140201035 1 1
110201042 4 7 140201036 1 1
110201043 3 5 140201038 1 1
110201045 1 5 140201039 Prep 0
School
110201050 4 8 140201040 1 1
110201051 4 8 140201041 1 1
112001011 3 6 140201042 1 1
120201001 3 5 140201043 Prep 0
School
120201002 3 5 140201046 Prep 0
School
120201003 3 5 140201048 3 3
120201004 4 7 140201049 1 1
120201005 3 5 142001004 2 3
120201006 3 5 142001007 Prep 0
School
120201007 4 7 142001011 1 1
120201008 3 5 142001011 1 1
120201009 3 5 142001012 2 3
120201011 3 5 150201001 Prep 0
School
120201012 3 5 150201002 1 1
120201013 3 5 150201003 1 1
120201014 3 5 150201004 Prep 0
School
120201015 3 5 150201005 Prep 0
School

(cont. on next page)
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Table A.1. (cont.) Student Data

120201016 3 5 150201006 Prep
School
120201017 3 5 150201007 Prep
School
120201018 3 5 150201008 1
120201019 3 5 150201009 Prep
School
120201021 3 5 150201010 Prep
School
120201022 3 5 150201011 Prep
School
120201023 3 5 150201012 Prep
School
120201024 3 5 150201013 Prep
School
120201025 3 5 150201014 Prep
School
120201026 3 5 150201015 Prep
School
120201027 2 5 150201016 1
120201028 1 5 150201017 Prep
School
120201030 3 5 150201018 Prep
School
120201031 3 5 150201019 Prep
School
120201033 3 5 150201020 Prep
School
120201034 4 7 150201021 1
120201035 1 3 150201022 Prep
School
120201036 2 3 150201023 Prep
School
120201038 2 3 150201024 Prep
School
120201039 3 5 150201025 Prep
School
120201040 3 5 150201026 1
120201041 4 7 150201027 1
120201042 3 5 150201028 Prep
School
120201043 1 3 150201029 Prep
School
120201044 2 4 150201030 Prep
School
120201045 1 5 150201031 Prep
School
120201047 4 7 150201032 1

(cont. on next page)
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Table A.1. (cont.) Student Data

Prep

120201048 4 7 150201033 0
School
122001006 3 6 150201034 Prep 0
School
122001007 3 5 150201035 Prep 0
School
130201001 2 3 150201036 Prep 0
School
130201002 2 3 150201037 1 1
130201004 1 1 150201038 1 1
130201005 2 3 150201039 Prep 0
School
130201006 3 5 150201040 Prep 0
School
130201007 2 5 150201041 Prep 0
School
130201008 1 3 150201042 Prep 0
School
130201009 2 3 150201043 Prep 0
School
130201010 2 3 150201044 Prep 0
School
130201011 1 ] 150201045 Prep 0
School
130201012 2 3 150201046 2 1
130201013 2 3 150201047 3 1
130201015 2 3 150201049 Prep 0
School
130201016 1 3 152001001 1 1
130201017 2 3 152001002 1 1
130201018 2 3 152001003 1 1
130201019 2 3 152001004 1 1
130201020 2 3 152001005 1 1
130201021 2 3 152001006 1 1
130201022 2 3 152001007 1 1
130201023 2 3 152001008 1 1
130201024 2 3 152001010 1 1
130201025 1 3 152001011 1 1
130201026 2 3 152001012 Prep 0
School
130201027 1 1 152001013 1 1
130201028 2 5 70201003 4 9
130201029 3 5 70201032 4 9
130201030 3 5 80201007 4 9
130201031 2 3 80201030 4 9
130201032 2 3 80201033 4 9
130201033 2 3 90201004 4 9

(cont. on next page)
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Table A.1. (cont.) Student Data

130201034 2 3 90201006 4 9
130201035 2 3 90201007 4 9
130201036 2 3 90201010 4 9
130201037 2 3 90201019 4 9
130201038 2 3 90201020 4 9
130201039 1 3 90201021 4 9
130201040 3 5 90201024 4 9
130201041 1 3 90201027 4 9
130201042 2 3 90201032 4 9
130201043 1 3 90201033 4 9
130201044 1 1
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APPENDIX B

LECTURE DATA

Table B.1. CENG 111 Introduction to Computer Engineering & Orientation

STUDENT | STUDENT STUDENT STUDENT | STUDENT STUDENT
NO NAME SURNAME NO NAME SURNAME
140201038 ISMAIL KARACAN 140201011 OZAN ALTUNDAG
140201022 | GOKCEN CIMEN 140201049 LALA ALIZADA
130201008 ERCAN DOGAN 140201006 | MUSTAFA ALIOGLU
140201040 MESUT CAN 130201039 ARZU AYTAR
150201047 ESIN BOYACIOGLU 140201031 SEMIH KOLU
140201020 ONUR AKSOY 150201027 ESRA YILDIZ
140201023 DENIZ DAMARSARDI 150201016 DUYGU SAHIN
140201030 | HUSEYIN KIZILBULAK 140201014 oGUzZ KAYRAL
140201009 MEEE}[ET ATES 130201043 | BEHCET MUTLU
140201019 %ﬁﬁg ABAT 140201005 oGUZ AKPINAR
140201002 SEMA TABAK 130201025 EMRE SAHIN
120201043 OSMAN TiTiz 150201032 ERDI OKATAR
TUGCE . :
140201007 HILAL CiL 140201035 YASIN KOCAER
140201036 | ALI ERCAN KONUS 120201035 | ESER INAN ARSLAN
130201004 |  MERIC UZUN 140201010 UGUR GOGEI\?AKA
ADEM -
140201026 SAMET GAGAR 140201041 GOKHAN SUNA
120201028 | CEVAHIR ALTINTOP 140201016 HABIB ADIBELLI
150201037 é‘gg&z OZTURK 140201042 ARZUM KARATAS
130201011 METIN UGUR 140201032 OMER YAGCI
150201026 EMRE CELIKTEN 140201034 ZAFER 0ZDOGRU
OSMAN
150201008 | MUSTAFA TOPRAK 140201013 ERTEM UNAT
140201027 Y[AJS[%IT’TR KUS 130201027 MEHMET OZDEMIR
150201021 DENIZ KUT 130201041 TUBA ALPOGLU
140201025 | GORKEM DEMIRAY 130201044 NAZMI MERT
150201038 CEM HACIHASANOGLU 140201001 CAGKAN DOKMEN
140201024 | SEYHAN UCAR 150201003 | ONURCAN ANIL
150201002 FULYA YURTSEVER 140201033 SAMET ERENTURK
140201015 SEYMA AYDIN 140201004 SERDAR SARIGUL
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Table B.2. CENG 113 Introduction to Computer Algorithmics & Programming

STUDENT | STUDENT STUDENT STUDENT| STUDENT STUDENT
NO NAME SURNAME NO NAME SURNAME
140201033 | SAMET ERENTURK 140201001| CAGKAN DOKMEN
140201016 HABIB ADIBELLI 140201049 LALA ALIZADA
140201034 ZAFER OZDOGRU 140201004 SERDAR SARIGUL
ADEM - o
140201026 | )\ e GAGAR 130201026 SERIFE IDIKUT
150201021 DENiz KUT 130201027 MEHMET OZDEMIR
130201023 CENK TUZUN 110201045| MOUSTAFA | CHATZIMPEKIR
140201025 | GORKEM DEMIRAY 140201006| MUSTAFA ALIOGLU
130201034 | SEVKET CETIN 130201037 | BENGU BANU DONMEZ
150201002 | FULYA YURTSEVER 140201015 SEYMA AYDIN
130201009 ISLAM IPEKYUZ 130201008 ERCAN DOGAN
140201024 | SEYHAN UCAR 120201027 TUNAY TUNA
140201020 ONUR AKSOY 140201002 SEMA TABAK
130201025 EMRE SAHIN 140201018 ECE NESLI GURBUZ
140201031 SEMIH KOLU 140201040 MESUT CAN
150201038 CEM HACIHASANOGLU| [140201022] GOKCEN CIMEN
130201041 TUBA ALPOGLU 150201003| ONURCAN ANIL
130201007 UGUR AYDIN 140201019 | HASAN EMRE ABAT
130201044 | NAZMi MERT 140201005 oGUZ AKPINAR
130201022 | GOZDE SENCOSKUN 152019002 MEHMET CAKIR
VOLKAN
140201023 DENiz DAMARSARDI 140201021 NERMIN OZMEN
150201016 | DUYGU SAHIN 130201013 | GULTEN ANIL DENGiz
140201042 | ARZUM KARATAS 140201041 GOKHAN SUNA
TUGCE . . .
140201007 HiLfL ciL 130201002 MERIC DONMEZER
130201039 ARZU AYTAR 150201026 EMRE CELIKTEN
130201019 | ZULEYHA AKUSTA 130201005 BURAK YILMAZTURK
150201027 ESRA YILDIZ 140201011 OZAN ALTUNDAG
130202020 | ALPKAN KOCA 150201037 | YAVUZ SELIM OZTURK
140201036 | ALI ERCAN KONUS 130201016 YUNUS DUMLU
130201032 FEVZI KAHRAMAN 120201035| ESER INAN ARSLAN
130201004 MERIC UZUN 150201032 ERDI OKATAR
140201032 OMER YAGCI 120201045 RAMAZAN AKMAN
140201038 | ISMAIL KARACAN 140201010 UGUR GOGEBAKAN
130201038 | MUSTAFA INAC 130201011 METIN UGUR
130201028 | BATUHAN GUNDOGDU 140201030| HUSEYIN KIZILBULAK
MEHMET OSMAN
140201009 ALL ATES 140201013 ERTEM UNAT
. YAGMUR
140201035 YASIN KOCAER 140201027 UMUT KUS
140201014 oGUZ KAYRAL 150201008| MUSTAFA TOPRAK
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Table B.3. CENG 211 Data Structures 11

STUDENT | STUDENT STUDENT STUDENT STUDENT STUDENT
NO NAME SURNAME NO NAME SURNAME
130201018 DILEK AVCI 140201003 GOKHAN TUNCER
130201020 CIGDEM TURKMENDAG 140201028 EVRIM FURUNCU
120201027 TUNAY TUNA 90201007 0ZGUR OZEL
130201035 YIGIT KARAKAS 130201001 NECATI BATUR
FIKRET . _ _
140201048 SOMAY PIDECI 120201038 FIRAT SAHINDAL
120201013 | MUSTAFA KESKIN 130201024 MELEK YAVUZ
120201018 BORA YALCIN 130201021 SEMA CAM
GULTEN . .
130201013 ANIL DENGIiZ 130201045 ASIYE KILIC
120201005 CIHAT TOMBAK 130201031 SEDA KASAP
130201030 FATIH TEKIN 130201006 ERDEM SARILI
90201032 IBRAHIM GENC 110201033 HIDAYET CELEN
140201017 | EMRE CAN GECER 130201026 SERIFE IDIKUT
130201010 IPEK YAGCAN 140201018 ECE NESLI GURBUZ
130201007 UGUR AYDIN 130201015 BANU SAHIN
100201018 MEHMET KOCA 130201017 BATIKAN URCAN
120201036 BASRI MUMCU 130201034 SEVKET CETIN
90201019 KENAN INCE 100202025 I.GOKHAN AKSAKALLI
130201033 NATAN ABOLAFYA 130201012 DENIZ EYLIKSEVER
80201030 BERCA EKIM 130201036 ENGIN LELOGLU
130201046 CUNEYT CALISKAN
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Table B.4. CENG 213 Theory of Computation

STUDENT | STUDENT | STUDENT STUDENT STUDENT STUDENT

NO NAME SURNAME NO NAME SURNAME
110201038 NOYAN USTE 100202025 I.GOKHAN AKSAKALLI
130201021 SEMA CAM 130201023 CENK TUZUN
120201027 TUNAY TUNA 130201036 ENGIN LELOGLU
130201006 ERDEM SARILI 130201020 CIGDEM TURKMENDAG
130201015 BANU SAHIN 130201017 BATIKAN URCAN

GULTEN .
120201018 BORA YALCIN 130201013 ANIL DENGIZ
130201009 ISLAM IPEKYUZ 130201031 SEDA KASAP
130201034 SEVKET CETIN 130201024 MELEK YAVUZ
140201028 EVRIM FURUNCU 150201047 ESIN BOYACIOGLU
ABOLAFY _ .
130201033 NATAN A 130201012 DENIZ EYLIKSEVER
130201038 | MUSTAFA INAC 130201010 IPEK YAGCAN
130201001 NECATI BATUR 120201038 FIRAT SAHINDAL
BENGU . . .
130201037 BANU DONMEZ 150201046 NUMAN GOCERI
130201035 YIGIT KARAKAS 130201042 LEYLA PUNAR
120201033 BARAN AYTAS 130201019 ZULEYHA AKUSTA
YILMAZTU _
130201005 BURAK RK 130201032 FEVZI KAHRAMAN
140201018 | ECENESLI | GURBUZ 120201036 BASRI MUMCU
] SENCOSKU ]

130201022 GOZDE N 140201003 GOKHAN TUNCER
130201018 DILEK AVCI 130201002 MERIC DONMEZER
120201013 | MUSTAFA KESKIN 120201005 CIHAT TOMBAK
130201007 UGUR AYDIN 130201026 SERIFE IDIKUT
130201045 ASIYE KILIC 130201030 FATIH TEKIN
140201017 | EMRE CAN GECER 140201021 NERMIN OZMEN
130201046 | CUNEYT | CALISKAN
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Table B.5. CENG 311 Computer Architecture

STUDENT | STUDEN STUDENT STUDENT | STUDENT STUDENT
NO T NAME SURNAME NO NAME SURNAME
110201016 | HASAN KINAY 120201011 SERIF GIRGIN
SURME
120201016 SALIH OZKUL 110201007 IBRAHIM GOZLUER
120201040 | GULTEN KANAT 120201022 OZGUR TABAN
110201042 | DORUK S TURKOGLU 110201011 | MUSTAFA SENOGLU
110201032 ALI KARAOGLU 120201033 BARAN AYTAS
120201008 MITAT POYRAZ 120201031 SONER KARAPAPAK
110201031 KAZIM SUNAR 120201002 HANDAN YARICI
ZEHRA
120201024 | GURCAN GERCEK 120201019 MERVE KARAMAN
[HSAN
120201012 FATIH OZTURK 110201029 FATIH YAZICI
120201025 GIZEM YAMASAN 120201006 ONUR FIDAN
120201023 | SERDAR GOKCEN 120201026 GORKEM KILINC
90201019 KENAN INCE 120201001 SECKIN AKIN
150201047 ESIN BOYACIOGLU 100202025 | .GOKHAN AKSAKALLI
MEHMET
120201030 | EMRAH KALA 100201018 MEHMET KOCA
FIKRET _ _ YUSUF
140201048 | SOMAY PiDECI 110201017 EMRE ALKAN
110201043 SAVAS TAKAN 120201042 BUKET OLCAY
CAGATA ] ] _
130201040 Y YUCEL 110201002 TUFAN KUPELI
110201009 0ZGUR AKCASOY 130201029 izAY [ZGINOGLU
MUSTAF
110201006 A YILMAZ 120201015 YASAR YASA
120201003 ERHAN ARGIN 120201009 BURAK EKICi
UFUK
110201038 | NOYAN USTE 120201017 | OGUZHAN ACARGIL
. . YUSUF 3
90201007 OZGUR OZEL 120201014 ZIYA BASBUG
AHMET ]
120201039 | ARDA ALBAYRAK 110201010 | BAHADIR OZCAN
120201021 ERDEM CAGLAYAN 100201025 | EMRE CAN ERDINC
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Table B.6. CENG 313 Operating Systems

STUDENT | STUDENT STUDENT STUDENT STUDENT STUDENT
NO NAME SURNAME NO NAME SURNAME
100201018 | MEHMET KOCA 120201021 ERDEM CAGLAYAN
120201016 SALIH OZKUL 120201017 OGUZHAN ACARGIL
120201006 ONUR FIDAN 110201006 MUSTAFA YILMAZ
120201009 | BURAK EKICI 90201032 IBRAHIM GENC
) o KARACIZME
120201023 | SERDAR GOKCEN 70201003 0ZGUR Li
70201032 | MEHMET CEKIM 120201025 GIZEM YAMASAN
110201036 | DERYA SARICA 100201005 SUHEYLA SEN
120201024 | GURCAN GERCEK 100201012 | ZEKAI IMRAN UREGEN
o FIKRET _ .
100202025 | I.GOKHAN AKSAKALLI 140201048 SOMAY PIDECI
ALPEREN ) )
120201004 YUSUF AYBAR 110201042 DORUK S TURKOGLU
110201051 SEMIH MADEN 110201043 SAVAS TAKAN
120201015 YASAR YASA 110201031 KAZIM SUNAR
100201027 SENER BARIS 110201016 HASAN KINAY
120201003 | ERHAN ARGIN 120201031 SONER KARAPAPAK
120201012 FATIH OZTURK 110201019 CAGDAS OZERSAHIN
130201040 | CAGATAY YUCEL 90201006 EMIN 17zGi
110201013 | ADNAN YALCIN 120201022 0ZGUR TABAN
120201033 | BARAN AYTAS 110201011 | MUSTAFAOA | SENOGLU
110201009 | OZGUR AKCASOY 100201025 EMRE CAN ERDINC
[HSAN .
110201029 FATIH YAZICI 120201001 SECKIN AKIN
_ MEHMET
90201019 KENAN INCE 120201030 EMRAH KALA
. . SURMEGOZL
120201002 | HANDAN YARICI 110201007 IBRAHIM UER
HACI
AHMET ZEHRA
120201039 ARDA ALBAYRAK 120201019 MERVE KARAMAN
120201042 BUKET OLCAY 110201027 SULEYMAN ISSIZ
110201002 TUFAN KUPELI 110201017 YUSUF EMRE ALKAN
120201040 | GULTEN KANAT 120201026 GORKEM KILINC
120201011 SERIF GIRGIN 120201014 YUSUF ZIYA BASBUG
120201008 MITAT POYRAZ 110201023 TAYFUN BULUTLAR
90201033 | GOKMEN KATIPOGLU 130201029 IZAY iZGINOGLU

74



Table B.7. CENG 315 Stochastic Processes

STUDENT | STUDENT STUDENT STUDENT STUDENT STUDENT
NO NAME SURNAME NO NAME SURNAME
HACI
AHMET
120201039 ARDA ALBAYRAK 120201033 BARAN AYTAS
120201026 | GORKEM KILINC 120201040 GULTEN KANAT
UFUK TURKOGL
110201038 NOYAN USTE 110201042 DORUK S U
120201011 SERIF GIRGIN 120201003 ERHAN ARGIN
EMRE AYDINSO
100201025 CAN ERDINC 120201047 ERDEM Y
120201002 | HANDAN YARICI 120201001 SECKIN AKIN
CAGLAYA
110201051 SEMIH MADEN 120201021 ERDEM N
MEHMET
110201037 EMRE TIRYAKI 120201017 OGUZHAN ACARGIL
120201016 SALIH OZKUL 120201022 OZGUR TABAN
MEHMET
110201009 OZGUR AKCASOY 120201030 EMRAH KALA
120201031 SONER KARAPAPAK 120201009 BURAK EKIiCI
ACAR
130201029 izAY ZGINOGLU 110201050 FATIH 4 siif
KARAOGL
110201002 TUFAN KUPELI 110201032 AL U 4.smif
130201040 | CAGATAY YUCEL 110201015 SERKAN CAN
110201007 | IBRAHIM SURMEGOZLUER 120201025 GIZEM YAMASAN
BULUTLA
120201024 | GURCAN GERCEK 110201023 TAYFUN R
GUNDOGD
120201008 MITAT POYRAZ 130201028 BATUHAN U
YUSUF
120201014 ZIYA BASBUG 120201015 YASAR YASA
120201042 BUKET OLCAY 110201016 HASAN KINAY
120201023 | SERDAR GOKCEN 120201006 ONUR FIDAN
ZEHRA KARAMA
120201012 FATIH OZTURK 120201019 MERVE N
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Table B.8. CENG 321 Communication Techniques and Protocols

STUDENT | STUDENT STUDENT STUDENT STUDENT STUDENT
NO NAME SURNAME NO NAME SURNAME
120201021 ERDEM CAGLAYAN 130201029 IZAY 1ZGINOGLU
110201042 | DORUK S TURKOGLU 110201043 SAVAS TAKAN
KARAPAPA
120201003 ERHAN ARGIN 120201031 SONER K
120201025 GIZEM YAMASAN 120201016 SALIH 0ZKUL
110201002 TUFAN KUPELI 120201026 GORKEM KILINC
HACI
AHMET i}
120201039 ARDA ALBAYRAK 120201024 GURCAN GERCEK
100202025 | .GOKHAN AKSAKALLI 120201001 SECKIN AKIN
120201033 | BARAN AYTAS 120201008 MITAT POYRAZ
120201023 | SERDAR GOKCEN 110201006 MUSTAFA YILMAZ
EMRE . ZEHRA
100201025 CAN ERDINC 120201019 MERVE KARAMAN
120201017 | OGUZHAN ACARGIL 120201012 FATIH OZTURK
MEHMET .
120201030 | EMRAH KALA 120201005 CIHAT TOMBAK
FIKRET . _
140201048 | SOMAY PIDECI 120201015 YASAR YASA
130201040 | CAGATAY YUCEL 130201028 BATUHAN | GUNDOGDU
120201040 | GULTEN KANAT 120201002 HANDAN YARICI
110201009 0ZGUR AKCASOY 120201022 0ZGUR TABAN
120201009 | BURAK EKICI 120201013 MUSTAFA KESKIN
100201016 | ERKAN ARGIN 120201006 ONUR FIDAN
YUSUF ) . BOYACIOGL
120201014 ZIYA BASBUG 150201047 ESIN U
120201011 SERIF GIRGIN 110201023 TAYFUN BULUTLAR
120201042 BUKET OLCAY 130201030 FATIH TEKIN
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Table B.9. CENG 352 Object Oriented Programming

STUDENT | STUDENT STUDENT STUDENT | STUDENT STUDENT
NO NAME SURNAME NO NAME SURNAME
100201015 CENGiz AKUR 120201041 OZMEN ADIBELLI
MEHMET
110201008 CAVIT ILKER 110201027 | SULEYMAN ISS1Z
110201003 ILKER OZEN 110201013 ADNAN YALCIN
110201012 ONDER SEZGIN 110201034 BURCU CANIK
110201019 | CAGDAS OZERSAHIN 100201028 ISMAIL YAZAR
110201004 DAMLA YAPAR 90201010 SECKIN SALMANOGLU
MEHMET . .
110201037 EMRE TIRYAKI 110201036 DERYA SARICA
MUSTAFA ALPEREN
100201013 UMUR BEYDES 120201004 YUSUF AYBAR
110201015 SERKAN CAN 120201007 BURHAN CIMEN
120201034 ESRA RUZGAR 100201003 EMRAH ONDER
100201021 BELMA BOYRAZ 90201033 GOKMEN KATIPOGLU
120201048 DUYGU TAYLAN 110201005 UMIT KARA
100201027 SENER BARIS
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Table B.10. CENG 411 Systems Theory & Analysis

STUDENT STUDENT STUDENT STUDENT | STUDENT STUDENT
NO NAME SURNAME NO NAME SURNAME
o KARACIZMEL
70201003 OZGUR i 110201031 KAZIM SUNAR
110201051 SEMIH MADEN 110201027 | SULEYMAN ISSIZ
_ . YUSUF
110201029 | IHSAN FATIH YAZICI 110201017 EMRE ALKAN
120201048 DUYGU TAYLAN 120201007 BURHAN CIMEN
100201018 MEHMET KOCA 90201006 EMIN izGi
100201006 UGUR SEVER 110201004 DAMLA YAPAR
MUSTAFA MEHMET _ _
100201013 UMUR BEYDES 110201037 EMRE TIRYAKI
110201019 CAGDAS OZERSAHIN 100201003 EMRAH ONDER
110201036 DERYA SARICA 152001001 oGUZ YARIMTEPE
. MEHMET .
110201038 | UFUK NOYAN USTE 110201008 CAVIT ILKER
110201005 UMIT KARA 110201034 BURCU CANIK
) ALPEREN
110201011 | MUSTAFA OA SENOGLU 120201004 YUSUF AYBAR
110201012 ONDER SEZGIN 100201016 ERKAN ARGIN
100201005 SUHEYLA SEN 110201033 HIDAYET CELEN
. .ZEKAI .
110201010 BAHADIR OZCAN 100201012 IMRAN UREGEN
110201013 ADNAN YALCIN 70201032 MEHMET CEKIM
SUKRU _ _ SURME _
80201033 KEMAL KAYALI 110201007 IBRAHIM GOZLUER
110201032 AL KARAOGLU 90201019 KENAN INCE
110201023 TAYFUN BULUTLAR 120201041 OZMEN ADIBELLI
90201032 IBRAHIM GENC 110201009 OZGUR AKCASOY
90201033 GOKMEN KATIPOGLU 110201016 HASAN KINAY
110201003 ILKER OZEN 110201015 SERKAN CAN
80201030 BERCA EKIM 100201025 | EMRE CAN ERDINC
120201034 ESRA RUZGAR
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Table B.11. CENG 415 Senior Design Project & Seminar |

STUDENT STUDENT STUDENT STUDENT STUDENT STUDENT
NO NAME SURNAME NO NAME SURNAME
_ . SUKRU
90201020 BEKIR AHMETOGLU 80201033 KEMAL KAYALI
100201003 EMRAH ONDER 110201019 CAGDAS OZERSAHIN
100201006 UGUR SEVER 110201003 ILKER OZEN
120201041 OZMEN ADIBELLI 110201005 UMIT KARA
110201050 FATIH ACAR 100201028 ISMAIL YAZAR
80201030 BERCA EKIM 110201051 SEMIH MADEN
MEHMET
110201011 | MUSTAFA O A SENOGLU 110201008 CAVIT ILKER
UFUK
90201027 CEREN TEKIN 110201038 NOYAN USTE
100201029 NIGAR KALE 100201016 ERKAN ARGIN
MEHMET . . )
110201037 EMRE TIRYAKI 100201030 UMRAN KAMAR
110201004 DAMLA YAPAR 110201032 ALI KARAOGLU
SALMA
110201026 GOKHAN ADIGUZEL 90201010 SECKIN NOGLU
110201036 DERYA SARICA 110201012 ONDER SEZGIN
MUSTAFA
100201013 UMUR BEYDES 110201013 ADNAN YALCIN
120201007 BURHAN CIMEN 120201034 ESRA RUZGAR
110201010 BAHADIR OZCAN 110201015 SERKAN CAN
ZEKAI
110201034 BURCU CANIK 100201012 IMRAN UREGEN
KATIPOG
110201027 SULEYMAN ISSIZ 90201033 GOKMEN LU
ALPEREN
120201048 DUYGU TAYLAN 120201004 YUSUF AYBAR
100201005 SUHEYLA SEN 70201032 MEHMET CEKIM
Table B.12. CENG 416 Senior Design Project & Seminar II
STUDENT | STUDENT STUDENT STUDENT | STUDENT STUDENT
NO NAME SURNAME NO NAME SURNAME
80201007 ARIF AKYOL 100201006 UGUR SEVER
SUKRU . )
80201033 KEMAL KAYALI 90201020 BEKIR AHMETOGLU
SALMANOG
120201047 ERDEM AYDINSOY 90201010 SECKIN LU
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Table B.13. CENG 421 Network Programming

STUDENT STUDENT STUDENT STUDENT STUDENT STUDENT
NO NAME SURNAME NO NAME SURNAME
110201003 ILKER OZEN 110201036 DERYA SARICA
MEHMET
100201021 BELMA BOYRAZ 110201008 CAVIT ILKER
110201034 BURCU CANIK 120201048 DUYGU TAYLAN
100201005 SUHEYLA SEN 100201029 NIGAR KALE
110201019 CAGDAS OZERSAHIN 100201016 ERKAN ARGIN
110201013 ADNAN YALCIN 100201027 SENER BARIS
KARAOGL
110201033 HIDAYET CELEN 110201032 AL U
MUSTAFA MUSTAFA O
100201013 UMUR BEYDES 110201011 A SENOGLU
[HSAN
110201027 | SULEYMAN ISS1Z 110201029 FATIH YAZICI
120201047 ERDEM AYDINSOY 110201051 SEMIH MADEN
100201003 EMRAH ONDER 120201034 ESRA RUZGAR
ZEKAI
100201012 IMRAN UREGEN 110201039 USAME F ESENDIR
YASAR YUSUF
90201004 CENK YALIM 110201017 EMRE ALKAN
SURMEGOZLU
110201007 IBRAHIM ER B 110201004 DAMLA YAPAR
110201012 ONDER SEZGIN 120201041 OZMEN ADIBELLI
ALPEREN
120201004 YUSUF AYBAR 110201016 HASAN KINAY
70201003 OZGUR KARACIZMELI 110201015 SERKAN CAN
90201010 SECKIN SALMANOGLU 100201028 ISMAIL YAZAR
110201026 GOKHAN ADIGUZEL 90201006 EMIN izGi
YARIMTE
110201010 BAHADIR OZCAN 152001001 oGUZ PE
MEHMET
110201037 EMRE TIRYAKI 110201005 UMIT KARA
100201006 UGUR SEVER 120201007 BURHAN CIMEN
90201033 GOKMEN KATIPOGLU
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Table B.14. CENG 461 Artificial Intelligence and Expert Systems

STUDENT | STUDENT STUDENT STUDENT STUDENT STUDENT
NO NAME SURNAME NO NAME SURNAME
100201005 | SUHEYLA SEN 100201030 UMRAN KAMAR
[HSAN
110201029 FATIH YAZICI 100201006 UGUR SEVER
MUSTAFA
100202025 | . GOKHAN AKSAKALLI 100201013 UMUR BEYDES
110201043 SAVAS TAKAN 110201009 0zZGUR AKCASOY
UFUK
110201038 | NOYAN USTE 90201032 IBRAHIM GENC
ZEKAI
90201006 EMIN izGi 100201012 IMRAN UREGEN
YUSUF
90201010 SECKIN SALMANOGLU 110201017 EMRE ALKAN
70201032 | MEHMET CEKIM 80201030 BERCA EKIM
110201039 | USAME F ESENDIR 110201033 HIDAYET CELEN
SURMEGOZL
90201033 | GOKMEN KATIPOGLU 110201007 IBRAHIM UER
MUSTAFA O
110201023 | TAYFUN BULUTLAR 110201011 A SENOGLU
110201026 | GOKHAN ADIGUZEL

Table B.15. CENG 5XX Graduate Students

STUDENT NO STUDENT NO
112001011 142001007
122001006 142001011
122001007 142001011
132001001 142001012
132001001 152001001
132001004 152001002
132001007 152001003
132001009 152001004
132001011 152001005
132001013 152001006
132001016 152001007
132001016 152001008
132001017 152001010
132001018 152001011
132001023 152001012
142001004 152001013
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