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ABSTRACT 

 
SOLVING THE COURSE SCHEDULING PROBLEM BY CONSTRAINT 

PROGRAMMING AND SIMULATED ANNEALING 

 
In this study it has been tackled the NP-complete problem of academic class 

scheduling (or timetabling). The aim of this thesis is finding a feasible solution for 

Computer Engineering Department of İzmir Institute of Technology. Hence, a solution 

method for course timetabling is presented in this thesis, consisting of two phases: a 

constraint programming phase to provide an initial solution and a simulated annealing 

phase with different neighbourhood searching algorithms. When the experimental data are 

obtained it is noticed that according to problem structure, whether the problem is tightened 

or loosen constrained, the performance of a hybrid approach can change. These different 

behaviours of the approach are demonstrated by two different timetabling problem 

instances. In addition to all these, the neighbourhood searching algorithms used in the 

simulated annealing technique are tested in different combinations and their performances 

are presented. 
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ÖZET 

 
KISITLI PROGRAMLAMA VE BENZETİMLİ TAVLAMA YÖNTEMLERİ 

İLE DERS PROGRAMI PLANLAMA PROBLEMİNİN ÇÖZÜLMESİ 

 

Bu çalışmada, NP-tam problem sınıfında olan akademik sınıf programı hazırlama 

konusu ele alınmıştır. Çalışmanın amacı İzmir Yüksek Teknoloji Enstitüsü Bilgisayar 

Mühendisliği Bölümü’nün ders programı hazırlama konusundaki sorununa bir çözüm 

bulmaktır. Bu amaç doğrultusunda ele alınan problem için iki aşamalı çözüm yöntemi 

kullanılmıştır. İlk kısımda, kısıtlı programlama tekniği ile ikinci kısımda iyileştirilmek 

üzere kullanılacak bir ders programı hazırlanmaktadır. İkinci kısımda  ise birinci kısımda 

elde edilen çözüm, benzetimli tavlama yöntemi ile değişik komşu arama algoritmalarıyla 

birlikte iyileştirilmektedir. Çalışmanın sonucunda elde edilen deneysel verilerin, uygulanan 

yöntemin farklı zorluktaki problem yapılarında farklı performanslar sergilediği 

gözlenmiştir. Bu sonuçlar iki farklı ders programı hazırlama problemleri ele alınarak 

gösterilmiştir. Bütün bunlara ek olarak benzetimli tavlama yönteminde kullanılan komşu 

arama yöntemleri için değişik algoritmalar denenip etkinlikleri incelenmiştir. 
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CHAPTER 1  
Equation Chapter 0 Section 1 

INTRODUCTION 

 
The University Course Timetabling Problem (UCTP) is a common problem that 

almost every university has to solve. The basic definition states that UCTP is a task of 

assigning the events of a university (lectures, activities, etc) to classrooms and timeslots in 

such a way as to minimize the violations of a predefined set of constraints. In other words, 

no teacher, no class or no room should appear more than once in any one time period. 

 There are also other timetabling problems described in the literature such as 

examination timetabling, school timetabling, employee timetabling, and others. All these 

problems share similar characteristics and they are similarly difficult to solve. The general 

university course timetabling problem is known to be NP-complete, as many of the 

subproblems are associated with additional constraints. 

Timetabling problem has been worked on over the years, so that many different 

solutions have been proposed. Exact and heuristic solution approaches for the school and 

university timetabling problem have been proposed since the 1960s by several authors, for 

instance; Almond (1966), Brittan and Farley (1972), Vitanyi (1981), Tripath (1984), de 

Werra (1985), Abramson (1991), Hertz (1992), Burke et al. (1994), Costa (1994), Jaffar 

and Maher (1994), Gunadhi et al. (1996), Guéret et al. (1996), Lajos (1996), Deris et al. 

(1997), Terashima-Marin (1998), Schaerf (1999), Brailsford et al. (1999), Abdennadeher 

and Marte (2000). 

 

1.1. Thesis Aim and Objectives 

 
In this thesis, it is investigated the solution of the timetabling problem of İzmir 

Institute of Technology (İYTE) Computer Engineering Department by a hybrid algorithm 

which is consisted of two solution techniques, namely; the Constraint Satisfaction 

Programming (CSP) and Simulated Annealing (SA). The objectives of this thesis are: 
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• To find a solution for timetabling problem of Computer Engineering 

Department of İYTE. 

• To study the feasibility of solving the timetabling problem using a hybrid 

approach in which CSP and SA algorithms are used. 

• To investigate the performances of CSP and SA optimisation approaches in 

the university timetabling problem. 

 

1.2. Organization of Thesis 
 

The organization of this thesis is as below:  

• Chapter 2 presents a general university timetabling problem definition. The 

problem is defined in a formal format and the solving techniques is 

explained generally which are used up to now. 

• Chapter 3 presents the constraint satisfaction programming. It provides CSP 

solving techniques such as consistency techniques, searching algorithms and 

value and variable orderings. It is also argued about the CSP algorithms 

which suit more to UCTP. 

• Chapter 4 presents the Simulated Annealing. Mathematical model of SA is 

defined. Different SA techniques are discussed. 

• Chapter 5 defines the timetabling problem of İYTE Computer Engineering 

Department. Also it represents the algorithms that are used in the 

timetabling problem of İYTE Computer Engineering Department. Formerly, 

the CSP algorithms used in our problem is defined with their reasons. 

Afterwards, the SA technique used in the same problem is explained. 

•  Chapter 6 is the conclusion. This chapter represents the experimental results 

with the advantages and disadvantages of hybrid algorithms. The 

comparison is done between the Constraint Programming and the Simulated 

Annealing. More suitable algorithm is explained according to the 

characteristics of the problem. (i.e. more tightened problems or more loosen 

problems.) 

 2



CHAPTER 2  
Equation Chapter 0 Section 2 

TIMETABLING 

 
Timetabling is a real life scheduling task. There can be different kinds of timetable 

models such as, educational, transport, sport, or employee timetabling. Timetabling 

determines what time and place each course/exam will be given; when train/bus/aeroplane 

will depart/arrive and from which station/airport; what time, date, and place each match 

will be played; or designs each employee’s work timetable. Anthony Wren (1996) defines 

timetabling as a special case of scheduling: 

Timetabling is the allocation, subject to constraints, of given resources to objects 

being placed in space-time, in such a way as to satisfy as nearly as possible a set of 

desirable objectives. 

Timetabling has long been known to belong to the class of problems called NP-

complete, i.e., no method of solving it in a reasonable (polynomial) amount of time is 

known (Cooper, et al. 1996). 

 

2.1. Educational Timetabling 

 
Educational timetabling has different models due to different use of educational 

areas. Each model has its own characteristics. The most known models are listed as below 

(Schaerf 1999): 

• School Timetabling: The week scheduling for all the classes of an elementary or a 

high school, avoiding teacher meeting two classes in the same time, and vice versa; 

• Exam Timetabling: The scheduling for the exams of a set of university courses, 

avoiding overlapping exams of courses having common students, and spreading the 

exams for the students as much as possible. 

• Course Timetabling: The week scheduling for all the lectures of a set of university 

courses, minimizing the overlaps of lectures of courses having common students; 
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The school timetabling describes when each class has a particular lesson and in 

which room it is to be held. The actual content of the timetable is largely driven by the 

curriculum; the number of hours of each subject taught per week is often set nationally. 

Each class consists of a set of students, who must be occupied from the time they arrive 

until the time they leave school, and a specific teacher being responsible for the class in any 

one period. 

Teachers are usually allocated in advance of the timetabling process, so the problem 

is to match up meetings of teachers with classes to particular time slots so that each 

particular teacher meets every class he or she is required to. Obviously each class or teacher 

may not be involved in more than one meeting at a time.  

The examination timetabling problem requires the teaching of a given number of 

exams (usually one for each course) within a given amount of time. The examination 

timetabling is similar to the course timetabling, and it is difficult to make a clear distinction 

between the two problems. In fact, some specific problems can be formulated both as an 

examination timetabling problem and a course timetabling one. Nevertheless, it is possible 

to state some broadly-accepted differences between the two problems. Examination 

timetabling has the following characteristics (different from course timetabling problem) 

(Schaerf 1999): 

• There is only one exam for each subject. 

• The conflicts condition is generally strict. In fact, the student is forced to skip a 

lecture due to overlapping, but not that a student skips an exam. 

• There are different types of constraints, e.g., at most one exam per day for each 

student, and not too many consecutive exams for each student. 

• The number of periods may vary, in contrast to course timetabling where it is fixed. 

• There can be more than one exam per room. 

 

The (university) course timetabling problem consists in scheduling a set of lectures 

for each course within a given number of rooms and time periods. It differs from the (high) 

school problem in some cases. For instance, university courses can have common students, 

whereas school classes are disjoint sets of students. If two classes have common students 

then they conflict, and they cannot or should not be scheduled at the same period. 
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Moreover, in (high) schools the teachers are particular, whereas university teachers can 

have different level of classes. In addition, in the university problem, availability of rooms 

(and their size and equipment) plays an important role. On the other hand, in the high 

school problem they are often neglected because, in most cases, it can be assumed that each 

class has its own room. 

The intention of this thesis is to study course timetabling with special emphasis to 

just one university department-based timetabling as a classical application area where 

various types of preferences need to be involved to obtain some acceptable solution. The 

detailed problem description is in the below Section 2.2. 

 

2.2. Problem Description 

 
Course timetabling problem is the assignment of the slots to a set of different 

constraints. These constraints are usually divided into two categories, such as; hard 

constraints and soft constraints (Burke, et al. 1997). 

Hard constraints must be satisfied by the solution of the timetable. They physically 

can not be violated. These can be listed as below: 

• Each lecturer can take only one class at a time. 

• Allocation of classroom can only have one subject assigned to it at a time. 

• Clashes should not occur between the subjects for students of one group. 

Soft constraints are those that are desirable but not absolutely indispensable. In real 

world situations it is usually impossible to satisfy all constraints. Some possible examples 

of soft constraints are: 

• Time assignment: A course may need to be assigned in a particular time period. 

• Time constraints between events: One course may need to be arranged 

before/after the other. 

• Spreading events out in time: Students should not have lectures of the same 

course in consecutive periods or on the same day. 
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• Coherence: Lecturers may demand to have all their lectures in a number of days 

and to have a number of lecture free days. These constraints can conflict with the 

constraints on spreading events out in time. 

• Resource assignment: Lecturers may prefer to teach in a particular room or it may 

be the case that a particular lecture must be scheduled in a certain room. 

• Continuity: Any constraints whose main purpose is to ensure that certain features 

of student timetables are constant or predictable. For instance, lectures for the same 

course should be scheduled in the same room, or at the same day. 

 

Course timetabling problem can be viewed as a multidimensional assignment 

problem in which students and teachers are assigned to courses, classes, and those meetings 

between teachers and students are assigned to classrooms and times. In the below, these 

particular components are described: 

• Course is taught one or more times a week during part of a year. Sometimes, 

courses can split to multiple course sections due to the large number of students 

subscribed to a course. 

• Teacher is assigned to each course or course section. 

• Classroom of suitable size, equipment (laboratory, computer room, classroom with 

data projector, etc.), and location (part of building, building, campus, etc.) has to be 

assigned to each course or course section. 

• Student attends a set of courses. The selection of a student is usually predefined by 

subscription either in a class taking an identical set of courses (usually at high 

schools) or in some program containing compulsory and optional courses 

(universities). In some universities, students are also allowed to subscribe almost 

any arbitrary selection of courses within course pre-enrolment process. 

 

Let’s formalize the course timetabling problem definition. Schaerf (1999) and 

Werra (1985) define the problem as the following: 

There are q courses K1, K2, …Kq, and for each i, course Ki consists of ki lectures. 

There are r curricula S1, S2,…Sr, which are groups of courses that have common students. 

This means that courses in Sl must be scheduled all at different times. The number of 
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periods is p, and lk is the maximum number of lectures that can be scheduled at period k 

(i.e., the number of rooms available at period k). The formulation is at the below: 

Find yik (∀ i = 1,…q; ∀ k = 1,…p) , so that; 

•  ∀  i = 1,…q Σ { yik | k = 1,…p} = ki    

•  ∀ k = 1,…p Σ { yik | i = 1,…q} ≤ lk 

•  ∀ k = 1,…p ∀ l = 1,…r  Σ { yik | i ∈  Sl} ≤1 

•  ∀ i = 1,…q ∀ k = 1,…p yik ∈{0,1} 

where yik = 1 if a lecture of course Ki is scheduled at period k, and yik = 0 otherwise. 

The first constraint requires that each course is composed of the correct number of 

lectures. The second constraint enforces that at each time there are not more lectures than 

rooms. The third constraint prevents conflicting lectures to be scheduled at the same period. 

Problem from that defined formally at above can be shown to be NP-complete 

through a simple reduction from the graph colouring problem (Werra 1985). 

The equivalent formulation of this definition based on the conflict matrix instead of 

on the curricula. The conflict matrix Cq× q is a binary matrix such that cij = 1 if courses Ki 

and Kj have common students, and cij = 0 otherwise. 

Schaerf (1999) and Werra (1985) define the course timetabling problem by 

including the following objective function: 

 ( ) { }1,..., ; 1,..., ,ik ik
f y d y i q k= = = p∑  (2.1) 

where dik is the desirability of having a lecture of course Ki at period k. 

The conflict matrix Cq´q is considered with integer values by Tripathy (1992), such 

that cij represents the number of students taking both courses Ki and Kj. In this way cij 

represents also a measure of dissatisfaction in case a lecture of Ki and a lecture of Kj are 

scheduled at the same time. The objective is measured by the global dissatisfaction 

obtained as the sum of all dissatisfactions of the above type. 

Preassignments and unavailabilities can be expressed by adding a set of constraints 

of the following form: 

  (2.2) 1,..., and 1,..., , ,ik i iki q k p p y a∀ = ∀ = ≤ ≤

where pik = 0 if there is no preassignment, and pik = 1 if a lecture of course Ki is scheduled at 

period k; 
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• aik = 0 if a lecture of course Ki cannot be scheduled at period k, 

• aik = 1 if a lecture of course Ki can be scheduled at period k. 

De Werra (1985) shows how to reduce a course timetabling problem to graph 

colouring: Associate to each lecture li of each course Kj a vertex mij; for each course Kj 

introduce a clique between vertices mij (for i = 1,…q). Introduce all edges between the 

clique for Kj1 and the clique Kj2 whenever Kj1 and Kj2 are conflicting. 

If unavailability occurs, introduce a set of p new vertices, each one corresponding to 

a period. The new generated vertices are all connected each other. This ensures that each 

one is assigned to a different colour. If a course cannot have lectures at a given period, then 

all the vertices corresponding to the lectures of the course are connected to a vertex 

corresponding to the given period. On the other hand, if a lecture should take place at a 

given time, then the vertex corresponding to that class is connected to all period vertices 

but the one representing the given period. 

 

2.3. Problem Solving 

 
In the beginning years of timetabling research, direct heuristic methods were 

applied to timetabling problems. It is focused on ordering the most urgent variables. To this 

problem, look-ahead techniques (variable and value ordering heuristics) are used which 

include analysis of time and object constraints. Simple, problem specific heuristic methods 

can produce desirable timetables, but the size and complexity of university timetabling 

problems has started a trend towards more general problem solving algorithms. 

 In recent years, using meta heuristic methods is proved to give better results, such 

as simulated annealing, tabu search techniques. Constraint Logic Programming is also a 

popular approach. 

The solution approaches for timetabling problems are categorized in the following 

parts. 
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2.3.1. Operations Research  

 
It ranges from mathematical programming to heuristics, such as graph colouring 

and network flow techniques. The graph colouring problem is the most known and a well 

research method. 

Briefly defined, graph colouring problem is to colour the vertices of a graph 

, where { }nvvvV ,...,, 21=  is the set of vertices, and E is the set of edges that 

connects the vertices to find a c N⎯→⎯  such that connected vertices always 

have different colours. Finding the minimum number of K, such that a feasible K colouring 

exists, is the optimal solution. 

{ EVG ,= }

ng VC :olouri  

To implement this method to the timetabling problems, a simple form can be 

generated, where each node represents a task, each colour represents a timeslot, and each 

edge ( )ji v,  indicates that vv i and vj should not be placed within the same timeslot. 

The graph colouring method gives good results in small scale problems. However, 

in big scale problems, this method fails. Hence the real timetabling problem is a large scale 

problem; more effective methods should be used. 

 

2.3.2. Human Machine Interaction 

 
It finds an initial feasible solution; subsequently it improves this initial solution 

manually. This process iterates until the user satisfy with the result or no further 

improvement can be obtained. Mulvey (1992) proposes “approximation, evaluation and 

modification” model for Human Machine Interaction.  

The major drawback of this method is its computationally expensiveness for large 

problems (Gunadhi, et al. 1996). 
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2.3.3. Artificial Intelligence  

 
It uses various meta-heuristic methods, for instance, simulated annealing 

(Abramson 1991a), tabu search (Hertz 1992, Costa 1994), genetic algorithms (Abramson 

and Abela 1991b, Burke, et al. 1994, Terashima and Marin 1998), constraint satisfaction 

problem (Brittan and Farlet 1971, Jaffar and Maher 1994, Gueret, et al. 1996, Lajos 1996, 

Deris, et al. 1997, Abdennadher, et al. 2000) that have been used to solve various 

educational timetabling problems. 

 

2.3.3.1. Genetic Algorithms 

 
The logic beneath the Genetic Algorithms is the principles of evolutionary biology, 

such as inheritance, mutation and natural selection. Genetic Algorithms mimic the process 

of natural selection and can be used as technique for solving complex optimization 

problems, which have very large search spaces. 

The definition is taken from (Burke, et al. 1994):  A genetic algorithm is starts by 

generating a set (population) of timetables randomly. These are then evaluated according to 

some sort of criteria. On the basis of this evaluation population members (timetables) are 

chosen as parents for the next generation of timetables. By weighting the selection process 

in favour of the better timetables, the worse are eliminated while at the same time the 

search is directed towards the most promising areas of the search space. 

 

2.3.3.2. Tabu Search 

 
In global optimization problems based on multi level memory managment and 

response exploration, tabu search can be applied. Glover (1986) described Tabu Search as 

“a meta heuristic superimposed on another heuristic method”. This method is applied to 

timetabling problems by Hertz (1992) and Costa (1994). Unfortunately, the tabu search is 

not a very suitable technique for a big timetabling problem space. 
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2.3.3.3. Simulated Annealing 

 
The detailed description of Simulated Annealing is mentioned in Chapter 4. 

It is hard to compare these mentioned methods at above, because the problem can 

response differently to different solution techniques. According to the problem 

characteristics, most appropriate method should be selected. Due to timetabling problem is 

NP complete problem, the running time grows exponentially as the problems size grows, so 

it causes a considerable computational costs. 

This thesis is concerned with the implementation of meta heuristics techniques 

including constraint satisfaction problem (CSP) and simulated annealing (SA) techniques. 

These methods are detailed defined in following chapters. 
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CHAPTER 3  
Equation Chapter 0 Section 3 

CONSTRAINT SATISFACTION PROBLEM 

 
3.1. Historical Perspective  

 
Constraint Satisfaction originated in the field of artificial intelligence in the 1970s. 

During the 1980s and 1990s, constraints were embedded into a programming language. 

Prolog and C++ are the most used languages for constraint programming. 

The CSP was first formalized in line labelling in vision research. Huffman (1971), 

Clowes (1971), Waltz (1975) and Mackworth (1992) define CSPs with finite domains as 

finite constraint satisfaction problems, and gives a shape to CSP problems. Haralick (1979) 

and Shapiro (1980) discuss different views of the CSP from problem formalization, 

applications to algorithms. Meseguer (1989) and Kumar (1992) both give concise and 

comprehensive overviews to CSP solving. Guesgen and Hertzberg (1992) introduce the 

concept of dynamic constraints that are themselves subject to constraints. This idea is very 

useful in spatial reasoning. 

Mittal and Falkenhainer (1990) extend the standard CSP to dynamic CSPs (CSPs in 

which constraints can be added and relaxed), and proposed the use of assumption based 

TMS (ATMS) to solve them (de Kleer 1986, de Kleer 1989). Definitions on graphs and 

networks are mainly done by Carré (1979). CSP was first applied to university timetabling 

problems (Brittan and Farley 1971). 

 

3.2. Definition of the Constraint Satisfaction Problem 

 
Constraint Satisfaction Problems (CSPs) appear in many parts of the real life, for 

example, vision, resource allocation in scheduling and temporal reasoning. The CSP is a 

popular research topic because it is a general problem that has unique features which can be 

accomplished to arrive at solutions. 
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Fundamentally, a CSP is a problem composed of a finite set of variables, each of 

which is associated with a finite domain, and a set of constraints that restricts the values 

the variables can simultaneously take. The task is to assign a value to each variable 

satisfying all the constraints (Tsang 1993). 

Formally speaking, definition of the CSP taken from Tseng’s description is as the 

following: 

A constraint satisfaction problem is a triple (Z, D, C) where Z is a finite set of 

variables {x1, x2, ..., xn}, D is a function which maps every variable in Z to a set of objects 

of arbitrary type, D: Z is finite set of objects (of any type). Dxi is taken as the set of objects 

mapped from xi by D. These objects are called possible values of xi and the set Dxi the 

domain of xi. C is a finite (possibly empty) set of constraints on an arbitrary subset of 

variables in Z. In other words, C is a set of sets of compound labels. CSP (P) is used for the 

symbolization that P is a constraint satisfaction problem. 

Each constraint Ci involves some subset of the variables and specifies the allowable 

combinations of values for that subset. A state of the problem is defined by an assignment 

of values to some or all of the variables, {xi = vi; xj = vj,...}. An assignment that does not 

violate any constraints is called a consistent or legal assignment. A complete assignment is 

one in which every variable is mentioned, and a solution to a CSP is a complete assignment 

that satisfies all the constraints.  

Practically, for many constraint satisfaction problems it is hard or even impossible 

to find a solution that assigns all the variables without any violation of the constraints of the 

problem. For example, for over constrained problems, there does not exist any complete 

solution satisfying all the constraints. Therefore other definitions of problem solution like 

Partial Constraint Satisfaction were introduced by Freuder et al. (1992). Before mentioning 

specific solution approaches for over constrained problems, it is worthy to introduce the 

general solution techniques for constraint satisfaction problems.
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3.3. Problem Solving Methods 

 
It is helpful to visualize a CSP as a constraint graph, as shown in Figure 3.2 (Chan 

2008). The nodes of the graph correspond to variables of the problem and the arcs 

correspond to constraints. 

 

 

 

Figure 3.1. The principal states and territories of Australia (Source: Chan 2008) 

 

 

 

 

 

 

 

 

 

Figure 3.2. The map coloring problem represented as a constraint graph (Source: Chan 

2008) 
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In Figure 3.1 colouring the map can be viewed as a constraint satisfaction problem. 

The aim is to assign colours to each region so that no neighbouring regions have the same 

colour.  

The goal of the problem is to find Romania at the map of Australia, shown in Figure 

3.1. The task is colouring each region red, green, or blue in such a way that no 

neighbouring regions have the same colour. To formulate this as a CSP, the variables are 

defined to be the regions: WA, NT, Q, NSW, V, SA, and T. The domain of each variable is 

the set {red, green, blue}. The constraints require neighbouring regions to have distinct 

colours; for example, the allowable combinations for WA and NT are the pairs, 

{(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)}. 

The constraint can also be represented more concisely as the inequality WA≠NT, 

provided the constraint satisfaction algorithm has some way to evaluate such expressions. 

There are many possible solutions, such as, 

{WA=red, NT =green, Q=red, NSW =green, V =red, SA=blue, T =red}. 

 

3.3.1. Consistency Techniques 

 
In constraint satisfaction problems there are specific methods related with variables, 

their domains and the constraints. To understand these relations some special notation 

should be known. At the below there are some definitions to make easier to understand the 

solving approaches for CSPs  (Tsang 1993). 

 

Definition 3.1: A label is a variable-value pair that represents the assignment of the value 

to the variable. <x, v> is used for denoting the label of assigning the value v to the variable 

x. <x, v> is only meaningful if v is in the domain of x (i.e. v Dx). 

 

Definition 3.2: A compound label is the simultaneous assignment of values to a (possibly 

empty) set of variables. (<x1,v1><x2, v2>...<xn, vn>) is used for denoting the compound  

label of assigning v1, v2, ..., vn to x1, x2, ..., xn respectively. A k-compound label is a 

compound label which assigns k values to k variables simultaneously. 
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There are 3 kinds of consistency techniques. These are: 

• Node Consistency:  

A CSP is node-consistent (NC) if and only if for all variables all values in its 

domain satisfy the constraints on that variable. 

• Arc Consistency: 

An arc (x, y) in the constraint graph of a CSP (Z, D, C) is arc-consistent (AC) if and 

only if for every value a in the domain of x which satisfies the constraint on x, there 

exists a value in the domain of y which is compatible with <x, a>. 

• Path Consistency: 

A path (x0, x1,..., xm) in the constraint graph for a CSP is path-consistent (PC) if and 

only if for any 2-compound label (<x0, v0> <xm, vm>) that satisfies all the constraints on 

x0 and xm there exists a label for each of the variables x1 to xm-1 such that every binary 

constraint on the adjacent variables in the path is satisfied. 

Let’s go back to the sample problem of which constraint graph is shown in Figure 

3.2 and see how to apply consistency techniques. 

 

 

 

Figure 3.3. Constraint Propagation arc consistency on the graph (Source: Chan 2008) 
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 Y is consistent iff for 

every v

ng arcs can 

become

ach 

ssignment. It’s like sending messages to neighbors on the graph. 

This 

ethod is repeated until convergence. (No message will change any domains.) 

ain means no solution possible at all. (Back out of that branch.) 

 

Figure 3.4. Inconsistent Arc  (Source: Chan 2008) 

 

 

Figure 3.5. Inconsistency (Source: Chan 2008) 

 

 

Simplest form of propagation makes each arc consistent X

alue x of X there is some allowed y. 

If X loses a value, neighbors of X need to be rechecked: i.e. incomi

 inconsistent again (outgoing arcs will stay consistent). Arc consistency detects 

failure earlier than serching algorithms. It can be run as a preprocessor or after e

a

Every time a domain changes, all incoming messages need to be resend. 

m

Since only values are removed from domains when they can never be part of a 

solution, an empty dom
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3.3.2. Basic Search Strategies for the Constraint Satisfaction Problem 

 

gies; 

logical backtracking strategy and the iterative broadening 

search 

through constraint propagation. Such strategies exploit the fact that 

variabl erated in a case analysis), and 

that co

ependency-directed backtracking (DDBT), learning 

nogood

n of the problem. BackJumping 

as introduced in (Gaschnig  1979a). 

All strategies that mentione at the above, it is assumed that the variables and values 

the algorithms could be significantly affected 

y the order in which the variables and values are picked.  

 

 

Some of the best known search algorithms for CSPs can be classified and 

summarized as: 

• General Search Strate

This includes the chrono

(IB). These strategies were developed for general applications, and do not make use 

of the constraints to improve their efficiency. Iterative Broadening (IB) was introduced by 

Ginsberg and Harvey (1990). 

• Lookahead Strategies; 

The general lookahead strategy is that following the commitment to a label, the 

problem is reduced 

es and domains in CSPs are finite (hence can be enum

nstraints can be propagated. Algorithms which use lookahead strategies are forward 

checking (FC), directional arc-consistency lookahead (DAC-L) and arc consistency 

lookahead (AC-L).  

• Gather Information While Searching Strategies; 

The strategy is to identify and record the sources of failure whenever backtracking 

is required during the search, i.e. to gather information and analyse them during the search. 

Doing so allows one to avoid searching futile branches repeatedly. This strategy exploits 

the fact that sibling subtrees are very similar to each other in the search space of CSPs. The 

algorithms that this strategy uses are d

 compound labels (LNCL), backchecking (BC) and backmarking (BM). Prosser 

(1993) describes a number of jumping back strategies, and illustrates the fact that in some 

cases backjumping may become less efficient after reductio

w

are ordered randomly. In fact, efficiency of 

b
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3.3.3. 

uned. Besides, when the 

compat

 orderings, which could 

lead to ktrack, it is only 

use

•  of the 

• oiting the structure of 

lure could be detected as soon as possible; 

• 

the fewest “legal”  values is the fail first 

Value and Variable Ordering 

 
The ordering in which the variables are labelled and the values chosen affects the 

number of backtracks required in a search, which is one of the most important factors 

affecting the efficiency of an algorithm. In lookahead algorithms, the ordering in which the 

variables are labelled also affects the amount of search space pr

ibility checks are computationally expensive, the efficiency of an algorithm could be 

significantly affected by the ordering of the compatibility checks. 

By appliying ordering variable methods to searching algorithms, in lookahead  

algorithms, failures could be detected earlier under some orderings than others, larger 

portions of the search space can be pruned off under some orderings than others. In learning 

algorithms, smaller nogood sets could be discovered under certain

the pruning of larger parts of a search space. When one needs to bac

ful to backtrack to the decisions which have caused the failure. 

The variable ordering techniques are as listed below (Tsang 1993): 

The minimal width ordering (MWO) heuristic: By exploiting the topology

nodes in the primal graph of the problem, the MWO heuristic orders the variables 

before the search starts. The intention is to reduce the need for backtracking. 

The minimal bandwidth ordering (MBO) heuristic: By expl

the primal graph of the problem, the MBO heuristic aims at reducing the number of 

labels that need to be undone when backtracking is required; 

• The fail first principle (FFP): The variables may be ordered dynamically during the 

search, in the hope that fai

The maximum cardinality ordering (MCO) heuristic: MCO can be seen as a crude 

approximation of MWO. 

Let’s continue over the mentioned sample problem in Figure 3.1. To make less 

tracking to the back in the used search algorithm, the variable and the value selection 

should be done well. For example, after the assignments for WA=red and NT =green, there 

is only one possible value for SA, so it makes sense to assign SA=blue next rather than 

assigning Q. In fact, after SA is assigned, the choices for Q, NSW, and V are all forced. 

This intuitive idea, choosing the variable with 

 19



princib

l arrive at a solution 

with no

 to be found to a problem, not just the first one, then the ordering 

oes not matter because every value should be considered. The same holds if there are no 

3.4. O

efined in terms 

of som

le. Starting from the most constrained variable causes a failure soon, thereby the 

search tree is pruned at beginning of the search. 

On the other hand, The FFP heuristic may not always help at all in choosing the first 

region to color in Australia, because in the beginning, every region has three legal colors. 

In this case, the degree heuristic comes in handy. It attempts to reduce the branching factor 

on future choices by selecting the variable that is involved in the largest number of 

constraints on other unassigned variables. In Figure 3.1, SA is the variable with the highest 

degree, 5; the other variables have degree 2 or 3, except for T, which has 0. In fact, once 

SA is chosen, applying the degree heuristic (MBO) solves the problem without any false 

steps. Any consistent color cen be chosen at each choice point and stil

 backtracking. The minimum remaining values (FFP) heuristic is usually a more 

powerful guide, but the degree heuristic can be useful as a tie-breaker. 

Once a variable has been selected, the algorithm should decide on the order in 

which to examine its values. So that the least constraining value heuristic can be effective 

in some cases. It prefers the value that rules out the fewest choices for the  neighboring 

variables in the constraint graph. For example, suppose that in Figure 3.1 the partial 

assignment are generated with WA=red and NT =green, and the next choice is for Q. Blue 

would be a bad choice, because it eliminates the last legal value left for Q’s neighbor, SA. 

The least constraining value heuristic therefore prefers red to blue. In general, the heuristic 

is trying to leave the maximum flexibility for subsequent variable assignments. Of course, 

if all the solutions are tried

d

solutions to the problem. 

 

ptimization Problems 

 
In applications such as industrial scheduling, some solutions are better than others. 

In other cases, the assignment of different values to the same variable incurs different costs. 

The task in such problems is to find optimal solutions, where optimality is d

e application specific functions. These problems are called Constraint Satisfaction 

Optimization Problems (CSOP) to distinguish them from the standard CSP. 
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Not every CSP is solvable. In many applications, problems are mostly over 

constrained. When no solution exists, there are basically two things that one can do. One is 

to relax the constraints, and the other is to satisfy as many of the requirements as possible. 

The latter solution could take different meanings. It means labelling as many variables as 

possible without violating any constraints. It also means labelling all the variables in such a 

way that as few constraints are violated as possible. Such compound labels are actually 

useful for constraint relaxation because they indicate the minimum set of constraints which 

need to

d, where the variables are possibly weighted by their importance or for minimizing 

the num

These are optimization problems, which are different from the standard CSPs 

Definition 3.3: A partial constraint sa oblem (PCSP) is a quadruple (Tsang 

here (Z, D, C) is a CSP, and g is a function which m

n: 

 

ined above, since the set of solution tuples is a 

bset of the compound labels. In a maxim

equival

 be violated. Furthermore, weights could be added to the labelling of each variable 

or each constraint violation.  

In other words, the problems can be for maximizing the number of variables 

labelle

ber of constraints violated, where the constraints are possibly weighted by their 

costs. 

defined previouly in this chapter. This class of problems is called the Partial CSP (PCSP). 

 

tisfaction pr

1993):   

(Z, D, C, g) 

w aps every compound label to a 

numerical value, i.e. if cl is a compound label in the CSP the

g : cl  numerical value→  (3.1) 

Given a compound label cl, g(cl) is called the g-value of cl. 

The task in a PCSP is to find the compound label(s) with the optimal g-value with 

regard to some (possibly application-dependent) optimization function g. The PCSP can be 

seen as a generalization of the CSOP def

su ization problem, a PCSP (Z, D, C, f) is 

ent to a CSOP (Z, D, C, g) where: 

 ( ) ( )
( )( )

f cl if cl is a solution tuple
g: cl

otherwise g: cl  in a minimization problem
⎧⎪= ⎨ −∞ = ∞⎪⎩

 (3.2) 
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Branch and bound (B&B) is the most used optimization algorithm for solving 

CSOPs. However, since CSPs are NP-complete in general, complete search algorithms may 

not be

maximal utility problem 

(MUP), which are motivated by scheduling applications that are normally over constrained 

(Tsang 1993). Freuder and Wallace (1992) define the problem of “satisfying as many 

constraints as possible” as the maximal constraint satisfaction problem and tackle it by 

extending standard constraint satisfaction techniques.  

 able to solve very large CSOPs. Preliminary research suggests that genetic 

algorithms (GAs) can be able to tackle large and loosely constrained CSOPs where near 

optimal solutions are acceptable. Tsang and Warwick (1990) report preliminary but 

encouraging results on applying GAs to CSOPs. 

The CSOP can be seen as an instance of the partial constraint satisfaction problem 

(PCSP), a more general problem in which every compound label is mapped to a numerical 

value. Freuder (1989) gives the first formal definition to the PCSP. Two other instances of 

PCSPs are the minimal violation problem (MVP) and the 
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CHAPTER 4  
Equation Chapter 0 Section 4 

SIMULATED ANNEALING 

 
Simulated Annealing (SA) is a heuristic algorithm for the global optimization 

problems. Its name and inspiration comes from the physical process of annealing in 

metallurgy, which involves the collection of many particles in a physical system as it is 

cooled.  

The method was an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo 

method to generate sample states of a thermodynamic system, invented by Metropolis et al. 

(1953). The first complete Simulated Annealing optimization method was searched by 

Kikpatrick et al. (1982).  

In 1982 Cérny developed independently an simulation algorithm based on 

thermodynamics which has been called later Simulated Annealing, too. However he did not 

publish his work until 1984, two years after Kirkpatrick. 

 

4.1. Physical Background 

 
In the simulated annealing (SA) method, each point s of the search space is 

analogous to a state of some physical system, and the function E(s) to be minimized is 

analogous to the internal energy of the system in that state. The task is to bring the system, 

from an arbitrary initial state, to a state with the minimum possible energy. 

Simulated Annealing algorithm is based on the annealing process in the physics of 

solids. In this physical process, the solid is first heated to a high temperature and then 

cooled slowly down to the original temperature. The high temperature provides the particle 

of the solid with a very high mobility. Hence, the particles can reach locations all around 

the solid. If the temperature is decreased slowly enough, all the particles of the solid 

arrange themselves such that the system will have minimal bounding energy. 
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In the physics of the solids, the particles of the solid are characterized by the 

probability  P{E} of being in a state with energy E at the temperature T. The probability is 

given by the Boltzman distribution: 

 { } ( )
1 s

z

e
k TP E e

Z T

−⎛ ⎞
= ×⎜⎜

⎝ ⎠
⎟⎟  (4.1) 

where kB is the Boltzmann constant and Z(T) is a temperature dependent normalization 

factor. It is more reasonable that the particles of the system are in high energy states at high 

temperatures than at lower temperatures (Metropolis, et al. 1953). 

The procedure of repeating the basic step until thermal equilibrium is reached is 

called a Metropolis loop. In Figure 4.1 the Metropolis loop is embedded in an outer loop, in 

order to adjust the temperature. One can controll the number of steps that are executed in 

each Metropolis loop by the adjust function, Adjust and ReAdjust, for the exit variable. 

According to the local variation of the total energy of the system, a particle can be 

moved to a new location. It is more probable that the particle will move to a lower energy 

state than to a higher energy state. By first travelling over the higher energy states or just by 

tunneling through the high energy barriers on the way, a new distant lower energy state can 

be obtained. 

 

 

algorithm Metropolis(s0,T) 
/* s0 is the initial state */ 
/* T is the temperature */ 
 exit := false; 
 s := s0; 
 while exit == f alse do 
  exit := Adjust; 
  s′ := Displace(s); 

  if random < 
( ) ( )s 'e− − /s Be k T

 e  then
ust;    exit := ReAdj

s := s′;    
  endif 

le  endwhi
endalgorithm 

Figure 4.1. Pseudocode of the Metropolis Algorithm 
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4.2. Mathematical Model 

 
Algorithm of an annealing works on a state space, which is a set with a relation. The 

elements of the set are called states. Each state represents a configuration. S is denoted to 

state space and its cardinality is shown by |S|. A cost function,∈: S→R+, assigns a positive 

real number to each state. This number is explained as a quality indicator. The lower is 

chosen this number; the better is the configuration that is encoded in that state. By defining 

a neighbor relation over S, ω ⊆ S×S, called a topology, is endowed to the state set S. The 

elements of ω  are called moves, and the states (s, s′)∈ ω  connected via a single move are 

called neighbors. Similarly, the states (s, s′) ∈  ω k are said to be connected via a set of k 

moves. Due to it is wanted that any state to be connected to any other state by a finite 

number of moves, it is required the transitive closure of ω  to be the universal relation of S: 

 

 
1

.k

k

S Sω
∞

=

= ×U  (4.2) 

 

4.2.1. Transitions 

 
As already mentioned, the annealing algorithm operates on a state space. At the end 

of the execution of a step exactly one state is the current state. The probability that a given 

state will be the current state depends only on its cost, the cost of the previous state and the 

value of the control parameter i.e., the temperature, T. The theoretical model for describing 

the sequences of current states generated by the annealing algorithm is known as a Markov 

chain. The essential property of Markov chains is that the next state does not depend on the 

states that have preceded the current state (Feller 1950, Isaacson and Madsen 1976, Seneta 

1981). The probability that s′ will be the next state, given that s is the current state is 

denoted by τ (s, s′, T) and is called the transition probability. The transition probabilities 

for a certain value of T can be conveniently represented by a matrix P(T), the transition 

matrix. The transition matrix of the Metropolis loop does not change from step to step, 

because T does not change. Markov chains with constant transition matrices are called 
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homog

he sum of all transition probabilities with that state as first state is one, because 

ere is always exactly one current state. The 

erefore; 

eneous. The Metropolis loop can therefore be modeled by a homogeneous Markov 

chain. 

The transition probabilities of the states that are not connected by a move is zero. 

For other pairs of distinct states, the probability is determined by the probability that, given 

the first state, the second one is selected, and the probability that, once selected, the second 

state is accepted as the next state. The probability that the state does not change has to be 

such that t

th complete Markov model for the annealing is 

th

 ( )
s''

α(ε(s),ε(s'),T) (s, s') if s s'
, ', 1 α(ε(s),ε(s''),T) (s, s'') otherwises s T

β
τ β

≠⎧⎪= ⎨ −
⎪⎩

∑  (4.3) 

 
where α  is the acceptance probability function, and β  is the selection probability function. 

ote  the selection probability is never ze

ove. Another function, called the acceptance function, assigns a positive probability 

measure to a pair of costs, and a positive real number, the temperature. Therefore, 

N ro for a pair of states connected by a single that

m

α  

should be chosen in the values of; 
3: (0,1] .R Rα + ⎯⎯→ ⊂  (4.4) 

bility to be in a state with the 

minimu

 is called convergence. Briefly, the algorithm is defined to be 

onvergent if the global minimum is found with certainty. 

For finite search spaces S, an efficient condition for convergence is detailed balance 

(Otten, et al. 1989), requiring that the probability flows between any two states si, sj in the 

 

4.2.2. Convergence to Optimum 

 
In the years of 1980s, several researchers independently proved that it is possible to 

design a simulated annealing algorithm so that the proba

m cost approaches one as the temperature approaches zero (S. German and D. 

German 1984, Gidas 1984, Gelfand and Mitter 1985, Lundy and Mees 1986, Mitra, et al. 

1986). This property

c

state space are equal: 
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( ) ( ) ( ) ( )ji
T  (4.5) 

i ij j
T T Tπ τ π τ• = • 

where iπ ( )T  is the stationary probability d stribution of the state  at temperature T. The 

stationary probability distribution is a vector 

i  si

( ) ( ) ( ) ( )( )TTTT sππππ ,...,, 21=  which satisfies 

the equation 

 ( ) ( ) ( )TT T P T Tπ π• =  (4.6) 

where P(T) is the transition matrix and Tπ is the transpose of π . In ot er words, the 

stationary probability distribution is a left eigenvector of the transition matrix, associated 

with the eigenvalue one. 

Neither the existence nor the uniqueness of a stationary probability distribution is 

guaranteed for a general transition matrix P. However, if the transition matrix P is 

irreducible and aperiodic, then there exists a unique st tionary distribution 

h

a π  (Motwani, et 

al. 1995). A transition matrix P(T) is irreducible if its underlying search space graph is 

rongly connected and, for all si ∈  S and sj∈ iΩst , Pij(T) > 0 (Romeo, et al. 1991). The 

tran i iodic if its underlying search space graph has no state to sit on matrix is called aper

which the search process will continually return with a fixed time period. A sufficient 

condition for aperiodicity is that there exist a state si∈S such that Pii ≠  0 (Romeo, et al. 

991). 

oof o onvergence 

 
imum requ

1

 

• Pr f C

If the global minimum is reachable from the initial configuration then the algorithm 

can be called as convergent. Finding the global min ires that; 

 1lim i opt
i

x R
⎯⎯→∞

∈ =  (4.7) 

where xj can be reachable from a configuration xi if there exists a path xi, xi+1, xi+2,… xi+n = xj 

for some 0≥n . 

Let the probability to generate a configuration x be ( )ksxg ,  at temperature Tk and 

the probability of not generating the configuration be ( )ksx,g1− . The subscript k denotes 

e index of the cooling cycle. th
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The global minimum is found with certainty if there is a possibility that every 

possible combination of optimization variables x is generated at each temperature. To be 

re that every possible combination of optimization variables is generated at least once 

n arbitrary configuration vanishes. That leads 

 satisfying equation; 

 

su

requires that the possibility of not generating a

to

( , )
o

k
k k

g x s
∞

=

= ∞∑  (4.8) 

which can be said that every possible combination is visited infinitely often in time. This is 

the most often used form of the proof of the convergence in Simulated Annealing. 

 

4.3. Simulated Annealing Algorithm 

 
In Figure 4.2, the pseudocode of the simulated annealing algorithm is given. The 

particle

ntil the thermal 

equilib

mum found, the loop is repeated and the loop 

dex k is incremented. The system is frozen when T 

s are displaced randomly with a probability function using variance s = sk at the 

same temperature T = Tk as in the Monte Carlo method. The subscript k denotes the index 

of the cooling cycle. Transitions at one temperature are made only u

rium is reached. After reaching the equilibrium, the temperature is lowered. If the 

system is not frozen nor is the global mini

in ≤  Tf, where Tf is a user defined final 

temperature. 

In Figure 4.2 the variables k and l are the loop variables. l marks the iteration at 

temperature Tk. k is increased after the thermal equilibrium at temperature Tk is reached. 

The temperature Tk and the variance sk control the randomization process. 

There are different kinds of Simulated Annealing algorithms. In this thesis the most 

basic and the used methods are mentioned. 
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Figure 4.2. The Simulated Annealing   (Source: Starck 1996) 
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4.3.1. Original Simulated Annealing 

 
This method was dedicated to discrete optimization by Kirkpatrick et al. (1983). It 

was not proven to be convergent. They used the cooling function as shown as below: 

  (4.9) 1
k

k kT T Tα α−= = 0

where [ [1,0∈α  is a scaling constant. Useful values for α  have been claimed to 

be 8.0 〈 9.0〈α . 

SA has shown successful applications in a wide range of combinatorial optimization 

roblems, and this fact has motivated researchers to use SA in simulation optimization.  

.3.2. Boltzmann Annealing 

 

ealing 

ethod to the global minimum. The Gaussian 

p

 

4

Boltzmann Annealing or Classical Simulated Annealing was studied by Geman et 

al. (1984). They first gave an essential condition for the convergence of the ann

m distribution was used for one variable; 

 ( )
( ) 2

01 x x
2,

2
ks

k
k

g x s e
sπ

=  (4.10) 

here x0 is the current value of the optimization variable x.

by; 

− −

w  The temperature was calculated 

 
( )

0 , 1, ,
ln 1k .T k

k
T

= = ∞
+

K  (4.11) 

If Equation 4.8, the formulation of the proof of convergence, is applied to this 

algorithm; 
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4.3.3. Fast Annealing 

 
 This method is a semi local search and consists of occasional long jumps (Szu, et al. 

1987). It is the improvement of Boltzmann Annealing method. In the fast annealing, 

Cauchy distribution is used instead of Gaussian Method which is used of Boltzmann 

Annealing. It can be formulated as below; 

 

≥ ∑  (4.12) 
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where c is an arbitrary

supersc ization variables x. 

( ) ( ) 2 2
0

, .
[ ]

k
k

k

sg x s
x x sπ

=
− +

 (4.13) 

This distribution has higher probability for values x far from x0 than the Gaussian 

distribution. Thus the probability of occasional long jumps is greater and leaving local 

minima is more likely. 

Another difference is the cooling schedule in Cauchy distribution. It has a faster 

schedule; 

 0 .
1k
TT

k
=

+
 (4.14) 

It is also proved to be convergent as Boltzmann method. 
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4.3.4. Very Fast Simulated Reannealing 

 
 Very Fast Simulated Reanneling algorithm permits a fast exponential cooling 

schedule rather than the cooling schedules of the Fast Annealing and the Boltzmann 

Annealing (Ingber, et al. 1989). 

As generation probability, they defined a new density function; 

 ( )
( )

1,
12 ' ln 1

k

k
k

g x s
x s sπ

=
⎛ ⎞∆ + +⎜ ⎟
⎝ ⎠

 (4.15) 

where 'x  is a normalized step (x-x∆ 0)/(xmax-xmin). xmin is the lower limit of optimization 

variable x and xmax is the upper limit. Both upper and lower limits must be given for every 

optimization variable. The new generation function was needed in order to satisfy the proof 

of the convergence. 

For the cooling function, this method has a very fast decreasing function; 

 ( )1/
0 exp n

kT T ck= −  (4.16) 

where c is a scaling constant. 

It is also proved to be convergent as the previous methods. 
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CHAPTER 5  
Equation Chapter 0 Section 5 

DESCRIPTION OF THE TIMETABLING PROBLEM AND 

SOLVING METHODS 

 
In this chapter, the timetabling problem of Computer Engineering Department of 

İzmir Institute of Technology (İYTE) is defined and the solving techniques are explained. 

Due to the university course timetabling problem is an optimization problem in which a set 

of events has to be scheduled in timeslots and located in suitable rooms, the most suitable 

methods are tried to be chosen, such as CSP and SA. 

 

5.1. Problem Representation 

 
As a sample case, 2007-2008 Fall Semester is handled. This problem consists of 5 

classes (including postgraduate classes) with 5 classrooms and a laboratory that computer 

engineering has. In this case, any constraint related with classrooms is ignored such as 

capacity of the rooms or room availability, because each class has its own classroom in 

computer engineering department. Totally there are 20 lectures that are given by 8 

instructors in this case study as shown in Table 5.2. Lecture durations can change between 

3 to 5, but the lectures that take 5 time slots are divided as 3 slots for theoretical and 2 slots 

for laboratory lectures. Hence, the laboratory lessons are considered as a separate lesson of 

which duration is 2 time slots and they are taken in the laboratory. There can be maximum 

8 time slots for one day in İYTE, which means there are 40 time slots per week. 

The aim of this thesis is to fulfill more demands of the instructors and the students 

than the used course timetable of the mentioned semester. Also all the additional 

constraints have to be satisfied. They are divided into two categories as mentioned in 

Chapter 2; hard constraints that must be satisfied and soft constraints expressing the 

preferences. 
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The hard constraints that are taken into account are listed as below; 

• Each instructor can take only one class at a time. 

• Clashes must not occur between the lectures for students of one class. 

• If any instructor has some requests that have to be satisfied, their demands 

must be fulfilled. 

• If any class has to take lectures from other departments, the time slots that 

are given from those departments must be allowed to those lectures. 

• All lectures must start and finish in the same day. 

 

The soft constraints that are taken into account are: 

• The number of alternatives which students can attend should be maximized. 

• The student conflicts between lectures should be minimized. 

• Friday should be free for all classes. 

• Preferences of instructors should be fulfilled. 

 

All these constraints, hard and soft constraints of all the instructors and classes, are 

given in detailed form in the Table 5.1 and Table 5.2.  

 

 

Table 5.1. Hard and Soft Constraints of the Classes 

Classes Hard Constrained 
Days 

Soft 
Constrained 

Days 

Class 1 

Monday, Tuesday 
morning, 

Wednesday, Friday 
evening 

Friday 

Class 2 Monday morning, 
Tuesday, Thursday Friday 

Class 3 Thursday Friday 

Class 4 Thursday, Friday 
evening Friday 

Class 5 
(Postgraduate class)  Friday 
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Table 5.2. Hard and Soft Constraints of the Instructors and the list of their Lectures 

Instructor 
Name Course Name and Course Code 

Hard 
Constrained 

Days 

Soft 
Constrained 

Days 

Ahmet 
Koltuksuz 

• Introduction to Computer Algorithmic & 
Programming CENG 113 

• Theory of Computation CENG 213 
 Asymmetrical Cryptography (Postgraduate 
Course) CENG 543 

Monday All 
mornings 

Belgin 
Ergenç 

• Data Structures II   CENG 211 
• Systems Theory & Analysis CENG 411 

Wednesday Monday and 
Friday 

Bora 
Kumova 

• Artificial Intelligence and Expert Systems 
CENG 461 

• Artificial Intelligence (Postgraduate Course) 
CENG 520 

 Wednesday 

Halis 
Püskülcü 

• Stochastic Processes CENG 315 
• Introduction to Statistical Data Processing 

(Postgraduate Course) CENG 510 

Monday and 
Friday 

Tuesday, 
Wednesday, 

Thursday 
evenings 

Serap 
Atay 

• Operating Systems CENG 313 
• Computational Number Theory 
      (Postgraduate Course) CENG 549 

  

Sıtkı 
Aytaç 

• Introduction to Computer Engineering & 
Orientation CENG 111 

• Senior Design Project & Seminar I CENG 415 
• Senior Design Project & Seminar II CENG 

416 
• Computer Applications in Medicine and 

Biology (Postgraduate Course)  CENG 581 

Monday 
evening and 
Wednesday 

 

Tolga 
Ayav 

• Communication Techniques and Protocols 
CENG 321 

• Computer Architecture CENG 311 
 

Wednesday, 
Thursday 

and Friday 

Tuğkan 
Tuğlular 

• Network Programming CENG 421 
• Object Oriented Programming CENG 352 
• Advanced Network Security (Postgraduate 

Course) CENG 547 

Wednesday 
and Thursday 

Monday, 
Tuesday and 

Friday 
mornings 
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5.2. Approaches to Solve the Problem 

 
The approach that is taken for solving the timetabling problem of the computer 

engineering department of İYTE consists of two phases, providing a hybrid method: 

• Constraint Programming: It is to obtain an initial feasible timetable. 

• Simulated Annealing: It is to improve the quality of the timetable. 

 

The first phase, Constraint Programming, is used primarily to obtain an initial 

timetable satisfying all the hard constraints. The second phase, Simulated Annealing, aims 

to improve the quality of the timetable, taking the soft constraints into account. The method 

used in the second phase is optimization method, which looks for to optimize a given 

objective function. 

The initialization strategy for the SA algorithm has a crucial influence on the 

performance of the algorithm. So it is good to make the initial solution as good as possible 

in as little time as possible. Constraint programming is a good choice for this criterion. 

 

5.2.1. Constraint Programming Phase 

 
Constraint Programming techniques have been studied since 1990s. Due to they 

base on backtracking search, at the beginning they have been developed in Prolog, where 

backtracking and declarativity had been already implemented. In this way Constraint Logic 

Programming (CLP) was created as an addition to Logic Programming (LP). The languages 

from this area, which are still popular, are CHIP, Sicstus, Eclips to name a few. Then CP 

leaves a Prolog and comes into two branches one of them is C/C++ libraries (e.g. ILOG) 

and the second is multiparadigm languages (e.g. Mozart/OZ). All of these languages have 

two common features constraint propagation and distribution (labeling) connected with 

search.  

However, real life problems are generally over constrained and these Prolog based 

programs can not be enough due to their local search techniques. For tight problems that 

are normally con not satisfy all constraints, one may want to find compound labels which 
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are as close to solutions as possible, where closeness may be defined in a number of ways. 

This approach is mentioned in Chapter 3, which is called Partial Constraint Satisfaction 

Problems. 

For all these reasons, the chosen tool to obtain the initial timetable is based on a 

partial constraint solver. The constraint solver library (Muller 2005) contains a local search 

based framework that allows modeling of a problem using constraint programming 

primitives (variables, values, constraints). 

The search is based on an iterative forward search algorithm. This algorithm is 

similar to local search methods; however, in contrast to classical local search techniques, it 

operates over feasible, though not necessarily complete, solutions. In these solutions some 

variables may be left unassigned. All hard constraints on assigned variables must be 

satisfied however. Such solutions are easier to visualize and more meaningful to human 

users than complete but infeasible solutions. Because of the iterative character of the 

algorithm, the solver can also easily start, stop, or continue from any feasible solution, 

either complete or incomplete.  

 

 

procedure SOLVE(initial)   //initial solution is the parameter 
 iteration = 0;    // iteration counter 
 current = initial;    // current solution 
 best = initial;    // best solution 
 while canContinue(current, iteration) do 
  iteration = iteration + 1; 
  variable = selectVariable(current); 
  value = selectValue(current, variable); 
  UNASSIGN(current, CONFLICTING_VARIABLES(current, variable, value)); 
  ASSIGN(current, variable, value); 
  if better(current, best) then 
   best = current; 
  endif 
 endwhile 
 return best 
endprocedure 

Figure 5.1. Pseudocode of Iterative Forward Search 
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As seen in the Figure 5.1, during each step, a variable X is initially selected. As in 

backtracking-based searches, an unassigned variable is selected randomly. Sometimes an 

assigned variable can be selected when all variables are assigned but the solution found so 

far is not good enough (for example, when there are still many violations of soft 

constraints). Once a variable X is selected, a value x from its domain Dx is chosen for 

assignment. Even if the best value is selected, its assignment to the selected variable may 

cause some hard conflicts with already assigned variables. Such conflicting assignments are 

removed from the solution and become unassigned. At the end of the search, the selected 

value is assigned to the selected variable.  

The algorithm tries to move from one partial solution s to another via repetitive 

assignment of a selected value x to a selected variable X. During this search, the feasibility 

of all hard constraints in each iteration step is enforced by unassigning the conflicting 

assignmentsη . The search is terminated when the requested solution is found or when there 

is a timeout expressed, for example, as a maximal number of iterations or available time 

being reached. If the best solution is found, it will return (Muller 2005). 

The functions used in the above algorithm can be defined as (Muller 2005); 

• The termination condition (function canContinue). 

• The solution comparator (function better). 

• The variable selection (function selectVariable). 

• The value selection (function selectValue). 

 

Structure of the Problem Modelling  can be explained as below: 

The model of the case study problem consists of a set of resources, a set of activities 

and a set of dependencies between the activities. The time slots can be assigned a 

constraint, either hard or soft; a hard constraint indicates that the slot is forbidden for any 

activity, a soft constraint indicates that the slot is not preferred. These constraints are called 

as “time preferences”. Time preferences can be assigned to each activity and each resource, 

which indicate forbidden and not preferred time slots (Muller 2005). 
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• Activity: 

The lectures are called activities in the timetabling model. Every activity is 

defined by its duration (expressed as a number of time slots), by time preferences, 

and by a set of resources. Activities require these set of resources. If there is a need 

of resource sets one can create a resource group that the activity requires. These 

resource groups can be either conjunctive or disjunctive: the conjunctive group of 

resources means that the activity needs all the resources from the group, the 

disjunctive group means that the activity needs one of the resources among the 

alternatives. For instance, a lecture, which will take place in one of the possible 

classrooms, will be taught for all of the selected classes.  

• Resource: 

Resources also can be described by time preferences. Only one activity can 

use the resource at the same time. Each resource can represent a teacher, a class, a 

classroom, or another special resource at the lecture timetabling problem.  

• Dependencies: 

Dependencies define and handle the relations between the activities. It 

seems sufficient to use binary dependencies only those define the constraints 

between the activities. There are five operators between the activities that can be 

used; before; closely before; after; closely after; no conflict; concurrently. If one 

activity has to start before another activity one can use “Before” constraint in the 

model.  

 

The solution of the problem defined by the above model is a timetable where every 

scheduled activity has assigned its start time and a set of reserved resources that are needed 

for its execution. This timetable must satisfy all the hard constraints, those defined in the 

beginning of this chapter. If they are defined again according to this structure;  

• Every scheduled activity has all the required resources reserved. 

• Two scheduled activities cannot use the same resource at the same time. 

• No activity is scheduled into a time slot where the activity or some of its 

reserved resources has a hard constraint in the time preferences. 

• All dependencies between the scheduled activities must be satisfied.  
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Furthermore, the number of violated soft constraints are tried to be minimized.  

 

5.2.2. Simulated Annealing Phase 

 
The timetable produced by the constraint programming algorithm is used as the 

starting point for the simulated annealing phase of the hybrid method. This phase is used to 

improve the quality of the timetable. 

The application of simulated annealing to the timetabling problem is relatively 

straight forward. The particles are replaced by elements. The system energy can be defined 

by the timetable cost for timetable modeling. An initial allocation is made in which 

elements are placed in a randomly chosen period. The initial cost and an initial temperature 

are computed. To determine the quality of the solution, the cost has a critical role in the 

algorithm just as the system energy role in the quality of a particle being annealed. The 

temperature is used to control the probability of an increase in cost and can be likened by 

the temperature of a physical particle (Abramson 1991).  

The change in cost is the difference of two costs; one of them is the first cost that is 

before the randomly chosen element is changed and the second one is the cost after the 

randomly chosen element is changed of an activity. The element is moved if the change in 

cost is accepted, either because it lowers the system cost, or the increase is allowed at the 

current temperature. According to the timetabling problem model the cost of removing an 

element usually consists of a class cost, an instructor cost and a room cost. 

Because each class has one room, there is no room constraint in this problem. In 

addition it is known that which lecture is given by which instructor.  According to these 

properties of the problem, the model of this studied problem is simpler than the usual ones; 

the only element that can change the cost is the start times of the activities. 

The typical SA algorithm accepts a new solution if its cost is lower than the cost of 

the current solution. Even if the cost of the new solution is greater, there is a probability of 

this solution to be accepted. With this acceptance criterion it is then possible to climb out of 

local optima. The used algorithm in this study can be seen in the Figure 5.2 (Duong, et al. 

2004). 
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Input: Constraint programming solution of the problem s0
Select an initial temperature t0 > 0 
Select a temperature reduction function a; 
Calculate initial cost of s0
repeat 
 repeat 
 if nrep mod 3 = 0 then 
  Simple Neighborhood /* s is a neighbor solution of s0 */ 
  δ  = f(s) – f (s0); /* compute the change in cost function*/ 
  if δ < 0 then 
   s0 = s 
  else 
   generate random x ∈  [0,1]; /* x is a random number in range 0 to 1 */ 
  endif 
   if x < exp(-δ /t) then 
   s0 = s 
  endif 
 endif 
 if nrep mod 3 = 1 then 
  Swap Neighborhood  /* s is a neighbor solution of s0 */ 
  δ  = f(s) – f (s0); /* compute the change in cost function*/ 
  if δ < 0 then 
   s0 = s 
  else 
   generate random x ∈  [0,1]; /* x is a random number in range 0 to 1 */ 
  endif 
  if x < exp(-δ /t) then 
   s0 = s 
  endif 
 endif 
 if nrep mod 3 = 2 then 
  Random  Swap Neighborhood  /* s is a neighbor solution of s0 */ 
  δ  = f(s) – f (s0); /* compute the change in cost function*/ 
  if δ < 0 then 
   s0 = s 
  else 
   generate random x ∈  [0,1]; /* x is a random number in range 0 to 1 */ 
  endif 
  if x < exp(-δ /t) then 
   s0 = s 
  endif 
 endif 
 until iteration_count = nrep; 
 t = a (t) 
until stopping condition = true. 
/* s0 is the approximation to the optimal solution */ 

Figure 5.2. Simulated Annealing Algorithm 
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From this algorithm, in Figure 5.2, it can be seen there are several aspects of the SA 

algorithm that are problem oriented. Design of a good annealing algorithm is very 

important, it generally comprises three components: Neighborhood structure, cost function 

and cooling schedule. 

 

5.2.2.1. Neighbourhood Structure 

 
In order to apply the SA algorithm a neighborhood structure which defines for each 

solution a set of neighboring solutions must be included. This is the key component of any 

simulated annealing method. In this thesis three algorithms are tried and all of them are 

used one by one. Although they are tried to be used individually in the SA algorithm, the 

most effective result is obtained when they are used together. In each iteration of SA 

algorithm indexed by nrep, these three algorithms are executed in turns.  

The first one of the neighbor algorithm is simple neighborhood searching. It 

randomly chooses one activity and one slot. The chosen slot is assigned as the start time of 

the selected activity. 

The second algorithm selects randomly two activities and swaps their start times. It 

is called swap neighborhood. 

The third one of the neighbor algorithms chooses randomly two activities and two 

slots which are referred as random swap neighborhood in this study. These two slots are 

assigned as the start times of the randomly selected activities. 

 

5.2.2.2. Cost Calculation 

 
For the case of course scheduling, the cost calculation tries to show the influences 

of both the hard constraints and soft constraints. Penalty scores of both the hard constraints 

and soft constraints can be seen in the below. Each constraint is defined by a penalty score 

function. 

The conditions that the timetable has penalties for hard constraints are: 
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• If the activity slots are hard slots that violates the hard constraints of that 

activity; 
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The condit penalties for soft constraints are: 

• If the activity slots are so
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where n is the number of activities, iT  is the number of timeslots which 

are forbidden to the activities, which are also called the hard slots. 

• If the same class or same instructor is assigned to two activities at the 

same time; (This is only to calculate the timetable solution of constraint 

programming.) 
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where n is the number of activities, iY is the number of timeslots which 

depends on preferences of instructors. It can be inferred soft slots either. 

If there•  is any student conflict between the previously failed lectures, 

which a student has to take

 

ime. If a 

student follows an irregular program, the lecture conflicts are minimized 

can be seen in the appendices, and the irregular 

situatio

icts with each other, then these 

kind of

wer 6 and for 

e soft constraints the given penalty is smaller

Thus the cost function F can be calculated as the sum of those hard and soft 

following formula and should be minimized: 

 (5.7) 

 

, and the regular lectures, which are yet to be 
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where n is the number of activities, ijS  is the number of students who 

take two lectures of different classes, i and j, at the same t

by this constraint. It is taken as a soft constraint, otherwise course 

scheduling problems would be very strict and had no solution.  

 

To determine the student conflicts, the student and the lecture data are obtained 

from the university database system, which 

ns are identified; such as if a student who is in the third class has some other 

lectures from upper or lower classes and these lectures confl

 conflicts are tried to be minimized. 

For hard constraints the given penalty is very high such as 10 to the po

th  such as 100. 

constraints. It can be seen in the 

1 2 3 4 5 6.C C C C C CF F F F F F F= + + + + + 

5.2.2.3. Cooling Schedule 

 
The used cooling function is called as geometric cooling schedule. In every nrep 

iterations, the temperature, t, is multiplied byα , where n  and rep α  are given parameters of 

the algorithm (see in Figure 5.2). 
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The parameter of nrep is chosen as 3, which returns the best solution cost within an 

acceptable run time. To determine nrep, several different values are experimented, namely, 

1, 2, 3, 6, 10, 5.  

To determine starting temperature, a rough start temperature t0 = 10000 is chosen 

which 

dence between the 

starting acceptance probability 

is hot enough to allow moves to almost neighbourhood state, and the SA algorithm 

tries to derive the real start temperature T0 basing on the functional depen

0χ  (70% to 80%) and the starting temperature T0. 

The functional dependence between the starting acceptance probability 0χ  and the 

starting temperature T0 is given as follows (Poupaert and Deville 2000): 
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where ( ) ( )0sfsf ii −=δ , s0 is the initial solution, si is a neighbor solution of s0, f is the cost 

function, m is the size of neighbor solution space. The solution space is calculated by 

(n*(n-1)/2) formulation. 

For the derivation of the starting temperature T0 from the starting acceptance 

probability 0χ (%70 to %80) using Equation 5.8, a small algorithm is used (Duong, et al. 

2004). This algorithm has to be run only once for each execution of the SA algorithm. The 

algorithm is given in Figure 5.3. 

To determine the final temperature Tf, since there are no accurate recommendations 

 in literature, several final temperatures are experimented, namely, 0.5, 0.05, 

f which returns the best solution 

cost. 

 

 

or the value

0.005, 0.0005, and 0.00005. Finally, 0.005 is chosen for T
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Step 1: m := n(n-1)/2 ; /* n is the number of exams */ 
 compute iδ , mi ≤≤1 ; 
 t  := 10000; 0
 t := t ; j := 0; 0
 repeat 
  j:= j+1; t := t*j; 
  compute ( )0tχχ =  (using Equation 5.8); 
 until 8.0≥χ ; 

tep 2:  exit := false; S tend := t;
 repeat 
  t = (t0 + tend)/2; 
  compute ( )tχχ =   (using Equation 5.8); 
  if 0.7 < χ < 0.8 then 
   exit := true 
  else if 7.0≤χ  then 

t0 := t 
if 

/* t is the desired starting temperature */ 

   tend := t 
   else  
   
  end
 until exit; 

Figure 5.3. Algorithm to Determine Starting Temperature 

 

 

To determine the reduction parameter α  for geometric cooling, the formu  

proposed by Burke et al. (2001) is used which allows defining a v

la

alue for the parameter α  

based on the predefined time to run for the simulated annealing.  

 ( ) ( )( )01 ln ln /f move

The ti  that is wanted the SA algorithm to run for is re resented in the number of 

SA steps, N

T T Nα = − − . (5.9) 

me p

move. A value can be computed for the parameter α  based on the predefined 

time (Nmove) that the user wants the SA algorithm to run for with the fixed values for T0 and 

Tf, using Equation 5.9. This mechanism is called time predefined simulated annealing 

(Burke, et al. 2001). It not only helps to increase the efficiency of the SA algorithm but also 

helps to make simulated annealing experiments easier. 
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CHAPTER 6  
Equation Chapter 0 Section 6 

CONCLUSION 

 
In this chapter, the experimental results are evaluated and some comparisons are 

done between the different initial timetable solutions. In addition, some comments on 

future works that can be performed are made. 

 

6.1. Experimental Results 

 
The İYTE Computer Engineering Timetabling Problem is implemented with 

Eclipse SDK Version 3.1.2 with Java Programming Language and experimented on an Intel 

Core(TM) Duo 2.40 GHz PC. 

In the first phase, the initial timetable solution of the timetabling problem is 

completed in 5 minutes. The constraint solver gives the output folder for any difficulty 

level of problem (can be loosen or tighten) in the same time duration. 

For the second phase, simulated annealing part, the solution can be obtained in 

different time durations. According to the problem difficulty and the chosen parameter 

values for the SA algorithm, the execution time can change. For instance run times on the 

same computer resources with the number of SA steps, Nmove, changing from 5 to 3000 are 

given in the Table 6.1. As seen from the table, if the number of SA steps high enough, such 

as the rate of cooling slow enough, the solution cost will improve a lot, i.e. a good quality 

solution comes out, but when the number of SA steps is already too high, the solution will 

not improve much (Duong, et al. 2004). Briefly, the advantage of time predefined search 

algorithms over traditional local search algorithms can be explained as; in traditional local 

search algorithms there are a common practice to run the algorithm several times in order to 

get the best possible value of the cost function. In contrast, in time-predefined algorithms 

the aim is to use all the time effectively in a single search for a high quality solution 

(Burke, et al. 2001). 
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Table 6.1. Run Times 

Nmove 5 10 50 100 500 1000 3000 

Run time 

(second) 
0.001 0.8 3 6 29 60 154 

Cost 1016200 2018800 4100 3500 3300 3400 3300 

 

 

In this thesis, the experimental results are obtained with the fixed value of Nmove = 

500 which returns the best results in an appropriate time. Because the aim of this thesis is to 

find a solution timetable to İYTE Computer Science Engineering Department, the 

parameter of predefined time is not studied deeply.  

Due to SA is a heuristic algorithm, several different algorithms are experimented in 

different combinations. In the below tables the experimental results are given. These results 

are obtained by taking the average of 8 trials of executions. Table 6.2 shows the costs and 

the durations of neighborhood searching algorithms independently. Table 6.3 shows the 

costs and the durations in different combinations of neighborhood searching algorithms. 

Table 6.4 shows the costs and the durations of these algorithms when they are executed in 

each iteration of SA algorithm indexed by nrep both in turns and sequentially. 

The used values of parameters are listed as below which return the best solution 

costs within an acceptable run time: 

Nrep: 3 

Nmove: 500 

Tinitial: 10000 

Tfinal: 0.005 

Stopping Condition: t > 0.0005E–300 
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 Table 6.2. Costs and the CPU Times of Neighborhood Algorithms Used Independently 

Form in SA Algorithm 

Simple 

Neighborhood 

Swap 

Neighborhood 

Random Swap 

Neighborhood 
Initial 

Method 
Cost CPU(s) Cost CPU(s) Cost CPU(s) 

CPS 3900 29 9300 40 4300 34 

Random 5500 28 257000 45 6300 43 

 

 
Table 6.3. Costs and the CPU Times of Neighborhood Algorithms Used in Several Paired 

Combinations in SA Algorithm 

Simple-Swap 

Neighborhood 

Simple-Random Swap 

Neighborhood 

Swap-Random Swap 

Neighborhood 
Initial 

Method 
Cost CPU(s) Cost CPU(s) Cost CPU(s) 

CPS 3900 28 4900 27 3700 31 

Random 3900 28 5400 33 3900 32 

 

 

Table 6.4. Costs and the CPU times of Neighborhood Algorithms Used in sequentially and 

in turns in SA Algorithm Indexed by nrep

All sequentially All in turns 
Initial Method 

Cost CPU(s) Cost CPU(s) 

CPS 4400 76 3500 28 

Random 4100 87 3600 28 

 

 49



In the Simulated Annealing stage, some different neighborhood searching strategies 

are experimented. Three different neighborhood searching algorithms are tried in different 

combinations as seen from the above tables. Because SA is a heuristic method, several 

experiments should be done and the technique that returns the best result in an appropriate 

time should be chosen.  

Due to some slots remains empty after the scheduling done, trying those slots 

decreases the cost and improves the result of the timetable solution. On the other hand 

swapping the slots of the lessons can be useful. Hence, both techniques are tried to be used 

in an effective way. Among the tables, Table 6.2, Table 6.3, Table 6.4, the best returned 

result can be seen in the Table 6.4. 

In the Figure 6.1 the cost distribution obtained by the two stage method can be seen. 

In the first phase of the hybrid method the initial cost is 17600 which is obtained by the 

CSP method. After SA method is implemented the cost is decreased to 3500. 

On the other hand the SA algorithm could decreased the cost from 9020200 to 3500 

levels without implementing CSP as an initial phase. This result is just same as the two 

staged method. The reason of this result is the problem is simple. SA method will be 

enough for Computer Engineering Department of İYTE. The cost distribution of the 

timetable, which is obtained by implementation of the SA algorithm, can be seen from the 

Figure 6.2. The Figure 6.3 is the closer look of the Figure 6.2. 

Consequently, the aim of the thesis is successfully reached. If the reference 

timetable used in which the 2007–2008 fall semester is compared with the obtained one by 

SA algorithm, the difference can be seen obviously. The cost of the reference timetable 

prepared by hand was 5011800. The reference timetable and the obtained timetable can be 

seen sequentially in the Table 6.5, Table 6.6 (only after CSP), and Table 6.7 (after both 

CSP and SA). 
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Table 6.5. Used Timetable of İYTE in Winter Semester 2007-2008  (Cost is 5011800) 

Days / 

Hours 
MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 

08.45– 

09.30 

Ceng 311 (3 crdt.) 

(Tolga Ayav) 

Ceng 411 (3 crdt.) 

(Belgin Ergenç) 

Ceng 321 (3 crdt.) 

(Tolga Ayav) 

Ceng 581 (3 crdt.) 

(Sıtkı Aytaç) 

Ceng 315 (3 crdt.) 

(Halis Püskülcü) 

Ceng 111 (3 

crdt.) 

(Sıtkı Aytaç) 

Ceng 461(3 crdt.) 

(Bora Kumova) 

Ceng 510 

(Halis Püskülcü) 

Ceng 520  

(3 crdt.) 

(Bora Kumova) 

09.45–  

10.30 

Ceng 311 

Ceng 411 

Ceng 321 

Ceng 581 

 

Ceng 211 (3 crdt.) 

(Belgin Ergenç) 

Ceng 315 

Ceng 111 

Ceng 461 

Ceng 510 

 

Ceng 520 

10.45–

11.30 

Ceng 311 

Ceng 411 

Ceng 321 

Ceng 581 

Ceng 211 

Ceng 315 

Ceng 111 

Ceng 461 

Ceng 510 

 

Ceng 520 

11.45– 

12.30 

  Ceng 211 

 

  

13.30–

14.15 

Ceng 213 (3 crdt.) 

(Ahmet 

Koltuksuz) 

Ceng 421 (3 crdt.) 

(Tuğkan 

Tuğlular) 

Ceng 313 (3 crdt.) 

(Serap Atay) 

Ceng 416 (3 crdt.) 

(Sıtkı Aytaç) 

Ceng 543 (3 crdt.) 

(Ahmet 

Koltuksuz) 

Ceng 352 (3 crdt.) 

(Tuğkan 

Tuğlular) 

Ceng 311 LAB 

(2 crdt.) 

(Tolga Ayav) 

Ceng 415 (3 

crdt.) 

(Sıtkı Aytaç) 

Ceng 549 (3 

crdt.) 

(Serap Atay) 

Ceng 113 

(3 crdt.) 

(Ahmet 

Koltuksuz) 

Ceng 547 

(3 crdt.) 

(Tuğkan 

Tuğlular) 

14.30– 

15.15 

Ceng 213 

Ceng 421 

 

Ceng 313 

Ceng 416 

Ceng 543 

 

Ceng 352 

Ceng 311 LAB 

 

Ceng 415 

Ceng 549 

 

Ceng 113 

Ceng 547 

 

15.30–

16.15 

Ceng 213 

Ceng 421 

Ceng 313 

Ceng 416 

Ceng 543 

 

Ceng 352 

Ceng 313 LAB 

(2 crdt.) 

(Serap Atay) 

Ceng 415 

Ceng 549 

Ceng 113 

Ceng 547 

16.30–

17.15 

  Ceng 313 LAB 
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Table 6.6. Obtained Timetable of İYTE for Winter Semester 2007-2008 by  Constraint 

Programming (Cost is 17600) 

Days / 

Hours 
MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 

08.45–

09.30 
 Ceng 411 (3 crdt.) 

(Belgin Ergenç) 

Ceng 311 LAB 

(2 crdt.) 

(Tolga Ayav) 

Ceng 213 (3 crdt.) 

(Ahmet 

Koltuksuz) 

Ceng 315 (3 crdt.) 

(Halis Püskülcü) 

Ceng 111 (3 crdt.) 

(Sıtkı Aytaç) 

 

 

09.45– 

10.30 

Ceng 415 (3 crdt.) 

(Sıtkı Aytaç) 

Ceng 520  

(3 crdt.) 

(Bora Kumova) 

Ceng 411 

Ceng 311 LAB 

 

Ceng 213 

Ceng 315 
Ceng 111 

Ceng 510  (3 crdt.) 

(Halis Püskülcü) 

 

10.45–

11.30 

Ceng 352 (3 crdt.) 

(Tuğkan 

Tuğlular) 

Ceng 415 

Ceng 520  

Ceng 321 (3 crdt.) 

(Tolga Ayav) 

Ceng 411 

 

Ceng 213 

Ceng 315 
Ceng 111 

Ceng 510 

 

 

11.45– 

12.30 

Ceng 352 

Ceng 415 

Ceng 520  

Ceng 321  

Ceng 581 (3 crdt.) 

(Sıtkı Aytaç) 

 Ceng 416 (3 crdt.) 

(Sıtkı Aytaç) 

Ceng 510 

 

13.30–

14.15 

Ceng 352 

Ceng 461(3 crdt.) 

(Bora Kumova) 

 

Ceng 321  

Ceng 581 
 Ceng 113 

(3 crdt.) 

(Ahmet 

Koltuksuz) 

Ceng 416 

Ceng 211 (3 

crdt.) 

(Belgin Ergenç) 

 

14.30– 

15.15 

Ceng 311 (3 crdt.) 

(Tolga Ayav) 

Ceng 461 

Ceng 547 

(3 crdt.) 

(Tuğkan 

Tuğlular) 

Ceng 421 (3 crdt.) 

(Tuğkan 

Tuğlular) 

Ceng 581 

Ceng 313 LAB 

(2 crdt.) 

(Serap Atay) 

Ceng 313 (3 crdt.) 

(Serap Atay) 

Ceng 543 (3 crdt.) 

(Ahmet 

Koltuksuz) 

 

Ceng 113 

Ceng 416 

Ceng 549 (3 crdt.) 

(Serap Atay) 

Ceng 211 

15.30–

16.15 

Ceng 311 

Ceng 461 

Ceng 547 

Ceng 421 

Ceng 313 LAB 

 

Ceng 313 

Ceng 543 
Ceng 113 

Ceng 549 

 

Ceng 211 

16.30–

17.15 

Ceng 311 

Ceng 547 

Ceng 421 Ceng 313 

Ceng 543 
Ceng 549  
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Table 6.7. Obtained Timetable of İYTE for the Winter Semester 2007–2008 after both 

Constraint Programming and Simulated Annealing (Cost is 3400) 

Days / 

Hours 
MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 

08.45–

09.30 

Ceng 415 (3 crdt.) 

(Sıtkı Aytaç) 

Ceng 321 (3 crdt.) 

(Tolga Ayav) 

Ceng 520  

(3 crdt.) 

(Bora Kumova) 

 Ceng 213 (3 crdt.) 

(Ahmet 

Koltuksuz) 

Ceng 510  (3 crdt.) 

(Halis Püskülcü) 

Ceng 111 (3 crdt.) 

(Sıtkı Aytaç) 

Ceng 211 (3 

crdt.) 

(Belgin Ergenç) 

09.45– 

10.30 

Ceng 415 

Ceng 321 

Ceng 520  

Ceng 416 (3 crdt.) 

(Sıtkı Aytaç) 

Ceng 311 LAB 

(2 crdt.) 

(Tolga Ayav) 

 

Ceng 315 (3 crdt.) 

(Halis Püskülcü) 

Ceng 549 (3 crdt.) 

(Serap Atay) 

Ceng 213 

Ceng 510   

Ceng 111 
Ceng 211 

Ceng 311 (3 crd) 

(Tolga Ayav) 

10.45–

11.30 

Ceng 415 

Ceng 321 

Ceng 520  

Ceng 416 

Ceng 311 LAB 

 

Ceng 213 

Ceng 315 
Ceng 549 

Ceng 510   

Ceng 111 
Ceng 211 

Ceng 311 

11.45– 

12.30 

Ceng 313 LAB 

(2 crdt.) 

(Serap Atay) 

Ceng 416 

 

Ceng 315 

Ceng 549 
 Ceng 311 

Ceng 581 (3 crd) 

(Sıtkı Aytaç) 

13.30–

14.15 

Ceng 313 LAB 

 

Ceng 421 (3 crdt.) 

(Tuğkan 

Tuğlular) 

 

Ceng 543 (3 crdt.) 

(Ahmet 

Koltuksuz) 

 

 Ceng 113 

(3 crdt.) 

(Ahmet 

Koltuksuz) 

Ceng 581 

14.30– 

15.15 

Ceng 461(3 crdt.) 

(Bora Kumova) 

Ceng 547 

(3 crdt.) 

(Tuğkan 

Tuğlular) 

Ceng 421 Ceng 313 (3 crdt.) 

(Serap Atay) 

Ceng 543 

 

Ceng 411 (3 crdt.) 

(Belgin Ergenç) 

 

Ceng 113 

Ceng 352 (3 crd) 

(Tuğkan 

Tuğlular) 

Ceng 581 

15.30–

16.15 

Ceng 461 

Ceng 547 

Ceng 421 Ceng 543 

Ceng 313 

Ceng 411 Ceng 113 

Ceng 352 
16.30–

17.15 

Ceng 461 

Ceng 547 

 Ceng 313 Ceng 411 Ceng 352 
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Figure 6.1. Cost Distribution of a Timetable obtained by first CSP and then improved by  

SA method                   
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Figure 6.2. Cost Distribution of a Random Timetable improved by SA method 
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Figure 6.3. Cost Distribution of a Random Timetable improved by SA method (a closer 

look to Figure 6.2) 

 

 

For the second evaluation, using hybrid approach to this case study has not a very 

critical role because of this problem is not a much tightened problem. Utilizing any random 

timetable for the initial point instead of Constraint Programming in the SA algorithm can 

give reasonable results for the Computer Engineering Department of İYTE. 

On the other hand, this hybrid approach is tested on a much more tightened 

problem. That problem has 200 activities with 20 instructors, 20 classrooms and 20 classes. 
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Table 6.8. More Tightened Timetable Problem than the Case Problem 

 

Random Initial Constraint Programming 
Simulated Annealing 

Cost Cost 

Before SA 2.082161E8 2073100.0 

After SA 9571100.0 1639700.0 

Total CPU Time (min) 52 43  

 

As seen in the Table 6.8, the initialization strategy for the SA algorithm has very 

crucial influence on the performance of the algorithm. The constraint programming stage 

provides a fast way to the first feasible solution.  

The reason of this difference between two problems is the problem structure. In the 

first case (the problem of Computer Engineering Department of İYTE) the problem is very 

loosen. There are 22 lessons in a week, so using 40 timeslots appropriate solution can be 

obtained. However in the second case there are 300 lessons which have to be scheduled for 

50 timeslots. This is a tightly constrained problem. 

Evaluations on the following elements can be inferred using these tables: 

• The most effective way of using neighborhood searching algorithms, 

• The effect of the first phase of the hybrid approach to the SA algorithm. 

 

6.2. Future Works 

 
Finding a feasible timetable solution for the Computer Engineering Department of 

İYTE is successfully realized in this study. While trying to find a solution effective 

methods for optimization problems are tried in a hybrid way. In spite of the shortcomings 

of the comparisons, the hybrid method still prove as a promising algorithm, among the best 

currently is used for course timetabling. The constraint programming stage provides a fast 
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way to the first feasible solution. This solution is improved by the simulated annealing 

stage. 

For a future work the results of the experiments demonstrated in the previous 

section can be improved by some modifications in the implementation of the SA algorithm. 

The stage of the hybrid approach may be integrated more fully, to yield a more powerful 

and robust algorithm. 

 Another method for obtaining more quality results can be performing reheating 

techniques in simulated annealing method in a more effective way. By reheating one can 

get rid of from local minimal points and can reach to the global minimal point. Due to 

performing reheating method can cause high costs for wider range of problem instances, 

working on reheating worth to obtain more qualified solutions. 

The other future studies about optimization problem searching methods can be 

planned such as trying the hybrid two stage methods consisting of constraint programming 

and tabu search for course timetabling problem, and to compare results between the two 

different hybrid methods on the same data set. 
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APPENDIX A  
 

STUDENT DATA 

 
Table A.1. Student Data 

STUDENT 
NUMBER CLASS REAL 

SEMESTER 
STUDENT 
NUMBER CLASS REAL 

SEMESTER 

100201003 4 9 130201045 2 3 
100201005 4 9 130201046 2 3 
100201006 4 9 130202020 2 3 
100201012 4 9 132001001 2 3 
100201013 4 9 132001001 2 3 
100201015 4 9 132001004 3 5 
100201016 4 9 132001007 3 5 
100201018 4 9 132001009 3 5 
100201021 4 9 132001011 3 5 
100201025 4 9 132001013 3 5 
100201027 4 9 132001016 1 1 
100201028 4 9 132001016 1 1 
100201029 4 9 132001017 2 4 
100201030 4 9 132001018 2 4 
100201035 4 8 132001023 2 4 
100202025 4 7 140201001 1 1 
102001007 3 6 140201002 1 1 
102001007 3 6 140201003 2 3 
102001013 3 5 140201004 1 1 
102001013 3 5 140201005 1 1 
110201002 3 5 140201006 1 1 
110201003 4 7 140201007 1 1 
110201004 4 7 140201008 Prep S. 0 
110201005 4 7 140201009 1 1 
110201006 4 7 140201010 1 1 
110201007 4 7 140201011 1 1 
110201008 4 7 140201012 Prep S. 0 
110201009 3 5 140201013 1 1 
110201010 4 7 140201014 1 3 
110201011 4 7 140201015 1 1 
110201012 4 7 

 

140201016 1 1 
 
 

  (cont. on next page) 
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Table A.1. (cont.) Student Data 

110201013 4 7 140201017 2 3 
110201015 4 7 140201018 2 3 
110201016 4 7 140201019 1 1 
110201017 4 7 140201020 1 1 
110201018 3 6 140201021 2 3 
110201019 4 7 140201022 1 1 
110201021 3 6 140201023 1 1 
110201023 4 7 140201024 1 1 
110201026 4 9 140201025 1 1 
110201027 4 7 140201026 1 1 
110201029 4 7 140201027 1 1 
110201031 4 7 140201028 2 3 
110201032 4 7 140201029 1 1 
110201033 4 7 140201030 1 1 
110201034 4 7 140201031 1 1 
110201036 4 7 140201032 1 1 
110201037 4 9 140201033 1 1 
110201038 4 7 140201034 1 1 
110201039 4 9 140201035 1 1 
110201042 4 7 140201036 1 1 
110201043 3 5 140201038 1 1 

110201045 1 5 140201039 Prep 
School 0 

110201050 4 8 140201040 1 1 
110201051 4 8 140201041 1 1 
112001011 3 6 140201042 1 1 

120201001 3 5 140201043 Prep 
School 0 

120201002 3 5 140201046 Prep 
School 0 

120201003 3 5 140201048 3 3 
120201004 4 7 140201049 1 1 
120201005 3 5 142001004 2 3 

120201006 3 5 142001007 Prep 
School 0 

120201007 4 7 142001011 1 1 
120201008 3 5 142001011 1 1 
120201009 3 5 142001012 2 3 

120201011 3 5 150201001 Prep 
School 0 

120201012 3 5 150201002 1 1 
120201013 3 5 150201003 1 1 

120201014 3 5 150201004 Prep 
School 0 

120201015 3 5 

 

150201005 Prep 
School 0 

 
(cont. on next page) 
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Table A.1. (cont.) Student Data 

120201016 3 5 150201006 Prep 
School 0 

120201017 3 5 150201007 Prep 
School 0 

120201018 3 5 150201008 1 1 

120201019 3 5 150201009 Prep 
School 0 

120201021 3 5 150201010 Prep 
School 0 

120201022 3 5 150201011 Prep 
School 0 

120201023 3 5 150201012 Prep 
School 0 

120201024 3 5 150201013 Prep 
School 0 

120201025 3 5 150201014 Prep 
School 0 

120201026 3 5 150201015 Prep 
School 0 

120201027 2 5 150201016 1 1 

120201028 1 5 150201017 Prep 
School 0 

120201030 3 5 150201018 Prep 
School 0 

120201031 3 5 150201019 Prep 
School 0 

120201033 3 5 150201020 Prep 
School 0 

120201034 4 7 150201021 1 1 

120201035 1 3 150201022 Prep 
School 0 

120201036 2 3 150201023 Prep 
School 0 

120201038 2 3 150201024 Prep 
School 0 

120201039 3 5 150201025 Prep 
School 0 

120201040 3 5 150201026 1 1 
120201041 4 7 150201027 1 1 

120201042 3 5 150201028 Prep 
School 0 

120201043 1 3 150201029 Prep 
School 0 

120201044 2 4 150201030 Prep 
School 0 

120201045 1 5 150201031 Prep 
School 0 

120201047 4 7 

 

150201032 1 1 
 

(cont. on next page) 
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Table A.1. (cont.) Student Data 

120201048 4 7 150201033 Prep 
School 0 

122001006 3 6 150201034 Prep 
School 0 

122001007 3 5 150201035 Prep 
School 0 

130201001 2 3 150201036 Prep 
School 0 

130201002 2 3 150201037 1 1 
130201004 1 1 150201038 1 1 

130201005 2 3 150201039 Prep 
School 0 

150201040 Prep 
School 0 130201006 3 5 

150201041 Prep 
School 0 130201007 2 5 

150201042 Prep 
School 130201008 1 3 0 

130201009 2 3 150201043 Prep 
School 0 

130201010 2 3 150201044 Prep 
School 0 

130201011 1 1 150201045 Prep 
School 0 

130201012 2 3 150201046 2 1 
130201013 2 3 150201047 3 1 

130201015 2 3 150201049 Prep 
School 0 

130201016 1 3 152001001 1 1 
130201017 2 3 152001002 1 1 
130201018 2 3 152001003 1 1 
130201019 2 3 152001004 1 1 
130201020 2 3 152001005 1 1 
130201021 2 3 152001006 1 1 
130201022 2 3 152001007 1 1 
130201023 2 3 152001008 1 1 
130201024 2 3 152001010 1 1 
130201025 1 3 152001011 1 1 

130201026 2 3 152001012 Prep 
School 0 

130201027 1 1 152001013 1 1 
130201028 2 5 70201003 4 9 
130201029 3 5 70201032 4 9 
130201030 3 5 80201007 4 9 
130201031 2 3 80201030 4 9 
130201032 2 3 

 

80201033 4 9 
130201033 2 3  90201004 4 9 

 

(cont. on next page) 
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Table A.1. (cont.) Student Data  

130201034 2 3 90201006 4 9 
130201035 2 3 90201007 4 9 
130201036 2 3 90201010 4 9 
130201037 2 3 90201019 4 9 
130201038 2 3 90201020 4 9 
130201039 1 3 90201021 4 9 
130201040 3 5 90201024 4 9 
130201041 1 3 90201027 4 9 
130201042 2 3 90201032 4 9 
130201043 1 3 90201033 4 9 
130201044 1 1 
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APPENDIX B  
 

LECTURE DATA 

 
Table B.1. CENG 111 Introduction to Computer Engineering & Orientation 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME  STUDENT 

NO 
STUDENT 

NAME 
STUDENT 
SURNAME 

140201038 İSMAİL KARACAN  140201011 OZAN ALTUNDAĞ 
140201022 GÖKÇEN ÇİMEN  140201049 LALA ALİZADA 
130201008 ERCAN DOĞAN  140201006 MUSTAFA ALİOĞLU 
140201040 MESUT CAN  130201039 ARZU AYTAR 
150201047 ESİN BOYACIOĞLU  140201031 SEMİH KOLU 
140201020 ONUR AKSOY  150201027 ESRA YILDIZ 
140201023 DENİZ DAMARSARDI  150201016 DUYGU ŞAHİN 
140201030 HÜSEYİN KIZILBULAK  140201014 OĞUZ KAYRAL 

140201009 MEHMET 
ALİ ATEŞ  130201043 BEHÇET MUTLU 

140201019 HASAN 
EMRE ABAT  140201005 OĞUZ AKPINAR 

140201002 SEMA TABAK  130201025 EMRE ŞAHİN 
120201043 OSMAN TİTİZ  150201032 ERDİ OKATAR 

140201007 TUĞÇE 
HİLAL ÇİL  140201035 YASİN KOCAER 

140201036 ALİ ERCAN KONUŞ  120201035 ESER İNAN ARSLAN 

130201004 MERİÇ UZUN  140201010 UĞUR GÖĞEBAKA
N 

140201026 ADEM 
SAMET GAGAR  140201041 GÖKHAN SUNA 

120201028 CEVAHİR ALTINTOP  140201016 HABİB ADIBELLİ 

150201037 YAVUZ 
SELİM ÖZTÜRK  140201042 ARZUM KARATAŞ 

130201011 METİN UĞUR  140201032 ÖMER YAĞCI 
150201026 EMRE ÇELİKTEN  140201034 ZAFER ÖZDOĞRU 

150201008 MUSTAFA TOPRAK  140201013 OSMAN 
ERTEM UNAT 

140201027 YAĞMUR 
UMUT KUŞ  130201027 MEHMET ÖZDEMİR 

150201021 DENİZ KUT  130201041 TUBA ALPOĞLU 
140201025 GÖRKEM DEMİRAY  130201044 NAZMİ MERT 
150201038 CEM HACIHASANOĞLU  140201001 ÇAĞKAN DÖKMEN 
140201024 SEYHAN UÇAR  150201003 ONURCAN ANIL 
150201002 FULYA YURTSEVER  140201033 SAMET ERENTÜRK 
140201015 ŞEYMA AYDIN  140201004 SERDAR SARIGÜL 
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Table B.2. CENG 113 Introduction to Computer Algorithmics & Programming 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME  STUDENT 

NO 
STUDENT 

NAME 
STUDENT 
SURNAME 

140201033 SAMET ERENTÜRK  140201001 ÇAĞKAN DÖKMEN 
140201016 HABİB ADIBELLİ  140201049 LALA ALİZADA 
140201034 ZAFER ÖZDOĞRU  140201004 SERDAR SARIGÜL 

140201026 ADEM 
SAMET GAGAR  130201026 ŞERİFE İDİKUT 

150201021 DENİZ KUT  130201027 MEHMET ÖZDEMİR 

130201023 CENK TÜZÜN  110201045 MOUSTAFA CHATZIMPEKIR 

140201025 GÖRKEM DEMİRAY  140201006 MUSTAFA ALİOĞLU 
130201034 ŞEVKET ÇETİN  130201037 BENGÜ BANU DÖNMEZ 
150201002 FULYA YURTSEVER  140201015 ŞEYMA AYDIN 
130201009 İSLAM İPEKYÜZ  130201008 ERCAN DOĞAN 
140201024 SEYHAN UÇAR  120201027 TUNAY TUNA 
140201020 ONUR AKSOY  140201002 SEMA TABAK 
130201025 EMRE ŞAHİN  140201018 ECE NESLİ GÜRBÜZ 
140201031 SEMİH KOLU  140201040 MESUT CAN 
150201038 CEM HACIHASANOĞLU  140201022 GÖKÇEN ÇİMEN 
130201041 TUBA ALPOĞLU  150201003 ONURCAN ANIL 
130201007 UĞUR AYDIN  140201019 HASAN EMRE ABAT 
130201044 NAZMİ MERT  140201005 OĞUZ AKPINAR 

130201022 GÖZDE ŞENCOŞKUN  152019002 MEHMET 
VOLKAN ÇAKIR 

140201023 DENİZ DAMARSARDI  140201021 NERMİN ÖZMEN 
150201016 DUYGU ŞAHİN  130201013 GÜLTEN ANIL DENGİZ 
140201042 ARZUM KARATAŞ  140201041 GÖKHAN SUNA 

140201007 TUĞÇE 
HİLAL ÇİL  130201002 MERİÇ DÖNMEZER 

130201039 ARZU AYTAR  150201026 EMRE ÇELİKTEN 
130201019 ZÜLEYHA AKUSTA  130201005 BURAK YILMAZTÜRK 
150201027 ESRA YILDIZ  140201011 OZAN ALTUNDAĞ 
130202020 ALPKAN KOCA  150201037 YAVUZ SELİM ÖZTÜRK 

140201036 ALİ ERCAN KONUŞ  130201016 YUNUS DUMLU 

130201032 FEVZİ KAHRAMAN  120201035 ESER İNAN ARSLAN 
130201004 MERİÇ UZUN  150201032 ERDİ OKATAR 
140201032 ÖMER YAĞCI  120201045 RAMAZAN AKMAN 
140201038 İSMAİL KARACAN  140201010 UĞUR GÖĞEBAKAN 
130201038 MUSTAFA İNAÇ  130201011 METİN UĞUR 
130201028 BATUHAN GÜNDOĞDU  140201030 HÜSEYİN KIZILBULAK 

140201009 MEHMET 
ALİ ATEŞ  140201013 OSMAN 

ERTEM UNAT 

140201035 YASİN KOCAER  140201027 YAĞMUR 
UMUT KUŞ 

140201014 OĞUZ KAYRAL  150201008 MUSTAFA TOPRAK 
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Table B.3. CENG 211 Data Structures II 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME  STUDENT 

NO 
STUDENT 

NAME 
STUDENT 
SURNAME 

130201018 DİLEK AVCI   140201003 GÖKHAN TUNCER 
130201020 ÇİĞDEM TÜRKMENDAĞ   140201028 EVRİM FURUNCU 
120201027 TUNAY TUNA   90201007 ÖZGÜR ÖZEL 
130201035 YİĞİT KARAKAŞ   130201001 NECATİ BATUR 

140201048 
FİKRET 
SOMAY PİDECİ    120201038 FIRAT ŞAHİNDAL 

120201013 MUSTAFA KESKİN   130201024 MELEK YAVUZ 
120201018 BORA YALÇIN   130201021 SEMA ÇAM 

130201013 
GÜLTEN 

ANIL DENGİZ   130201045 ASİYE KILIÇ 
120201005 CİHAT TOMBAK   130201031 SEDA KASAP 
130201030 FATİH TEKİN   130201006 ERDEM SARILI 
90201032 İBRAHİM GENÇ   110201033 HİDAYET ÇELEN 

140201017 EMRE CAN GEÇER   130201026 ŞERİFE İDİKUT 
130201010 İPEK YAĞCAN   140201018 ECE NESLİ GÜRBÜZ 
130201007 UĞUR AYDIN   130201015 BANU ŞAHİN 
100201018 MEHMET KOÇA   130201017 BATIKAN URCAN 
120201036 BASRİ MUMCU   130201034 ŞEVKET ÇETİN 
90201019 KENAN İNCE   100202025 İ.GÖKHAN AKSAKALLI 

130201033 NATAN ABOLAFYA   130201012 DENİZ EYLİKSEVER 
80201030 BERCA EKİM   130201036 ENGİN LELOĞLU 

130201046 CÜNEYT ÇALIŞKAN         
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Table B.4. CENG 213 Theory of Computation 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME  STUDENT 

NO 
STUDENT 

NAME 
STUDENT 
SURNAME 

110201038 
UFUK 

NOYAN ÜSTE    100202025 İ.GÖKHAN AKSAKALLI   
130201021 SEMA ÇAM  130201023 CENK TÜZÜN 
120201027 TUNAY TUNA  130201036 ENGİN LELOĞLU 

130201006 ERDEM SARILI    130201020 ÇİĞDEM TÜRKMENDAĞ 
130201015 BANU ŞAHİN  130201017 BATIKAN URCAN 

120201018 BORA YALÇIN    130201013 
GÜLTEN 

ANIL DENGİZ 
130201009 İSLAM İPEKYÜZ  130201031 SEDA KASAP 
130201034 ŞEVKET ÇETİN  130201024 MELEK YAVUZ 

140201028 EVRİM FURUNCU  150201047 ESİN BOYACIOĞLU   

130201033 NATAN 
ABOLAFY

A  130201012 DENİZ EYLİKSEVER 
130201038 MUSTAFA İNAÇ  130201010 İPEK YAĞCAN 
130201001 NECATİ BATUR  120201038 FIRAT ŞAHİNDAL 

130201037 
BENGÜ 
BANU DÖNMEZ  150201046 NUMAN GÖÇERİ 

130201035 YİĞİT KARAKAŞ  130201042 LEYLA PUNAR 
120201033 BARAN AYTAŞ  130201019 ZÜLEYHA AKUSTA 

130201005 BURAK 
YILMAZTÜ

RK  130201032 FEVZİ KAHRAMAN 

140201018 ECE NESLİ GÜRBÜZ  120201036 BASRİ MUMCU 

130201022 GÖZDE 
ŞENCOŞKU

N  140201003 GÖKHAN TUNCER 
130201018 DİLEK AVCI  130201002 MERİÇ DÖNMEZER 
120201013 MUSTAFA KESKİN  120201005 CİHAT TOMBAK   
130201007 UĞUR AYDIN  130201026 ŞERİFE İDİKUT 
130201045 ASİYE KILIÇ  130201030 FATİH TEKİN  

140201017 EMRE CAN GEÇER  140201021 NERMİN ÖZMEN 
130201046 CÜNEYT ÇALIŞKAN        
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Table B.5. CENG 311 Computer Architecture 

STUDENT 
NO 

STUDEN
T NAME 

STUDENT 
SURNAME 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

110201016 HASAN KINAY   120201011 ŞERİF GİRGİN 

120201016 SALİH ÖZKUL 110201007 İBRAHİM 
SÜRME_ 

GÖZLÜER   
120201040 GÜLTEN KANAT 120201022 ÖZGÜR TABAN 
110201042 DORUK S TÜRKOĞLU  110201011 MUSTAFA  ŞENOĞLU   
110201032 ALİ KARAOĞLU   120201033 BARAN AYTAŞ 
120201008 MİTAT POYRAZ 120201031 SONER KARAPAPAK 
110201031 KAZIM SUNAR   120201002 HANDAN YARICI 

120201024 GÜRCAN GERÇEK 120201019 
ZEHRA 
MERVE KARAMAN 

120201012 FATİH ÖZTÜRK 110201029 
İHSAN 
FATİH YAZICI   

120201025 GİZEM YAMASAN 120201006 ONUR FİDAN 
120201023 SERDAR GÖKÇEN 120201026 GÖRKEM KILINÇ 
90201019 KENAN İNCE 120201001 SEÇKİN AKIN 
150201047 ESİN BOYACIOĞLU 100202025 İ.GÖKHAN AKSAKALLI   

120201030 
MEHMET 
EMRAH KALA 100201018 MEHMET KOÇA   

140201048 
FİKRET 
SOMAY PİDECİ 110201017 

YUSUF 
EMRE ALKAN   

110201043 SAVAŞ TAKAN 120201042 BUKET OLÇAY 

130201040 
ÇAĞATA

Y YÜCEL 110201002 TUFAN KÜPELİ 
110201009 ÖZGÜR AKCASOY 130201029 İZAY İZGİNOĞLU 

110201006 
MUSTAF

A YILMAZ   120201015 YAŞAR YAŞA 
120201003 ERHAN ARGIN 120201009 BURAK EKİCİ 

110201038 
UFUK 

NOYAN ÜSTE   120201017 OĞUZHAN ACARGİL 

90201007 ÖZGÜR ÖZEL   120201014 
YUSUF 
ZİYA BAŞBUĞ 

120201039 
AHMET 
ARDA ALBAYRAK 110201010 BAHADIR ÖZCAN   

120201021 ERDEM ÇAĞLAYAN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

100201025 EMRE CAN ERDİNÇ   
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Table B.6. CENG 313 Operating Systems 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

100201018 MEHMET KOÇA 120201021 ERDEM ÇAĞLAYAN 
120201016 SALİH ÖZKUL 120201017 OĞUZHAN ACARGİL 

120201006 ONUR FİDAN 110201006 MUSTAFA YILMAZ  
120201009 BURAK EKİCİ 90201032 İBRAHİM GENÇ  

120201023 SERDAR GÖKÇEN 70201003 ÖZGÜR 
KARAÇİZME

Lİ   
70201032 MEHMET ÇEKİM  120201025 GİZEM YAMASAN 

110201036 DERYA SARICA   100201005 SÜHEYLA ŞEN   

120201024 GÜRCAN GERÇEK 100201012 ZEKAİ İMRAN ÜREGEN  

100202025 İ.GÖKHAN AKSAKALLI   140201048 
FİKRET 
SOMAY PİDECİ 

120201004 
ALPEREN 

YUSUF AYBAR  110201042 DORUK S TÜRKOĞLU  
110201051 SEMİH MADEN  110201043 SAVAŞ TAKAN 

120201015 YAŞAR YAŞA 110201031 KAZIM SUNAR   
100201027 ŞENER BARIŞ  110201016 HASAN KINAY   
120201003 ERHAN ARGIN 120201031 SONER KARAPAPAK 

120201012 FATİH ÖZTÜRK 110201019 ÇAĞDAŞ ÖZERŞAHİN  
130201040 ÇAĞATAY YÜCEL 90201006 EMİN İZGİ  
110201013 ADNAN YALÇIN   120201022 ÖZGÜR TABAN 

120201033 BARAN AYTAŞ 110201011 MUSTAFA O A ŞENOĞLU   

110201009 ÖZGÜR AKCASOY 100201025 EMRE CAN ERDİNÇ   

110201029 
İHSAN 
FATİH YAZICI   120201001 SEÇKİN AKIN 

90201019 KENAN İNCE  120201030 
MEHMET 
EMRAH KALA 

120201002 HANDAN YARICI 110201007 İBRAHİM 
SÜRMEGÖZL

ÜER   

120201039 

HACI 
AHMET 
ARDA ALBAYRAK 120201019 

ZEHRA 
MERVE KARAMAN 

120201042 BUKET OLÇAY 110201027 SÜLEYMAN ISSIZ   

110201002 TUFAN KÜPELİ 110201017 YUSUF EMRE ALKAN  
120201040 GÜLTEN KANAT 120201026 GÖRKEM KILINÇ 
120201011 ŞERİF GİRGİN 120201014 YUSUF ZİYA BAŞBUĞ 

120201008 MİTAT POYRAZ 110201023 TAYFUN BULUTLAR  
90201033 GÖKMEN KATİPOĞLU   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

130201029 İZAY İZGİNOĞLU 
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Table B.7. CENG 315 Stochastic Processes 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

120201039 

HACI 
AHMET 
ARDA ALBAYRAK 120201033 BARAN AYTAŞ 

120201026 GÖRKEM KILINÇ 120201040 GÜLTEN KANAT 

110201038 
UFUK 

NOYAN ÜSTE   110201042 DORUK S 
TÜRKOĞL

U   
120201011 ŞERİF GİRGİN 120201003 ERHAN ARGIN 

100201025 
EMRE 
CAN ERDİNÇ   120201047 ERDEM 

AYDINSO
Y   

120201002 HANDAN YARICI 120201001 SEÇKİN AKIN 

110201051 SEMİH MADEN   120201021 ERDEM 
ÇAĞLAYA

N 

110201037 
MEHMET 

EMRE TİRYAKİ   120201017 OĞUZHAN ACARGİL 
120201016 SALİH ÖZKUL 120201022 ÖZGÜR TABAN 

110201009 ÖZGÜR AKCASOY 120201030 
MEHMET 
EMRAH KALA 

120201031 SONER KARAPAPAK 120201009 BURAK EKİCİ 

130201029 İZAY İZGİNOĞLU 110201050 FATİH 
ACAR  
4.sınıf 

110201002 TUFAN KÜPELİ 110201032 ALİ 
KARAOĞL

U  4.sınıf 
130201040 ÇAĞATAY YÜCEL 110201015 SERKAN CAN   
110201007 İBRAHİM SÜRMEGÖZLÜER   120201025 GİZEM YAMASAN 

120201024 GÜRCAN GERÇEK 110201023 TAYFUN 
BULUTLA

R   

120201008 MİTAT POYRAZ 130201028 BATUHAN 
GÜNDOĞD

U   

120201014 
YUSUF 
ZİYA BAŞBUĞ 120201015 YAŞAR YAŞA 

120201042 BUKET OLÇAY 110201016 HASAN KINAY   
120201023 SERDAR GÖKÇEN 120201006 ONUR FİDAN 

120201012 FATİH ÖZTÜRK 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

120201019 
ZEHRA 
MERVE 

KARAMA
N 
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Table B.8. CENG 321 Communication Techniques and Protocols 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

120201021 ERDEM ÇAĞLAYAN 130201029 İZAY İZGİNOĞLU 

110201042 DORUK S TÜRKOĞLU   110201043 SAVAŞ TAKAN 

120201003 ERHAN ARGIN 120201031 SONER 
KARAPAPA

K 
120201025 GİZEM YAMASAN 120201016 SALİH ÖZKUL 
110201002 TUFAN KÜPELİ 120201026 GÖRKEM KILINÇ 

120201039 

HACI 
AHMET 
ARDA ALBAYRAK 120201024 GÜRCAN GERÇEK 

100202025 İ.GÖKHAN AKSAKALLI   120201001 SEÇKİN AKIN 
120201033 BARAN AYTAŞ 120201008 MİTAT POYRAZ 
120201023 SERDAR GÖKÇEN 110201006 MUSTAFA YILMAZ   

100201025 
EMRE 
CAN ERDİNÇ  120201019 

ZEHRA 
MERVE KARAMAN 

120201017 OĞUZHAN ACARGİL 120201012 FATİH ÖZTÜRK 

120201030 
MEHMET 
EMRAH KALA 120201005 CİHAT TOMBAK 

140201048 
FİKRET 
SOMAY PİDECİ 120201015 YAŞAR YAŞA 

130201040 ÇAĞATAY YÜCEL 130201028 BATUHAN GÜNDOĞDU  
120201040 GÜLTEN KANAT 120201002 HANDAN YARICI 
110201009 ÖZGÜR AKCASOY 120201022 ÖZGÜR TABAN 
120201009 BURAK EKİCİ 120201013 MUSTAFA KESKİN 
100201016 ERKAN ARGIN  120201006 ONUR FİDAN 

120201014 
YUSUF 
ZİYA BAŞBUĞ 150201047 ESİN 

BOYACIOĞL
U 

120201011 ŞERİF GİRGİN 110201023 TAYFUN BULUTLAR 
120201042 BUKET OLÇAY 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

130201030 FATİH TEKİN 
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Table B.9. CENG 352 Object Oriented Programming 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

100201015 CENGİZ AKUR 120201041 ÖZMEN ADIBELLİ 

110201008 
MEHMET 

CAVİT İLKER 110201027 SÜLEYMAN ISSIZ 
110201003 İLKER ÖZEN 110201013 ADNAN YALÇIN 
110201012 ÖNDER SEZGİN 110201034 BURCU CANİK 
110201019 ÇAĞDAŞ ÖZERŞAHİN 100201028 İSMAİL YAZAR 

110201004 DAMLA YAPAR 90201010 SEÇKİN SALMANOĞLU 

110201037 
MEHMET 

EMRE TİRYAKİ 110201036 DERYA SARICA 

100201013 
MUSTAFA 

UMUR BEYDEŞ 120201004 
ALPEREN 

YUSUF AYBAR 
110201015 SERKAN CAN 120201007 BURHAN ÇİMEN 
120201034 ESRA RÜZGAR 100201003 EMRAH ÖNDER 
100201021 BELMA BOYRAZ 90201033 GÖKMEN KATİPOĞLU 
120201048 DUYGU TAYLAN 110201005 ÜMİT KARA 
100201027 ŞENER BARIŞ 
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Table B.10. CENG 411 Systems Theory & Analysis 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

70201003 ÖZGÜR 
KARAÇİZMEL

İ 110201031 KAZIM SUNAR 
110201051 SEMİH MADEN 110201027 SÜLEYMAN ISSIZ 

110201029 İHSAN FATİH YAZICI 110201017 
YUSUF 
EMRE ALKAN 

120201048 DUYGU TAYLAN 120201007 BURHAN ÇİMEN 
100201018 MEHMET KOÇA 90201006 EMİN İZGİ 
100201006 UĞUR SEVER 110201004 DAMLA YAPAR 

100201013 
MUSTAFA 

UMUR BEYDEŞ 110201037 
MEHMET 

EMRE TİRYAKİ 
110201019 ÇAĞDAŞ ÖZERŞAHİN 100201003 EMRAH ÖNDER 
110201036 DERYA SARICA 152001001 OĞUZ YARIMTEPE 

110201038 UFUK NOYAN ÜSTE 110201008 
MEHMET 

CAVİT İLKER 
110201005 ÜMİT KARA 110201034 BURCU CANİK 

110201011 MUSTAFA OA ŞENOĞLU 120201004 
ALPEREN 

YUSUF AYBAR 
110201012 ÖNDER SEZGİN 100201016 ERKAN ARGIN 

100201005 SÜHEYLA ŞEN 110201033 HİDAYET ÇELEN 

110201010 BAHADIR ÖZCAN 100201012 
ZEKAİ 
İMRAN ÜREGEN 

110201013 ADNAN YALÇIN 70201032 MEHMET ÇEKİM 

80201033 
ŞÜKRÜ 
KEMAL KAYALI 110201007 İBRAHİM 

SÜRME_ 
GÖZLÜER 

110201032 ALİ KARAOĞLU 90201019 KENAN İNCE 
110201023 TAYFUN BULUTLAR 120201041 ÖZMEN ADIBELLİ 
90201032 İBRAHİM GENÇ 110201009 ÖZGÜR AKCASOY 
90201033 GÖKMEN KATİPOĞLU 110201016 HASAN KINAY 

110201003 İLKER ÖZEN 110201015 SERKAN CAN 
80201030 BERCA EKİM 100201025 EMRE CAN ERDİNÇ 

120201034 ESRA RÜZGAR 
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Table B.11. CENG 415 Senior Design Project & Seminar I 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

90201020 BEKİR AHMETOĞLU 80201033 
ŞÜKRÜ 
KEMAL KAYALI 

100201003 EMRAH ÖNDER 110201019 ÇAĞDAŞ ÖZERŞAHİN 
100201006 UĞUR SEVER 110201003 İLKER ÖZEN 
120201041 ÖZMEN ADIBELLİ 110201005 ÜMİT KARA 
110201050 FATİH ACAR 100201028 İSMAİL YAZAR 
80201030 BERCA EKİM 110201051 SEMİH MADEN 

110201011 MUSTAFA O A ŞENOĞLU 110201008 
MEHMET 

CAVİT İLKER 

90201027 CEREN TEKİN 110201038 
UFUK 

NOYAN ÜSTE 
100201029 NİGAR KALE 100201016 ERKAN ARGIN 

110201037 
MEHMET 

EMRE TİRYAKİ 100201030 ÜMRAN KAMAR 
110201004 DAMLA YAPAR 110201032 ALİ KARAOĞLU 

110201026 GÖKHAN ADIGÜZEL 90201010 SEÇKİN 
SALMA_ 
NOĞLU 

110201036 DERYA SARICA 110201012 ÖNDER SEZGİN 

100201013 
MUSTAFA 

UMUR BEYDEŞ 110201013 ADNAN YALÇIN 
120201007 BURHAN ÇİMEN 120201034 ESRA RÜZGAR 
110201010 BAHADIR ÖZCAN 110201015 SERKAN CAN 

110201034 BURCU CANİK 100201012 
ZEKAİ 
İMRAN ÜREGEN 

110201027 SÜLEYMAN ISSIZ 90201033 GÖKMEN 
KATİPOĞ_ 

LU 

120201048 DUYGU TAYLAN 120201004 
ALPEREN 

YUSUF AYBAR 

100201005 SÜHEYLA ŞEN 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

70201032 MEHMET ÇEKİM 
 

 

Table B.12. CENG 416 Senior Design Project & Seminar II 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

80201007 ARİF AKYOL 100201006 UĞUR SEVER 

80201033 
ŞÜKRÜ 
KEMAL KAYALI 90201020 BEKİR AHMETOĞLU 

120201047 ERDEM AYDINSOY 

  
  
  

90201010 SEÇKİN 
SALMANOĞ_ 

LU 
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Table B.13. CENG 421 Network Programming 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

110201003 İLKER ÖZEN 110201036 DERYA SARICA 

100201021 BELMA BOYRAZ 110201008 
MEHMET 

CAVİT İLKER 
110201034 BURCU CANİK 120201048 DUYGU TAYLAN 

100201005 SÜHEYLA ŞEN 100201029 NİGAR KALE 
110201019 ÇAĞDAŞ ÖZERŞAHİN 100201016 ERKAN ARGIN 
110201013 ADNAN YALÇIN 100201027 ŞENER BARIŞ 

110201033 HİDAYET ÇELEN 110201032 ALİ 
KARAOĞL

U 

100201013 
MUSTAFA 

UMUR BEYDEŞ 110201011 
MUSTAFA O 

A ŞENOĞLU 

110201027 SÜLEYMAN ISSIZ 110201029 
İHSAN 
FATİH YAZICI 

120201047 ERDEM AYDINSOY 110201051 SEMİH MADEN 
100201003 EMRAH ÖNDER 120201034 ESRA RÜZGAR 

100201012 
ZEKAİ 
İMRAN ÜREGEN 110201039 ÜSAME F ESENDİR 

90201004 
YAŞAR 
CENK YALIM 110201017 

YUSUF 
EMRE ALKAN 

110201007 İBRAHİM 
SÜRMEGÖZLÜ_

ER 110201004 DAMLA YAPAR 
110201012 ÖNDER SEZGİN 120201041 ÖZMEN ADIBELLİ 

120201004 
ALPEREN 

YUSUF AYBAR 110201016 HASAN KINAY 
70201003 ÖZGÜR KARAÇİZMELİ 110201015 SERKAN CAN 
90201010 SEÇKİN SALMANOĞLU 100201028 İSMAİL YAZAR 

110201026 GÖKHAN ADIGÜZEL 90201006 EMİN İZGİ 

110201010 BAHADIR ÖZCAN 152001001 OĞUZ 
YARIMTE_

PE 

110201037 
MEHMET 

EMRE TİRYAKİ 110201005 ÜMİT KARA 
100201006 UĞUR SEVER 120201007 BURHAN ÇİMEN 
90201033 GÖKMEN KATİPOĞLU 
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Table B.14. CENG 461 Artificial Intelligence and Expert Systems 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

STUDENT 
NO 

STUDENT 
NAME 

STUDENT 
SURNAME 

100201005 SÜHEYLA ŞEN 100201030 ÜMRAN KAMAR 

110201029 
İHSAN 
FATİH YAZICI 100201006 UĞUR SEVER 

100202025 İ.GÖKHAN AKSAKALLI 100201013 
MUSTAFA 

UMUR BEYDEŞ 
110201043 SAVAŞ TAKAN 110201009 ÖZGÜR AKCASOY 

110201038 
UFUK 

NOYAN ÜSTE 90201032 İBRAHİM GENÇ 

90201006 EMİN İZGİ 100201012 
ZEKAİ 
İMRAN ÜREGEN 

90201010 SEÇKİN SALMANOĞLU 110201017 
YUSUF 
EMRE ALKAN 

70201032 MEHMET ÇEKİM 80201030 BERCA EKİM 
110201039 ÜSAME F ESENDİR 110201033 HİDAYET ÇELEN 

90201033 GÖKMEN KATİPOĞLU 110201007 İBRAHİM 
SÜRMEGÖZL

ÜER 

110201023 TAYFUN BULUTLAR 110201011 
MUSTAFA O 

A ŞENOĞLU 
110201026 GÖKHAN ADIGÜZEL 

  
  
  
  
  
  
  
  
  
  
  
  

   
 

 

  

Table B.15. CENG 5XX Graduate Students 

STUDENT N0 STUDENT N0 
112001011 142001007 
122001006 142001011 
122001007 142001011 
132001001 142001012 
132001001 152001001 
132001004 152001002 
132001007 152001003 
132001009 152001004 
132001011 152001005 
132001013 152001006 
132001016 152001007 
132001016 152001008 
132001017 152001010 
132001018 152001011 
132001023 152001012 
142001004 152001013 
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