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ABSTRACT 
 

NUMERICAL MODELING OF UNSTEADY AND NON-
EQUILIBRIUM SEDIMENT TRANSPORT IN RIVERS 

 
 

Management of soil and water resources is one of the most critical 

environmental issues facing many countries. For that reason, dams, artificial channels 

and other water structures have been constructed. Management of these structures 

encounters fundamental problems: one of these problems is sediment transport.  

 Theoretical and numerical modeling of sediment transport has been studied by 

many researchers. Several empirical formulations of transported suspended load, bed 

load and total load have been developed for uniform flow conditions. Equilibrium 

sediment transport under unsteady flow conditions has been just recently numerically 

studied. The main goal of this study is to develop one dimensional unsteady and 

nonequilibrium numerical sediment transport models for alluvial channels. 

 Within the scope of this study, first mathematical models based on the 

kinematic, diffusion and dynamic wave approach are developed under unsteady and 

equilibrium flow conditions. The transient bed profiles in alluvial channels are 

simulated for several hypothetical cases involving different particle velocity and particle 

fall velocity formulations and sediment concentration characteristics. Three bed load 

formulations are compared under kinematic and diffusion wave models. Kinematic 

wave model was also successfully tested by laboratory flume data. Secondly, a 

mathematical model developed based on kinematic wave theory under unsteady and 

nonequilibrium conditions. The model satisfactorily simulated transient bed forms 

observed in laboratory experiments. Finally, nonuniform sediment transport model was 

developed under unsteady and nonequilibrium flow based on diffusion wave approach. 

The results implied that the sediment with mean particle diameter and the sediments 

with nonuniform particle diameters gave different solutions under unsteady flow 

conditions.    
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ÖZET 
 

NEHİRLERDE KARARSIZ VE DENGESİZ SEDİMENT TAŞINIMININ 

NÜMERİK MODELLENMESİ 
 

Toprak ve su kaynakları yönetimi birçok ülkenin karşılaştığı en ciddi çevre 

sorunlarından biridir. Bu nedenle barajlar, su kanalları ve diğer su yapıları inşa 

edilmektedir. Bu yapıların yönetimi, birçok problemle karşı karşıya kalmaktadır. Bu 

problemlerin biri de katı madde taşınımıdır.   

Teorik ve nümerik katı madde taşınımı birçok araştırmacı tarafından 

çalışılmaktadır. Kararlı akım koşulları altında, askıda katı madde, çökmüş katı madde 

ve toplam katı madde taşınımı deneysel formüller yardımıyla geliştirilmiştir. Son 

yıllarda, kararsız akım şartları altında dengede katı madde taşınımı nümerik 

modellenmesi çalışılan konular arasındadır. Bu çalışmanın amacı da nehirlerde 1 

boyutlu, kararsız ve dengesiz sediment taşınımının nümerik modellenmesidir.  

Bu amaç çerçevesinde, önce kararsız ve dengeli akım koşulları altında 

kinematik, difüzyon ve dinamik dalga yaklaşımına göre üç farklı model geliştirilmiştir. 

Alluvial nehirlerdeki geçici yatak profilleri, farklı parçacık hızı ve parçacık düşüm hızı 

formülleri ve katı madde karakteristiklerini içeren farklı farazi durumlar için 

oluşturulmuştur.  Kinematik ve difüzyon dalga yaklaşımı altında üç farklı yatak yükü 

formülü karşılaştırılmıştır. Ayrıca kinematik dalga modeli laboratuar verileri ile test 

edilmiştir ve sonuçlar başarılı olmuştur. Daha sonraki aşamada, kinematik dalga 

yaklaşımını kullanarak kararsız akım şartları altında dengesiz model kurulmuştur. 

Kurulan model laboratuar verileri ile test edilmiş ve gözlemlenen yatak profilleri, model 

ile başarıyla elde edilmiştir. Son olarak, üniform olmayan katı madde karışımı, difüzyon 

dalga yaklaşımı ile kararsız ve dengesiz akım şartları altında modellenmiştir. Sonuçlara 

göre katı madde ortalama çapı ile kurulan model ve üniform olmayan katı madde 

karışımı ile kurulan model, kararsız akım şartlarında farklı sonuçlar vermiştir. Bu 

sonuçlar ayrıca laboratuar verileri ile desteklenmelidir.   
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CHAPTER 1 

 

INTRODUCTION 

 

 River management is as old as human civilization. Since ancient times, rivers 

have been used for water supply, flood control, irrigation, tourism, navigation, fishing, 

waste disposal and power generation by civilizations. Water is the source of life and soil 

is the root of existence.  The life cannot exist without water and soil. Water and soil 

resources are the most fundamental materials on which people rely for existence and 

development. Development of society is determined by its capacity to use its resources. 

Some of these resources may in time become exhausted and deteriorate (World 

Meteorological Organization 2003). Soil and water are limited and irreplaceable 

resources. Especially in developing countries, due to the industrial growth and 

urbanization quality and quantity of natural water resources have been rapidly decreased 

This may lead to water resources come to an end.    

 Soil and water losses cause the deterioration of ecology and changes in river 

morphology have a direct impact on earth’s landscape. By human activities, as 

inappropriate land and water resources usage, land desertification occurs and it makes 

the farmland useless forever. Sedimentation is the consequence of a complex natural 

process involving soil detachment, entrainment, transport and deposition. It is common 

in rivers because of the difference between sediment load and the real sediment 

transportation capacity of flow. When sediments are deposited in river basins, the water 

level rises and it brings ecological problems such as landslides and slope collapses, 

debris flow and flow disasters. It also causes economical problems nationwide. On the 

other hand, transport of sediment reduces reservoirs life-time and hydrodynamic 

potential of dams and can contribute to contamination of drinking water supplies (Bor, 

et al. 2007). Reservoirs are limited, precious and non renewable resources. Reducing the 

capacity of the reservoir, affects factors of design aims such as water supply, flood 

control, irrigation, and power generation. Sediment accumulation has been estimated to 

decrease worldwide reservoir storage by 1% per year (Mahmood 1987). On the other 

hand, erosion can cause scouring under the river training works, so it brings some safety 

problems for river and it affects water supply and navigation along the rivers. 

Furthermore, aggregation and degradation affect the stability of a dam. 
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Sediment particles in water, might behave as a carrier for heavy metals which 

have affinity to attach to cohesive sediments. They serve as the major pollutant and can 

cause disruption of ecosystems. Sediment particles such as nitrogen, organic 

compounds, residues, pathogenic bacteria, pesticides and viruses are carried into a 

reservoir, deteriorate water quality and cause different illness (World Meteorological 

Organization 2003). 

Sedimentation and soil erosion are the modern world’s environmental topics. 

These subjects have been studied for centuries by engineers. There are different 

approaches for solving engineering problems. Sediment deposition deals with water and 

sediment particles so, the physical properties of water and sediment particles should be 

studied to understand sediment transport mechanism. Sediments are transported as 

suspended and bed load as shown in Figure 1.1 depending upon fundamental properties 

of water and sediment particle size, density, etc. 

In a river system, loose surface can erode from basin by water and be transported 

by stream. Sediment particles can be transported in four modes rolling, sliding, saltation 

and suspension. While sediment particles are sliding and rolling, particles continue to be 

at contact with the bed. Saltation means that jumping motion along the bed in a series of 

low trajectories. Rolling and sliding particles move along the bed surface under the 

force of the overlying flow of water. It is often unimportant to distinguish saltation from 

rolling or sliding because saltation is restricted to only a few grain diameters in height 

(Dyer 1986). A saltating grain may only momentarily leave the bed and rise no higher 

than a few (<4) grain diameters. These three modes are bed load transport. Sometimes 

sediments stay in suspension for an appreciable length of time called suspended load 

transport. Suspension of a sediment grain is one of the modes in water systems that 

occurs when the magnitude of the vertical component of the turbulent velocity is greater 

than the settling speed of the grain. Bagnold (1966) argued that the major distinction in 

sediment transport modes is between suspended and unsuspended (bed load) transport. 

Bed load sediment grains and aggregates are transported under the combined processes 

of saltation, rolling, and sliding, and receive insufficient hydrodynamic impulses to 

overcome gravitational settling. Their only significant upward impulse is derived from 

successive contacts with the bed (Dyer 1986). When the flow conditions satisfy or 

exceed the criteria for incipient motion, sediment particles along an alluvial bed will 

start to move (Yang 1996).  
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Figure 1.1. Different modes of sediment transport  

(Source: Singh 2005) 

 

  It is essential to predict effects of sedimentation and loss of storage capacity in 

advance for better operation of the reservoirs. Current research on reservoir 

sedimentation prediction is mainly based on numerical modeling of sediment transport 

methodologies (Hotchkiss and Parker 1991) and investigation of transport parameters in 

the laboratory (Guy, et. al. 1966, Soni 1981a).  

 Free-surface flows can be classified into various types using criteria of their 

classification (Chaudhry 1993). Steady and unsteady flows based on changes with 

respect to time. In steady flow regimes, depth and velocity do not vary with time. If 

depth and velocity at a point vary with time, the flow regime is classified as unsteady. It 

is possible to transform an unsteady flow into a steady flow by having coordinates with 

respect a moving reference in some cases. Studying steady flow is easier than unsteady 

flows in governing mathematical models although the real world situation is unsteady 

flow. Such a transformation is possible only if the wave shape does not change as the 

wave propagates. 

One of the other classifications based on changes with respect to space. If the 

flow velocity at a given instant of time does not change within a given length of 

channel, it is uniform flow. It means that the convective acceleration is zero. If the flow 

velocity at a time varies with respect to distance, it is non-uniform flow. Steady and 
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unsteady flows are characterized by the variation with respect to time at a given 

location, whereas the uniform and nonuniform flows are characterized by the variation 

at a given instant of time with respect to distance. 

 The flow can be classified based on Reynolds number. If the liquid particles 

appear to move in definite smooth paths and the flow appears to be as a movement of 

thin layers on top each other, it is laminar flow. In natural channels, in laminar flow 

Reynolds number is low than 500 ( )500Re < . The flow is characterized by the irregular 

movement of particles of the fluid in turbulent flow, Reynolds number is greater than 

600 ( )600Re < . If the flow is that 600Re500 << it is called transient flow. 

The other classification is based on Froude number. The Froude Number is a 

dimensionless parameter measuring of the ratio of the inertia force on an element of 

fluid to the weight of the fluid element - the inertial force divided by gravitational force. 

 If the flow velocity is equal to celerity, it is critical flow ( )1=rF . If the flow velocity is 

less than the critical velocity, it is subcritical flow ( )1<rF .  If the flow is supercritical 

the flow velocity is greater than the critical velocity ( )1>rF .          

Hydraulic engineers generally treat channel in one dimension (1D). 1D flow 

means that the longitudinal acceleration is significant, whereas transverse and vertical 

accelerations are negligible.  

Modeling of sediment transport can be assumed in equilibrium or non 

equilibrium conditions. If detachment rate and deposition rate are equal, the flow is in 

equilibrium condition. In non equilibrium condition, there is difference between 

detachment rate and deposition rate. There is no doubt that natural rivers are mostly in 

non equilibrium state. Because the real river systems behave as unsteady flow in non 

equilibrium state, treating the system with steady flow in equilibrium state is a 

simplification. 

 The main objective of this study is to develop unsteady and non equilibrium one 

dimensional numerical model for sediment transport in rivers. For that aim, first of all 

three numerical models were developed using the kinematic wave, diffusion wave and 

dynamic wave, for describing the bed profile evolution and movement in alluvial 

channels under equilibrium conditions. The models were evaluated by simulating bed 

profiles for several hypothetical scenarios. The scenarios involve solving the equations 

with different formulations of particle velocity, particle fall velocity, sediment flux and 
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different values of maximum bed elevation. Also, the models tested against measured 

flume data and the solutions were compared.  

This thesis includes six chapters. Chapter 1 aims to present a brief introductory 

background to the research subject. Previous relevant physical and mathematical studies 

are reviewed in Chapter 2. Sediment transport formulations are summarized in Chapter 

3. The one dimensional hydrodynamic model is described by the governing equations in 

Chapter 4. In Chapter 5, one dimensional sediment transport equations are governed in 

two categories: equilibrium and nonequilibrium. Also three different wave approaches 

were discussed: kinematic, diffusion and dynamic waves. The boundary conditions of 

the numerical model used in the study, and the testing of the model are described. 

Finally, in Chapter 6, the main results and the conclusions of the study are summarized. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 Sediment related disasters such as debris flow, landslides and slope collapses are 

known to occur naturally, causing social and economically problems in the world. 

Hence, the human civilizations study sediment transport to reduce the damages of the 

disasters and to maximize the benefits of the water resources structures. The studies of 

the sediment transport can be classified in two categories. Physical studies are related to 

extensive flume and field observations. Mathematical studies are related to develop 

theoretical and numerical methods.    

 

2.1. Physical Studies 

 
 Physical studies are done by doing experiments in laboratory flumes or by taking 

field observations. It is difficult to represent a river by a laboratory flume; so many 

assumptions are usually incorporated in laboratory studies. The laboratory studies are 

still important for understanding of basic concepts of river flow and sediment transport. 

Many investigators have developed empirical methods to represent sediment transport 

phenomena using data obtained in laboratory.  

 Taking real time observations are better to understand the complex real life river 

systems. However it is very difficult to take real time data in the field and sometimes it 

is even impossible.   

 Experimental studies have been mostly done with laboratory flume experiments 

(Guy, et al. 1966, Langbein and Leopold 1968, Soni 1981a, Wathen and Hoey 1998, 

Lisle, et al. 1997, Lisle, et al. 2001). Also laboratory studies are easier than field 

measurements and provide control to particular combinations of initial and boundary 

conditions (Curran and Wilcock 2005). 

 Newton (1951) studied, with a series experiments, degradation with uniform 

sediment size. He saw that the bed elevation and bed slope decreased asymptotically 

with time. 

Leopold and Maddock (1953) obtained field data showing the relationship 

between total sediment discharge and water discharge. 
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Lane and Borland (1954) conducted experiments to study riverbed scour during 

floods. Laboratory data were obtained for degradation in alluvial channels by 

Suryanarayana (1969). 

Colby and Hembree (1955) compared the results of total sediment discharge and 

water discharge between computed and measured from the Niobrara River near Cody, 

Nebraska. Yang (1973) unit stream power equation gave the best agreement with those 

measurements.          

 Bhamidipaty et al. (1971) studied with Newton’s analysis and combined their 

own extensive laboratory flume studies for three different particle sizes with uniform 

sediment grain sizes. They observed that the bed elevation in a degrading channel 

decreases exponentially with time. Soni et al. (1980) conducted a similar experiment 

using mobile bed under equilibrium conditions before the aggradation started. Hence 

they formed experiment conditions to better present the real river systems and 

developed a mathematical model for aggradation in an infinitely long channel. In 1980 

Mehta (1980) improved studies by Soni et al. (1980) research with different sediment 

size particles. 

Vanoni (1971) compared the computed sediment discharges from different 

equations with the measured results from natural rivers. Yang and Stall (1976) and 

Yang (1977) reported his comparisons.   

For aggradation and deggradation of non uniform sediments, Little and Mayer 

(1972) conducted a series of experiments. They studied the variations of sediment 

gradation on the bed surface during the armoring.  

 Ribberink (1985) studied the vertical sorting phenomenon of sediment having an 

idealized gradation under the equilibrium conditions. He also proposed a transport layer 

concept.       

Yen et al. (1985) and Yen et al. (1988a) conducted a series of overloading 

experiments using uniform coarse sediment and found that the mean sediment transport 

velocity and aggradation wave speed increase with the initial equilibrium bed slope and 

decrease with loading ration.  

Wilcock and Southard (1989) did careful measurements and observations in 

equilibrium conditions and investigated the interaction between the transport, bed 

surface texture and bed configuration. Also, Wilcock et al. (2001) conducted five 

different sediments in a laboratory flume by carrying out 48 sets of experiments of flow, 

transport and bed grain size. 
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Yen et al. (1992) also did flume studies with constant median sediment particle 

diameter but varying geometric standard deviation, so that the effect of non uniformity 

in rivers could be taken into account. They investigated that aggradation and 

degradation depends on materials vary so that the effect of non uniformity in rivers 

could be taken into account.  

  Tang and Knight (2006) investigated the effect of flood plain roughness on bed 

form geometry, bed load transport and dune migration rate.    

Experimental flume studies have the limitations due to the complexity of 

representing a real life river conditions. However, it helps us to understand basic 

concepts of river flow and it provides a detailed analysis for parameters related to 

physics of the problem. 

 

2.2. Mathematical Studies 
 

 Both experimental flume studies and field observations have limitations in 

predicting sediment transport capacity. Laboratory studies do not represent real life 

river conditions, besides taking the survey data sometimes impossible. Due to these 

restrictions, investigators have made many assumptions during the research. To study 

the sediment transport mechanism, many investigators developed mathematical 

equations for real life situations. All the sediment transport mathematical models 

developed so far are based on five basic physical equations. These equations have been 

developed by many researches that can be solved both analytically and numerically.  

 Solving the complex differential equations, numerical solutions are more 

appropriate than analytical solutions. On the other hand analytical solutions can be 

developed and applied only in very simplified and simple cases. 

   

2.2.1. Analytical Studies       

  

 When flow conditions are very simplified in one dimensional case analytical 

solution can be developed. Developing the solution is very complex for generalized two 

or three dimensional cases with complex conditions. Some of the well known analytical 

sediment models are summarized below. 
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Tinney (1955) solved one dimensional differential equation analytically to 

simulate the degradation of bed composed of uniform sediment in open channel and 

compared his result with Newton (1951).  

Al-Khalif (1965) developed a bed load function which explains the aggradation 

using Einstein (1950) approach.  

de Vries (1971) and de Vries (1973) developed a linear hyperbolic bed elevation 

change model using convection – acceleration and depth gradients.  

Soni et al. (1980) used a linear diffusion model to predict the transient bed 

profiles due to sediment overloading.  

Jain (1985) studied the process with appropriate boundary conditions.  

Begin et al. (1981) computed longitudinal profiles that produced by base- level 

lowering using diffusion model. 

Jaramillo (1983) estimate bed load discharge for a finite and semi finite domain 

using linear parabolic sediment transport model. The bed elevation was estimated using 

sediment transport equation. Jaramillo and Jain (1984) developed a nonlinear parabolic 

sediment model for non uniform flow and solved the model by using the method of 

weighted residuals (Jain 1985). The results were compared with experimental data 

obtained by Newton (1951).  

Gill (1983a) and Gill (1983b) used Fourier series by the error function methods 

and a linear parabolic bed elevation for a finite length channel to solve the linear 

diffusion equation for aggradation and degradation.  

Zhang and Kahawita (1987) and Gill (1987) solved a nonlinear parabolic 

aggradation and degradation model and compared the solutions with experimental and 

linear solutions. They presented that the bed elevation is a function of square root of 

time.  

Mosconi (1988) developed a linear hyperbolic analytical model for aggradation 

in the case of increase of sediment discharge and nonlinear parabolic analytical model 

for degradation in the case of reduction of sediment discharge. 

 

2.2.2. Numerical Studies 

 
 The linear and non linear parabolic equations are generally based on the 

assumption of steady state or quasi state water flow. Unsteady water flow makes the 
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system complex and analytical solution is difficult to develop for the complex systems. 

Numerical sediment transport models have been developed in one, two or three 

dimensional have been listed below. 

Lyn and Altinakar (2002) predicted bed elevation using quasi – steady model.  

Curran and Wilcock (2005) studied constant flow rate and flow depth while 

varying the sand supply.  

Mathematical sediment transport models have been based on generally diffusion 

wave and dynamic wave to predict bed profiles in alluvial channels. Whereas many 

researchers (de Vries 1973, Soni 1981b, Soni 1981c, Ribberink and Van Der Sande 

1985, Lisle, et al. 2001) studied diffusion equations, others (Ching and Cheng 1964, 

Vreugdenhil and de Vries 1973, de Vries 1975, Ribberink and Van Der Sande 1985, 

Pianese 1994, Lyn and Altinakar 2002, Cao and Carling 2003, Singh, et al. 2004, 

Mohammadian, et al. 2004, Li and Millar 2007) studied dynamic equations. The 

sediment transport function has been expressed as a function of water flow variables 

and the bed formation and the bed movement has been treated as having diffusion 

characteristics in literature (Tayfur and Singh 2006). On the other hand the experimental 

studies by Langbein and Leopold (1968) provided that movement of bed profiles 

behaves as kinematic wave, a function of sediment transport rate and concentration. 

Kinematic wave theory applicatibility to unsteady flow routing problems is discussed by 

Tsai (2003). Tayfur and Singh (2006) used the kinematic wave theory under equilibrium 

conditions and modeled transient bed profiles.  

Other mathematical approaches are equilibrium and nonequilibrium sediment 

transport models. In equilibrium models, the actual sediment transport rate is assumed  

to be equal to the sediment transport capacity at every cross section whereas in many 

cases the inflow sediment discharge imposed at the inlet is different than the transport 

capacity which might lead to difficulties in the calculation of bed changes near the inlet, 

thus solved by non- equilibrium models. Calculation of the equilibrium models are 

easier than non- equilibrium models. In many studies it was assumed that detachment 

rate and deposition rate are equal. This assumption may be valid only if conditions such 

as channel geometry, water and sediment properties are constant for a long period of 

time. Natural rivers are mostly in non – equilibrium state. Wu et al. (2004) developed 

one dimensional numerical model in unsteady flows under non – equilibrium 

conditions. Tayfur and Singh (2007) developed a mathematical model using kinematic 

wave theory under non – equilibrium conditions in alluvial rivers.  
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2.2.2.1. One Dimensional Model Studies 

 
 In rivers, the accelerations in lateral and vertical directions are mostly assumed 

negligible and therefore, acceleration in longitudinal direction is generally utilized in 

one dimensional models. This assumption simplifies the solution as it involves few 

equations only in one direction. These models have been mostly solved based on finite 

difference method to obtain bed elevation and water surface profiles (Perdreau and 

Cunge 1971, Cunge and Perdreau 1973, Chang 1982, Krishnappan 1985, Rahuel, et al. 

1989, Holly and Rahuel 1990a, Holly and Rahuel 1990b, Correia, et al. 1992, Holly, et 

al. 1993).  

de Vries (1965) has developed one dimensional model using explicit finite 

difference scheme to compute bed and water elevation profiles. 

Cunge et al. (1980) has developed one dimensional model simulations of alluvial 

hydraulics.  

Rahuel et al. (1989) studied unsteady flow models and have applied in river 

conditions. Cui et al. (1996), Kassem and Chaudhry (1998), Cao and Egiashira (1999), 

Capart (2000), Cao et al. (2001), Capart and Young (2002) and Di Cristo et al. (2002) 

have studied similar models in resent years, wary numerical models. 

 The majority of one dimensional unsteady models can be divided into two 

categories in the literature: (1)uncoupled flow models that water flow equations and 

sediment continuity equation are solved separately and (2)quasi-steady flow models that 

energy equation solved with sediment continuity equation. Only a few models are 

coupled in literature. Lyn and Goodwin (1987) presented an approach to model fully 

coupled unsteady water flow equations and sediment continuity equation. They 

compared the solutions between stability of coupled and uncoupled models and 

concluded that the coupled model is more stable. Other one dimensional coupled 

sediment transport models presented by Rahuel and Holly (1989), Holly and Rahuel 

(1990a, 1990b) simulating process between bed load and suspended load. Correria et al. 

(1992), studied with full explicit coupling models using water continuity equation, so it 

gives the permission to change the bed roughness depending on flow regime. 

Bhallamudi and Chaudhry (1989) have presented one dimensional, unsteady and 

coupled deformable bed model using Mac Cormack second order accurate explicit 

scheme. They compared the results with experimental laboratory flumes data and saw 
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that the results are satisfactory. Singh et al. (2004) have developed a fully coupled one 

dimensional alluvial river model and governed system of partial differential equations 

using Preissmann finite difference scheme. The tests presented by simulating the Quail 

Creek failure in Washington, USA. Wu et al. (2005) proposed one dimensional model 

simulates under unsteady flow conditions in dendritic channel networks with hydraulic 

structures. The equations solved in a coupling model and tested in several cases.         

 Although in uncoupled models, there is strong interaction between solid and 

water phases of the flow, only the flow continuity and momentum equations are solved 

simultaneously (Singh, et al. 2004).  Park and Jain (1986) used Preissmann linearized 

implicit scheme for simulating the governing equations in unsteady and uncoupled 

models. Lyn (1987) studied uncoupled models and suggested that complete coupling 

between the full unsteady flow equations and sediment continuity equation is desirable 

in cases where the conditions change rapidly at the boundaries.  

 

2.2.2.2. Two Dimensional Model Studies 

 
 Sediment concentration is averaged only along one direction, generally vertical 

direction (depth – integrated) where vertical variations are not significant depending on 

the flow characteristics in two dimensional models. One of the advantages of the 2D 

simulation of flow and sediment transport is depth – averaged subsystem for river flow. 

In depth – averaged models, all the model parameters are assumed to be same 

everywhere the water column. The depth - integrated equations of motion and 

continuity are linked to a depth - integrated sediment transport model (Boer, et al. 1984, 

McAnally, et al. 1991). The two dimensional models are more difficult than the one 

dimensional models and they provide more information about flow conditions. 

  Although the best mathematical model is the three dimensional it is not practical 

since it requires much more computational time especially in longer river stretches. In 

addition, enough experimental data cannot be available in general for model calibration.  

Struiksma (1985) and Shimizu and Itakura (1989) developed a two dimensional 

model for the simulation of the large scale bed change in alluvial channels. 

Mohapatra and Bhallamudi (1994) developed two dimensional model using a 

false transient principle with the quasi – steady uncoupled approach in a transformed 

coordinate system and McCormack scheme was used for the numerical solution. 
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Chaudhary (1996) developed the model for straight and meandering channels.  

MIKE21 (DHI 2003), TABS-MD (Thomas and McAnally 1990), CCHE2D (Wu 

2001) and HSCTM2D (Hayter 1995) are the widely used two dimensional sediment 

transport models. 

 MIKE21C is the curvilinear finite difference model. It has been developed at the 

Danish Hydraulic Institute (DHI) for river morphology (Langendoen 1996). The effects 

of secondary flow are taken into account by introducing quasi – steady approach in 

curved channels. In bends, the direction of sediment transport has been determined by 

using this secondary flow. Also, the model has been used to simulate critical 

morphological and hydrodynamic conditions.  

One of the depth – integrated two dimensional sediment transport model is 

CCHE2D (Wu 2001). This model is based on variantion of the finite element method 

using depth – average ε−k  models to estimate the turbulent eddy viscosity. The 

secondary flow effects were modeled on bed load direction in curved channels although 

fluid momentum and sediment transport rate effects were not. This model is applicable 

for morphological problems in rivers.    

HSCTM2D (Hydrodynamic, Sediment and Contaminant Transport Model) 

model was developed for U. S. Environmental Protection Agency which based on the 

finite element method and vertically integrated in cohesive sediments.  

Other well known models for simulation of sediment transport are TRIM-2D 

(Casulli 1990) based on finite difference approach and was adapted for practical 

applications. MOBED2 (Spasojevic and Holly 1990) models with finite difference and 

applicable in natural rivers, and TELEMAC2D with its module TSEF based on standard 

equilibrium bed load formulations as Meyer – Peter Müller (1948) uses ε−k  models 

with finite element model. 

Minh Duc et al. (2004) developed a depth – averaged model using a finite 

volume method to calculate bed deformation in alluvial channels.  

Li and Millar (2007) studied two dimensional hydrodynamic bed model to 

simulate bed load transport.  
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2.2.2.3. Three Dimensional Model Studies 

 
  The sediment transport process in alluvial channels could be described best by 

three dimensional models that include all the space dimensions. Since the full equations 

of motion are solved, the model is the most complicated and resource consuming in 

implementation. When the flow is stratified in salinity or temperature, mostly three 

dimensional models are applicable.  

Demuren and Rodi (1986) used ε−k  models to develop neutral tracer transport 

model.  

Wan and Adeff (1986) developed finite element method for unsteady flow. 

 Van Rijn (1987) developed equations for mass balance using three dimensional 

equations and combined them with two dimensional depth integrated model.  

Lin and Falconer (1996) developed a three dimensional sediment transport 

model for estuaries and coasts. 

Hamrick (1996) developed EFDC and tested numerical model. EFDC can 

simulate flow processes in all three dimensions in rivers, lakes, reservoirs, estuaries, 

wetlands and coastal regions. 

 Wu (2000) studied three dimensional models for straight channels. 

 Delft-3D (Delft Hydraulics 2002) and ECOMSED (HydroQual Inc. 2003) are 

general three dimensional models that are used widely.  

  ECOMSED is the sediment transport model that was developed by HydroQual, 

Inc. and Delft Hydraulics (Blumberg and Mellor 1987) for estuaries and oceans. This 

model is applicable only up to a diameter size of 500 mμ  and cannot be applied for bed 

load transport. HydroQual, Inc. developed the SED module of ECOMSED (2002). A 

three dimensional suspended sediment transport model is SED formed for non cohesive 

sediments using implicit scheme. 

  

2.3. Measurement Surveys 

 
 The geomorphologic data of river can be obtained by a topographic survey, 

including a land survey and groundwater surveying, or by repetitive surveying with pre-

determined ranges, since samples size distribution can be found and determined the dry 

density or unit weight. Also, surveying of reservoirs are required to determine 
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sedimentation rates and to assess overall capacity of the reservoir. For surveying, 

manual sounding poles, sounding weights and echo sounders are commonly used. For 

reasons of economy, accuracy and expediency, sedimentation surveys were carried out 

in small reservoirs or cross small river reaches. More advanced instruments have been 

adopted as electronic distance measuring systems for large reservoirs. Sedimentation 

surveys are best reliable for the accurate positioning of measuring points where no 

deposition or erosion takes place, the elevation of the bed surface should coincide with 

that measured in a previous survey (Bor, et al. 2008). This is a good check of the 

accuracy and reliability of the sedimentation surveys. In addition to this detailed 

bathymetry map, thickness and long-term average accumulation rates of the lake can be 

determined by using echo sounder systems (Odhiambo and Boss 2004). Other studies in 

literature about surveying using acoustic methods include the technical details of 

scanning (Urick 1983), techniques used for sediment mapping (Higginbottom, et al. 

1994), and the comparison of different echoes on sediment type (Collins and Gregory 

1996). 

 Also, in hydrometric stations for sediment measurement, suspended sediment 

discharge and sediment concentration, size gradation of suspended sediment and bed 

material can be measured the whole year around.   

 Taking real time observations can explain the real life systems better than flume 

experiments but it is very difficult to take real time data in the field even sometimes it is 

impossible.    
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CHAPTER 3 

 

MECHANICS OF SEDIMENT TRANSPORT 

 

 Sediment transport mechanism is concerned about water and sediment particles. 

An understanding of the sediment transport mechanism requires the learning of the 

physical properties of water and sediment particles. Fundamental properties of water 

and sediment particles are described below. 

 

3.1. Physical Properties of Water   

 
 The fundamental properties of water are important in sediment transport studies. 

They are summarized below. 

 

3.1.1. Specific Weight 

 
 Specific weight is defined as weight per unit volume. Specific weight can be 

expressed as (Yang 1996): 

  

 gργ =  (3.1) 

 

where, 

γ =specific weight (M/L2/T2) 

ρ =density (M/L3) 

g =gravitational acceleration (L/T2) 

 

3.1.2. Density 

 
 Quantity of matter contained in a unit volume of the substance.  

 

 =ρ vm /  (3.2) 
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where, 

m =mass (M) 

v =volume (L3) 

 

3.1.3. Viscosity 

 
 Due to cohesion and interaction between molecules, resistance to deformation is 

observed. Viscosity of the property defines the rate of this resistance to deformation. 

Newton’s law of viscosity relates shear stress and velocity gradient by dynamic 

viscosity.  

 

                                                           
dy
duμτ =                                                            (3.3) 

  

where, 

τ =shear stress (M/L2) 

μ  =dynamic viscosity (M / (LT)) 

dy
du

=velocity gradient 

Kinematic viscosity is the ratio between dynamic viscosity and fluid density 

(Yang 1996). 

 

 
ρ
μυ =  (3.4) 

 

where, 

υ  =kinematic viscosity (L2/T) 

   The properties of water are summarized in Table 3.1.  

   

3.2. Physical Properties of Sediment 
 

 Particle size, shape specific gravity and fall velocity are important for 

understanding of sediment transport mechanism. 
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3.2.1. Size 

 
 Particle size clearly describes the physical properties of the sediment particle, so 

it is the most important parameter for many practical purposes. The sediment size can 

be measured by various methods such as sieve analysis, optical methods or visual 

accumulation tube analysis. The sediment grade scale suggested by Lane (1947), as 

shown in Table 3.1. It was adopted by American Geophysical Union and is still used by 

hydraulic engineers.   

 

Table 3.1. Properties of water 

(Source: Yang 1996) 

Temperature  
(0C) 

Specific 
Weight 

 γ (kN/m3) 

Density     
ρ (kg/m3) 

Dynamic 
Viscosity        

μ x 103 (N-s/m2)

Kinematic 
Viscosity       

v x 10-6 (m2/s) 

0 9.805 999.8 1.781 1.785 
5 9.807 1000.0 1.518 1.519 
10 9.804 999.7 1.307 1.306 
15 9.798 999.1 1.139 1.139 
20 9.789 998.2 1.002 1.003 
25 9.777 997.0 0.890 0.893 
30 9.764 995.7 0.798 0.800 
40 9.730 992.2 0.653 0.658 
50 9.689 988.0 0.547 0.553 
60 9.642 983.2 0.466 0.474 
70 9.589 977.8 0.404 0.413 
80 9.530 971.8 0.354 0.364 
90 9.466 965.3 0.315 0.326 
100 9.399 958.4 0.282 0.294 

 
 
 

3.2.2. Shape 

 
 Particle shape is the second most significant sediment property in natural 

sediments. The geometric configuration defines shape parameter regardless of sediment 

particle size and composition. Grains are usually considered to have with long diameter 
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a, intermediate diameter b and short diameter c. Corey (Schulz, et al. 1954) investigated 

several shape factors and defined the shape factor as: 

 

 
ab
cCSF =  (3.5) 

    

Corel shape factor was the most significant expression of shape. The shape 

factor for a sphere would be 1.0. Natural sediment typically has a shape factor of about 

0.7 (US Army Corps of Engineers 2008). 

 

3.2.3. Particle Specific Gravity 

 
 Specific gravity is defined as the ratio of the specific weight of the sediment to 

that of water. It usually ranges numerically from 2.6 to 2.8 in natural solids. While the 

lower values of specific gravity are typical of the coarser soils, higher values are typical 

of the fine – grained soil types. Due to its resistance to weathering and abrasion, quartz, 

which has a specific gravity of 2.65, is the most common mineral found in natural 

noncohesive sediments. Typically, the average specific gravity of a sediment mixture is 

close to that of quartz. Therefore, in sedimentation studies, specific gravity is frequently 

assumed to be 2.65, although whenever possible, site-specific particle specific gravity 

should be determined (US Army Corps of Engineers 2008). 

 

3.2.4. Fall Velocity 
 

 Fall velocity or settling velocity is the most fundamental property governing the 

motion of the sediment particle in a fluid. It is a function of the volume, shape and 

density of the particle and the viscosity and density of the fluid. The fall velocity of any 

naturally worn sediment particle may be calculated if the characteristics of the particle 

and fluid are known. Fall velocity is related to relative flow conditions between the 

sediment particle and water during conditions of sediment entrainment, transportation 

and deposition. Fall velocity can be calculated from a balance between the particle 

buoyant weight or submerged weight and the resulting force from fluid drag (Yang 

1996). The general drag equation is  
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2

2
f

DD

v
ACF ρ=  (3.6) 

 

where, 

DF = drag force 

DC = drag coefficient 

ρ = density of water 

A = the projected area of particle in the direction of fall 

fv = the fall velocity  

The particle buoyant weight or submerged weight of a spherical sediment 

particle is 

 

 grW ss )(
3
4 3 ρρπ −=  (3.7) 

 

where, 

sW =submerged weight 

r =particle radius 

sρ and ρ = densities of sediment and water respectively. 

For very slow, steady moving sphere, the drag coefficient thus obtained is 

 

 
Re
24

=DC  (3.8) 

  

This equation is acceptable for Reynolds numbers less than 1.0 where; 

 

 
υ

sf dv
=Re  (3.9) 

  

where, 

υ = kinematic viscosity of water 

sd =sediment diameter 

From Equation 3.6 and Equation 3.8, Stokes (1851) equation can be obtained; 
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 υρπ fD vdF 3=  (3.10) 

 

Equality of Equation 3.7 and Equation 3.10, the fall velocity for a sediment 

particle can be obtained as below: 

 

 
υγ

γγ 2

18
1 s

w

ws
f

dgv −
=  (3.11) 

 

where, 

sγ and wγ = specific weights of sediment and water respectively. 

This equation is acceptable for the particle diameter equal to or less than 0.1 

mm. 

 The drag coefficient of a sphere depends on the Reynolds number. When the 

particle Reynolds number is greater than 2.0, the particle fall velocity is determined 

experimentally. Rouse (1937) gave smv f /024.0=  for most natural sands, the shape 

factor is 0.7 and mmds 2.0= . 

There are many approaches about fall velocity in literature. Some of them 

summarized below: 

 

3.2.4.1. Dietrich Approach 

 
 Dietrich (1982) developed the following equation for fall velocity analyzing 

empirical relation. 

 

 )(
3*

2110 RRRW +=  (3.12) 

 

where, 

*W = the dimensionless fall velocity 

 

υρρ
ρ

g
v

W
s

f

)(

3

* −
=      (3.13) 
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where, 

*D = the dimensionless particle size 

CSF = the Corey shape factor 

The dimensionless particle size *D  is expressed as (Dietrich 1982):  

 

 2

3

*
)(

ρυ
ρρ ss gd

D
−

=  (3.17) 

 

The Corey shape factor (CSF) is expressed as (Dietrich 1982): 

 

 5.0)(ab
cCSF =  (3.18) 

 

where, 

a,b,c= the longest intermediate and shortest axes of the particle respectively and 

mutually       perpendicular. 

* 8.05.0 −≈CSF  (Dietrich 1982) 

P = Powers value of roughness ( P is between 3.5 and 6 (Dietrich 1982)) 
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3.2.4.2. Yang Approach 

 
 Yang (1996) expressed the fall velocity of particle (for the particle Reynolds 

number ( )υsfpn dvR =  is less than 2.0): 
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where, 

 

( ) ( )
⎪
⎩

⎪
⎨

⎧
⎥
⎦

⎤
⎢
⎣

⎡
−

−⎥
⎦

⎤
⎢
⎣

⎡
−

+
=

79.0

3636
3
2

5.0

3

25.0

3

2

wss

w

wss

w

gdgdF γγ
γυ

γγ
γυ

for  
mmdmm

mmdmm

s

s

0.20.1

0.11.0

≤<

≤<
 (3.20) 

 

3.3. Bulk Properties of Sediment 

 
 Three important bulk properties are described below, particle size distribution, 

specific weight and porosity. 

 

3.3.1. Particle Size Distribution 

 

 Particle sizes are determined using a variety of methods. Diameters of particles 

larger than 256 mm may be obtained by measuring the mean diameter. Templates with 

square openings can be used to determine a size equivalent to the sieve diameter for 

particles between 32 and 256 mm. Sieve analyses are generally used for particles 

between 0.0625 and 32 mm. For sediments less than 0.0625 mm hydrometer analysis 

can be utilized. 
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 The variation in particle sizes in a sediment mixture is described with a 

gradation curve, which is a cumulative size-frequency distribution curve showing 

particle size versus accumulated percent finer, by weight. It is common to refer to 

particle sizes according to their position on the gradation curve. d50 is the geometric 

mean particle size; that is, 50 percent of the sample is finer, by weight; d84.1 is 1 

standard deviation larger than the geometric mean size in practice and it is rounded to 

d84, while d15.9 is 1 standard deviation smaller then the geometric mean size and it is 

rounded to d16 in practice (US Army Corps of Engineers 2008). 

 

3.3.2. Specific Weight 

 
 Specific weight of deposited sediment is the weight per unit volume. It is 

expressed as dry weight. 

 

wd SGp γγ )1( −=     (3.21) 

 

or 

 

sd p γγ )1( −=                                                 (3.22) 

 

where, 

dγ = specific weight of deposited sediment 

SG = specific gravity of sediment particle 

p =porosity 

 Specific weight increases with time after initial deposition. It also depends on 

the composition of the sediment mixture (US Army Corps of Engineers 2008). 

 

3.3.3. Porosity 

 
 It is defined as the ratio of volume of voids to total volume of sample. Porosity is 

affected by particle size, shape and degree of compaction. 
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t

v

V
V

p =      (3.23) 

 

where, 

vV =void volume 

tV =total volume of sample 

 

3.4. Incipient Motion Criteria 

 
 The concept of incipient motion of sediment particles from the bed is important 

to understand the aggradation and degradation forces acting on a spherical sediment 

particle shown in Figure 3.1. The component of gravitational force in the direction of 

flow can be neglected compared to other forces acting on a spherical sediment particle 

because the channel slopes are small enough in most natural rivers. Other forces are 

drag force DF , lift force LF , submerged weight SW  and resistance force RF . A sediment 

particle starts the incipient motion when the conditions are satisfied below (Yang 1996). 

 

 
Figure 3.1. Settling of sphere in still water  

(Source: Yang 1996) 

 

where, 

RO

RD

SL

MM
FF
WF

=
=
=
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OM =overturning moment due to DF and RF  

RM =resisting moment due to LF and SW  

 Different researchers developed several approaches defining the incipient 

motion of sediment particles. 

 

3.4.1. Shear Stress Approach 

 
 In early 1936, Shields (1936) derived a function for incipient motion of sediment 

particles where balance of forces acting on a particle on a bed was considered. He 

applied dimensional analysis to determine dimensionless parameters and investigated 

the relationship between these two parameters by experimental studies. 

 

⎟
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− υγγ
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c dUf
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    (3.24) 

 

υ
sdU*Re =      (3.25) 

 

where, 

Re =Reynolds number 

*U = shear velocity 

cτ = critical shear stress at initial motion 

 Vanoni (1975) developed diagram fitting the curve to the data provided by 

Shields (Figure 3.2). Figure 3.2. shows the results of experiments about relationship 

between dimensional shear stress and particle Reynolds number. 

 Shields simplified the problem by neglecting the lift force and considered only 

the drag force. The American Society of Civil Engineers Task Committee on the 

Preparation of Sediment Manual modified diagram and uses a third parameter as shown 

in Figure 3.2. The parameter is 
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 This parameter allows determination of intersection with the Shields diagram 

and its corresponding values of shear stress. Many investigators have proposed different 

options which are more or less the same. 

 

 
Figure 3.2. Shields diagram for incipient motion  

(Source: Vanoni 1975) 

 

3.4.2. Velocity Approach 

 
 Velocity approach uses the relationship between the velocity field and shear 

stress field. It means that the velocity for incipient motion can be calculated if the drag 

force for incipient motion is known.  

   Yang (1973) obtained incipient motion criteria using laboratory data collected 

by different investigators.  The relationship between dimensionless critical average flow 

velocity and Reynolds number follows a hyperbola when the Reynolds number is less 

than 70 summarized in Equation 3.27. When the Reynolds number greater than 70, 

ω/crV becomes a constant, as shown Equation 3.28. (Singh 2005). 
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3.4.3. Meyer – Peter and Müller Criterion 

 
 Meyer – Peter and Müller (1948) obtained bed load equation and sediment size 

at incipient motion as formulated from  bed load equation (Yang 1996). 

 

( ) 2/36/1
901 / dnK

SDds =      (3.29) 

 

where, 

sd =sediment size in the armor layer (in mm) 

S =channel slope 

D =mean flow depth 

1K =constant (=0.9 when D is in ft and 0.058 when D is in m) 

n =channel bottom roughness or Manning’s roughness coefficient  

90d =bed material size where 90% of the material is finer (in m) 

 

3.5. Resistance to Flow with Rigid Boundary 

 
Prandtl’s (1926) mixing theory depends on velocity distribution approach. 

Velocity at distance y is 

 

*log75.55.8 U
k
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s
⎟⎟
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⎞
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⎝

⎛
+=      (3.30) 

 

and 

 

*
*log75.55.5 UyUu ⎟
⎠
⎞

⎜
⎝
⎛ +=

υ
    (3.31) 

 

where, 

u =velocity at a distance y above the bed 

gDSU =* =shear velocity 
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D =depth of flow 

S =slope 

sk =equivalent roughness defined by Schlichting (1955)  

For sand bed channels, 

65dks =  (Einstein 1950),  

90dks = (Meyer – Peter and Müller 1948),  

85dks = (Simons and Richardson 1966, Yang 1996). 

 

3.5.1. Darcy – Weisbach, Chezy and Manning formulas 

 

 The Darcy – Weisbach formula for pipe flow is 

 

g
V

D
Lfh f 2

2

=      (3.32) 

 

For open channel flow, 
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    (3.33) 

 

and 

 

L
h

S f=      (3.34) 

 

So we can express the f value; 

 

2

8
V
gRSf =      (3.35) 

 
2
*UgRS =      (3.36) 
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2/1
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fU
V      (3.37) 

 

where, 

fh =friction loss 

f =Darcy – Weisbach friction factor 

L =pipe length 

D =pipe diameter 

V =average flow velocity 

R =hydraulic radius  

S =energy slope 

 The Chezy formula is 

 

RSCV z=      (3.38) 

 

Shear stress along the boundary is 

 

2
0 8

1
Vfρτ =      (3.39) 

 

From relationship between RU ,, *0τ  and V , Chezy coefficient can be obtained by 

 
2/1
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γ
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Cz      (3.40) 

 

The Manning formula is 

 

2/13/21
SR

n
V =      (3.41) 

 

where, 

n =Manning coefficient and can be obtained by the formula below; 
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1.21

6/1dn =      (3.42) 

 

 

where, 

d =sediment diameter of uniform sand in m (Yang 1996). 

 

3.6. Bed Forms 
 

 Rate of sediment transport mainly depends on resistance to flow and bed 

configuration. Simons and Richardson (1960) summarized bed forms as shown in 

Figure 3.3. below (Yang 1996). 

 Ripples begin to form, as current velocity picks up in lower flow regime. These 

are small bed forms, generally wavelengths less than 30 cm and heights less than 5 cm. 

In faster currents, ripples grow into dunes. Dunes are similar to bars but larger than 

ripples. Their profile height is limited by depth of flow, so they can be several meters 

tall in deep water. Bars are bed forms having lengths the same as channel width and 

height same as channel height. In higher velocities dunes are destroyed and plane bed 

forms occur. In very high velocities anti dune bed forms occurs. Water surface forms 

waves that move upstream and so anti dunes move upstream. These are also called 

standing waves. In large slopes, high velocities and sediment concentrations chutes and 

pools occur. They consist of large elongated mounds of sediment. In transition zone, 

bed configurations range from dunes to plane beds or to anti dunes.  
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Figure 3.3. Bed forms of sand bed channels  

(Source: Simon and Richardson 1966) 

 

3.7. Mechanism of Sediment Transport 

 
 Sediments are eroded from basin by water and transported by stream when the 

flow conditions exceed the criteria for incipient motion. The motion can be rolling, 

sliding or jumping along the bed which is called bed load transport. Sometimes 

sediments stay in suspension for an appreciable length of time called suspended load 

transport. In addition, wash load is a bed material load according the particle size and 

mainly moves as suspended load. So, sediment can be classified as bed material load 

and wash load or bed load and suspended load. Wash load transport is a function of 

basin characteristics, whereas bed load transport is a function of flow characteristics 

(Yang 1996) (Figure 3.4). 
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Figure 3.4. Movement types of sediment particles 

 

3.7.1. Bed Load Transport Formulas 

 
 Bed load motion starts when critical conditions are exceed. The motion 

concerned with two phase (solid + liquid) flow near the bed. Generally, the bed load 

transport rate of a river is about 5-25% of that in suspension. Bed load measurement is 

difficult, so it is estimated by sediment transport formulas based on different modes of 

motion employing different parameters, including shear stress and flow velocity. The 

approaches for prediction of bed load are briefly summarized as follows. 

 

3.7.1.1. DuBoys Approach 

 
 Duboys (1879) developed a bed load model using shear stress approach. This 

model consists of sediment particles moving in layers because of the tractive force 

acting along at the bed. The bed load capacity formula is given as; 

 

( )cb Kq τττ −=      (3.43) 

 

where; Straub (1935) defined K coefficient depending on the sediment particle 

characteristics. 
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4/3

173.0
d

K =      (3.44) 

 

Thus DuBoys equation can be rewritten as, 

 

( )c
s

b d
q τττ −= 4/3

173.0     (3.45) 

 

where, 

sd =sediment particle diameter in mm 

τ and cτ =bed and critical shear stress respectively in Ib/ft2 

bq =bed load transport capacity in (ft3/sec)/ft 

 

3.7.1.2. Meyer – Peter’s Approach 

 
 Meyer-Peter et al. (1934) developed the following bed load formula using the 

energy slope approach in metric system; 

 

174.0 3/23/2

−=
ss

b

d
Sq

d
q      (3.46) 

 

where, 

bq =bed load [in (kg/s)/m] 

q =water discharge [in (kg/s)/m] 

S =Slope 

sd =particle size (in m) 

  Meyer – Peter formula is valid only for coarse material sediment particle 

diameters greater then 3 mm. For mixtures of non uniform material, d should be 

replaced by 35d , where 35% of the mixture is finer than 35d  (Yang 1996). 
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3.7.1.3. Schoklitsch Formula 

 
 There are two Schoklitsch bed load formulas which were developed from 

discharge approach. The first was published in 1934 in metric units.   

 

)(7000 2/1

2/3

c
s

b qq
d
Sq −=     (3.47) 

 

where, 

=bq bed load [in (kg/s)/m]  

q  and cq =water discharge and critical discharge at incipient motion [in m3/s)/m] 

respectively 

 For sand with specific gravity 2.65, critical water discharge can be calculated by 

plotting for given flow and grain diameter curve of bed load as ordinate against slope as 

abscissa and then extrapolating the curve to zero bed load to obtain the intercept with 

abscissa. 

 

3/4

00001944.0
S

dq s
c =     (3.48) 

 

 where, 

sd =particle size (in m) 

S =energy slope 

 The second bed load formula was published in 1943 in metric units.  

 

)(2500 2/3
cb qqSq −=     (3.49) 

 

 For sand with specific gravity 2.65 critical water discharge can be calculated by 

 

6/7

2/36.0
S

dq s
c =      (3.50) 
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3.7.1.4. Shields Approach 

 
 Shields (1936) conducted laboratory studies and obtained the flow conditions 

corresponding to incipient motion when sediment transport greater than zero. Shield’s 

measurements provided semi empirical equation for estimating bed load transport 

capacity (with English units); 

 

( ) sws

c

w

sb

dSq
q

γγ
ττ

γ
γ

−
−

= 10     (3.51) 

  

where, 

bq and q =bed load and water discharge per unit channel width, respectively 

DSγτ =  

cτ can be obtained from Shields diagram (Yang 1996). 

 

3.7.1.5. Meyer – Peter and Müller’s Approach 

 
   Meyer-Peter and Müller (1948) transformed the Meyer-Peter bed load formula 

by isolating involved parameters one by one. 

 

3/23/12/3 25.0)(047.0)( bws
r

s qdRS
K
K ργγγ +−=    (3.52) 

 

where, 

R =hydraulic radius (in m) 

S =energy slope 

d =mean particle diameter (in m) 

=ρ specific mass of water (in metric ton – s/m4) 

=bq bed-load rate in underwater weight per unit time and width [in (metric ton / s)/m] 

=SKK rs )/(  the kind of slope which is adjusted for energy loss due to grain resistance 

rS , is responsible for the bed-load motion. 

  Energy slope can be calculated by Strickler (1923) formula: 



 37

3/42

2

RK
VS
s

=      (3.53) 

 

Energy loss due to grain resistance can be calculated by Strickler’s formula as: 

 

3/42
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r

r =      (3.54) 

 

So; 
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 The formula is based on a large quantity of experimental data. Test results 

showed the relationship to be of the form; 
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     (3.56) 

 

And 

 

6/1
90

26
d

Kr =      (3.57) 

 

where, 

=90d the size of sediment for which 90% of the material is finer (Yang 1996). 

 

3.7.1.6. Regression Approach 

 
 Rottner (1959) expressed bed load discharge in terms of the flow parameters 

based on regression analysis. The formula is dimensionally homogeneous (Yang 1996). 
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 where, 

bq =bed load discharge (in Ib/s per ft of width) 

sγ =specific weight of sediment (in Ib/ft3) 

sξ =specific gravity of the sediment (=2.65)    

g =acceleration of gravity (in ft/s2) 

D =mean depth (in ft) 

V =mean velocity (in ft/s) 

50d =particle size at which 50% of the bed material by weight is finer (in ft) 

 

3.7.1.7. Chang, Simons and Richardson’s Approach 

 
 Chang, Simons and Richardson (1965) suggested that the bed load discharge by 

weight can be determined using shear stress approach; 

 

( )
( ) φγγ

ττγ
tan−

−
=

s

csb
b

VK
q      (3.59) 

 

( )ctb VKq ττ −=      (3.60) 

 

where, 

bK =constant 

tK =obtained by graph in English unit 

φ =angle of repose of submerged material 

bq =bed load transport capacity in Ib/ft/s (Yang 1996). 
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3.7.1.8. Parker et al. (1982) Approach  

 
 Parker et al. (1982) developed bed load transport formula using the hypothesis of 

equal mobility.   
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*
50

*
50

50
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τ
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where, 

=sD grain size 

γ  and =sγ specific weights of water and sediment 

=biq bed-load per unit channel with in size fraction id  

=ip friction by weight in size id  

g=gravitational acceleration 

=τ bed stress 

sgDℜ= ρττ /*  : Shields stress for grain size Ds 

ii gDℜ= ρττ /*  : Shields stress for i th grain size range 

50
*

50 / gDℜ= ρττ  : Shields stress for median diameter of subpavement 

=*
rτ  reference value of *τ  at which **

rWW =   

=*
riτ  reference value of i

*τ  at which **
ri WW =   

=*
50rτ  0.0876 reference value of *

50τ   
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Submerged=ℜ specific gravity of sediment 

ρ = density of water 

 

*)1/( riis

s
i d

D
τγγ

φ
−

=      (3.65) 

 

 The value of *
riτ  based on 50d  is 0.0875  

 

iri dd /0875.0 50
* =τ      (3.66) 

 

[ ]2
5050

* )1(28.9)1(2.14exp0025.0 −−−= φφW   ,   0.95< 50φ <1.65  (3.67) 
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φ
W ,  50φ >1.65    (3.68) 

 

where, 

=*
iW dimensionless bed-load in i th grain size sub range 

=*W dimensionless total bed-load 

 

3.7.1.9. Tayfur and Singh’s Approach  

 
 Tayfur and Singh (2006) derived sediment flux equation from Langbein and 

Leopold (1968) sediment flux concentration equation. Tayfur and Singh obtained 

following equation from the kinematic wave theory approach. 
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where, 

=bsq the sediment flux in movable bed layer (L2/T)  

=sV the velocity of sediment particles as concentration approaches zero (L/T)  

maxz =the maximum bed elevation  

z = the mobile bed layer elevation 

p  = porosity of the bed layer 

 

3.7.2. Suspended Load Transport Formulas 

 
 Settling velocities are balanced by upward component of turbulent velocity and 

stays in suspension. While particles fall, some of them are carried away with high flow 

velocity and then returning near the bed region. Others particles caught in an upward 

moving eddy are lifted again. The higher the turbulence, the smaller the particle size 

and the greater the portion of the particles is lifted up. Thus some sediment is kept in 

suspension. Some basic suspended load formulas are summarized below.  

 

3.7.2.1. The Rouse Equation 

 
 The downward transport rate is settling by gravity and the upward transport rate   

is rising by diffusion must be balanced under steady equilibrium conditions. Settling by 

gravity and the rising by diffusion components in opposite direction, respectively are 

Cω  and 
dy
dC

sε where; 

ω =fall velocity of sediment particles 

C =sediment concentration 

dy
dC =concentration gradient 

sε =momentum diffusion coefficient for sediment. It is function of y. 

In the form of balance; 

 

0=+
dy
dCC sεω      (3.70) 
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Assuming the mass transfer coefficient is equal to momentum transfer coefficient;  

 

ms βεε =      (3.71) 

 

where, 

mε =momentum transfer coefficient 

β =a factor of proportionality 

In turbulent flows, the turbulent shear stress is; 

 

dy
du

my ρετ =      (3.72) 

 

A distance y above the bed is 
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Assuming logarithmic velocity distribution;  

 

ky
U

dy
du *=      (3.74) 

 

where, 

u =local velocity at a distance y above the bed 

*U =shear velocity  

k =Prandtl-von Karman universal constant 

From the equations below, mε  and sε can obtained: 
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To integration Equation 3.70 a to y by substituting sε , 
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For fine sediments β  can be assumed 1, 
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When α  is equal to; 
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So; 

The Rouse (1937) equation becomes 
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3.7.2.2. Lane and Kalinske’s Approach 

 
 Lane and Kalinske (1941) assumed 1=β and obtained sediment concentration 

in English units as; 
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where, 

LP can be obtained by function of 6/1D
n and 

*U
ω  with the results shown in Yang (1996) 

book Figure 5.6. 

 

3.7.2.3. Einstein’s Approach 

 

Einstein (1950) replaced *U with '
*U and assumed 1=β and obtained α  as; 

 

*4.0 U
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α =      (3.82) 

 

Suspended load transported rate is 
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For any unit system 
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where, 

xdxks // 65==Δ  

Einstein (1950) obtain x and 
δ

sk that shown in Yang (1996) book Figure 3.9. 

After substituting the logarithm velocity distribution formula simplifying one obtains: 
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Clearly, 1I and 2I functions of A  and their values can be obtained by numerical 

integration with the results shown in Yang (1996) book Figure 5.7. and Figure 5.8. 

Einstein (1950) assumed that da 2= , d is the representative grain size of bed material . 

The concentration at ay =  is 

 

B

bwBw
a au

qiA
C 5=      (3.86) 

 

where, 

bwBW qi =bed load transport rate by weight of size BWi  

BU =average bed load velocity which was assumed by Einstein to be proportional to '
*U  

5A =a correction factor (=1/11.6) 

Einstein’s equations can be applied to compute the suspended load discharge.  

 

 

3.7.3. Total Load Transport Formulas 

 
 Total sediment load includes both bed load and suspended load. The transported 

total bed material also consists of bed material load and wash load. However methods 

for calculating the bed material load and wash load are different. The wash load is 

estimated by measurements but since the bed surface is changing with incoming flow 

continuously, it is difficult to predict the wash load in rivers. When comparing the 

measured and computed total bed load, wash load should be removed from 

measurements. Below, some basic total load formulas introduced. 

 

3.7.3.1. Einstein’s Approach 

 
 Einstein (1950) obtained the bed load transport rate for per unit channel width; 
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Suspended load transport rate for per unit channel is 

 

( )21 IIPqiqi EbwBWswsw +=     (3.88) 

 

The total bed load for the size fraction ti , 

 

swswbwBWtt qiqiqi +=  

( )211 IIPqi EbwBW ++=     (3.89) 

 

3.7.3.2. Laursen’s Approach 

 
 Laursen (1958) developed relationship between flow condition and sediment 

discharge. ASCE Task Committee (1971) denoted Laursen’s formula in dimensionally 

homogeneous form; 

 

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛=

i ici

i
it

Uf
D
dpC

ωτ
τγ *

6/7

1'01.0    (3.90) 

 

where, 

tC =total average sediment concentration by weight per unit volume 

gDSU =*        

ip =percentage of materials available in size fraction i   

iω =fall velocity of particles of mean size id in water  

ciτ =critical tractive force for sediment size id  as given by the Shields diagram, 
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The bed material load is 

 

tt qCq =      (3.92) 
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where, 

q =flow discharge per unit width 

tq =dry weight of sediment discharge per unit time and width. 

 Laursen’s formula is applicable for fine sediment (Yang 1996). 

 

3.7.3.3. Bagnold’s Approach 

 
 Bagnold (1966) estimated sediment transport capacity in submerged weight for 

bed load and suspended load respectively as bellows: 
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where, 

sγ and γ =specific weights of sediment and water, respectively 

bwq =bed load transport rate by weight per unit channel width 

swq =suspended load discharge in dry weight per unit time and channel width 

tanα =ratio of tangential to normal shear force (can be obtained in graph that showed a 

function of ( )[ ]dws γγτ −/  and tanα with grain size d  in Yang (1996) book Figure 

6.5.b.) 

τ =shear force acting along the bed 

V =average flow velocity 

be =efficiency coefficient (can be obtained in graph that showed a function of V  and be  

with grain size d  in Yang (1996) book Figure 6.5.a.) 

ω =fall velocity for suspended sediment  

su =mean transport velocity of suspended load 

 Transport function is based on stream power concept. Bagnold’s formula 

expresses the bed load transport capacity by using energy concept as a function of work 
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done by system for transporting sediment (Yang 1996).  The total load is sum of the bed 

load as given the equation; 
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where, 

zq =total load [ ]ftsIbin //(  

 

3.7.3.4. Engelund and Hansen’s Approach 
 

 Engelund and Hansen (1972) carried out Bagnold’s stream power concept and 

obtained the sediment transport formula with similarity principle (Yang 1996); 

 
2/51.0' θφ =⋅f      (3.96) 

 

where, 
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where, 

g =gravitational acceleration 

S =energy slope 

V =average flow velocity 

tq =total sediment discharge by weight per unit weight 
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d =median particle diameter 

τ =shear stress along the bed 

 Engelund and Hansen’s formula is applicable only to dune beds and median 

particle diameter is greater than 0.15 mm. 

 

3.7.3.5. Ackers and White’s Approach 

 
 Ackers and White (1973) transport capacity formula based on Bagnold’s stream 

power concept and applied dimensional analysis for uniform sediment. The 

dimensionless sediment transport function is  
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where, 

X =rate of sediment transport in terms of mass flow per unit mass flow rate (unitless) 

D =water depth  

*U =shear velocity 

d =sediment particle size 

V =average flow velocity  

Ackers and White (1973) expressed the mobility number for sediment is 
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where, 

n =transition exponent, depending on sediment size 

α =coefficient in rough turbulent equation (=10) 

The sediment size by a dimensionless grain diameter is 
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where, 

v =kinematic viscosity 

The generalized dimensionless sediment transport function is 
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The values, n , A , m  and C  can be obtained from laboratory data. 
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Ackers and White’s approach applicable to mmd 04.0>  and 8.0<rF . 

where, 

rF =Froude number 
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CHAPTER 4 

 

ONE DIMENSIONAL HYDRODYNAMIC MODEL 

 

 The hydrodynamic model is described by equations of motion in open channel 

flows. The flow model is developed to solve governing equations based on conservation 

of mass and momentum. The flow depth and velocity of flow are sufficient to define the 

flow conditions at a channel cross section, so two governing equations can be solved for 

a typical flow situation.  

 In this Chapter, the continuity and momentum equations are derived that are 

usually referred to as the Saint Venant equations.  

 

4.1. de Saint Venant Equations 

 
 The one dimensional modeling of unsteady flow in open channels is most often 

performed by supplementing de Saint Venant equations that describe the propagation of 

a wave. In unsteady modeling, two flow variables, such as the flow depth and velocity 

or the flow depth and the rate of flow are calculated to define the flow conditions at a 

channel cross section. Therefore, two governing equations must be used to analyze a 

typical flow situation. The required equations are the continuity equation and the 

momentum equation derived with many assumptions (Roberson, et al. 1997, Chaudry 

1993): 

 

● The streamlines do not have sharp curves, so that the pressure distribution is 

hydrostatic.  

●As the channel bottom slope is small, the measured lateral and vertical velocity 

are approximately same, so the lateral velocity and acceleration component can 

be neglected. 

 ●No lateral, secondary circulation occurs. The flow velocity distribution is 

uniform over any channel cross section. 

 ●The channel is prismatic with the same cross section and slope thorough out 

the distance.  



 52

●The head losses in unsteady flow can be simulated by using the steady – state 

resistance laws, so Chezy and Maning equations can be used also in unsteady 

flow model. Water has uniform density and flow is generally subcritical 

(Chaudhry 1993).  

 

4.1.1. Continuity Equation in Unsteady Flows 

 
 According to the law of conservation of mass, both the difference of the rate of 

mass inflow through area 1dA at section 1 and the rate of mass outflow through area 

2dA at section 2 and the lateral inflow or outflow though xΔ in the same dt  time space, 

must be equal to changing of volume. 

 
 

Figure 4.1. Definition sketch for continuity equation 
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where, 

M =mass 

A =flow area 

21 1q  
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xΔ  
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∂
∂
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V =flow velocity 

ρ =mass density of water 

1q =volumetric rate of lateral inflow or outflow per unit length of the channel between 

sections 1 and 2. (inflow 1q is positive, outflow 1q  is negative) 

 If water is assumed incompressible, mass density can be taken constant. 

Therefore Equation (4.1) becomes, 
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By rearranging Equation (3.2) with average flow area and average flow velocity 

in channel cross section and applying the Leibnitz’s rule *, the equation becomes, 
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where, 

h =flow depth 
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A  can be neglected because it is small and with other simplifiers it 

becomes, 
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For a wide rectangular section the conservation of mass equation for water on a 

unit with can be written as: 
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where,  

h =the flow depth (L) 

u =the flow velocity (L/T) 

wq1 =the lateral flow flux (L2/T) 

x =independent variable representing the coordinate in the longitudinal direction (flow 

direction) (L) 

t =independent variable of time (T) 

 
*Leibnitz’s rule  
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4.1.2. Momentum Equation in Unsteady Flows 

 
The second required equation is derived by considering how the forces on the 

control volume affect the movement of water through the control volume. The 

momentum equation states that the rate of change of momentum is equal to the resultant 

force acting on the control volume∑ =
dt
mvdF )( . In Figure 4.2 there is an element 

which has mass m  and length xΔ . The rate of changing of total momentum for that 

element for the uncompressible flows is,  
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where, 

xV =the component of the velocity of lateral inflow in the x - direction 

1q = is positive in lateral inflow and negative in lateral outflow. 

The Leibnitz’s rule must be applied to Equation (4.8) and VAQ = , 

 

( )∑ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ −−−+

∂
∂

= dxxxqVVQVQdx
t
QF

x

x
x

2

1

1211122 ρρρρ   (4.9) 

 

The mean value theorem can save the Equation (4.9) to differential form, so 

dividing the terms by ( )12 xx −ρ , 
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Figure 4.2. Definition sketch for momentum equation 

 

For the typical hydraulic engineering applications the shear stress on the flow 

surface due to the wind and the effects of the Coriolis acceleration can be neglected. 

The forces acting on the control volume are the pressure forces, the gravity force in the 

x - direction and the frictional force which are explained below. 

On the upstream end, the pressure force is; 

 

111 hgAF ρ=      (4.11) 
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On the downstream end, the pressure force; 

 

222 hgAF ρ=      (4.12) 

 

where, 

1h and 2h =depth of the centroid of flow area 1A  and 2A , respectively              

The weight of the water in the control volume in the x - direction is; 
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where, 

0S =The channel bottom slope              

The frictional force due to water and the channel sides and channel bottom is;  
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where, 

fS =The friction slope              

The resultant force acting on the control volume is; 
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By inserting terms in the Equation (4.15) and dividing by ( )12 xx −ρ , 
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The mean value theorem can save the Equation (4.16) to differential form, 
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By rearranging gives, 
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The Equation 4.18 is the momentum equation of water flow. If the right – hand 

side of this equation is zero, it means that mass is conserved along any closed contour in 

the tx − plane unless it is zero, this term acts like a source or a sink depending on 1q  

(Cunge, et al. 1980).  
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So the higher – order terms can be neglected.  Assuming 0→Δh  , we can obtain 

( )( ) AhAh =∂∂  and that can be rearranged as: 
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The Equation 4.18 becomes, 
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The acceleration can be an increase in velocity at one point over time (local 

acceleration) or an increase in velocity over space (acceleration may occur as water 

moves along the control volume). These concepts lead to the de Saint Venant Equations, 

the momentum equation, which when written in its conservation form is (Chaudhry 

1993). 
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Rearranging of the terms gives; 
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For steady uniform flow, the friction slope is equal to channel bottom slope. The 

equation for steady, gradually varied flow is obtained by including the variation of the 

flow depth and velocity head by including the derivative with respect to distance x . The 

unsteadiness or the local acceleration term is needed to make the equation valid for 

unsteady nonuniform flow model.  
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de Saint Venant equations are nonlinear equations for which numerical methods 

are required to solve them, so they were not practically applied in their full 
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hydrodynamic form until the 1950s, although they were derived in the early nineteenth 

century. A number of simplifications were performed by different researchers, being 

more appropriate in particular situations. Consideration of the implications of the 

different simplifications can also lead to a better understanding of the full equations so 

de Saint Venant equations were described by the propagation of a wave. In wave 

approximations, the continuity equation is solved simultaneously with approximate 

form of the momentum equation. Their differences are all in momentum equation 

assumptions. The three types of simplifications for wave models studied in this research 

are summarized below. 

 

4.2. Kinematic Wave Approximation 
 

 The kinematic wave approximation represents the change of flow with distance 

and time by neglecting the local and convective acceleration terms of the momentum 

equation. The assumption is that the water surface is parallel to the channel bed 

(uniform flow assumption) in the kinematic wave approximation. It means there is no 

way to represent backwater effects. These assumptions reduce the momentum equation 

to the following. 

 

fSS =0      (4.25) 

 

The remaining terms represent the resistance equation for steady, uniform flow 

as described by Manning’s or Chezy’s equation but can be taken into consideration the 

effects of unsteadiness by an increase or decrease in the flow depth.  

 The resistance equation can be written as: 
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By applying the chain rule we can write, 
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 Substituting this equation into Equation 4.6, assuming 01 =q , 
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where, 

dAdQa =  Represents the velocity of flood wave (L2/T) 

 This equation represents the kinematic wave which’s combined with continuity 

equation. While Q is dependent variable, x and t  are independent variables in this first 

– order partial differential equation. If a is constant, the equation becomes linear. The 

general solution of this linear equation by D’Alembert is, 

 

)( atxfQ −=      (4.30) 

 

 While 0=t , it represents initial conditions. The function creates a curve that 

describes the variation of discharge Q with distance x . Assuming that t changes such as, 

1t , 2t and 3t  at velocity a in the downstream direction, the discharge occurs 1Q , 2Q and 

3Q drawing a curve. It can be said that this curve always appears as )(xf , so it shows a 

flood hydrograph in kinematic wave as it travels in the positive x - direction at velocity 

a , the shape of the hydrograph does not change and its peak does not attenuate 

(assuming a is constant). The kinematic wave equation describes the propagation of a 

flood wave along a river reach but doesn't account for any backwater effects. This 

implies that water may only flow downstream. The solution may be analytical or 

numerical (Chaudhry 1993). 

 

4.3. Diffusion Wave Approximation 

 
 The diffusion wave approximation is a simplified form of the dynamic wave 

approximation. In addition, it is a significant improvement over the kinematic wave 
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model. In the diffusion wave approach, the th ∂∂ term from de Saint Venant equation 

allows the water – surface slope to differ from the bed slope. This pressure differential 

term allows the diffusion model to describe the attenuation of the floodwave. It also 

allows the specification of a boundary condition at the downstream extremity of the 

routing reach to account for backwater effects. The simplified form of the momentum 

equation includes the convective acceleration term representing the spatial change in the 

flow depth as well as the source terms, but neglects the temporal derivative term as well 

as the convective acceleration terms due to spatial change in the flow velocity 

(Chaudhry 1993). The simplified form of the momentum equation is, 
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Combining the simplified momentum equation with the continuity equation 

gives the single equation called the diffusion wave equation. 
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where, 

02BSQD =  

dAdQa =  

 The first term of the right side in this equation is the same as the equation for 

kinematic model. The first term of the left side in Equation 4.32 represents the diffusion 

of a flood wave as it travels in the channel. The coefficients D and a  determined from 

the observed hydrographs. By using them the attenuation of a flood wave due to storage 

and friction can be included in the analysis (Chaudhry 1993). 

 

4.4. Dynamic Wave Approximation 

 
 The dynamic wave equations are most accurate and comprehensive solution for 

one dimensional unsteady flow problems in open channels under the specific 

assumptions. The dynamic wave equations can be applied to wide range of one 

dimensional flow problems such as dam break flood wave routing, evaluating flow 
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conditions due to tidal fluctuations, and routing flows through irrigation and canal 

systems. The full equations can be solved by several numerical methods for incremental 

times t and incremental distances x along the water way. The specific terms in the 

momentum equation are small in comparison to the bed slope. In dynamic wave 

approximation, the continuity equation is solved simultaneously with approximate form 

of the momentum equation. If we reorganize the momentum equation Equation 4.24 the 

full dynamic wave approximation can be defined by,   
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where, 

u =the flow velocity (L/T) 

h =the flow depth (L) 

=fS friction slope 

=0S bed slope 

g =acceleration due to gravity )/( 2TL  

t =independent variable of time (T) 

x =independent variable representing the coordinate in the longitudinal direction (flow 

direction) (L) 

 

 

 

 
 
 

 

 

 

 

 

 



 63

CHAPTER 5 

 

ONE DIMENSIONAL SEDIMENT TRANSPORT MODEL 

 

 The bed of the channel may aggrade or degrade in natural streams if the balance 

of the water discharge or sediment is destroyed by natural or manmade factors. Eroding 

loose surface from the basin by water deteriorates the ecology and changes the river 

morphology. The water level rises and brings ecological problems when sediments are 

deposited in river basins. It is essential to predict effects of sediment transport for river 

management. Current research on river sediment transport prediction is mainly based on 

numerical modeling of sediment transport. One dimensional unsteady sediment transport 

models studied in two categories in this research: equilibrium and nonequilibrium. 

 

5.1.  One Dimensional Numerical Model for Sediment Transport under 

Unsteady and Equilibrium Conditions 

 
 Bed material transportation is mathematically divided into two independent 

processes: erosion and deposition. When the erosion and the deposition rates are equal 

then there is equilibrium. It means that there is no interchange of sediment particles 

between suspended and bed load sediment transport (Tayfur and Singh 2007). The 

equilibrium condition exists when the same number of a given type and size of particles 

are deposited on the bed as are entrained from it. In the literature, most of the studies are 

based on equilibrium approach although natural rivers are mostly in nonequilibrium 

state. When flow and sediment discharges, channel geometry and sediment properties 

do not change substantially a long period of time, assuming the equilibrium sediment 

transport conditions is appropriate. 

 

5.1.1.  Kinematic Wave Model of Bed Profiles in Alluvial Channels              

under Equilibrium Conditions 
 

  The kinematic wave model neglects the local acceleration, convective 

acceleration and pressure terms in the momentum equation for dynamic wave model. 
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Tayfur and Singh (2006) represented transport movement in a wide rectangular alluvial 

channels as a system involving two layers: water flow layer and movable bed layer, as 

shown in Figure 5.1. The water flow layer may contain suspended sediment. The 

movable bed layer consists of both water and sediment particles, so the movable bed 

layer includes porosity. The basic one dimensional partial differential equations for 

unsteady and equilibrium nonuniform transport can be expressed as (Tayfur and Singh 

2006): 

 
Figure 5.1 Definition sketch of two layer system  

(Source: Tayfur and Singh 2006) 

 

 ● Continuity equation for water: 
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where, 

u = flow velocity (L/T) 

h = flow depth (L) 

z = mobile bed layer elevation (L) 

c = volumetric sediment concentration in the water flow phase (in suspension) ( 33 / LL ) 

wq1 =volumetric rate of lateral inflow or outflow of water (L/T) 

p =porosity of the bed layer ( 33 / LL ) 

z

h water flow layer 

movable bed layer 

fixed bed layer 
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t =independent variable of time (T) 

x =independent variable representing the coordinate in the longitudinal direction (flow 

direction) (L) 

 ● Continuity equation for sediment: 

 

( ) s
bs q
x

q
t
zp

x
huc

t
hc

11 =
∂
∂

+
∂
∂

−+
∂
∂

+
∂
∂    (5.2) 

 

where, 

bsq =the sediment flux in the movable bed layer )/( 2 TL  

sq1 =volumetric rate of lateral inflow or outflow of sediment (L/T) 

For simplicity, if there is no lateral inflow of water and sediment, the terms on 

the right hand sides of Equation 5.1 and Equation 5.2 vanish (Tayfur and Singh 2006).  

Equations 5.1 and 5.2 contain five unknowns: zcuh ,,,  and bsq . It means that 

there must be three additional equations. One equation is obtained from momentum 

equation for kinematic wave which is given as follows: 

● Momentum equation for water: 

 

of SS =      (5.3) 

 

 Friction slope is taken as equal to bed slope employing Chezy’s equation for the 

friction slope, yields; 
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where, 
5.0

fzSC=α                                                                                         

5.1=β  

 The second equation is obtained from Velikanov (1954), relating suspended 

sediment concentration to flow variables as; 
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where, 

g =gravitational acceleration (L/T2)                                                                                     

fv = average fall velocity of sediments (L/T) 

κ = coefficient of sediment transport capacity 

By rearranging the equation with 
fgv

κδ = , the equation becomes,   

 
13 −= huc δ      (5.6) 

 

The third equation is obtained from Langbein and Leopold (1968) who proposed 

a sediment flux concentration relation as: 
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b
bsst C

C
Cvq     (5.7) 

 

where, 

stq = sediment transport rate (M/L/T)  

sv = velocity of sediment particles as concentration approaches zero (L/T) 

bC = areal sediment concentration (M/L2) 

maxbC = maximum areal sediment concentration (M/L2) 

 The sediment transport rate stq is in (M/L/T) (Equation 5.7) and the sediment flux 

bsq  is in (L2/T) (Equation 5.2), so stq  is related to bsq  as: 

 

bssst qq ρ=      (5.8) 

 

where, 

sρ = mass density of sediment (M/L3) 

 Areal concentration can be related to bed level as (Tayfur and Singh 2006): 

 

( ) sb zpC ρ−= 1      (5.9) 
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By substituting Equations 5.8 and 5.9 into the Equation 5.7; 

 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−=
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11
z

zzvpq sbs     (5.10) 

 

where, 

maxz = maximum bed elevation (L) 

 By using the chain rule, derivative of bsq can be obtained as: 
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  Hence the unknowns zcuh ,,,  and bsq  can be obtained by the system of 

Equations 5.1, 5.2, 5.4, 5.5 and 5.11. After algebraic manipulation, the equations can be 

written in compact form as: 
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x
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t
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(note that 5.1=β ) 

 

5.1.1.1. Numerical Solution of Kinematic Wave Equations 

  
In this model, a finite difference scheme developed by Lax (1954) is used. This 

scheme can capture shocks, since all the governing equations are solved simultaneously. 

There is no need for iterations when gradients are large. The Lax scheme is an explicit 

scheme and does not require large matrices, so it is easy for solving general empirical 

equations for roughness and sediment discharge. With reference to the finite difference 
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grid as shown in Figure 5.2, the partial derivatives and other variables are approximated 

as follows. 

                       
Figure 5.2. Finite – difference grid 
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where, 

i =the node in space 

j =the node in time 

xΔ  and tΔ = the distance and steps, respectively. 

 Based on the finite difference approximation of Equations 5.14 and 5.15, 5.12 

and 5.13 may be written as follows for determining the values 1+jh  and 1+jz . 
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 The hydrodynamic part of the model is: 
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111 )( −++ = βα j

i
j

i hu      (5.16b) 

                                                   

 By using the presented algorithm, the unknown values of h  and z  at the new 

time level 1+j (future time) are determined from every interior node ( i = 2,…….,N-1). 

The values of the dependent variables h  and z  at the boundary nodes 1 and N+1 are 

determined by using boundary conditions. Also, at the time level j =1, initial conditions 

are already known.  

 Initial conditions can be specified as: 

 

( ) ohxh =0,      (5.18) 

 

( ) ozxz =0,      (5.19) 

 

where, 

oh and oz = the initial flow depth (L) and the bed level (L), respectively. 

 The upstream boundary conditions can be specified as inflow hydrograph and 

inflow sedimentograph. 

 

( ) )(,0 thth =      (5.20) 
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( ) )(,0 tztz =      (5.21) 

 

The downstream boundary conditions can be specified as: 
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●Stability 

 The numerical scheme has to satisfy the stability conditions. For this reason, the 

Courant – Friedrichs – Lewy (CFL) condition was used. Since the water waves travel at 

a much higher velocity than the bed transients this condition is given by: 

 

( )
1≤

Δ
Δ+

=
x

tghu
Cn     (5.24) 

 

where, 

nC = Courant number (it was taken 2.0=nC  in this research)  

 Equations 5.16 and 5.17 are solved simultaneously for each time step.  

 

5.1.1.2. Model Testing for Hypothetical Cases 

  
The hypothetical cases were analyzed assuming inflow hydrograph and 

concentration at the upstream of the channel, shown in Figures 5.3a and 5.3b.  

The channel was assumed to have a 1000 m length and 20 m width with 0.0025 

bed slope. Chezy roughness coefficient is 50=zC  m0.5/s. The sediment was assumed to 

have 2650=sρ kg/m3, 32.0=sd mm, 48.0=p  and sediment transport capacity 

coefficient 000075.0=κ (Ching and Cheng 1964). Langbein and Leopold (1968) 

suggest 245max =C  kg/m2 (note that sb zpC ρ)1( −= ). In Figure 4.3b, 14=bC  kg/m2 

corresponds the bed level 01.0=z  m and  140=bC  kg/m2 corresponds the bed level 

10.0=z  m. 
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Figure 5.3. (a) Inflow hydrograph (b) Inflow concentration 

  

5.1.1.2.1. Hypothetical Case I: Effect of Inflow Concentration 

 
Figure 5.4a shows that when the inflow concentration increases at the upstream 

end of the channel, bed level gradually increases. In the Figure 5.4b when the 

equilibrium feeding of the sediment occurs at the upstream, the bed level continues to 

increase along the channel length. During the recession limp of the inflow concentration 

the bed level starts to decrease toward the 10% length of the channel while it increases, 

toward the 90% length of the channel (Figure 5.4c). Figure 5.4d shows that the bed 

level decreases to the original level at the upstream section but as time progresses it 

increases toward the downstream section.       

a 

b 



 72

 

0

0,02

0,04

0,06

0,08

0,1

0 200 400 600 800 1000

Distance (m)

B
ed

 L
ev

el
 z

 (m
) 20 min

40 min
60 min

 

0

0,02

0,04

0,06

0,08

0,1

0,12

0 200 400 600 800 1000

Distance (m)

B
ed

 L
ev

el
 z

 (m
) 80 min

100 min

 

0

0,02

0,04

0,06

0,08

0,1

0 200 400 600 800 1000

Distance (m)

B
ed

 L
ev

el
 z

 (m
)

120 min
140 min
160 min

 

0

0,02

0,04

0,06

0,08

0,1

0 200 400 600 800 1000

Distance (m)

B
ed

 L
ev

el
 z

 (m
)

180 min
200 min
220 min
240 min

 
Figure 5.4.  Transient bed profile at (a) rising period (b) equilibrium period (c) recession period 

(d) post recession period of inflow hydrograph and concentration 
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5.1.1.2.2.  Hypothetical Case II: Effect of Particle Velocity and Effect 

of Particle Fall Velocity 

 
 The objective of this case was to compare the sediment particle velocity and 

particle fall velocity formulations employed in the developed model. The fall velocity 

must be obtained for calculating the particle velocity. For that reason, first of all we 

wanted to see four particle velocity formulation’s (in literature) performances under the 

Rouse (1938)’s fall velocity formulation. The fall velocity value is for most natural 

sands of the shape factor of 0.7 and 2.0=sd  mm is 024.0=fv m/s (Rouse 1938). 

Under the same particle fall velocity, the developed model was tested for four different 

particle velocity formulations (Bor, et al. 2008).  

One of the formulations is Chien and Wan (1999) formulation. For 

mmd s 1008.0 <<  and 1550/10 << sdh , Chien and Wan (1999) presented the 

following relation: 

 

2

3)4.1/(
u

u
uv c

s −=      (5.25) 

 

where, 

cu = critical flow velocity at the incipient sediment motion (L/T). 

 cu  can be expressed as a function of the particle fall velocity fv  and the shear 

velocity Reynolds number *R as (Yang 1996): 

 

⎪
⎩

⎪
⎨

⎧
+

−=

f

f
f

c

v

v
R

v
u

05.2

66.0
06.0)log(

5.2
*                                      

70
702.1

*

*

>

<<

R
R  (5.26) 

 

 The shear velocity Reynolds number *R (Yang 1996): 

 

υ
sdu

R ** =      (5.27) 

 



 74

where, 

υ = kinematic viscosity of water (L2/T) 

*u = shear velocity (L/T) and defined as (Yang 1996): 

 

oghSu =*      (5.28) 

 

The second selected formulation is Bridge and Dominic (1984) formulation that 

is derived though a theoretical consideration of the dynamics of bed load motion.  

 

)( ** cs uuv −= δ      (5.29) 

 

where, 

cu* = critical shear velocity (L/T). Bridge and Dominic (1984) expressed the average 

value of δ between 8 and 12. In this study the employed is 10=δ . The critical shear 

velocity defined as (Bridge and Dominic 1984): 

 

δ
φ 2

*

)(tanf
c

v
u =      (5.30) 

 

where, 

=φtan the dynamic friction coefficient (average value between 0.48 and 0.58 (Bridge 

and Dominic 1984). In this study =φtan 0.53 was employed. 

 The third selected was a constant particle velocity is smvs /010.0= . 

 The fourth particle velocity equation is Kalinske’s equation. Kalinske (1947) 

assumed that  

 

( )cs uubv −=      (5.31) 

 

where, 

uvs , = instantaneous velocities of sediment and fluid  

cu = critical flow velocity at incipient motion  

b = a constant close to unity 
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Secondly we wanted to see these four particle velocity formulation’s 

performances under the Dietrich (1982) fall velocity formulation (Bor, et al. 2008).  

 
)(

3*
2110 RRRW +=      (5.32) 

 

where, 

*W = the dimensionless fall velocity of the particle  

The fall velocity of particle is (Dietrich 1982): 
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where, 

*D = the dimensionless particle size  

CSF = the Corey shape factor. The mean value of CSF  for most naturally occurring 

sediment is between 0.5 and 0.8 (Dietrich 1982). This study employed a value of 

65.0=CSF . 

P = the Powers value of roughness (the average value of 6~5.3=P  (Dietrich 1982)). 

This study employed the value of 75.4=P . 

 The dimensionless particle size is expressed as (Dietrich 1982): 
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 The third selected particle fall velocity formulation is Yang (1996) formulation. 

We wanted to see these four particle velocity formulation’s performances under the 

Yang (1996)’s fall velocity formulation (Bor. et al, 2008). 
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In Figures 5.5a, 5.5b and 5.5c it is seen that while Kalinske (1947) and Bridge 

and Dominic (1984) formula give a faster wavefront, constant smvs /01.0=  and Chien 

and Wan (1999) formula give slower wavefront in rising and equilibrium period. At 

recession period, as the sediment feeding decreases the bed elevation starts to decrease 

toward the upstream section (in 20% of the channel length) under constant 

smvs /01.0= . It is seen that Kalinske (1947) and Bridge and Dominic (1984) formula 

give similar performance and sediment moves faster towards downstream end. This is 

reasonable, since the transient bed profile moves downstream and thus concentration 

also increases downstream (Figure 5.5c). In the postrecession period, the bed level 

increases to original bed level at the upstream section. It is seen that bed profile reached 

original bed early with Kalinske (1947) and Bridge and Dominic (1984) formula 

(Figure 5.5d) (Bor, et al. 2008).   

 The same simulations were obtained under the other three fall velocity 

formulations. 
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Figure 5.5. Transient bed profile under different particle velocities at (a) rising period (b) 

equilibrium period (c) recession period (d) postrecession period of inflow 

hydrograph and concentration. (Source: under Rouse 1938,  Dietrich 1982, Yang 

1996 formula). 
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Figure 5.6.  Transient bed profiles under different fall velocities at (a) rising period (b) 

equilibrium period (c) recession period (d) postrecession period of inflow 

hydrograph and concentration. (Source: under Chien and Wan 1999, Bridge and 

Dominic 1984, Kalinske 1947 formulation. 
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 In Figure 5.6a, 5.6b and 5.6c, the effect of the fall velocity on the sediment 

transport under the different particle velocity formulations is given. Dietrich (1982), 

Yang (1996) fall velocity formulations and constant  smv f /024.0=  value (Rouse 

1938) give nearly same result under the Bridge and Dominic (1984), Kalinske (1947), 

and Chien and Wan (1999) particle velocity formulation. For better assessment, the 

model must be test with experimented results (Bor, et al. 2008).   

 The same simulation profiles were obtained under the other three particle 

velocity formulations. 

 

5.1.1.2.3. Hypothetical Case III: Effect of Maximum Concentration 
 

 In this case, different maximum concentration values were tested using 

developed kinematic wave model. For that reason, 2
max /840 mkgC =  (corresponds to 

maximum bed level of mz 60.0max = ), 2
max /630 mkgC =  (corresponds to maximum bed 

level of mz 45.0max = ), 2
max /420 mkgC =  (corresponds to maximum bed level of 

mz 30.0max = ) and 2
max /245 mkgC =  (corresponds to maximum bed level of 

mz 17.0max = ) were selected respectively. It is seen in Figure 5.7 that higher maxz value 

gives higher bed level in the transient bed form profile. The sediment particles move 

faster downstream under high bed level. The bed levels increased gradually and 

wavefronts moved slowly at the rising and equilibrium periods of the simulation (Figure 

5.7a and 5.7b). At 160 min while the bed wavefront just reached about 400 m 

under mz 15.0max = , it moved the downstream end under mz 60.0max =  (Figure 5.7c). 

While the front under mz 30.0max =  closely followed the front under mz 17.0max = , front 

under mz 45.0max =  closely followed the front under mz 60.0max = (Figure 5.7a-5.7c). 
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Figure 5.7.  Transient bed profile under different maxz values at (a) rising period (b) equilibrium 

period (c) recession period (d)  postrecession period of inflow hydrograph and 

concentration 
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5.1.2.  Diffusion Wave Model of Bed Profiles in Alluvial Channels 

under Equilibrium Conditions 
 

 The diffusion wave model neglects only the local and convective accelerations 

in the dynamic wave momentum equation. It is the simplified form of the momentum 

equation which includes also pressure force term. Thus, the momentum equation with 

these simplifications for a wide rectangular alluvial channel with two layers (Figure 5.1) 

becomes: 

● Momentum equation for water 

 

)( 0 fSSg
x
zg

x
hg −=

∂
∂

+
∂
∂     (5.40) 

  

The flow velocity in open channels for diffusion waves can be calculated by 

using either the Manning or Chezy’s formulations. We express as 1−= βαhu , α  here 

becomes: 
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 The algorithms for 1+j
ih and 1+j

iz is presented before by Equations 5.16 and 5.17. 

The additional algorithm j
fiS  is determined as: 
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The hydrodynamic part of the model is: 
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            Equations 5.16, 5.17 and 5.42 are solved simultaneously for each time step. 
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5.1.2.1. Numerical Solution of Diffusion Wave Equation 

 
 Finite difference scheme developed by Lax (1954) is used in this model. The 

partial derivatives were explained before in Equations 5.14 and 5.15. Initial and 

boundary conditions were specified before Equations 5.18 – 5.23. And for stability the 

Courant – Friedrichs – Lewy (CFL) condition was used.   

 

5.1.3.  Dynamic Model of Bed Profiles in Alluvial Channels under 

Equilibrium Conditions 

 
Conservation of mass equations for bed sediment in the movable bed layer, 

considering there is no exchange of sediment due to the detachment and deposition 

between two layers, and water for a wide rectangular alluvial channel: 

● Continuity equation for water assuming that clear water ( )0=c : 
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● Continuity equation for sediment: 
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● Momentum equation for water 

The one dimensional partial differential momentum equation of unsteady, 

equilibrium flow in alluvial channel with dynamic wave assumption is; 
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The friction slope fS in Equation 5.45 can be determined using the Chezy 

equation (Equation 3.38). 
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5.1.3.1. Numerical Solution of Dynamic Wave Equations 

 

In dynamic model, a finite difference scheme developed by Lax (1954) is used, 

as explained as before. With reference to the finite difference grid as shown in Figure 

5.2, additional to the partial derivatives, the variables are j
ih , j

iu , j
iz and j

fiS are 

approximated as follows:  
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Under the assumption there is no suspended sediment (clear water flow ( )0=c ), 

the first and second term on the right side of the Equation 5.44 will disappear. Based on 

the finite difference approximation of (5.14), (5.15), (5.46), (5.47) and (5.48), Equations 

5.43 - 5.45 may be written as follows for determining the values 1+jh , 1+j
iu and 1+jz : 
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The hydrodynamic part of the model is: 

 

( ) ( ) ( ) ( )j
fio

j
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i SStghhg

x
tuuu

x
tuuu −Δ+−

Δ
Δ

−−
Δ
Δ

−+= −+−+−+
+

111111
1 5.05.05.0  (5.50a) 



 84

( ) ( ) ( )j
i

j
i

j
i

s
j

i
j

i
j

i zz
p
z

zpv

x
tzzz 11

max
11

1

1

21
5.05.0 −+−+

+ −
−

⎥
⎦

⎤
⎢
⎣

⎡
−

Δ
Δ

−+=   (5.51) 

 

(note that bsq express as before Equation 5.11) 

By using the presented algorithm, the unknown values of h  and z  at the new 

time level 1+j (future time) are determined from every interior node ( i = 2,…….,N-1). 

The values of the dependent variables h  and z  at the boundary nodes 1 and N+1 are 

determined by using boundary conditions. Also, at the time level j =1, initial conditions 

are already known.  

 Initial and boundary conditions were specified before Equations 5.18 – 5.23. 

And for stability the Courant – Friedrichs – Lewy (CFL) condition was used.   

 Equations 5.49, 5.50 and 5.51 are solved simultaneously for each time step.  

Note that, in the case of Dynamic Wave, we assumed that there is no suspended 

sediment. 

 

5.1.3.2.  Model Testing: Comparing the Kinematic, Diffusion and 

Dynamic Models for Hypothetical Cases  

  
The hypothetical cases were analyzed assuming inflow hydrograph and 

concentration at the upstream of the channel as shown in Figures 5.3a and 5.3b. The 

channel was assumed to have a 1000 m length and 20 m width with 0.0025 bed slope. 

Chezy roughness coefficient 50=zC  m0.5/s and Manning roughness coefficient 

3
1

021.0 −
= smn  . The sediment was assumed to have 2650=sρ kg/m3, 32.0=sd mm, 

528.0=p  and sediment transport capacity coefficient 000075.0=κ (Ching and Cheng, 

1964). Langbein and Leopold (1968) suggest 245max =C  kg/m2 (note that 

sb zpC ρ)1( −= ).  

For three of wave solutions a Courant number was selected 0.2. The numerical 

solutions are plotted mx 200= , mx 500=  and mx 800=  along the channel, respectively 

(Figure 5.8 and Figure 5.9). By comparing Figures 5.8a, 5.8b and 5.8c, one can observe 

the different behavior of the diffusion and kinematic waves, particularly at peak flow 

points. The diffusion wave reaches faster to maximum flow rate. On the other hand, the 
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dynamic wave has a smaller peak than the diffusion wave (Figure 5.9a, 5.9b and 5.9c) 

and kinematic wave has the smallest. It can be said that particle velocity is higher in 

diffusion and dynamic wave models. Results are acceptable with Kazezyılmaz et al. 

(2007) paper.  
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Figure 5.8.  Comparison of numerical solution of Diffusion and Kinematic waves at distance (a) 

mx 200=  (b) mx 500=  (c) mx 800=  of the channel 
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Figure 5.9.  Comparison of numerical solution of Dynamic, Diffusion and Kinematic waves at 

distance (a) mx 200=  (b) mx 500=  (c) mx 800=  (assuming clear 

water ( )0=c ) 
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5.1.3.3.  Hypothetical Case I: Comparing Three Bed Load Formulas 

under Kinematic and Diffusion Wave Models 
 

The objective of this case is to compare the bed load transport formulations 

employed in the developed model. For that reason three bed load formulations were 

selected from the literature. The formulations are Meyer – Peter (1934) (Equation 3.46), 

Schoklitsch (1934) (Equation 3.47) and Tayfur and Singh (2006) (Equation 3.69) bed 

load formulations. First of all, the formulations were tested under Kinematic wave 

model. While Meyer – Peter and Schoklitsch formula give similar performance, Tayfur 

and Singh formula gives different performance (Figure 5.10a and 5.10b). The sediment 

particles moved downstream faster under Tayfur and Singh formula. The second test 

was under Diffusion wave model, where the same behavior was observed (Figure 5.11a 

and 5.11b).  
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Figure 5.10.  (a) Comparison of Tayfur and Singh, Meyer – Peter and Schoklitsch bed load 

formulations under Kinematic wave model at time 160 min. (b) Comparison of 

Tayfur and Singh, Meyer – Peter and Schoklitsch bed load formulations under 

Kinematic wave model at distance mx 200=  of the channel  
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Figure 5.11.  (a) Comparison of Tayfur and Singh, Meyer – Peter and Schoklitsch bed load 

formulations under Diffusion wave model at time 160 min. (b) Comparison of 

Tayfur and Singh, Meyer – Peter and Schoklitsch bed load formulations under 

Diffusion wave model at distance mx 200=  of the channel 

 
 It is seen that while Mayer – Peter (1934) and Schoklitsch (1934) formula give 

same performance, Tayfur and Singh (2006) gives different. Sediment moves faster 

towards under Tayfur and Singh (2006) formula. 

   

5.1.3.4. Model Testing Using Experimental Data  

 

5.1.3.4.1. Test I  

 
 The one dimensional model in tested by means of the experimental results 

obtained by Bombar (Güney and Bombar 2008).These experiments are carried out on an 

experimental system designed and constructed in the scope of TÜBİTAK project no: 

106M274. The rectangular flume is 18.6 m long and 0.80 m wide. The bottom slope is 

a 

b 
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0.001. The input hydrograph constitute the upstream boundary condition. The 

downstream boundary condition is defined by Equation 5.22 ( 1
1

1
1

+
−

+
+ = j

N
j

N hh ).  

 The different input hydrographs in the form of  isosceles triangle are generated 

as shown in Figure 5.12. The steady discharge is 0.020 sm /3 while the peak discharge 

value is equal to 0.060 sm /3 . The hydrographs with rising limb of 90 minutes and 120 

minutes are given in Figure 5.12a and 5.12b respectively. The numerical equations, 

Equation 5.16a and 5.16b are solved simultaneously for each time step under kinematic 

wave approach. Equation 5.16a and 5.42a are solved simultaneously for each time step 

under diffusion wave approach. Equation 5.49 and 5.50a are solved simultaneously for 

each time step under dynamic wave approach. 

 Figures 5.13 and 5.14 represent the variations of water depths with time at 

section 10.5 m and 15 m far from upstream end of the channel. These figures involve 

the experiment results as well as those obtained from numerical solutions performed by 

using various approaches; namely, kinematic diffusion and dynamic wave assumptions.    
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Figure 5.12. (a) The input hydrograph a) Rising limb = 90 second  (b) Rising limb = 120 second 

 

 The results corresponding to the first hydrograph (rising limb = 90 sec) are given 

in Figure 5.13 and those obtained from the second hydrograph (rising limb = 120 sec) 

are depicted in Figure 5.14. 
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Figure 5.13.  Measured and computed water depths at (a) 10.5 m  (b) 14 m (the hydrograph that 

has 90 second in rising limb) 
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Figure 5.14.  Measured and computed water depths at (a) 10.5 m (b) 14 m (the hydrograph that 

has 120 second in rising limb) 
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 The overall computed error measures for simulations are presented in Table 5.1. 

As seen, the mean relative error of 2.5=MRE implies that the developed model makes 

about 5% error in predictions. The computed values of RMSE  (root mean square error) 

and MAE  are 0.007 and 0.006 cm, respectively. 

 

Table 5.1. Computed RMSE , MAE , MRE  

Kinematic W. Dynamic W. Diffusion W.
0,0074 0,0072 0,0073

Kinematic W. Dynamic W. Diffusion W.
0,0065 0,0064 0,0064

Kinematic W. Dynamic W. Diffusion W.
5,1952 5,0646 5,0789

RMSE,  cm

MAE,  cm

MRE,  %

 
 

5.1.3.4.2. Test II  
 

 The second test was against the experimental data of aggradation depths 

measured by Soni (1981a) in a laboratory flume of rectangular cross section. The flume 

used by Soni was 30.0 m long, 0.20 m wide and 0.50 m deep. In the experimental run 

constant equilibrium flow discharge was smQ /02.0 3= and uniform flow depth 

was mh 092.00 = . The sand used for bed material and sediment feed in the experiments 

had a median diameter of mmd s 32.0=  and specific gravity of 2.65. Soni performed 

experiments in the mobile bed condition to better represent natural rivers. Initially the 

flume was filled with sand to a depth of 15 cm. Then the rectangular flume was filled 

slowly with water and control valve was used to attain the specified discharge. The tail 

gate height was adjusted in a way so that uniform flow was obtained in the flume by 

allowing the bed to adjust by erosion or deposition. A uniform flow condition in the 

flume was achieved when the measured bed and water surface were parallel to each 

other. After reaching the uniform flow condition, sediment was dropped at the upstream 

of the flume at a constant rate. The sediment injection section was located far enough 

from the entrance of the flume to avoid entrance disturbances. The aggradation in the 

bed started due to the excess load of the sediment. Bed and water surface elevation were 

measured at regular time intervals (from 10 to 20 min at eleven sections). Aggradation 
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runs were continued until the end point of the transient profiles reached the downstream 

end.  

 For computing the maximum bed elevation maxz , Langbein and Leopold (1968)’s 

given a value of 2
max /245 mkgCb = . The porosity was assumed to be 4.0=p . The flow 

was uniform and steady and suspended sediment was negligible in this experiment, so 

Equation 5.2 would suffice to model the bed aggradation.  
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Figure 5.15. Simulation of measured bed profile at (a) 30 min (b) 60 min (c) 90 min 

 

Figures 5.15a-5.15c show, respectively, simulations of bed profiles measured at 

30, 60 and 90 min during the experimental run. The equilibrium flow conditions are 

smQ /02.0 3= (equilibrium flow discharge), smqseq /10111 26−×= (equilibrium 
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sediment discharge), 00212.0=oS (bed slope), mho 092.0= (uniform flow depth) and 

an excess sediment rate of seqs qq 9.0=Δ .     

Figures 5.15 and 5.16 show the model simulations of the experiments. Figure 

5.15 corresponds to the measured data under the rate of seqs qq 9.0=Δ . As seen that the 

earlier parts of the transient profiles were closely captured by the model in downstream 

end. It is observed that the transient profiles were faster than those of the measured ones 

in reaching the equilibrium bed profile (Figure 5.16 and 5.16c).  Figure 5.16 

corresponds to the measured data under the rate of seqs qq 35.1=Δ .  The simulations of 

bed profiles measured at 15, 45, 75 and 105 min during the experimental run. The 

measured and predicted profiles moved very closely toward the downstream end and 

reached the equilibrium bed profile at the same time (Figure 5.16b). The measured and 

predicted profiles moved together and reached the equilibrium bed profile at the same 

time (Figure 5.16c). The predicted bed profile reached the equilibrium bed profile 

slightly earlier than did the measured one (Figure 5.16d).  

The overall computed error measures for simulations are presented in Table 5.2. 

As seen, the mean relative error of 21.1=MRE  implies that the developed model 

makes about 1.21% error in predictions for seqs qq 9.0=Δ and for seqs qq 35.1=Δ the error 

is 1.5%. The computed values of RMSE  (root mean square error) and MAE  are 0.89 

and 0.75 cm, respectively. For seqs qq 35.1=Δ  the computed values of RMSE  and MAE  

are 1.23 and 0.95 cm, respectively. 

 

Table 5.2. Computed RMSE , MAE , MRE  

 

RMSE,  cm MAE,  cm MRE,  %
Experiment KW KW KW
Δqs=0.9qseq 0,89 0,75 1,21
Δqs=1.35qseq 1,23 0,95 1,50
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Figure 5.16.  Simulation of measured bed profile at (a) 15 min (b) 45 min (c) 75 min (d) 105 

min 

 

a 

b 

c 

d 



 95

5.2.  One Dimensional Numerical Model for Sediment Transport under 

Unsteady and Nonequilibrium Conditions 

 
 All the sediment transport functions or equations presented earlier have been 

intended for the estimation of bed levels at the equilibrium condition with no scour or 

deposition, at least from a statistical point of view. It has been assumed that the amount 

of wash load depends on the supply from upstream and is not a function of the hydraulic 

conditions at a given station. Also, the amount of wash load is not high enough to 

significantly affect the fall velocity of sediment particles, flow viscosity or flow 

characteristics in a river in comparison with these values in clear water. When the wash 

load or concentration of fine material is high, non equilibrium bed material sediment 

transport may occur.      

The floods may cause heavy erosion and landslides in a river basin causing 

sediment overloading within a river reach. During the aggradation and degradation, 

there may be an exchange of sediment particles between bed layer and suspended layer 

exceeding the flow capacity. The nonequilibrium sediment transport condition results in 

an unstable streambed elevation. In such cases a numerical sediment transport model 

provides the computational framework for analysis. 

 There are significant differences between the calculations of equilibrium and 

nonequilibrium conditions. The nonequilibrium condition solution can be obtained by 

numerical sediment modeling using control volume approach.  

 

5.2.1. Governing Equations 

 
Tayfur and Singh (2007) studied transport movement in a wide rectangular 

alluvial channels represented in two layers. Figure 5.17 shows the possible exchange of 

sediment between two layers: the water flow layer and movable bed layer, depending 

upon flow transport capacity and sediment rate in suspension.   
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Figure 5.17. Definition Sketch of two layer system in nonequilibrium condition  

(Source: Tayfur and Singh 2007) 

 

The water flow layer may contain suspended sediment. The movable bed layer 

consists of both water and sediment particles; therefore bed layer includes porosity 

(Tayfur and Singh 2007). Equations 5.1 and 5.2 are for equilibrium conditions, where 

the entrainment rate ( zE ) is equal to the deposition rate ( cD ) ( cz DEei =.,. ). Under 

nonequilibrium condition entrainment rate is not equal to the deposition rate ( cz DE ≠ ). 

This makes the solution more complex than equilibrium approach. Pianese (1994) 

employed one more equation, adaptation equation relating the change in bed level in 

time to flow variables ( hu, ) , equilibrium suspended sediment concentration ( eqc ) and 

suspended sediment concentration ( c ) to simplifing the solution. The adaptation 

equation is, 

 

( )ccuh
t
zp eq −=
∂
∂

−
λ

)1(     (5.52) 

 

where, 

λ =adaptation length  

 If the right hand side of the equation is negative, it represents detachment rate, if 

it is positive, it represents deposition rate (Pianese 1994). When deposition occurs, z 

increases, but c decreases. Otherwise, when detachment occurs, z decreases, c increases. 

Mohammadian et al. (2004) employed an equation for the conservation of water 

z 

h Ez Dc 
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(Equation 5.1) (assuming clear water 0=c ) and an equation for conservation of 

suspended sediment in the water flow layer as: 

 

( )cc
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x
chV

xx
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t
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   (5.53) 

 

where, 

xV = the sediment mixing coefficient 

η = a coefficient 

 As explained before, the right side of the equation represents deposition 

(negative) or detachment rate (positive). They also used an additional equation which 

represents the change in bed level in time to the particle fall velocity, equilibrium 

suspended sediment concentration ( )eqc , and suspended sediment concentration ( )c  as: 

 

( ) ( )cc
v

t
zp eq

f −=
∂
∂

−
η

1     (5.54) 

 

 There are some deficiencies in Equations 5.53 and 5.54. One of them is that 

when the last term on the right hand side of the Equation 5.53 is negative, it acts a sink 

of concentration in the bed layer, so there should be a negative sign in front of the term 

on the right hand side of the equation. The second deficiency is concern with Equation 

5.54. It does not fully represent the conservation of mass equation for the sediment in 

the movable bed layer, since it ignores the major term of the sediment flux gradient 

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

x
qbs . Mohammadian et al. (2004) who did not employ Equation 5.2, ignored the bed 

sediment flux term. To avoid any confusion, the conservation of mass for suspended 

sediment in the water flow layer and the conservation of mass for bed sediment in the 

movable bed layer are written separately (Tayfur and Singh 2007); 
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( ) [ ]zc
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where, 

susq1 = the lateral suspended sediment (L/T) 

bedq1 =the lateral bed load sediment (L/T) 

sρ = the sediment mass density (M/L3) 

zE = the detachment rate (M/L2/T) 

cD = the deposition rate (M/L2/T) 

 The equations include the exchange of sediment due to the detachment and 

deposition between the two layers. The process is cz DE ≠ in the non equilibrium 

condition.  The process is cz DE = in the equilibrium condition. When cz DE > , there is 

entrainment from the bed layer (reducing the bed elevation, increasing the suspended 

sediment concentration). When cz DE < , there is deposition from the bed layer 

(increasing the bed elevation, reducing the suspended sediment concentration). 

 According the Equations 5.1, 5.55 and 5.56, there are five unknowns, zcuh ,,,  

and bsq . Therefore, two more equations are needed for solving the system. One more 

equation can be obtained from the momentum equation for water flow. In this study, the 

kinematic wave approximation was employed for the momentum equation (Equation 

5.4). The fifth equation can be obtained by relating sediment transport rate to sediment 

concentration in the movable bed layer. In this study, the kinematic theory was 

employed (Tayfur and Singh 2006) (Equation 3.69). 

 Combining the Equations 3.69, 5.1, 5.4, 5.55 and 5.56 can be written in a 

compact form as: 
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 These equations are kinematic wave equations for modeling unsteady state, 

nonuniform transient channel bed profiles under nonequilibrium conditions. For 

calculating the detachment rate zE , the shear stress approach was used (Yang 1996); 

  

( )[ ]k
crcz TE ττσσ −Φ==     (5.60) 

 

where, 

 

owhSγτ =      (5.61) 

 

( ) swscr dγγκτ −=      (5.62) 

 

where, 

σ =the transfer rate coefficient (1/L) 

cT = the flow transport capacity (M/L/T) 

Φ = the soil erodibility coefficient 

τ = the shear stress (M/L2) 

crτ = the critical shear stress (M/L2) 

k = an exponent 

sw γγ , = the specific weight of water and sediment respectively (M/L3) 

κ = a constant 

sd = the sediment particle diameter (L) 

The deposition rate cD can be expressed as (Yang 1996); 

 

[ ]hucqD ssssc ρσσρ ==     (5.63) 

 

where, 

ssq = the unit suspended sediment discharge (M/L/T) 
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5.2.1.1. Numerical Solution of Kinematic Wave Equations 
 

 Equations 5.57, 5.58 and 5.59 were solved using the finite difference scheme 

developed by Lax (1954) as explained before (Equations 5.14 and 5.15). Note that the 

finite difference equations were written for both the layers not only at the central nodes 

of the domain but also at the downstream nodes. All the equations were solved 

simultaneously for each time step. The finite difference equations are: 
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where, 

i = stands for space node 

j = stands for time node 

tΔ = time increment 

xΔ =space increment 

 By using presented algorithm, the unknown values of ch, and z at the new time 

level 1+j (future time) are determined at every interior node ( i = 2,….N-1). The values 

of the dependent variables ch,  and z  at the boundary nodes 1 and N+1 are determined 

by using boundary conditions. Also, at the time level j =1, initial conditions are already 

known (Figure 5.2) 
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 Initial conditions can be specified as: 

 

( ) ohxh =0,      (5.67) 

 

( ) ocxc =0,      (5.68) 

 

( ) ozxz =0,      (5.69) 

  

where, 

oo ch , and oz = the initial flow depth (L), concentration (L3/L3) and the bed level (L), 

respectively. 

 The upstream boundary conditions can be specified as inflow hydrograph and 

inflow sedimentograph. 

 

( ) )(,0 thth =                           0.0>t     (5.70) 

 

( ) )(,0 tctc =                           0.0>t     (5.71) 

 

( ) )(,0 tztz =                           0.0>t     (5.72) 

 

The downstream boundary conditions can be specified as: 
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 ●Stability 

 The numerical scheme has to satisfy the stability conditions. For this reason, the 

Courant – Friedrichs – Lewy (CFL) condition was used. Since the water waves travel at 

a much higher velocity than the bed transients this condition is given as before Equation 

5.24. 

 Equations 5.64, 5.65 and 5.66 are solved simultaneously for each time step.  

 

5.2.1.2. Model Application 
 

 The channel was assumed to have a 1000 m length and 30 m width with 0.0015 

bed slope. The model parameters basically are as follows: 

PCSFkzSpC ssoz ,,,,,,,,,,, max κφσγρ Φ and sd . Parameters sρ , sγ , and sd can be obtained 

from experimental sediment data. Chezy roughness coefficient is assumed to be 

smCz /36 5.0= . The sediment was assumed to have 3/2650 mkgs =ρ , mmds 32.0=  

and 528.0=p . Maximum concentration was assumed 2
max /500 mkgC =  (note that 

( ) spCz ρ−= 1maxmax ). Gessler (1965) suggested a value of 0.047 for κ for most flow 

conditions. The value of transfer rate can be calculated in flumes by ( )h71=σ , where 

h  is flow depth, parameter Φ has a range of 0.0 – 1.0 and exponent ik has a range of 1.0 

– 2.5 in literature (Foster 1982, Tayfur 2002, Yang 1996). The inflow hydrograph and 

inflow concentration were given in Figure 5.18 for upstream boundary conditions. 
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Figure 5.18 (a) Inflow hydrograph. (b) Inflow concentration 

 

 Figures 5.19a-5.19d present bed profiles during the rising limp, equilibrium, 

recession limb and postrecession limp of the inflow hydrograph and concentration, 

respectively. It is seen that while inflow concentration increases, the bed level gradually 

increases in upstream and it decreases after about 200 m in the downstream (Figure 

5.19a). The bed elevation continues to increase in the equilibrium period at the upstream 

end (Figure 5.19b). In rising period the bed level reaches at equilibrium after the 200 m 

of the channel (Figure 5.21c). In procession period the bed level nearly same afert the 

200 m (Figure 5.19d).   

 

a 

b 
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Figure 5.19.  Transient bed profile at (a) rising period (b) equilibrium period (c) recession 

period (d) post recession period of inflow hydrograph and concentration 
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5.2.1.3. Model Testing Using Experimental Data  

 
 The model was tested against the experimental data of aggradation depths 

measured by Yen et al. (1992) in laboratory flume. The flume used for present 

experiments is 72 m long and 1 m wide. The water discharge was maintained at a 

constant rate of sm /12.0 3 for all experiments. The initial bed slope is 0.0035 and 

sediment median diameter is 1.8 mm. At the beginning of an experiment, a sediment 

supply rate of 3.3 kg/min (dry mass) was continuously released from the upstream end 

until the channel bed reached a state of equilibrium. The sediment supply rate was then 

increased to 9.9 kg/min until a new equilibrium was reached. The rate of sediment 

supply was thereafter reduced back to and kept at 3.3 kg/min until another new 

equilibrium was reached.  Finally, the sediment supply was cut off, and only clear water 

was released from the upstream end until the channel bed was fully armored. Each 

period lasted for about 30 hours. Bed elevations were measured 5 m apart from each 

other. A sluice gate at the downstream end of the flume was employed to maintain a 

constant tailwater level. The details of the experiment can be obtained from Yen et al. 

(1992).    

 Simulations of bed profiles measured at 30, 60, 90 and 120 hours during the 

experiment run (Figure 5.20.). The model and measured data nearly closed at each 

location along the bed. At 120 hr predicted and measured data were nearly same (Figure 

5.20d).  

 

 

 

 

 



 106

Time : 30 hr

20
22
24
26
28
30
32
34

0 5 10 15 20 25
Distance (m)

B
ed

 E
le

va
tio

n 
z 

(c
m

) Predicted
Measured
Original Bed

 

Time : 60 hr

20

24

28

32

36

40

0 5 10 15 20 25
Distance (m)

B
ed

 E
le

va
tio

n 
z 

(c
m

) Predicted
Measured
Original Bed

 

Time : 90 hr

20
22
24
26

28
30
32
34

0 5 10 15 20 25
Distance (m)

B
ed

 E
le

va
tio

n 
z 

(c
m

) Predicted
Measured
Original Bed

 

Time : 120 hr

20
22

24
26
28
30

32
34

0 5 10 15 20 25
Distance (m)

B
ed

 E
le

va
tio

n 
z 

(c
m

) Predicted
Measured
Original Bed

 
Figure 5.20.  Simulation of bed profiles along a channel bed at (a) 30 h, (b) 60 h, (c) 90 

h and (d) 120 h of the laboratory experiment        
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Figure 5.21 presents simulation of bed level measured at 10 m away from the 

upstream end during the experiment period of 120 hours. The model simulations of 

transient bed levels at the specified locations are satisfactory. The model closely 

predicted bed levels during, rising equilibrium and recession periods satisfactory. 

The overall computed error measures for simulations are presented in Table 5.3 

Location #1. As seen, the mean relative error of 99.1=MRE  implies that the developed 

model makes about 1.99% error in predictions. The computed values of RMSE  (root 

mean square error) and MAE  are 0.82 and 0.66 cm, respectively.  

 

Table 5.3. Computed RMSE , MAE , MRE  

RMS,  cm MAE,  cm MRE,  %
0,820 0,663 1,992  
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Figure 5.21.  Simulation of bed profiles in time during the laboratory experiment at six 

different locations of the experimental channel. Location #1 is 10 m away from 

the upstream end (Yen, et al. 1992) 

 

5.2.1.4. Model Testing: Comparing the Equilibrium and 

Nonequilibrium models for Hypothetical Cases  
 

The hypothetical cases were analyzed assuming inflow concentration 

hydrograph at the upstream of the channel as shown in Figures 5.22. The channel was 

assumed a flume and to have a 20 m length and 1 m width with 0.0001 bed slope. The 

sediment was assumed to have 2650=sρ kg/m3, 09.0=sd mm, 45.0=p  and sediment 

transport capacity coefficient 000075.0=κ (Ching and Cheng 1964). Langbein and 
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Leopold (1968) suggest 500max =C  kg/m2 (note that sb zpC ρ)1( −= ).  The water 

discharge is 5.0=Q  sm /3 at the beginning. In equilibrium part smQ /1 3= (in 

trapezoidal). 

For two model solutions a Courant number was selected 0.2. The numerical 

solutions are plotted mx 500=  along the channel (Figure 5.23). It is seen that the 

different behavior of equilibrium and nonequilibrium model, particularly at peak flow 

points. The equilibrium model reaches faster to maximum flow rate. On the other hand, 

the nonequilibrium model has a smaller peak. It can be said that bed material decreases 

because of suspended sediment increases.   
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Figure 5.22. (a) Inflow hydrograph. (b) Inflow concentration 
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Figure 5.23. Comparing the equilibrium and nonequilibrium models 
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5.3.  One Dimensional Numerical Model for Nonuniform Sediment 

Transport under Unsteady and Nonequilibrium Conditions 
 

    One dimensional sediment transport models are simulated in uniform gravel bed 

in this chapter. In this part, the proposed one dimensional model simulates the 

nonequilibrium sediment transport of nonuniform total load under unsteady flow 

conditions in rivers. For this reason, de Saint Venant equations are solved for complex 

material. Models simulated suspended sediment transport using the nonequilibrium 

transport approach. In this research, the mathematical model is developed using 

diffusion wave theory under nonequilibrium condition. The bed profile evolution of 

complex gravel in alluvial channels can be presented in Figure 5.24. 

 

 
Figure 5.24. Multiply – layer model for bed load column 

 

5.3.1. Governing Equations 
 

The conservation of mass for suspended sediment in the water flow layer and the 

conservation of mass for bed sediment in the movable bed layer separately can be 

written for nonuniform and nonequilibrium sediment transport;  
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  (5.77) 

 

where, 

kc = section – averaged sediment concentration of size class k   

zkE = the detachment rate of size class k  ( )TLM // 2  

ckD = the deposition rate of size class k  ( )TLM // 2  

bskq = the sediment flux in the movable bed layer of size class k  ( )TL /2   

( )kb tz ∂∂ = bed change rate corresponding to the k th size class of sediment 

kp = bed material porosity of size class k  

 

5.3.1.1. Numerical Solutions of Nonuniform Model 

 
 Equations 5.40, 5.41, 5.76 and 5,77 were solved using the finite difference 

scheme developed by Lax (1954) as explained before (Equations 5.14 and 5.15). The 

finite difference equations are: 
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By using the presented algorithm, the unknown values of h  and z  at the new 

time level 1+j (future time) are determined from every interior node ( i = 2,…….,N-1). 

The values of the dependent variables h  and z  at the boundary nodes 1 and N+1 are 

determined by using boundary conditions. Also, at the time level j =1, initial conditions 

are already known.  

 Initial and boundary conditions were specified before Equations 5.18 – 5.23. 

And for stability the Courant – Friedrichs – Lewy (CFL) condition was used.   

 Equations 5.49, 5.50 and 5.51 are solved simultaneously for each time step.  

 

5.3.1.2. Model Application 

 
 The channel assumed as a flume has 20 m length and 1 m width with 0.0005 bed 

slope. The model parameters basically are as follows: 

PCSFkzSpC ssoz ,,,,,,,,,,, max κφσγρ Φ and sd . Parameters sρ , sγ , and sd can be obtained 

from experimental sediment data. Chezy roughness coefficient is assumed to be 

smCz /50 5.0= . It is assumed that there are four different sediment types in the sediment 

column.  Sediment characteristics that used in the model are summarized in Table 5.4. 
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Table 5.4. Sediment Characteristics 

type ρs (kg/m3) ds (mm) p 
1 2700 0.5 0.40 
2 2650 0.7 0.45 
3 2600 0.9 0.55 
4 2500 1.2 0.60 

 

Maximum concentration 2
max /500 mkgC = was assumed for each particle sizes 

(note that ( ) spCz ρ−= 1maxmax ). Gessler (1965) suggested a value of 0.047 for κ for 

most flow conditions. The value of transfer rate can be calculated in flumes 

by ( )h71=σ , where h  is flow depth, parameter Φ has a range of 0.0 – 1.0 and 

exponent ik has a range of 1.0 – 2.5 in literature (Foster 1982, Tayfur 2002, Yang 

1996). The inflow hydrograph and inflow concentration were given in Figure 5.25 for 

upstream boundary conditions. 
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Figure 5.25 (a) Inflow hydrograph. (b) Inflow concentration  
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Figure 5.26.  Transient bed profiles of nonuniform sediment and uniform sediment model at (a) 

rising period (b) equilibrium period (c) recession period (d) post recession period 

of inflow hydrograph and concentration in unsteady flow conditions 
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Simulations were significantly under 50d  (median diameter) and nonuniform 

mixture for all the periods of the simulations. Under 50d  (median diameter) conditions, 

bed levels were lower than nonuniform flow case (Figure 5.26). 

 In another simulation for the same flume we considered constant inflow 

hydrograph with smQ /2.1 3=  and the same inflow sedimentograph seen in Figure 

5.25.b.  The simulations for the case are presented in Figure 5.27. While nonuniform 

and uniform sediment transport model give similar performance under steady flow 

condition, give different performance under unsteady flow conditions (Figure 5.27). 
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Figure 5.27.  Transient bed profiles of nonuniform sediment and uniform sediment model at (a) 

rising period (b) equilibrium period (c) recession period (d) post recession period 

of inflow hydrograph and concentration in steady flow conditions  
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Figure 5.27.  (cont.) Transient bed profiles of nonuniform sediment and uniform sediment 

model at (a) rising period (b) equilibrium period (c) recession period (d) post 

recession period of inflow hydrograph and concentration in steady flow 

conditions 
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CHAPTER 6 

 

SUMMARY AND CONCLUSION 

 

6.1. Summary 

 

 Three mathematical and numerical models have been developed under 

kinematic, diffusion and dynamic wave approaches for simulating bed profiles in 

alluvial channels under unsteady and equilibrium conditions. Transient bed profiles are 

also simulated for several hypothetical cases, comparing different particle velocities and 

different particle fall velocities. The model tested with flume experiments. Also 

different wave models (kinematic, diffusion and dynamic) were compared. The 

kinematic wave model was developed for simulating transient bed profiles in alluvial 

channels under unsteady and nonequilibrium conditions and tested against experimental 

data.  The diffusion wave model was developed for simulating transient bed profiles in 

alluvial channels under unsteady, nonuniform and nonequilibrium conditions.         

 

6.2. Conclusion 
 

1. Numerical model is able to capture the effects of suspended sediment and bed 

load sediment on the transport. When the transport capacity is greater than the 

suspended load, deposition occurs, otherwise detachment occurs. The model is 

able to capture this phenomenon.  

2. The application of the developed model to hypothetical cases revealed that the 

model is able to capture the behavior of the process in alluvial channels. 

3. Modeling the process under nonequilibrium conditions give different results 

than those under equilibrium conditions. Therefore, if the flow conditions in 

nonequilibrium, it should be so modeled. 

4. The model was not tested against experimental data under unsteady and 

nonequilibrium flow and sediment loadings. The next aim is to test the model for 

that general case.  
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5. The selected on particle velocity, particle fall velocity and hydrodynamic wave 

(kinematic, diffusion and dynamic) would be better decided with testing of the 

model with the general case (unsteady, nonequilibrium) experimental data. 

6. Another shortcoming is the application of the model is field conditions. This is 

able one of the future plans.   

7. The investigation of different particle velocity formulations revealed that under 

the same flow conditions, wave front is faster in Kalinske and Bridge and 

Dominic’s formulation.  

8. The investigation of different particle fall velocity formulations revealed that 

under the same flow conditions, they produced nearly the same results. 

9. The investigation of the effect of maxz (maximum bed level) on the transport 

revealed that it is an important parameter. It significantly affects the wavefront 

speed and bed level. The higher the maxz , the faster the wavefront and the higher 

the bed level.  

10. The numerical investigation of different sediment flux (bed load) formulations 

revealed that under the same transport flow condition, the kinematic wave theory 

produced different results then Meyer – Peter and Schoklists. Meyer – Peter and 

Schoklists produced nearly the same profiles. Under kinematic wave theory, the 

wavefronts move faster. 

11. The numerical comparison of kinematic, diffusion and dynamic wave for 

hypothetical cases of sediment transport revealed under the same sediment flux 

function of the wavefront is slower in the case of kinematic wave. 

12. The hydrodynamic part the developed numerical model was tested successfully 

tested experimental flume data. It satisfactorily (less then 5%) simulated the 

measured data.  

13. The developed numerical model was tested against measured sediment data 

from the literature. It predicted measured bed levels satisfactorily. 

14. The numerical model revealed that modeling sediment mixtures with only mean 

particle diameter 50d  approximation might lead to misleading results. In other 

words, it’s better model with the mixture with corresponding particle 

characteristics i.e. 50d  (median diameter), sρ (density) and p (porosity).         
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APPENDIX A 
 

CODES 
 

Sub equilibrium() 
 
Dim h(502), u(502), z(502), hnew(502), znew(502) 
'equilibrium' 
'Kinematic wave approach' 
'Vf Rouse, Vs Chien and Wan' 
 
'DATA' 
 
L = 1000     'Channel Length' 
W = 20       'Channel Width' 
So = 0.0025  'Channel Slope' 
tn = 14400 
dx = 2 
dt = 0.1 
nn = L / dx + 1 
mm = tn / dt 
g = 9.81 
K = 0.756 * 10 ^ -4 
Cz = 50 
Cmax = 245 
p = 0.528 
ros = 2650 
ro = 1000 
ds = 0.32 * 10 ^ (-3) 
al = Cz * So ^ 0.5 
bet = 1.5 
nu = 3 
CSF = 0.65 
pp = 4.75 
fi = 0.53 
trakd = 10 
zmax = Cmax / (p * ros) 
vis = 1.139 * 10 ^ -6 
 
 
'Initial and Boundary Conditions' 
'Discharge Hydrograph' 
Q1 = 50 
Q2 = 200 
h1 = 1 
h2 = 2.5198 
'Sedimentgraph' 
c1 = 14 
c2 = 140 
 
'trapeziodal hydrograph' 
 
        t1 = 0 
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        t2 = 600 
        t3 = 4200 
        t4 = 7200 
        t5 = 10800 
        t6 = 14400 
     
‘Time started t=0s’ 
 t = 0 
 
 
Do 
    'Initial Conditions' 
    If t = 0 Then GoTo 1 Else GoTo 2 
1   For i = 0 To nn 
    z(i) = c1 / (p * ros) 
    Next i 
 
    For i = 0 To nn 
    h(i) = h1 
    Next i 
    
   GoTo 3 
    
2   For i = 0 To nn 
    z(i) = znew(i) 
    Next i 
 
    For i = 0 To nn 
    h(i) = hnew(i) 
    Next i 
 
    
    'Upstream Boundary Conditions' 
3   If t < t2 Then GoTo 8 Else GoTo 9 
8   h(0) = h1 
    z(0) = c1 / (p * ros) 
    GoTo 17 
9   If t2 <= t And t < t3 Then GoTo 10 Else GoTo 11 
10  h(0) = 4.2217 * 10 ^ -4 * (t - 600) + h1 
    z(0) = (0.035 * (t - 600) + c1) / (p * ros) 
    GoTo 17 
11  If t3 <= t And t < t4 Then GoTo 12 Else GoTo 13 
12  h(0) = h2 
    z(0) = c2 / (p * ros) 
    GoTo 17 
13  If t4 <= t And t < t5 Then GoTo 14 Else GoTo 15 
14  h(0) = -4.2217 * 10 ^ -4 * (t - 10800) + h1 
    z(0) = (-0.035 * (t - 10800) + c1) / (p * ros) 
    GoTo 17 
15  h(0) = h1 
    z(0) = c1 / (p * ros) 
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17      For i = 1 To nn 
         
        u_ = (g * h(i) * So) ^ 0.5 
        Vf = 0.024 
        R_ = u_ * ds / vis 
        If 1.2 < R_ < 70 Then uc_ = 2.5 * Vf / (Log(R_) - 0.06) + 0.66 * Vf 
        If R_ > 70 Then uc_ = 2.05 * Vf 
        u(i) = al * h(i) ^ (bet - 1) 
        Vs = ((u(i) - (uc_ / 1.4) ^ 3 / u(i) ^ 2))   'Chien & Wan' 
        VON = K / (g * Vf) 
         
         
AA = 1 - VON * bet * al ^ 3 * h(i) ^ (bet - 1) 
BB = al * bet * h(i) ^ (bet - 1) - VON * bet * al ^ 4 * h(i) ^ (2 * bet - 2) 
CC = VON * bet * al ^ 3 * h(i) ^ (bet - 1) 
DD = VON * (2 * bet - 1) * al ^ 4 * h(i) ^ (2 * bet - 2) 
EE = p * Vs * (1 - 2 * z(i) / zmax) 
         
 
hnew(i) = 0.5 * (h(i + 1) + h(i - 1)) - dt * BB * (h(i + 1) - h(i - 1)) / (2 * dx * AA) 
znew(i) = 0.5 * (z(i + 1) + z(i - 1)) - dt * DD * (h(i + 1) - h(i - 1)) / (2 * p * dx) - dt * EE * (z(i + 
1) - z(i - 1)) / (p * 2 * dx) - CC * (hnew(i) - 0.5 * (h(i + 1) + h(i - 1))) / p 
hnew(i) = 0.5 * (h(i + 1) + h(i - 1)) - dt * BB * (h(i + 1) - h(i - 1)) / (2 * dx * AA) - (1 - p) * 
(znew(i) - 0.5 * (z(i + 1) + z(i - 1))) / AA 
 
'Downstream Boundary Conditions' 
   hnew(nn) = hnew(nn - 1) 
   znew(nn) = znew(nn - 1) 
     
   dt = (dx / (u(i) + (g * hnew(i)) ^ 0.5)) * 0.1 
    Next i 
 
‘New time’ 
t = t + dt 
Loop 
 
End Sub 

 
 

Sub nonequilibrium() 
Dim h(502), u(502), z(502), hy(502), hk(502), zk(502), c(502), uk(502), hkapdate(502), 
ck(502), zg(502), Sf(502), uy(502), QQ(502), hky(502), unewp(502), unewpp(502), Ez(502), 
Dc(502) 
 
'nonequilibrium sediment transport' 
'kinematic Wave approach' 
'DATA' 
'channel length in m' 
L = 1000 
'channel width in m' 
W = 30 
'channel slope' 
So = 0.0015 
tn = 14400 
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dx = 2 
dt = 0.1 
nn = L / dx + 1 
mm = tn / dt 
g = 9.81 
K = 0.756 * 10 ^ -4 
Cz = 36.5 
Cmax = 500 
p = 0.528 
ros = 2650 
ro = 1000 
spww = ro * g 
spws = ros * g 
ds = 0.32 * 10 ^ (-3)    'm' 
bet = 1.5 
nu = 3 
CSF = 0.65 
pp = 4.75 
fi = 0.53 
trakd = 10 
vis = 1.139 * 10 ^ -6 
n = 0.02 
zmax = Cmax / (p * ros) 
'Boundary and initial Conditions' 
'Hydrographs' 
Q1 = 25     'dischare m^3/s' 
Q2 = 125 
h1 = (Q1 / (W * Cz * (So) ^ 0.5)) ^ (1 / 1.5) 
h2 = (Q2 / (W * Cz * (So) ^ 0.5)) ^ (1 / 1.5) 
c1 = 80     'kg/m^2 sediment' 
c2 = 80 
 
'trapeziodal hydrograph' 
'in s' 
t1 = 0 
t2 = 600 
t3 = 4200 
t4 = 7200 
t5 = 10800 
t6 = 14400 
     
 t = 0           'time started at t=0 s' 
 
Do         
    'initial conditions' 
    If t = 0 Then GoTo 1 Else GoTo 2 
1   For i = 0 To nn 
    h(i) = h1 
    Next i 
    For i = 0 To nn 
    u(i) = Q1 / (h1 * W) 
    Next i 
     
    For i = 0 To nn 
    z(i) = c1 / (p * ros) 
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    Next i 
     
    For i = 0 To nn 
    c(i) = c1 / ros 
    Next i 
     
    GoTo 3 
    
2   For i = 0 To nn 
    h(i) = hkapdate(i) 
    Next i 
     
    For i = 0 To nn 
    z(i) = zk(i) 
    Next i 
     
    For i = 0 To nn 
    c(i) = ck(i) 
    Next i 
  
   'Boundary conditions upstream' 
    
3  If t < t2 Then GoTo 8 Else GoTo 9 
8  h(0) = h1 
    z(0) = c1 / (p * ros) 
    u(0) = Q1 / (h1 * W) 
    c(0) = c1 / ros 
    GoTo 17 
9  If t2 <= t And t < t3 Then GoTo 10 Else GoTo 11 
10 h(0) = ((h2 - h1) * (t - t2)) / (t3 - t2) + h1 
    z(0) = (((c2 - c1) * (t - t2)) / (t3 - t2) + c1) / (p * ros) 
    QQ(0) = ((Q2 - Q1) * (t - t2)) / (t3 - t2) + Q1 
    u(0) = QQ(0) / (h(0) * W) 
    c(0) = (((c2 - c1) * (t - t2)) / (t3 - t2) + c1) / ros 
    GoTo 17 
11  If t3 <= t And t < t4 Then GoTo 12 Else GoTo 13 
12  h(0) = h2 
    z(0) = c2 / (p * ros) 
    QQ(0) = Q2 
    u(0) = Q2 / (h2 * W) 
    c(0) = c2 / ros 
    GoTo 17 
13  If t4 <= t And t < t5 Then GoTo 14 Else GoTo 15 
14  h(0) = ((h2 - h1) * (t - t5)) / (t4 - t5) + h1 
    z(0) = (((c2 - c1) * (t - t5)) / (t4 - t5) + c1) / (p * ros) 
    QQ(0) = ((Q2 - Q1) * (t - t5)) / (t4 - t5) + Q1 
    u(0) = QQ(0) / (h(0) * W) 
    c(0) = (((c2 - c1) * (t - t5)) / (t4 - t5) + c1) / ros 
    GoTo 17 
15  h(0) = h1 
    z(0) = c1 / (p * ros) 
    u(0) = Q1 / (h1 * W) 
    c(0) = c1 / ros 
 
     



 134

17    For i = 1 To nn 
        al = Cz * So ^ 0.5 
        bet = 1.5 
         
        Vf = 0.024      'fall velocity ROUSE' 
        Vs = 0.01       'constant particle velocity' 
        von = K / (g * Vf)   'velikanov' 
         
        all = 0.5 
       
     'Flume' 
     lamda = 7 * h(i) 
     transferrate = 1 / lamda 
     transferrate2 = all * Vf / (h(i) * u(i)) 
     tto = 1000 * h(i) * So 
     kk = 0.047 
     kısi = 0.5 
     ki = 2.5 
     ttocr = kk * (2650 - 1000) * ds 
     Tc = (kısi * (tto - ttocr) ^ ki) 
       
      
    'detachment rate' 
     Ez(i) = transferrate * Tc 
       
     'deposition rate' 
     Dc(i) = transferrate2 * ros * h(i) * u(i) * c(i) 
       
     'Boundary conditions downstram' 
u(nn + 1) = u(nn - 1) 
h(nn + 1) = h(nn - 1) 
z(nn + 1) = z(nn - 1) 
c(nn + 1) = c(nn - 1) 
 
zk(i) = 0.5 * (z(i + 1) + z(i - 1)) - dt * Vs * (1 - 2 * z(i) / zmax) * (z(i + 1) - z(i - 1)) / (2 * dx) + 
dt * (Dc(i) - Ez(i)) / ((1 - p) * ros) 
 
hk(i) = 0.5 * (h(i + 1) + h(i - 1)) - dt * al * bet * h(i) ^ (bet - 1) * (h(i + 1) - h(i - 1)) / (2 * dx) - p 
* (zk(i) - 0.5 * (z(i + 1) + z(i - 1))) / (1 - c(i)) + dt * al * h(i) ^ bet * (c(i + 1) - c(i - 1)) / (2 * dx 
* (1 - c(i))) 
ck(i) = 0.5 * (c(i + 1) + c(i - 1)) - dt * al * bet * h(i) ^ (bet - 1) * (c(i + 1) - c(i - 1)) / (2 * dx) - 
c(i) * (hk(i) - 0.5 * (h(i + 1) + h(i - 1))) / h(i) - dt * al * bet * c(i) * h(i) ^ (bet - 2) * (h(i + 1) - 
h(i - 1)) / (2 * dx) + dt * (Ez(i) - Dc(i)) / (h(i) * ros) 
hkapdate(i) = 0.5 * (h(i + 1) + h(i - 1)) - dt * al * bet * h(i) ^ (bet - 1) * (h(i + 1) - h(i - 1)) / (2 * 
dx) - p * (zk(i) - 0.5 * (z(i + 1) + z(i - 1))) / (1 - c(i)) + dt * al * h(i) ^ bet * (c(i + 1) - c(i - 1)) / 
(2 * dx * (1 - c(i))) + h(i) * (ck(i) - 0.5 * (c(i + 1) + c(i - 1))) / (1 - c(i)) 
 
uk(i) = al * hkapdate(i) ^ 0.5 
 
   hkapdate(502) = hkapdate(500) 
   ck(502) = ck(500) 
   zk(502) = zk(500) 
 
'stability' 
dt = (dx / (uk(i) + (g * hk(i)) ^ 0.5)) * 0.2 
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 Next i 
‘new time’ 
t = t + dt 
 
Loop 
End Sub 
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