
 
 
 

A�ALYSIS A�D SY�THESIS OF PARALLEL 
MA�IPULATORS 

 
 
 
 
 
 
 

A Thesis Submitted to 
the Graduate School of Engineering and Sciences of 

Đzmir Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

 
DOCTOR OF PHILOSOPHY 

 
in Mechanical Engineering 

 
 
 
 

by  
Fatih Cemal CA� 

 
 
 
 
 
 
 

December 2008 
ĐZMĐR 

 



 ii

We approve the thesis of  Fatih Cemal CA� 
 
 
 
 
____________________________ 
Prof. Dr. Tech. Sci. Rasim ALĐZADE 
Supervisor 
 
 
 
____________________________ 
Prof. Dr. Math. Sci. Refail ALĐZADE 
Committee Member 
 
 
 
____________________________ 
Prof. Dr. Hira KARAGÜLLE 
Committee Member 
 
 
 
___________________________ 
Assoc. Prof. Dr. Bülent YARDIMOĞLU 
Committee Member 
 
 
 
___________________________ 
Asst. Prof. Dr. H. Seçil ALTU�DAĞ ARTEM 
Committee Member 
 
 
 
 
15 December 2008 
 
 
 
 
 
 
______________________________                            ________________________ 
Assoc. Prof. Dr. Metin TA�OĞLU                         Prof. Dr. Hasan BÖKE 
Head of Mechanical Engineering Department             Dean of the Graduate of School of 
                 Engineering and Science 



 iii

ACK�OWLEDGEME�TS 

 

I think that I am very lucky because I have a great opportunity to complete my 

doctoral study with my supervisor Prof. Dr. Tech. Sci. Rasim Alizade. I would like to thank 

him for his guidance, patience and support. 

I would like to also thank all colleagues in our laboratory, Erkin, Hakkı, Özgün and 

Cüneyt. They provided me a lot of support for both my theoretical and practical studies. I 

will never forget our laboratory in future.  

I would like to thank my close friend Levent Aydın. His music and friendship 

motivated me during my researches.    

My parents and my sisters are not forgettable for their support and preys. 

Mehmet Birden and Hulusi Karaduman helped me a lot while I was preparing my 

practical studies.  

I would like to thank to my department for every possible support to my study. 

 

 

 

 

 

 

 

 

 

 

 

 



 iv

ABSTRACT 

 

ANALYSIS AND SYNTHESIS OF PARALLEL MANIPULATORS 

 

In this study, novel parallel manipulators are introduced for industrial and medical 

applications. New methods are developed for the structural synthesis of Euclidean platform 

robot-manipulators with variable general constraints (EPRM). New mechanical structures 

such as serial, parallel and serial-parallel EPRM are designed along with proposed method. 

A new dimensional synthesis method of two DoF planar and spherical seven link 

mechanisms is presented. Interpolation and least square approximations are used to design 

the mechanism. In the solution of dimensional synthesis problems, nonlinear equations are 

converted to system of linear equations. The motion generation problem of a 3 DoF 

platform robot manipulator is solved for three, four and five precision poses. It is shown 

that the synthesis problem can be solved analytically for three prescribed poses. However, 

the solution is achieved by using a numerical method for four and five poses. The result, 

which is obtained from three prescribed poses, is used as an initial guess for four and five 

poses. Kinematic analysis of the manipulators is investigated. After the derivation of 

vector-loop equations, inverse and direct position analyses of the manipulators are 

presented.  Constant orientation workspace of a three DoF spatial parallel manipulator is 

presented.  The mechanical elements which are necessary for the construction of 

manipulators are introduced. The information about the motors which is needed for 

actuation of manipulators is given. Three DoF parallel manipulator is constructed for a 

industrial packaging system. Assembly of manufactured parts and mechanical elements are 

shown.    
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ÖZET 

  

PARALEL MANĐPÜLATÖRLERĐN ANALĐZĐ VE SENTEZĐ  

 

Bu çalışmada, yeni paralel manipülatörler endüstriyel ve sağlık alanındaki 

uygulamalar için sunulmuştur. Genel değişken kısıtlamalı Euclidean platform robot-

manipulatörlerin (EPRM) yapısal sentezi için yeni metodlar geliştirilmiştir. Seri, paralel ve 

seri-paralel EPRM olmak üzere yeni mekanik yapılar önerilen metodla tasarlanmıştır. Đki 

serbestlik dereceli düzlemsel ve küresel yedi link mekanizmalarının yeni bir boyutsal 

sentez metodu sunulmuştur. Mekanizmayı dizayn etmek için interpolasyon ve en küçük 

kare yaklaşımları kullamılmıştır. Problemlerin çözümünde doğrusal olmayan denklemler 

doğrusal denklemlere dönüştürülmüştür. Üç serbestlik dereceli bir uzaysal robot 

manipülatörün haraket üretim problemi üç, dört ve beş hassas pozlar için çözülmüştür. 

Tanımlanmış üç poz için sentez probleminin analitik olarak çözülebildiği gösterilmiştir. 

Fakat, dört ve beş pozları için çözüme numerik bir metod kullanılarak ulaşılmıştır. Üç poz 

için elde edilen sonuçlar dört ve beş pozları için başlangıç tahminleri olarak kullanılmıştır. 

Manipulatörlerin kinematik analizi incelenemiştir. Vektör-kapanım denklemlerinin 

türetilmesinden sonra manipülatörlerin doğru ve ters pozisyon analizleri sunulmuştur. Üç 

serbestlik dereceli bir uzaysal manipülatörün sabit oryantasyon çalışma alanı sunulmuştur.   

Manipülatörlerin yapımı için gerekli olan makina elemanları tanıtılmıştır. Manipülatörlerin 

hareketi için ihtiyaç duyulan motorlar hakkında bilgi verilmiştir. Bir endüstriyel paketleme 

sistemi için üç serbestlik dereceli paralel manipulator yapılmıştır. Üretilen parçaların ve 

mekanik parçaların montajı gösterilmiştir.  
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CHAPTER I 
 

I�TRODUCTIO� 
 

A parallel manipulator consists of a moving platform that is connected to the base 

by several legs. Another definition is given by (Merlet 2006): a generalized parallel 

manipulator is a closed-loop kinematic chain mechanism whose end-effector is linked to 

the base by several independent kinematic chains. Parallel manipulators are sometimes 

called platform manipulators. They have specific advantages against to serial manipulators. 

The most important advantage is that parallel manipulators can carry heavy loads due to the 

fact that they have several legs which shares external loads. Another one is that parallel 

manipulators can work very precisely.  In industry and scientific facilities, parallel 

manipulators are widely used for different areas such as flight simulations, earthquake 

simulations, high speed and high precision machining center, pointing devices, medical 

applications, mining machines, walking machines, adjustable articulated trusses and etc.    

Application is vital in every problem of every engineering discipline. Therefore, we 

firstly review parallel manipulators with respect to their applications.  

 

1.1 Classification of parallel manipulators 

 

• Parallel manipulators are used as simulators. 

 

Patent of the first flight simulator shown in Figure 1.1 was granted by Klaus Cappel 

in 1964. When the patent was filed, Mr. Cappel was unaware of Gough's invention (or of 

Stewart's paper which was not yet published). Three rotations and three translations are 

sufficient to simulate a flying object in space. In order to describe these motions, six legs 

constructed by pneumatic cylinders are used in Gough platform. Furthermore, one of the 

earthquake simulators is constructed by creating novel mechanical architecture (Cassino 

Parallel manipulator Figure 1.2.a).  A single platform connected to base with three identical 

legs is utilized to describe vibration of the ground of real world.  Another example of 
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earthquake simulator is investigated in Laboratory in University of Nevada. The shake table 

is given to this kind of parallel manipulators. (Figure 1.2.b) 

 

 

 

 

Figure 1.1. The first flight simulator based on an octahedral hexapod as in the mid 1960s  

(Source: courtesy of Klaus Cappel) 

 
 

 

 

 

Figure 1.2. Earthquake simulations (a) Cassino Parallel Manipulator (Source: Ceccarelli et. 

al., 2002), (b) The multiple shake table in University of Nevada (Source: 

Labortary in University of Nevada  2008) 
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• Parallel manipulators are used as medical devices. 

 

Parallel manipulators are becoming increasingly popular in medical area due to their 

precision and high stiffness.  As a result, there are several companies producing robotic 

devices in medical market.  One product is microdex alpha prototype shown in Figure 1.3. 

Some special operations such as brain tumors, certain aneurysms, cervical spine problems 

require high precision. Therefore, the high precision and user friendly mechanical systems 

have to be developed both for doctor and patient. This kind of manipulators are fully 

controlled by a doctor to help surgery process.  But, development in artificial intelligence 

can make these systems fully autonomous in the future. 

 

 

 

 

Figure 1.3. MicroDex Alpha Prototype 

(Source: Advanced Robotics for Medicine and Industry 2008) 

 

Another product, Mazor shown in Figure 1.4, is manufactured to make the surgical 

environment safer and more accurate. The system includes both open and close kinematic 

chain. A serial manipulator is placed on a known parallel mechanical structure. The 

prototype robot, shown in Figure 1.5, has been constructed for testing in medical tasks such 

as manipulating a laparoscope and an orthroscope in Orthroscopic knee surgery.  
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Figure 1.4. Cutting-edge technology to the development of SmartAssist (Mazor) 

(Source: SmartAssist 2008) 

 
 
 

 

 

 

 

 

Figure 1.5. The prototype robot for Orthroscopic knee surgery, 

(Source: Master Study of Nabil Simaan 1999) 
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Parallel manipulators are used not only in surgery but also in scanning operations. 

Headfix is one example of these scanning machines (Figure 1.6). This system is specifically 

designed to overcome the drawbacks of conventional invasive fixation and non-invasive 

thermoplastic masks. Surgiscope is created for scanning brain or neurology in medical area 

(Figure 1.7). The structure is constructed on three identical limbs to create necessary 

motions. As seen from figure, camera is placed on the moving platform and manipulator is 

mounted downward.  

 

 

 

Figure 1.6. HeadFIX   

(Source: Medical Intelligence 2008) 

 

 

 

 

 

Figure 1.7. The SurgiScope® is a ceiling mounted robotized tool-holder device 

(Source: iSiS 2008) 
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• Parallel manipulators are used as machine tools. 

 

A three DoF parallel manipulator has been developed to measure the quality of the 

manufactured parts of a machine. (Figure 1.8)  

 

 

 

Figure 1.8. Parallel structure of a spatial 3-axis machine tool with three degrees-of-

freedom.(Source: United States Patent No 6575676) 

 

Main studies on parallel manipulators can be ordered as follows, 
 

• Structural Synthesis: Structural synthesis is to create open and closed chains 

for new mechanical architectures.  Number of joints, type of joints and 

classification of manipulator are determined by knowing DoF, shape of 

platform and number of legs, branch loops and number of hinges. Different 

structures can be obtained by using exchangeability of kinematic pairs. For 

instance, three intersecting revolute joints can be represented by a spherical 

pair.   
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• Dimensional Synthesis: The geometric dimension of the known structures is 

designed for the desired motion of the gripper. Objective function is defined 

by representing closure equations of manipulator geometry. There are three 

common tasks in dimensional synthesis: function generation, path 

generation and motion generation.   

• Kinematic Analysis: Structure and geometric shape of parallel manipulator 

must be known in order to perform kinematic analysis. Two possible 

analyses are inverse and forward analyses. One investigates position of end 

effector with known joint variables in forward analysis. But, joint variables 

are calculated by knowing position of end effector. Forward analysis is 

harder than inverse analysis for a parallel manipulator.  Kinematic analysis 

of a mechanism-manipulator includes position, velocity and acceleration 

analyses, respectively. 

• Dynamic Synthesis: Objective of dynamical synthesis is to make shaking 

force and moments zero or as near as possible to zero. In most cases, 

making shaking force and moment zero is impossible but decreasing 

shaking force and moment is very good for manipulator service life. In 

order to reach this objective, mass and mass moment of inertia of the 

manipulator’s links should be designed.    

• Dynamical Analysis: Performing dynamical analysis is only possible after 

completing mentioned synthesis and kinematic analysis. Reaction and 

actuator forces can be calculated by writing necessary Newton-Euler 

equations. Lagrange equation of motion is another method to determine 

these forces-moments.      

• Vibration and stability analysis: Final mechanical analysis is to make 

vibration analysis of the manipulator. Here, natural frequency of actuated 

links is important.  

• Control and simulations: Simulations can be used in every step of design 

and analysis. But final simulation is most desirable to observe whether 

manipulator fulfill necessary conditions or not. Control method or algorithm 

can be created after performing all design and analysis steps.   
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1.2. Background  
 

Study of structural synthesis always be in a state of development during the last 

centuries. Due to this development, many investigations on this subject are discussed in 

literature. Detailed and recent review about kinematic structure of mechanisms was 

introduced by (Mruthyunjaya 2003). In his review, pattern of growth of literature on 

kinematic structure over four decades is shown. (Gogu 2005)  introduced a mobility 

analysis of translational parallel robot manipulators, which is different from previous 

mobility analyses. After this study, (Alizade, et al. 2006)  reviewed the history of degrees 

of freedom analysis and structural synthesis formulations in a table that also includes the 

names of authors, publication dates and commentaries. Furthermore, a new structural 

synthesis formulation of Cartesian robot manipulators is presented in the same 

investigation. The structural synthesis of new serial and parallel manipulators is introduced 

(Alizade, et al. 2007). The Euclidean platform robot manipulators with variable general 

constraints are firstly presented by (Alizade, et al. 2008).    

(Denavit and Hartenberg 1955, Sheth, et al. 1971, Khalil, et al. 1985)  introduced 

the link and joint parameters, which allow the mathematical modeling of robotic 

mechanical systems. Methodological structural synthesis of serial parallel manipulators is 

introduced by (Alizade and Bayram 2004). Creation of CAD structural system by using 

topological description method of kinematic chains and classification of robotic systems 

was done by (Roth  1975). Graph theory of structural synthesis and analysis of mechanisms 

have been investigated by using the method of intuition and inspection, (Crossley 1964)  

and (Woo 1967) , by using the concept of transformation of binary chains for the structural 

synthesis of kinematic chains with up to 10 links and 3 DoF, (Mruthyunjaya 1979, 

Mruthyunjaya 1984), by using the development of structural Assur groups, (Manolescu 

1979, Manolescu 1987), by using robotic system application, (Merlet 1990) and by using 

CAD strucutural synthesis of planar kinematic chains, (Hwang, et al. 1992). Topological 

structure, description and classification of industrial robots of different levels have been 

presented by (Mitrouchev, 2001) by using the number of closed loops. Method on the 

concept of loop formation, which obviates the necessity of the test for isomorphism, is 

presented by (Rao, et al. 2001) . (Zhao, et al. 2004) proposed new concept of configuration 
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degrees of freedom (CDoF) that can form a theoretical base for analyzing the mobility, 

singularity and stability of mechanisms.  

(Huang and Li 2002) proposed a general methodology for type synthesis of lower 

mobility parallel manipulators by using screw theory. By the help of proposed method, they 

presented three novel lower mobility parallel manipulators with 3, 4 and 5 DoF. In the light 

of well known Tricept robot, (Huang, et. al. 2005) designed a new hybrid robot manipulator 

named Trivariant. They also compared their design with Tricept robot according to cost and 

kinematic performance. The new parallel manipulator family, where at least one leg 

contains a planar four-bar parallelogram has been presented by (Liu, et. al 2005). Some 

fully parallel mechanisms with two to six DoFs, where at least one leg consits of a planar 

four-bar parallelogram are intended for pure translation in planar, high or improved 

rotational capability and better stiffness (Liu and Wang 2003).  (Fang and Tsai 2002) 

developed a systematic approach of structural synthesis by using screw theory. They 

enumerated limb structures for constructing 4-DoF or 5-DoF parallel manipulators 

according to reciprocity of limb twist system and wrench system. The Lie group of rigid 

body displacements is represented by operator including screw or twist. The screw system 

has a Lie algebraic structure that represents all possible displacements. In the study of 

(Herve 1999), it is shown that mathematical representation of the connection between any 

pair of bodies obtained through two operations, the composition and the intersection of 

mechanical bonds. New manipulator with 3 DoF motions of a platform where three limbs 

generates subsets of possible displacements, Lie subgroup of Schoenflies motions, is 

illustrated.   

The main problem in construction of the robots is how to design it. Study of 

kinematic structure is the first problem of the design. The problem of kinematic structure 

includes the selection of actuations, DoF, link number, joint numbers, and direction of 

joints’ axes. The second problem of design, named as dimensional synthesis, is to 

determine the dimension between joints for the desired motion of the end effector. 

Dimensional synthesis includes three common tasks which are function, path, and motion 

generation. These three tasks are applied to different closed and open chains by 

academicians, engineers and designers. A general method for computer aided optimum 

kinematic synthesis of planar and spatial multibody systems is proposed by presenting a 
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new computationally efficient formulation (Jiminéz, et. al. 1997). A neural network is 

applied to path generation synthesis of a four-bar mechanism (Vasiliu and Yannou 1997). 

Circle path generation synthesis algorithms of four-bar mechanism has been proposed to 

achieve the design of the Chebyshev set (Ceccarelli and Vinciguerra 2000). Moreover, new 

mechanisms with analogous characteristics are presented by introducing new algorithms. 

Graphical and analytical methods for synthesis of four bar mechanism are explained along 

practical examples (Reifschneider 2005). Planar path generation synthesis of single DoF 

coupled serial chain mechanism is introduced by using Fourier series (Nie and Krovi 2005). 

Furthermore, physical prototype of a reconfigurable 3-link single DoF coupled serial chain 

mechanism is designed by the help of their method. In order to obtain design equation 

(input-output displacement equation) for function generation problem of planar and spatial 

linkages, a new analytical method based on the symbolic representation and the Piogram 

symbolic operation rule is presented (Wu and Chen 1997). A general method for function, 

path and motion generation problem of planar linkages is proposed by the help of exact 

determination of gradient (Sancibrian, et. al. 2006). Three examples are given to illustrate 

the method: path generation of a four bar, rigid-body guidance in a Stephenson III six-bar 

linkage, function generation using a Watt II six-bar linkage. Rigid body guidance synthesis 

of a planar four bar mechanism is presented by optimizing and combining two planar dyads 

(Yao and Angeles 2000). Moreover, all real roots of a system of polynomial equations are 

calculated by using contour method during the optimization of planar dyads. The motion 

generation synthesis of a RPS serial chain is examined with ten dimensional parameters (Su 

and McCharty 2005). The solution of ten quartic polynomials in ten unknown dimensional 

parameters is carried out by using polynomial continuation method and then it is implied 

that the number of roots can be maximum 1024. A planar 3 DoF six bar mechanism is 

reduced to one DoF mechanism by adding two cam-pairs to two selected link of the 

mechanism (Gatti and Mundo 2007). Motion generation synthesis of new one DoF 

mechanism is performed by using inverse kinematics of six bar mechanism. The design 

equations for three poses of a Bennett linkage’s motion generation synthesis are formulated 

by studying the spatial RR chain with geometric properties of the cylindroid (Perez and 

McCarthy 2003). Motion generation synthesis of adjustable RRSS mechanisms is presented 

for the first time by using method based upon modified R-R and S-S dyad constraint 
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equation (Russell and Sodhi 2001). Planar mechanisms, which are designed for many 

applications such as furniture and car hoods, are synthesized for prescribed motion by 

means of an analytical approach (Crocesi and Pennestrı 2005).  

A lot of studies are introduced for function generation synthesis of planar and 

spherical mechanisms in literature. However, the recent ones give sufficient information of 

the problem’s background. Motion and path generation tasks are presented for planar five-

bar mechanism with variable topology (Balli and Chand 2002).  Furthermore, authors use 

transmission angle, which is considered for the effective force motion transmission by a 

mechanism, to reduce the solution space for the design of five-bar mechanism with variable 

topology. In similar way, dimensional synthesis of a planar seven-link mechanism with 

variable topology is proposed by keeping some link temporarily fixed (Balli and Chand 

2002).  Analytical solution of function generating spherical four-bar mechanism is 

introduced for the five precision points by using superposition methods (Alizade  and Kilit 

2005). In order to obtain design equation (input-output displacement equation) for function 

generation problem of planar and spatial linkages, a new analytical method based on the 

symbolic representation and the Piogram symbolic operation rule is presented (Wu and 

Chen 1997). A general method for function, path and motion generation problem of planar 

linkages is proposed by the help of exact determination of gradient (Sancibrian, et al. 

2006).  Function generation synthesis problem of several types Watt II mechanisms is 

solved analytically (Simionescu and Smith, 2000). A fourth order T1 motion theory is 

applied to synthesis of a four bar mechanism for both motion and function generation 

problems (Goehler, et. al. 2004). Ant-gradient search method is applied to the exact-

approximate synthesis  problem of planar mechanisms (Diab and Smaili 2008).  

Two mathematical models are possible to investigate relations between actuated 

joint variables and location of end-effector for a specified geometry of parallel manipulator. 

The first one, inverse kinematics is to find actuated joint variables for a specified location 

of end-effector. The second one, direct kinematics is to determine the location of end-

effector for specified actuated joint variables. Inverse kinematics is generally easier than 

direct kinematics for closed-loop mechanical system such as a parallel manipulator.  

Kinematic analysis of manipulators is very attractive topic in Mechanism and 

Machine Theory. Researches and scientists have been studied on this topic for a very long 
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time. Kinematics of parallel robots are solved by using numerical and analytical methods. 

In most cases, inverse kinematics of parallel robots can be solved analytically. On the other 

hand, in direct kinematics of parallel robots, numerical methods such as Newton-Raphson, 

genetic algorithms have to be utilized due to nonlinearity of the problem. Inverse and direct 

kinematics of a 3-RPS parallel platform manipulator is presented (Fang and Huang 1996). 

The forward and the inverse kinematics and dynamics of a parallel manipulator actuated by 

a planar motor is studied (Ben-Horin et al 1998). This manipulator has very simple design 

along with much larger work volume than commonly-used parallel robot manipulators. The 

inverse kinematics of two DoF and three DoF planar parallel manipulators are computed 

and velocity equations are derived to investigate singularity analysis (Gosselin and Wang  

1997). The inverse and direct kinematics of planar 5R symmetrical parallel manipulator is 

presented to determine the workspace and assembly modes (Liu, et al. 2006). Inverse 

kinematics and kinetostatic model of a parallel mechanism made up of 3-PRS kinematic 

chains are presented in detail (Zhanga 2006). Inverse, forward kinematics and error 

modelling of a three degree of freedom parallel robots are introduced by using a very 

effective Jacobian approximation method (Cui, et al. 2005). The analytical solution of 

assembly modes of SR-PS-RS structure is presented to compute the forward position 

analysis of three-legged parallel manipulators which generates SR-PS-RS structure when 

actuator is locked (Gregorio 2006). By using reciprocal screw, kinematics of a special 3 

DoF parallel manipulator which has three UPU limbs and generates 3D translational 

motion is studied (Huang 2004). Inverse kinematics of a variable geometry body, which is 

attached to the Stewart platform, is introduced (Wang 2005). 

Although the direct kinematics of a parallel robot is hard due to nonlinearity, the 

direct kinematic problem of a serial robot is recursive and solved easily. A new and 

efficient algorithm to compute inverse kinematics of 6R serial kinematic chain is proposed 

by using classical multidimensional geometry (Husty, et al. 2007). Furthermore, in order to 

simplify kinematic equations, they broke 6R in the middle to form two open 3R chains. In 

order to solve the inverse kinematics problem of serial robot faster and more accurately, a 

recursive algorithm is introduced (Martins and Guenther 2003). The algorithm is applied to 

two serial robots known as SCARA and PUMA in literature. The forward and inverse 

kinematic problems of a parallel-serial manipulator are presented by obtaining closed-form 
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solutions (Tanev 2000). A velocity equation by using Jocabian formulation is introduced to 

develop general-purpose software of any mechanism topology (Altuzarra et al. 2006). The 

variable geometry parallel manipulator (VGPM) is designed by combining the Stewart 

platform as a driving mechanism and a number of spatial RSRR kinematic chains. In order 

to solve inverse kinematic problem of  VGPM, approximate distribution is developed. 

Workspace is the reachable volume,  3D surface for the end effector of a spatial 

manipulators or the reachable area for the end effector of a planar manipulators.  

Workspace of one spatial parallel manipulator made up of 3-PUU kinematic chains and one 

planar four bar manipulator is investigated by using planar symmetry, rotational axis 

symmetry and point symmetry (Zhao 2006). The compatible orientation workspace of 6 

DoF Stewart-Gough parallel manipulators is developed through boundary curves on two-

dimensional cross-sections (Tsai and Lin 2006). Moreover, the orientation workspace is 

represented by three parameters such as the Euler angles, and by using constant geometric 

parameters of manipulator, the boundary of workspace is a two-dimensional surface. 

In this thesis, new methods are developed to investigate analysis and synthesis 

problems of parallel manipulators. New type of parallel manipulators, named as Euclidean 

Parallel Robot Manipulators, are presented for both medical and industrial applications. 

Kinematic equations in analysis and dimensional synthesis problems are obtained by using 

known mathematical models. But, the approach in steps of solution of the equations is 

different. A hybrid manipulator is developed for an industrial application. This manipulator 

has two layers such that the first layer is a parallel structure whereas the second one is a 

serial chain.        
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CHAPTER 2 

 

STRUCTURAL DESIG� OF 

PARALLEL ROBOT MA�IPULATORS 

 

2.1. Introduction to Structural Synthesis of Manipulators 

 

Structural synthesis of mechanisms is one of the main branches of the fundamental 

Mechanisms and Machine Science. Structural synthesis is a methodology that is used to 

generate all structures with desired kinematic performance.  

The investigations on structural synthesis of mechanisms are generally studied in 

sub-categories as: geometrical and kinematic structural synthesis. The purpose of 

geometrical structural synthesis is to create data foundation to discover particular 

geometrical features and optimum structures by 

• Further development theory of degrees of freedom of mechanisms with variable 

general constraints and motion of platforms. 

• Generating kinematic chains for hinges, branch-loops, and legs of platforms to 

create simple structural groups.  

• Linking simple structural groups to the actuators of manipulators. 

• Linking simple structural groups with variable general constraint parameters to the 

moving platform and ground or actuators of parallel Cartesian robot- manipulators. 

• Creating new EPRM with variable general constraints in space or subspaces. 

• Creating modular systems with multi-mobility using successive layers of serial trees 

and parallel manipulators.  

• Computer aided structural synthesis. 

On the other hand, Kinematic structural synthesis focuses on the following problems: 

• Generation of the branches and legs of parallel manipulators by describing the axis 

of kinematic pairs and links, also joint and link construction parameters. 

• Identifying angular and linear conditions for over constraint mechanisms. 
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• Rearranging the leg configurations of parallel manipulators in such a way that it will 

be easier to carry out the forward and the inverse tasks. 

 

2.2. Structural Synthesis of Euclidean Robot Manipulators 

 

In this chapter, new parallel manipulators classified as parallel Euclidean platform 

robot manipulators are introduced. After structural synthesis preliminaries, Euclidean 

motions are explained to describe new EPRM. New structural formulas of parallel and 

serial platform Euclidean robot manipulators with variable general constraints are 

introduced. Furthermore, parallel multiplatform Euclidean robot manipulators and their 

structural classification with variable general constraints of branch loops are presented. 

Also, structural parameters, kinematic structures, motion of platforms and 3D drawings of 

new manipulators are depicted in tables. 

 

2.2.1. Structural Synthesis of Euclidean Platform Robot Manipulators                                                         

with variable general constraints 

 

Serial robots are limited in the number of possible mechanical structures; however, 

there is a variety of possible parallel robots that are constructed from the branch loops with 

variable general constraints, multiple platforms, hinges and legs. Note that, the overall 

performance of these robots can be affected by the topology of their structures. 

 

2.2.1.1. Motion in Euclidean Planes 

 

In this study, Euclidean planes are utilized to obtain Euclidean motions. Euclidean 

motion of 2
R  is an affine transformation whose linear part is orthogonal (Gray, 1993).  

Examples of affine transformation can be given as geometric contractions, expansions, 

dilations, reflections, rotations, shears, similarity transformations, spiral similarities, 

translations and their combinations. However, rotations and translations are enough for our 

study due to rigid links and platforms of the manipulators. The new proposed Euclidean 
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manipulators have several legs, which create Euclidean motions on their own Euclidean 

planes.  

In order to obtain Euclidean plane motion in the design, legs of manipulators are 

selected as dyads. These dyads can be RR, PR, RP and PP chains as shown in Figure 2.1. 

Note that, point G of each leg is connected to the platform by spherical or spherical-torus 

pairs.  Position of point G with respect to the fixed reference frame (Figure 2.1.) defines the 

curve of one point of the platform in the reference Euclidean plane. The motion of the 

platform can be defined by minimum three independent curves of three platform points 

moving on three Euclidean reference planes. 

 

 

 
 

Figure 2.1. Four possible dyads for the legs of EPRM 
 
 

Note that a kinematic pair with 4 DoF is also introduced as spherical torus pair (St) 

which consists of three rotations and one circular translation (Figure 2.2). The name of the 

kinematic pair comes from its torus workspace that is drawn by using Mathematica 

computer software after the kinematic analysis of the pair by Denavit-Hartenberg 

convention. 
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Figure 2.2. Spherical-torus (St) kinematic pair and its workspace 
 

 

2.2.1.2. Structural formula of parallel and serial Euclidean platform 

robot manipulators 

 

It is clear that freely moving platform in three dimensional space has six degrees of 

freedom. This DoF is related to the location of the platform in space with respect to the 

reference frame. Location of the platform defines both position and orientation of the 

moving coordinate system, which is attached to the moving platform, with respect to the 

fixed frame as shown in Figure 2.3.a, where u,v and w are the axes of the moving frame 

and define the independent direction cosines of the moving frame that consists of three 

rotations and ρ  has three translational component ( , ,x y zρ ρ ρ ) which indicates the origin 

of the moving frame with respect to the fixed frame. If two moving platforms are connected 

by hinge (revolute pair), DoF of the serial moving platforms is increased to seven (Figure 

2.3.b). If the number of hinges between the platforms is more than one (Figure 2.3.c), DoF 

of the serial moving platforms can be calculated as, 

 

SP hM jλ= +  (2.1) 

 

where λ  is the number of independent parameters describing the positions and orientations 

of any rigid body in space or subspaces and hj is the number of hinges between platforms. 
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(a) 

 
(b)  

 
(c) 

 

Figure 2.3. (a) 6 independent quantities of the moving platform (b) Two platform connected 

by hinge (revolute pair) (c) Several numbers of serial moving platforms 

 

 

 

If the entire legs of the serial platform manipulators are connected to the moving 

serial platforms and to the ground, mobility of the kinematic chains of the legs can be 

defined as, 

 

 

( )
1

l l l
l

lc

M f λ
=

= −∑  (2.2) 
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where 
1

lc

l
l

f
=
∑  is the total DoF of all the kinematic pairs on the legs cl, and lλ  is the general 

constraint of each leg ( 2, ..., 6lλ = ). 

The combination of Eqs. (2.1) and (2.2) results in the general structural formula of 

serial platform robot manipulators as, 

 

 

( )
1

h l l
l

lc

M j fλ λ
=

= + + −∑  (2.3) 

 

 

If the number of moving platforms is unity in space ( 6, 0hjλ = = ), Eq. (2.3) will 

be reduced to the structural formula of parallel manipulators as, 

 

 

( )
1

6 l l
l

lc

M f λ
=

= + −∑  (2.4) 

 

 

The motion of one platform on the parallel robot manipulators can be described by,  
 

 

( )
1

p l l
l

lc

m c d Dλ
=

= + + −∑  (2.5) 

 

where D is the number of dimensions of vectors in the reference frame (D is three for space 

( 3
R ), and two for plane ( 2

R )), and ld  is the number of dimensions of vectors in subspaces 

of the legs. Also motion of two or more serial platforms can be formulated as, 

 

( )
1

l l h
l

lc

m c d D jλ
=

= + + − +∑  (2.6) 
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Using the structural formulas, Eqs. (2.3) and (2.4), we can calculate the mobility of parallel 

or serial Euclidean robot manipulators, while Eqs. (2.5) and (2.6) can be used to describe 

the motions of platforms relate to them. 

 

Example 1. Design a parallel Euclidean robot manipulator with 5lc = , 5M = , and 6lλ = .  

Find both the number and kind of kinematic pairs on each leg by solving the problem of 

structural synthesis. 

By using Eq. (2.4), total DoF of kinematic pairs of the legs can be calculated as, 

1 1

6 5 30 6 29l l
l l

l lc c

f M λ
= =

= + − = + − =∑ ∑ . So that, in the designed manipulator, one leg will 

consist of five kinematic pairs and the remaining legs will consist of six kinematic pairs 

with one degrees of freedom, ( )
5

1

1

5 4l l l
l

j c f−

=

= =∑ . Using exchangeability of kinematic 

pairs and conditions of Euclidean robot manipulators, the design can be improved for the 

mentioned purpose. Kinematic structure, structural parameters and structural bonding of 

this robot manipulator can be seen in Table 2.1.b.  

By using the same procedure of structural synthesis, parallel manipulators with 

different structural parameters can be generated. Some of these new manipulators are 

shown in Table 2.1. Elements of structural bonds are illustrated as: 

 
 
 

 (dashed rectangle) describes general platforms of moving kinematic 
chains 
with hinges and branches   (dash and point rectangle) platforms on the legs 

or Connection of the pairs on platforms to the remaining pairs of legs  

 Fixed frame  
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Table 2.1. New Parallel Euclidean Platform Robot Manipulators 
 

Structural bonding 
Illustration 

Motion of 
Platform 

λl cl lf∑  dl mp M 

1 2 3 4 5 6 7 8 

 

Rx, Ry, Py, 

Pz 
6 4 22 

2, 1, 2, 
1 

4 4 

(a) 

 

1 2 3 4 5 6 7 8 

 

Rx, Ry, Rz, 
Px,Pz 

6 5 29 
2, 2, 2, 

2, 1 
5 5 

(b) 

 
(cont. on next page) 
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Table 2.1 (cont.). New Parallel Euclidean Platform Robot Manipulators 
 

1 2 3 4 5 6 7 8 

 

Rx, Ry, Rz 

Px, Py, Pz 
6 6 36 

2, 2, 2, 
2, 2, 2 

6 6 

(c) 

 

1 2 3 4 5 6 7 8 

 

Rx, Ry, Pz 6 3 15 1, 1, 1 3 3 

(d) 

 
    (cont. on next page) 
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Table 2.1 (cont.).  New Parallel Euclidean Platform Robot Manipulators 
 

1 2 3 4 5 6 7 8 

 

Rx, Ry, Rz, 

Pz 
6, 
3 

3, 
2 

19 1, 2, 1 4 4 

(e) 

 
1 2 3 4 5 6 7 8 

 

Rx, Ry, Rz 

Py, Pz 

6, 
3, 
3 

3, 
2, 
2 

23 2, 2, 1 5 5 

(f) 
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Example 2. Design a serial Euclidian robot manipulator with cl=6, M=6, and 6lλ = . By 

using these parameters, just two serial platform manipulators with two rectangular 

platforms or with one triangular and pentagonal platforms can be designed. Now let us take 

the first one into consideration.  

Using Eq. (2.3), total number of kinematic pairs on the legs can be found as, 

1 1

l lc c

l l h
l l

f M jλ λ
= =

= + − −∑ ∑  6 6 6 6 1 35= + ⋅ − − = . Each leg will consist of 5 pairs and the 

remaining five pairs can be placed to any leg, 
6

1

1

5(5)l l l
l

j c f−

=

= =∑ . Kinematic structure of 

this robot manipulator is shown in Table 2.2.a. Kinematic structure and the structural 

bonding of the serial Euclidean platform robot manipulator with (cl=4, M=4, jh=1 and λl=6) 

are shown in Table 2.2.b. 

 
 

Table 2.2. New Serial Euclidean Platform Robot Manipulators that include a hinge 
 

Structural bonding 
Illustration 

Motion of 
Platform 

λl cl lf∑  dl m M 

1 2 3 4 5 6 7 8 

 

Rx, Ry, Rz 

Px, Py, Pz 
6 6 35 

2, 2, 2, 
2, 2, 1 

6 6 

(a) 

 
(cont. on next page) 
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Table 2.2 (cont.). New Serial Euclidean Platform Robot Manipulators that include a hinge 

 

1 2 3 4 5 6 7 8 

 

 
Rx, Ry, 

Rz,Pz 
6  4 21 2,1,1,1 4 4 

(b) 

 

 

2.2.1.3 Structural formula of Euclidean platform robot manipulators that 

include branch-loops with variable general constraints 

 

As mentioned in previous section, a moving platform has six DoF in space       

(Figure 2.4.a).  If two or more platforms are connected by a loop, total DoF of platforms is 

affected by subspace of loop and number of kinematic pairs of loop. For example, two 

platforms are connected by planar loop (it means subspace is three) consisting of four 

revolute joints (Figure 2.4.b). The total DoF of platforms is seven due to the fact that planar 

loop gives only one DoF to the system.  If several number of platforms are connected by 

several loops in different subspaces (Figure 2.4.c), the total DoF of platforms can be 

calculated as follows, 
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( )
1

n

MP L L
L

M fλ λ
=

= + −∑  (2.7) 

 

 

The mobility of all legs was defined in Eq. (2.2). Therefore, DoF of manipulator can 

be calculated by using the following structural synthesis formula: 

 

 

( ) ( )
1 1

lcn

L L l l
L l

M f fλ λ λ
= =

= + − + −∑ ∑  (2.8) 

 

 

The motion of two or more platforms with relative motions created by loops 

between platforms is formulated as follows, 

 

 

( ) ( )
1 1

l lc c

l l l l
l l

m c d D fλ λ
= =

= + + − + −∑ ∑  (2.9) 

 
 
 

 
(a) 

 
Figure 2.4. (a) Two platforms connected by a planar loop (b) Several number of loops 

 
(cont. on next page) 
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(b) 

 

Figure 2.4 (cont.)  (a) Two platforms connected by a planar loop (b) Several number of 
loops 

 
 

Example 3.  Design a serial Euclidean robot manipulators with number of legs 6lc = , 

mobility 6M = , subspace for legs 6lλ = ,  number of loops 2L =   and subspace for two 

loops 6Lλ = .  Assume that kinematic pairs of the loops are shown in Figure 2.5. Find 

kinematic pairs on each legs.  

 

 
 

Figure 2.5. Two platforms connected by two loops 
 

 

By using Eq. (2.8),  all kinematic pairs on the legs can be calculated as follows, 

( )

( )

1 1 1

6

1

6 6 18 12 6 6 30

l lc cn

l L L l
l L l

l
l

f M f

f

λ λ λ
= = =

=

= − − − +

= − − − + ⋅ =

∑ ∑ ∑

∑
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Kinematic pair on each legs is found by dividing the number of all kinematic pairs 

to the number of legs 

 

6

1 30
5

6

l
l

l

f
f

c
== = =
∑

 

 

Then, structural bonding of designed manipulator is drawn as, 
 
 

 
 

Table 2.3. New Parallel Euclidean Platform Robot Manipulator that includes two       

branch-loops 

 

Structural bonding 
Illustration 

λL λl cl lf∑  dl m M 

 

6 6 6 30 
1,1,1, 
1,1,1 

6 6 
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2.2.1.4. Structural formula of serial-parallel Euclidean platform robot 

manipulators that include hinges, legs and branch-loops with 

variable general constraints  

 

 
As mentioned before, one platform has six DoF in space. If this platform connected 

to another platform by a hinge, total DoF for two platforms will be seven. If two platforms 

connected by a loop which has four parallel revolute pairs, total DoF for three platforms 

will be eight (Figure 2.6). The mobility of legs was given in Eq. (2.2). Consequently, 

structural formula can be constructed by summing all parameters. Final DoF equation of 

manipulator shown in Figure 2.6 will be sum of eight and DoF of legs.  

 

 

First loop 

three platforms connected by a hinge and a loop. 

Hinge Connected to the 

legs

Connected to the 

legs

 
 

Figure 2.6. Serial Euclidean robot manipulator connected by a hinge and a loop 
 
 

 
By combining Eqs. (2.3) and (2.8), the general structural formula of serial Euclidean 

robot manipulator connected by several hinges and loops can be defined as follows,  

 

 

( ) ( )
1 1

lcn

h L L l l
L l

M j f fλ λ λ
= =

= + + − + −∑ ∑  (2.10) 
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The general formula of motion of manipulators with relative motions created by 

loops and hinges is given in the following form:  

 

 

( ) ( )
1 1

lc n

l l h L L
l L

m c d D j fλ λ
= =

= + + − + + −∑ ∑  (2.11) 

 
 

Example 4. Design a serial Euclidean robot manipulator with 4lc = , 4M = , 6lλ = , 

1n = , 3Lλ =  and 1hj = .  Assume that kinematic pairs of the loop and hinge are configured 

as kinematic chain in Figure 2.7. Find the number of kinematic pairs on each leg. 

 

 
 

First loop 

Configuration of  three platforms connected by a 

hinge and a loop. 

Hinge

Connected to the 

legs

Connected to the 

legs

Loop

 

 

Figure 2.7. Configuration of kinematic pairs of the branch-loop and hinge 

 

 

By using Eq.(2.10), the total degrees of freedom of the legs can be found as, 

( )
1 1

l h L L l l
l L

l nc

f M j f cλ λ λ
= =

= − − − − + ⋅∑ ∑ 4 6 1 1 6 4 20= − − − + ⋅ = , and the number of 

kinematic pairs on each leg will be
4

1

1

5l l l
l

j c f−

=

= =∑ . Using exchangeability of kinematic 

pairs the new Euclidean serial-parallel manipulator can be designed as shown in Table 2.4.   
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The motion of platforms can be calculated by using Eq.(2.11) as, 

( ) ( )
1 1

l l h L L
l L

l nc

m c d D j fλ λ
= =

= + + − + + −∑ ∑  ( ) ( ) ( ) ( ) ( )6 4 1 3 1 3 1 3 1 3 1 4 3 4= + + − + − + − + − + + − = . 

 

 
Table 2.4. New Serial-Parallel Euclidean Platform Robot Manipulator with one loop and 

hinge 

 

Structural bonding 
Illustration 

λL λl cl lf∑  dl m M 

 

3 6 4 20 1,1,1,1 4 4 

 
 

 

A lot of new serial-parallel EPRMs can be generated by combining one DoF branch 

loops that are depicted in Table 2.5. For instance, a new advanced serial-parallel EPRM 

(Table 2.6) is constructed by selecting three branch loops as 3Lλ = , 4Lλ =  and 5Lλ = . 

The variation of structures is very much when two or more DoF branch loops in different 

subspaces are considered. As a conclusion of this chapter, all formulations for generating 

new EPRMs are tabulated in Table 2.7.   
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Table 2.5. One DoF Branch Loops with Variable General Constraints 
 

# λ Geometrical interpretations One DoF branch loops  

1 
 

3Lλ =  

 
All axes are parallel 

R

R

R
R

 
e1 // e2 // e3 // e4 

2 
 

4Lλ =  

 
Linear and angular constraints a3=a5, α1= α5, α2= α3 

3 
 

5Lλ =  

some axes are intersect in one 
point  and some are parallel to 

each other 

R

R
R

R

R

R

 
axes e1, e2, e3 are parallel to each other  
and e4, e5, e6 are intersect in one point 

4 
 

6Lλ =  

 
All axes have arbitrary direction 
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Table 2.6. New Advanced Serial-Parallel Euclidean Platform Robot Manipulator 
 

Structural bonding 
Illustration 

λL λl cl lf∑  dl m M 

 

3, 4, 5 6 4 19 1,1,1,1 5 4 

 
 
 

Table 2.7. New mobility formulations( 1. parallel EPRM , 2. serial EPRM, 3. Parallel 

EPRM with branch-loops, 4. serial-parallel EPRM ) 

 

 
Mobility of 

legs lM  

Mobility of single 
platform 

PM  

Mobility 
of 

hinges 

HM  

Mobility of 
branch-loops 

BLM  

Mobility equation 

l p H BLM M M M M= + + +  

1 ( )
1

l l
l

lc

f λ
=

−∑  λ  - - ( )
1

l l
l

lc

M fλ λ
=

= + −∑  

2 ( )
1

l l
l

lc

f λ
=

−∑  λ  hj  - ( )
1

h l l
l

lc

M j fλ λ
=

= + + −∑  

3 ( )
1

l l
l

lc

f λ
=

−∑  λ  - ( )
1

L L
L

n

f λ
=

−∑
 

( ) ( )
1 1

L L l l
L l

ln c

M f fλ λ λ
= =

= + − + −∑ ∑  

4 ( )
1

l l
l

lc

f λ
=

−∑  λ  hj  ( )
1

L L
L

n

f λ
=

−∑
 

( ) ( )
1 1

h L L l l
L l

ln c

M j f fλ λ λ
= =

= + + − + −∑ ∑
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CHAPTER 3 

 

GEOMETRIC DESIG� OF PARALLEL ROBOT 

MA�IPULATORS 

 

3.1. Introduction to Geometric Design of Manipulators 

 

Objective of geometric design is to determine the dimensions of all construction 

parameters of manipulator’s link and joint that can satisfy a desired task. Dimensional 

synthesis is a part of the geometric design of mechanism. Although geometric design of 

mechanism begins generation of desired motion, it continues with design of cross-sections 

of links. The first is related to kinematics of mechanism whereas the second one is related 

to dynamics. Dimensional synthesis includes three common tasks which are function, path, 

and motion generation. Function generation task is to design dimensions of a mechanism or 

a robot, which satisfies a specified function between the motion of input and output link. In 

path generation task, the position of the end effector’s tip point, whose motion creates a 

path, is correlated to the given input. In motion generation task, a specified motion is 

generated by a body, which is generally end link of the serial robots or the platform of the 

parallel robots. Necessary equations for both synthesis and analysis problems are same but 

different parameters of the same mechanism are calculated. Therefore, kinematic equations 

are derived by using same methods. Methods for kinematic equations can be found in 

Chapter 4.    

 

 Precision points-poses: Continuous desired task is described discretely by using 

precision points-poses. Our aim is to reach these points- poses by calculating link and joint 

parameters in synthesis problem. Function and path generation problems are solved with 

precision points whereas motion generation problem is solved with precision poses. In 

function generation synthesis, precision points are calculated by using given function  

( )F x  for a selected input value x (Figure 3.1.a).  On the other hand, precision points for 
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path generation are selected on a given trajectory. In Figure 3.1.b, five precision points can 

be described by vectors r1,r2…and r5.  From basic kinematics, the vectors are written as 

i i ix y= +r i j where 1,...,5i = . In order to define the desired motion, some precision poses 

are depicted in Figure 3.1.c. The coordinate system  1 1 1O x y  defines the first pose. There are 

three independent parameters for the coordinate system: position of origin 1O  and direction 

of axis x or y.        

 

 

( ) sin( )F x x=

(a) 

x

y Precision 

points
1 2

3
4

5

Desired trajectory

r1 r2 r3
r4

r5

 

(b) 

 

(c) 

 

Figure 3.1. Precision points for (a) function generation (b) path generation (c) motion 

generation 
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Exact Synthesis:  If the number of construction parameters of manipulator–

mechanism are equal to the number of given precision points or poses, and then synthesis is 

called exact synthesis due to the fact that precision points or poses are exactly reached by 

designed manipulator-mechanism. However, points between precision points are 

unpredictable. Interpolation solution method is an exact synthesis due to equality of 

parameters and precision points. 

   Approximation Synthesis:  When the number of construction parameters of 

manipulator–mechanism are less than the number of given precision points or poses, the 

synthesis is called approximation synthesis. The precision points or poses are approximated 

by designed manipulator-mechanism. However, precision points have some errors in this 

synthesis. The ultimate purpose is to optimize these errors by varying design parameters. 

The well known approximation techniques are least square and Chebsevy’s approximation.  

Genetic algorithm or neural network is non-algebraic methods or in other words soft 

computing techniques. But, nowadays, they are very popular techniques because 

technology of personal computers is developing very fast.  

  Function generation synthesis:  It is generally applied to mechanism. Mechanism 

construction parameters are designed in such a way that motion of input and output 

variables of the mechanism are adjusted with a given function. For example, variation of 

output variable is described as a function of variation of input variable in Figure 3.2.  

 

 

s ( )f s

 
 

Figure 3.2. Function generating four-bar mechanism 
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Path generation synthesis:  Desired trajectory that passes through some precision 

points must be generated by construction parameters of mechanism-manipulator for the 

specified input values (Figure 3.3).      

 

 

y

x
Input

x2

y2

Precision 

points

 
 

Figure 3.3. Path generating four-bar mechanism 

 

 

Motion generation synthesis:  A specified coordinate system attached to a rigid 

body of mechanism-manipulator must pass through a set of precision poses after designing 

construction parameters. For instance, coordinate system M M MO x y  must be aligned to 

firstly 1 1 1O x y  pose and then 2 2 2O x y  pose (Figure 3.4).  

 

 

 
 

Figure 3.4. Motion generating four-bar mechanism 
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3.2. Function Generation Synthesis of Planar Seven Link Mechanism 

 

The planar seven link mechanism consists of three planar RR dyads. In Figure 3.5 , 

points  (A D P), (B E P) and  (C F P) defines the position of planar dyads. The end point of 

all dyads must be at point P for every motion of mechanism. Therefore, loop equation for 

each dyad will be as follows, 

 

( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

cos cos

sin sin

x x

y y

P A L L

P A L L

θ θ

θ θ

= + +

= + +
 (3.1a) 

( ) ( )
( ) ( )

3 1 4 2

3 1 4 2

cos cos

sin sin

x x

y y

P B L L

P B L L

β β

β β

= + +

= + +
 (3.1b) 

( ) ( )
( ) ( )

5 1 6 2

5 1 6 2

cos cos

sin sin

x x

y y

P C L L

P C L L

ψ ψ

ψ ψ

= + +

= + +
 (3.1c) 

 

 

 
 

Figure 3.5. Planar seven link mechanism 
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3.2.1. Design Equation 

 

The second angles of dyads 2θ , 2β  and 2ψ  must be eliminated from Eqs. (3.1a-c), 

respectively. In order to eliminate the angle 2θ , we rewrite Eq. (3.1a) as,     

 

( ) ( )2 2 1 1cos cosx xL P A Lθ θ= − −  (3.2a) 

( ) ( )2 2 1 1sin siny yL P A Lθ θ= − −  (3.2b) 

 
 

By summing square of Eqs. (3.2a) and (3.2b) , elimination of the angle will be 

completed. The design equation for the first dyad (A D P) is therefore given as, 

 

  

( )

2 2 2 2
2 1 1 1 1 1

2 2
1 1 1

2 2 2 2

2

x y x x y y x y

x y x y

L A A L A P A P L A c L A s

L P c P s P P

θ θ

θ θ

= + + − − + +

− + + +
 (3.3) 

 

 

The procedure of the elimination for other two angles 2β  and 2ψ  is completely 

same. Therefore, we have two additional design equations for the second and third dyads 

given in Eqs.(3.4) and (3.5), respectively.  

 

 

( )

2 2 2 2
4 3 3 1 3 1

2 2
3 1 1

2 2 2 2

2

x y x x y y x y

x y x y

L B B L B P B P L B c L B s

L P c P s P P

β β

β β

= + + − − + +

− + + +
 (3.4) 

 

( )

2 2 2 2
6 5 5 1 5 1

2 2
5 1 1

2 2 2 2

2

x y x x y y x y

x y x y

L C C L C P C P L C c L C s

L P c P s P P

ψ ψ

ψ ψ

= + + − − + +

− + + +
 (3.5) 
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3.2.2. Synthesis for four precision points   

 

Depending on the similarity of the design equations, steps of synthesis formulation 

for each dyad will be exactly same. Only terms for design parameters and input angles in 

the formulations will change. Therefore, in this section, explanation of just one dyad’s 

synthesis is sufficient to understand full mechanism synthesis. Interpolation approximation 

is used due to the fact that number of precision points is equal to number of design 

parameters. 

Now, let’s consider synthesis of the first dyad. The design equation will be written 

for four precision points as follows,   

 

 

( )

2 2 2 2
1 2 1 1 1 1

2 2
1 1 1

2 2 2 2

2 0

x y x xi y yi x i y i

xi i yi i xi yi

A A L L A P A P L A c L A s

L P c P s P P

θ θ

θ θ

+ + − − − + +

− + + + =
                1,..., 4i =  (3.6) 

 
 

Eq. (3.6) can be rewritten as, 
 

 

1 1 2 2 3 3 4 4 5 5 6 6 0i i i i i i iP f P f P f P f P f P f F+ + + + + − =  (3.7) 

 
 

where 2 2 2 2
1 1 2x yP A A L L= + + − ,  1 1if = , 2 xP A= , 2 2i xif P= − , 3 yP A= , 3 2i yif P= − , 4 1P L= , 

( )4 1 12i xi i yi if P c P sθ θ= − + , 5 2 4P P P= ,  5 12i if cθ= , 6 3 4P P P= , 6 12i if sθ= ,  

( )2 2
i xi yiF P P= − + , and 1,..., 4i = . Two nonlinear parameters are defined as 

1λ  and 2λ  in 

place of 5P  and 6P , respectively.  

 

 

2 4 1 0P P λ− =  (3.8) 

 
 

3 4 2 0P P λ− =  (3.9) 
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New form of design equation with nonlinear parameters
1λ  and 2λ   is obtained by 

substituting Eqs. (3.8) and (3.9) into Eq. (3.7). If iF  and nonlinear parameters ( 1λ , 2λ ) are 

collected to left side of this equation, our final design equation becomes; 

 

 

1 1 2 2 3 3 4 4 1 5 2 6 1,..., 4i i i i i i iP f P f P f P f F f f iλ λ+ + + = − − =  (3.10) 

 
 

The constructional parameters can be formulated as 1 2k k k kP l m nλ λ= + + , 

1,..., 4k =  which are linearly proportional to 1λ  and 2λ . If these construction parameters 

are substituted into Eq. (3.10), four equations for each pose are obtained as follows;   

 

 

( ) ( )
( )

1 1 2 2 3 3 4 4 1 1 1 2 2 3 3 4 4

2 1 1 2 2 3 3 4 4 1 5 2 6 1,..., 4

i i i i i i i i

i i i i i i i

l f l f l f l f m f m f m f m f

n f n f n f n f F f f i

λ

λ λ λ

+ + + + + + +

+ + + + = − − =
 (3.11) 

 
 

Note that Eq. (3.11) refers to 12 linear system of equation due to the fact that 

coefficients of both sides must be equal. Therefore, Eq.(3.11) can be represented in matrix 

form:  

 

[ ]
[ ]

[ ] 612 1 12 112 12

A

A

A
× ××

     
     ⋅ =     

         

5

0 L F

M f

0 � f

 (3.12) 

 
 

where  [ ]

11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

f f f f

f f f f
A

f f f f

f f f f

 
 
 =
 
 
 

, 

1

2

3

4

l

l

l

l

 
 
 =
 
 
 

L   , 

1

2

3

4

m

m

m

m

 
 
 =
 
 
 

M , 

1

2

3

4

n

n

n

n

 
 
 =
 
 
 

� ,   

1

2

3

4

F

F

F

F

 
 
 =
 
 
 

F ,   
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51

52

53

54

f

f

f

f

− 
 − =
 −
 

− 

5f ,  

61

62
6

63

64

f

f

f

f

− 
 − =
 −
 

− 

f . 

 

 

In order to continue synthesis problem, the determinant of square matrix in Eq. 

(3.12) must not equal to be zero. If it is zero, vector ( )T
L M �  cannot be determined. 

Assuming that the determinant of matrix is not zero, vector ( )T
L M �  is calculated by 

using inverse of square matrix.  Then, nonlinear parameters 1λ  and 2λ  can be computed by 

rewriting Eqs. (3.8) and (3.9) as, 
 

 

2 1P ξ λ=  (3.13) 

3 2P ξ λ=  (3.14) 

 
 
where 41/ Pξ = . Remember that the construction parameters were defined 

as 1 2k k k kP l m nλ λ= + + , 1,..., 4k = . If 2P , 3P  and  4P  are substituted into Eqs. (3.13), (3.14) 

and 41/ Pξ = , one can obtain three equations: 

 

 

( )2 1 2 2 2 0l m nλ ξ λ+ − + =  (3.15) 

( )3 1 3 2 3 0l m nλ λ ξ+ + − =  (3.16) 

( )4 4 1 4 2 1 0l m nξ λ λ+ + − =  (3.17) 

 

 

Our purpose is to find nonlinear parameters 1λ  and 2λ  in terms of ξ  .Therefore, 

linear systems of Eqs. (3.15) and (3.16) is represented as,   

 

 

2 2 21

3 3 32

m n l

m n l

ξ λ
ξ λ

− −    
=    − −    

 (3.18) 
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Solution of Eq.(3.18) gives two results for  
( )

( )( )
3 2 2 3 2

1 2
2 3 3 2 2 3

l n l n l

m n m n m n

ξ
λ

ξ ξ

− +
=

− − + +
 

and 
( )

( )( )
2 3 3 2 3

2 2
2 3 3 2 2 3

l m l m l

m n m n m n

ξ
λ

ξ ξ

− +
=

− − + +
.  Substituting 1λ  and 2λ  into Eq. (3.17) , we get 

a cubic equation as follows, 

 

3 2
2 1 0 0a a aξ ξ ξ+ + + =  (3.19) 

 
 

where ( )2 3 4 4 3 2 4 4 2 41 /a l n l n l m l m l= − + − − ,   

( ) ( ) ( )( )1 2 3 3 4 4 3 2 4 2 2 4 3 2 3 3 2 4 4/a m n l m l m n l m l m n l m l m n l= + + − + − + − , 

( )0 3 2 2 3 4/a m n m n l= − . 

 
In the case of 4 0l = , cubic equation becomes quadratic equation and two distinct 

solutions can be found for ξ .  The cubic algebraic equation was first solved by Tartaglia 

but made public by Cardano in his book Ars Magna (1545). The three roots of cubic 

algebraic equation can be given as follows: 

 

( )

( ) ( )

( ) ( )

2
1

2
2

2
3

3

3

3 2

3

3 2

a
s t

s t s ta

s t s ta

ξ

ξ

ξ

= − + +

− − +
= − +

− + +
= − −

 
Â

Â

 

 

where ( ) ( )2 3
1 2 1 2 0 23 / 9, 9 27 2 / 54q a a r a a a a= − = − − ,  3 2u q r= + , ( )1/3

s r u= +  and 

( )1/3

t r u= − . 

Once ξ  values are found, 1λ  and 2λ  can be computed by using Eq. (3.18). 1λ  and 

2λ  are utilized to calculate kP   1,..., 4k = . Finally, the design parameters can be found by 

substituting kP  values into equations 2xA P= , 3yA P= , 1 4L P=  and  2 2 2
2 1 1x yL A A L P= + + − .  
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Then, design parameters of other two dyads ({ 3 4, , ,x yB B L L } and { 5 6, , ,x yC C L L }) are 

calculated by using similar procedure. 

 

3.2.3. Synthesis for any precision points   

 

 In order to design the mechanism for any precision points, least square 

approximation is applied to problem. For interpolation approximation, our objective 

function (Eq. (3.7)) will be changed as follows, 

 

( ) ( ) ( )
2 2

1 2 3 4
1 1

, , , ,
m m

i i i
i i

F P P P P F x F x δ
= =

= − =  ∑ ∑c  (3.20) 

 
 

where ( ) 1 1 2 2 3 3 4 4 1 5 2 6,i i i i i i iF x P f P f P f P f f fλ λ= + + + + +c , ( )i iF x F= . Note that 2
iδ  is 

error between two functions.  

 

By taking derivatives of Eq.(3.20) with respect to 1 2 3 4, , andP P P P , we get four 

equations as:   

 

( ) ( )1 2 3 4
1 1 1 2 2 3 3 4 4 5 5 6 6

11

, , ,
2

m

i i i i i i i i
i

F P P P P
f P f P f P f P f P f P f F

P =

∂
= + + + + + −

∂ ∑  (3.21) 

 
( ) ( )1 2 3 4

2 1 1 2 2 3 3 4 4 5 5 6 6
12

, , ,
2

m

i i i i i i i i
i

F P P P P
f P f P f P f P f P f P f F

P =

∂
= + + + + + −

∂ ∑  (3.22) 

 

( ) ( )1 2 3 4
3 1 1 2 2 3 3 4 4 5 5 6 6

13

, , ,
2

m

i i i i i i i i
i

F P P P P
f P f P f P f P f P f P f F

P =

∂
= + + + + + −

∂ ∑  (3.23) 

 

( ) ( )1 2 3 4
4 1 1 2 2 3 3 4 4 5 5 6 6

14

, , ,
2

m

i i i i i i i i
i

F P P P P
f P f P f P f P f P f P f F

P =

∂
= + + + + + −

∂ ∑  (3.24) 

 
The four equations can be rearranged by using Gauss form as,  
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[ ] [ ] [ ] [ ] [ ] [ ] [ ]1 1 1 2 1 2 3 1 3 4 1 4 1 1 5 1 2 6 1f f P f f P f f P f f P F f f f f fλ λ+ + + = − −  (3.25) 

  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]2 1 1 2 2 2 3 2 3 4 2 4 2 1 5 2 2 6 2f f P f f P f f P f f P F f f f f fλ λ+ + + = − −  (3.26) 

  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]3 1 1 3 2 2 3 3 3 4 3 4 3 1 5 3 2 6 3f f P f f P f f P f f P F f f f f fλ λ+ + + = − −  (3.27) 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]4 1 1 4 2 2 4 3 3 4 4 4 4 1 5 4 2 6 4f f P f f P f f P f f P F f f f f fλ λ+ + + = − −  (3.28) 

 

where 
1

m

j k ji ki
i

f f f f
=

  =  ∑ , [ ]
1

m

k i ki
i

F f F f
=

= ∑ , 1,2,3, 4,5,6j =  and 1, 2,3,4k = .  

Eqs. (3.25-28) can be combined in matrix form as follows, 

 

[ ]
[ ]

[ ] 612 1 12 112 12

T

T

T
× ××

     
     ⋅ =     

         

5

0 L F

M f

0 � f

 (3.29) 

 

where  [ ]

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1 1 2 1 3 1 4 1

2 1 2 2 3 2 4 2

3 1 3 2 3 3 4 3

4 1 4 2 4 3 4 4

f f f f f f f f

f f f f f f f f
T

f f f f f f f f

f f f f f f f f

 
 
 =
 
 
  

, 

1

2

3

4

l

l

l

l

 
 
 =
 
 
 

L   , 

1

2

3

4

m

m

m

m

 
 
 =
 
 
 

M , 

1

2

3

4

n

n

n

n

 
 
 =
 
 
 

� ,   

[ ]
[ ]
[ ]
[ ]

1

2

3

4

F f

F f

F f

F f

 
 
 =
 
  
 

F ,  

[ ]
[ ]
[ ]
[ ]

5 1

5 2

5 3

5 4

f f

f f

f f

f f

 −
 

− =
 −
  − 

5f ,  

[ ]
[ ]
[ ]
[ ]

6 1

6 2
6

6 3

6 4

f f

f f

f f

f f

 −
 

− =
 −
  − 

f . 

 

 Vector ( )T
L M �  can be easily calculated from Eq. (3.29). Then, similar 

procedures in previous parts are utilized to calculate design parameters.   

 
 
3.2.4. Scale of Given Function 
 

Function of seven link mechanism is given in form of ( ),z f x y= . In many 

applications, it is required to scale this function to another function ( ),fψ θ β= . For 
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instance, designer may want to design seven link mechanism satisfying a differential 

function, z x y= − . Input values of function changes in the range as min maxx x x≤ ≤  and 

min maxy y y≤ ≤ . The three relations can be written max minmin

min max minx x x x

θ θθ θ −−
=

− −
,      

max minmin

min max miny y y y

β ββ β −−
=

− −
 and max minmin

min max minz z z z

ψ ψψ ψ −−
=

− −
, respectively. Therefore, we can write 

for the first input: ( ) max min
min min

max min

x x
x xθ θ

θ θ
−

= − +
−

, for the second input: 

( ) max min
min min

max min

y y
y yβ β

β β
−

= − +
−

 and for output of the system  

( )( )max min
min min

max min

,f x y z
z z

ψ ψ
ψ ψ

 −
= − + − 

.Finally, scale function is computed by substituting 

inputs in the output function (Eq. (3.30)).    

        

( ) ( )max min max min max min
min min min min min min

max min max min max min

x x y y
x y z

z z

ψ ψ
ψ θ θ β β ψ

θ θ β β
  − − −

= − + − − − − +  
− − −  

 (3.30) 

 
 

3.2.5. �umerical Example for four precision positions 
 

Let’s use function z=x-y for planar seven link mechanism in the range of 0 5x≤ ≤ , 

0 3y≤ ≤ . It is also clear that variable z will change from 0 to 2 ( 0 2z≤ ≤ ). For scaling 

purpose, also the range of angles are selected as / 6 / 3π θ π≤ ≤ , 13 / 24 11 / 8π β π≤ ≤  and 

9 / 8 35 / 24π ψ π≤ ≤ . By using Eq.(3.30), the scale function is calculated as 

( ) 37 3
, 5

60 5

π β
ψ θ β θ= − + . Eventually, four precision points are given in Table 3.1. 

Precision points are given by using functions max min
min k

n

θ θ
θ θ

− = +  
 

 and  

max min
min k

n

β β
β β

− = +  
 

 for 99n = , 25k = , 50k = , 75k =  and 90k = . 
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Table 3.1. Four precision points of planar seven link mechanism 
 

i θ (rad) β (rad) ψ (rad) 
xP (mm) yP (mm) 

1 0.655821 2.36281 3.79784 6 8 
2 0.788043 3.02392 4.06318 7 8.25 
3 0.920265 3.68502 4.32762 8 8.75 
4 0.999598 4.08169 4.48629 9 9 

 

The synthesis procedure is applied to the first, the second and the third dyads, 

respectively. Firstly, constant coefficients , ,k k kl m n  are calculated by solving linear system 

in Eq.(3.12). Then, roots of cubic equation are computed and nonlinear parameters are 

found ( 1λ  and 2λ ). After defining nonlinear parameters, design coefficients kP , 1,..., 4k =  

are determined by 1 2k k k kP l m nλ λ= + + . All coefficients and parameters are depicted in 

Table 3.2. 

 

Table 3.2. Coefficients and parameters of planar seven link mechanism 

 

# of 

dyad 
k ( ), ,k k kl m n  ( )1 2 3ξ ξ ξ  

( )1 2λ λ  

for 3ξ  

kP  

for 3ξ  

1 

1 ( )118.714, 3.7944,0.579−  0.06218 0.1102

0.06218 0.1102

0.0226

T
− − 

 − + 
 
 

Â

Â  
23.2776

482.14

T
 
 
 

 

309.546 

2 ( )10.6769, 0.0203, 0.2008− −  0.5251 

3 ( )10.702, 0.07144,0.00381−  10.8758 

4 ( )4.1853, 0.04275,0.1027− −  44.3314 

2 

1 ( )166.057, 18.8833, 11.4947− 0.6047 0.6615

0.6047 0.6615

0.04997

T
− − 

 − + 
 
 

Â

Â  
114.306

196.455

T
 
 
 

 

66.3286 

2 ( )8.6233,0.129, 0.08985−  5.712 

3 ( )10.1008,0.9795, 0.571334−  9.817 

4 ( )0.357,0.08936,0.04806  20.0116 

3 

1 ( )96.6242,7.2194, 2.7416−  
0.1409 0.2245

0.1409 0.2245

0.1409

T
− 

 + 
 
 

Â

Â  
120.021

276.763

T
 
 
 

 

204.329 

2 ( )8.2812,0.0963, 0.0537−  4.9602 

3 ( )7.8459,0.2509, 0.0958−  11.4381 

4 ( )1.4674, 0.0242,0.0926−  24.1966 
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Finally, the design parameters are calculated by using Pk design coefficients for 

each dyad. They are tabulated in Table 3.3.   

 

 

Table 3.3.  Design parameters of planar seven link mechanism 

 

# of dyad Design parameters (mm) 

1 0.5251xA =  10.8758yA =  1 44.3314L =  2 42.1223L =  

2 5.712xB =  9.817yB =  3 20.0116L =  4 21.5206L =  

3 4.9602xC =  11.4381yC =  5 24.1966L =  6 23.1642L =  

 

 

The designed planar seven link mechanism satisfies precision positions. However, 

there will be error between precision positions. This error can be defined as 

error designed desiredψ ψ ψ= −  where  designedψ  is output angle of designed mechanism whereas   

desiredψ  is equal to ( ) 37 3
, 5

60 5

π β
ψ θ β θ= − + .  Note that angle designedψ  can be calculated by 

analyzing kinematics of the designed mechanism. Therefore, the error is plotted as shown 

in Figure 3.6. 

 

20 40 60 80 100
Ò of positions

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

yerror

 

 

Figure 3.6. The error between designedψ  and desiredψ  (unit is degree) 
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3.2.6. �umerical Example for five and eight precision positions 
 

 

Number of precision points is increased for a better approximation. The function, 

scale function and range of angles in previous numerical example are used.  Five and eight 

precision points are given in Table 3.4 and Table 3.5, respectively. The design parameters 

can be calculated by using least square method. 

 
 

Table 3.4. Five precision points of planar seven link mechanism 
 

i θ (rad) β (rad) ψ (rad) 
xP (mm) yP (mm) 

1 0.655821 2.36281 3.79784 6 8 
2 0.788043 3.02392 4.06318 7 8.25 
3 0.920265 3.68502 4.32762 8 8.75 
4 0.946709 3.81725 4.38051 8.256 8.851 
5 0.999598 4.08169 4.48629 9 9 

 
 

 
Table 3.5. Eight precision points of planar seven link mechanism 

 

i θ (rad) β (rad) ψ (rad) 
xP (mm) yP (mm) 

1 0.655821 2.36281 3.79784 6 8 
2 0.682265 2.49503 3.85162 6.2085 8.0199 
3 0.788043 3.02392 4.06318 7 8.25 
4 0.840931 3.28836 4.16896 7.3807 8.4341 
5 0.877954 3.47347 4.243 7.6546 8.5794 
6 0.920265 3.68502 4.32762 8 8.75 
7 0.946709 3.81725 4.38051 8.256 8.851 
8 0.999598 4.08169 4.48629 9 9 

 
 
 

The design parameters of the mechanism are calculated by using equations in 

Chapter 3.2.3 and then they are tabulated in Table 3.6 and Table 3.7, respectively. Note that 

only design parameters of the third dyad have small change. After calculating design 

parameters, the error graph for 5 and 8 precision points are obtained. It is clear that mean 
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error of 8 points is less than mean error of 5 points. Therefore, it can be concluded that 

number of precision points is important for approximation of function. 

 

Table 3.6.  Design parameters of planar seven link mechanism for five precision points 

 

# of dyad Design parameters (mm) 

1 0.5251xA =  10.8758yA =  1 44.3314L =  2 42.1223L =  

2 5.712xB =  9.817yB =  3 20.0116L =  4 21.5206L =  

3 4.94927xC =  11.4309yC =  5 23.9647L =  6 22.9479L =  

 
 

Table 3.7.  Design parameters of planar seven link mechanism for eight precision points 

 

# of dyad Design parameters (mm) 

1 0.5251xA =  10.8758yA =  1 44.3314L =  2 42.1223L =  

2 5.712xB =  9.817yB =  3 20.0116L =  4 21.5206L =  

3 4.93605xC =  11.4106yC =  5 24.1234L =  6 23.1278L =  

 
 
 

40 50 60 70 80 90
# of positions

0.005

0.01

0.015

0.02

0.025

ψerror
2

mean of 8 points

mean of 5 points

8 points

5 points

2
errorψ

 
 

Figure 3.7. The error graph for 5 and 8 precision points  
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3.3. Function Generation Synthesis of Spherical Seven Link Mechanism 
 

Spherical seven link mechanism can be divided into three spherical dyads. A 

spherical dyad can be introduced by four construction parameters (θA, ψA, α1, α2 ) as shown 

in Figure 3.8. Synthesis of this dyad is to find the construction parameters by defining the 

desired function and position of end of the dyad. Note that synthesis of one dyad is 

sufficient to understand full mechanism synthesis.  

 

 

 
 

Figure 3.8. Spherical dyad with four design parameters 
 

 

3.3.1 Design Equation  
 

 

The direction of unit vector x4 can be represented in fixed frame as follows, 
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( ) ( ) ( ) ( )1 1

1

, , , , 0

0

x

y A A

z

C

C R z R y R x R z

C

θ ψ θ α
   
   = =   
      

4x  (3.31) 

 
where ( ), AR z θ  is three by three rotation matrix. Here, z is the axis of rotation, Aθ  is angle 

of rotation. 

Multiplying rotation matrices, the components Cx , Cy  and Cz are written as,  
 

 

( )
( )

1 1 1 1

1 1 1 1

1 1 1

x A A A A A

y A A A A A

z A A

C c c c s c s c s s

C c s c s c c s s s

C s s c c s

α θ ψ α θ θ θ θ ψ
α θ ψ α θ θ θ θ ψ

α θ ψ α ψ

+ − +  
   = + +  

   −   

 (3.32) 

 
 

The position of point B on (vector) x5 can be represented by using two angles θ  

andψ . Therefore,  

 

 

( ) ( )5

1

, , 0

0

x

y

z

B

B R z R y

B

θ ψ
   
   = =   
      

x  (3.33) 

 
 

Eq.(3.33) gives three projections of point B as,   
 

 

, ,x y zB c c B c s B sθ ψ ψ θ ψ= = = −  (3.34) 

 
 

Dot product of two unit vectors equals to cosine of angle between them. 
 

 

4 5 2. x x y y z zC B C B C B cα= + + =x x  (3.35) 
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Substituting components in Eqs.(3.32) and (3.34) into Eq.(3.35), the design 

equation or objective function is found as follows; 

 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 1 1 1 1

1 1 1 1 1

1 1 1 2 0

A A A A

A A A A A

A A A

c c c c c c s c s c s s c c c

s c c s c s c s s c s s s c c

s s s s s c c s s c

θ α ψ θ ψ θ α θ θ ψ θ α θ θ ψ

θ α ψ θ ψ α ψ θ ψ θ α ψ θ θ ψ

θ α ψ θ θ ψ α ψ ψ α

+ −

+ − +

+ + − =

 (3.36) 

 
 

3.3.2 Three precision positions 
 

Let give 0Aψ =  in Eq.(3.36) and reduce the number of design parameter to three.  

By dividing both sides of Eq.(3.36) to 1 As cα θ , objective function will be: 

 

 

( ) ( ) ( ) ( )
( ) ( )( )

2 1 1 1 1 1

1 1 1

/ / 1/ /

/ 0

A i A i i A A i i i

A A i i i i

c s c c s c c s s s c c c c

s c c s c c c s

α α θ α α θ θ θ ψ θ θ θ θ ψ

θ α θ α ψ θ ψ θ

− + − −

+ + =
 (3.37) 

 
 

where index of  precision positions is 1,2,3i = . Objective function can be rewritten as, 

 

 

1 1 2 2 3 3 4 4 5 5 0i i i i i iP f P f P f P f P f F+ + + + − =  (3.38) 

 
 

where ( )1 2 1/ AP c s cα α θ= , 1 1if = − , 2 1 1/P c sα α= , 2i i if c cθ ψ= , 3 /A AP s cθ θ= , 

3 1i i i if c c cθ θ ψ= − ,  4 2 3P P P= , 4i i if s cθ ψ= , 2
5 31P P= + , 5 1i i if s sθ ψ= −  and 

1i i i iF c c sθ ψ θ= −  

 

 
Let assume that relation of linear terms and nonlinear terms are as follows, 
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1 1 2 4 3 5P K K P K P= + +  (3.39) 

2 4 5 4 6 5P K K P K P= + +  (3.40) 

3 7 8 4 9 5P K K P K P= + +  (3.41) 

 
 
 

Substituting Eqs.(3.39-3.41) into Eq.(3.38), we obtain,  
 

 

( ) ( )
( )

1 1 4 2 7 3 4 2 1 5 2 8 3

5 3 1 6 2 9 3 4 4 5 5

i i i i i i

i i i i i i

K f K f K f P K f K f K f

P K f K f K f F P f P f

+ + + + +

+ + + = − −
 (3.42) 

 

 
System of linear equations (Eqs.(3.42)) is written in matrix form as follows,  
 

 

[ ]
[ ]

[ ]
9 1 4

5 9 19 9

A

A

A
×

××

   
   ⋅ =   

     

0 F

K f

0 f

 (3.43) 

 
 

where [ ]
11 21 31

12 22 32

13 23 33

f f f

A f f f

f f f

 
 =  
  

,  ( )1 4 7 2 5 8 3 6 9

T
K K K K K K K K K=K , 

 

1

2

3

F

F

F

 
 =  
 
 

F , 
41

4 42

43

f

f

f

− 
 = − 
 − 

f  and
51

5 52

53

f

f

f

− 
 = − 
 − 

f . 

 

 

 Constant coefficients in vector K can be computed by solving matrix Eq. (3.43). 

Recall the equalities 2
5 31P P= + , 4 2 3P P P=  and substitute them into Eqs.(3.39-3.41). 

Constant  2P  is defined with respect to 3P  by using Eqs.(3.40,3.41) as follows,  
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( ) ( )( )2 6 7 4 9 6 3 9 6 8 5 9 3/P K K K K K P K K K K K P= − − − + − +  (3.44) 

 
 

 

Substituting calculated 2P  into Eq.(3.41), fourth order equation is obtained as, 

 

 

4 3 2
1 3 2 3 3 3 4 3 5 0D P D P D P D P D+ + + + =  (3.45) 

 
 

where  ( )2 2 2 2 3 2 4
1 5 6 8 9 5 6 8 9 5 92D K K K K K K K K K K= − + − ,  

2 2 2 2 3 4
2 5 9 5 7 9 4 5 8 9 6 8 9 5 92 2 2 2 2D K K K K K K K K K K K K K K= − − + − + , 

( )2 2 2 2 2 2 2 4 2 4
3 5 7 5 7 4 8 4 5 7 8 4 8 6 8 9 9 5 91 4 2 2D K K K K K K K K K K K K K K K K K K= + + − − + − − − ,

( )2 2 3 4
4 7 5 7 4 7 8 9 6 8 9 5 92 2 2 2 2D K K K K K K K K K K K K= − − + − + , 2 2 4

5 7 9 9D K K K= − . This 

equation can be solved analytically and we can find at most four roots. 

 

Once 3P  is computed, 1P  and 2P  can also be determined by using Eqs.(3.39) and 

(3.40), respectively. 

 

 

( )0.52
1 1 2 2 3 3 31P K K P P K P= + + +  (3.46) 

 
 

Finally, construction parameters are computed as given in Eq.(3.47). 

 

 

( )3arctanA Pθ = ,  ( )1 2arccot Pα = , ( )2 1 1arccos AP s cα α θ=  (3.47) 
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3.3.3 Four precision positions 

Objective function can be obtained by dividing both sides of Eq.(3.36) to 

1 A Ac c cα ψ θ . Therefore, Eq.(3.36) is reduced to 

 

( ) ( )( ) ( )( )
( ) ( ) ( )( )

( )( ) ( ) ( )( )
( ) ( )( )

2 1 1 1 1 1 1 1

1 1 1

1 1 1

1 1 1

/ / /

/ /

/ /

/ 0

A A A i i i A i i

A A i i A A A i i i

A A A i A A i i i

A A A A i i i i i

c c c c s c c c s s s c c s s

s c s c s s c c c c c c

s c c s s s c c s c c

s s s c c c s s c c c

α α θ ψ α α ψ θ θ ψ α α θ θ ψ

θ θ θ ψ α θ α θ ψ θ θ ψ

ψ ψ θ ψ α ψ α ψ θ θ ψ

α ψ θ α ψ θ θ θ ψ θ ψ

− + −

− −

+ +

+ + =

 (3.48) 

 

where i=1,2,3,4. Eq. (3.48) is rewritten as follows,  
 

 

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 0i i i i i i i i iP f P f P f P f P f P f P f P f F+ + + + + + + − =  (3.49) 

 

 

where ( )1 2 1/ A AP c c c cα α θ ψ= , 1 1if = − , ( )2 1 1/ AP s c cα α ψ= , 2 1i i i if c s sθ θ ψ= , 

3 /A AP s cθ θ= , 3i i if s cθ ψ= − , ( ) ( )4 1 1/A AP s s c cα ψ α ψ= , 4 1i i i if s c cθ θ ψ= , 

( ) 2 2 2
5 1 1 3 2 4/ 1AP s c c P P Pα α θ= = + − , 5 1i i if s sθ ψ= − ,  6 2 3P P P= , 6 1i i i if c c cθ θ ψ= − , 

( ) 2 2 2
7 3 4 2 4/ 1 /A A AP s c c P P P Pψ ψ θ= = + − , 7i if sψ= ,  8 3 4P P P= , 8 1i i i if s s cθ θ ψ=  and  

i i iF c cθ ψ= − .  

In order to convert the nonlinear system (Eq. (3.49)) to linear system, Eqs.(3.50-

3.53) are utilized.   

 

1 1 2 5 3 6 4 7 5 8P - - P - P - P - P= + + + +  (3.50) 

2 6 7 5 8 6 9 7 10 8P - - P - P - P - P= + + + +  (3.51) 

3 11 12 5 13 6 14 7 15 8P - - P - P - P - P= + + + +  (3.52) 

4 16 17 5 18 6 19 7 20 8P - - P - P - P - P= + + + +  (3.53) 
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We substitute Eqs.(3.50-3.53) into Eq.(3.49) to find constant parameters 

, 1, 2, , 20j- j = … : 

 

( ) ( )
( ) ( )
( )

1 1 6 2 11 3 16 4 5 2 1 7 2 12 3 17 4

6 3 1 8 2 13 3 18 4 7 4 1 9 2 14 3 19 4

8 5 1 10 2 15 3 20 4 5 5 6 6 7 7 8 8

i i i i i i i i

i i i i i i i i

i i i i i i i i i

- f - f - f - f P - f - f - f - f

P - f - f - f - f P - f - f - f - f

P - f - f - f - f F P f P f P f P f

+ + + + + + +

+ + + + + + + +

+ + + + = − − − −

 (3.54) 

 
Eq.(3.54) can be written in matrix form as follows, 
 

 

[ ]
[ ]

[ ]
[ ]

[ ]

5

20 1 6

7

8 20 120 20

.

A

A

A

A

A

×

××

   
   
   
   =
   
   

     

F0 0 0 0

f0 0 0 0

� f0 0 0 0

f0 0 0 0

f0 0 0 0

 (3.55) 

 
 

where [ ]

11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

f f f f

f f f f
A

f f f f

f f f f

 
 
 =
 
 
 

,  

1

2

3

4

F

F

F

F

 
 
 =
 
 
 

F ,  

51

52
5

53

54

f

f

f

f

− 
 − =
 −
 

− 

f , 

61

62
6

63

64

f

f

f

f

− 
 − =
 −
 

− 

f  , 

71

72
7

73

74

f

f

f

f

− 
 − =
 −
 

− 

f ,  

81

82
8

83

84

f

f

f

f

− 
 − =
 −
 

− 

f  and ( )1 6 11 16 2 7 12 15 20

T
- - - - - - - - -=� … . 

 

 
Eqs.(3.50-3.53) is written in matrix form as follows, 
 

 

8.=14 5P U P  (3.56) 
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where  

1

2

3

4

1

P

P

P

P

 
 
 
 =
 
 
  

14P ,  

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

1 0 0 0 0

- - - - -

- - - - -

- - - - -

- - - - -

 
 
 
 =
 
 
  

U ,  
5

8 6

7

8

1

P

P

P

P

 
 
 
 =
 
 
  

5P . 

 
 

 By taking inverse of matrix, simpler equations can be obtained as given in Eq. 
(3.57).   
 

 

1
8 .−=5 14P U P  (3.57) 

 
 

where 
1 2 3 4 5

1
6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

0 0 0 0 1

M M M M M

M M M M M

M M M M M

M M M M M

−

 
 
 
 =
 
 
  

U .( 1M , 2M , …, 20M  are given in Appendix A) 

 

 

We convert Eqs.(3.50-3.53) into Eqs.(3.58-3.61). Note that these equations can be 

solved more easily.  

 

 

2 2 2
3 2 4 1 1 2 2 3 3 4 4 51 P P P M P M P M P M P M+ − = + + + +  (3.58) 

2 3 6 1 7 2 8 3 9 4 10P P M P M P M P M P M= + + + +  (3.59) 

2 2 2
3 4 2 4 11 1 12 2 13 3 14 4 151 /P P P P M P M P M P M P M+ − = + + + +  (3.60) 

3 4 16 1 17 2 18 3 19 4 20P P M P M P M P M P M= + + + +  (3.61) 

 

 

Once values of 1P , 2P , 3P  and 4P  are found, design parameters can be determined 

in Eq.(3.62). 
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( )3arctanA Pθ = ,  4

2

arctanA

P

P
ψ

 
=  

 
,  ( )1 2arctan AP cα ψ= ,  

( )2 1 1arccos AP c cα α ψ=  

(3.62) 

 

3.3.4 �umerical Examples 

 Same function z=x-y is given for spherical seven link mechanism in the range of 

2 5x≤ ≤ , 1 3y≤ ≤ . Therefore, the variable z will change from 1 to 2 (1 2z≤ ≤ ). For 

scaling purpose, also the range of angles are selected as 1/ 8 / 2π θ π≤ ≤ , 1/ 9 / 3π β π≤ ≤  

and 13 / 8 3 / 4π ψ π≤ ≤ . By using Eq.(3.30), scale function is calculated as 

( )1 1 1 1, 1.1781 3.375 3ψ θ β β θ= − + . Four precision points are given in Table 3.4. Precision 

points are given by using functions 1max 1min
1 1min k

n

θ θ
θ θ

− = +  
 

 and  

1max 1min
1 1min k

n

β β
β β

− = +  
 

 for 99n = , 25k = , 50k = , 75k =  and 90k = . 

 

 

Table 3.8. Four precision points of spherical mechanism 

 

i 
1θ (rad) 1β (rad) 1ψ (rad) θ (rad) ψ (rad) 

1 0.690198 0.525362 1.4756 0.19635 0.349066 
2 0.987698 0.701658 1.7731 0.2618 0.31416 
3 1.2852 0.877954 2.0706 0.31416 0.28559 
4 1.4637 0.983731 2.24909 0.39269 0.261799 

 

 

Firstly, we investigate three precision positions by using first three numerical data 

in Table 3.8 .The parameters are computed by Eqs.(3.39-3.41, 3.43-3.47) and they are 

tabulated in Table 3.9. 
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Table 3.9. Construction parameters of spherical seven link mechanism (three precision 

points) 

 

i K 1P , 2P , 3P  θA, α1, α2 

1 

1

4

7

2

5

8

3

6

9

-16.3058

-18.0263

-0.23433

-9.0804

-10.4048

-0.45835

12.9661

14.6205

0.40933

K

K

K

K

K

K

K

K

K

   
   
   
   
   
   
   =
   
   
   
   
   
   

  

 

1

-0.982461

-7.96286
P

 
=  

 
 

2

-0.714151

-8.70371
P

 
=  

 
 

3

0.284276

-0.05878
P

 
=  

 
 

15.8692

-3.36398Aθ
° 

=  ° 
 

1

-54.4674

-6.55418
α

° 
=  ° 

 

2

39.7321

24.8602
α

° 
=  ° 

 

2 

1

4

7

2

5

8

3

6

9

-12.6545

-14.5615

-0.761614

-9.56721

-11.4568

-1.01397

6.05179

7.19934

0.516531

K

K

K

K

K

K

K

K

K

   
   
   
   
   
   
   =
   
   
   
   
   
   

  

 

1

-2.11919

-3.3929
P

 
=  

 
 

2

-1.99428

-3.51855
P

 
=  

 
 

3

0.226926

0.094551
P

 
=  

 
 

12.7853

5.40129Aθ
° 

=  ° 
 

1

-26.6308

-15.8656
α

° 
=  ° 

 

2

22.1266

22.5663
α

° 
=  ° 

 

3 

1

4

7

2

5

8

3

6

9

-8.40852

-9.12854

0.145562

-1.99675

-2.38987

-0.257047

5.2828

6.09457

-0.071841

K

K

K

K

K

K

K

K

K

   
   
   
   
   
   
   =
   
   
   
   
   
   

  

 

1

-5.07339

-2.37087
P

 
=  

 
 

2

-5.36921

-2.13345
P

 
=  

 
 

3

-0.190533

0.161191
P

 
=  

 
 

-10.7875

9.15681Aθ
° 

=  ° 
 

1

-10.5503

-25.1137
α

° 
=  ° 

 

2

24.1447

6.58134
α

° 
=  ° 

 

 

 

By using all positions in Table 3.8, synthesis of four precision positions is solved. 

After the computation of parameters in Eqs.(3.55-3.62), they are tabulated in Table 3.10. 
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Table 3.10. Construction parameters of spherical seven link mechanism (four precision 

points) 

 

i 
1P , 2P , 3P , 4P  θA, ψA ,α1, α2 

1 

1

5.04809

0.82041

1.75752

-0.92004

0.59618

P

 
 
 
 =
 
 
 
 

, 2

-28.4843

3.17962

-0.09347

0.58928

-0.075434

P

 
 
 
 =
 
 
 
 

 

3

0.22504

-0.80124

-0.80124

0.58928

-0.07543

P

 
 
 
 =
 
 
 
 

, 4

11.0718

0.72963

0.07987

-0.32375

-0.10495

P

 
 
 
 =
 
 
 
 

 

12.6826

2.40836

-38.7031

30.5099

-4.31389

Aθ

° 
 ° 
 = °
 

° 
 ° 

,   

-21.241

12.9241

-40.5162

44.1686

-31.5697

Aψ

° 
 ° 
 = °
 

° 
 ° 

                 

1

87.2527

71.4404

5.06245

-18.1343

9.57976

α

° 
 ° 
 = °
 

° 
 ° 

,   2

180 96.7065

121.761

124.841

133.043

125.597

α

° − ° 
 ° 
 = °
 

° 
 ° 

Â

 

2 

1

4.37089

8.63987

-0.0208

1.48224

-0.24045

P

 
 
 
 =
 
 
 
 

, 2

12.4503

-8.0408

-0.3749

-0.10775

0.4552

P

 
 
 
 =
 
 
 
 

 

3

-0.23096

0.954007

0.134425

-0.635845

0.275897

P

 
 
 
 =
 
 
 
 

, 4

5.99094

6.02061

-0.33982

0.082966

-0.41552

P

 
 
 
 =
 
 
 
 

 

-13.0052

43.6516

7.6561

-32.45

15.424

Aθ

° 
 ° 
 = °
 

° 
 ° 

,   

25.6964

-36.8244

42.1876

-37.5962

-42.3902

Aψ

° 
 ° 
 = °
 

° 
 ° 

                 

1

84.5722

-79.0231

4.75959

-6.1175

-0.55455

α

° 
 ° 
 = °
 

° 
 ° 

,   2

180 111.621

180 130.229

89.9875

0 52.7285

89.751

α

° − ° 
 ° − ° 
 = °
 

° − ° 
 ° 

Â

Â

Â

 

3 

1

0.364795

1.03114

-30.7778

0.876068

1.98703

P

 
 
 
 =
 
 
 
 

, 2

3.01174

-0.8556

-13.5941

-0.2522

-2.1051

P

 
 
 
 =
 
 
 
 

 

3

0.741106

-0.304748

1.72414

-0.252205

-2.1051

P

 
 
 
 =
 
 
 
 

, 4

1.73278

0.332431

-13.5916

-0.03556

0.718685

P

 
 
 
 =
 
 
 
 

 

36.5424

-16.9485

59.8863

-14.1551

-64.5905

Aθ

° 
 ° 
 = °
 

° 
 ° 

,   

29.9136

-21.2328

44.9946

-9.03449

-42.078

Aψ

° 
 ° 
 = °
 

° 
 ° 

                 

1

11.6456

31.8468

-82.0963

-11.6862

14.6052

α

° 
 ° 
 = °
 

° 
 ° 

,   2

89.1344

132.857

180 194.52

121.07

72.9346

α

° 
 ° 
 = ° − °
 

° 
 ° 

Â  
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3.4. Motion Generation Synthesis of a 3-DoF Spatial Platform Robot 

Manipulator 

 

In this part of the chapter, motion generation synthesis problem of a 3-DoF spatial 

platform manipulator is solved for three, four and five precision poses. Geometric 

parameters and kinematic equations of the manipulator are introduced. Analytical solution 

for three precision poses is presented. Numerical method for four and five precision poses 

are investigated. Furthermore, two different manipulators are constructed and they are 

shown for the prescribed motion.     

 

3.4.1. Geometry of the manipulator 

Consider 3 DoF spatial parallel manipulator illustrated by computer drawing 

representation (Figure 3.9.a) and kinematic diagram (Figure 3.9.b) . Moving platform of the 

manipulator is connected to a fixed base by three legs. Each of them consists of a circular 

slider (Cs), an intermediate revolute joint (R) and a spherical joint (S) attached to the 

moving platform. Kinematic chain of a leg is called CsRS limb. Kinematic model of one leg 

of the manipulator is depicted in Figure 3.10.a. In order to obtain better view, parameters of 

the leg are shown in radial plane (Figure 3.10.b). In Figure 3.10.a , the first coordinate 

system (OF, xF, yF, zF) is attached to the fixed base, the second coordinate system (OM, xM, 

yM, zM) is attached to the moving platform and the third coordinate system (Ai, xi, yi zi) is 

attached to circular slider . Three points Ai, Bi, Ci define position of i-th leg. Due to three 

legs, position of the manipulator can be completely described by using coordinates of nine 

points (Ai,Ci, Bi, i=1,2,3).   
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(a) 

 
(b) 

 

Figure 3.9. (a) Computer drawing representation (b) Kinematic diagram 

 

Vector-loop equation of the manipulator is written as follows, 

 

 

F i F M M i F i i i i iO B O O +O B =O A +A C +C B=  (3.63) 

 
 

Vector-loop equation (Eq.(3.63)) can be further arranged in matrix form 

 

 

R= + = + +i i i 1i 2iq p b a r r  (3.64) 

 
 

where p: position vector of the origin (OM) of the moving coordinate system with respect to 

the fixed coordinate system, R: rotation matrix of the moving coordinate system (xM, yM, 

zM) measured in the fixed coordinate system (xF, yF, zF) by Euler angles, bi: position vector 

of spherical pairs with respect to moving coordinate system, qi: position vector of spherical 

pairs with respect to the fixed coordinate system, ai: position vector of circular slider, r1i: 
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position vector between circular slider and revolute joint, r2i: position vector between 

revolute and spherical pairs.  In Eq. (3.54), vectors p and q are defined in the fixed 

coordinate system as 
T

x y zp p p =  p , i

T

xi yi ziq q q =  q , respectively. However, 

vector b is defined in the moving coordinate system as 
T

0i xi yib b =  b . Note that all 

distances are measured as mm for this manipulator.  

Rotation matrix is defined by roll ψ, pitch φ and yaw θ  angles that correspond to 

rotations about x, y and z axis, respectively as 

 

 

( ) ( ) ( ), , ,

c c c s s c s c c s s s

R R z R y R x c s c c s s s c s c s s

s c s c c

φ ψ ψ θ φ θ ψ θ ψ φ θ ψ
ψ φ θ φ ψ θ ψ θ φ ψ ψ θ θ φ ψ

φ φ θ φ θ

− + 
 = = + − + 
 − 

 (3.65) 

 
 

 

(a) 
(b) 

 

Figure 3.10. (a) Kinematic model (b) Kinematic model in radial plane 
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Note that the terms cφ  and sφ  in Eq. (3.65) refer to cosφ  and sinφ , respectively.  

The vectors in radial plane r1i, r2i and ai are described in (xi, yi, zi) coordinate 

system as 

 

 

( )
( )

1 2 2

1 2 2 2

c c

s , s , 0

0 0 0

i i i i i i
i i i

i i i i i

r r a

r r

α α θ
α α θ

+    
    = = + =    
        

1i i ir r a  (3.66) 

 
 

Rotation matrix between the fixed coordinate system (OF, xF, yF, zF) and  the 

moving coordinate system (Ai, xi, yi, zi) is represented by rotation about zF( 1iθ ) and rotation  

about xi(
2

π
) respectively:  

 

( ) ( )
1 1

F
1 1 1

c 0 s

, . , / 2 s 0 c

0 1 0

i i

i F i i i iR R z R x

θ θ
θ π θ θ

 
 = = − 
  

 (3.67) 

 
 

By multiplying rotation matrix F
iR  (Eq. (3.67)) and the vectors i

1ir , 2
i

ir  and i
ia      

(Eq. (3.66)), we can describe the vectors in the fixed coordinate system as follows, 

 

1

F
1 1

c c

s c

s

i i
i

i i i i

i

R r

θ α
θ α

α

 
 = =  
  

1i 1ir r , 

( )
( )

( )

1 2

F
2 1 2

2

c c

s c

s

i i i
i

i i i i i

i i

R r

θ α θ
θ α θ

α θ

+ 
 = = + 
 + 

2i 2ir r , 

1

F
1

c

s

0

i
i

i i iR a

θ
θ

 
 = =  
  

i ia a  

(3.68) 

 
 

Using Eqs. (3.64) and (3.68), the components of spherical pair’s coordinate Bi are 

found in the fixed coordinate system (OF, xF, yF, zF) as: 
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( ) ( )( )1 1 2 2xi x xi yi i i i i i i iq p b c c b c s s c s c a r c r cφ ψ ψ θ φ θ ψ θ α α θ= + + − = + + +  (3.69a) 

( ) ( )( )1 1 2 2yi y xi yi i i i i i i iq p b c s b s s s c c s a r c r cφ ψ ψ θ φ θ ψ θ α α θ= + + + = + + +  (3.69b) 

( )1 2 2zi z xi yi i i i i iq p b s b c s r s r sφ φ θ α α θ= − + = + +  (3.69c) 

 

3.4.2. Design Equation   

Design equation or objective function can be introduced as one polynomial equation 

which does not contain joint variables such as 1iθ  and 2iθ  for our case. Therefore, they must 

be eliminated from Eqs. (3.69a-c). Variable parameter 2iθ  is eliminated after some 

mathematical manipulations and two equations are obtained as follows; 

 

( ) ( )
2 22

2 1 1 1 1 1 1i xi i yi i i i i zi i ir q c q s a r c q r sθ θ α α= + − − + −  (3.70) 

1tanyi xi iq q θ=  (3.71) 

 

Eq. (3.71) refers a right triangle which has a hypotenuse  2 2
xi yiq q+  . Therefore, the 

variable 1iθ  can be eliminated from Eq. (3.70) and the design equation or objective function 

can be introduced as: 

 

( ) ( )
2

22 2 2
1 1 2 0xi yi i i i zi i i iq q a r c q r s rα α+ − − + − − =  (3.72) 

 

 

3.4.3. Analytical Solution for Three Precision Poses  
 

In this problem, design parameters ( )1 2, ,i i ia r r  are calculated for given angles iα  and 

three poses. Objective function of legs for three precision poses can be obtained from Eq. 

(3.72) in the following form: 
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1 1 2 2 3 3 0i ij i ij i ij ijP f P f P f F+ + − =  (3.73) 

 
 

where 2 2 2
1 1 2 12i i i i i i iP a r r a r cα= + − + , 2 1i i iP r sα= , 3 1i i i iP a r cα= + , 1 1ijf = ,  2 2ij zijf q= − , 

2 2
3 2ij xij yijf q q= − +  , ( )2 2 2

ij xij yij zijF q q q= − + +  and number of precision poses is 1, 2, 3j = .  

The synthesis problem is to find 1iP , 2iP  and 3iP  for a given set of 1ijf , 2ijf , 3ijf  and ijF . 

Firstly, using three given motion ( xp , yp , zp , ψ,  φ,  θ )j and the constant shape 

parameters ( xib , yib ) of the platform, the variable coordinates of spherical pairs Bi  ( xijq , 

yijq , zijq ) can be calculated from  Eqs. (3.69a-c). Secondly, variable parameters 

( 1ijf , 2ijf , 3ijf  and ijF ) of polynomial equation (Eq. (3.73)) can be specified. Then, constant 

parameters 1iP , 2iP  and 3iP  of polynomial equation can be found from three linear 

equations for each leg ( 1, 2,3i = ). Finally, nine linear equations for three legs are obtained 

in matrix form as: 

 

 

i i iS =P F  ( 1, 2,3i = ) (3.74) 

 
 

where  
1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

i i i

i i i i

i i i

f f f

S f f f

f f f

 
 =  
  

, 
1

2

3

i

i i

i

P

P

P

 
 =  
  

P  and 
1

2

3

i

i i

i

F

F

F

 
 =  
  

F . 

Values of 1iP , 2iP  and 3iP  are found by multiplying both sides of Eq. (3.74) by the 

inverse of matrix, as: 

  

 

1
i i iS −=P F  (3.75) 
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Parameters of each leg is designed after finding values of 1iP , 2iP  and 3iP . After 

selection of the angle iα  by designer, other design parameters are determined as follows; 

 

2 22
1 3 1 2 1 1 1, , 2i
i i i i i i i i i i i i

i

P
r a P r c r a r a r c P

s
α α

α
= = − = + + −  (3.76) 

 
 
 

3.4.4. �umerical Example of Three Precision Poses  
 

 A 3 DoF spatial platform manipulator is to be synthesized for three precision poses 

(Figure 3.10). The prescribed motion is given in Table 3.11. The shape of platform is given 

by constant parameters 1 40.878xb = , 1 0yb = , 2 20.193xb = − , 2 39.632yb = , 3 20.741xb = −  

and 3 39.009yb = − . Incline angles are selected as 1 2 3 110α α α= = = ° . 

 

 

Table 3.11. Prescribed three poses for the platform of the manipulator 

 

# of precision 

poses(j) 
( ), , , , ,x y zp p p θ φ ψ  

1 ( )2.23, 0.247, 133.7513, 0.9761 , 0.1906 , 0.3462− − ° − ° °  

2 ( )2.2022, 6.8252, 133.1189, 1.8598 , 0.8738 , 4.9079− ° − ° °  

3 ( )2.143, 14.834, 131.7907, 3.111 , 1.8629 , 10.084− ° − ° °  

 
 

 

Firstly, the coordinates of spherical pairs are obtained by using Eqs. (3.69a-c), and 

then, necessary matrices and columns in Eqs. (3.74), and (3.75) are calculated. After 

finding values of constant parameters, design parameters are determined by using             

Eq. (3.76). The design parameters of the platform manipulator (Figure 3.10) are shown in 

Table 3.12.  
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Table 3.12. Design parameters for the manipulator    

 

I 
1ir   ia  2ir  

1 21
11

1

58.5298
P

r
sα

= =  1 31 11 1 50.0184a P r cα= − =  2 2
21 1 11 1 11 1 112 79.36r a r a r c Pα= + + − =  

2 22
12

2

58.5298
P

r
sα

= =  2 32 12 2 65.0184a P r cα= − =  2 2
22 2 12 2 12 2 122 79.36r a r a r c Pα= + + − =  

3 23
13

3

58.5298
P

r
sα

= =  3 33 13 3 80.0184a P r cα= − =  2 2
23 3 13 3 13 3 132 79.36r a r a r c Pα= + + − =  

 
 

3.4.5. �umerical Solution for Four and Five Precision Poses  
 

 

The four and the five poses of the manipulator’s platform gives four and five 

nonlinear equations, respectively. The equations are determined by substituting relations 

between positions of spherical pairs Bi and poses of the platform in Eqs. (3.69a-c) into Eq. 

(3.72). The nonlinear equations are given as follows; 

 

 

( )( )(
( )( ) )

( )

2

20.52

2 2
1 2

-

0

xj xi j j yi j j j j j

yj xi j j yi j j j j j i

zj xi j yi j j yi i

p b c c b c s s c s

p b c s b s s s c c K

p b s b c s r r

φ ψ ψ θ φ θ ψ

φ ψ ψ θ φ θ ψ

φ φ θ

 + +



+ + + + − 



+ − + − − =

 (3.77) 

 
 

where 1i i xiK a r= + , 1 1xi i ir r cα= , 1 1yi i ir r sα= . Note that ia  and 1xir  cannot be found 

separately. Hence, they will be calculated together. For five poses, number of precision 

poses is 1, 2, 3, 4, 5j = and design parameters are ( )1 2, , , ,xi yi i yi ib b K r r . On the other hand, 

design parameter 2ir  can be selected freely for four poses. Therefore, design parameters 

are ( )1, , ,xi yi i yib b K r  and number of precision poses is 1, 2, 3, 4.j =    
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Analytical solution of two problems is very hard due to coupled terms such as 

multiplication of two design parameters and also square root. Therefore, a very well known 

numerical method, Newton-Raphson, is applied to the problems. Newton-Raphson method 

for nonlinear system of equations (Press et al. 1993, Chapter 9.6), is adapted to our 

problems. Furthermore, a Mathematica notebook is developed by using the presented 

method. 

 

 
3.4.6. �umerical Example for Four Precision Poses  

 

Design a 3 DoF spatial platform manipulator consisting of 3 CsRS limb for four 

precision poses (Figure 3.10). The prescribed poses and initial guesses are given in Table 

3.13 and Table 3.14 respectively.  Select allowable error for design parameters as 10-4. Let 

give one design parameter as 2 80r = .  

 

Table 3.13. Prescribed four poses for the platform of the manipulator  

 

# of precision 

poses(j) 
( ), , , , ,x y zp p p θ φ ψ  

1 ( )2.23, 0.247, 133.7513, 0.9761 , 0.1906 , 0.3462− − ° − ° °  

2 ( )2.2022, 6.8252, 133.1189, 1.8598 , 0.8738 , 4.9079− ° − ° °  

3 ( )1.9843, 25.2204, 128.850, 5.5674 , 3.1892 , 16.8815− ° − ° °  

4 ( )1.1137, 41.1894, 120.2653, 14.351 , 4.8637 , 28.0428− ° − ° °  

 
 
Four nonlinear equations are obtained by substituting prescribed poses into 

Eq.(3.77). 
 

( ) ( ) ( )( )
( )

20.52 2

1

2

1

2.23 0.9999 0.0061 0.247 0.0060 0.9998

133.751 0.0033 0.0170 6400 0

xi yi xi yi i

xi yi yi

f b b b b K

b b r

 
= − + − + − + + − 

 

+ + + − − =

x
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( ) ( ) ( )( )
( )

20.52 2

2

2

1

2.2022 0.9962 0.086 6.8251 0.0855 0.9957

133.119 0.0152 0.0324 6400 0

xi yi xi yi i

xi yi yi

f b b b b K

b b r

 
= − + − + + + − 

 

+ + + − − =

x
 

( ) ( ) ( )( )
( )

20.52 2

3

2

1

1.9843 0.9554 0.2942 25.2205 0.2899 0.9508

128.85 0.0556 0.09686 6400 0

xi yi xi yi i

xi yi yi

f b b b b K

b b r

 
= − + − + + + − 

 

+ + + − − =

x

( ) ( ) ( )( )
( )

20.52 2

4

2

1

1.1137 0.8794 0.474 41.1894 0.4684 0.8452

120.265 0.0847 0.2469 6400 0

xi yi xi yi i

xi yi yi

f b b b b K

b b r

 
= − + − + + + − 

 

+ + + − − =

x
 

 

 

where ( )1, , ,
T

xi yi i yib b K r=x .Jacobian matrix is computed by using formulation in the study 

of (Press et. al., 1993). Then, design parameters are determined by using computer software 

(Mathematica) with initial guesses given in Table 3.14. Results for design parameters 

corresponding to initial guesses are given in Table 3.14.  

 

 

Table 3.14 Initial guesses and results for four poses  

 

# 
Initial guess (x0) 

( )1, , ,
in in inx y in yb b K r  

Result 

( )1, , ,xi yi i yib b K r  

1 ( )20.193, 39.692, 45, 55−  ( )20.1935, 39.632, 45, 55−  

2 ( )40.878, 0, 30,55  ( )40.88, 0, 30, 55  

3 ( )20.741, 39.009, 60, 55− −  ( )20.7413, 39.0086, 60, 55− −  

4 ( )20, 35, 16, 16− −  ( )42.4678, 97.7686, 133.054, 56.0685− −  
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3.4.7. �umerical Example for Five Precision Poses  
 

A 3 DoF spatial platform manipulator is to be synthesized for five precision poses 

(Figure 3.10). The prescribed motion is given in Table 3.15. Use initial guesses given in 

Table 3.16.  Note that allowable error for design parameters is selected as 10-6. 

 

 

Table 3.15. Prescribed five poses for the platform of the manipulator 

 

# of precision 

poses(j) 
( ), , , , ,x y zp p p θ φ ψ  

1 ( )2.23, 0.247, 133.7513, 0.9761 , 0.1906 , 0.3462− − ° − ° °  

2 ( )2.2022, 6.8252, 133.1189, 1.8598 , 0.8738 , 4.9079− ° − ° °  

3 ( )2.143, 14.834, 131.7907, 3.111 , 1.8629 , 10.084− ° − ° °  

4 ( )1.9843, 25.2204, 128.850, 5.5674 , 3.1892 , 16.8815− ° − ° °  

5 ( )1.1137, 41.1894, 120.2653, 14.351 , 4.8637 , 28.0428− ° − ° °  

 

 

By substituting precision poses into Eq. (3.77),  five nonlinear equations are found 

as follows, 

 

( ) ( ) ( )( )
( )

20.52 2

1

2 2
1 2

2.23 0.9999 0.0061 0.247 0.0060 0.9998

133.751 0.0033 0.0170 0

xi yi xi yi i

xi yi yi i

f b b b b K

b b r r

 
= − + − + − + + − 

 

+ + + − − =

x
 

( ) ( ) ( )( )
( )

20.52 2

2

2 2
1 2

2.2022 0.9962 0.086 6.8251 0.0855 0.9957

133.119 0.0152 0.0324 0

xi yi xi yi i

xi yi yi i

f b b b b K

b b r r

 
= − + − + + + − 

 

+ + + − − =

x
 

( ) ( ) ( )( )
( )

20.52 2

3

2 2
1 2

2.143 0.984 0.1765 14.834 0.1749 0.9827

131.791 0.0325 0.0542 0

xi yi xi yi i

xi yi yi i

f b b b b K

b b r r

 
= − + − + + + − 

 

+ + + − − =

x
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( ) ( ) ( )( )
( )

20.52 2

4

2 2
1 2

1.9843 0.9554 0.2942 25.2205 0.2899 0.9508

128.85 0.0556 0.09686 0

xi yi xi yi i

xi yi yi i

f b b b b K

b b r r

 
= − + − + + + − 

 

+ + + − − =

x

( ) ( ) ( )( )
( )

20.52 2

5

2 2
1 2

1.1137 0.8794 0.474 41.1894 0.4684 0.8452

120.265 0.0847 0.2469 0

xi yi xi yi i

xi yi yi i

f b b b b K

b b r r

 
= − + − + + + − 

 

+ + + − − =

x
 

 

where ( )1 2, , , ,
T

xi yi i yi ib b K r r=x .Procedure of five poses synthesis is very similar to four 

poses. But one difference is that the size of jacobian matrix and other vectors are more. 

Jacobian matrix is computed before the calculation of the design parameters with initial 

guesses given in Table 3.16. Results for design parameters corresponding to initial guesses 

are given in Table 3.16.  

 

Table 3.16. Initial guesses and results for five poses  

 

# 
Initial guess (x0) 

( )1 2, , , ,
in in in inx y in yb b K r r  

Result 

( )1 2, , , ,xi yi i yi ib b K r r  

1 ( )20.193, 39.632, 45, 55, 79.36−  ( )20.1935, 39.632, 45, 55, 79.36−  

2 ( )20.741, 39.009, 60, 55, 79.36− −  ( )20.7413, 39.0086, 60, 55, 79.36− −  

3 ( )40.878, 0, 30, 55, 79.36  ( )40.88, 0, 30, 55, 79.36  

4 ( )20, 20, 30, 15, 10  ( )28.5167, 29.7369, 46.1567, 2.62538, 131.895  

 

 

Four different manipulators, which satisfy precision poses in Table 3.11, can be 

constructed by combining the four results in Table 3.16. Let select 1 20xir = −  and then 

other parameter (a) is calculated by using  1i i xia K r= −  which is mentioned in Eq. (3.67). 

Figure 3.11 and Figure 3.12 depict the manipulators constructed by using the first three 

results (1,2,3) and the last three results (2,3,4) as the CsRS chains, respectively.    
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Figure 3.11. Five poses of a manipulator constructed by using the first three results (1,2,3) 
 
 
 

 

 

Figure 3.12. Five poses of a manipulator constructed by using the last three results (2,3,4) 
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CHAPTER 4 

 

KI�EMATIC A�ALYSIS OF PARALLEL ROBOT 

MA�IPULATORS 

 
4.1. Introduction to Kinematic Analysis of Manipulators 
 

 
Kinematic analysis is to investigate displacement of manipulators (and mechanisms) 

and also variation of displacement in a specified time.  It must be noted that displacement 

of a rigid body is different from displacement of a point. In Table 4.1.a, displacement of a 

point on plane can be described by x and y projections (r1x, r1y) where as displacement of a 

rigid body on plane needs three independent variables that are x and y projections (r1x, r1y) 

and direction of one moving axis (x1 or y1). Origin O and axes x, y construct fixed 

coordinate system. There is no change in this system when time is changing. On the other 

hand,   origin O1 and axes x1, y1 defines moving coordinate system. Position of origin (r1x, 

r1y) and direction of axes (x1, y1) may vary when time is running. For instance, the rigid 

body is moved from first pose (r1x, r1y, O1x1y1) to second pose (r2x, r2y, O2x2y2). 

Displacement on sphere is very similar to displacement on plane. Three parameters 

( 1 1 1, ,θ ψ β ) are enough to describe displacement of a rigid body on sphere while two 

parameters ( 1 1,θ ψ ) are required to describe displacement of a point. The parameters are 

different for displacement on space. Three position parameters (r1x, r1y, r1z) define 

displacement of a point on space. However, six parameters are necessary to describe 

displacement of a rigid body. Three of them are position parameters (r1x, r1y, r1z) and 

remaining three are direction cosine or orientation parameters of O1x1y1z1 coordinate 

system. It is clear that O1x1y1z1 coordinate system has nine elements however axes are 

orthogonal and also they are unit vectors. Using these conditions, six of these nine elements 

can be written in terms of other three independent elements. Cartesian system is commonly 

used in kinematics. But, it is also possible to use polar and spherical coordinate systems 
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when it is necessary.  When displacement of a point on plane is defined in polar coordinate 

system, the parameters ( 1r , 1θ ) will be used instead of the parameters (r1x, r1y). 

 

 

Table 4.1. Displacements of a point and a rigid body on (a) plane (b) sphere (c) space 

 

 geometry Displacement of a point Displacement of a rigid body 

(a) Plane 

1θ
2θ

  

(b) Sphere 

  

(c) Space 
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Two mathematical models are possible to investigate relations between actuated 

joint variables and location of end-effector for a specified geometry of parallel manipulator. 

The first one, inverse kinematics is to find actuated joint variables for a specified location 

of end-effector. The second one, direct kinematics is to determine the location of end-

effector for specified actuated joint variables. Inverse kinematics is generally easier than 

direct kinematics for closed-loop mechanical system such as a parallel manipulator. 

Velocity analysis is variation of position in a specified time. That is, time derivative of 

position gives velocity of a mechanism or parallel manipulator.  

 

4.2. Methods for kinematic analysis 
 

There are several methods to investigate displacement and variation of displacement 

of a manipulator or mechanism. Graphical approach is an easy way with computer but it is 

not usable when full motion of manipulator is considered. Therefore, analytical approach is 

convenient to describe full motion of manipulator. Some analytical methods are vector 

algebra method, complex algebra method (for planar manipulators and mechanisms), 

rotation matrix method, homogeneous transformation matrix method, quaternion, screw 

algebra, recurrent screw equations. In this section, some of the methods are presented to 

explain next sections.   

 

4.2.1. Vector Algebra Method 

 

In this method, unit vector i, j, k are used to describe vectors parallel to x, y and z 

axes, respectively. For instance, in Table 4.1.a, planar vector r1 can be written as, 

1 1x yr r= +1r i j . Similarly, spherical vector r1 in Table 4.1.b is expressed as  

1 1 1 1 1r c c r s c r sθ ψ θ ψ ψ= + +1r i j k .  It is easy to see that spatial vector r1 in Table 4.1.c is 

equal to 1 1 1x y zr r r+ +i j k . Relative displacement on space between two positions can be 

calculated by subtracting two vectors: ( ) ( ) ( )1 2 1 2 1 2 1x x y y z zr r r r r r∆ = − = − + − + −2r r r i j k .  
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This method can be used both planar and spatial manipulators, mechanisms. But it is 

worthy to note that rotations of a body cannot be easily expressed by this method. 

Therefore, rotation matrix and quaternion approaches are developed to overcome this 

problem.    

 

 4.2.2. Complex Algebra Method 

 

This method is convenient for only planar mechanisms - manipulators. Using 

complex algebra method, vector is represented in two parts such as real and imaginary. 

Axis x refers to real part while axis y defines imaginary part. If planar vector r1 in Table 

4.1.(a) is used as an example, vector is represented in complex form as   1 1x yr j r= +1r  

where j is unit imaginary number ( 1j = − ). In polar form, vector will be 

( ) ( )1 1cos sinjθ θ= +1 1 1r r r . Recall that well known Euler equation, 

cos sinje jθ θ θ± = ± .  Therefore, vector is represented in complex polar form as 

je θ=1 1r r . The magnitude and direction of the vector is clearly distinguished. Fortunately,   

differentiation of vectors in this form is simpler than same vectors in other form.   

 

4.2.3. Rotation Matrix Method 

 

Spherical mechanisms and manipulators have only rotational degrees of freedom. 

Therefore, displacement of these kind manipulators can be completely defined by rotation 

matrices. Rotation matrix can be derived from rotation of a vector about an axis. Rodrigues 

formula represents correlation between the vector and rotated vector. Elementary rotation 

matrices can be derived from Rodriques formula.  

Euler angle sequences are developed to define any orientation in space. For 

example, in aerospace engineering, yaw-pitch-roll sequence is frequently used to describe 

orientation of airplane with respect to earth. The sequences are also identified with the 

order of selected axes.   
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Table 4.2. Elementary rotation matrices 

 

Axis of 

rotation 
Illustration Rotation Matrix 

x 

θ

θ

θ

 

( )
1 0 0

, 0

0

R x c s

s c

θ θ θ
θ θ

 
 = − 
  

 

y 

x

y,y1

z

z1

φ

φ

φ

x1
 

( )
0

, 0 1 0

0

c s

R y

s c

φ φ
φ

φ φ

 
 =  
 − 

 

z 

ψ

ψ

ψ

 

( )
0

, 0

0 0 1

c s

R z s c

ψ ψ
ψ ψ ψ

− 
 =  
  
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Table 4.3. Euler angle sequences 

 

Axes of 

sequence 

Matrices 

z-y-x ( ) ( ) ( ), , ,

c c c s s c s c c s s s

R R z R y R x c s c c s s s c s c s s

s c s c c

φ ψ ψ θ φ θ ψ θ ψ φ θ ψ
ψ φ θ φ ψ θ ψ θ φ ψ ψ θ θ φ ψ

φ φ θ φ θ

− + 
 = = + − + 
 − 

 

z-y-z ( ) ( ) ( ), , ,

c c c s s c c s c s s c

R R z R y R z c c s s c c c c s s s s

s c s s c

θ φ ψ θ ψ φ ψ θ θ ψ φ ψ
ψ φ θ θ φ ψ θ ψ θ ψ φ θ ψ φ ψ

φ θ φ θ φ

− − − 
 = = + − 
 − 

 

 

 

4.2.4. Homogenous Transformation Matrix Method 

 

Any displacement of a rigid body on space can be completely defined by 

homogenous transformation matrix. Homogenous transformation matrices have one more 

row and column then rotation matrices. Therefore, these matrices are 4 by 4 elements.  

Transformation matrix includes both orientation and position of a rigid body.  The first 

three columns and three rows define orientation of the rigid body where as the last column 

of matrix identifies translation.  

 

3 3 3 1

1 3 1
× ×

×

 
=  

 

R P
T

0
 (4.1) 

 
 

where R is rotation matrix,  P is translation vector, and 1 3×0  is a row having only zeros. 

( )( )1 3 0 0 0× =0   
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Figure 4.1.  Denavit –Hartenberg parameters 

 

 

Denavit and Hartenberg developed a notation to analyze single-loop lower-pair 

linkages by labeling the links systematically. After labeling, homogenous transformation 

matrices are written with Denavit-Hartenberg (D-H) parameters. As an advantage of the 

method, once homogenous transformation matrix is constructed for every single link of 

linkage, loop-closure matrix equation can be easily obtained by multiplying matrices 

successively. The D-H parameters on serial open chain are shown in Figure 4.1. However, 

geometric definition of closed chains can be also possible by using cyclic numbers for J. 

The placement of joint and link axes is important and recursive. The zj−1 joint axis and zj-

joint axis are placed on direction of joint motion. The xj-axis is common normal and it is 

always perpendicular to both zj−1 and zj joint axes.  The right-hand rule can be used for the 

yj-axis. But, note that the yj-axis is not necessary in most cases.  

There are four D-H parameters such that two joint parameters (dJ, θJ) and two link 

parameters (aJ, αJ). The following parameters are defined for the construction of the links.   
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dJ : translational distance measured from the axis  xj−1  to the axis xj along direction 

of  the axis zj−1. (Joint offset)  

θJ: joint angle measured from the axis xj−1 to the axis xj around the direction of the 

axis zj−1. (Angle of rotation) 

aJ: distance between the joint axes zj−1 and zj along the axis xj. (Link length)  

αJ: angle between the joint axes zj−1 and zj around the axis xj.(Twist Angle) 

 

Revolute, prismatic and cylindrical joints can be easily identified with the D-H 

parameters. Table 4.4 depicts variable and constant parameters for these joint types.  The 

parameters of other joints such as spherical, spherical in torus, hooke, planar joints can be 

achieved by combining kinematic exchangeability and parameters of revolute and prismatic 

joints.    

 

Table 4.4. Variable and constant parameters for j th joint 

 

J th joint type Variable parameters Constant parameters 

revolute joint 
Jθ  , ,J J Jd a α  

prismatic joint 
Jd  , ,J J Jaθ α  

cylindrical joint ,J Jd θ  ,J Ja α  

 

Once coordinate systems and the parameters are defined, the homogenous 

transformation matrix can be constructed between link j−1 and j.  The following rotations 

and translations define D-H transformation.  

 

1. The Oj−1xj−1zj−1 coordinate system is translated by joint offset dJ along the 

axis zj−1. After this translation, the origin Oj−1 coincidence with Aj. The 

transformation matrix contains only translation and rotation matrix is 

equal to identity matrix. Therefore,  
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( )1

1 0 0 0

0 1 0 0
,

0 0 1

0 0 0 1

J J
J

T z d
d−

 
 
 =
 
 
 

 

 

2. The translated coordinate system is now rotated by angle of rotation θJ 

along the axis zj−1. Then, the transformation matrix is  

 

( )1

0 0

0 0
,

0 0 1 0

0 0 0 1

J J

J J
J J

c s

s c
T z

θ θ
θ θ

θ−

− 
 
 =
 
 
 

 

 

3. The new coordinate system is translated again by link length aJ along the 

axis xj. Hence, 

 

( )

1 0 0

0 1 0 0
,

0 0 1 0

0 0 0 1

J

J J

a

T x a

 
 
 =
 
 
 

 

 

4. Finally, the last coordinate system is rotated by twist angle αJ  about the 

axis  xj. The transformation matrix is 

 

( )

1 0 0 0

0 0
,

0 0

0 0 0 1

J J
J J

J J

c s
T x

s c

α α
α

α α

 
 − =
 
 
 

 

 

The destination coordinate system  Ojxjzj is reached after all these transformations. 

Overall transformation can be calculated by multiplying all matrices successively. Then, 

the overall transformation matrix is written in the following form.  
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1, 0

0 0 0 1

J J J J J J J

J J J J J J J
J J

J J J

c c s s s a c

s c c s c a s

s c d

θ α θ α θ θ
θ α θ α θ θ

α α−

− 
 − =
 
 
 

T  (4.2) 

 
 

4.3. Inverse Analysis of a Three DoF Planar Parallel Manipulator 

 

A three DoF planar robot manipulator is depicted in Figure 4.2. This manipulator 

constructed by three RR dyads. Manipulator is actuated by angle of rotations θ1, θ2 and 

θ3.Link lengths and other geometric parameters are defined as 1 1 1O A L= , 1 1 2A B L= , 

2 2 3O A L= , 2 2 4A B L= , 3 3 5O A L= , 3 3 6A B L= , 1 2 3M M MO B O B O B b= = = , 1 2 1O O d= , 

1 3 2O O d= , 1 2 1xO O α∠ = , 1 3 2xO O α∠ = .  

 

x

y

O1

A1

B1
O3

A3
xM

yM
B3

O2

A2

B2

1θ1β

3θ

3β

OM

2θ

2β

ψ

 

 

Figure 4.2. A three DoF planar robot manipulator 
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In order to solve position problem, necessary displacement equations must be 

obtained. Corner points of triangle and vector loop-closure equations for each dyad are 

written as follows, 

 

1 1i M M iO B O O O B= + ,   1 1i i i i i iO O O A A B O B+ + = ,  1,2,3i =  (4.3) 

 
 

All vectors in Eq(4.2) can be described by using unit vectors mentioned in vector 

algebra method. Therefore, the vectors become, 

 

For 1i = , 1 1 1 1 1 1O A L c L sθ θ= +i j , 1 1 2 1 2 1A B L c L sβ β= +i j , 1 1 0 0O O = +i j , 

1

7 7

6 6MO B b c b s
π π

ψ ψ   = + + +   
   

i j . 

For 2i = , 2 2 3 2 3 2O A L c L sθ θ= +i j , 2 2 4 2 4 2A B L c L sβ β= +i j , 1 2 1 1 1 1O O d c d sα α= +i j , 

2 2 2MO B b c b s
π π

ψ ψ   = + + +   
   

i j . 

For 3i = , 3 3 5 3 5 3O A L c L sθ θ= +i j , 2 2 6 3 6 3A B L c L sβ β= +i j , 1 3 2 2 2 2O O d c d sα α= +i j , 

3
6 6

MO B bc b s
π π

ψ ψ   = − + −   
   

i j . 

 

If the calculated vectors are substituted into Eq.(4.3), we get the following vector 

equations, respectively 

 

1 1 1 1

3 1 1 3

2 2 2 2M M x yO B O O O B R b c s R b c sψ ψ ψ ψ
      

= + = + − + + + − −                  
i j  (4.4) 

 

( ) ( )1 2 1 2M M x yO B O O O B R b s R b cψ ψ= + = − + +i j  (4.5) 

 

1 3 1 3

3 1 1 3

2 2 2 2M M x yO B O O O B R b c s R b c sψ ψ ψ ψ
      

= + = + + + + − +                  
i j  (4.6) 
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( ) ( )1 1 1 1 1 1 1 1 2 1 1 1 2 1

3 1 1 3

2 2 2 2x y

O O O A A B L c L c L s L s

R b c s R b c s

θ β θ β

ψ ψ ψ ψ

+ + = + + +

      
= + − + + + − −                  

i j

i j
 (4.7) 

 

( ) ( )
( ) ( )

1 2 2 2 2 2 1 1 3 2 4 2 1 1 3 2 4 2

x y

O O O A A B d c L c L c d s L s L s

R b s R b c

α θ β α θ β

ψ ψ

+ + = + + + + +

= − + +

i j

i j
 (4.8) 

 

( ) ( )1 3 3 3 3 3 2 2 5 3 6 3 2 2 5 3 6 3

3 1 1 3

2 2 2 2x y

O O O A A B d c L c L c d s L s L s

R b c s R b c s

α θ β α θ β

ψ ψ ψ ψ

+ + = + + + + +

      
= + + + + − +                  

i j

i j
 (4.9) 

 

 

Eq.(4.4), Eq.(4.5) and Eq.(4.6) are equal to Eq.(4.7),  Eq.(4.8) and Eq.(4.9), 

respectively. After equating Eq.(4.4) and Eq.(4.7), the following two scalar equations are 

calculated by separating coefficients of  i and j unit vectors.  

 

2 1 1 1

3 1

2 2xL c R b c s L cβ ψ ψ θ
 

= + − + −  
 

 (4.10) 

 

2 1 1 1

1 3

2 2yL s R b c s L sβ ψ ψ θ
 

= + − − −  
 

 (4.11) 

 
 

Now,  we will deal with only the first dyad. Calculations for other dyads are similar 

to the first one.  The joint angle 1β  is eliminated by squaring Eqs.(4.10) and (4.11). The 

result is,  

 

( )
( ) ( ) ( )

2 2 2 2 2
1 2 1 1 1 1

1 1 1 1 1 1

2 2 3

3 3 0

x y x y x y

y x

b L R R L L R c L R s b c R R

b s R R b L c c s s b L s c c s

θ θ ψ

ψ θ ψ θ ψ θ ψ θ ψ

+ + + − − − − +

+ − + + + + − =
 (4.12) 

 

If similar process is applied to the second and third dyad, equations become, 
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( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2
1 3 4 1 1 1 3 2 2

1 3 1 2 1 2 1 1 1 3 2 2

2 2 2

2 2 2 0

x y x y x y y xb d L R R L d R c R s L R c R s b R c R s

d L c c s s b d c s c s b L c s c s

α α θ θ ψ ψ

α θ α θ ψ α α ψ ψ θ θ ψ

+ + + + − − + − + + −

+ + + − + + − + =

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2 2
2 5 6 2 2 2 5 3 3

2 5 2 3 2 3 2 2 2

2 2 2 5 3 3 5 3 3

2 2

3 2

3 3 0

x y x y x y y x

x y

b d L R R L d R c R s L R c R s b R c R s

b R c R s d L c c s s b d c s c s

b d c c s s b L c s c s b L c c s s

α α θ θ ψ ψ

ψ ψ α θ α θ ψ α α ψ

ψ α α ψ ψ θ θ ψ ψ θ θ ψ

+ + + + − − + − + + − +

+ + + + + −

− + + − − + =

 

Eq.(4.12) is rearranged as,   

 

1 1 1 1 1 0A c B s Cθ θ+ + =  (4.13) 

 

where 1 1 1 12 3xA L R b L c b L sψ ψ= − + − , 1 1 1 12 3yB L R b L c b L sψ ψ= − + + , 

( ) ( )2 2 2 2 2
1 1 2 3 3x y x y y xC b L R R L b c R R b s R Rψ ψ= + + + − − + + − + . By using 

trigonometric identities  ( )
2

1 2

1
cos

1

t

t
θ

−
=

+
 , ( )1 2

2
sin

1

t

t
θ =

+
 where ( )1tan / 2 tθ = , two 

unknowns ( 1cθ , 1sθ ) are reduced to one unknown (t),    

 

( ) ( )2
1 1 1 1 12 0C A t B t C A− + + + =  (4.14) 

 

Solution of second order Eq.(4.12) is well known and for the first rotation angle ,  

 

2 2 2
1 1 1 1

1

1 1

2arctan
B B A C

C A
θ

 − + −
 =
 − 

∓
 (4.15) 

 

Eq.(4.15) can be generalized for all angles,     

 

2 2 2

2arctan i i i i
i

i i

B B A C

C A
θ

 − + −
 =
 − 

∓
 (4.16) 
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where 1, 2,3i = , 2 3 1 3 1 32 2 2xA L R d L c b L sα ψ= − + + , 2 3 3 1 3 12 2 2yB L R b L c d L sψ α= − − + , 

( ) ( ) ( )2 2 2 2 2 2
2 1 3 4 1 1 1 1 1 12 2 2x y x y y xC b d L R R L d R c R s b R c R s bd c s c sα α ψ ψ ψ α α ψ= + + + + − − + + − + − +

, 3 5 2 5 2 5 52 2 3xA L R d L c bL c bL sα ψ ψ= − + − − , 3 5 5 2 5 2 52 2 3yB L R bL c d L s b L sψ α ψ= − + + − , 

( ) ( ) ( )
( ) ( )

2 2 2 2 2 2
3 1 5 6 2 2 2

2 2 2 2 2 2

2 3

3

x y x y y x x yC b d L R R L d R c R s b R c R s b R c R s

bd c s c s bd c c s s

α α ψ ψ ψ ψ

ψ α α ψ ψ α α ψ

= + + + + − − + + − + + +

+ − + − −
 

Let illustrate the analysis on an numerical example. Geometric parameters of 

manipulator are selected as 1 2 3 5 100L L L L= = = = , 4 200L = , 6 150L = , 50b = , 1 200d = , 

3 300d = ,  1 90α = ° ,  2 30α = ° .  Pose of platform is also given: 150xR = , 150yR = , 

30ψ = ° . If these numerical data is substituted into Eq.(4.16), two results for each rotation 

of angle  are calculated. These results cause eight possible manipulator cases as tabulated in 

Table 4.5.  

 

Table 4.5. Eight possible manipulator cases 

 

Numerical Results 
1 32.993θ = − °  1 65.716θ = °  

θ 2
=

75
.2

97
° 

θ 3
=

-2
7.

89
1°

 

 
 

θ 3
=

12
6.

78
2°

 

 

 

(cont. on next page) 
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Table 4.5.(cont.) Eight possible manipulator cases 

 

θ 2
=

-1
38

.3
63

° 

θ 3
=

-2
7.

89
1°

 

 

 

θ 3
=

12
6.

78
2°

 

 
 

 

 

4.4. Inverse and Direct Position Analyses of a Three DoF Parallel 

Manipulator 

 

In this part, direct and inverse position analyses of a three DoF parallel manipulator 

are introduced. It is shown that generally inverse position analysis problem of a parallel 

manipulator is easier than direct position analysis. Therefore, a numerical example of direct 

position analysis is presented. The twelve real results of nonlinear equations are given and 

the corresponding assembly configurations are illustrated in a table.    

 

4.4.1. Inverse Position Analysis 
 
 

Inverse kinematics problem is to find sliding angles ( 11 12,θ θ  and 13θ ) for given the 

location of moving platform ( , , , , andx y zp p p ψ φ θ ) as shown in Figure 3.10. 
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By dividing both sides of Eqs. (3.69a) and (3.69b), the sliding angles are determined 

in Eq. (4.17). 

 
 

( )
( )1 2

,
Atan

y xi yi

i

x xi yi

p b c s b s s s c c

p b c c b c s s c s

φ ψ ψ θ φ θ ψ
θ

φ ψ ψ θ φ θ ψ

+ + + 
=   + + − 

 (4.17) 

 
 
where Atan2 is a two-argument arctangent function that result one unique solution for the 

angle. 

 
4.4.2. Direct Position Analysis 

 
Direct kinematics problem is to determine the location of moving platform 

( , ,x y zp p p , , andψ φ θ ) for given inputs ( 11 12,θ θ  and 13θ ).  The angle of rotation 2iθ is 

variable and it must be eliminated from Eqs. (3.69 a-c). Recall that this angle is eliminated 

in Eqs. (3.70) and (3.71).  

Platform shape of manipulator is a triangle so that distance between points B1, B2 

and B3 is constant. Therefore, 

 

( ) ( ) ( ) ( ) ( )2 2 2 2 2

xj xi yj yi zj zi xj xi yj yiq q q q q q b b b b− + − + − = − + −  (4.18) 

 
 
where  ( )mod 1,3j i= +  and 1, 2, 3.i =  

 
Nine nonlinear equations can be obtained in terms of nine variables for 1, 2, 3i =  by 

using Eqs. (3.70),  (3.71) and (4.18).  Analytical solution of these equations is very hard 

and complex. Therefore equations can be solved by using numerical methods when 

constant parameters of manipulator are given. Furthermore, “-Solve” in Mathematica 

program which is a numerical equation solver command that can be utilized to solve these 

equations. When position vectors of spherical pairs with respect to fix coordinate system 
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are determined, the location of platform can be found by solving system of linear equations 

as follows,  

 

xi x xi x yi xq p b u b v= + +  (4.19a) 

yi y xi y yi yq p b u b v= + +  (4.19b) 

zi z xi z yi zq p b u b v= + +  (4.19c) 

 
 

where xu c cφ ψ= , yu c sφ ψ= , zu sφ= − , xv c s s c sψ θ φ θ ψ= − , yv s s s c cψ θ φ θ ψ= + ,   

zv c sφ θ= .Eqs. (4.19a), (4.19b) and (4.19c) can be combined in a matrix as follows, 

 

 

1 11

1 11

1 11

2 22

2 22

2 22

3 33

3 33

3 33

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

x yx

x yy

x yz

x yx

x yy

x yz

x yx

x yy

x yz

b bq

b bq

b bq

b bq

b bq

b bq

b bq

b bq

b bq

  
  
  
  
  
  
   =
  
  
  
  
  
 

   

x

y

z

x

y

z

x

y

z

p

p

p

u

u

u

v

v

v

 
 
 
 
 
 
 
 
 
 
 
 

  
 

 (4.20) 

 
 

By using inverse of square matrix in Eq. (4.20), the location of platform of 

manipulator is computed as follows,   

 

( )

( )

3

1
3

1

xi yj xk yk xj
i

x

yi xj xk
i

q b b b b
p

b b b

=

=

−
=

−

∑

∑
,  

( )

( )

3

1
3

1

yi yj xk yk xj
i

y

yi xj xk
i

q b b b b
p

b b b

=

=

−
=

−

∑

∑
,   

( )

( )

3

1
3

1

zi yj xk yk xj
i

z

yi xj xk
i

q b b b b
p

b b b

=

=

−
=

−

∑

∑
 

 

(4.21a) 

( )

( )

3

1
3

1

xi yj yk
i

x

yi xk xj
i

q b b
u

b b b

=

=

−
=

−

∑

∑
,       

( )

( )

3

1
3

1

yi yj yk
i

y

yi xk xj
i

q b b
u

b b b

=

=

−
=

−

∑

∑
,       

( )

( )

3

1
3

1

zi yj yk
i

z

yi xk xj
i

q b b
u

b b b

=

=

−
=

−

∑

∑
 (4.21b) 
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( )

( )

3

1
3

1

xi xj xk
i

x

yi xj xk
i

q b b
v

b b b

=

=

−
=

−

∑

∑
,     

( )

( )

3

1
3

1

yi xj xk
i

y

yi xj xk
i

q b b
v

b b b

=

=

−
=

−

∑

∑
,     

( )

( )

3

1
3

1

zi xj xk
i

z

yi xj xk
i

q b b
v

b b b

=

=

−
=

−

∑

∑
 

 

(4.21c) 

 
 
where ( )mod 1,3j i= + , ( )mod 2,3k i= + .Euler angles can be easily found as follows,   

 
 

( )arcsin zuφ = −  (4.22a) 

( ) ( )( )2Atan / cos , / cosx yu uψ φ φ=  (4.22b) 

( ) ( ) ( )( )2Atan cos sin , / cosy x zv v vθ ψ ψ φ= −  (4.22c) 

 
 
�umerical Example.  In this example, we solve the direct position analysis for geometry 

of manipulator given in Table 4.6. And the input angles are given as 11 1θ = ° , 

12 120θ = ° 13and 240θ = ° .  

 
Table 4.6. Geometric constant parameters of manipulator 

 

 

 

 

Substituting constant parameters into Eqs. (3.70),  (3.71) and (4.18) for 1, 2, 3i = , 

nine nonlinear equations are found as follows,  

 
 

 First leg, i=1 Second leg, i=2 Third leg i=3 

iα  110°  110°  110°  

1ir  58.52 58.52  58.52  

2ir  79.36  79.36  79.36  

xib  40.88  -20.19  -20.74  

yib  0  39.63  -39.00  

ia  50  65  80  
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( ) ( )( ) ( )
( ) ( )

22 2
1 1 11 1 11 1 11 1

11 11 1 1

110 60 cos cos 60 sin

+cos sin 2373.01 0

z z x x y

x y

q q q q q

q q

θ θ θ

θ θ

− − − −

− =
 

( ) ( )( ) ( )
( ) ( )

22 2
2 2 12 2 12 2 12 2

12 12 2 2

110 90 cos cos 90 sin

 +cos sin 1248.01 0

z z x x y

x y

q q q q q

q q

θ θ θ

θ θ

− − − −

− =
 

( ) ( )( ) ( )
( ) ( )

22 2
3 3 13 3 13 3 13 3

13 13 3 3

110 120 cos cos 120 sin

 +cos sin 326.99 0

z z x x y

x y

q q q q q

q q

θ θ θ

θ θ

− − − −

+ =
 

 

( ) ( ) ( )1 1 11 2 2 12 3 3 13tan 0, tan 0, tan 0y x y x y xq q q q q qθ θ θ− = − = − =  

( ) ( ) ( )
22 2

2 1 2 1 2 1 5300.67=0x x y y z zq q q q q q− + − + − −  

( ) ( ) ( )
22 2

3 2 3 2 3 2 6184.64=0x x y y z zq q q q q q− + − + − −  

( ) ( ) ( )
22 2

1 3 1 3 1 3 5318.85=0x x y y z zq q q q q q− + − + − −  

 

 

At most, sixteen results of nonlinear equations can be found for each of input 

values. The number of imaginary results is four. The real results of the equations are listed 

in Table 4.7 for given input values.  

 

Table 4.7. The real results of the numerical example 

 

No. ( )T
1 1 1 1, ,x y zq q q=q  ( )T

2 2 2 2, ,x y zq q q=q  ( )T
3 3 3 3, ,x y zq q q=q  

1 ( )35.8021, 0.6249, 134.147  ( )24.1828, 41.8858, 134.289−  ( )9.1448, 15.8393, 67.9901  

2 ( )49.3339, 0.8611, 56.7161− −  ( )15.9109, 27.5586, 74.9099−  ( )0.0345, 0.0597, 2.978− −  

3 ( )48.4877, 0.8463, 43.3152− −  ( )17.1785, 29.7541, 55.6828−  ( )12.8906, 22.3272, 16.6037− − −

 4 ( )46.1729, 0.8059, 77.2403− −  ( )21.3262, 36.9381, 134.325−  ( )24.0481, 41.6526, 133.462− −  

5 ( )38.6483, 0.6746, 133.887  ( )22.8693, 39.6108, 134.357−  ( )22.5272, 39.0182, 132.94− −  

6 ( )35.8021, 0.6249, 24.1472−  ( )24.1828, 41.8858, 24.2886− −  ( )9.1448, 15.8393, 42.0099  

7 ( )46.1729, 0.8059, 32.7597− −  ( )21.3262, 36.9381, 24.325− −  ( )24.0481, 41.6526, 23.4622− − −  

8 ( )38.6483, 0.6746, 23.8867−  ( )22.8693, 39.6108, 24.3566− −  ( )22.5272, 39.0182, 22.94− − −  

(cont. on next page) 
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Table 4.7.(cont.) The real results of the numerical example 

 

9 ( )31.7758, 0.5546, 24.34−  ( )16.5212, 28.6156, 40.5989−

 

( )25.641, 44.4115, 23.8797− − −  

10 ( )49.3339, 0.8611, 53.2839− −  ( )15.9109, 27.5586, 35.0901−  ( )0.0345, 0.0597, 107.022− −  

11 ( )48.4877, 0.8463, 66.6848− −  ( )17.1785, 29.7541, 54.3172−  ( )12.8906, 22.3272, 126.604− −  

12 ( )31.7758, 0.5546, 134.34  ( )16.5212, 28.6156, 69.4011−  ( )25.641, 44.4115, 133.88− −  

 

 

The twelve assembly configurations of the manipulator, which correspond to the 

results in Table 4.7, are shown in Table 4.8.  Note that the first assembly configuration is 

drawn by using the first result in Table 4.8. For assembly configurations, the location of 

moving coordinate system can be determined by Eqs.(4.21 a-c) and Euler angles can be 

found by utilizing   Eqs.(4.22 a-c). 

 

 

Table 4.8. Assembly modes of the manipulator 

 

No. Assembly Configuration No. Assembly Configuration 

1 

 

7 

 

    (cont. on next page) 
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Table 4.8 (cont.) Assembly modes of the manipulator 

 

2 

 

8 

 

3 

 

9 

 

4 

 

10 

 

(cont. on next page) 
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Table 4.8 (cont.) Assembly modes of the manipulator 

 

5 

 

 

11 

 

6 

 

12 

 

 
 

4.4.3. Workspace Analysis 

 

If  the kinematic model manipulator shown in Figure 3.10.a is reconsidered, it is 

easy to see that the platform of the manipulator moves on three surfaces created by point Bi 

of i th leg. Therefore, firstly, the surfaces created by legs must be investigated. The design 

equation given in Eq.(3.72) defines the reachable surface for each leg of the manipulator. 

Three surfaces can be plotted in Mathematica by using constant geometric parameters in 

Table 4.6.  Three plots corresponding to the first, the second and the third legs of the 

manipulator are shown in Figure 4.3.a-c, respectively. Three surfaces are depicted together 

in Figure 4.3.d. However, the surfaces are not enough to imagine reachable workspace of 
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the manipulator. Therefore, translation workspace of manipulator can be reached by 

keeping orientation of the platform constant in Eq.(3.77). For each leg (i=1,2,3) , the 

workspace of the moving platform is plotted by selecting orientation of the platform as 

0 , 0 , 0θ ψ β= ° = ° = ° (Figure 4.4.a-c). Three workspaces are shown together in Figure 

4.4.d. In Mathematica, there is no way to find the intersection of these surfaces. Hence, a 

CAD program is used to describe the intersection. Firstly, the workspaces are transported to 

CAD program (Figure 4.4.e). Then, the intersection of the leg workspaces are found by 

using CAD tools (Figure 4.4.f).   

 

  

 

  
 

Figure 4.3. Work surfaces of the legs (a) surface for the first leg  (b) surface for the second 

leg  (c) surface for the third leg (d) three surfaces together 

 

(a)   (b) 

(c) (d) 
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Another method of describing workspace is to make the direct position analysis for 

1000 points. The constant parameters in Table 4.6 are utilized for analysis and the inputs 

are changed in some range ( 110 135 step 15 ,θ≤ ≤ ° °  12120 210 step 10θ° ≤ ≤ ° °  

13, 240 267 step 3θ° ≤ ≤ ° ° ).  The position workspace of the manipulator’s end-effector is 

shown in Figure 4.5. The upper half of the workspace is symmetric to the lower half.  

 

  
(a) Workspace of the platform from the 

first leg 
(b) Workspace of the platform from the 

second leg 

   
(c) Workspace of the platform  from the 

third leg 
(d) Three workspaces together 

 
Figure 4.4. Constant orientation workspace of the manipulator  

 

(cont. on next page) 
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(e) CAD of workspace (f) Intersection of three workspaces. 

 

Figure 4.4.(cont.) Constant orientation workspace of the manipulator  
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Figure 4.5. Workspace of the end-effector’s position of the manipulator. 
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4.5. Position Analysis of a Three DoF EPRM 

 

Consider a three DoF EPRM shown in Figure 4.6. Three identical legs are placed on 

three different Euclidean planes. Geometry of these planes is identified by an angle iα . 

Other geometric parameters are very similar to the previous example (3 CsRS manipulator) 

but only the joint variable is switched.  In Figure 4.6 , the first coordinate system (OF, xF, 

yF, zF) is fixed to the base, the second coordinate system (OM, xM, yM, zM) is attached to the 

moving platform and the third coordinate system (Ai, xi, yi zi) is aligned to Euclidean plane. 

 

 

 

Figure 4.6. A three DoF EPRM  

 

Transformation of moving platform is described as follows,    

 

,

0 0 0 1

x x x x

y y y y
F M

z z z z

U V W P

U V W P

U V W P

 
 
 =
 
 
 

T  (4.21) 
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Coordinates of point Bi are calculated by using transformation matrix in Eq.(4.21),  

 

, 0

1 1

xi xi

yi yi
F M

zi

q b

q b

q

   
   
   =
   
   
   

T  (4.22) 

 
 

Another transformation matrix can be represented as follows, 

  

, , , ,i i i i i iF B F A A C C B=T T T T  (4.23) 

 
 

where ( ) ( ),

0

0
, , . ,

0 1 0 02

0 0 0 1

i

i i i i

i i i i
F A F i i i i

c s a c

s c a s
T z T x a T x

α α α
α α απ

α

 
 −   = ⋅ =    
 
 

T ,  

1 1 1 1

1 1 1 1
,

0

0

0 0 1 0

0 0 0 1

i i

i i i i

i i i i
A C

c s r c

s c r s

θ θ θ
θ θ θ

− 
 
 =
 
 
 

T  and 

2 2 2 2

2 2 2 2
,

0

0

0 0 1 0

0 0 0 1

i i

i i i i

i i i i
C B

c s r c

s c r s

θ θ θ
θ θ θ

− 
 
 =
 
 
 

T . 

 

Coordinates of point Bi can also be calculated by using other transformation matrix 

in Eq.(4.23) as follows,  

 

,

0

0

0

1 1

i

xi

yi
F B

zi

q

q

q

   
   
   =
   
   
   

T  (4.24) 

 
 
 
It is clear that Eqs.(4.22) and (4.24) are equal. Then we can write three equations, 
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( )1 1 2 1 2 2 1 2xi x x xi x yi i i i i i i i i i iq P U b V b c a r c r c c r s sα θ θ θ θ θ= + + = + + −  (4.25a) 

( )1 1 2 1 2 2 1 2yi y y xi y yi i i i i i i i i i iq P U b V b s a r c r c c r s sα θ θ θ θ θ= + + = + + −  (4.25b) 

1 1 2 1 2 2 1 2zi z z xi z yi i i i i i i i iq P U b V b r s r s c r c sθ θ θ θ θ= + + = + +  (4.25c) 

 
 

Multiplying Eq. (4.25 a) with isα  and Eq. (4.25 b) with icα− , the conditions for the 

EPRMs are obtained as follows,   

 

0xi i yi iq s q cα α− =  (4.26) 

 

Eq. (4.26) implies that point Bi must move always on ith Euclidean plane.  

Inverse position analysis of this manipulator is to find angle 1iθ  for given position 

and orientation of the platform (Px, Py, Pz, Ux, Uy, Vz).  

Applying mathematical operation as Eq. (4.25 a) Eq. (4.25 b)i ic sα α× + × , we get 

Eq. (4.27).    

 

1 1 2 1 2 2 2 1xi i yi i i i i i i i i i iq c q s a r c r c c r s sα α θ θ θ θ θ+ = + + −  (4.27) 

 
 

The second revolute joint angle 2iθ  is eliminated by using some mathematical 

manipulation ( ) ( )2 2
Eq. (4.25 c) Eq. (4.27)+ .  

 

2 2 2 2
1 1

2 2 2 2
1 1 1 1 1 1 1 1 2

2 2 2 2

2 2 2 0

xi i xi yi i i xi i i xi i i i yi i yi i i

yi i i i i i i i i zi zi i i i

q c q q c s q a c q r c c q s q a s

q r s c a a r c r q q r s r

α α α α α θ α α

θ θ θ θ

+ − − + −

− + + + + − − =
 (4.28) 

 
 

Eq.(4.28) can be rewritten as follows, 
 

 

1 1 0i i i i iA c B s Cθ θ+ + =  (4.29) 
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where 1 1 12 2 2i xi i i yi i i i iA q c r q s r a rα α= − − + , 12i zi iB q r= −  and 
2 2 2 2 2 2 2 2

1 22 2 2i xi i xi yi i i xi i i yi i yi i i i i zi iC q c q q c s q a c q s q a s a r q rα α α α α α= + − + − + + + − . 

 

By substituting trigonometric identities  ( )
2

1
1 2

1

1
cos

1
i

i
i

t

t
θ

−
=

+
 , ( ) 1

1 2
1

2
sin

1
i

i
i

t

t
θ =

+
 where 

( )1 1tan / 2i itθ =  into Eq.(4.29), two unknowns ( 1icθ , 1isθ ) are reduced to one unknown ( 1it ),    

 

 

( ) ( )2
1 12 0i i i i i i iC A t B t C A− + + + =  (4.30) 

 

 

The second degree equation can be solved analytically. Therefore, angle 1iθ  can be 

calculated by using Eq.(4.30) . 

 

2 2 2

1 2arctan i i i i
i

i i

B B A C

C A
θ

 − + −
 =
 − 

∓
 (4.31) 

 
 

It is worthy to note that Eq.(4.16) is very close to Eq.(4.31). In inverse position 

analysis of  3 DoF planar parallel manipulator, eight possible cases were presented. 

Therefore, we can conclude that at most eight solutions can be obtained for spatial EPRM.     

 

4.6. Position Analysis of a Six DoF Parallel Robot Manipulator 

The manipulator shown in Figure 4.7 has six DoF and three identical legs. Each of 

legs consists of a spherical slider (SS), an intermediate cylindrical joint (C) and a hooke or 

cardan joint (U) attached to the moving platform. Kinematic chain of a leg is called SS CU 

limb.  
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Moving 

Platform

Spherical Base

Two DoF 

Pairs on 

spherical 

surface

(similar to 

planar pair) 

Cylindrical 

pair

Hooke or 

cardan pair

The first 

leg

The second 

leg

The third leg

 

(a) 

f iO O r=

i i iO A d=

 

(b) 

 

Figure 4.7. Novel 6 DoF parallel robot manipulator (a) CAD representation (b) kinematic 

model 

 

Note that the distance between points Ai and Bi is very small with respect to other 

dimensions. Therefore, it can be neglected from kinematic equations. Therefore, 

i i i i i i i iO B O A A B O A= + =
����� ����� ����� �����

. Then, the vector loop equations for ith leg can be represented as 

follows,  
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f i i i f M M iO O O B O O O B+ = +
������ ����� ������� ������

 (4.32) 

 

Equating coefficients of unit vectors i, j, k ends up with three scalar equations, 

  

( )i i i i i i xir c c d c c qθ β θ β α+ + =  (4.33) 

( )i i i i i i yir s c d s c qθ β θ β α+ + =  (4.34) 

( )i i i i zir s d s qβ β α+ + =  (4.35) 

 

where  xi x x xi x yiq P U b V b= + + , yi y y xi y yiq P U b V b= + +  and zi z z xi z yiq P U b V b= + + . Three 

parameters ( ), ,x y zP P P  define the position of the platform whereas other three ones  

( ), ,x y zU U V  specify the orientation of the platform. Parameters xib  and yib  defines 

geometric shape of the platform. Using Eqs.(4.33) and (4.34), the following equation can 

be derived. 

 

xi i yi iq s q cθ θ=  (4.36) 

 

The first actuation parameter of slider can be calculated as follows, 

 

( )2Atan ,i xi yiq qθ =  (4.37) 

 

Mathematical operation 2 2 2Eq.(4.33) Eq.(4.34) Eq.(4.35)+ +  eliminates all variable 

angles,  

2 2 2 2 22 i i i xi yi zir r d c d q q qα+ + = + +  (4.38) 

 

Linear motion (di) of cylindrical pair can be calculated from Eq.(4.38). Eqs.(4.33) 

and (4.35) can be combined in matrix form as follows, 

 

i i i i i i i i xi

i i i i zi

r c d c c d c s c q

d s r c s q

θ θ α θ α β
α α β

+ −     
=     

     
 (4.39) 
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Solution of matrix Eq.(4.39) yields,  

 

( ) ( )
1

2 22

/xi i i i zi i
i

i i i i i

q r c c d q s
c

r c d r c d s

α θ α
β

α α α

+
=

+ +
, 

( ) ( )
1

2 22

/zi i zi i i xi i
i

i i i i i

q r d q c d q s c
s

r c d r c d s

α α θ
β

α α α

+ −
=

+ +
 (4.40) 

 

The second actuation parameters can be calculated as follows, 

 

( )2Atan ,i i ic sβ β β=  (4.41) 

 

 

Calculations of angles in  Eqs.(4.37) and (4.41) defines the position point Oi on 

sphere. 
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CHAPTER 5 

 

MECHA�IC A�ALYSIS OF PARALLEL ROBOT 

MA�IPULATORS 

 

This chapter presents mechanic analysis that includes static force analyses.  The 

force analysis is important and considered at design stage due to the fact that the sizing of 

link and other mechanical elements can be selected by these analyses. Static force analysis 

is considered when the movement acceleration and speed of manipulator’s links and 

platform are slow. On the other hand, if the speed is high, dynamic analysis is under the 

consideration. Difference between static and dynamic analysis comes from especially 

inertial force effects of mechanical elements. Inertial forces are related to angular and linear 

accelerations.  Other forces are external forces, reaction forces and actuator forces.   

 

5.1. Static Force Analysis  

 

The recursive method of serial manipulators and single-loop spatial mechanism 

cannot be applied to parallel manipulators due to several closed loops.  Generally, the force 

and moment equations must be derived for each link and the simultaneous linear equations 

must be solved. The principle of virtual work is an alternative way to obtain the actuator 

drive forces-torques. But note that the reaction forces are not calculated by this method.  

 

5.1.1 Static Force Analysis of a three DoF Euclidean Parallel Robot 

Manipulator 

 

A three DoF manipulator with three step motors is shown in Figure 5.1. In static 

force analysis of the manipulator, our aim is to find driving torque of step motors. This 

torque is also called holding torque that is need to hold the system in static equilibrium. 
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External force Fz and moments Mx and My are applied on at the center of the platform. For 

simplicity, the rotation matrix of the platform is taken to be identity matrix or in other 

words the platform is parallel to the ground (Omxmymzm // OFxFyFzF).    

 

 

 

Figure 5.1. A three DoF parallel robot manipulator 

  

(a)  

(b) 

(c) 

 

Figure 5.2. Free body diagrams of (a) platform, (b) link 3 and (c) link 2  
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Firstly, free body diagrams of platform, link3 and link2 are drawn to show reaction 

forces. Spherical joints cannot have any reaction moments because of its three independent 

rotational motions. Therefore, Figure 5.2.a depicts reaction forces of the spherical pairs 

which are labeled as F38 ,  F58,  F78. Force and moment equilibrium is written as,     

 

 

0∑ =F ,    0′ + + + =38 58 78F F F F  (5.1) 

0=∑ B2M ,        2 2 1 2 3 0mB O B B B B′× + × + × + =38 78F F F M
������ ����� �����

 (5.2) 

  

 

where pm′ = +F F g , g= −g k , 2 2 2m x yB O b b= +i j
������

, 3 3 3m x yB O b b= +i j
������

, 2 3 2 2x yB B k k= +i j
�����

 

and 2 1 1 1x yB B k k= +i j
�����

.  

 

The following scalar equations can be obtained by separating coefficients of i, j and 

k unit vectors of  Eq. (5.1). Scalar components of forces and moments are as follows;  

 

 

 

38 58 78x x x xF F F F+ + = −  

38 58 78y y y yF F F F+ + = −  

38 58 78z z z z pF F F F m g+ + = − +  

(5.3) 

 

 

Equating coefficients of i, j and k unit vectors of  Eq. (5.2), the additional scalar 

equations can be written as follows,  
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( )
( )

78 2 38 1 2

78 2 38 1 2

38 1 38 1 78 2 78 2 2 2

z y z y z p y x

z x z x z p x y

y x x y y x x y x y y x z

F k F k F m g b M

F k F k F m g b M

F k F k F k F k b F b F M

+ = − − −

− − = − −

− + − = − + −

 (5.4) 

 

 

If the last line of Eq.(5.3) and the first two line of Eq.(5.4) are composed, the system 

of linear equations is reached,   

 

 

38

1 2 58 2 2

1 2 78 2 2

1 1 1

0

0

z z p

y y z z y y p x

x x z z x x p y

F F m g

k k F F b b m g M

k k F F b b m g M

 − +   
     = − + −    
    − − − −     

 (5.5) 

 

 

Three unknowns ( 38zF , 58zF , 78zF )  in Eq.(5.5) are calculated by using inverse of 

square matrix. The reaction forces will be as follows,   

 

 

( )380 0
T

zF=38F , ( )580 0
T

zF=58F , ( )7 780 0
T

zF=8F  (5.5) 

  

 Once the reaction forces applied on platform are calculated, the reactions forces 

acting on the legs can be found. For the link 3, only one force equation is sufficient to find 

unknown reaction force F23 which is shown in Figure 5.2.b: 

 

0∑ =F ,     23 3 3m= − −8F F g  (5.6) 

 

 Finally, holding torque of the first step motor in Figure 5.2.c is determined by taking 

moment with respect to point A1.  Other actuator torques are found in a similar way. 
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1
0A∑ =M ,     1 1 32 2 1 2AC m AG= − × − ×12T F g

����� �����

 (5.7) 

 

�umerical Example:  Consider external a force 1500zF -=  and no external moment 

applied to the platform of the manipulator. Geometry of the manipulator is given in Table 

5.1. Note that joints angles are set to be 11 12 13 60θ θ θ= = = ° . 

 

Table 5.1. Geometry of the manipulator 
 
 

2 3 3 0.3mB O m= +i j
������

 2 1 6 3 0B B m= +i j
�����

 2 3 3 3 0.9B B m= +i j
�����

 

1 60α = − °  2 60α = °  3 180α = °  

1 1 0.1875 0.3248 0.64952A C m= − −i j k
�����

 1 2 0.0625 0.1083 0.2165A G m= − −i j k
�����

 

2 2 0.1875 0.3248 0.64952A C m= + −i j k
������

 2 4 0.0625 0.1083 0.2165A G m= + −i j k
������

 

3 3 0.375 0 0.64952A C m= − + −i j k
�����

 2 6 0.125 0 0.2165A G m= − + −i j k
������

 

 

 

Weights of the platform and all links: 30pm kg= , 3 5 7 15m m m kg= = = , 

2 4 6 20m m m kg= = = . Gravitational acceleration: 29.81 /g m s= . If the constant 

parameters are substituted into Eqs.(5.5) and (5.6), the components of  the reaction forces 

acting on the platform will be ( ) ( )38 58 78 598.1 598.1 598.1z z zF F F -= . Actuator 

torques in fix frame are calculated as follows,    

 

1 1 32 2 1 2 220.809 127.472 0AC m AG - m= − × − × = + +12T F g i j k
����� �����

 

4 2 2 45 4 2 2 220.809 127.472 0A C m A G - m= − × − × = − + +1T F g i j k
������ ������

 

3 3 67 6 3 3 0 254.994 0A C m A G - m= − × − × = − +16T F g i j k
����� ������

 

 

The torques can be described in Euclidean planes. 

 ( ) ( )( )1
1 12 1 1 1, ,90 0.01 0 254.962

T
R z R x - mα= ° = + −12T T i j k  

( ) ( )( )2
4 2 14 2 2 2, ,90 0.01 0 254.962

T
R z R x - mα= ° = − + −1T T i j k  

( ) ( )( )3
6 3 16 3 3 3, ,90 0 0 254.944

T
R z R x - mα= ° = + −1T T i j k  
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Step motor’s holding torque must be equal or greater than 260 -m to hold the 

system in static equilibrium. If the motor does not satisfy the torque, alternatively, 

gearboxes can be used to increase the torque. 
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CHAPTER 6 

 

CO�STRUCTIO� ELEME�TS A�D CO�TROL OF 

PARALLEL ROBOT MA�IPULATORS 

  
In this study, our aim is to solve an industrial pick and place problem. In the 

company, bricks are carried by workers. Weight of bricks changes from 10 kg to 100 kg in 

production line. When the weight of bricks increases, workers are easily tired and 

efficiency of the production decreases. In order to solve this problem, a novel hybrid 

manipulator is developed. This manipulator has two layers such that the first layer is a 

parallel structure and the second layer is an open serial chain. Parallel structure is a three 

DoF EPRM while open serial chain is a two DoF XY table. This chapter presents how the 

manipulator is constructed and how control algorithm is developed.      

The body of parallel robot manipulators is constructed with some mechanical parts 

such as bearings, gears, pneumatic cylinders, belt systems, grippers and e.t.c. These parts 

must be selected from company catalogs according to their physical and mechanical 

capabilities. After mechanical construction of the manipulator, the actuators and sensors are 

assembled into necessary place.    

 
6.1. Mechanical Elements  
 
 
6.1.1. Bearings  
 

The kinematic structure of parallel manipulators generally needs some revolute 

pairs (pivots). From dynamic analysis, these pairs must resist some reaction forces. 

Bearings are convenient for both the generation of necessary motion and the resistance of 

reaction forces.  

When any machine is designed, some properties of the bearings must be considered 

to fulfill necessary conditions. Firstly, designer determines dimensions of bearings such as 

inner and outer diameter with respect to the diameter of shaft and the diameter of housing. 
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Then, designer checks whether the load capacity of the bearing is appropriate or not.  

Finally, designer calculates service life of the bearing under the specified conditions.     

 We select the bearings as follows, FAG 16008 radial ball bearing (Table 6.1.a), 

FAG 30205-Tapered roller bearing (Table 6.1.b), UBC Plummer block housing unit(Table 

6.1.c). 

 

Table 6.1. Technical characteristic of bearings (a) radial ball bearing (b) tapered ball 

bearing (c) Plummer block housing unit 

 

T
ec

hn
ic

al
 D

ra
w

in
gs

 

  
 

 (a) (b) (c) 

D
im

en
si

on
s 

d=40 mm, D=68 mm, 

B=9mm 

d=25 mm, D=52 mm, 

T=16.25 mm 

d=30 mm, d3=44 mm, 

A=40 mm,A1=25 mm, 

B1=35.7 mm 

F
or

ce
s 

 The bearing can support  

the radial forces and only 

small axial forces. 

The bearing can support 

both the radial forces and 

the axial forces. 

The bearing can support 

both the radial forces and 

the axial forces. 

L
oa

d 
ca

pa
ci

ty
 Basic dynamic load rating, 

radial (Cr) 13200 N 

Basic static load rating,  

radial (C0r) 10200 N 

Basic dynamic load rating, 

radial (Cr) 32500 N. Basic 

static load rating, radial 

(C0r) 35500 N 

Basic dynamic load rating, 

radial (Cr) 19500 N 

Basic static load rating, 

radial (C0r) 11300 N 
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6.1.2. Grippers 
 

Grippers are mechanical devices to pick an object and hold it during transportation. 

Generally, they are controlled by pneumatic pressure or hydraulic pressure. But, some new 

small grippers have been developed with servo motors to obtain high precision and more 

position interval. Pneumatic and hydraulic grippers are convenient for heavy loads.  

Pneumatic gripper PGN 200-2 is selected for transportation of bricks in our project. 

Technical capabilities of the gripper are given in Table 6.2.  

 

 

 

Figure 6.1. Pneumatic gripper  PGN 200-2  

 

Table 6.2. Technical capabilities of PGN 200-2  

Technical capability Value 

Stroke per finger 14 mm 

Gripping force at 6 bars 3300 N 

Recommended workpiece weight 16.5 kg 

Air consumption per double stroke 306 cm3 

Opening time 0.3 s 

Closing time 0.3 s 

Mass 5.1 kg 

Mass moment of inertia 230 kg cm2 

Repeatability 0.02 mm 
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6.1.3. Gearboxes 
 

Gears are used to transmit rotary motion between parallel or non-parallel shafts. 

Four principal types of gears are spur, helical, bevel and worm. Gearboxes are constructed 

by assembling two or more gear types. Transmission ratio and out torque are important 

technical properties for gearboxes. In our applications, three gearboxes whose transmission 

ratio is 1/149 are used to obtain smooth motion and high torque (~200 Nm).                          

(Figure 6.2) 

 
 

 

Figure 6.2. Gearbox 

 

 
6.1.4. Timing Belts 
 

Belts transmit power in case of the considerable long distance the shaft of actuators 

and the shaft of machine. Fortunately, they protect the actuators from bad effects of 

vibration and shock loads due to their elastic property. Four main belt types are defined by 

shapes of their cross-sections: flat, round, V and timing. Timing belts are produced from 

rubberized fabric consisting of steel wire to absorb tension load. The main advantage of 

timings belts is to transmit power without slip. Therefore, the power transmission at a 

constant angular-velocity ratio is possible for timing belts. There are five standard pitches 

which can be identified with their letter designations: Extra light (XL), light (L), heavy (H), 
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extra heavy (XH), Double extra heavy (XXH). In the manipulator project, heavy type is 

used for power transmission between motor and gearbox.         

 
 
6.2. Actuators 
 
  
6.2.1. Stepper Motors 

 
  

Basic structure of stepper motors are depicted in Figure 6.3. The motor shaft is 

rotated by means of two parts, the stator and rotor. The stator is fixed to housing of the 

motor while the rotor is fixed to the shaft. The rotor consists of three components: rotor1, 

rotor2 and the permanent magnet. Two bearings are used to place the shaft on housing of 

the motor. The stator and rotors have several small teeth. When the motor is excited, there 

is a main flux through these teeth.  The stepping motors can be 2 or 5 phases. 2-phase step 

motor is shown in Figure 6.3.b. When phase A-A´ is firstly excited and then phase B-B´ is 

excited, the shaft rotates clockwise direction. The shaft rotates counterclockwise direction 

for reverse excitement.   

 

 

 

 

Figure 6.3. Basic structure of step motor  (a) Half section parallel to shaft (b) Full section 

perpendicular to the shaft 
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A Stepper motor has a constant rotation angle for each step. Generally, these angles 

can be 15°, 7.5° or 1.8°.  Step numbers through a full cycle of the motor shaft depend on 

these step angles. For instance, 24, 48 and 200 step numbers are calculated for 15°, 7.5° and 

1.8° step angles, respectively. One can generalize the formulation as follows 

 
 

360
s-

β
°

=  (6.1) 

 
 

where s-  is number of step in a full cycle, β  is step angle. Note that step number s-  is 

also named as resolution of the motor. However, the formulation should be changed, if and 

only if half, quarter and micro stepping techniques are used. These techniques depend on 

electronic construction of motor driver and its properties. Formulations for half, quarter and 

micro stepping techniques are given in Table 6.3. 

 
 

Table 6.3. Formulations for stepping techniques 
 

Stepping Techniques Resolutions Resolution Values for  a 1.8° step 
angle motor 

Normal 360
s-

β
°

=  200 

Half 360
2s-

β
°

= ⋅  400 

Quarter 360
4s-

β
°

= ⋅  800 

Micro Stepping (250 Microstep) 360
250s-

β
°

= ⋅  50000 

 
 

Step motors are selected for actuating due to the following features: 
 

1. Easy rotation and velocity control:  The shaft of stepping motors rotates in steps of 

the constant step angle. The position and velocity of the motor shaft are digitally controlled 

using on and off signals or in other word pulses. These signals can be obtained by a 
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computer or other micro processor electronics. Note that on signals is always +5 volt where 

as off is 0 volt. 

 

 
 

Figure 6.4. On and off signals or pulses  
 
 
 

Figure 6.4 shows that pulses are generated by a computer or some electronics over a 

time. Here, T is the period of signals and it is described in seconds. Frequency of signals 

can be calculated as  

 

 

1
f

T
=  (6.2) 

 
 

The rotation angle of the motor shaft is controlled by increasing or decreasing 

number of pulses. In Table 6.4, the angle of rotation corresponding to number of pulses is 

shown to illustrate control of motor.      

If resolution and frequency of signals are known, angular velocity of the shaft can 

be calculated as   

 

 

s

f

-
ω =  (6.3) 

 

The higher frequency of signals causes higher angular velocity of the shaft.     

(Table 6.5)  
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Table 6.4. Controlling rotation of the shaft by changing number of pulses  
 
 

# of pulse signals angle of 
rotation 

illustration of rotation 
of the motor shaft 

1 pulse 
 

 

1.8° 

 

3 pulses 

 

5.4° 

 

200  pulses 

 

360° 

 
 

 
 

Table 6.5.Controlling velocity of the shaft by changing frequency of pulses 
 

f  
frequency 

signals angular velocity of the 
motor shaft 

200 Hz 

 

1 rev/s 
60 rev/min 

400 Hz 
2 rev/s 

120 rev/min 

2000 Hz 
10 rev/s 

600 rev/min 
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2. High Torque: Stepping motors generate high torque. Therefore, the variable 

movement in high speed can be achieved.  

 
3. High Positioning Precision: The very smooth movement is possible using micro 

stepping. Some companies present motor drivers enable million step resolution in a full 

cycle. However, the speed decreases when resolution is increased. 

 
4.  Holding Torque: Stepping motors hold high torque even if it is stopped. The 

position of the motor shaft can be preserved without a mechanical brake.    

 
• Characteristics of Step Motors 
 
Before using a stepper motor, the motor characteristics must be considered in the design 

stage. Two main characteristics are static and dynamic characteristics. Static characteristics 

relates to angular deviation when stepper motor is stopped but it is still powered on. On the 

other hand, dynamic characteristics relates to angular velocity and torque when the shaft of 

stepping motor moves. 

  
1. Static Characteristics 

Static Holding Torque: When motor stops but power is still supplied, motor shaft can only 

be loaded as much as static holding torque. This characteristic is usually given in motor 

catalogs. If the load on motor shaft exceeds static holding torque, this system will continue 

its motion towards to gravity direction. However, even if the load is smaller then static 

holding torque, always an angular deviation from the desired equilibrium position will be 

observed, no matter how small the load torque and no matter how large the motor restoring 

torque.  Angle-Torque characteristic of a step motor is similar to curve shown in Figure 6.5.  

A load torque T is applied to shaft for an angle of rotation angle θ .  An approximation to 

the static restoring and holding torque is given by the sine wave. The static positioning 

error is calculated as follows, 

 

11
sinerror

t H

T

n T
θ −  

=  
 

 (6.4) 
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where nt is number of rotor teeth.  

 

TH

-TH

T

Angle of rotation

 

 

Figure 6.5. Angle-Torque characteristic  

 

Step Angle Accuracy:  Generally, the stepping motor’s shaft can precisely be rotated by 

step angle accuracy within ± 0.05° when no-load is applied to the shaft.  This very small 

error is a result of the mechanical precision between the stator and rotor teeth and also the 

electrical precision of DC resistance of the stator coil.  Stopping accuracy is difference 

between theoretical stopping position and actual stopping position of the rotor. 

 

2. Dynamic Characteristics 

Speed-Torque Characteristics: The stepping motor performance is commonly measured 

by this characteristic. In manuals, it is also called performance curve.  On the performance 

curve (Figure 6.6), the horizontal axis defines the variation of angular velocity as expressed 

in Eq. (6.3) while the vertical axis expresses torque. Noting that angular velocity changes 

with frequency of pulses, three numbers 1, 2 and 3 on the graph are defined as follows, 

1. Holding Torque (TH):  The holding torque is the maximum load which can be 

applied to shaft when the shaft is not rotating but power is being supplied. 

2. Pullout Torque:   Pullout torque is the maximum torque that can be generated at a 

given angular velocity. The required torque must fall within this curve while 

selecting a motor. 
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3. Maximum Starting Frequency:  This frequency is related to the maximum pulse 

speed at which the motor shaft can rotate or stop instantly when there is no external 

or internal load. Gradual acceleration or deceleration is necessary to drive the motor 

bigger than this pulse speed. The frequency decreases when there is an internal load  

on the motor.  

 

Figure 6.6. Angular Velocity- Torque Characteristics (Performance Curve) 

 
In application part of this thesis, Powerpac Nema 42 (2 phase) step motor is selected 

for actuation of robot manipulator. Holding torque and performance curve of this motor are 

given in Figure 6.7 and Figure 6.8, respectively. Motor Code of the selected motor is 

N42HRFM-LNK-NS-01 and supply voltage is 75 V.  
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Figure 6.7. Torque Linearity- Holding Torque 
 
 

 

 

 

Figure 6.8. Performance curve of Powerpac Nema 42 step motor 
 

 

6.2.2. Motor Driver 

 

Considering supply voltage and current, convenient motor driver is selected from 

catalog. The selected motor driver is Pacific Scientific MA 6410. This driver receives step 
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and direction input from a controller or computer and it send necessary energy to motor 

winding currents. Main features include microstepping and mid-band instability 

compensation for high resolution and smooth operation through both the low speed and 

mid-band resonance regions. The output current of the driver is dip switch selectable from 

5 A rms (7.1 A peak in microstep mode) to 0.625 A rms (0.88 A peak in microstep mode). 

The drive supplies regulated phase currents for supply voltages between 24 and 75 Vdc. It 

is designed for use with Pacific Scientific hybrid stepping motors. 

 

Drive features: 

• Bipolar chopper drive (reduced heat dissipation, low electric noise and improved 

current control during motor breaking)  

• Microstepping (switch selectable: full, 1/2 , 1/4, 1/8, 1/10, 1/50, 1/12, and 1/250 

step capability) 

• Digital Electronic Damping 

• Short circuit protection circuitry 

• MOSFET power devices 

• Optically isolated signal interface connection 

• UL Recognized- 508C (Type R)  

 

Typical Applications for this driver: X-Y tables and slides, packaging machinery, 

robotics, specialty machinery, index feed of material and labeling machines. 

 

�umeric Controller   

GOYA (Numeric Controller) can control 1, 2 or 3 axes of the types stepper, dc. or 

brushless, both for point to point positioning and linear and circular interpolation. It can 

handle machine I/O (16in/8out) either in sequential mode or as a PLC program. The I/O 

can be expanded up to 128 in + 128 out using Can-Bus.  

 

Main features:  

• 1, 2 or 3 axes stepper, d.c. or brushless (the third axis is for stepper motor only) 

• PID control algorithm with programmable feedforward action 
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• Point to point positioning, linear interpolation, circular interpolation 

• Programmable velocity profiles 

• Encoder feedback even for stepper motors 

• 16 discrete inputs and 8 discrete outputs can be handled in sequential mode or PLC 

logic. It is expandable to 128+ 128 via industrial Can-Bus. 

• Programming language: ISO (extended) for the axes’ control section, AWL on PC 

or the PLC section.  

• Fast input for the reading of the axes’ coordinates (sensor) 

• Auxiliary analogue inputs (6 max.) 

• Handling of “Variables” from program 

• 2 incremental encoders with encoder feedback (FMAX: 37 kHz on the encoder 

signal), possible also for stepper motors 

• Control of parallel process 

 

Overall electronic circuits and connections to PC and CNC are illustrated in        

Figure 6.9. 

 

 

Figure 6.9. PC or CNC Control of Stepper Motor  
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6.3. Assembly of the parallel manipulator 

 

  A three DoF EPRM is assembled by using manufactured parts and mechanical 

elements. Firstly, the fixed base of the manipulator is mounted to ground by using some 

bolts. (Figure 6.10).  The fixed base consists of two different manufactured parts. 

Dimensions of these parts are shown in Figure 6.11.      

 

 
 

Figure 6.10. The fixed base of the manipulator   

 

  
 

Figure 6.11. Two manufactured parts for the fixed base    



 128

There gearboxes are used to transmit power from step motors to parallel 

manipulator. Three gearboxes are prepared as shown in Figure 6.12.  

 

 
 

Figure 6.12. Preparation of gearboxes   

 

Three gears boxes are mounted on the fixed base (Figure 6.13)  

 

 
 

Figure 6.13. Assembly of gearboxes   
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Assembly of three DoF EPRM is completed by placing bearings and other 

manufactured links. Instead of spherical pairs, three intersected revolute joints are used. 

Therefore, workspace of the manipulator is increased. Kinematic analysis of this parallel 

manipulator is studied in Chapter 4.5. Furthermore, static force analysis of the manipulator 

is explained in Chapter 5.  

 

 
 

Figure 6.14. Three DoF EPRM    

 

 

 

 

 

 

 



 130

CHAPTER 7 

 

CO�CLUSIO� 

 

 

This thesis includes both theoretical and practical design steps of parallel 

manipulators.  When the parallel manipulators are designed, structural synthesis is the first 

problem.  Therefore, new structural formulations are presented to design various new 

parallel Euclidean robot manipulators with variable general constraints. With respect to the 

new formulations new serial, parallel, and serial-parallel Euclidean platform manipulators 

are created and explained along with examples. Also their illustrations are presented in the 

tables including structural parameters, structural bondings and kinematic structures. The 

second problem of the design is dimensional synthesis. Dimensional synthesis of planar and 

spherical seven link mechanism is achieved with a new method. Furthermore, motion 

generation synthesis problem of a three DoF spatial parallel manipulator is solved for three, 

four and five poses. After the design problems, kinematic analysis of some manipulators is 

investigated. Moreover, constant orientation workspace of a three DoF parallel manipulator 

is shown. Mechanic analysis is studied to determine the actuator torque of the manipulator. 

Finally, construction elements, control of actuators and assembly of a parallel manipulator 

are explained. Future works can be ordered as: 

 

• Further development of structural synthesis formulation for new type 

manipulators. 

• Kinematic synthesis and analysis of serial and serial-parallel Euclidean 

platform robot manipulators. 

• Construction of new medical and industrial robotic systems.  
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APPE�DIX A 
 

 

I�VERSE OF SQUARE MATRIX I� SY�THESIS OF 

SPHERICAL SEVE� LI�K MECHA�ISM   

 

 

 

M1= (-N10 N14 N18+N9 N15 N18+N10 N13 N19-N8 N15 N19-N9 N13 N20+N8 N14 

N20)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 

N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 

N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 

N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 

N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 

N20+N2 N8 N14 N20) 

 

M2= (N5 N14 N18-N4 N15 N18-N5 N13 N19+N3 N15 N19+N4 N13 N20-N3 N14 

N20)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 

N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 

N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 

N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 

N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 

N20+N2 N8 N14 N20) 

 

M3= (-N5 N9 N18+N4 N10 N18+N5 N8 N19-N3 N10 N19-N4 N8 N20-N3 N9 

N20)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 

N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 

N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 

N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 

N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 

N20+N2 N8 N14 N20) 

 

M4= (N5 N9 N13-N4 N10 N13-N5 N8 N14+N3 N10 N14+N4 N8 N15-N3 N9 N15)/(N5 

N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 N8 N15 

N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 N18-N2 N10 

N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 N12 N19-N5 

N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 N8 N12 

N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 N20+N2 N8 

N14 N20) 

 

M5= (-N5 N9 N13 N16+N4 N10 N13 N16+N5 N8 N14 N16-N3 N10 N14 N16-N4 N8 

N15 N16+N3 N9 N15 N16+N5 N9 N11 N18-N4 N10 N11 N18-N5 N6 N14 N18+N1 

N10 N14 N18+N4 N6 N15 N18-N1 N9 N15 N18-N5 N8 N11 N19-N3 N10 N11 

N19+N5 N6 N13 N19-N1 N10 N13 N19-N3 N6 N15 N19+N1 N8 N15 N19+N4 N8 
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N11 N20-N3 N9 N11 N20-N4 N6 N13 N20+N1 N9 N13 N20+N3 N6 N14 N20-N1 

N8 N14 N20)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 

N17+N4 N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 

N14 N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 

N10 N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 

N19-N4 N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 

N14 N20+N2 N8 N14 N20) 

 

M6= (N10 N14 N17-N9 N15 N17-N10 N12 N19+N7 N15 N19+N9 N12 N20-N7 N14 

N20)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 

N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 

N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 

N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 

N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 

N20+N2 N8 N14 N20) 

 

M7= (-N5 N14 N17+N4 N15 N17+N5 N12 N19-N2 N15 N19-N4 N12 N20+N2 N14 

N20)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 

N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 

N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 

N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 

N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 

N20+N2 N8 N14 N20) 

 

M8= (N5 N9 N17-N4 N10 N17-N5 N7 N19+N2 N10 N19+N4 N12 N20-N2 N9 

N20)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 

N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 

N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 

N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 

N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 

N20+N2 N8 N14 N20) 

 

M9= (-N5 N9 N12+N4 N10 N12+N5 N7 N14-N2 N10 N14-N4 N7 N15+N2 N9 

N15)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 

N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 

N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 

N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 

N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 

N20+N2 N8 N14 N20) 

 

M10= (N5 N9 N12 N16-N4 N10 N12 N16-N5 N7 N14 N16+N2 N10 N14 N16+N4 N7 

N15 N16-N2 N9 N15 N16-N5 N9 N11 N17+N4 N10 N11 N17+N5 N6 N14 N17-N1 

N10 N14 N17-N4 N6 N15 N17+N1 N9 N15 N17+N5 N7 N11 N19-N2 N10 N11 

N19-N5 N6 N12 N19+N1 N10 N12 N19+N2 N6 N15 N19-N1 N7 N15 N19-N4 N7 

N11 N20+N2 N9 N11 N20+N4 N6 N12 N20-N1 N9 N12 N20-N2 N6 N14 N20+N1 

N7 N14 N20)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 
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N17+N4 N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 

N14 N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 

N10 N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 

N19-N4 N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 

N14 N20+N2 N8 N14 N20) 

 

M11= (-N10 N13 N17+N8 N15 N17+N10 N12 N18-N7 N15 N18-N8 N12 N20+N7 N13 

N20)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 

N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 

N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 

N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 

N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 

N20+N2 N8 N14 N20) 

 

M12= (N5 N13 N17-N3 N15 N17-N5 N12 N18+N2 N15 N18+N3 N12 N20-N2 N13 

N20)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 

N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 

N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 

N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 

N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 

N20+N2 N8 N14 N20) 

 

M13= (-N5 N8 N17+N3 N10 N17+N5 N7 N18-N2 N10 N18-N3 N7 N20-N2 N8 

N20)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 

N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 

N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 

N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 

N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 

N20+N2 N8 N14 N20) 

 

M14= (N5 N8 N12-N3 N10 N12-N5 N7 N13+N2 N10 N13+N3 N7 N15-N2 N8 

N15)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 

N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 

N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 

N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 

N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 

N20+N2 N8 N14 N20) 

 

M15= (-N5 N8 N12 N16+N3 N10 N12 N16+N5 N7 N13 N16-N2 N10 N13 N16-N3 N7 

N15 N16+N2 N8 N15 N16+N5 N8 N11 N17-N3 N10 N11 N17-N5 N6 N13 N17+N1 

N10 N13 N17+N3 N6 N15 N17-N1 N8 N15 N17-N5 N7 N11 N18+N2 N10 N11 

N18+N5 N6 N12 N18-N1 N10 N12 N18-N2 N6 N15 N18+N1 N7 N15 N18+N3 N7 

N11 N20-N2 N8 N11 N20-N3 N6 N12 N20+N1 N8 N12 N20+N2 N6 N13 N20-N1 

N7 N13 N20)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 

N17+N4 N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 

N14 N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 

N10 N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 
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N19-N4 N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 

N14 N20+N2 N8 N14 N20) 

M16= (N9 N13 N17-N8 N14 N17-N9 N12 N18+N7 N14 N18+N8 N12 N19-N7 N13 

N19)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 

N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 

N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 

N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 

N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 

N20+N2 N8 N14 N20) 

 

M17= (-N4 N13 N17+N3 N14 N17+N4 N12 N18-N2 N14 N18-N3 N12 N19+N2 N13 

N19)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 

N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 

N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 

N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 

N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 

N20+N2 N8 N14 N20) 

 

M18= (N4 N8 N17-N3 N9 N17-N4 N7 N18+N2 N9 N18+N3 N7 N19-N2 N8 N19)/(N5 

N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 N8 N15 

N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 N18-N2 N10 

N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 N12 N19-N5 

N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 N8 N12 

N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 N20+N2 N8 

N14 N20) 

 

M19= (-N4 N8 N12+N3 N9 N12+N4 N7 N13-N2 N9 N13-N3 N7 N14+N2 N8 

N14)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 N17+N4 

N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 N14 

N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 N10 

N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 N19-N4 

N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 N14 

N20+N2 N8 N14 N20) 

 

M20= (N4 N8 N12 N16-N3 N9 N12 N16-N4 N7 N13 N16+N2 N9 N13 N16+N3 N7 N14 

N16-N2 N8 N14 N16-N4 N8 N11 N17+N3 N9 N11 N17+N4 N6 N13 N17-N1 N9 

N13 N17-N3 N6 N14 N17+N1 N8 N14 N17+N4 N7 N11 N18-N2 N9 N11 N18-N4 

N6 N12 N18+N1 N9 N12 N18+N2 N6 N14 N18-N1 N7 N14 N18-N3 N7 N11 

N19+N2 N8 N11 N19+N3 N6 N12 N19-N1 N8 N12 N19-N2 N6 N13 N19+N1 N7 

N13 N19)/(N5 N9 N13 N17-N4 N10 N13 N17-N5 N8 N14 N17+N3 N10 N14 

N17+N4 N8 N15 N17-N3 N9 N15 N17-N5 N9 N12 N18+N4 N10 N12 N18+N5 N7 

N14 N18-N2 N10 N14 N18-N4 N7 N15 N18+N2 N9 N15 N18+N5 N8 N12 N19-N3 

N10 N12 N19-N5 N7 N13 N19+N2 N10 N13 N19+N3 N7 N15 N19-N2 N8 N15 

N19-N4 N8 N12 N20+N3 N9 N12 N20+N4 N7 N13 N20-N2 N9 N13 N20-N3 N7 

N14 N20+N2 N8 N14 N20). 
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