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ABSTRACT

ANALYSIS AND SYNTHESIS OF PARALLEL MANIPULATORS

In this study, novel parallel manipulators are introduced for industrial and medical
applications. New methods are developed for the structural synthesis of Euclidean platform
robot-manipulators with variable general constraints (EPRM). New mechanical structures
such as serial, parallel and serial-parallel EPRM are designed along with proposed method.
A new dimensional synthesis method of two DoF planar and spherical seven link
mechanisms is presented. Interpolation and least square approximations are used to design
the mechanism. In the solution of dimensional synthesis problems, nonlinear equations are
converted to system of linear equations. The motion generation problem of a 3 DoF
platform robot manipulator is solved for three, four and five precision poses. It is shown
that the synthesis problem can be solved analytically for three prescribed poses. However,
the solution is achieved by using a numerical method for four and five poses. The result,
which is obtained from three prescribed poses, is used as an initial guess for four and five
poses. Kinematic analysis of the manipulators is investigated. After the derivation of
vector-loop equations, inverse and direct position analyses of the manipulators are
presented. Constant orientation workspace of a three DoF spatial parallel manipulator is
presented. The mechanical elements which are necessary for the construction of
manipulators are introduced. The information about the motors which is needed for
actuation of manipulators is given. Three DoF parallel manipulator is constructed for a
industrial packaging system. Assembly of manufactured parts and mechanical elements are

shown.

v



OZET

PARALEL MANIPULATORLERIN ANALIZI VE SENTEZI

Bu calismada, yeni paralel manipiilatdrler endiistriyel ve saglik alanindaki
uygulamalar i¢in sunulmustur. Genel degisken kisitlamali Euclidean platform robot-
manipulatorlerin (EPRM) yapisal sentezi i¢in yeni metodlar gelistirilmistir. Seri, paralel ve
seri-paralel EPRM olmak iizere yeni mekanik yapilar dnerilen metodla tasarlanmistir. Tki
serbestlik dereceli diizlemsel ve kiiresel yedi link mekanizmalarinin yeni bir boyutsal
sentez metodu sunulmustur. Mekanizmay1 dizayn etmek i¢in interpolasyon ve en kiigiik
kare yaklasimlar1 kullamilmistir. Problemlerin ¢6ziimiinde dogrusal olmayan denklemler
dogrusal denklemlere doniistiiriilmiistiir. Uc serbestlik dereceli bir uzaysal robot
manipiilatoriin haraket iiretim problemi ii¢, dort ve bes hassas pozlar i¢in ¢ozlilmiistiir.
Tanimlanmis {i¢ poz i¢in sentez probleminin analitik olarak ¢oziilebildigi gdsterilmistir.
Fakat, dort ve bes pozlari i¢in ¢dziime numerik bir metod kullanilarak ulasilmistir. Ug poz
icin elde edilen sonuglar dort ve bes pozlari igin baslangi¢ tahminleri olarak kullanilmistir.
Manipulatorlerin  kinematik analizi incelenemistir. Vektdr-kapanim denklemlerinin
tiiretilmesinden sonra manipiilatdrlerin dogru ve ters pozisyon analizleri sunulmustur. Ug
serbestlik dereceli bir uzaysal manipiilatoriin sabit oryantasyon ¢alisma alani sunulmustur.
Manipiilatorlerin yapimi igin gerekli olan makina elemanlar1 tanitilmistir. Manipiilatorlerin
hareketi i¢in ihtiya¢ duyulan motorlar hakkinda bilgi verilmistir. Bir endiistriyel paketleme
sistemi igin {i¢ serbestlik dereceli paralel manipulator yapilmistir. Uretilen pargalarin ve

mekanik parcalarin montaji gosterilmistir.
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CHAPTER I

INTRODUCTION

A parallel manipulator consists of a moving platform that is connected to the base
by several legs. Another definition is given by (Merlet 2006): a generalized parallel
manipulator is a closed-loop kinematic chain mechanism whose end-effector is linked to
the base by several independent kinematic chains. Parallel manipulators are sometimes
called platform manipulators. They have specific advantages against to serial manipulators.
The most important advantage is that parallel manipulators can carry heavy loads due to the
fact that they have several legs which shares external loads. Another one is that parallel
manipulators can work very precisely. In industry and scientific facilities, parallel
manipulators are widely used for different areas such as flight simulations, earthquake
simulations, high speed and high precision machining center, pointing devices, medical
applications, mining machines, walking machines, adjustable articulated trusses and etc.

Application is vital in every problem of every engineering discipline. Therefore, we

firstly review parallel manipulators with respect to their applications.

1.1 Classification of parallel manipulators

e Parallel manipulators are used as simulators.

Patent of the first flight simulator shown in Figure 1.1 was granted by Klaus Cappel
in 1964. When the patent was filed, Mr. Cappel was unaware of Gough's invention (or of
Stewart's paper which was not yet published). Three rotations and three translations are
sufficient to simulate a flying object in space. In order to describe these motions, six legs
constructed by pneumatic cylinders are used in Gough platform. Furthermore, one of the
earthquake simulators is constructed by creating novel mechanical architecture (Cassino
Parallel manipulator Figure 1.2.a). A single platform connected to base with three identical

legs is utilized to describe vibration of the ground of real world. Another example of



earthquake simulator is investigated in Laboratory in University of Nevada. The shake table

is given to this kind of parallel manipulators. (Figure 1.2.b)

Figure 1.1. The first flight simulator based on an octahedral hexapod as in the mid 1960s
(Source: courtesy of Klaus Cappel)

Figure 1.2. Earthquake simulations (a) Cassino Parallel Manipulator (Source: Ceccarelli et.
al., 2002), (b) The multiple shake table in University of Nevada (Source:
Labortary in University of Nevada 2008)




e Parallel manipulators are used as medical devices.

Parallel manipulators are becoming increasingly popular in medical area due to their
precision and high stiffness. As a result, there are several companies producing robotic
devices in medical market. One product is microdex alpha prototype shown in Figure 1.3.
Some special operations such as brain tumors, certain aneurysms, cervical spine problems
require high precision. Therefore, the high precision and user friendly mechanical systems
have to be developed both for doctor and patient. This kind of manipulators are fully
controlled by a doctor to help surgery process. But, development in artificial intelligence

can make these systems fully autonomous in the future.

Figure 1.3. MicroDex Alpha Prototype

(Source: Advanced Robotics for Medicine and Industry 2008)

Another product, Mazor shown in Figure 1.4, is manufactured to make the surgical
environment safer and more accurate. The system includes both open and close kinematic
chain. A serial manipulator is placed on a known parallel mechanical structure. The
prototype robot, shown in Figure 1.5, has been constructed for testing in medical tasks such

as manipulating a laparoscope and an orthroscope in Orthroscopic knee surgery.



Figure 1.4. Cutting-edge technology to the development of SmartAssist (Mazor)
(Source: SmartAssist 2008)

Figure 1.5. The prototype robot for Orthroscopic knee surgery,
(Source: Master Study of Nabil Simaan 1999)




Parallel manipulators are used not only in surgery but also in scanning operations.
Headfix is one example of these scanning machines (Figure 1.6). This system is specifically
designed to overcome the drawbacks of conventional invasive fixation and non-invasive
thermoplastic masks. Surgiscope is created for scanning brain or neurology in medical area
(Figure 1.7). The structure is constructed on three identical limbs to create necessary
motions. As seen from figure, camera is placed on the moving platform and manipulator is

mounted downward.

Figure 1.6. HeadFIX
(Source: Medical Intelligence 2008)

Figure 1.7. The SurgiScope® is a ceiling mounted robotized tool-holder device
(Source: 1SiS 2008)



e Parallel manipulators are used as machine tools.

A three DoF parallel manipulator has been developed to measure the quality of the

manufactured parts of a machine. (Figure 1.8)

Figure 1.8. Parallel structure of a spatial 3-axis machine tool with three degrees-of-

freedom.(Source: United States Patent No 6575676)

Main studies on parallel manipulators can be ordered as follows,

e Structural Synthesis: Structural synthesis is to create open and closed chains
for new mechanical architectures. Number of joints, type of joints and
classification of manipulator are determined by knowing DoF, shape of
platform and number of legs, branch loops and number of hinges. Different
structures can be obtained by using exchangeability of kinematic pairs. For
instance, three intersecting revolute joints can be represented by a spherical

pair.



Dimensional Synthesis: The geometric dimension of the known structures is
designed for the desired motion of the gripper. Objective function is defined
by representing closure equations of manipulator geometry. There are three
common tasks in dimensional synthesis: function generation, path
generation and motion generation.

Kinematic Analysis: Structure and geometric shape of parallel manipulator
must be known in order to perform kinematic analysis. Two possible
analyses are inverse and forward analyses. One investigates position of end
effector with known joint variables in forward analysis. But, joint variables
are calculated by knowing position of end effector. Forward analysis is
harder than inverse analysis for a parallel manipulator. Kinematic analysis
of a mechanism-manipulator includes position, velocity and acceleration
analyses, respectively.

Dynamic Synthesis: Objective of dynamical synthesis is to make shaking
force and moments zero or as near as possible to zero. In most cases,
making shaking force and moment zero is impossible but decreasing
shaking force and moment is very good for manipulator service life. In
order to reach this objective, mass and mass moment of inertia of the
manipulator’s links should be designed.

Dynamical Analysis: Performing dynamical analysis is only possible after
completing mentioned synthesis and kinematic analysis. Reaction and
actuator forces can be calculated by writing necessary Newton-Euler
equations. Lagrange equation of motion is another method to determine
these forces-moments.

Vibration and stability analysis: Final mechanical analysis is to make
vibration analysis of the manipulator. Here, natural frequency of actuated
links is important.

Control and simulations: Simulations can be used in every step of design
and analysis. But final simulation is most desirable to observe whether
manipulator fulfill necessary conditions or not. Control method or algorithm

can be created after performing all design and analysis steps.



1.2. Background

Study of structural synthesis always be in a state of development during the last
centuries. Due to this development, many investigations on this subject are discussed in
literature. Detailed and recent review about kinematic structure of mechanisms was
introduced by (Mruthyunjaya 2003). In his review, pattern of growth of literature on
kinematic structure over four decades is shown. (Gogu 2005) introduced a mobility
analysis of translational parallel robot manipulators, which is different from previous
mobility analyses. After this study, (Alizade, et al. 2006) reviewed the history of degrees
of freedom analysis and structural synthesis formulations in a table that also includes the
names of authors, publication dates and commentaries. Furthermore, a new structural
synthesis formulation of Cartesian robot manipulators is presented in the same
investigation. The structural synthesis of new serial and parallel manipulators is introduced
(Alizade, et al. 2007). The Euclidean platform robot manipulators with variable general
constraints are firstly presented by (Alizade, et al. 2008).

(Denavit and Hartenberg 1955, Sheth, et al. 1971, Khalil, et al. 1985) introduced
the link and joint parameters, which allow the mathematical modeling of robotic
mechanical systems. Methodological structural synthesis of serial parallel manipulators is
introduced by (Alizade and Bayram 2004). Creation of CAD structural system by using
topological description method of kinematic chains and classification of robotic systems
was done by (Roth 1975). Graph theory of structural synthesis and analysis of mechanisms
have been investigated by using the method of intuition and inspection, (Crossley 1964)
and (Woo 1967) , by using the concept of transformation of binary chains for the structural
synthesis of kinematic chains with up to 10 links and 3 DoF, (Mruthyunjaya 1979,
Mruthyunjaya 1984), by using the development of structural Assur groups, (Manolescu
1979, Manolescu 1987), by using robotic system application, (Merlet 1990) and by using
CAD strucutural synthesis of planar kinematic chains, (Hwang, et al. 1992). Topological
structure, description and classification of industrial robots of different levels have been
presented by (Mitrouchev, 2001) by using the number of closed loops. Method on the
concept of loop formation, which obviates the necessity of the test for isomorphism, is

presented by (Rao, et al. 2001) . (Zhao, et al. 2004) proposed new concept of configuration



degrees of freedom (CDoF) that can form a theoretical base for analyzing the mobility,
singularity and stability of mechanisms.

(Huang and Li 2002) proposed a general methodology for type synthesis of lower
mobility parallel manipulators by using screw theory. By the help of proposed method, they
presented three novel lower mobility parallel manipulators with 3, 4 and 5 DoF. In the light
of well known Tricept robot, (Huang, et. al. 2005) designed a new hybrid robot manipulator
named Trivariant. They also compared their design with Tricept robot according to cost and
kinematic performance. The new parallel manipulator family, where at least one leg
contains a planar four-bar parallelogram has been presented by (Liu, et. al 2005). Some
fully parallel mechanisms with two to six DoFs, where at least one leg consits of a planar
four-bar parallelogram are intended for pure translation in planar, high or improved
rotational capability and better stiffness (Liu and Wang 2003). (Fang and Tsai 2002)
developed a systematic approach of structural synthesis by using screw theory. They
enumerated limb structures for constructing 4-DoF or 5-DoF parallel manipulators
according to reciprocity of limb twist system and wrench system. The Lie group of rigid
body displacements is represented by operator including screw or twist. The screw system
has a Lie algebraic structure that represents all possible displacements. In the study of
(Herve 1999), it is shown that mathematical representation of the connection between any
pair of bodies obtained through two operations, the composition and the intersection of
mechanical bonds. New manipulator with 3 DoF motions of a platform where three limbs
generates subsets of possible displacements, Lie subgroup of Schoenflies motions, is
illustrated.

The main problem in construction of the robots is how to design it. Study of
kinematic structure is the first problem of the design. The problem of kinematic structure
includes the selection of actuations, DoF, link number, joint numbers, and direction of
joints’ axes. The second problem of design, named as dimensional synthesis, is to
determine the dimension between joints for the desired motion of the end effector.
Dimensional synthesis includes three common tasks which are function, path, and motion
generation. These three tasks are applied to different closed and open chains by
academicians, engineers and designers. A general method for computer aided optimum

kinematic synthesis of planar and spatial multibody systems is proposed by presenting a



new computationally efficient formulation (Jiminéz, et. al. 1997). A neural network is
applied to path generation synthesis of a four-bar mechanism (Vasiliu and Yannou 1997).
Circle path generation synthesis algorithms of four-bar mechanism has been proposed to
achieve the design of the Chebyshev set (Ceccarelli and Vinciguerra 2000). Moreover, new
mechanisms with analogous characteristics are presented by introducing new algorithms.
Graphical and analytical methods for synthesis of four bar mechanism are explained along
practical examples (Reifschneider 2005). Planar path generation synthesis of single DoF
coupled serial chain mechanism is introduced by using Fourier series (Nie and Krovi 2005).
Furthermore, physical prototype of a reconfigurable 3-link single DoF coupled serial chain
mechanism is designed by the help of their method. In order to obtain design equation
(input-output displacement equation) for function generation problem of planar and spatial
linkages, a new analytical method based on the symbolic representation and the Piogram
symbolic operation rule is presented (Wu and Chen 1997). A general method for function,
path and motion generation problem of planar linkages is proposed by the help of exact
determination of gradient (Sancibrian, et. al. 2006). Three examples are given to illustrate
the method: path generation of a four bar, rigid-body guidance in a Stephenson III six-bar
linkage, function generation using a Watt II six-bar linkage. Rigid body guidance synthesis
of a planar four bar mechanism is presented by optimizing and combining two planar dyads
(Yao and Angeles 2000). Moreover, all real roots of a system of polynomial equations are
calculated by using contour method during the optimization of planar dyads. The motion
generation synthesis of a RPS serial chain is examined with ten dimensional parameters (Su
and McCharty 2005). The solution of ten quartic polynomials in ten unknown dimensional
parameters is carried out by using polynomial continuation method and then it is implied
that the number of roots can be maximum 1024. A planar 3 DoF six bar mechanism is
reduced to one DoF mechanism by adding two cam-pairs to two selected link of the
mechanism (Gatti and Mundo 2007). Motion generation synthesis of new one DoF
mechanism is performed by using inverse kinematics of six bar mechanism. The design
equations for three poses of a Bennett linkage’s motion generation synthesis are formulated
by studying the spatial RR chain with geometric properties of the cylindroid (Perez and
McCarthy 2003). Motion generation synthesis of adjustable RRSS mechanisms is presented
for the first time by using method based upon modified R-R and S-S dyad constraint
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equation (Russell and Sodhi 2001). Planar mechanisms, which are designed for many
applications such as furniture and car hoods, are synthesized for prescribed motion by
means of an analytical approach (Crocesi and Pennestr1 2005).

A lot of studies are introduced for function generation synthesis of planar and
spherical mechanisms in literature. However, the recent ones give sufficient information of
the problem’s background. Motion and path generation tasks are presented for planar five-
bar mechanism with variable topology (Balli and Chand 2002). Furthermore, authors use
transmission angle, which is considered for the effective force motion transmission by a
mechanism, to reduce the solution space for the design of five-bar mechanism with variable
topology. In similar way, dimensional synthesis of a planar seven-link mechanism with
variable topology is proposed by keeping some link temporarily fixed (Balli and Chand
2002). Analytical solution of function generating spherical four-bar mechanism is
introduced for the five precision points by using superposition methods (Alizade and Kilit
2005). In order to obtain design equation (input-output displacement equation) for function
generation problem of planar and spatial linkages, a new analytical method based on the
symbolic representation and the Piogram symbolic operation rule is presented (Wu and
Chen 1997). A general method for function, path and motion generation problem of planar
linkages is proposed by the help of exact determination of gradient (Sancibrian, et al.
2006). Function generation synthesis problem of several types Watt II mechanisms is
solved analytically (Simionescu and Smith, 2000). A fourth order T1 motion theory is
applied to synthesis of a four bar mechanism for both motion and function generation
problems (Goehler, et. al. 2004). Ant-gradient search method is applied to the exact-
approximate synthesis problem of planar mechanisms (Diab and Smaili 2008).

Two mathematical models are possible to investigate relations between actuated
joint variables and location of end-effector for a specified geometry of parallel manipulator.
The first one, inverse kinematics is to find actuated joint variables for a specified location
of end-effector. The second one, direct kinematics is to determine the location of end-
effector for specified actuated joint variables. Inverse kinematics is generally easier than
direct kinematics for closed-loop mechanical system such as a parallel manipulator.

Kinematic analysis of manipulators is very attractive topic in Mechanism and

Machine Theory. Researches and scientists have been studied on this topic for a very long
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time. Kinematics of parallel robots are solved by using numerical and analytical methods.
In most cases, inverse kinematics of parallel robots can be solved analytically. On the other
hand, in direct kinematics of parallel robots, numerical methods such as Newton-Raphson,
genetic algorithms have to be utilized due to nonlinearity of the problem. Inverse and direct
kinematics of a 3-RPS parallel platform manipulator is presented (Fang and Huang 1996).
The forward and the inverse kinematics and dynamics of a parallel manipulator actuated by
a planar motor is studied (Ben-Horin et al 1998). This manipulator has very simple design
along with much larger work volume than commonly-used parallel robot manipulators. The
inverse kinematics of two DoF and three DoF planar parallel manipulators are computed
and velocity equations are derived to investigate singularity analysis (Gosselin and Wang
1997). The inverse and direct kinematics of planar SR symmetrical parallel manipulator is
presented to determine the workspace and assembly modes (Liu, et al. 2006). Inverse
kinematics and kinetostatic model of a parallel mechanism made up of 3-PRS kinematic
chains are presented in detail (Zhanga 2006). Inverse, forward kinematics and error
modelling of a three degree of freedom parallel robots are introduced by using a very
effective Jacobian approximation method (Cui, et al. 2005). The analytical solution of
assembly modes of SR-PS-RS structure is presented to compute the forward position
analysis of three-legged parallel manipulators which generates SR-PS-RS structure when
actuator is locked (Gregorio 2006). By using reciprocal screw, kinematics of a special 3
DoF parallel manipulator which has three UPU limbs and generates 3D translational
motion is studied (Huang 2004). Inverse kinematics of a variable geometry body, which is
attached to the Stewart platform, is introduced (Wang 2005).

Although the direct kinematics of a parallel robot is hard due to nonlinearity, the
direct kinematic problem of a serial robot is recursive and solved easily. A new and
efficient algorithm to compute inverse kinematics of 6R serial kinematic chain is proposed
by using classical multidimensional geometry (Husty, et al. 2007). Furthermore, in order to
simplify kinematic equations, they broke 6R in the middle to form two open 3R chains. In
order to solve the inverse kinematics problem of serial robot faster and more accurately, a
recursive algorithm is introduced (Martins and Guenther 2003). The algorithm is applied to
two serial robots known as SCARA and PUMA in literature. The forward and inverse

kinematic problems of a parallel-serial manipulator are presented by obtaining closed-form
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solutions (Tanev 2000). A velocity equation by using Jocabian formulation is introduced to
develop general-purpose software of any mechanism topology (Altuzarra et al. 2006). The
variable geometry parallel manipulator (VGPM) is designed by combining the Stewart
platform as a driving mechanism and a number of spatial RSRR kinematic chains. In order
to solve inverse kinematic problem of VGPM, approximate distribution is developed.

Workspace is the reachable volume, 3D surface for the end effector of a spatial
manipulators or the reachable area for the end effector of a planar manipulators.
Workspace of one spatial parallel manipulator made up of 3-PUU kinematic chains and one
planar four bar manipulator is investigated by using planar symmetry, rotational axis
symmetry and point symmetry (Zhao 2006). The compatible orientation workspace of 6
DoF Stewart-Gough parallel manipulators is developed through boundary curves on two-
dimensional cross-sections (Tsai and Lin 2006). Moreover, the orientation workspace is
represented by three parameters such as the Euler angles, and by using constant geometric
parameters of manipulator, the boundary of workspace is a two-dimensional surface.

In this thesis, new methods are developed to investigate analysis and synthesis
problems of parallel manipulators. New type of parallel manipulators, named as Euclidean
Parallel Robot Manipulators, are presented for both medical and industrial applications.
Kinematic equations in analysis and dimensional synthesis problems are obtained by using
known mathematical models. But, the approach in steps of solution of the equations is
different. A hybrid manipulator is developed for an industrial application. This manipulator
has two layers such that the first layer is a parallel structure whereas the second one is a

serial chain.

13



CHAPTER 2

STRUCTURAL DESIGN OF
PARALLEL ROBOT MANIPULATORS

2.1. Introduction to Structural Synthesis of Manipulators

Structural synthesis of mechanisms is one of the main branches of the fundamental

Mechanisms and Machine Science. Structural synthesis is a methodology that is used to

generate all structures with desired kinematic performance.

The investigations on structural synthesis of mechanisms are generally studied in

sub-categories as: geometrical and kinematic structural synthesis. The purpose of

geometrical structural synthesis is to create data foundation to discover particular

geometrical features and optimum structures by

Further development theory of degrees of freedom of mechanisms with variable
general constraints and motion of platforms.

Generating kinematic chains for hinges, branch-loops, and legs of platforms to
create simple structural groups.

Linking simple structural groups to the actuators of manipulators.

Linking simple structural groups with variable general constraint parameters to the
moving platform and ground or actuators of parallel Cartesian robot- manipulators.
Creating new EPRM with variable general constraints in space or subspaces.
Creating modular systems with multi-mobility using successive layers of serial trees
and parallel manipulators.

Computer aided structural synthesis.

On the other hand, Kinematic structural synthesis focuses on the following problems:

Generation of the branches and legs of parallel manipulators by describing the axis
of kinematic pairs and links, also joint and link construction parameters.

Identifying angular and linear conditions for over constraint mechanisms.
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e Rearranging the leg configurations of parallel manipulators in such a way that it will

be easier to carry out the forward and the inverse tasks.

2.2. Structural Synthesis of Euclidean Robot Manipulators

In this chapter, new parallel manipulators classified as parallel Euclidean platform
robot manipulators are introduced. After structural synthesis preliminaries, Euclidean
motions are explained to describe new EPRM. New structural formulas of parallel and
serial platform Euclidean robot manipulators with variable general constraints are
introduced. Furthermore, parallel multiplatform Euclidean robot manipulators and their
structural classification with variable general constraints of branch loops are presented.
Also, structural parameters, kinematic structures, motion of platforms and 3D drawings of

new manipulators are depicted in tables.

2.2.1. Structural Synthesis of Euclidean Platform Robot Manipulators

with variable general constraints

Serial robots are limited in the number of possible mechanical structures; however,
there is a variety of possible parallel robots that are constructed from the branch loops with
variable general constraints, multiple platforms, hinges and legs. Note that, the overall

performance of these robots can be affected by the topology of their structures.

2.2.1.1. Motion in Euclidean Planes

In this study, Euclidean planes are utilized to obtain Euclidean motions. Euclidean
motion of R* is an affine transformation whose linear part is orthogonal (Gray, 1993).
Examples of affine transformation can be given as geometric contractions, expansions,
dilations, reflections, rotations, shears, similarity transformations, spiral similarities,
translations and their combinations. However, rotations and translations are enough for our

study due to rigid links and platforms of the manipulators. The new proposed Euclidean
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manipulators have several legs, which create Euclidean motions on their own Euclidean
planes.

In order to obtain Euclidean plane motion in the design, legs of manipulators are
selected as dyads. These dyads can be RR, PR, RP and PP chains as shown in Figure 2.1.
Note that, point G of each leg is connected to the platform by spherical or spherical-torus
pairs. Position of point G with respect to the fixed reference frame (Figure 2.1.) defines the
curve of one point of the platform in the reference Euclidean plane. The motion of the
platform can be defined by minimum three independent curves of three platform points

moving on three Euclidean reference planes.

Trajectory of Trajectory of Trajectory of Trajectory of
,ﬂ poirt G / point & P point G

Leb+lc8, -5+, 08, licg+s,c6, -8y 8,00

G= 0 G= 0 G= 0 G= 0
Lef+l58, L+i,58, 1135{ +52392 ;1+S2 .982
RR chain PR chain RP chain PP chain

Figure 2.1. Four possible dyads for the legs of EPRM

Note that a kinematic pair with 4 DoF is also introduced as spherical torus pair (S;)
which consists of three rotations and one circular translation (Figure 2.2). The name of the
kinematic pair comes from its torus workspace that is drawn by using Mathematica
computer software after the kinematic analysis of the pair by Denavit-Hartenberg

convention.
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Circular slot

Spherical pair
three rotations
Circular translation

Figure 2.2. Spherical-torus (S;) kinematic pair and its workspace

2.2.1.2. Structural formula of parallel and serial Euclidean platform

robot manipulators

It is clear that freely moving platform in three dimensional space has six degrees of
freedom. This DoF is related to the location of the platform in space with respect to the
reference frame. Location of the platform defines both position and orientation of the
moving coordinate system, which is attached to the moving platform, with respect to the
fixed frame as shown in Figure 2.3.a, where u,v and w are the axes of the moving frame
and define the independent direction cosines of the moving frame that consists of three

rotations and p has three translational component ( p,, p,, p.) which indicates the origin

of the moving frame with respect to the fixed frame. If two moving platforms are connected
by hinge (revolute pair), DoF of the serial moving platforms is increased to seven (Figure
2.3.b). If the number of hinges between the platforms is more than one (Figure 2.3.c), DoF

of the serial moving platforms can be calculated as,
Mg =24+, (2.1)

where A is the number of independent parameters describing the positions and orientations

of any rigid body in space or subspaces and j, is the number of hinges between platforms.
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Moving plftform First platform
g )

Second platform
Iy

v
Hinge (revolute pair)

connections
of the legs
fixed frame (b)

X

()

First platform - gecong platform

< v Last platform
. Hinge (revolute joint) j,

(©)

Figure 2.3. (a) 6 independent quantities of the moving platform (b) Two platform connected

by hinge (revolute pair) (c) Several numbers of serial moving platforms

If the entire legs of the serial platform manipulators are connected to the moving
serial platforms and to the ground, mobility of the kinematic chains of the legs can be

defined as,

M, =>(f,-4) (2.2)
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where Z /, is the total DoF of all the kinematic pairs on the legs ¢;, and 4, is the general
I=1

constraint of each leg (4, =2, ..., 6).

The combination of Egs. (2.1) and (2.2) results in the general structural formula of

serial platform robot manipulators as,

M=/1+jh+i(f,—/1,) (2.3)

If the number of moving platforms is unity in space (1 =6, j, =0), Eq. (2.3) will

be reduced to the structural formula of parallel manipulators as,

M=6+>(f-4%) (2.4)

The motion of one platform on the parallel robot manipulators can be described by,

m, :/1+c,+i(d, -D) (2.5)

=1

where D is the number of dimensions of vectors in the reference frame (D is three for space
(R’), and two for plane (R?)), and d, is the number of dimensions of vectors in subspaces

of the legs. Also motion of two or more serial platforms can be formulated as,

<
m=A+c¢,+Y (d,-D)+j, (2.6)

=1
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Using the structural formulas, Egs. (2.3) and (2.4), we can calculate the mobility of parallel
or serial Euclidean robot manipulators, while Egs. (2.5) and (2.6) can be used to describe

the motions of platforms relate to them.

Example 1. Design a parallel Euclidean robot manipulator with ¢, =5, M =5, and 4 =6.

Find both the number and kind of kinematic pairs on each leg by solving the problem of
structural synthesis.

By using Eq. (2.4), total DoF of kinematic pairs of the legs can be calculated as,
< S
Z fi=M +Z/1, -6=5+30-6=29. So that, in the designed manipulator, one leg will
I=1 I=1
consist of five kinematic pairs and the remaining legs will consist of six kinematic pairs
5
with one degrees of freedom, j, =c;'Y_ f,=5(4). Using exchangeability of kinematic
=1
pairs and conditions of Euclidean robot manipulators, the design can be improved for the
mentioned purpose. Kinematic structure, structural parameters and structural bonding of
this robot manipulator can be seen in Table 2.1.b.
By using the same procedure of structural synthesis, parallel manipulators with

different structural parameters can be generated. Some of these new manipulators are

shown in Table 2.1. Elements of structural bonds are illustrated as:

_________

! i (dashed rectangle) describes general platforms of moving kinematic
chains

(dash and point rectangle) platforms on the legs

or L___ Connection of the pairs on platforms to the remaining pairs of legs

/77 Fixed frame
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Table 2.1. New Parallel Euclidean Platform Robot Manipulators

[1lustration
Structural bonding Motion of
Platform M| e Zf, d mp, | M
1 2 3|1 4 5 6 7 8
RR
RR—!'_S“"ﬂSj —RR ReRy Py, 2, 1,2,
S |_i_|___t__| R P, 6| 4 22 1 4 4
R/777
(a)
1 2 3] 4 5 6 7 8
J:RR
”&R—[St St St St Sj'—R/B; Ro Ry Ros |61 5 29 22,2\ s 5
5 Py.P, 2,1
RR RR
(b)

(cont. on next page)
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Table 2.1 (cont.). New Parallel Euclidean Platform Robot Manipulators

1 2 5 6 7 |8
RR7 RR
RR-S: St St St St SRR | RxRy R 36 1222 ¢ |6
© TRRCrr | PP 22,2
©
1 6 7 18
M T~ 1
”&Ri_l_jﬁ_rpm L1L1| 3 |3
(d)

(cont. on next page)
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Table 2.1 (cont.). New Parallel Euclidean Platform Robot Manipulators

1 2 3| 4 5 6 7
RR—S| StiSR
S R
RIR! 7 z
o LI
1 2 31 4 5 6
f FT_ETR/% 1 Ri Ry R 6’ 3
RR RR B3




Example 2. Design a serial Euclidian robot manipulator with ¢=6, M=6, and 4, =6. By

using these parameters, just two serial platform manipulators with two rectangular

platforms or with one triangular and pentagonal platforms can be designed. Now let us take

the first one into consideration.

Using Eq. (2.3), total number of kinematic pairs on the legs can be found as,

Zf, =M+Z/1,—/1—jh =6+6-6-6-1=35. Each leg will consist of 5 pairs and the
I=1 I=1

6
remaining five pairs can be placed to any leg, j, =c¢, IZ f, =5(5) . Kinematic structure of

=1

this robot manipulator is shown in Table 2.2.a. Kinematic structure and the structural

bonding of the serial Euclidean platform robot manipulator with (c~4, M=4, j;,=1 and A=6)

are shown in Table 2.2.b.

Table 2.2. New Serial Euclidean Platform Robot Manipulators that include a hinge

[llustration
Structural bonding Motion of
Platform M| e Zf’ d m | M
1 2 3| 4 5 6 7 8
RR RR
S5 o RlS S S LRR | RuRuR, 2,2,2,
RRSSSRIS S SRR plpp, [0 6] 3 227 6|6
RR RR
(a)

(cont. on next page)
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Table 2.2 (cont.). New Serial Euclidean Platform Robot Manipulators that include a hinge

21| 4 | 4

Ve

(b)

2.2.1.3 Structural formula of Euclidean platform robot manipulators that

include branch-loops with variable general constraints

As mentioned in previous section, a moving platform has six DoF in space
(Figure 2.4.a). If two or more platforms are connected by a loop, total DoF of platforms is
affected by subspace of loop and number of kinematic pairs of loop. For example, two
platforms are connected by planar loop (it means subspace is three) consisting of four
revolute joints (Figure 2.4.b). The total DoF of platforms is seven due to the fact that planar
loop gives only one DoF to the system. If several number of platforms are connected by
several loops in different subspaces (Figure 2.4.c), the total DoF of platforms can be

calculated as follows,
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MMP:ﬂ“—i_i(fL_ﬂL) (2.7)

The mobility of all legs was defined in Eq. (2.2). Therefore, DoF of manipulator can

be calculated by using the following structural synthesis formula:

<

M=2+3(f-2)+ (S~ 4) 2.8)

L=l =1

The motion of two or more platforms with relative motions created by loops

between platforms is formulated as follows,

C,

m=a+c,+ > (d,~D)+ > (f-4) 2.9)

=1 1=1

Axes of all revolute
Joints are parallel.

Second platform

connection of connection of
the legs the legs

(a)

Figure 2.4. (a) Two platforms connected by a planar loop (b) Several number of loops

(cont. on next page)
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Second platform ; Third platform
4

First platform

_.Sécéhd. )
“ loop

planar

connection of
the legs

()

Figure 2.4 (cont.) (a) Two platforms connected by a planar loop (b) Several number of
loops

Example 3. Design a serial Euclidean robot manipulators with number of legs ¢, =6,
mobility M =6, subspace for legs 4, =6, number of loops L =2 and subspace for two
loops A, =6. Assume that kinematic pairs of the loops are shown in Figure 2.5. Find

kinematic pairs on each legs.

S: spherical joint
P: prismatic joint
U: universal joint

Figure 2.5. Two platforms connected by two loops

By using Eq. (2.8), all kinematic pairs on the legs can be calculated as follows,
DhH=M-2->(fi-2)+D 4
1=1 L=1 I=1

6
D f,=6-6-(18-12)+6-6=30
I=1
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Kinematic pair on each legs is found by dividing the number of all kinematic pairs

to the number of legs

6

27 5

=—l:1 :—:5
J c 6

Then, structural bonding of designed manipulator is drawn as,

”BR—:'_S_ _S_:I—P—:,_U_ _S_: FRR
RR+S S-P-U SRR
| [ |
/BWR_LS_ _S_li_P_LU S_II_ R/B7

Table 2.3. New Parallel Euclidean Platform Robot Manipulator that includes two

branch-loops

[lustration
Structural bonding ~ v o zfl p —
”BR*:_ST _Uj:—P—llrS_ Si - RR
RR+S UFP+S SFRR 6 |66 30 111111 6 |6
RRIS UHP-S SIRR -
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2.2.1.4. Structural formula of serial-parallel Euclidean platform robot
manipulators that include hinges, legs and branch-loops with

variable general constraints

As mentioned before, one platform has six DoF in space. If this platform connected
to another platform by a hinge, total DoF for two platforms will be seven. If two platforms
connected by a loop which has four parallel revolute pairs, total DoF for three platforms
will be eight (Figure 2.6). The mobility of legs was given in Eq. (2.2). Consequently,
structural formula can be constructed by summing all parameters. Final DoF equation of

manipulator shown in Figure 2.6 will be sum of eight and DoF of legs.

Connected to the First loop

legs Connected to the

legs

three platforms connected by a hinge and a loop.

Figure 2.6. Serial Euclidean robot manipulator connected by a hinge and a loop

By combining Egs. (2.3) and (2.8), the general structural formula of serial Euclidean

robot manipulator connected by several hinges and loops can be defined as follows,

C,

M=/1+jh+zn:(fL—/1L)+ (fl—/il) (2.10)

=1
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The general formula of motion of manipulators with relative motions created by

loops and hinges is given in the following form:

m:ﬂ+c,+i(d,—D)+jh+Zn:(fL—/1L) (2.11)

Example 4. Design a serial Euclidean robot manipulator with ¢, =4, M =4, 4 =6,
n=1,4, =3 and j, =1. Assume that kinematic pairs of the loop and hinge are configured

as kinematic chain in Figure 2.7. Find the number of kinematic pairs on each leg.

Connected to the
legs

Connected to the

p Configuration of three platforms connected by a
egs

hinge and a loop.

Figure 2.7. Configuration of kinematic pairs of the branch-loop and hinge

By using Eq.(2.10), the total degrees of freedom of the legs can be found as,
C/ n

S fi=M-2—j,->(f,-4)+4¢=4-6-1-1+6-4=20, and the number of

=1 L=l
4

kinematic pairs on each leg will be j, =¢; 12 f, =5. Using exchangeability of kinematic
=1

pairs the new Euclidean serial-parallel manipulator can be designed as shown in Table 2.4.
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The motion of platforms can be calculated by using Eq.(2.11)

as,

m= /1+01+Zd D+]h+z L) =6+4+(1-3)+(1-3)+(1-3)+(1-3)+1+(4-3) =4

Table 2.4. New Serial-Parallel Euclidean Platform Robot Manipulator with one loop and

hinge

[llustration

Structural bonding N v Zf, a4 M
i__: R |S|—RR

J%MslgRS |F§>. 3 6 | 4 20 1,1,1,1 4
LRJQ\R/l SLRR

A lot of new serial-parallel EPRMs can be generated by combining one DoF branch

loops that are depicted in Table 2.5. For instance, a new advanced serial-parallel EPRM

(Table 2.6) is constructed by selecting three branch loops as 4, =3, 4, =4 and A4, =5.

The variation of structures is very much when two or more DoF branch loops in different

subspaces are considered. As a conclusion of this chapter, all formulations for generating

new EPRMs are tabulated in Table 2.7.
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Table 2.5. One DoF Branch Loops with Variable General Constraints

Geometrical interpretations

One DoF branch loops

All axes are parallel

N4

QV.

Linear and angular constraints

a3=as, d1= 05, 02= 43

i A
N

some axes are intersect in one
point and some are parallel to
each other

axes e, €, es are parallel to each other

All axes have arbitrary direction

and ey, €s, € are intersect in one point
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Table 2.6. New Advanced Serial-Parallel Euclidean Platform Robot Manipulator

U bondi Ilustration
Structural bonding w I n] e Zf; 4 m M
[ | I 1 |
:R:-}R R:\P ! :—R—:R S}'R,B;
RRAU! | lfﬁ\‘ﬂ%: ! SRR [3,4,5|6| 4 19 [LL,L1] 5 |4
Lo
|

Table 2.7. New mobility formulations( 1. parallel EPRM , 2. serial EPRM, 3. Parallel
EPRM with branch-loops, 4. serial-parallel EPRM )

Mobility of Mobility of single Moct:i‘lity Mobility of Mobility equation
platform . branch-loops
legs M, M hinges M M=M+M,+M,+M,
P M BL
H
< <
| 24 | : : M=ivY(fi-4)
= I=1
i <
2 X(h-4) A Iy - M =2+, +2(fi=4)
= I=1
1 w n <l
3| 2-4) A - |2 A) | M= 3 (- A)+ (- A)
=1 = L=1 I=1
1 n n G
4 S (f-4) A G | 2= A) [ M=+ 2 (=) + 2 (fi—A)
I=1 L= =1 [=

33




CHAPTER 3

GEOMETRIC DESIGN OF PARALLEL ROBOT
MANIPULATORS

3.1. Introduction to Geometric Design of Manipulators

Objective of geometric design is to determine the dimensions of all construction
parameters of manipulator’s link and joint that can satisfy a desired task. Dimensional
synthesis is a part of the geometric design of mechanism. Although geometric design of
mechanism begins generation of desired motion, it continues with design of cross-sections
of links. The first is related to kinematics of mechanism whereas the second one is related
to dynamics. Dimensional synthesis includes three common tasks which are function, path,
and motion generation. Function generation task is to design dimensions of a mechanism or
a robot, which satisfies a specified function between the motion of input and output link. In
path generation task, the position of the end effector’s tip point, whose motion creates a
path, is correlated to the given input. In motion generation task, a specified motion is
generated by a body, which is generally end link of the serial robots or the platform of the
parallel robots. Necessary equations for both synthesis and analysis problems are same but
different parameters of the same mechanism are calculated. Therefore, kinematic equations
are derived by using same methods. Methods for kinematic equations can be found in

Chapter 4.

Precision points-poses: Continuous desired task is described discretely by using
precision points-poses. Our aim is to reach these points- poses by calculating link and joint
parameters in synthesis problem. Function and path generation problems are solved with
precision points whereas motion generation problem is solved with precision poses. In
function generation synthesis, precision points are calculated by using given function

F(x) for a selected input value x (Figure 3.1.a). On the other hand, precision points for
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path generation are selected on a given trajectory. In Figure 3.1.b, five precision points can
be described by vectors ry,r;...and rs. From basic kinematics, the vectors are written as

r,=x,i+y, j where i=1,...,5. In order to define the desired motion, some precision poses
are depicted in Figure 3.1.c. The coordinate system O,x,y, defines the first pose. There are
three independent parameters for the coordinate system: position of origin O, and direction

of axis x or y.

F(x) .
A y Precision
A " points
. r/ r, 37 1
F(x?_“_z sin(x) rs ra 4
rs %0
_ _ > X Desiréd trajectory
Precision »
points > X
(b)
y Precision
. poses
A Vi e PGS
\/X 1 Yo
! O X2 i
Desired motion < %
Os
3
> X
(c)

Figure 3.1. Precision points for (a) function generation (b) path generation (c) motion

generation
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Exact Synthesis: If the number of construction parameters of manipulator—
mechanism are equal to the number of given precision points or poses, and then synthesis is
called exact synthesis due to the fact that precision points or poses are exactly reached by
designed manipulator-mechanism. However, points between precision points are
unpredictable. Interpolation solution method is an exact synthesis due to equality of
parameters and precision points.

Approximation Synthesis: When the number of construction parameters of
manipulator-mechanism are less than the number of given precision points or poses, the
synthesis is called approximation synthesis. The precision points or poses are approximated
by designed manipulator-mechanism. However, precision points have some errors in this
synthesis. The ultimate purpose is to optimize these errors by varying design parameters.
The well known approximation techniques are least square and Chebsevy’s approximation.
Genetic algorithm or neural network is non-algebraic methods or in other words soft
computing techniques. But, nowadays, they are very popular techniques because
technology of personal computers is developing very fast.

Function generation synthesis: It is generally applied to mechanism. Mechanism
construction parameters are designed in such a way that motion of input and output
variables of the mechanism are adjusted with a given function. For example, variation of

output variable is described as a function of variation of input variable in Figure 3.2.

VAC)

0 Input t\ﬂ Output

> X

Figure 3.2. Function generating four-bar mechanism
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Path generation synthesis: Desired trajectory that passes through some precision
points must be generated by construction parameters of mechanism-manipulator for the

specified input values (Figure 3.3).

y . Precision
=" . points

A T
Yo | ‘_‘

0 Input
X2

Figure 3.3. Path generating four-bar mechanism

Motion generation synthesis: A specified coordinate system attached to a rigid
body of mechanism-manipulator must pass through a set of precision poses after designing

construction parameters. For instance, coordinate system O, x, v, must be aligned to

firstly O,x,y, pose and then O,x,y, pose (Figure 3.4).

y Precision
< poses ™

Y2

Figure 3.4. Motion generating four-bar mechanism
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3.2. Function Generation Synthesis of Planar Seven Link Mechanism

The planar seven link mechanism consists of three planar RR dyads. In Figure 3.5,
points (A D P), (B E P) and (C F P) defines the position of planar dyads. The end point of
all dyads must be at point P for every motion of mechanism. Therefore, loop equation for

each dyad will be as follows,

P.=A +L cos(6)+L,cos(6,)
P, =A, +Lsin(6,)+L,sin(6,) (3.1a)

P.=B_+L,cos(f,)+L,cos(f,)
P, =B, +Lysin(f)+L,sin(f,) (3.1b)
P.=C, +L;cos(y,)+ L cos(y,)

(w1)

. . (3.1c)
P,=C, +Lgsin(y, )+ Lsin(y, )

|AD|=L,
|DA=L,
|BE|=Ls
|EP|=L,
|CF|=Ls
|FA=Le

Figure 3.5. Planar seven link mechanism
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3.2.1. Design Equation

The second angles of dyadsd,, £, and y, must be eliminated from Egs. (3.1a-c),

respectively. In order to eliminate the angle 8, , we rewrite Eq. (3.1a) as,

L,cos(6,)=P,—A4,—L cos(6) (3.2a)
L, sin(@z) =P —-4,-1 sin(@l) (3.2b)

By summing square of Egs. (3.2a) and (3.2b) , elimination of the angle will be
completed. The design equation for the first dyad (A D P) is therefore given as,

L=A+A+L-2A4P-2A P +2L A c6+2L A 56,

33
_2L1(1’3xc01+1'3ys91)+1Dj+1Dy2 ©-3)

The procedure of the elimination for other two angles 5, and y, is completely

same. Therefore, we have two additional design equations for the second and third dyads

given in Egs.(3.4) and (3.5), respectively.

Ly=B}+B}+L;-2B P.-2B P,+2L,B cf5+2L, B, sp, -,
2L (P.cp+Psp )+ P +P '
L=Cl+C,+1;-2C,P.-2C, P +2L,C ey, +2L,C, sy,

3.5
2L (P,cy,+ P, sy, )+ P} + P’ -
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3.2.2. Synthesis for four precision points

Depending on the similarity of the design equations, steps of synthesis formulation
for each dyad will be exactly same. Only terms for design parameters and input angles in
the formulations will change. Therefore, in this section, explanation of just one dyad’s
synthesis is sufficient to understand full mechanism synthesis. Interpolation approximation
is used due to the fact that number of precision points is equal to number of design
parameters.

Now, let’s consider synthesis of the first dyad. The design equation will be written

for four precision points as follows,

A+ A2+ ~12-24 P, ~24 P, +2L A cf,+2L A, 56,

X X1

i=1..4 3.6
_ZLl(Pxiceli-i_[-;iseli)+P)§+Py§=0 (3:6)

Eq. (3.6) can be rewritten as,

Plfli"'szzz""P3f3i+P4f4i+Psf5i+Psf6i_E'=O 3.7

where R=Aj+Ai+L%—L§, flizlﬂ P2:Ax’ fzi:_2pxi’ P3:Ay’ f3i:_2pyi’ F=L,
fzti:_z(aiceli"'[jyisgli)’ F=PF, Jsi=2c6,, F=PFRF, Joi =256,
F, :—(Pxf +Py§), and i=1,..,4. Two nonlinear parameters are defined as 1, and 4, in

place of P, and B, respectively.

PP~ =0 (3.8

RP~7,=0 (3.9)
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New form of design equation with nonlinear parameters 4, and A, 1is obtained by
substituting Eqs. (3.8) and (3.9) into Eq. (3.7). If F, and nonlinear parameters (4,, 4,) are

collected to left side of this equation, our final design equation becomes;

Rf+B i+ B fu+b fu=F-4f—4 fq i=l...4 (3.10)

The constructional parameters can be formulated as B =[ +Am +4n,,
k =1,...,4 which are linearly proportional to A, and A,. If these construction parameters

are substituted into Eq. (3.10), four equations for each pose are obtained as follows;

( Lt L+ L+ 1] ) +4 ( my fi+myfo +msfy + m4f4i)

] (3.11)
+4, ( m fytmfy g +n4f4i)=E' A fs—4 Lo i=1,..,4

Note that Eq. (3.11) refers to 12 linear system of equation due to the fact that

coefficients of both sides must be equal. Therefore, Eq.(3.11) can be represented in matrix

form:
[4] 0 L F
[A] M =\ f (3.12)
0 [A] 12x12 N 12x1 f6 12x1
o o fa S l m, n, K
where [A]= Jo S fu fa L= L M= m,  N= n, . F= F, ,
Js S S Ja L ms ny F,
fu S S Su l m, n, F,
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_f51 _fm

fs _ _fsz ’ f6 _ _f62
_f53 _]{63
_f54 _f64

In order to continue synthesis problem, the determinant of square matrix in Eq.

(3.12) must not equal to be zero. If it is zero, vector (L M N)T cannot be determined.

Assuming that the determinant of matrix is not zero, vector (L. M N)" is calculated by

using inverse of square matrix. Then, nonlinear parameters 4 and A, can be computed by
rewriting Eqgs. (3.8) and (3.9) as,

P =S4 (3.13)
B =¢4, (3.14)

where &=1/P,. Remember that the construction parameters were defined
asP =l +Am +A4n,, k=1,.,4.1f P,P, and P, are substituted into Egs. (3.13), (3.14)

and & =1/ P,, one can obtain three equations:

L+ A (my =€)+ Ay, =0 (3.15)
L+ Am+2,(n,—&)=0 (3.16)
E(lL+m, A +n,2,)-1=0 (3.17)

Our purpose is to find nonlinear parameters 4, and A, in terms of & .Therefore,

linear systems of Egs. (3.15) and (3.16) is represented as,

m,—¢ n, A _ 1,
{ my ”3_5}{/12}_{_13} G:19)
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Ln,—lLn +¢&l
Solution of Eq.(3.18) gives two results for A, = ( ( 3" 2;2 3 2)) 52)
m, n, —my n, —&(m, +ny )+

/ -1 +¢&1
and A, = (lom; —Lm, +&1,) — - Substituting 4, and 4, into Eq. (3.17) , we get
(m2113—m3 n,—&(my+ny)+& )

a cubic equation as follows,

E+a,+a E+a,=0 (3.19)

wherea, =(l,n, —1, ny+1,m,—1,m,-1)/1,,

l

a, =(m2 +ny+(Lmy =1, my )ny + (1, my—1,m, )n3 +(l2 m, —1, mZ)n4)/ s

a, =(myn,—m,ny)/1,.

In the case of /, =0, cubic equation becomes quadratic equation and two distinct
solutions can be found for &. The cubic algebraic equation was first solved by Tartaglia

but made public by Cardano in his book Ars Magna (1545). The three roots of cubic
algebraic equation can be given as follows:

E=—2+(s+t)
a, x/gli(s—t)—(s+t)
52 _? >
_ a \Eu’(s—t)+(s+t)
5=737 2

where q=(3a1—a22)/9, 7’=(9a1a2—27a0—2a;)/54, u=q +r’, S=(7’+\/;)l/3 and

t:(r_\/;)l/S.

Once ¢ values are found, 4, and A, can be computed by using Eq. (3.18). 4, and

A, are utilized to calculate B, k& =1,...,4. Finally, the design parameters can be found by

substituting P, values into equations 4, = P,, 4, =P,, L, =P, and L, = \/ A+ A +L-F .
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Then, design parameters of other two dyads ({ B,, B,, L;, L,} and {C,, C, L, L¢}) are

calculated by using similar procedure.
3.2.3. Synthesis for any precision points

In order to design the mechanism for any precision points, least square
approximation is applied to problem. For interpolation approximation, our objective

function (Eq. (3.7)) will be changed as follows,

F(P,P,R,R)=Y[F(x.0)-F(x)] =28 (3.20)

where F(x,¢)=F fy,+B fr,+P. f,+P, fyy+4 f+ 2 fo» F(x,)=F,. Note that & is

error between two functions.

By taking derivatives of Eq.(3.20) with respect to B,P,P and P,, we get four

s Lo

equations as:

oF (B,P,P,P, =
( 18;’ 3 4):2ZJfli(P1f1i+P2fzi+F;f3i+Rtf4i+P5f55+P6f6i_F;) (3'21)
1 i=1

OF (R.P,.P,P,
op,

):2Zf2i(P1f1i+P2f2i+F§f3i+Rtf4i+P5f5i+P6f6i_F;) (3.22)
i=1

m

oF(P,P,P,P,
BB B B) 08 f (B 4P+ RS+ P fy 4P Sy + B fuF)  (323)
i=1

oP,

OF (R.P,,P,P,
0P,

):2Zf4i(P1f1i+P2f2i+F§f3i+Rtf4i+P5f5i+P6f6i_F;') (3.24)
i=1

The four equations can be rearranged by using Gauss form as,
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i AlR+L46 AR+ AlR+[f AlR=[F Al-ALL A=Al

f] (.25

[, AlR+[f AIR+[A AR+ AIR=[F Ll-4lf Al-4L6 L] (B26)
s AlR+[6 AR+ AR+ AlR=[F L]-4l6 Al-Alf £] G27)
[ AR+[f LIB+[f £IR+L4 AIR=[F £)-Alf £l-a[n £] O3
where | f, ﬂ]:ffﬂfki,[F ﬁ]:zm:Eﬁ[,jzl,Z,3,4,5,6 and k=1,2,3,4.
Egs. (3.25-28) can be combined in matrix form as follows,
[T] 0 L F
[T] M =| f; (3.29)
0 [T] 12x12 N 12x1 f6 12x1
AR VAR VAR R VA h m, z
SN /3 I /A [N VA IS CA O 18 B 8 [
2R B A I A A R VA A L m; n,
W2 R /A B AR I I, m, n,
[F ] =[5 7] -5 Al
A VAV | R A
LAY N B WA A R B VA A
[F /] -5 £ -[f £

Vector (L M N)T can be easily calculated from Eq. (3.29). Then, similar

procedures in previous parts are utilized to calculate design parameters.

3.2.4. Scale of Given Function

Function of seven link mechanism is given in form of z=f (x, y). In many

applications, it is required to scale this function to another function y = f (9, ﬂ). For
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instance, designer may want to design seven link mechanism satisfying a differential

function, z=x-—y. Input values of function changes in the range as x , <x<x__ and

9 — emin _ emax — emin

3

Vin <V<V¥.- The three relations can be  written

x—= xmin xmax - xmin

ﬂ _ﬂmin — ﬂmax — ﬂmin and l// — l//min — l//max _l//min

, respectively. Therefore, we can write

Y- ymin ymax - ymin z- Zmin Zmax - Zmin
. Xy — X .
for the first input: x=(6-6,, )H +x.., for the second input:

y=(B- P )% + Vi and for output of the system

W= [MJ ( f (x, y) -z . ) +y . .Finally, scale function is computed by substituting
z

max Z min

inputs in the output function (Eq. (3.30)).

Vinax ~ Vi X =X ooy
— | I max 7 min 0 — 9 o) max - omin o — _ . max min__ o . .
v [ Zmax ~ Zmin J[( " ) Hmax - emin ! xmm (ﬂ ﬂmm ) ﬂmax - ﬂmin ymm “n j ' l//mm (3 30)

3.2.5. Numerical Example for four precision positions

Let’s use function z=x-y for planar seven link mechanism in the range of 0 <x <5,

0<y<3. It is also clear that variable z will change from 0 to 2 (0<z<2). For scaling
purpose, also the range of angles are selected asz/6<0<x/3,137/24< <11x/8 and
Or/8<wy <357/24. By using Eq.(3.30), the scale function is calculated as

v (0.8)= 367_07[ - % +56. Eventually, four precision points are given in Table 3.1.

iy . . . . 6. —0.
Precision points are given by using functions 6=6_ +k (Mj and
n

ﬂ=ﬂmin+kﬁmj for n=99, k=25, k=50,k=75 and k=90.
n
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Table 3.1. Four precision points of planar seven link mechanism

i 0 (rad) L (rad) w(rad) | P.(mm) | P, (mm)
1 | 0.655821 | 2.36281 | 3.79784 6 8

2 | 0.788043 | 3.02392 | 4.06318 7 8.25

3 1 0.920265 | 3.68502 | 4.32762 8 8.75
4 1 0.999598 | 4.08169 | 4.48629 9 9

The synthesis procedure is applied to the first, the second and the third dyads,

respectively. Firstly, constant coefficients /,,m, ,n, are calculated by solving linear system

in Eq.(3.12). Then, roots of cubic equation are computed and nonlinear parameters are

found (4, and 4,). After defining nonlinear parameters, design coefficients F,, k =1,...,4

are determined by B, =/ + A, m, + A, n,. All coefficients and parameters are depicted in

Table 3.2.

Table 3.2. Coefficients and parameters of planar seven link mechanism

# of P
k (s, ) (6 &¢) GAa) | A
dyad for &, for &
1| (118.714,-3.7944,0.579) | 4 06218—0.11005 | 309546
1| 2] (10.6769,-0.0203,-0.2008) | | _0.06218+0.1102i (232776] 0.5251
3 | (10.702,-0.07144,0.00381) [ 0.0226 J 48214 10.8758
4 | (-4.1853,-0.04275,0.1027) 443314
1| (166.057,18.8833,~11.4947) | o 007 0 co15iV | 663286
2 | 2] (8.6233,0.129,-0.08985) | | _0.6047+0.6615 {1 14306] 5712
3 | (10.1008,0.9795,—0.571334) [ 0.04997 J 196435 9.817
4 (0.357,0.08936,0.04806) 20.0116
1 | (96.6242,7.2194,-2.7416) 0.1409—0.2245\" . 204.329
3 | 2| (82812,0.0963,-0.0537) 0.1409+ 02245 [120-021J 4.9602
3| (7.8459,0.2509,-0.0958) [ 0.1409 J 276.763 11.4381
4| (1.4674,-0.0242,0.0926) 24.1966
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Finally, the design parameters are calculated by using P; design coefficients for

each dyad. They are tabulated in Table 3.3.

Table 3.3. Design parameters of planar seven link mechanism

# of dyad Design parameters (mm)
1 A =0.5251 4,=10.8758 | L,=443314 L, =42.1223
2 B =5.712 B, =9.817 L,=20.0116 | L, =21.5206
3 C,=49602 | C =11.438] L, =24.1966 | L, =23.1642

The designed planar seven link mechanism satisfies precision positions. However,
there will be error between precision positions. This error can be defined as

Y orror =V designed —Vesirea WHETE W i0nq 18 oUtput angle of designed mechanism whereas

W gesirea 18 €Qual to v (6, B) = 367_0” - % +56. Note that angle v, can be calculated by

analyzing kinematics of the designed mechanism. Therefore, the error is plotted as shown

in Figure 3.6.

Yerror

L m T / HOprSitiOnS
20 0 0 80 100

Figure 3.6. The error between ¥ ;... a0d ¥ 4., (unit is degree)
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3.2.6. Numerical Example for five and eight precision positions

Number of precision points is increased for a better approximation. The function,
scale function and range of angles in previous numerical example are used. Five and eight
precision points are given in Table 3.4 and Table 3.5, respectively. The design parameters

can be calculated by using least square method.

Table 3.4. Five precision points of planar seven link mechanism

1 6 (rad) p (rad) w(rad) | P.(mm) | P,(mm)
1 | 0.655821 | 2.36281 3.79784 6 8

2 | 0.788043 | 3.02392 | 4.06318 7 8.25

3 | 0.920265 | 3.68502 | 4.32762 8 8.75

4 | 0.946709 | 3.81725 | 4.38051 8.256 8.851
5 | 0.999598 | 4.08169 | 4.48629 9 9

Table 3.5. Eight precision points of planar seven link mechanism

1 6 (rad) p (rad) w(rad) | P.(mm) | P,(mm)
1 | 0.655821 | 2.36281 3.79784 6 8

2 | 0.682265 | 2.49503 | 3.85162 | 6.2085 8.0199
3 ] 0.788043 | 3.02392 | 4.06318 7 8.25

4 | 0.840931 | 3.28836 | 4.16896 | 7.3807 8.4341
5| 0.877954 | 3.47347 4.243 7.6546 8.5794
6 | 0.920265 | 3.68502 | 4.32762 8 8.75

7 | 0.946709 | 3.81725 | 4.38051 8.256 8.851
8 | 0.999598 | 4.08169 | 4.48629 9 9

The design parameters of the mechanism are calculated by using equations in
Chapter 3.2.3 and then they are tabulated in Table 3.6 and Table 3.7, respectively. Note that
only design parameters of the third dyad have small change. After calculating design

parameters, the error graph for 5 and 8 precision points are obtained. It is clear that mean
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error of 8 points is less than mean error of 5 points. Therefore, it can be concluded that

number of precision points is important for approximation of function.

Table 3.6. Design parameters of planar seven link mechanism for five precision points

# of dyad Design parameters (mm)
1 A =0.5251 4,=10.8758 | L,=443314 L, =42.1223
2 B =5.712 B, =9.817 L, =20.0116 | L, =21.5206
3 C,=4.94927 | C, =11.4309 | L;=23.9647 | L, =22.9479

Table 3.7. Design parameters of planar seven link mechanism for eight precision points

# of dyad Design parameters (mm)
1 A =0.5251 4,=10.8758 L, =443314 L,=42.1223
2 B =5.712 B, =9.817 L, =20.0116 L, =21.5206
3 C. =4.93605 C,=11.4106 L, =24.1234 L,=23.1278
2
Yerror . error of 5
0.025 .
R points
J \ error of
0.02 ' 8points
A "0‘
.
% mean error of
0.015 r4 \ 5 points
) 4 3
1 ’ mean error of
0.01 | . ias, 8 points
L0037 ST B, S ST O VI
0,005 at s -
+ R P4 .
A. AA ‘0009" N ‘000‘
) ) “0 A 0’.. "‘0 A‘ o"' A“‘:X o/ o
oV bl TRt Theii f of positions
40 50 60 70 80 90

Figure 3.7. The error graph for 5 and 8 precision points
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3.3. Function Generation Synthesis of Spherical Seven Link Mechanism

Spherical seven link mechanism can be divided into three spherical dyads. A
spherical dyad can be introduced by four construction parameters (€, w4, o, o, ) as shown
in Figure 3.8. Synthesis of this dyad is to find the construction parameters by defining the
desired function and position of end of the dyad. Note that synthesis of one dyad is

sufficient to understand full mechanism synthesis.

Figure 3.8. Spherical dyad with four design parameters

3.3.1 Design Equation

The direction of unit vector x4 can be represented in fixed frame as follows,
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C. 1
x,=| C, |=R(2.0,) R(y.w,)R(x.6)R(z.,)| 0 (331)
C 0

where R(z,0,) is three by three rotation matrix. Here, z is the axis of rotation, 6, is angle

of rotation.

Multiplying rotation matrices, the components C,, C, and C. are written as,

C.\ (ca,cO ey, +sa(—cb s0,+cO,s0,sy,)
C, |=| caysO,cy, +sa,(cb cO,+s0,s0sy,) (3.32)
CZ

sa, sO, ey, —coy sy,

The position of point B on (vector) x5 can be represented by using two angles &

andy . Therefore,

B, 1
X; =| B, :R(z,ﬁ) R(y,y/) 0 (3.33)
B. 0
Eq.(3.33) gives three projections of point B as,
B =cOcy, By =cy s0, B, =—sy (3.34)

Dot product of two unit vectors equals to cosine of angle between them.

x,.Xs=C,B,+C B +C.B. =ca, (3.35)
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Substituting components in Egs.(3.32) and (3.34) into Eq.(3.35), the design

equation or objective function is found as follows;

cl,ca ey (c cy)+ cb,sa (b, sOcy)—s0, sa, (cO,cOcy)
+50,cacy , (sOcy)—sa, ey (56, sy )+cO, sa, sy (56, cOcy) (3.36)
+50, sa, sy , (56, s6cy ) +ca, sy, (sy)—ca, =0

3.3.2 Three precision positions

Let give v, =0 in Eq.(3.36) and reduce the number of design parameter to three.

By dividing both sides of Eq.(3.36) to se, c6,, objective function will be:

—ca, /(sa, c0,)+(cay I sa, ) cO,—(1/cO,) 56, sy, —(s0,/cO,)cb, cb, cy,

3.37
+((s6, ca,)/(cO, sa,)) ey, +cb,, ey, s6, =0 (337

where index of precision positions is i =1,2,3. Objective function can be rewritten as,

Rfi+B [+ f5+DB [+ B [ —F =0 (3.38)
where P, = ca, / (s, c0,), f,, =1, P, =ca,/sa,, foi =cb, ey, P, =s0,/c0,,
Sy =—cb,cO, ey, P=R P, [f,=s0cy, P5:\/1+P325 Js;=—s6, sy, and

F = _Cgli v, S‘9i

Let assume that relation of linear terms and nonlinear terms are as follows,
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P =K +K,P,+K,P, (3.39)
P=K,+K.P,+K,P, (3.40)
P=K,+K,P,+K,P, (3.41)

Substituting Eqgs.(3.39-3.41) into Eq.(3.38), we obtain,

(K fu + Ky L+ Ko f) + Pi(Ky fiy + K fo + K f)

(3.42)
+5 (K3 Ji+ K 1o + K f3i):F;'_P4 Ji—B s
System of linear equations (Egs.(3.42)) is written in matrix form as follows,
[A] 0 F
[A] Koy = (3.43)
0 [A] 9%9 f5 9x1
hn S Sa
T
where [A]: fo fn Sfols K=(K1 K, K, K, K, K, K, K, Kg) ,
fo Ju Ji
E _f41 _f51
F=F |, f,=|—f, |andf;=| —f, |
F3 _f43 _f53

Constant coefficients in vector K can be computed by solving matrix Eq. (3.43).
Recall the equalities P, =/1+ B, P,=P, P, and substitute them into Egs.(3.39-3.41).

Constant P, is defined with respect to £ by using Eqs.(3.40,3.41) as follows,
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P =(K,K,~K,K,~ K, B)/(~Ky+(~K, K, + K; K, ) B) (3.44)

Substituting calculated P, into Eq.(3.41), fourth order equation is obtained as,

D P'+D,P+D, P’ +D,P,+D;=0 (3.45)

where D, =(K; - K K{)K; +2K, K K K) - KK, ,

D,=—2K. K}-2K K, K2+2K,K. K, K} -2K K K. +2K. K.,
D,=(1+4K,K,+K: K7 -2K, K, ~2K, K, K, K, + K Ki - K. KJ ) K3 — K3 - KK,
D,=(-2K,-2K,K; +2K, K, K,)K; 2K K K; +2K K, D; = K] K; K. This

equation can be solved analytically and we can find at most four roots.

Once P is computed, B, and P, can also be determined by using Eqs.(3.39) and
(3.40), respectively.

R=K+K PP+K,(1+P)" (3.46)

Finally, construction parameters are computed as given in Eq.(3.47).

0, =arctan(P,), «, =arccot(P,),a, =arccos(F, sa, cl,) (3.47)

55



3.3.3 Four precision positions

Objective function can be obtained by dividing both sides of Eq.(3.36) to
ca, cy ,cO,. Therefore, Eq.(3.36) is reduced to

—ca, /(ca, e, cy )+ (sa, /(ca, ey ,))cb), s6, sy, —(sa, /(ca, c6,))s6, sy,
~(6,/¢6,) s6,cy,—((sa, s6,)/ (ca, b, ey ,))cb, cb, cy,

(3.48)
+(sw, 1 (cw, c0,)) sy, +((sa, sy, )/ (ca, ey, )) 56, b, ey,
+((se, sy, 56,)/ (ca, ey, c6,)) 56, 56, ey, + O, cy, =0
where i=1,2,3,4. Eq. (3.48) is rewritten as follows,
RA+B f+P fu+ B fu+Bfs+ B fo+B [+ R fy—F=0 (3.49)

where R =ca,/(ca,cO,cy,), f,=—1, P=sa/(cacw,), [fo,=cb, 50 sy,

P=s0,/c0,, Sy =—s6.cy,, F, :(Sal SV/A)/(Cal CV/A)a Ju =56, 6, cy,,

P =sa,/(ca,c0,) =1+ P\[B =P}, f,==sO,sv,, B =PR, f,=cb,cOcy,
Po=sy,/(cy,c0,)=\1+ P PINB =P}, f,=sy,, B=PRP, f,=s6,50cy, and
F;:_cgia//i'

In order to convert the nonlinear system (Eq. (3.49)) to linear system, Egs.(3.50-
3.53) are utilized.

B=N+N,P+N,P,+N,P,+NF, (3.50)
B =N+ N; B+ Ny B+ Ny P+ Ny, Iy (3.51)
B =N +N, E+Ny F+N,B+N; K (3.52)
Py =N+ Ny B+ Ny F+ Ny P+ Ny (3.53)
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We substitute Eqgs.(3.50-3.53) into Eq.(3.49) to find constant parameters

N, j=12,..20:

(leii+N6f‘2i+N11f;i+N16f;U) +l)5(N2fii+N7f‘2i+N12f\3i+N17f;H)

+})6(N3fii+N8f‘2i+N13f‘3i+N18f4‘li)+l)7(N4fii+N9f‘2[+N14f;[+Nl9f;l[)

+Ps(stn+N10f2[+N15 f3i+N20f4i):F;_Ps fSi_P6f6[_P7 f7i_Px fxi

Eq.(3.54) can be written in matrix form as follows,

4 0o o o0 o
0 [4 0 0 o0
0 0 [4 0 0 N, =
0 0 o0 [4] 0
L 0 0 0 0 [A]_mxzo
f11 f21 f31 f41 £ _f51
where [A]: flz fzz f32 f42 . F= Fz ’ f5: _fsz
f13 fzs f33 f43 F3 _f53
f14 f24 f34 f44 F;l _f54
_fsl
f = o | and N=(N, N, N, Ng N, N, N,
_fsa
_f84

Eqs.(3.50-3.53) is written in matrix form as follows,

P,=UPy

£ Ih SRS

(3.54)
(3.55)
_-f61 _f71
fé: _f62 , f7: _f72 ’
_f63 _f73
_f64 _f74
le Nzo)T
(3.56)
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By taking inverse of matrix, simpler equations can be obtained as given in Eq.

(3.57).
P,=U"P, (3.57)
0 0 0 0 1]
M, M, M, M, M,
where U'=| M, M, M, M, w0 (M, M,, ..., M,, are given in Appendix A)

< X
B
£ X
XX
R

We convert Eqgs.(3.50-3.53) into Eqgs.(3.58-3.61). Note that these equations can be

solved more easily.

JU+ PP} =P} =M, P+ M, P,+ M, P,+ M, P,+ M, (3.58)
PP =M,P+M,P,+M,P,+M,P,+M, (3.59)

J1+ P2 P/\[P? =P} =M, R +M,, P,+ M, P,+ M, P, + M, (3.60)
PP =M P+M, P+ M P+M,P+M, (3.61)

Once values of B, P, P, and P, are found, design parameters can be determined

in Eq.(3.62).
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0, =arctan(PB,), v, = arctan[%] , a, =arctan (P, ¢y, ),

2

(3.62)

a, = arccos (R, ca,cy )

3.3.4 Numerical Examples

Same function z=x-y is given for spherical seven link mechanism in the range of

2<x<5, 1< y<3. Therefore, the variable z will change from 1 to 2 (1<z<2). For
scaling purpose, also the range of angles are selected as7/8<60, <7 /2, n/9<p <x/3

and 37/8<y,<37/4. By using Eq.(3.30), scale function is calculated as

w(6,,8,)=1.1781-3.375 5, +3 6,. Four precision points are given in Table 3.4. Precision

_ 9 + k(elmax - Hlmin j and

points are given by using functions 6, =6, .

=B k| Pmx Pimin | for p=99 k=25, k=50,k=75 and k=90.
1 Imin
n

Table 3.8. Four precision points of spherical mechanism

1| g(ad) | B(rad) | w,(rad) | O(rad) | y (rad)
1 | 0.690198 | 0.525362 | 1.4756 | 0.19635 | 0.349066
2 |1 0987698 | 0.701658 | 1.7731 0.2618 | 0.31416
3 1.2852 | 0.877954 | 2.0706 | 0.31416 | 0.28559
4 1.4637 | 0.983731 | 2.24909 | 0.39269 | 0.261799

Firstly, we investigate three precision positions by using first three numerical data
in Table 3.8 .The parameters are computed by Eqs.(3.39-3.41, 3.43-3.47) and they are

tabulated in Table 3.9.
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Table 3.9. Construction parameters of spherical seven link mechanism (three precision

points)
1 K Pla P23P3 eA: ay, 02
K\ (-163058
-0.982461 15.8692°
K, | |-18.0263 P= 0, =
-7.96286 -3.36398°
K, | |-023433
K, | | -9.0804
-0.714151 -54.4674°
1 K, [=|-10.4048 P = a =
-8.70371 -6.55418°
K, | |-0.45835
K, | | 12.9661
0.284276 39.7321°
K, | |14.6205 P = )=
-0.05878 24.8602°
K,) |0.40933
K, -12.6545
-2.11919 12.7853°
K, | | -145615 P= 0, =
-3.3929 5.40129°
K, | |-0.761614
K, | | -9.56721
-1.99428 -26.6308°
2 K, |=| -11.4568 P = a, =
-3.51855 -15.8656°
K, | | -1.01397
K, 6.05179
0.226926 22.1266°
K, 7.19934 P = a, =
0.094551 22.5663°
K, 0.516531
K, -8.40852
-5.07339 -10.7875°
K, | | -9.12854 P= 0, =
-2.37087 9.15681°
K, | |0.145562
K, | | -1.99675
-5.36921 -10.5503°
3 K, |=| -2.38987 P = a, =
-2.13345 -25.1137°
K, -0.257047
K, 5.2828
-0.190533 24.1447°
K, 6.09457 P = ) =
0.161191 6.58134°
K,) (-0.071841

By using all positions in Table 3.8, synthesis of four precision positions is solved.

After the computation of parameters in Eqs.(3.55-3.62), they are tabulated in Table 3.10.
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Table 3.10. Construction parameters of spherical seven link mechanism (four precision

points)
i R, A, B, b O1, Wa, 0, O
5.04809 -28.4843 12.6826° -21.241°
0.82041 3.17962 2.40836° 12.9241°
B =| 175752 |, P, =| -0.09347 0,=|-387031°|, w,=|-40.5162°
-0.92004 0.58928 30.5099° 44.1686°
0.59618 -0.075434 -4.31389° -31.5697°
1
0.22504 11.0718 87.2527° 180°—-96.7065°
-0.80124 0.72963 71.4404° 121.761°
P, =|0.80124 |, P, =| 0.07987 a =| 506245 |, a,=| 124.841°
0.58928 -0.32375 -18.1343° 133.043°
-0.07543 -0.10495 9.57976° 125.597°
4.37089 12.4503 -13.0052° 25.6964°
8.63987 -8.0408 43.6516° -36.8244°
P =| -0.0208 |, P, =| -0.3749 0, =| 7.6561° |, w,=| 42.1876°
1.48224 -0.10775 -32.45° -37.5962°
-0.24045 0.4552 15.424° -42.3902°
2
-0.23096 5.99094 84.5722° 180°—111.621°%
0.954007 6.02061 -79.0231° 180°—-130.229°%
P, =| 0.134425 |, P, =| -0.33982 o, =| 475959° |, a,= 89.9875°
-0.635845 0.082966 -6.1175° 0°—-52.7285°
0.275897 -0.41552 -0.55455° 89.751°
0.364795 3.01174 36.5424° 29.9136°
1.03114 -0.8556 -16.9485° -21.2328°
P =|-30.7778 |, P, =| -13.5941 0, =| 59.8863° |, w,=| 44.9946°
0.876068 -0.2522 -14.1551° -9.03449°
1.98703 -2.1051 -64.5905° -42.078°
3
0.741106 1.73278 11.6456° 89.1344°
-0.304748 0.332431 31.8468° 132.857°
P, =| 1.72414 |, P, =| -13.5916 a, =|-82.0963° |, a, =|180°-194.52°
-0.252205 -0.03556 -11.6862° 121.07°
-2.1051 0.718685 14.6052° 72.9346°
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3.4. Motion Generation Synthesis of a 3-DoF Spatial Platform Robot

Manipulator

In this part of the chapter, motion generation synthesis problem of a 3-DoF spatial
platform manipulator is solved for three, four and five precision poses. Geometric
parameters and kinematic equations of the manipulator are introduced. Analytical solution
for three precision poses is presented. Numerical method for four and five precision poses
are investigated. Furthermore, two different manipulators are constructed and they are

shown for the prescribed motion.

3.4.1. Geometry of the manipulator

Consider 3 DoF spatial parallel manipulator illustrated by computer drawing
representation (Figure 3.9.a) and kinematic diagram (Figure 3.9.b) . Moving platform of the
manipulator is connected to a fixed base by three legs. Each of them consists of a circular
slider (C;), an intermediate revolute joint (R) and a spherical joint (S) attached to the
moving platform. Kinematic chain of a leg is called C,RS limb. Kinematic model of one leg
of the manipulator is depicted in Figure 3.10.a. In order to obtain better view, parameters of
the leg are shown in radial plane (Figure 3.10.b). In Figure 3.10.a , the first coordinate
system (Or, Xr, Yr, zr) is attached to the fixed base, the second coordinate system (Owm;, Xm,
ymM, Zym) 18 attached to the moving platform and the third coordinate system (Ai, Xi, yi z;) is
attached to circular slider . Three points A, B;, C; define position of i-th leg. Due to three
legs, position of the manipulator can be completely described by using coordinates of nine

points (A;,C;, B;, 1=1,2,3).
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Moving
< Platform

Figure 3.9. (a) Computer drawing representation (b) Kinematic diagram

Vector-loop equation of the manipulator is written as follows,

0,B, =0,0,,+0,,B,=0,A,+A,C,+C,B, (3.63)

Vector-loop equation (Eq.(3.63)) can be further arranged in matrix form

q, =p+Rb,=a,+r,;+ry (3.64)

where p: position vector of the origin (Oy) of the moving coordinate system with respect to
the fixed coordinate system, R: rotation matrix of the moving coordinate system (Xm, ym,
zm) measured in the fixed coordinate system (X, yr, zr) by Euler angles, b;: position vector
of spherical pairs with respect to moving coordinate system, q;: position vector of spherical

pairs with respect to the fixed coordinate system, a;: position vector of circular slider, ry;:
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position vector between circular slider and revolute joint, r: position vector between

revolute and spherical pairs. In Eq. (3.54), vectors p and q are defined in the fixed

coordinate system as pz[ p. D, pZT, q, =[qxi q, qziT, respectively. However,

vector b is defined in the moving coordinate system as b, = [bm. b, OJT. Note that all

distances are measured as mm for this manipulator.
Rotation matrix is defined by roll y, pitch ¢ and yaw & angles that correspond to

rotations about x, y and z axis, respectively as

cpcy cysOsp—cOsy  cOcysp+sOsy
R=R(z,y)R(y.)R(x,0)=|cpsy cOcy+sOspsy —cy sO+cOspsy (3.65)
—s¢ chsO chch

b
@ (b)

Figure 3.10. (a) Kinematic model (b) Kinematic model in radial plane
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Note that the terms c¢ and s¢ in Eq. (3.65) refer to cos¢ andsin ¢, respectively.

The vectors in radial plane ry;, ry; and a; are described in (X, yi, zj) coordinate

system as

hicq; B, C(ai 'ngi) a;
irli = hisa; |, ‘r2i =1 h S(az 92:) 5 ial =10 (3.66)
0 0 0

Rotation matrix between the fixed coordinate system (Og, Xg, yr, zp) and the

moving coordinate system (A;, Xi, Yi, z;) is represented by rotation about zr( §,,) and rotation

about x;( %) respectively:

CHI[ 0 Seli
"R =R(2;,0,)-R(x,7/2)=|s6, 0 —-c6, (3.67)
0 1 0

By multiplying rotation matrix "R, (Eq. (3.67)) and the vectors 'r,, ‘r,, and ‘a,

(Eq. (3.66)), we can describe the vectors in the fixed coordinate system as follows,

¢, ca, ch,c(a,+06,)
_Fpi _ _Fpi —
r= Ry =r|s6,ca |, 5, ="R'r=n, Selic(ai+02i) >
sa, s(a, +6,,)
(3.68)
6,
_Fpig _
a,= R'a =a;s0,
0

Using Egs. (3.64) and (3.68), the components of spherical pair’s coordinate B; are

found in the fixed coordinate system (Op, Xr, yr, Zr) as:
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4y =p,+b,co cy+b, (cysOsp—cOsy)=cO,(a,+r1, ca,+r,c(a,+6,)) (3.692)
q,=p,+b,co sy +b, (sws9s¢+09a//)= 56, (ai +n, ca, +n, c(ai + HZi)) (3.69b)
q.=p.—b,sp+b,cpsO =r, sa,+r,s(a,+6,) (3.69c¢)

3.4.2. Design Equation

Design equation or objective function can be introduced as one polynomial equation

which does not contain joint variables such as 6, and 6,, for our case. Therefore, they must
be eliminated from Eqs. (3.69a-c). Variable parameter €, is eliminated after some

mathematical manipulations and two equations are obtained as follows;

r22i = (qxi e, + q,; s6,—a; -1, Can)z +(qzi N SGy; )2 (3.70)
qyi = qxi tan Hli (3'71)

Eq. (3.71) refers a right triangle which has a hypotenuse /¢, + qf,l. . Therefore, the

variable 6, can be eliminated from Eq. (3.70) and the design equation or objective function

can be introduced as:

2
(\[q; + qji —a;,—h; cai) +(qzi — i Sai)z _rzzi =0 (3.72)

3.4.3. Analytical Solution for Three Precision Poses
In this problem, design parameters(a;,#,,r, ) are calculated for given angles ¢, and

three poses. Objective function of legs for three precision poses can be obtained from Eq.

(3.72) in the following form:
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B fiy+ Py Loy + By S5y — F; =0 (3.73)

1

2 2 2 _ _ _ _
Where })li_ai +I/ii_r2i+2airlicai’ })2[_71["9“[’ ])3[_ai+l/i[ca" fizj_lﬂ fég_ Zqztj’

fy==2as+ay; - F;= —(qi}. +qn+ qzzl.j) and number of precision poses is j=1, 2, 3.
The synthesis problem is to find £, P, and P, for a given set of f,,, f,., f;; and F,.
Firstly, using three given motion (p,, p,, p., ¥ ¢ 0) and the constant shape

parameters (b

X

;» b,;) of the platform, the variable coordinates of spherical pairs Bi (g,
q,;» 4.;) can be calculated from Egs. (3.69a-c). Secondly, variable parameters
(f1j> 2 f5; and ) of polynomial equation (Eq. (3.73)) can be specified. Then, constant

parameters P

)., P, and B, of polynomial equation can be found from three linear
equations for each leg (i =1,2,3). Finally, nine linear equations for three legs are obtained

in matrix form as:

S P=F (i=1,2,3) (3.74)
S S S F, F,
where S, =|f, fon fin |  B=| B |and F = F,|.
Jis s S P, F

Values of B,, P, and P, are found by multiplying both sides of Eq. (3.74) by the

inverse of matrix, as:

P=S"F (3.75)
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Parameters of each leg is designed after finding values of B,, P, and B,. After

selection of the angle ¢, by designer, other design parameters are determined as follows;

- 2, 2
nh=—"—, a,=PB,-n,ca, r, :\/ai +1; +2an,ca; — B, (3.76)

3.4.4. Numerical Example of Three Precision Poses

A 3 DoF spatial platform manipulator is to be synthesized for three precision poses
(Figure 3.10). The prescribed motion is given in Table 3.11. The shape of platform is given
by constant parametersb,, =40.878 , b, =0, b, =-20.193 , b, =39.632 , b, =-20.741

and b, =-39.009 . Incline angles are selected as o, =, =, =110°.

Table 3.11. Prescribed three poses for the platform of the manipulator

# of precision (px, s Don 0, ¢, l//)
poses(])
1 (-2.23, —0.247, 133.7513, 0.9761°, —0.1906°, 0.3462°)
2 (-2.2022, 6.8252, 133.1189, 1.8598°, —0.8738°, 4.9079°)
3 (—2.143, 14.834, 131.7907, 3.111°, —1.8629°, 10.084°)

Firstly, the coordinates of spherical pairs are obtained by using Eqgs. (3.69a-c), and
then, necessary matrices and columns in Egs. (3.74), and (3.75) are calculated. After
finding values of constant parameters, design parameters are determined by using
Eq. (3.76). The design parameters of the platform manipulator (Figure 3.10) are shown in
Table 3.12.
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Table 3.12. Design parameters for the manipulator

1 r. a. v,

1 1 1

L r= Do _sg.5008 | @ =R, —n ca, =50.0184 ry =A@t + 12 +2ayr;,ca, — B, =79.36
sa,

2| r =F2_sgs008 | @y =Py —nyca, =650184 |y = [a2 42+ 2a,mca, - B, = 79.36
sa,

31 =s%= 58.5298 | a3 =h;—r;ca; =80.0184 | . =\/a32 +72 +2a,7,ca, — P, =79.36
3

3.4.5. Numerical Solution for Four and Five Precision Poses

The four and the five poses of the manipulator’s platform gives four and five
nonlinear equations, respectively. The equations are determined by substituting relations
between positions of spherical pairs B; and poses of the platform in Egs. (3.69a-c) into Eq.

(3.72). The nonlinear equations are given as follows;

2
(((px/ +b,cp, ey, +b, (C‘/’j 50, 5¢, -0, S'/’/))

5105 2
+(pyj. +b,cd; sy, +byl.(st//j. 50, s¢, +c0, cy/j.)) ) _Kij (3.77)

2
+(py=bo 54, +b, 50, — 1, ) —r; =0

where K, =a,+n,, n,=nce, n,=rnsa. Note that @, and 7, cannot be found
separately. Hence, they will be calculated together. For five poses, number of precision

poses is j=1,2, 3, 4, 5 and design parameters are (bxi, b Kl.,rlyi,rzl.). On the other hand,

i
design parameter r,, can be selected freely for four poses. Therefore, design parameters

are (b

xi 2

byl.,Kl.,rlyl.) and number of precision poses is j =1, 2, 3, 4.
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Analytical solution of two problems is very hard due to coupled terms such as
multiplication of two design parameters and also square root. Therefore, a very well known
numerical method, Newton-Raphson, is applied to the problems. Newton-Raphson method
for nonlinear system of equations (Press et al. 1993, Chapter 9.6), is adapted to our
problems. Furthermore, a Mathematica notebook is developed by using the presented

method.

3.4.6. Numerical Example for Four Precision Poses

Design a 3 DoF spatial platform manipulator consisting of 3 C,RS limb for four
precision poses (Figure 3.10). The prescribed poses and initial guesses are given in Table
3.13 and Table 3.14 respectively. Select allowable error for design parameters as 10, Let

give one design parameter as7, =80 .

Table 3.13. Prescribed four poses for the platform of the manipulator

# of precision
. (P Py P 0. 8. v)
poses(j)
1 (—2.23, —0.247, 133.7513, 0.9761°, —0.1906°, 0.34620)
2 (—2.2022, 6.8252, 133.1189, 1.8598°, —0.8738°, 4.90790)
3 (—1.9843, 25.2204, 128.850, 5.5674°, —3.1892°, 16.88150)
4 (—1.1137, 41.1894, 120.2653, 14.351°, —4.8637°, 28.04280)

Four nonlinear equations are obtained by substituting prescribed poses into
Eq.(3.77).

0.5 2
£ (x)= (((—2.23+0.9999bﬂ ~0.0061b, )2 +(—0.247+0.0060b,, +0.9998b,, )2) —K,.j

+(133.751+0.0033b,,+0.0170b,, - 1., )’ ~6400=0
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2

0.5
£(x)= (((—2.2022+0.9962bﬂ ~0.086b,, ) +(6.8251+0.0855b, +0.9957h, )2) —K,.)

+(133.119+0.01525, +0.0324b, —7; , ) ~6400 =0

0.5 2
fi(x)= [((—1 9843+0.9554b,-0.2942b , )2 +(25.2205+0.2899b,, +0.9508b,, )2) - Kij
+(128.85+0.0556,, +0.096865,, — 1, )2 —6400=0

0.5 2
fi(x)= (((—1.1137+0.8794bﬂ ~0.474b,, )2 +(41.1894 +0.4684b,, +0.8452b, )2) —K,.j

+(120.265+0.08475, +0.2469b, — 7, , ) ~6400 =0

where x = (b b, K,r )T Jacobian matrix is computed by using formulation in the study

Xi® 7 yid T T lyi
of (Press et. al., 1993). Then, design parameters are determined by using computer software
(Mathematica) with initial guesses given in Table 3.14. Results for design parameters

corresponding to initial guesses are given in Table 3.14.

Table 3.14 Initial guesses and results for four poses

Initial guess (xo) Result
’ (bxm ’by,-,, ’ Kin T, ) (bxi’ byi’ Ki’ rlyi)
1 | (-20.193, 39.692, 45, 55) (—20.1935, 39.632, 45, 55)
2 (40.878, 0, 30,55) (40.88, 0, 30, 55)
3 | (-20.741, —39.009, 60, 55) (—20.7413, —39.0086, 60, 55)
4 (20, -35, 16, 16) (—42.4678, —97.7686, 133.054, 56.0685)
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3.4.7. Numerical Example for Five Precision Poses
A 3 DoF spatial platform manipulator is to be synthesized for five precision poses

(Figure 3.10). The prescribed motion is given in Table 3.15. Use initial guesses given in

Table 3.16. Note that allowable error for design parameters is selected as 107.

Table 3.15. Prescribed five poses for the platform of the manipulator

# of precision
o (px’ py’ pz’ 0’ ¢) l//)
poses(j)
1 (-2.23, —0.247, 133.7513, 0.9761°, —0.1906°, 0.3462°)
2 (-2.2022, 6.8252, 133.1189, 1.8598°, —0.8738°, 4.9079°)
3 (—2.143, 14.834, 131.7907, 3.111°, —1.8629°, 10.084°)
4 (-1.9843, 252204, 128.850, 5.5674°, —3.1892°, 16.8815°)
5 (-1.1137, 41.1894, 120.2653, 14.351°, —4.8637°, 28.0428°)

By substituting precision poses into Eq. (3.77), five nonlinear equations are found

as follows,

0.5 2
£ (x)= (((—2.23+0.9999bx[ ~0.0061b,, )2 +(—0.247+0.0060b,, +0.9998b,, )2) —K,.j

i

+(133.751+0.00336,, +0.0170b,, 1, ) —r =0

0.5 2
f(x)= (((—2.2022+0.9962 b,~0.086b,) +(6.8251+0.0855b, +0.9957b,, )2) —Kl.j

+(133.119+0.0152b,, +0.0324b, —r; .} —r2 =0

2

0.5
£ (x)= (((—2.143+0.984bx,. ~0.1765b,, )" +(14.834+0.17495, +0.98275, )2) —K,.j

+(131.79140.0325b, +0.0542b,, 1, ) —r2 =0
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05 2
fi(x)= (((—1.9843 +0.9554b, —0.2942b,, )2 +(25.2205+0.2899b,, +0.9508b,, )2) = Kij
+(128.85+0.0556b,, +0.096865,, — 1, )2 —r2=0

0.5 2
fi(x)= (((_1.1 137+0.8794b,—0.474b,, )2 +(41.1894+0.4684b,, +0.8452b, )2) —K,)

+(120.265+0.0847b,,+0.2469b, —r; ) 12 =0

r o .
where x=(b b., K .,rlyl,,rzl.) .Procedure of five poses synthesis is very similar to four

xi% 7 yid i

poses. But one difference is that the size of jacobian matrix and other vectors are more.
Jacobian matrix is computed before the calculation of the design parameters with initial
guesses given in Table 3.16. Results for design parameters corresponding to initial guesses

are given in Table 3.16.

Table 3.16. Initial guesses and results for five poses

Initial guess (xXo) Result
i (bxm ’bym ’Kin’rlym D, ) (bxisbynKv”lyisrzf)
1 (—20.193,39.632, 45, 55, 79.36) (—20.1935, 39.632, 45, 55, 79.36)
2 | (-20.741, —39.009, 60, 55, 79.36) (-20.7413, —39.0086, 60, 55, 79.36)
3 (40.878, 0, 30, 55, 79.36) (40.88, 0, 30, 55, 79.36)
4 (20, 20, 30, 15, 10) (28.5167, 29.7369, 46.1567, 2.62538, 131.895)

Four different manipulators, which satisfy precision poses in Table 3.11, can be

constructed by combining the four results in Table 3.16. Let select 7, =—20 and then

other parameter (a) is calculated by using a, = K, —#_, which is mentioned in Eq. (3.67).

i 1xi
Figure 3.11 and Figure 3.12 depict the manipulators constructed by using the first three
results (1,2,3) and the last three results (2,3,4) as the C,RS chains, respectively.
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Figure 3.12. Five poses of a manipulator constructed by using the last three results (2,3,4)

74



CHAPTER 4

KINEMATIC ANALYSIS OF PARALLEL ROBOT
MANIPULATORS

4.1. Introduction to Kinematic Analysis of Manipulators

Kinematic analysis is to investigate displacement of manipulators (and mechanisms)
and also variation of displacement in a specified time. It must be noted that displacement
of a rigid body is different from displacement of a point. In Table 4.1.a, displacement of a
point on plane can be described by x and y projections (riy, r1y) where as displacement of a
rigid body on plane needs three independent variables that are x and y projections (rix, I'1y)
and direction of one moving axis (x; or y;). Origin O and axes X, y construct fixed
coordinate system. There is no change in this system when time is changing. On the other
hand, origin O; and axes x;, y; defines moving coordinate system. Position of origin (riy,
riy) and direction of axes (X;, y;) may vary when time is running. For instance, the rigid
body is moved from first pose (rix, riy, Oix1y1) to second pose (I, Iy, O:2X2y2).
Displacement on sphere is very similar to displacement on plane. Three parameters

(6, v,, p,) are enough to describe displacement of a rigid body on sphere while two
parameters (6,, y,) are required to describe displacement of a point. The parameters are

different for displacement on space. Three position parameters (rix, iy, i) define
displacement of a point on space. However, six parameters are necessary to describe
displacement of a rigid body. Three of them are position parameters (rix, Iy, Ii,) and
remaining three are direction cosine or orientation parameters of O;Xx;y;z; coordinate
system. It is clear that O;x,y;z; coordinate system has nine elements however axes are
orthogonal and also they are unit vectors. Using these conditions, six of these nine elements
can be written in terms of other three independent elements. Cartesian system is commonly

used in kinematics. But, it is also possible to use polar and spherical coordinate systems
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when it is necessary. When displacement of a point on plane is defined in polar coordinate

system, the parameters (||r1

, 6)) will be used instead of the parameters (riy, Iiy).

Table 4.1. Displacements of a point and a rigid body on (a) plane (b) sphere (c) space

geometry Displacement of a point Displacement of a rigid body
y y X
R , Fy@mmmmse @}
. X
(a) Plane /. - 2 My 0 ?
| 0;
(0] Mx rzx X
(b) | Sphere
(c) Space
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Two mathematical models are possible to investigate relations between actuated
joint variables and location of end-effector for a specified geometry of parallel manipulator.
The first one, inverse kinematics is to find actuated joint variables for a specified location
of end-effector. The second one, direct kinematics is to determine the location of end-
effector for specified actuated joint variables. Inverse kinematics is generally easier than
direct kinematics for closed-loop mechanical system such as a parallel manipulator.
Velocity analysis is variation of position in a specified time. That is, time derivative of

position gives velocity of a mechanism or parallel manipulator.

4.2. Methods for kinematic analysis

There are several methods to investigate displacement and variation of displacement
of a manipulator or mechanism. Graphical approach is an easy way with computer but it is
not usable when full motion of manipulator is considered. Therefore, analytical approach is
convenient to describe full motion of manipulator. Some analytical methods are vector
algebra method, complex algebra method (for planar manipulators and mechanisms),
rotation matrix method, homogeneous transformation matrix method, quaternion, screw
algebra, recurrent screw equations. In this section, some of the methods are presented to

explain next sections.

4.2.1. Vector Algebra Method

In this method, unit vector i, j, k are used to describe vectors parallel to x, y and z
axes, respectively. For instance, in Table 4.1.a, planar vector r; can be written as,

r,=r i+n,j. Similarly, spherical vector r; in Table 4.I.b is expressed as
r,=rclcy, i+rsfcy, j+rsy k. Itis easy to see that spatial vector ry in Table 4.1.c is

equal to 7 i+r, j+7r_k. Relative displacement on space between two positions can be

calculated by subtracting two vectors: Ar=r,—r =(r, -7, )i+ (rzy — rly)j+ (r,, —1.)k.
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This method can be used both planar and spatial manipulators, mechanisms. But it is
worthy to note that rotations of a body cannot be easily expressed by this method.
Therefore, rotation matrix and quaternion approaches are developed to overcome this

problem.
4.2.2. Complex Algebra Method

This method is convenient for only planar mechanisms - manipulators. Using
complex algebra method, vector is represented in two parts such as real and imaginary.
Axis x refers to real part while axis y defines imaginary part. If planar vector r; in Table

4.1.(a) is used as an example, vector is represented in complex form as 1, =7+ /7,

where j is unit imaginary number (j=+-1). In polar form, vector will be

r, = ||r1 || cos(6,)+j ||r1 || sin(6,) . Recall that well known Euler equation,

+

e’ =cos@+ jsin@. Therefore, vector is represented in complex polar form as
r, = ||r1||ej ?. The magnitude and direction of the vector is clearly distinguished. Fortunately,

differentiation of vectors in this form is simpler than same vectors in other form.
4.2.3. Rotation Matrix Method

Spherical mechanisms and manipulators have only rotational degrees of freedom.
Therefore, displacement of these kind manipulators can be completely defined by rotation
matrices. Rotation matrix can be derived from rotation of a vector about an axis. Rodrigues
formula represents correlation between the vector and rotated vector. Elementary rotation
matrices can be derived from Rodriques formula.

Euler angle sequences are developed to define any orientation in space. For
example, in aerospace engineering, yaw-pitch-roll sequence is frequently used to describe
orientation of airplane with respect to earth. The sequences are also identified with the

order of selected axes.
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Table 4.2. Elementary rotation matrices

Axis of
) [llustration Rotation Matrix
rotation
z
Z1 A
1 0 0
X 0 Y1 R(x,9)= 0 c6 -sO
P 0 s co
>y
o
X, X4
z
z, A
¢ cp 0 s¢
y 4 R(y,¢)= 0 1 0
( > Y,Y1 -s¢ 0 c¢
¢
X4
Z, Z4
A
NP
cy —sy O
z Y1 R(z,y)=|sy cy O
14 -y 0 0 1
7
X1
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Table 4.3. Euler angle sequences

Axes of Matrices

sequence

(cpcy cysOsp—cOsy  cOcysp+sOsy |
z-y-X R=R(z,w)R(y.)R(x,0)=|chsy cOcy+sOspsy —cy sO+clspsy
—s@ cos6 cocl

[cOcpcy —sOsy —cpcy s6—cOsy  spcy |

z-y-z R=R(z,w)R(y.9)R(z,0)=|cOcpsy+sOcy cOcy—chsOsy spsy
—s¢cl s¢s0 cp |

4.2.4. Homogenous Transformation Matrix Method

Any displacement of a rigid body on space can be completely defined by
homogenous transformation matrix. Homogenous transformation matrices have one more
row and column then rotation matrices. Therefore, these matrices are 4 by 4 elements.
Transformation matrix includes both orientation and position of a rigid body. The first
three columns and three rows define orientation of the rigid body where as the last column

of matrix identifies translation.
R P
T=| > ¥ 4.1
|: 01><3 1 ( )

where R is rotation matrix, P is translation vector, and 0, is a row having only zeros.
(0,=(0 0 0))
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LINK J-I

Figure 4.1. Denavit —Hartenberg parameters

Denavit and Hartenberg developed a notation to analyze single-loop lower-pair
linkages by labeling the links systematically. After labeling, homogenous transformation
matrices are written with Denavit-Hartenberg (D-H) parameters. As an advantage of the
method, once homogenous transformation matrix is constructed for every single link of
linkage, loop-closure matrix equation can be easily obtained by multiplying matrices
successively. The D-H parameters on serial open chain are shown in Figure 4.1. However,
geometric definition of closed chains can be also possible by using cyclic numbers for J.
The placement of joint and link axes is important and recursive. The 7| joint axis and Z,-
joint axis are placed on direction of joint motion. The X -axis is common normal and it is
always perpendicular to both 7z | and 7, joint axes. The right-hand rule can be used for the
y,-axis. But, note that the y -axis is not necessary in most cases.

There are four D-H parameters such that two joint parameters (d;, €)) and two link

parameters (ay, o). The following parameters are defined for the construction of the links.
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d; : translational distance measured from the axis X,.; to the axis X, along direction
of the axis 7.|. (Joint offset)

0y: joint angle measured from the axis X .| to the axis X, around the direction of the
axis 7. (Angle of rotation)

a,: distance between the joint axes 7,.| and 7, along the axis X,. (Link length)

a,: angle between the joint axes 7, and 7, around the axis X,.(Twist Angle)

Revolute, prismatic and cylindrical joints can be easily identified with the D-H
parameters. Table 4.4 depicts variable and constant parameters for these joint types. The
parameters of other joints such as spherical, spherical in torus, hooke, planar joints can be
achieved by combining kinematic exchangeability and parameters of revolute and prismatic

joints.

Table 4.4. Variable and constant parameters for j th joint

J th joint type Variable parameters Constant parameters

revolute joint 0, d,,a,,a,
prismatic joint d, 0,,a,,a,
cylindrical joint d,, 0, a,,a,

Once coordinate systems and the parameters are defined, the homogenous
transformation matrix can be constructed between link J-I and J. The following rotations

and translations define D-H transformation.

1. The O, X,-1Z,- coordinate system is translated by joint offset d; along the
axis Z,. After this translation, the origin O, coincidence with A,. The
transformation matrix contains only translation and rotation matrix is

equal to identity matrix. Therefore,
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2.

3.

100 0
010 0
Tzd)=y o 1 4
J

000 1

The translated coordinate system is now rotated by angle of rotation 6,

along the axis 7,.|. Then, the transformation matrix is

cd, —-s6, 0 0

s@, c6, 0 0

T(ZJ—I’HJ)Z ’ OJ 1 0
0 0 0 1

The new coordinate system is translated again by link length a; along the

axis X, . Hence,

100 a
010 0
Txa)=lg o 1 o
000 1

Finally, the last coordinate system is rotated by twist angle o; about the

axis X,. The transformation matrix is

1 0 0 0
T(x,.a)) 0 ca, —-sa, 0
0 sa, ca, O
0 0 0 1

The destination coordinate system O,X,Z, is reached after all these transformations.

Overall transformation can be calculated by multiplying all matrices successively. Then,

the overall transformation matrix is written in the following form.
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8, —ca,sl, sa,s8, a, cH,

0 6, - 6 0
T, - SOJ ca,cd, —sa,c, a,s0, @2)
sa, ca, d,
0 0 0 1

4.3. Inverse Analysis of a Three DoF Planar Parallel Manipulator

A three DoF planar robot manipulator is depicted in Figure 4.2. This manipulator

constructed by three RR dyads. Manipulator is actuated by angle of rotations 6;, 6, and

0s;.Link lengths and other geometric parameters are defined as |01A1|=L1,

AlBl| =L,
|02A2| =L,

Asz| =L,

03A3| =Ls,

AsB3| =L,

0,B|=0,B,|=|0,B,|=b,

0102| = dl >
|00,|=4d,, £x0,0,=a, , 2300, =a, .

Figure 4.2. A three DoF planar robot manipulator
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In order to solve position problem, necessary displacement equations must be
obtained. Corner points of triangle and vector loop-closure equations for each dyad are

written as follows,

0B,=00, +0,B., 00,+0A+A4B =0B,, i=1,23 (4.3)

All vectors in Eq(4.2) can be described by using unit vectors mentioned in vector

algebra method. Therefore, the vectors become,

For i=1, O A =L cOi+L s j, AB =L, cpi+L,spj, 0, =0i+0j,

0.5 - ( ?”j +bs(l//+—jj.

For i=2, 0,4,=L,c0,i+L,s0,j, AB,=L,cp,i+L,sp,j, 00,=d cai+d saj,

0,B, :bc(z//+%ji+bs(l//+%jj.

For i=3, O,4,=L,cl,i+L;s0,j, AB, =L cpi+L;spj, O00,=d,ca,i+d,sa,j,
OMB3:bc(y/—%ji+bs(y/—%jj.

If the calculated vectors are substituted into Eq.(4.3), we get the following vector

equations, respectively

0,8, =00, +0,B, = {Rx +b[—§cw +%sv/j }i{Ry +b(—%cy/ —gswj JJ’ (4.4)

0,B,=00,,+0,B,=(R, ~bsy )i+(R, +bcy)j (4.5)

0B,=00,,+0,,B, = [Rx +b(§cy/ +%sy/] ]i+[Ry +b[—%cw +§swnj (4.6)
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0,0, +0, A4 +AB =(L cO,+L,cf)i+(L s +L,sp)j
4.7
:[Rx+b(—%ct//+%sz//J]i+(Ry+b£—%cw—?sl//}]j 4.7

0,0, + 0,4, + A,B, =(d,ca, + Ly cO, + L, c B, )i+(d, sa, + L, 56, + L, s B,) j

4.8
:(Rx—bsl//)i+(Ry+bcz//)j “8)
0,0, + 0,4, + 4B, = (dyca, + Ly cO, + L cB,)i+(d, sa, + Ly s6,+ Ly s 3,) j

4.9
:[Rx+b{gcw+%w/]]i+[&+b[_%a//+g‘wlnj 4.9)

Eq.(4.4), Eq.(4.5) and Eq.(4.6) are equal to Eq.(4.7), Eq.(4.8) and Eq.(4.9),
respectively. After equating Eq.(4.4) and Eq.(4.7), the following two scalar equations are

calculated by separating coefficients of i and j unit vectors.

3 1

L,cB =R, +b£_§cW+ESV/J_L1 b, (4.10)
1 3

L,sp =R, +b[—Ecy/—§s1//J—Ll s, (4.11)

Now, we will deal with only the first dyad. Calculations for other dyads are similar

to the first one. The joint angle A, is eliminated by squaring Eqs.(4.10) and (4.11). The

result is,

B+ L+ R 4R~ ~-2L, R ct,~2L R, 56, ~bey (N3 R +R,
(4.12)
+bs1//(—\/§ R +R, )+\/§bLl (cb, ey +56, sy)+bL (56, cy —cb,sy)=0

If similar process is applied to the second and third dyad, equations become,
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b +d} + L +R + R~ L, -2d, (R, ca, + R sa,) 2L, (R, c6, + R, 56,)+2b(R, cyy — R, sp)
+2d, L,( ca, cO, + sa, s6,)+2bd, (—cy sa, +ca, sy ) +2b L, (—cy 56, +c6, sy ) =0

b +d; +L+R + R~ L; -2d, (R, ca, + R, sa,)~2 L (R, cO,+R, s0,)+b(~R, cy + R, sy )
+\/§b(Rx cy +R, st//)+2a’2 Ly ( ca, b, +sa, s6,)+bd, ( cy sa, —ca, sy )
~3bd,(cyca, +sa, sy )+bL(cy s6,—cb, sy )—~3b L (cy O, +560,sp) =0

Eq.(4.12) is rearranged as,

A ¢, + B, 50,+C, =0 4.13)

where 4, = 2L R +\3bL cy —bL, sy, B=-2L R +bL cy+\3bL sy,

Cl=b2+Lf+Rf+Ri—L§—bcw(\/§ R.+R, )+bSl//(—\/§ R, +R, ) By using

. o -1 , 2t

trigonometric identities cos(t91):1 =, s1n(6?1):1 - where tan(6,/2)=¢, two
+1 +t

unknowns ( c6,, s6,) are reduced to one unknown (?),

(C,—4)+2Bt+(C,+4,)=0 (4.14)

Solution of second order Eq.(4.12) is well known and for the first rotation angle ,

Cl _Al

~B F\B + A -C
491=2arctan( NG A T (4.15)

Eq.(4.15) can be generalized for all angles,

(4.16)

-B B +4-C’
6, =2arctan| — NG TS T
C -4
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wherei=1,2,3, 4,=-2L, R +2d, Lyca, +2bLysy , B,=-2L, R —-2bL,cy +2d, L, s,
C,=b"+d} +L +Rf+Ry2—Li—2d1(Rx ca, +R, sa1)+2b(Ry CW—RXS!//)+2bdl(—Cl//SC¥l+C(ZI sy)
A, ==2L R +2d, Lica,~\3bLicy~bL sy, B,=-2L R +bL,cy+2d, L, sa, ~3bL sy,
Cy=b"+d} + L+ R +R — 12 ~2d, (R, ca, + R s, ) +b(—R, e+ R, sy ) +\3b(R, cy/+ R, sy
+hd,( ey sa, —ca, sy)+3bd, ( —cy ca, —sa, sy)

Let illustrate the analysis on an numerical example. Geometric parameters of

manipulator are selected as L, =L, =L, =L, =100, L, =200,L, =150, b=50, d, =200,
d; =300, o« =90°, «@,=30°. Pose of platform is also given: R, =150, R =150,
w =30°. If these numerical data is substituted into Eq.(4.16), two results for each rotation

of angle are calculated. These results cause eight possible manipulator cases as tabulated in

Table 4.5.

Table 4.5. Eight possible manipulator cases

Numerical Results 6, =-32.993° 0, =65.716°
Az
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(cont. on next page)
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Table 4.5.(cont.) Eight possible manipulator cases
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4.4. Inverse and Direct Position Analyses of a Three DoF Parallel

Manipulator

In this part, direct and inverse position analyses of a three DoF parallel manipulator
are introduced. It is shown that generally inverse position analysis problem of a parallel
manipulator is easier than direct position analysis. Therefore, a numerical example of direct
position analysis is presented. The twelve real results of nonlinear equations are given and

the corresponding assembly configurations are illustrated in a table.

4.4.1. Inverse Position Analysis

Inverse kinematics problem is to find sliding angles (6,,, 6, and 6,,) for given the

location of moving platform (p,, p,, p.,y,¢ and &) as shown in Figure 3.10.
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By dividing both sides of Egs. (3.69a) and (3.69b), the sliding angles are determined
in Eq. (4.17).

p,t+b,cd sy+b, (St//s9s¢+cl9a//),
(4.17)

0, = Atan,
potb,cpcy+b, (ct// s@sqﬁ—c@sw)

where Atan; is a two-argument arctangent function that result one unique solution for the

angle.

4.4.2. Direct Position Analysis

Direct kinematics problem is to determine the location of moving platform
(p,»p,,p. .¥,.¢pand@) for given inputs (6, 6, and 6,). The angle of rotation 6, is
variable and it must be eliminated from Eqgs. (3.69 a-c). Recall that this angle is eliminated
in Egs. (3.70) and (3.71).

Platform shape of manipulator is a triangle so that distance between points B, B,

and Bj is constant. Therefore,

2

(qxj _qxi)2 +(qyj -9, )2 +(qzj _qzi) (b)g/' _bxi)2 +(byj _by[)2 (4'18)

where j=mod(i+1,3) and i=1, 2, 3.

Nine nonlinear equations can be obtained in terms of nine variables for i =1, 2, 3 by
using Egs. (3.70), (3.71) and (4.18). Analytical solution of these equations is very hard
and complex. Therefore equations can be solved by using numerical methods when
constant parameters of manipulator are given. Furthermore, “NSolve” in Mathematica
program which is a numerical equation solver command that can be utilized to solve these

equations. When position vectors of spherical pairs with respect to fix coordinate system
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are determined, the location of platform can be found by solving system of linear equations

as follows,

q. = P, +bxi u, +byi Y, (4193)
qyi = py + bxi uy +byi vy (4.19b)
q,=p.+b,u. +b,v, (4.19¢)

where u, =cpcy, u,=cp sy, u . =—sp, v,=cysdsp—cOsy, v, =sysfsp+clcy,

v, =cgds0 Eqgs. (4.19a), (4.19b) and (4.19¢c) can be combined in a matrix as follows,

(g1 [1 00 b, 0 0 b, 0 0]p,]
g, [0 1.0 0 b, 0 0 b, 0|p
.| (001 0 0 b, 0 0 b,|p
q,| |1 0 0 b, O b, 0 0| u
q,|=/0 1. 0 0 b, 0 0 b, u, (4.20)
g,| [0 01 0 0 b, 0 0 b,|u
g5 [1 0 0 b, 0 by, 0 0| v,
q:;| |0 1.0 0 b, 0 b, v,
5] |00 1 0 0 by, 0 0 b,y |

By using inverse of square matrix in Eq. (4.20), the location of platform of

manipulator is computed as follows,

3 3
Zl qxi (b}y'bxk - bykb)q' ) Zl qyi (b}jbxk - bykbxj ) z qzi (by/'bxk - bykbxj)
P, =" P Py TS P 421
b, (b, ~by) } b, (b, —by) > b, (by—by) (21
=1 =1 i

1

1

u, =5 . ouy = —,  u, = (4.21b)
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i=1 i=1

3

3
Z q,; (bxj —by ) Z q.; (bxj —b, )
bxj - bxk

» = 3 yT 3 27 3 (4.21¢)
Zlbyi (bx] _bxk) gbyi ( ) Zlbyi (bx] _bxk)
where j = mod(i +1, 3) , k= mod(i +2, 3) .Euler angles can be easily found as follows,
¢ = —arcsin (u, ) (4.22a)
w = Atan, (ux /cos(¢),u, /cos(¢)) (4.22b)
0 = Atan, (vy cos(y)—v,sin(y),v, /cos(¢)) (4.22¢)

Numerical Example. In this example, we solve the direct position analysis for geometry

of manipulator given in Table 4.6. And the input angles are given as 6,=1°,

6,=120° and 6, =240°.

Table 4.6. Geometric constant parameters of manipulator

First leg, i=1 Second leg, i=2 Third leg i=3
a, 110° 110° 110°
n, 58.52 58.52 58.52
1, 79.36 79.36 79.36
b, 40.88 -20.19 -20.74
b, 0 39.63 -39.00
a 50 65 80

Substituting constant parameters into Eqs. (3.70), (3.71) and (4.18) for i=1, 2, 3,

nine nonlinear equations are found as follows,
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q221 —-110¢.,-60 Cos(ell)qxl _(Cos(gll))z q; - 60 Sin(ell)qyl
+cos(6,,)sin(6,)q,,q,,—2373.01=0
qzzz -110¢g.,-90 COS(le)qxz _(005(912))2 sz -90 Sin(gl2)qy2
+cos (6, )sin (6, )q,, q,, —1248.01=0
g% ~110g., ~120 cos(6,, ) g, —(cos(6,)) ¢% ~120 sin (6, ),
+cos(6,,)sin(6;;)q,; q,; +326.99=0

4,1 =4, tan(en) =0, q,, =4 tan(l912) =0, 9,34 tan(913) =0

2

(42-9.) +(4,2~4,) +(q.,—q.,)" —5300.67=0

(qx3 ~4x )2 +(qy3 4y )2 +(qz3 —9q: )2 —6184.64=0

2

(qxl _qx3 )2 +(qyl _qy3) +(q21 _qz3 )2 _5318.85:0

At most, sixteen results of nonlinear equations can be found for each of input
values. The number of imaginary results is four. The real results of the equations are listed

in Table 4.7 for given input values.

Table 4.7. The real results of the numerical example

No. &} =(q.» 4,1-9-1) a3 = (4.2 9,2-9.2) @ = (% 4,59
1 (35.8021, 0.6249, 134.147) (—24.1828, 41.8858, 134.289) (9.1448, 15.8393, 67.9901)
2 (-49.3339, —0.8611, 56.7161)  (15.9109, —27.5586,74.9099)  (—0.0345, —0.0597, 2.978)
3 (-48.4877, —0.8463, 43.3152)  (17.1785, —29.7541, 55.6828)  (-12.8906, —22.3272, —16.6037 )
4 (-46.1729, —0.8059, 77.2403)  (-21.3262, 36.9381, 134.325) (—24.0481, — 41.6526, 133.462)
5 (38.6483, 0.6746, 133.887) (—22.8693, 39.6108, 134.357) (-22.5272, —39.0182, 132.94)
6 (35.8021, 0.6249, —24.1472) (—24.1828, 41.8858,-24.2886)  (9.1448, 15.8393, 42.0099)
7 (~46.1729, - 0.8059,32.7597) (-21.3262, 36.9381, - 24.325) (—24.0481,- 41.6526, —23.4622)
8 (38.6483, 0.6746,— 23.8867) (-22.8693, 39.6108, - 24.3566)  (-22.5272,-39.0182,-22.94)

(cont. on next page)
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10
11
12

(31.7758, 0.5546,—24.34)
(—49.3339, —0.8611, 53.2839)
(—48.4877, —0.8463, 66.6848)
(31.7758, 0.5546, 134.34)

Table 4.7.(cont.) The real results of the numerical example

(16.5212, —28.6156, 40.5989)
(15.9109, —27.5586, 35.0901)
(17.1785, —29.7541, 54.3172)
(16.5212, —28.6156, 69.4011)

(-0.0345, - 0.0597, 107.022)
(~12.8906, —22.3272, 126.604)

(-25.641, —44.4115, 133.88)

(-25.641,—44.4115, - 23.8797)

The twelve assembly configurations of the manipulator, which correspond to the

results in Table 4.7, are shown in Table 4.8. Note that the first assembly configuration is

drawn by using the first result in Table 4.8. For assembly configurations, the location of

moving coordinate system can be determined by Egs.(4.21 a-c) and Euler angles can be

found by utilizing Eqgs.(4.22 a-c).

Table 4.8. Assembly modes of the manipulator

No.

Assembly Configuration

No.

Assembly Configuration

(cont. on next page)
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Table 4.8 (cont.) Assembly modes of the manipulator

(cont. on next page)
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Table 4.8 (cont.) Assembly modes of the manipulator

4.4.3. Workspace Analysis

If the kinematic model manipulator shown in Figure 3.10.a is reconsidered, it is
easy to see that the platform of the manipulator moves on three surfaces created by point B;
of i th leg. Therefore, firstly, the surfaces created by legs must be investigated. The design
equation given in Eq.(3.72) defines the reachable surface for each leg of the manipulator.
Three surfaces can be plotted in Mathematica by using constant geometric parameters in
Table 4.6. Three plots corresponding to the first, the second and the third legs of the
manipulator are shown in Figure 4.3.a-c, respectively. Three surfaces are depicted together

in Figure 4.3.d. However, the surfaces are not enough to imagine reachable workspace of
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the manipulator. Therefore, translation workspace of manipulator can be reached by
keeping orientation of the platform constant in Eq.(3.77). For each leg (i=1,2,3) , the
workspace of the moving platform is plotted by selecting orientation of the platform as

0=0°w =0°p=0°(Figure 4.4.a-c). Three workspaces are shown together in Figure

4.4.d. In Mathematica, there is no way to find the intersection of these surfaces. Hence, a
CAD program is used to describe the intersection. Firstly, the workspaces are transported to
CAD program (Figure 4.4.e). Then, the intersection of the leg workspaces are found by
using CAD tools (Figure 4.4.1).
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Figure 4.3. Work surfaces of the legs (a) surface for the first leg (b) surface for the second
leg (c) surface for the third leg (d) three surfaces together
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Another method of describing workspace is to make the direct position analysis for

1000 points. The constant parameters in Table 4.6 are utilized for analysis and the inputs

are changed in some range (0<@, <135° step 15°, 120°< 6, <210° step 10°
,240°<6,<267° step3°). The position workspace of the manipulator’s end-effector is

shown in Figure 4.5. The upper half of the workspace is symmetric to the lower half.
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(c) Workspace of the platform from the (d) Three workspaces together
third leg

Figure 4.4. Constant orientation workspace of the manipulator

(cont. on next page)
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e

(e) CAD of workspace (f) Intersection of three workspaces.

Figure 4.4.(cont.) Constant orientation workspace of the manipulator

Figure 4.5. Workspace of the end-effector’s position of the manipulator.
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4.5. Position Analysis of a Three DoF EPRM

Consider a three DoF EPRM shown in Figure 4.6. Three identical legs are placed on
three different Euclidean planes. Geometry of these planes is identified by an anglec;.
Other geometric parameters are very similar to the previous example (3 C,RS manipulator)
but only the joint variable is switched. In Figure 4.6 , the first coordinate system (Og, Xp,
Vr, Zr) is fixed to the base, the second coordinate system (Owm, Xm, YM, Zm) is attached to the

moving platform and the third coordinate system (Aj, x;, y; zi) is aligned to Euclidean plane.

Figure 4.6. A three DoF EPRM

Transformation of moving platform is described as follows,

A A
u, v. w P
T, = 7 421
S A A 2D
0 0 0 1
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Coordinates of point B; are calculated by using transformation matrix in Eq.(4.21),

qxi bxi
b,
I B W (4.22)
qzi 7 O
1 1
Another transformation matrix can be represented as follows,
T =T, T, ¢ T 5 (4.23)

ca, 0 sa aca,
T sa. 0 —-ca a. sa,
where T, , =T (z,,,)-T(x,a,).T| x,,— |=| ' R
ra =T (z,0) T (x4) ( 2j 0 1 0 0
0O 0 O 1
ct, —s6, 0 rn,co, ct,, —s0,, 0 r,co,
T, = 56, <6, 0 &n;s6, and T, , = 56, 0, 0 r,s0, .
" 0 0 1 0 P 0 1 0
0 0 0 1 0 0 0 1

Coordinates of point B; can also be calculated by using other transformation matrix

in Eq.(4.23) as follows,

qxi 0
4 0
D | = T 5 (4.24)
qzi 0
1 1

It is clear that Eqgs.(4.22) and (4.24) are equal. Then we can write three equations,
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q,=P.+U b, +V b, =ca, (a,+n,¢6,+1, 6, by, —r, 56, 56,,) (4.25a)
q9,=P +U b, +V b, =sq, (a,+1,¢6,+n,c6,c0,—r, 56, 56,) (4.25b)
4, =P +U. b, +V. b, =150, +1, 50, O, +r, 6, 50, (4.25¢)

Multiplying Eq. (4.25 a) with s, and Eq. (4.25 b) with —ce,, the conditions for the
EPRMs are obtained as follows,

4. S —q,ca; = 0 (4.26)

Eq. (4.26) implies that point B; must move always on i Euclidean plane.

Inverse position analysis of this manipulator is to find angle &, for given position
and orientation of the platform (P, P,, P., U,, U,, V>).

Applying mathematical operation as Eq. (4.25 a)xca, +Eq. (4.25 b)xsa,, we get
Eq. (4.27).

9. C0+q, 50, =a;+1; celi T Cgli 6021' —hy S02i SHI[ (4.27)

The second revolute joint angle &,, is eliminated by using some mathematical

manipulation (Eq. (4.25 c))2 + (Eq. (4.27))2 .

2 2 2 2
q, ca; +2qxi qyi ca; sa; _2qxi a; cq, _2qxi n; ca; 0‘911' +qyi Sa; _2qyi a; sa;

1

5 ., 5 (4.28)
_zqyi Ut S‘gli celi +q, +2ai i 091:' +n T4 _2qzi hi Seli - = 0
Eq.(4.28) can be rewritten as follows,
A cO,+B s6,+C, =0 (4.29)
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where A =-2q,cor, =29, 505, +2a,1,, B, =-2q_1, and
C=q’ca +2 a, sa, —2 a,+q’ sal =2 a+a +r+ql—r

i =4, Ca; 4.4, c&; SQ; q,4,¢ca;+4, 8¢, q,4;8¢; Ta; th; vq;—1;.

2

: 2t
=, sin(6,)=—; where
1+1¢

By substituting trigonometric identities cos(6,)=

1+tli 1i

tan(6,/2)=t, into Eq.(4.29), two unknowns (c8,,s6, ) are reduced to one unknown (¢, ),

(C,—4)t;+2B 1, +(C,+4)=0 (4.30)

The second degree equation can be solved analytically. Therefore, angle 6, can be

calculated by using Eq.(4.30) .

C-A

1 1

—B F. B +4-C’
HhZarctan£ NG TS T (4.31)

It is worthy to note that Eq.(4.16) is very close to Eq.(4.31). In inverse position
analysis of 3 DoF planar parallel manipulator, eight possible cases were presented.

Therefore, we can conclude that at most eight solutions can be obtained for spatial EPRM.

4.6. Position Analysis of a Six DoF Parallel Robot Manipulator

The manipulator shown in Figure 4.7 has six DoF and three identical legs. Each of
legs consists of a spherical slider (Ss), an intermediate cylindrical joint (C) and a hooke or
cardan joint (U) attached to the moving platform. Kinematic chain of a leg is called Ss CU

limb.
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Moving
LS Platform
t / Hooke or
. cardan pair
The secon \ p

leg

—— The first

{ ' \\ le

Cylindrical
pair

Two DoF
Pairs on
spherical
Spherical Base surface
(similar to
planar pair)

(b)

Figure 4.7. Novel 6 DoF parallel robot manipulator (a) CAD representation (b) kinematic

model

Note that the distance between points A; and B; is very small with respect to other

dimensions. Therefore, it can be neglected from kinematic equations. Therefore,

OB, =04, + AB, = O, A4, . Then, the vector loop equations for ith leg can be represented as

follows,
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0,0,+0,B,=0,0, +0,,B, (4.32)

Equating coefficients of unit vectors i, j, k ends up with three scalar equations,

red cf+d et c(f+a,)=q, (4.33)
rs6cf +d s6,c(p +al.)=qyl. (4.34)
rs,6'i+dis(ﬂi+al,)=qzi (4.35)

where ¢,=P.+U.b,+V.D,, q,=P +U b,+V b, and q,=P.+U_b,+V.b,. Three
parameters (an Py,PZ) define the position of the platform whereas other three ones

(UX, U,, VZ) specify the orientation of the platform. Parameters b, and b, defines

geometric shape of the platform. Using Eqgs.(4.33) and (4.34), the following equation can

be derived.

qxi S@[- = qyi Cgi (436)

The first actuation parameter of slider can be calculated as follows,

0,=Atan,(q,,.q,) (4.37)

Mathematical operation Eq.(4.33)* +Eq.(4.34)” + Eq.(4.35)" eliminates all variable
angles,

r2+2rd,. cozl.+dl.2 zqfi+q;i+q22i (4.38)

Linear motion (d;) of cylindrical pair can be calculated from Eq.(4.38). Eqgs.(4.33)

and (4.35) can be combined in matrix form as follows,

rcd +d.cO ca. —d.cl.sa. || cf ,
{ 1 1 1 1 1 1 l}{ ﬂl:|={q’il} (4.39)

d, sa, rea, sp, q.,

l
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Solution of matrix Eq.(4.39) yields,

q.rce;/cl,+d g, sa q,r+d q,ca,—d; q,s2,/cH
cf=— Y 7 8B =75 > T (4.40)
rlea,+d r(ca;) +(d; sa,) rlea,+d r(ca;) +(d,; sa;)
The second actuation parameters can be calculated as follows,
B, = Atan, (¢f3,, sf3,) (4.41)

Calculations of angles in Eqs.(4.37) and (4.41) defines the position point O; on

sphere.
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CHAPTER 5

MECHANIC ANALYSIS OF PARALLEL ROBOT
MANIPULATORS

This chapter presents mechanic analysis that includes static force analyses. The
force analysis is important and considered at design stage due to the fact that the sizing of
link and other mechanical elements can be selected by these analyses. Static force analysis
is considered when the movement acceleration and speed of manipulator’s links and
platform are slow. On the other hand, if the speed is high, dynamic analysis is under the
consideration. Difference between static and dynamic analysis comes from especially
inertial force effects of mechanical elements. Inertial forces are related to angular and linear

accelerations. Other forces are external forces, reaction forces and actuator forces.

5.1. Static Force Analysis

The recursive method of serial manipulators and single-loop spatial mechanism
cannot be applied to parallel manipulators due to several closed loops. Generally, the force
and moment equations must be derived for each link and the simultaneous linear equations
must be solved. The principle of virtual work is an alternative way to obtain the actuator

drive forces-torques. But note that the reaction forces are not calculated by this method.

5.1.1 Static Force Analysis of a three DoF Euclidean Parallel Robot

Manipulator

A three DoF manipulator with three step motors is shown in Figure 5.1. In static
force analysis of the manipulator, our aim is to find driving torque of step motors. This

torque is also called holding torque that is need to hold the system in static equilibrium.
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External force F, and moments M, and My are applied on at the center of the platform. For

simplicity, the rotation matrix of the platform is taken to be identity matrix or in other

words the platform is parallel to the ground (OpXmYmZm // OrXryrz).

Step Motors

Zi

(b)

F32

A

G2

mz g

T12

(©)

F12

Figure 5.2. Free body diagrams of (a) platform, (b) link 3 and (c) link 2
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Firstly, free body diagrams of platform, link3 and link2 are drawn to show reaction
forces. Spherical joints cannot have any reaction moments because of its three independent
rotational motions. Therefore, Figure 5.2.a depicts reaction forces of the spherical pairs

which are labeled as Fzg, Fsg, F7s. Force and moment equilibrium is written as,

2XF=0, F+F;+F3+F,;=0 (5.1)

>M,, =0,  B,0,xF+B,B xF,+B,B,xFy + M=0 (5.2)

where F'=F+mpg, g=-gk, B,O,=b, i+b, |, BO,=b, i+b, j, B,B;=k, i+k,,j

and B,B =k i+k,]j.

The following scalar equations can be obtained by separating coefficients of i, j and

k unit vectors of Eq. (5.1). Scalar components of forces and moments are as follows;

Fo +F +F, =—F

38x 58x 78x X
F;Sy +F;8y + 78y = _Fy (53)

F;8Z+F'582+F'782 :_F;+mpg

Equating coefficients of i, j and k unit vectors of Eq. (5.2), the additional scalar

equations can be written as follows,
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F782 ka +F‘382 kly = _(F; _mp g) b2y _M

_F782 k2x _F;SZ klx = (F; _mp g) b2x _M
F,

38yklx - F

38x

(5.4)

y

kly +E8y k2x _F78X k2y = _b2x Fy +b2y F‘c _Mz

If the last line of Eq.(5.3) and the first two line of Eq.(5.4) are composed, the system

of linear equations is reached,

1 1 1 F;:Sz _F; + mp g
kly O k2y F;Sz = _F; b2y+b2y mpg_Mx (55)
_klx O _k2x F782 sz b2x _b2x mp g _My

Three unknowns (F}, , Fy., F,.) in Eq.(5.5) are calculated by using inverse of
square matrix. The reaction forces will be as follows,
T T T
Fy :(O 0 F38z) s Fy :(O 0 Fsz;z) s Fog :(0 0 F73z) (5.5)

Once the reaction forces applied on platform are calculated, the reactions forces
acting on the legs can be found. For the link 3, only one force equation is sufficient to find

unknown reaction force F,3 which is shown in Figure 5.2.b:
2F=0, F,=-F;-mg (5.6)

Finally, holding torque of the first step motor in Figure 5.2.c is determined by taking

moment with respect to point A;. Other actuator torques are found in a similar way.
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ZMAI =0, T, =—EXF32—m2 4G, xg 5.7)

Numerical Example: Consider external a force F, =1500 N and no external moment

applied to the platform of the manipulator. Geometry of the manipulator is given in Table

5.1. Note that joints angles are set to be 6, =6,, =6,, =60°.

Table 5.1. Geometry of the manipulator

B,0, =33 i+03jm BB, =6[3i+0jm B,B. =3/3i+09jm
a, = —60° a, = 60° a, =180°
AC =0.18751-0.3248j—0.64952km | AG, =0.0625i—0.1083j—0.2165k m
A,C, =0.1875i+0.3248 j—0.64952km | A,G, =0.0625i+0.1083j—0.2165k m
A,C, =-0.375i+0j—0.64952k m A,G, =-0.125i+0j—0.2165k m

Weights of the platform and all links: m,=30kg, my=m;=m,=15kg,

m,=m, =m, =20kg . Gravitational acceleration: g=9.81m/s>. If the constant
parameters are substituted into Eqgs.(5.5) and (5.6), the components of the reaction forces

acting on the platform will be (F, Fi. Fy.)=(598.1 598.1 598.1) N. Actuator

torques in fix frame are calculated as follows,

T, =—AC, xF,, —m, 4G, xg=220.809 i +127.472 j+0k Nm
T, =—4,C, xFys —m, 4,G, xg=-220.809 i +127.472j+0k Nm
T, = —A,C, xF,, —m, 4,G, xg =0i-254.994j+0k Nm

The torques can be described in Euclidean planes.

T, =(R(z,a) R(x,90°)) T,, = 0.01i, +0j, ~254.962k, N m
T2 = (R(z,2,) R(x,90°)) T, =—0.01i, +0j, ~254.962k, Nm
T, =(R(z,0,)R(x,90°)) T, =0i, +0j,~254.944k, N m
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Step motor’s holding torque must be equal or greater than 260 Nm to hold the
system in static equilibrium. If the motor does not satisfy the torque, alternatively,

gearboxes can be used to increase the torque.

112



CHAPTER 6

CONSTRUCTION ELEMENTS AND CONTROL OF
PARALLEL ROBOT MANIPULATORS

In this study, our aim is to solve an industrial pick and place problem. In the
company, bricks are carried by workers. Weight of bricks changes from 10 kg to 100 kg in
production line. When the weight of bricks increases, workers are easily tired and
efficiency of the production decreases. In order to solve this problem, a novel hybrid
manipulator is developed. This manipulator has two layers such that the first layer is a
parallel structure and the second layer is an open serial chain. Parallel structure is a three
DoF EPRM while open serial chain is a two DoF XY table. This chapter presents how the
manipulator is constructed and how control algorithm is developed.

The body of parallel robot manipulators is constructed with some mechanical parts
such as bearings, gears, pneumatic cylinders, belt systems, grippers and e.t.c. These parts
must be selected from company catalogs according to their physical and mechanical
capabilities. After mechanical construction of the manipulator, the actuators and sensors are

assembled into necessary place.

6.1. Mechanical Elements

6.1.1. Bearings

The kinematic structure of parallel manipulators generally needs some revolute
pairs (pivots). From dynamic analysis, these pairs must resist some reaction forces.
Bearings are convenient for both the generation of necessary motion and the resistance of
reaction forces.

When any machine is designed, some properties of the bearings must be considered
to fulfill necessary conditions. Firstly, designer determines dimensions of bearings such as

inner and outer diameter with respect to the diameter of shaft and the diameter of housing.
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Then, designer checks whether the load capacity of the bearing is appropriate or not.
Finally, designer calculates service life of the bearing under the specified conditions.

We select the bearings as follows, FAG 16008 radial ball bearing (Table 6.1.a),
FAG 30205-Tapered roller bearing (Table 6.1.b), UBC Plummer block housing unit(Table
6.1.c).

Table 6.1. Technical characteristic of bearings (a) radial ball bearing (b) tapered ball

bearing (c¢) Plummer block housing unit
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" The bearing can support The bearing can support The bearing can support
§ the radial forces and only both the radial forces and both the radial forces and
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R~ | small axial forces. the axial forces. the axial forces.
. %‘ Basic dynamic load rating, Basic dynamic load rating, Basic dynamic load rating,
5} i .

g radial (C;) 13200 N radial (C;) 32500 N. Basic | radial (C;) 19500 N

IS
§ Basic static load rating, static load rating, radial Basic static load rating,
3 radial (Cy,) 10200 N (Cor) 35500 N radial (Cy,) 11300 N
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6.1.2. Grippers

Grippers are mechanical devices to pick an object and hold it during transportation.
Generally, they are controlled by pneumatic pressure or hydraulic pressure. But, some new
small grippers have been developed with servo motors to obtain high precision and more
position interval. Pneumatic and hydraulic grippers are convenient for heavy loads.
Pneumatic gripper PGN 200-2 is selected for transportation of bricks in our project.
Technical capabilities of the gripper are given in Table 6.2.

Figure 6.1. Pneumatic gripper PGN 200-2

Table 6.2. Technical capabilities of PGN 200-2

Technical capability Value
Stroke per finger 14 mm
Gripping force at 6 bars 3300 N
Recommended workpiece weight 16.5 kg
Air consumption per double stroke 306 cm®
Opening time 03s
Closing time 03s
Mass 5.1kg
Mass moment of inertia 230 kg cm?
Repeatability 0.02 mm
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6.1.3. Gearboxes

Gears are used to transmit rotary motion between parallel or non-parallel shafts.
Four principal types of gears are spur, helical, bevel and worm. Gearboxes are constructed
by assembling two or more gear types. Transmission ratio and out torque are important
technical properties for gearboxes. In our applications, three gearboxes whose transmission
ratio is 1/149 are used to obtain smooth motion and high torque (~200 Nm).

(Figure 6.2)
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Figure 6.2. Gearbox

6.1.4. Timing Belts

Belts transmit power in case of the considerable long distance the shaft of actuators
and the shaft of machine. Fortunately, they protect the actuators from bad effects of
vibration and shock loads due to their elastic property. Four main belt types are defined by
shapes of their cross-sections: flat, round, V and timing. Timing belts are produced from
rubberized fabric consisting of steel wire to absorb tension load. The main advantage of
timings belts is to transmit power without slip. Therefore, the power transmission at a
constant angular-velocity ratio is possible for timing belts. There are five standard pitches

which can be identified with their letter designations: Extra light (XL), light (L), heavy (H),
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extra heavy (XH), Double extra heavy (XXH). In the manipulator project, heavy type is

used for power transmission between motor and gearbox.

6.2. Actuators

6.2.1. Stepper Motors

Basic structure of stepper motors are depicted in Figure 6.3. The motor shaft is
rotated by means of two parts, the stator and rotor. The stator is fixed to housing of the
motor while the rotor is fixed to the shaft. The rotor consists of three components: rotorl,
rotor2 and the permanent magnet. Two bearings are used to place the shaft on housing of
the motor. The stator and rotors have several small teeth. When the motor is excited, there
is a main flux through these teeth. The stepping motors can be 2 or 5 phases. 2-phase step
motor is shown in Figure 6.3.b. When phase A-A" is firstly excited and then phase B-B is
excited, the shaft rotates clockwise direction. The shaft rotates counterclockwise direction

for reverse excitement.

Stator and
windings

(@)

A Phase
/

~
© o v o
Bearing Rotor
3 . | Shaft
Shaft rotor 2 Stator\\. 1
— " -\ | ™~ B Phase
| - B’ Phase 1 '
Rotor 1 @ ” @)
- 7

Permanent
Magnet

Figure 6.3. Basic structure of step motor (a) Half section parallel to shaft (b) Full section

perpendicular to the shaft
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A Stepper motor has a constant rotation angle for each step. Generally, these angles
can be 15°, 7.5° or 1.8°. Step numbers through a full cycle of the motor shaft depend on
these step angles. For instance, 24, 48 and 200 step numbers are calculated for 15°, 7.5° and

1.8° step angles, respectively. One can generalize the formulation as follows

360° (61)

where N, is number of step in a full cycle, £ is step angle. Note that step number N, is

also named as resolution of the motor. However, the formulation should be changed, if and
only if half, quarter and micro stepping techniques are used. These techniques depend on
electronic construction of motor driver and its properties. Formulations for half, quarter and

micro stepping techniques are given in Table 6.3.

Table 6.3. Formulations for stepping techniques

Stepping Techniques Resolutions Resolution Values for a 1.8° step
angle motor
Normal 360°
N, = 200
p
Half 360°
N, =2. 400
B
uarter 360°
Q N,=4- 800
B
Micro Stepping (250 Microste 360°
pping ( Py ~250. 50000

Step motors are selected for actuating due to the following features:

1. Easy rotation and velocity control: The shaft of stepping motors rotates in steps of

the constant step angle. The position and velocity of the motor shaft are digitally controlled

using on and off signals or in other word pulses. These signals can be obtained by a
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computer or other micro processor electronics. Note that on signals is always +5 volt where

as off'is 0 volt.

On (+5V)

Off (0V)

Figure 6.4. On and off signals or pulses

Figure 6.4 shows that pulses are generated by a computer or some electronics over a
time. Here, T is the period of signals and it is described in seconds. Frequency of signals

can be calculated as

_1 (6.2)
/ T

The rotation angle of the motor shaft is controlled by increasing or decreasing
number of pulses. In Table 6.4, the angle of rotation corresponding to number of pulses is
shown to illustrate control of motor.

If resolution and frequency of signals are known, angular velocity of the shaft can

be calculated as
0=-"— (6.3)

The higher frequency of signals causes higher angular velocity of the shaft.
(Table 6.5)
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Table 6.4. Controlling rotation of the shaft by changing number of pulses

# of pulse signals angle of illustration of rotation
rotation of the motor shaft
1 pulse 180
3 pulses 5.4°
200 pulses 360°

Table 6.5.Controlling velocity of the shaft by changing frequency of pulses

f signals angular velocity of the
frequency motor shaft
200 Hz 601r://frslin
wowe | [T HUU 120 rey/min
kN |1 500 revimin
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2. High Torque: Stepping motors generate high torque. Therefore, the variable

movement in high speed can be achieved.

3. High Positioning Precision: The very smooth movement is possible using micro

stepping. Some companies present motor drivers enable million step resolution in a full

cycle. However, the speed decreases when resolution is increased.

4. Holding Torque: Stepping motors hold high torque even if it is stopped. The

position of the motor shaft can be preserved without a mechanical brake.

e Characteristics of Step Motors

Before using a stepper motor, the motor characteristics must be considered in the design
stage. Two main characteristics are static and dynamic characteristics. Static characteristics
relates to angular deviation when stepper motor is stopped but it is still powered on. On the
other hand, dynamic characteristics relates to angular velocity and torque when the shaft of

stepping motor moves.

1. Static Characteristics
Static Holding Torque: When motor stops but power is still supplied, motor shaft can only
be loaded as much as static holding torque. This characteristic is usually given in motor
catalogs. If the load on motor shaft exceeds static holding torque, this system will continue
its motion towards to gravity direction. However, even if the load is smaller then static
holding torque, always an angular deviation from the desired equilibrium position will be
observed, no matter how small the load torque and no matter how large the motor restoring
torque. Angle-Torque characteristic of a step motor is similar to curve shown in Figure 6.5.
A load torque T is applied to shaft for an angle of rotation angle &. An approximation to
the static restoring and holding torque is given by the sine wave. The static positioning

error is calculated as follows,

6, =—sin" (lJ (6.4)
n
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where n,1s number of rotor teeth.

Torque

Angle of rotation

i P R N

Figure 6.5. Angle-Torque characteristic

Step Angle Accuracy: Generally, the stepping motor’s shaft can precisely be rotated by
step angle accuracy within + 0.05° when no-load is applied to the shaft. This very small
error is a result of the mechanical precision between the stator and rotor teeth and also the
electrical precision of DC resistance of the stator coil. Stopping accuracy is difference

between theoretical stopping position and actual stopping position of the rotor.

2. Dynamic Characteristics
Speed-Torque Characteristics: The stepping motor performance is commonly measured
by this characteristic. In manuals, it is also called performance curve. On the performance
curve (Figure 6.6), the horizontal axis defines the variation of angular velocity as expressed
in Eq. (6.3) while the vertical axis expresses torque. Noting that angular velocity changes
with frequency of pulses, three numbers 1, 2 and 3 on the graph are defined as follows,
1. Holding Torque (Tg): The holding torque is the maximum load which can be
applied to shaft when the shaft is not rotating but power is being supplied.
2. Pullout Torque: Pullout torque is the maximum torque that can be generated at a
given angular velocity. The required torque must fall within this curve while

selecting a motor.
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3. Maximum Starting Frequency: This frequency is related to the maximum pulse
speed at which the motor shaft can rotate or stop instantly when there is no external
or internal load. Gradual acceleration or deceleration is necessary to drive the motor

bigger than this pulse speed. The frequency decreases when there is an internal load
on the motor.

Torque T (N m)

f,

Angular Velocity o (r/min)
Figure 6.6. Angular Velocity- Torque Characteristics (Performance Curve)

In application part of this thesis, Powerpac Nema 42 (2 phase) step motor is selected
for actuation of robot manipulator. Holding torque and performance curve of this motor are

given in Figure 6.7 and Figure 6.8, respectively. Motor Code of the selected motor is
N42HRFM-LNK-NS-01 and supply voltage is 75 V.
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Figure 6.8. Performance curve of Powerpac Nema 42 step motor

6.2.2. Motor Driver

Considering supply voltage and current, convenient motor driver is selected from

catalog. The selected motor driver is Pacific Scientific MA 6410. This driver receives step
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and direction input from a controller or computer and it send necessary energy to motor
winding currents. Main features include microstepping and mid-band instability
compensation for high resolution and smooth operation through both the low speed and
mid-band resonance regions. The output current of the driver is dip switch selectable from
5 A rms (7.1 A peak in microstep mode) to 0.625 A rms (0.88 A peak in microstep mode).
The drive supplies regulated phase currents for supply voltages between 24 and 75 Vdc. It
is designed for use with Pacific Scientific hybrid stepping motors.

Drive features:

e Bipolar chopper drive (reduced heat dissipation, low electric noise and improved
current control during motor breaking)

e Microstepping (switch selectable: full, 1/2 , 1/4, 1/8, 1/10, 1/50, 1/12, and 1/250
step capability)

e Digital Electronic Damping

e Short circuit protection circuitry

e MOSFET power devices

e Optically isolated signal interface connection

e UL Recognized- 508C (Type R)

Typical Applications for this driver: X-Y tables and slides, packaging machinery,

robotics, specialty machinery, index feed of material and labeling machines.

Numeric Controller

GOYA (Numeric Controller) can control 1, 2 or 3 axes of the types stepper, dc. or
brushless, both for point to point positioning and linear and circular interpolation. It can
handle machine I/O (16in/8out) either in sequential mode or as a PLC program. The I/O

can be expanded up to 128 in + 128 out using Can-Bus.

Main features:
e 1,2 or 3 axes stepper, d.c. or brushless (the third axis is for stepper motor only)

e PID control algorithm with programmable feedforward action

125



¢ Point to point positioning, linear interpolation, circular interpolation

e Programmable velocity profiles

e Encoder feedback even for stepper motors

e 16 discrete inputs and 8 discrete outputs can be handled in sequential mode or PLC
logic. It is expandable to 128+ 128 via industrial Can-Bus.

e Programming language: ISO (extended) for the axes’ control section, AWL on PC
or the PLC section.

e Fast input for the reading of the axes’ coordinates (sensor)

e Auxiliary analogue inputs (6 max.)

e Handling of “Variables” from program

e 2 incremental encoders with encoder feedback (Fyax: 37 kHz on the encoder
signal), possible also for stepper motors

e Control of parallel process

Overall electronic circuits and connections to PC and CNC are illustrated in

Figure 6.9.
Unregulated
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24 Vdc to 75 Vdc
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Figure 6.9. PC or CNC Control of Stepper Motor
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6.3. Assembly of the parallel manipulator

A three DoF EPRM is assembled by using manufactured parts and mechanical
elements. Firstly, the fixed base of the manipulator is mounted to ground by using some
bolts. (Figure 6.10). The fixed base consists of two different manufactured parts.

Dimensions of these parts are shown in Figure 6.11.
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Figure 6.10. The fixed base of the manipulator
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Figure 6.11. Two manufactured parts for the fixed base
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There gearboxes are used to transmit power from step motors to parallel

manipulator. Three gearboxes are prepared as shown in Figure 6.12.

Figure 6.12. Preparation of gearboxes

Three gears boxes are mounted on the fixed base (Figure 6.13)

Figure 6.13. Assembly of gearboxes
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Assembly of three DoF EPRM is completed by placing bearings and other
manufactured links. Instead of spherical pairs, three intersected revolute joints are used.
Therefore, workspace of the manipulator is increased. Kinematic analysis of this parallel
manipulator is studied in Chapter 4.5. Furthermore, static force analysis of the manipulator

is explained in Chapter 5.

Figure 6.14. Three DoF EPRM
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CHAPTER 7

CONCLUSION

This thesis includes both theoretical and practical design steps of parallel
manipulators. When the parallel manipulators are designed, structural synthesis is the first
problem. Therefore, new structural formulations are presented to design various new
parallel Euclidean robot manipulators with variable general constraints. With respect to the
new formulations new serial, parallel, and serial-parallel Euclidean platform manipulators
are created and explained along with examples. Also their illustrations are presented in the
tables including structural parameters, structural bondings and kinematic structures. The
second problem of the design is dimensional synthesis. Dimensional synthesis of planar and
spherical seven link mechanism is achieved with a new method. Furthermore, motion
generation synthesis problem of a three DoF spatial parallel manipulator is solved for three,
four and five poses. After the design problems, kinematic analysis of some manipulators is
investigated. Moreover, constant orientation workspace of a three DoF parallel manipulator
is shown. Mechanic analysis is studied to determine the actuator torque of the manipulator.
Finally, construction elements, control of actuators and assembly of a parallel manipulator

are explained. Future works can be ordered as:

e Further development of structural synthesis formulation for new type
manipulators.

e Kinematic synthesis and analysis of serial and serial-parallel Euclidean
platform robot manipulators.

¢ Construction of new medical and industrial robotic systems.
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M1:

M4=

APPENDIX A

INVERSE OF SQUARE MATRIX IN SYNTHESIS OF
SPHERICAL SEVEN LINK MECHANISM

(=Nio Npg Nig+Nyg Nis Nig+Nig Niz Nig—Ng Nis Nig—Ng Niz Nyo+Ng Nig
N2o) / (Ns Ng Niz Ni7-Ns Nig Niz Ni7—Ns Ng Nig Nip+Ns Nig Nig Nig+Ng
Ng Nis Ni7—N3 Ng Nis Ni7—Ns Ng Niz NigtNg Nig Niz NigtNs Ny Nig
Nig—N; Nip Nig Nig=Ng N7 Nis NigtN: Ng Nis NigtNs Ng Niz Nig—N3 Nig
N1z Ni1g—Ns Ny Niz NigtNz Nig Niz NigtN3 Ny Nis Nig—No Ng Nis Nig—Ny
Ng Ni2 Npot+N3 No Nip NootNs N; Niz Nyg—Nz Ng Niz Npp—Ns N7 Nig
Nyo+N; Ng Nig Nig)

(Ns Nig Nig—Ng Nis Nig—Ns Niz Nig+tN3 Nis Nig+Ng Niz Nop—Nz Nig
N2g) / (Ns Ng Nis Ni7—-Ns Nig Niz Ni7—Ns Ng Nig Ni7+Ns Nig Nig Ni7+Ng
Ng Nis Ni7—N3 Ng Nis Ni7—Ns Ng Niz NigtNg Nig Niz NigtNs Ny Nig
Nig=N; Nig Nig Nig=Ny N7 Nis NigtNp; Ng Nis NigtNs Ng Niz Nig—N3 Nig
Nip N1g—Ns N7 Niz NigtNz Nig Niz NigtN3 N7 Nis Nig—N> Ng Nis Nig—Ny
Ng Niz Npot+N3 Ng Nip NootNg N7 Niz Npg—Nz Ng Niz Npp—Ns N7 Nig
Npo+N; Ng Nig Nig)

(-Ns Ny N;g+tNg Nig NigtNs Ng Nig—N3 Nig Nig—N; Ng Npg—N3 Ny
Nyo) / (Ns Ng Niz Ni9—Ng Nig N1z Ni9—Ns Ng Nig Nig+Ns Nig Nig Nyg+Ng
Ng Nis Ni7—N3 Ng Nis Ni7—Ns Ng Nip NigtNg Nig Nip NigtNs N7 Nig
Nig—N; Nip Nig Nig=Ng N7 Nis NigtN> Ng Nis NigtNs Ng Nip Nig—N3 Nig
N1z Ni1g—Ns N7 Niz NigtNz Nig N1z NigtN3 N7 Nis Nig—No Ng Nis Nig—Ny
Ng Ni2 Npot+N3 Ng Nip NootNg N7 Niz Npg—Nz Ng Niz Npp—Ns N7 Nig
Nzo+N; Ng Nig Nog)

(Ns Ng Ni3—Ns Nig Ni3—-Ns Ng Nig+N3 Nig Nig+Nsg Ng Nis—N3 Ng Nis) / (Ns
Ng N1z Ni7—-Ng Nip Niz Ni7—Ns Ng Nig Ni7+N3 Nig Nig Ni7+Ng Ng Nis
N17—-N3 Ng Nis N17—Ns Ng Niz Nig+Ng Nig Nipz NigtNs N; Nig Nig—Np Nig
Nig Ni1g—=Ny N7 Nis NigtNz Ng Nis Nig+Ns Ng Niz Nig—N3 Nig Nipz Nig—Ns
N7 N1z NygtN; Nig Niz NigtN3 Ny Nis Nig—N; Ng Nis Nig-Ng Ng Nip
NyotN3 Ng Nip NpotNy N7 Niz Npg—Nz Ng Niz Npp—N3 Ny Nig NogtNz Ng
Ni4 No)

(=Ns Ny Ni3 NigtNy Nig Ni3 Nig+tNs Ng Nig Nig—N3 Nig Nig Nig—Ng Ng
Nis NigtN3 No Nis NigtNs Ng Ni1 Nig—=Ng Nig Ni11 Nig=Ns Ng Nig NigtM
Nip Nig NigtNy Ng Nis Nig=N1 No Nis Nig—=Ns Ng Niz Nig—N3 Nig Niz
NigtNs Ng Niz Nig—Ni Nig Niz Nig—N3 Ng Nis NigtNy Ng Nis NigtNg Ng
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My o=

Ni1 Nzg—N3 Ng Ni; Npog—Ng Ng Niz Npo+tNp Ng Niz NootN3 Ng Nig Nyo—INp
Ng Nis Nyo)/ (Ns Ny Niz Ni3—=Ns Nig Niz Ni9—Ns Ng Nig Nig+N3 Nig Nig
N17+Ny Ng Nis Ni7=N3 Ng Nis Nij7—Ns Ng Nip NigtNy Nig Nip Nig+Ns Ny
Nig Nig—N; Nig Nig Nig=Ng N7 Nis NigtNz Ng Nis NigtNs Ng Nip Nig—Ns
Nip Niz Ni9g—Ns N7 Niz NigtN> Nig Niz NigtN3 Ny Nis Nig—N; Ng Nis
Nig—Ngy Ng Nip Nyo+tN3 Ng Nip Nyot+tNgy N7 Niz Npo—Np Ng Niz Npp—Ns Ny
Nig Nyo+N> Ng Nig Nyo)

(Nigp Nig Ni7-Ng Nis Ni7—-Nig Niz NigtN; Nis NigtNg Nip Npg—N; Nig
N2o) / (Ns Ng Ni3 Ni7—Ns Nig Niz Ni9—Ns Ng Nig Ni9+Ns Nig Nig Nig+Ng
Ng Nis Ni7—N3 Ng Nis Ni7—Ns Ng Nip NigtNg Nig Nipz NigtNs N7 Nig
Nig—N; Nip Nig Nig=Ng N7 Nis NigtN> Ng Nis NigtNs Ng Nip Nig—N3 Nig
N1 N1g—Ns N7 Niz NigtNy Nig Niz NigtN3 N7 Nis Nig—No Ng Nis Nig—Ny
Ng N1z NzotN3 Ng Nip Npp+tNg N; Niz Npg—Nz Ng Niz Npp—N3 N; Nig
Nzo+N; Ng Nig Nog)

(=Ns Nig Ni7+#Ng Nis Ni7+Ns Nip Nig—N> Nis Nig—Ng Niz Nzo+N2 Nig
Nyo) / (Ns Ng Niz Ni9—Ns Nig Niz Ni7—Ns Ng Nig Nig+Ns Nig Nig Nig+Ng
Ng Nis Ni7-N3 Ng Nis Ni7—Ns Ng Nip NigtNg Nig Niz NigtNs Ny Nig
Nig=N; Nig Nig Nig—=Ny N; Nis NigtNp; Ng Nis NigtNs Ng Niz Nig—N3 Nig
Nip N1g—Ns N7 Niz NigtNz Nig Niz NigtN3 N7 Nis Nig—No Ng Nis Nig—Ny
Ng Nio NpotN3 Ng Nip NootNg N7 Niz Nyg—Nz Ng Niz Npp—Ns N7 Nig
No+N; Ng Nig Nig)

(Ns Ny Ni7-Ng Nig Ni7—Ns Ny NigtN; Nig NigtNg Niz Npg—Nz No
Noo) / (Ns Ng Niz Ni9—Ng Nig N1z Ni9—Ns Ng Nig Niy+N3 Nig Nig Nyg+Ng
Ng Nis Ni7—N3 Ng Nis Ni7—Ns Ng Nip NigtNg Nig Nipz NigtNs N7 Nig
Nig—=N; Nip Nig Nig=Ng N7 Nis NigtN> Ng Nis NigtNs Ng Nip Nig—N3 Nig
Nip N1g—Ns N7 Niz NigtNy Nig N1z NigtN3 N7 Nis Nig—N> Ng Nis Nig—Ny
Ng N1z NyotN3 Ng Nip Npp+tNg N; Ny Npg—Np; Ng Niz Npp—N3 N; Nig
Nzo+N; Ng Nig Nog)

(=Ns Ng Nip+N; Nig Nip+Ns N; Nig—N, Nig Nig—Ng N7 Nis+N» N
Nis) / (Ns Ng Niz Ni7—Ns Nig Niz Ni7—Ns Ng Nig Niy+Ns Nig Nig Nig+Ng
Ng Nis Ni7—N3 Ng Nis Ni7=Ns Ng Niz NigtNg Nig Niz NigtNs Ny Nig
Nig—=N; Nip Nig Nig=Ng N7 Nis NigtN2 Ng Nis NigtNs Ng Niz Nig—N3 Nig
N1z Ni1g—Ns Ny Niz Nig+Nz Nig N1z NigtN3 N7 Nis Nig—N:> Ng Nis Nig—Ny
Ng Niz Npot+N3 Ng Nip NootNs N7 Niz Npg—Nz Ng Niz Npp—Ns N7 Nig
N2o+N> Ng Nig Nyo)

(Ns Ng Niz Nig—Ng Nig Niz Nig—Ns N; Nig NigtNp Nig Nig NigtNg Ny
Nis Ni1g—=Nz No Nis Nig—Ns Ng Ni1 Ni7+Ng Nig Ni1a Ni7tNs Ng Nig Nio—IM
Nip Nig Ni17-Ng Ng Nis NigtN1 Ng Nis Nig+Ns Ny N1z Nig—Nz Nig Niz
Ni9=Ns Ng Niz Nig+N1 Nig Niz NigtN> Ng Nis Nig—N1 N7 Nis Nig—Ny Ny
Ni1 NootNz2 Ng Ni1 NpotNy Ng Niz Npp—Ni Ng Niz Npo—Nz Ng Nig Npot+Np
N7 Nig Nzg)/(Ns Ng Niz Ni7—Ns Nig N1z Ni7—Ns Ng Nig Ni7+N3 Nig Nig
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M=

My o=

My3=

My 4=

My s=

N17+Ny Ng Nis Ni7=N3 Ng Nis Ni7—Ns Ng Nip NigtNg Nig Nip Nig+Ns Ny
Ni4 Nig—=N; Nig Nig Nig—=Ng N; Nis NigtN; Ng Nis NigtNs Ng Niz Nig—Ns
Nig Niz Nig—Ns N; Niz NigtN; Nig Niz NigtN3 Ny Nis Nig—No Ng Nis
Nig—Ngy Ng Nip NyotN3 Ng Nip Nyot+tNgy N7 Nis Npo—Np Ng Niz Nyp—N3 Ny
Nig Npo+N; Ng Nig Nag)

(=N1g Ni3 Ni7+Ng Nis Ni7+Nig Niz Nig=N; Nis Nig—Ng Nip Nyot+N; Nis
Nyo) / (Ns Ng Niz Ni9—Ns Nig Niz Ni7—Ns Ng Nig Nig+Ns Nig Nig Nig+Ng
Ng Nis Ni7-N3 Ng Nis Ni7—Ns Ng Nip NigtNg Nig Niz NigtNs Ny Nig
Nig—N; Nip Nig Nig=Ng N7 Nis NigtN> Ng Nis NigtNs Ng Nip Nig—N3 Nig
Nip; N1g—Ns N7 Niz NigtNy Nig Niz NigtN3 N7 Nis Nig—No Ng Nis Nig—Ny
Ng Nio Npot+N3 Ng Nip NootNg N; Niz Npg—Nz Ng Niz Npp—Ns N7 Nig
Nyo+N; Ng Nig Nig)

(Ns Ni3 Ni7—N3 Nis Ni;—Ns Nip Nig+N» Nps Nig+Ns Nip Nyo—No Nis
N2o) / (Ns Ng Ni3z Ni7-Ns Nig Niz Ni7—Ns Ng Nig Ni9+Ns Nig Nig Nig+Ng
Ng Nis Ni7-N3 Ng Nis Ni7—Ns Ng Nip NigtNg Nig Niz NigtNs Ny Nig
Nig=N; Nig Nig Nig=Ny N7 Nis NigtNp; Ng Nis NigtNs Ng Niz Nig—N3 Nig
N1z Nig—Ns N; Niz NigtN; Nig Niz NigtN3 N; Nis Nig—N; Ng Nis Nig—Ng
Ng N1z NzotN3 Ng Nz Npp+tNg N; Niz Npg—Np Ng Niz Npp—N3 N; Nig
Nyo+N; Ng Nig Nig)

(=Ns Ng Ni7+N3 Nig Ni7+Ns N; Nig—N» Nig Nig=N3 N; Nyo—N, Ng
Nyo) / (Ns Ng Niz Ni9—Ns Nig Niz Ni7—Ns Ng Nig Nig+N3 Nig Nig Nyg+Ng
Ng Nis Ni7-N3 Ng Nis Ni7—Ns Ng Nip NigtNg Nig Niz NigtNs Ny Nig
Nig=N; Nig Nig Nig=Ny N7 Nis NigtNp; Ng Nis NigtNs Ng Niz Nig—N3 Nig
Nip N1g—Ns N7 Niz NigtNy Nig N1z NigtN3 N7 Nis Nig—No Ng Nis Nig—Ny
Ng Nio Npot+N3 Ng Nip NootNg N7 Niz Nyg—Nz Ng Niz Npp—Ns N7 Nig
Nyo+N; Ng Nig Nig)

(Ns Ng Ni2—N3 Nig Ni2—Ns N7 NiztN; Nig Ni3tN3 N7 Nis—N; Ng
Nis) / (Ns Ng Nyz Ni9—Ni Nig Niz Ni9—Ns Ng Nig Nig+Ns Nig Nig Nig+Ng
Ng Nis Ni7-N3 Ng Nis Ni7—Ns Ng Nip NigtNg Nip Niz NigtNs Ny Nig
Nig—N; Nip Nig Nig=Ng N7 Nis NigtN> Ng Nis NigtNs Ng Nip Nig—N3 Nig
N1z N1g—Ns N7 Niz NigtNy Nig Niz NigtN3 N7 Nis Nig—N> Ng Nis Nig—Ny
Ng Ni2 Npot+N3 Ng Nip NootNg N7 Niz Npg—Nz Ng Niz Npp—Ns N7 Nig
Nzo+N; Ng Nig Nog)

(=Ns Ng Nip Nig+N3 Nig Niz NigtNs N7 Niz Nig—Np Nig Niz Nig—N3 Ny
Nis NigtNp, Ng Nis NigtNs Ng Nip N17—N3 Nig Nii1 Ni17—Ns Ng Nisz Nig+IMp
Nip N1z Ni7tN3 Ng Nis Ni7—=N1 Ng Nis Ni5—Ns N7 Niz NigtNp; Nig Niz
Nig+Ns Ng Nip Nig—=N1 Nig Nipz Nig=Nz Ng Nis NigtN1 N7 Nis NigtN3 Ny
Ni1 Nzo—Nz2 Ng Niz N2o—N3 Ng Nip NzotN1 Ng Nip NootNz2 Ng Niz Noog—Ni
N; Niz Nzg)/ (Ns Ng Niz Niy—=Ng Nyg Niz Ni7—Ns Ng Nig Nig+N3 Nig Nig
Ni7tNy Ng Nis Ni7—N3 Ng Nis Ni7—Ns Ng Nip Nig+Ng Nig Niz Nig+Ns Ny
Nig Nig—Nz Nig N1y Nig=Ng Ny Nis Nig+Nz Ng Nis NigtNs Ng Nip Nig—N3
Nip Niz Ni9—=Ns N7 Niz NigtN> Nig Niz NigtN3 Ny Nis Nig—N; Ng Nis
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M ¢=

M7=

Moo=

N19g—=Ny Ng Nip Npp+N3 Ng Niz Npo+tNg Ny Niz Nzo—Nz Ng Niz Nyg—N3 Ny
Nig Nyo+N> Ng Nig Nyo)

(Ng Niz Ni7—Ng Nig Ni7—-Nyg Nip Nig+N; Nig NigtNg Niz Nig—N; Nig
Nig) / (Ns Ng Ni3 Ni7—Ns Nig Niz Ni9—Ns Ng Nig Ni9+N3 Nig Nig Nig+Ng
Ng Nis Ni7—N3 Ng Nis Ni7—Ns Ng Nip NigtNg Nig Nipz NigtNs N7 Nig
Nig—N; Nip Nig Nig=Ng N; Nis NigtN> Ng Nis NigtNs Ng Nip Nig—N3 Nig
N1z Nig—Ns N; Niz NigtN; Nig Niz NigtN3 N; Nis Nig—N; Ng Nis Nig—Ng
Ng N1z NyotN3 Ng Niz Npp+tNg N; Niz Npg—Nz Ng Niz Npp—N3 N; Nig
Nzo+N; Ng Nig Nag)

(=Ng N;3 Ny7+N3 Nig Ni7+Ns Nip Nig—N; Nig Nig—=N3 Nip NioiNz Nis
Ni9) / (Ns Ng Niz Ni7—Ng Nig Niz Ni7—Ns Ng Nig Niy+Ns Nig Nig Nig+Ng
Ng Nis Ni7-N3 Ng Nis Ni7—Ns Ng Nip NigtNg Nig Niz NigtNs Ny Nig
Nig=N; Nig Nig Nig—=Ny N7 Nis NigtNp; Ng Nis NigtNs Ng Niz Nig—N3 Nig
N1z N1g—Ns N7 Niz NigtNy Nig Niz NigtN3 N7 Nis Nig—No Ng Nis Nig—Ny
Ng Nio Npot+N3 Ng Nip NootNg N7 Niz Nyg—Nz Ng Niz Npp—Ns N7 Nig
Nyo+N; Ng Nig Nig)

(Ns Ng N17—N3 Ng Ni7—-Ns N7 Nig+N, Ng Nig+N3 Ny Nig—N, Ng Nig) / (Ns
Ng Ni3 Ni7—Ng Nig Niz Ni7—Ns Ng Nig Ni7+N3 Nig Nig Ni;+Ng Ng Nis
N17=N3 Ng Nis Ni7=Ns Ng Nip NigtNg Nig Nip NigtNs Ny Nig Nig—N; Nig
Nig Ni1g—Ny N7 Nis NigtNp Ng Nis Nig+Ns Ng Niz Nig—N3 Nig Nipz Nig—Ns
N7 N1z NigtN; Nig Niz NigtN3 Ny Nis Nig—-Nz Ng Nis Nig—Ny Ng Nip
Nyo+N3 Ng Nip Npot+tNgy N7 Niz Npo—Np Ng Niz Npo—N3 Ny Nig Nppt+N; Ng
Nig Nao)

(-Ng Ng Nj2+N3 Ny Nijp+Ng N7 Niz3—N; Ny Ni3—N3 N7 Nig+N> N
Nig) / (Ns Ng Ni3 Ni7-Ng Nig Niz Ni7—Ns Ng Nig Ni7+Ns Nig Nig Ni7+Ng
Ng Nis Ni7—N3 Ng Nis Ni7—Ns Ng Niz NigtNg Nig Niz NigtNs Ny Nig
Nig—=N; Nip Nig Nig=Ng N7 Nis NigtN2 Ng Nis NigtNs Ng Niz Nig—N3 Nig
N1z, Ni1g—Ns Ny Niz NigtN, Nig Niz NigtN3 Ny Nis Nig—No Ng Nis Nig—Ny
Ng Ni2 Npot+N3 Ng Nip NootNs N7 Niz Nyg—Nz Ng Niz Npp—Ns N7 Nig
Npo+N; Ng Nig Nig)

(Ng Ng Nip Nig—N3 Ny Nip Nig—Ng N7 Niz NigtNz Ng Ni3z NigtN3 N7 Nig

Ni¢—N, Ng Nig Ni1g—Ng Ng N1z Niy+tN3 Ng Niix Nip+tNg Ng Nis Nig—Ni Ng
Ni3 Ni7-N3 Ng Nig Ni7tN1 Ng Nig Ni17tNs Ny Ni1 Nig=N> Ng Ni1 Nig—Ng
Ne Niz NigtN1 Ng Nip NigtN; Ng Nig Nig=N1 N; Nig Nig=N3 N7 Nia
Nig+N; Ng Niiz NigtN3 Ng Niz Nig—N1 Ng Niz Nig—Np Ng Niz NigtN: Ny
Ni3 Nig) / (Ns Ng Niz Ni7—-Ns Nig Niz Ni7-Ns Ng Nig Ni7+N3 Nig Nig
Ni7+Ngy Ng Nis Ni7—-N3 Ng Nis Ni7—-Ns No Nip Nig+Ng Nig Niz NigtNs Ny
Nig Nig—N Nig Nig Nig=Ng Ny Nis NigtNz Ng Nis NigtNs Ng Nip Nig—N3
Nig Niz Nig—Ns N; Niz NigtN; Nig Niz NigtN3; Ny Nis Nijgo—N; Ng Nis
N1g—Ny Ng Nip NpotN3 Ng Nip Npo+Ng N7 Niz Npp—Nz Ng Niz Nog—N3 Ny
Nig Npot+N; Ng Nig Nag) .
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