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ABSTRACT 

 

DEVELOPMENT OF SEMICONDUCTOR NANOCRYSTALS FOR 

BIOTECHNOLOGICAL APPLICATIONS 
 

Semiconductor nanocrystals are very useful tools in biological applications because 

of their unique optical properties. In this study, synthesis and characterization of CdTe / 

CdS and CdSexS1-x  nanocrystals were carried out. CdSexS1-x
 nanocrystals were synthesized 

by a modified two phase method. Highly luminescent (Quantum yied = %80) , 

monodisperse and face centered cubic CdSexS1-x
 nanocrystals were obtained in toluene. 

The size of nanoparticles varies from 3.5 to 3.7 nm Ligand exchange was performed on 

CdSexS1-x
 nanocrystals and luminescent water soluble CdSexS1-x

 nanocrystals were 

obtained. CdTe / CdS nanocrystals were synthesized in one step and and one pot by a 

modified method. Face centered cubic, luminescent (Quantum yield = 30%) and 

monodisperse CdTe / CdS nanocrystals with different sizes in a size range from 4.7 to 9.3 

nm were obtained in water. Toxicity of CdTe / CdS nanocrystals was determined by MTT 

test. The lethal concentrations were respectively 1.0 and 15 μg/ml for PC3 and MCF7 cells. 

Confocal microscopy shows that the nanoparticles enter to the cytoplasm of cells. 
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ÖZET 

 

YARI-İLETKEN NANOKRİSTALLERIN BİYOTEKNOLOJİK 

UYGULAMALAR İÇİN GELİŞTİRİLMESİ 
 

Yarı iletken nanokristaller sahip oldukları üstün optik özellikler sayesinde biyolojik 

uygulamalarda kullanılmaktadır. Bu çalışmada CdTe / CdS ve CdSexS1-x nanokristallerinin 

sentezi ve karakterizasyonu gerçekleştirilmiştir. CdSexS1-x
 nanokristalleri değişiklik 

yapılmış çift fazlı sentez yöntemi ile sentezlenmiştir. Toluen içerisinde yüksek derecede 

ışıma yapan (kuantum verim = %80), eşdağılımlı ve yüzey merkezli kübik yapılı CdSexS1-x
 

nanokristaller elde edildi. Nanoparçacıkların büyüklüğü 3.5 ile 3.7 nm arasında olacak 

şekilde hazırlanmıştır. CdSexS1-x
 nanokristaller üzerinde ligand değişimi metodu uygulandı 

ve suda çözünebilen, ışıma yapan CdSexS1-x
 nanokristaller elde edildi. CdTe / CdS 

nanokristalleri tek basamakta su içerisinde sentezleme yöntemi ile sentezlendi. Su 

içerisinde ışıyan (kuantum verim = %30), kübik ve eşdağılımlı, değişik büyüklüklerde (4.7 

nm – 9.3 nm) CdTe / CdS nanokristaller elde edildi. CdTe / CdS nanokristallerin hücreler 

üzerindeki zehirleme etkisi MTT test ile belirlendi. PC3 ve MCF 7 hücreleri için hücreler 

ölmeden yapılacak çalışmalarda kullanılması gereken CdTe / CdS nanoparçacık derişimleri 

sırasıyla 1.0 ve 15 μg/ml olarak belirlenmiştir. Konfokal mikroskopi çalışmaları ile 

nanoparçacıkların hücre sitoplazmasına geçtikleri belirlenmiştir. 
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CHAPTER 1 
 

1. INTRODUCTION 
 

1.1. Quantum Dots and Biotechnology 
 

Swift developments in nanoscience have allowed scientists to develop 

nanomaterials that have highly controlled and unique optical properties. Lately, 

biologists have started to use these nanomaterials in different applications such as 

diagnosis of diseases, gene therapies, etc… Joining of biomaterials with semiconductor 

quantum dots or metal nanocrystals improves the impact of biophotonics and 

bioimaging in biological and medical sciences. (Wang, et al. 2005)  

Quantum dots are defined as nanometer-scale semiconductor crystals comprised 

of groups II–VI or III–V elements, and are described as particles with physical 

dimensions smaller than the exciton Bohr radius. (Jamieson, et al. 2007) Nanomaterials’ 

properties can be tuned by controlling their physical size. In the nanometer size regime, 

new mesoscopic phenomena characteristic of this intermediate state of matter, found in 

neither bulk nor molecular systems, comes out. Quantum dot’s physical properties 

strongly depend on crystal size, due to quantum confinement effect. (Bawendi, et al. 

2000)  

The spatial confinement of excitations, electronic and vibrational, dominate the 

physical properties of semiconductor nanocrystals.(Bawendi, et al. 1994) The most 

striking property of semiconductor quantum dots is their ability to change optical 

properties by controlling their size. When a bulk semiconductor crystals’ size is 

reduced, the surface area / volume ratio increases and surface structure affects optical 

and electronical properties strongly. Furthermore, the crystal’s electronical properties 

stop behaving as bulk structure. This behaviour is a result of quantum confinement 

effects, the behaviour of electrons in a particle due to spatial restrictions. 

In a semiconductor, electron moves from valance band to conduction band due 

to light absorption. The energy required for excitation of electron is indicated by the 

energy band gap. The moving electron’s motion is accepted as moving through a 
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“hole”, and this electron – hole pair becomes electrostatically bound, creates an exciton, 

which is defined by a distance known as the Bohr Radius. When the excited electron 

loses its excess energy in the conduction band, it returns to valance band and remerges 

with the hole. Light forms due to combination of electron and hole pair. 

As an exciton forms in a spatially confined in a region smaller than the bohr 

radius, the quantum dot’s band gap increases since much more energy is needed to 

confine the exciton. So, blue shift occurs in light that occurred due to energy loss of 

electron – hole pair, which means light occurs in a shorter wavelength (higher energy). 

That means, as quantum dot’s size decreases, the absorption and emission wavelengths 

shifts to blue, lower wavelength. 

The minimum energy required to form an exciton can be ascribed to the bulk 

band gap energy and the confinement energy for the electron carriers in a potential well. 

The whole confinement energy for the exciton can be described by “particle in a box” 

system: 

 2

2

2md
hEwell =  

(1.1)  

 

where h is planck’s constant, d is diameter, m is reduced mass of exciton. 

However, coulombic interactions also affect exciton energy, which is described 

as: 

 d
eEcoul
0

2

2
8.1

pee
-

=  
   (1.2) 

 

where e = electron’s charge (C), Ɛ 0 = dielectric constant and Ɛ  = permittivity constant. 

Combining these equations may give an idea to calculate the energy band gap of a 

quantum dot. 
 

 E(dot) = Eg (bulk) + Ewell + ECoul                (1.3) 
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This is known as effective mass approximation. Both coulombic and 

confinement terms depend on size, and when the quantum dot’s size is very small, 

confinement term becomes the dominant term. (Juandria V. Williams 2008) 

Recently, quantum dots have been used in biotechnology efficiently. After 

Alivisatos et al. (1998) and Nie et al. (1998) showed that quantum dots can be used in 

biotechnology. Generally, quantum dots are synthesized in apolar solvents such as 

toluene, heptanes, etc…. However, quantum dots must be water soluble to be used in 

bioimaging. For that reason, researchers try to make water soluble quantum dots with 

different methods, such as ligand exchange and one – pot synthesis (Sharma, et.al 1998) 

With their excellent optical properties, quantum dots are used as labeling agents in 

bioimaging. 

Different from quantum dots, also organic dyes can be used as fluorophores in 

biological applications. However, in bioimaging, quantum dots have overcome many of 

restrictions of organic dyes, such as poor photostability, low quantum yield, insufficient 

in vitro and in vivo stability, etc... By help of unique optical properties of quantum dots, 

they can be developed for real time and deep tissue imaging via optical routes. (Sharma, 

et.al 1998) 

 

1.2. The Purpose of the Study 
 

The purpose of the study is to develop a method to synthesize and characterize 

water soluble quantum dots for biotechnological applications. These applications may 

be bioimaging in cells by using unique optical properties of quantum dots. 

 

1.3. Types of Quantum Dots 
 

Quantum dots differ in many ways. To classify them according to one condition 

is not a logical way; however there are some distinct terms that quantum dots are 

grouped in. Quantum dots can be classified in two groups according to their atomic 

arrangement in crystal structure such as core types and core – shell types. A core type 

quantum dot consists of two or three atoms. However, coating the core of quantum dot, 

which means surrounding core with a shell consisting of different kind of atoms, causes 

a great enhancement in optical properties, such as quantum yield and photostability, and 
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notable improvements on biological properties, such as toxicity. This type of quantum 

dots is called core – shell type quantum dots. There are different kinds of core and core 

– shell type quantum dots depending on atom type; CdS, CdSe, CdTe, ZnS, PbS, 

GaInP2, CdHgTe, CdSexS1-x, CdSe / ZnS, CdSe / CdS, CdTe / CdS … Between these 

quantum dots, quantum dots including cadmium have very unique and tunable optical 

properties. Because of these properties, researchers show great interest in these types of 

quantum dots. 

 

1.3.1. Core Type Quantum Dots including Cadmium 
 

In early studies, Bawendi et.al synthesized monodisperse CdS, CdTe and CdSe 

nanocrystals successfully (Bawendi, et al. 1994). Also, recently CdSexS1-x and CdHgTe 

alloyed monodisperse nanocrystals are synthesized (Qian, et.al 2007, Jang, et.al 2003). 

Each of these nanocrystals has different and unique properties and is used in many 

research areas such as LEDs, solar cells, biological markers (Alivisatos, et al. 1994, 

Alivisatos, et al. 1997, Alivisatos, et al. 1998, Alivisatos, et al. 2002, Alivisatos, et al. 

1999, Bawendi, et al. 2000, Bawendi et al. 2002, Nie et al. 1998). 

 

1.3.1.1. Cadmium Sulfide (CdS) Nanocrystals 

 
Amongst quantum dots including cadmium, CdS is the easiest one to be 

synthesized. High temperatures and high pressures are not required for the synthesis 

CdS . There are several types of methods to synthesize CdS; organometalllic route, two 

phase method, solvothermal method, etc… Emission spectrum of CdS nanoparticles 

may vary between 350 nm and 500 nm, which means CdS can emit colors between 

violet and green. CdS nanoparticles are used in many research areas including light 

emitting diodes, solar cells, lasers and biological markers. (Alivisatos, et al. 1994, 

Alivisatos, et al. 1997, Alivisatos, et al. 1998, Alivisatos, et al. 2002, Alivisatos, et al. 

1999, Bawendi, et al. 2000, Bawendi et al. 2002, Nie et al. 1998). 
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1.3.1.2. Cadmium Selenide (CdSe) Nanocrystals 
 

CdSe quantum dots are the most commonly used and investigated quantum dots. 

However, to synthesize CdSe quantum dots is somewhat complicated when it is 

compared to synthesize of CdS quantum dots, usually higher temperature and higher 

pressure is needed to synthesize. It is impossible to synthesize CdSe nanocrystals in the 

presence of O2 since Se precursors are easily oxidized by air. In early studies, Alivisatos 

produced CdSe by organometallic synthesis method (Alivisatos, et al. 1992). Bawendi 

et. al. synthesized CdSe with a different kind of organometallic synthesis route ( 

Bawendi, et al. 1994 ). Lately, Pan et.al. synthesized CdSe quantum dots with two – 

phase method. (Pan, et al. 2005) Cadmium selenide is interesting because it has unique 

optical properties in the visible spectrum. Through strict dimensional control, QDs can 

be produced to emit narrow color spectra that can be clearly distinct from one another at 

the full-width half maximum of the peak emission and have typical full-width half-

maxima of only 25nm to 30nm. Because the color spectra do not overlap, one can 

increase the number of distinct colors, as compared to organic dyes, that are being 

detected simultaneously.( Figure 1.1 ) 

 

 

 
Figure 1.1. Vials of fluorescent CdSe QDs dispersed in hexane illustrate the effect of 

quantum confinement, in which emission wavelength depends on the size of 

the QD. A UV lamp serves as the excitation source. Quantum-dot sizes 

range from 2 nm (blue) to 8 nm (red) from left to right. (Source: Dabbousi, 

et al. 1997) 

 

CdSe nanoparticles are used in many research areas such as biomedical imaging 

applications, laser diodes, etc… (Alivisatos, et al. 1994, Alivisatos, et al. 1998) 
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1.3.1.3. Cadmium Telluride (CdTe) Nanocrystals: 

 
In early studies, synthesis of CdTe was subset of synthesis of CdSe and a little 

information was gathered about CdTe nanoparticles. Bawendi et.al. and Talapin et.al 

made early studies about CdTe quantum dots (Bawendi, et al. 1994&Talapin, et al. 

2002). However, easy synthesis of CdTe in aqueous solutions has been called attention 

by researchers and several important studies have been performed on CdTe nanocrystals 

(Gaponik, et al. 2002, Qian, et al. 2007, Cho, et al. 2007, Zhong, et al. 2008). Gaponik 

et.al. synthesized CdTe nanocrystals in aqueous media in one step, with non – 

expensive materials such as Al2Te3, (Gaponik, et al. 2002).Ren et.al. synthesized CdTe 

nanocrystals in aqueous media in one step and deposited it with Hg to obtain near infra 

– red color (Qian, et.al 2007). Lately, CdTe quantum dots have been used for biological 

applications. However, high toxic effects of both cadmium and tellurium limit the 

utilization of CdTe quantum dots in biological applications. (Cho, et al. 2007) 

 

1.3.1.4. Cadmium Selenide Sulfide (CdSexS1-x) Nanocrystals: 
 

CdSexS1-x is an alloyed type core nanocrystal, which is not studied widely and 

still has terms to be developed. It is not called a core – shell type quantum dot because 

both S and Se precursors are added together at the same time during synthesis, however 

because of the difference in reaction rates of S and Se, inner side of crystal structure is 

assumed to be S or Se rich depending on their reaction rate. This alloyed type quantum 

dots differ from other core type quantum dots in some ways. Its optical properties 

depend on the ratio of S to Se in crystal structure ( Jang, et.al 2003 ). Also, Jang et.al 

synthesized and observed electroluminescence of CdSexS1-x quantum dots, and showed 

that this quantum dot can be used in preperation of light emitting devices ( Jang, et.al 

2003 ).  

 

1.3.2. Core – Shell Type Quantum Dots including Cadmium 
 

After synthesizing core quantum dots, scientists paid attention to develop their 

physical and biological properties. Since atoms on large surface area could not be fully 
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coordinated, dangling bonds of nanocrystal surface generated non-radiative decay 

energy levels to reduce quantum yield. However, growing a thin inorganic shell 

epitaxially on the surface of the core causes surface passivation and makes crystal 

structure less defective. The basic logic in core – shell synthesis is, first to grow a kind 

of core nanocrystal, then to grow a different kind of inorganic layer around core which 

has close crystal structure of core material. This thin shell around core, improves optical 

properties of core structure dramatically. ( Figure 1.2 ) 

 
Figure 1.2. Difference between emission spectra of core and core – shell structures and 

proposed crystal structure for CdSe / ZnS core – shell quantum dot.(Source: 

Nanobiotechnology Forum – 2003, Quantum Dot Corporation.) 
 

For CdSe/CdS and CdSe/ZnSe core-shells, the lattice structures of core and shell 

are compatible with each other. For CdSe/CdS nanocrystals, CdS grows epitaxially and 

coherently around CdSe, as a result of the low concentration of defects in the shell, 

CdSe/ CdS and CdSe/ZnSe nanocrystals exhibit very high fluorescence quantum 

efficiencies, up to 80-90% ( Talapin, et al. 2004). 

Ren et.al. synthesized CdHgTe alloyed quantum dots and obtained nanocrystals 

that have emission spectra close to infrared. By coating this CdHgTe alloyed quantum 

dots with a CdS shell, they also improved photostability of CdHgTe alloyed quantum 

dots and developed an alternative near – infrared emitting labeling source for 

biolabeling applications (Qian, et.al 2007).  

There are studies on core – shell – shell and core – shell – shell – … – shell 

quantum dots (Talapin, et al. 2004 & Pan, et al. 2006). The main reason for coating 
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surface with more shell structures is basically to get more advanced quantum dots. By 

covering core – shell structure with another shell, improving quantum yield, stability 

and robustness of luminescent nanocrystals were aimed. However, it is not easy to 

control the shell thickness of middle and outer shell, so studies cannot be interpreted 

easily (Talapin, et al. 2004). Also, adding more shell does not always improve core 

structure’s photophysical properties (Pan, et al. 2006). 

 

1.4. Synthesis of Quantum Dots 
 

Researchers tried many different ways to synthesize quantum dots in the past 

years. Naturally, many different synthesis types are developed for synthesizing these 

materials. Since this synthesize can be considered as growth of a crystal structure, it is 

very important to control temperature during synthesis. However, it is also very 

important to grow monodisperse nanocrystals, otherwise optical properties of these 

nanocrystals drops dramatically. By controlling only temperature and pressure, to 

synthesize monodisperse quantum dots is extremely difficult, because quantum dots can 

accumulate in an instant, bulk crystal structures occur. However, by using organic 

surfactants, monodisperse quantum dots can be readily synthesized. 

The surfactants are tailored to meet specific parameters such as water-solubility, 

chemical reactivity, or to keep particles from agglomerating. The most common capping 

structures to use are those that also act as the solvent in which the organo-metallic 

reaction occurs. Organometallic synthesis method requires high temperature (300 0C).  

There are many organic solvents with high boiling point; however, only a few have 

been tested. Of these, trioctylphosphine oxide, TOPO, ( Figure 1.3 ) has been 

thoroughly used over a wide range of production and subsequent environmental 

applications.  

 

P
O

 
 

Figure 1.3. Structure of TOPO 
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TOPO is widely used in quantum dot synthesis, most of semiconductor 

precursors dissolve in TOPO and TOPO also acts as a medium for the reaction. 

However, Pan et.al indicated that TOPO may cause trap states on the surface, so that 

emission spectrum of quantum dot may have a broad shoulder, resulting from lower 

capping densities (Pan, et al. 2004). Instead of TOPO, also oleic acid may be used as 

surfactant. 

 

O
OH

 
 

Figure 1.4. Structure of Oleic Acid 

 

Oleic acid is mono unsaturated omega – 9 fatty acid found in various animal and 

vegetable sources. ( Figure 1.4 ) This long carbon chained fatty acid is widely used as 

capping agent in quantum dot synthesis. Oleic acid easily dissolves in apolar solvents 

such as toluene and heptane, that property make oleic acid very useful in quantum dot 

synthesis. Oleic acid surrounds quantum dots better and yields to narrower 

photoluminescence peaks, which mean greater monodispersity, and trap states decreases 

with oleic acid when it is compared to TOPO. Oleic acid is a cheap organic matter that 

can be achieved easily. However, excess oleic acid makes difficult ligand exchange.  

However, the capping agents that mentioned above cannot be dissolved in water. 

For biological applications, quantum dots must be dissolved in water. Generally, 3 – 

Mercaptopropionic acid and Thioglycolic acid are used for this purpose ( Figure 1.5 ). 

These capping agents bind quantum dots from thiol group ( - SH) and free carboxylic 

groups allow 3 – MPA or TGA capped quantum dots to be able to dissolve in aqueous 

media. 
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Figure 1.5. Structures of 3 – Mercaptopropionic acid and Thioglycolic acid 

 

In early studies, Bawendi et.al synthesized monodisperse quantum dots by 

organometallic hot schlenk method (Bawendi, et al. 1994). In this method, airless media 

and very high temperature are the most important conditions in synthesis. Cadmium 

precursor and selenium, tellurium or sulfur precursors are dissolved in surfactant 

(TOPO or TOP generally) under nitrogen or argon atmosphere, at very high temperature 

(around 300 0C). At high temperature, nucleation occurs and lowering temperature a 

little (around 280 0C), growth starts and monodisperse quantum dots occur. This 

synthesis method is very effective and still used today ( Figure 1.6 ). However, the 

toxicity of cadmium precursor, dimethylcadmium, and the difficulties of controlling 

temperature directed researchers into different synthesis methods. Talapin et.al 

synthesized CdSe / CdS nanoparticles via “greener” method using cadmium acetate as 

cadmium precursor (Talapin, et al. 2003). Talapin et. al showed that cadmium acetate 

can be used instead of dimethyl cadmium. Also, Talapin et.al showed that CdSe / CdS / 

ZnS and CdSe / ZnSe / ZnS core – shell – shell structures can be synthesized by using 

organometallic route (Talapin, et al. 2004). According to Talapin et. al. both dimethyl 

cadmium and cadmium acetate can be used in core – shell – shell synthesize. Xu et.al 

synthesized CdS nanocrystals with organometallic synthesis route using oleic acid as 

capping agent and made ligand exchange on these nanoparticles.(Yang, et al. 2007) Cao 

et.al synthesized CdS quantum dots in one pot using octadecene as capping agent (Cao, 

et al. 2004). By this synthesis method, Cao et.al showed that CdS quantum dots can be 

fabricated in large scales. Talapin et.al. synthesized CdTe nanoparticles via 

organometallic synthesis route, using mixture of dodecylamine and trioctylphosphine as 

capping agents, and obtained highly luminescent CdTe nanoparticles with this 

method(Talapin, et al. 2001). Peng et.al. synthesized CdS, CdSe and CdTe nanoparticles 

via organometallic synthesis route using cadmium oxide as cadmium precursor(Peng, et 

al. 2001). Jiang et.al synthesized CdTeSe alloyed quantum dots via organometallic 

synthesis route at very high temperature (325 0C), and near IR colored quantum dots 
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were obtained (Jiang, et al. 2006). Jang et.al. synthesized CdSexS1-x alloyed quantum 

dots via organometallic synthesis route and controlled optical properties of CdSexS1-x 

quantum dots with changing Se : S ratio (Jang, et.al 2003). Ali et. al. synthesized 

CdSexS1-x alloyed nanoparticles by modifying Jang et.al. ‘s study (Jang, et.al 2003) and 

obtained white light emitting CdSexS1-x quantum dots by mixing red, yellow and purple 

light emitting quantum dots (Pan, et al. 2005). 

 

 
Figure 1.6. Schematic illustrasion of organometallic synthesis 

(Source: Bailey, et.al, 2004) 

 

Pan et.al. derived a new method for synthesizing quantum dots, two – phase 

synthesis method recently (Pan, et al. 2005). This method allows synthesis of quantum 

dots in mild conditions, synthesis can be done in low temperature and under 

atmospheric pressure. Also, autoclaves can be used to control pressure. Basically, Cd 

precursor (Cadmium Myristate, synthesized from CdO and Myristic Acid) dissolves in 

oil phase (toluene or heptane) and Se or S precursor dissolves in aqueous phase and 

reaction occurs at interface of two phases ( Figure 1.7 ). Pan et.al synthesized highly 

luminescent CdSe / CdS quantum dots via two – phase method in autoclaves with oleic 

acid as capping agent (Pan, et al. 2005). Pan et.al. synthesized CdS nanoparticles at 

atmospheric conditions at very low temperature (at 100 0C) corresponding to 

organometallic synthesis route (at 300 0C) (Pan, et al. 2004). Also Pan et.al synthesized 

CdS nanoparticles in autoclave at different temperatures varying between 120 0C and 

180 0C and developed a seeding technique, to grow bigger nanoparticles by using 

smaller nanoparticles as starting material (Pan, et al. 2005). Pan et.al synthesized CdS 
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and CdSe nanoparticles with different Se and S precursors at autoclaves or air 

conditions at different temperatures and tried to optimize synthesis conditions for two – 

phase synthesis method (Pan, et al. 2007).  Also Pan et.al. synthesized “nano onions” , a 

core structure surrounded with multiple shells, via two – phase synthesis method (Pan, 

et al. 2006) 

 

 
 

Figure 1.7. A proposed mechanism for formation of CdSe in oil phase 

(Source: Pan, et al. 2007) 

 

Also there are studies on synthesis of quantum dots at one step aqueous 

synthesis. Gaponik et.al. synthesized CdTe nanoparticles in aqueous media by 

producing H2Te(g) and bubbling aqueous cadmium solution with H2Te under N2 

atmosphere and at around 100 0C with using different capping agents such as 2 – 

mercaptoethanol, 1 – thioglycerol ( Figure 1.8 )(Gaponik, et al. 2002). Peng et.al 

described a one pot synthesis method for CdTe / CdS nanoparticles using thioglycolic 

acid as capping agent (Peng, et al. 2007). Gu et.al synthesized 3 – mercaptopropionic 

acid capped CdTe / CdS nanoparticles and obtained highly luminescent by using 

NaHTe as Te precursor (Zhong, et al. 2008). Gaponik et.al synthesized CdTe 

nanoparticles with one step aqueous synthesis method using TGA and 3 – MPA as 

capping agents and compared optical properties of CdTe nanoparticles capped with 
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TGA and 3 – MPA (Gaponik, et al. 2007). Qian et.al synthesized CdHgTe alloyed 

nanoparticles surrounded with CdS shell capped with 3 – MPA by one pot synthesis 

method and obtained near IR colored quantum dots with high quantum yields (Qian, 

et.al 2007). 

 

 
 

Figure 1.8. Synthesis of CdTe nanoparticles in aqueous media 

(Source: Gaponik, et al. 2002) 

 

1.5. Biofunctionalization of Quantum Dots 
 

Bawendi et.al. synthesized quantum dots in TOP and TOPO, soluble in organic 

solvents such as hexane, heptane, toluene, etc… Oleic acid and octadecene capped 

quantum dots show same solubility properties as TOPO capped quantum dots. 

However, for biological applications, quantum dots must be water soluble. In 1997, 

Alivisatos et.al showed that quantum dots can also be used in biological applications, 

such as biolabeling, tagging, etc…(Alivisatos, et al. 1998)  

There are several methods to make quantum dots water soluble ( Figure 1.9 ). 

The most studied one of these methods is called the ligand exchange method. Basically, 

its main purpose is to synthesize oil soluble quantum dots with high quantum yield, and 

then replace its surfactant with a different surfactant which can be dissolved in water.  
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Figure 1.9. Schematic illustration of different methods for making Quantum Dots water 

soluble (Source: Yu, et al. 2006) 

 

All quantum dots surface chemistries are designed to provide reactive groups 

such as amine (–NH2), carboxyl (–COOH) or mercapto (–SH) groups for direct 

conjugation to biomolecules. Finally, the quantum dots are conjugated to the linker 

(e.g., avidin, protein A or protein G, or a secondary antibody) by covalent binding 

passive adsorption, multivalent chelation or by electrostatic interactions. 

However, this surface modification may cause defects in crystal structure. 

Mostly, quantum yield of quantum dot reduces after ligand exchange. To protect the 

high quantum yield of quantum dots in aqueous media, several studies have been done 

including micelle formation around the external organic capping layer, (Dubertret, et al. 

2002) deposition of additional inorganic coatings such as SiO2, (Yang, et al. 2004) and 

formation of polymer coatings (Wang, et al. 2004). These studies helped quantum dots 

to maintain their high quantum yield. However, these procedures increased 

nanoparticles diameter from 2-5 nm to 20-100 nm, which eliminates one of the 

advantages of using QDs instead of fluorescent dyes and beads, namely, their small size 

(Pinaud, et al. 2004). Blum et.al. tried to make ligand exchange with long chain alkyl 

groups with thiol groups ( Figure 1.10 ). They searched effect of alkyn chain length on 

protection of quantum yield. According to their research, when length of alkyn group 

increases, quantum dot is surrounded better and less amount of defects occur in crystal 

structure, as resulting in higher quantum yield is gained (Blum, et al. 2008). 
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Figure 1.10. Schematic illustration of ligand exchange 

 (Source: Blum, et al. 2008) 

 

However, Gaponik et.al studied effect of 3 – Mercaptopropionic acid and 

thioglycolic acid, also known as mercaptoacetic acid, on quantum yield of quantum dots 

after ligand exchange. Gaponik et.al.showed that CdTe nanoparticles have better 

quantum yield with thioglycolic acid as capping agent than with 3 – Mercaptopropionic 

acid as caping agent (Gaponik, et al. 2007). Wuister et. al. changed TOPO around CdTe 

with TGA and 3 – MPA and showed that ligand exchange may cause increase in 

quantum yield (Wuister, et al. 2003). Zhang et.al. showed that ligand exchange can 

improve quantum yields of oleic acid capped CdS quantum dots (Zhang, et al. 2008) 

Forming a micelle through hydrophobic interaction is another way to obtain 

water soluble quantum dots. Some phospholipids having both hydrophilic and 

hydrophobic groups within them can be used to produce water soluble quantum dots. 

This kind of phospholipids can encapsulate core type quantum dots by forming oil-in-

water micelles through hydrophobic interaction between their hydrophobic sides and the 

surfactants of the quantum dots and provide water-solubility via hydrophilic exterior 

ends.(Wang, et al. 2004)  

Another method to make quantum dots water soluble is silica encapsulation 

method. By encapsulating quantum dots with a silica layer, quantum dots can also be 

water soluble and biocompatible. Functional organosilicone molecules containing –NH2 

or –SH, are incorporated into the shell and provide surface functionalities for 

biomedical applications. Silica encapsulation method can be considered as a modified 



16 

ligand exchange method. Firstly, quantum dots should be solved in a solvent including 

silane, such as mercaptopropyl(methyloxy)silane and by adding base in this solution, 

surfactant of quantum dot must be replaced with silane groups. With time, 

methoxysilane silane groups hydrolyze into silanol groups. Heat strengthens silanol – 

silanol bridges by converting them into siloxane bonds. Surface of quantum dots may be 

functionalized after this step by adding silane groups including functional 

groups.(Figure 1.11) However, inserting organosilicones on surface of quantum dots 

effects quantum yield of quantum dots and decreases the quantum yield. Also coating 

with silica around quantum dots is relatively complicated when it is compared to other 

methods. Silica coating needs to be carried out at dilute conditions, which does not 

permit large quantity fabrication (Gerion, et al. 2001) 

 

 
 

Figure 1.11. Schematic illustrasion of silica encapsulating 

 (Source : Gerion, et al. 2001) 

 

Because of disadvantages of these methods mentioned above, researchers tried 

to synthesize quantum dots directly in aqueous media. However synthesis of CdSe 

quantum dots does not give good results in terms of quantum yield, generally quantum 

yields of direct water synthesized CdSe were between %1 and %5 (Bowers, et al. 2005 , 

Xia, et al. 2007). So, researchers gave their interests into synthesizing different types of 

quantum dots. Synthesizing CdTe nanoparticles in water results quantum dots with high 
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quantum yields and covering core CdTe with shell consisting of CdS also results 

improvements in quantum yield (Peng, et al. 2007). However, high toxicity of CdTe 

nanoperticles prevents use of these qauntum dots in biomedical applications (Cho, et al. 

2007). Yet, there are biomedical studies based on CdTe quantum dots and recently 

scientists has started to use CdTe nanoparticles more efficiently (Fortin, et al. 2005 , 

Green, et al. 2007). 

 

1.6.  Characterization of Quantum Dots  
 

Characterization of quantum dots can be done in many ways. Because of their 

unique optical properties, UV – VIS Spectrometry and Fluorescence Spectrometry is 

widely used in characterization of quantum dots. However, to get knowledge about 

crystal sturcture of quantum dots, some other techniques should be considered. 

Transmission Electron Microscopy (TEM) and X – Ray Diffractometer (XRD) are 

generally used for defining crystal structure of quantum dots. Also, Atomic Force 

Microscopy gives information about crystal structure and monodispersity of quantum 

dots. For biological applications, toxicity is a very important characteristic property and 

usually, MTT test is performed to determine toxicity of quantum dots. 

 

1.6.1. Optical Characterization 
 

Optical properties of quantum dots are very important and unique. For that 

reason optical characterization of quantum dots is very important and should be carried 

out carefully. UV – Vis and fluorescence spectrometers are used for determining optical 

properties of quantum dots. 

Quantum dots arise in fluorescence and UV – Vis spectrometers as gaussian 

shaped peaks. These peaks are used to determine size of nanoparticles and growth speed 

of quantum dots. As quantum dots become bigger, peaks in fluorescence and UV – Vis 

spectrometers corresponding to quantum dots are red shifted (Figure 1.12).  
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Figure 1.12. Change in fluorescence and UV – Vis Spectra due to CdS quantum dot 

growth (Source : Pan, et al. 2004) 

 

The width of the peak, typically reported as the full-width-at-half-maximum 

(FWHM), is generally used to appraise the particle size distrubiton, in other words, 

FWHM is used to determine monodispersity of quantum dots. A group of quantum dots 

consists of individual quantum dots with their own optical and electronic properties and 

energy levels are dependent upon their sizes. Thus, the emission spectra represent size 

distributions of individual emissions. The FWHM acts as a statistic that can accurately 

represent the size distribution. 

Stokes shift is the difference between band maxima of fluorescence and 

absorption spectra of the same electronic transition. This difference is the result of a 

combination of relaxation into shallow trap states and the size distribution. Stokes shift 

(Δυ) can be found with this formula; Δυ = υabsorbance - υfluorescence   

 

 Δυ = υabsorbance - υfluorescence   (1.5) 
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Figure 1.13 Detection of Stokes shift  

(Source : Bawendi, et al. 1994) 

 

The fluorescence quantum yield is the ratio of the number of photons emitted to 

the number of photons absorbed by a fluorescent matter. Experimentally, fluorescence 

quantum yield of an unknown sample can be determined by measuring fluorescence of 

unknown substance and fluorescence of a fluorophore of known quantum yield with the 

same experimental parameters. The quantum yield is then calculated by: 
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Where Φ is the quantum yield, Int is the area under the emission peak (on a wavelength 

scale), A is absorbance at the excitation wavelength, and n is the refractive index of the 

sample. ΦR, AR and nR are quantum yield, absorbance at the excitation wavelength and 

refractive index of reference respectively. 
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Size of quantum dots can be determined by using UV – VIS spectrometer. By 

finding absorption band edge of quantum dots or effective energy band gap of 

semiconductor nanoparticle size can be detected. The band gap of nanoparticles is 

obtained by using the equation 

 

 (σhυ)2 = k(hυ - Eg) (1.7) 

 

σ is molar absorption coefficient of nanoparticles, which is obtained from the measured 

absorption spectra using Beer- Lambert’s law, hυ is photon energy, k is a proportional 

factor, and Eg is band gap of nanoparticles with the latter being a function of diameter. 

A plot of (σhυ)2 versus hυ shows an intermediate linear region from which one 

calculates Eg by data fitting. The diameter of core CdS nanoparticle is then calculated 

from the following equation 
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where Egb is bulk band gap , h is Planck’s constant, dp is diameter of nanoparticle, me and 

mh  are the effective electron and hole masses, respectively, e is the electronic charge, 

and ϵ is the dielectric constant of nanoparticle. (Ethayaraja, et al. 2003) 

For CdS quantum dots from the position of the absorption edge, the average 

particle size can be determined by using the well-established relation between particle 

size and absorption onset. The absorption edge (λe) is converted into the corresponding 

particle size by using Henglein’s empirical curve that relates the absorption edge (λe) to 

the diameter (2R) of the particles. (Narayanan, et al. 2006) 

 

                                               2RCdS = 0.1/(0.1338 – 0.0002345λe) nm (1.9) 

 

1.6.2. Structural characterization 
 

Structural characterization of semiconductor nanoparticles can be determined by 

X – Ray Diffractometer (XRD), transmission electron microscopy (TEM), and atomic 

force microscopy (AFM). By using XRD, crystal structure of nanoparticles can be 
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determined. Structural analysis of bulk semiconductors are studied for a long time and 

hkl indexes of these structures are known. By comparing hkl indexes of bulk and nano 

structures, crystal structure and size of nanoparticle can be determined easily. Also, core 

and core shell structure can be determined by using XRD by observing peak shifts in 

XRD spectrum. ( Figure 1.14 ). To find crystal structure of nanoparticles, first of all hkl 

indices of peaks should be determined and appropriate structure for this crystal structure 

must be determined (fcc, bcc, etc…). To calculate hkl indices, first of all, spacing 

between planes in the atomic lattices should be determined by De Bragg’s law; 

 

  nλ = 2dsinθ (1.10) 

   

where n is the order, λ is the wavelength of X – Rays, d is the spacing between planes in 

the atomic lattices and θ is the angle between incident andray and scattering plane. 

 

 
 

Figure 1.14. XRD patterns of the “nano-onions” with CdS cores capped alternately by 

CdSe and CdS shells. Vertical lines indicate pure CdSe and CdS 

reflections (top: zinc blend, CdSe; bottom: zinc blend, CdS).( Source : 

Pan, et al. 2006) 
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Also, particle size can be estimated from XRD spectra of nanoparticles. 

Broadening in XRD peaks occurs due to nano scale of crystal structure and from this 

broadening nanoparticle size can be determined by Debye – Scherrer equation; 

 

 D = 0.9λ / β cosθ (1.11) 

 

where D is the diameter of the nanocluster, λ the wavelength of the incident X-rays, β is 

the full-width at the half-maximum, and θ is the diffraction angle. 

TEM is the best technique to determine structural characteristics of quantum 

dots. Size and crystal structure of a quantum dot can be determined exactly by using 

TEM(Figure 1.15). However, TEM gives information only about a small part of 

substance.   

 
 

Figure 1.15. TEM image of different sized quantum dots  

(Source : Talapin, et al. 2004) 

 

AFM can be used for determining size and monodispersity of nanoparticles 

(Figure 1.16). However, one disadvantage of AFM is sensitivity of size characterization 

is limited by tip size. AFM can measure limited size determined by tip of microscope 

and this leads to errors in analysis. 
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Figure 1.16 AFM image of PbTe quantum dots  

(Source : Ferreira, et al. 2001) 
 

 

1.6.3. MTT Test 
 

MTT Test is a typical laboratory test, a colorometic test, which observes color 

change in living organisms, cancer cells mostly, due to avtivity of enzymes that cause 

reduction of yellow colored 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) to purple colored formazan. This reduction mechanism happens in 

mitochondria, it can be said this test observes mitochondrial activity in cells. But also, 

this test can be used for measuring cytotoxicty of medicinal materials and other toxic 

materials. Absorption spectrum is used for determining the change in intensity of color. 

A constant wavelength is chosen around 550 nm and all data is collected due to change 

in this specific wavelength. Comparing cells injected with toxic material with normal 

cells without toxic material gives us information about how metabolic activity of cells 

change due to change in mitochondrial activity. 

 

http://en.wikipedia.org/wiki/Di-�
http://en.wikipedia.org/wiki/Di-�
http://en.wikipedia.org/wiki/Di-�
http://en.wikipedia.org/wiki/Di-�
http://en.wikipedia.org/wiki/Thiazole�
http://en.wikipedia.org/wiki/Phenyl�


24 

 
 

Figure 1.17. MTT reduction scheme  

(Source : Mosmann 1983) 

 

1.6.4. Confocal Microscopy 
 

Confocal microscopy is an optical imaging technique which is designed to 

increase the contrast recording and / or to reconstruct three-dimensional images using a 

spatial pinhole camera for the elimination of out-of-focus light or flare in samples which 

are thicker than the focal plane. (Pawley 2006) This technique has become popular in 

the scientific and industrial communities. Typical applications include life sciences and 

semiconductor inspection. 

Fluorescence confocal microscopy is a type of confocal microscopy which 

allows to display species with high quantum yields, such as quantum dots and organic 

dyes, in cells and tissues. If the Stokes shift in these species, organic dye or quantum 

dot,  is large enough, the exciting and fluorescence signals can be totally separated by 

filters so that only the fluorescence light would reach the detector. With Fluorescence 

confocal microscopy it is possible to visualize features in living cells and tissues. 

Confocal fluorescence microscopy is used for obtaining high resolution optical images. 

Confocal microscopy provides the capacity for direct, noninvasive, serial 

opticalsectioning of intact, thick, living specimens with a minimum of sample 

preparation as well as a marginal improvement in lateral resolution ( Fellers 2007 ). 

Fluorescence confocal microscopy is widely used in bioimaging researches and 

quantum dots are often used for these bioimaging processes. Anticors can be easily 

detected in cells with confocal microscopy by binding quantum dots to anticors and 

inserting them into cell cytoplasm (Figure 1.18). 
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Figure 1.18.Confocal micrograph of peritoneal macrophage from mouse incubated with 

CdTe QDs-labeled anti-MHC-II (Source : Cunwang et.al., 2007) 

 

 

1.7. Biological Applications of Quantum Dots 
 

After Bawendi et.al. described simple methods to fabricate monodisperse 

quantum dots (Bawendi, et al. 1993), researchers have showed great interest on these 

materials. Because of semiconductor nanocrystal’s unique optical properties, quantum 

dots are used in many industrial and scientific research areas. In early years, quantum 

dots were successfully synthesized in oil media, such as toluene, heptane, hexane, etc… 

Because of that, researchers did not think to use quantum dots in biological applications, 

since materials that are used in biological applications should be soluble in aqueous 

media. However, after Alivisatos et.al showed that quantum dots can also be water 

disperable (Bruchez, et al. 1998). Application area of quantum dots expanded and 

quantum dots also has been started to be used in biological applications. Including 

biological applications, quantum dots have been used in many research areas widely 



26 

such as light emitting diodes, solar cells, lasers, etc… and there are still many ways to 

develop and use quantum dots in science and industry. 

The fluorescence energy transfer between a donor particle and an acceptor 

particle at any time that the distance between the donor and the acceptor is smaller than 

a critical radius, which is called förster radius, is described as fluorescence resonance 

energy transfer (FRET). This causes a decreasing in the donor’s emission and excited 

state lifetime, and an increment in the acceptors emission intensity. FRET is useful for 

measuring changes in distance, rather than absolute distances and a useful tool for 

analyzing conformational changes in proteins, monitoring protein interactions. There 

are studies on quantum dots in FRET technology, when quantum dots are conjugated to 

biological molecules such as antibodies.(Riegler, et al. 2004, Selvin 2000, Heyduk 

2002, Day, et al. 2001, Kagan, et al. 1996) 

Quantum dots can also be used in DNA or mRNA tracking. Several groups 

made studies on quantum dot, which are covered by a surfactant that includes 

carboxylic groups, conjugated oligonucleotide sequences that binded to DNA or 

mRNA. When quantum dots compared with organic fluorophores, quantum dots have 

great advantages over organic fluorophores in terms of optical properties, such as 

brighter light, greater photostability, etc… However, quantum dot conjugated 

oligonucleotides are lack in specific binding term, since quantum dots have free 

carboxylic groups on surface and this leads to nonspecific binding in cells. Because of 

this nonspecific binding in cells, organic fluorophores are more useful than quantum dot 

conjugated oligonucleotides. (Pathak, et al. 2001, Gerion, et al. 2002, Xiao, et al. 2004) 

Quantum dots may also be used in intra cellular labeling. Extarnal labeling of 

cells with quantum dots is an easy process, however, internal addition of quantum dots 

has some difficulties. There are some studies on injecting quantum dots in cytoplasm, 

but none has been considered as exactly successful yet. Some groups used 

microinjection techniques; however this technique is a very strenuous technique that 

does not allow high volume analysis. Also there are studies on quantum dots that show 

uptake of quantum dots into cells via endocytic and non endocytic routes, though these 

uptakes show only endosomal localizations of quantum dots. There are also studies on 

injection of amino acid and silica modified quantum dots into cell cytoplasm (Dubertret, 

et al. 2002, Rieger, et al. 2005, Hanaki, et al. 2003, Jaiswal, et al. 2003, Hasegawa, et al. 

2005, Derfus, et al. 2004) 
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Quantum dots can serve as detectors for pathogens and toxins. These 

nanocrystals can be used for defining pathogens and toxins properties, including 

virulence. There are studies on this subject which are resulted in good outcomes, 

including Cryptosporidium parvum, Giardia lamblia, Escherichia coli 0157:H7 , 

Salmonella Typhi, Listeria monocytogenes, C. parvum and G. Lamblia. However, it is 

shown that quantum dot based assay is not as sensitive as elisa based tests.( Lee, et al. 

2004, Zhu, et al. 2004, Yang, et al. 2006, Tully, et al. 2006) 

Different from cell imaging, also qauntum dots are used for whole body 

imaging, however, there are some difficulties in whole animal body imaging and there 

is a little work on this subject. The main difficulty is toxicity of quantum dots on both 

animals and human. Also autofluorescence of tissues is another difficulty in 

fluorescence tissue monitoring. Tissue autofluorescence minimizes in near infrared 

region (700 – 1000 nm) and fabricating quantum dots that emit light in near infra red 

region can solve this problem. However, toxicity of quantum dots is a problem that 

should be solved completely to use quantum dots in tissue imaging safely. (Lim, et al. 

2003, Frangioni 2003) 

 



28 

CHAPTER 2 
 

2. DEVELOPMENT OF CdTe / CdS QUANTUM DOTS 
 

Recently, CdTe nanocrystals have been used in biological applications by many 

research groups. CdTe nanoparticles are preferred because of easy fabrication and high 

quantum yield in aqueous media (around 40%) (Gaponik, et al.). By coating CdTe core 

with CdS shell, it is possible to obtain even higher quantum yields (around 70%) ( 

Zhong, et al.). In this chapter synthesis and characterization of CdTe / CdS quantum 

dots are discussed. 

 

2.1. Experimental 
 

2.1.1. Synthesis of NaHTe as Te precursor 
 

Te powder (0.4 mmol) and NaBH4 (1 mmol) were put into 50 ml reaction flask 

and it was purged with N2. Then 10 ml of distilled water added to the reaction flask and 

the system was heated at 80 0C for 30 minutes under N2 atmosphere to obtain a solution 

with a purple color. No other purification techniques were performed. In all experimets, 

freshly synthesized NaHTe was used. Excess NaHTe was not stored for other 

experiments to prevent oxidation of precursor (Zhong, et al. 2008). The reaction 

considered to be as below;  

 

4NaBH4 (s) + 2Te (s) + 7H20 (l) à 2NaHTe (aq) + Na2B4O7 (s) + 14H2 (g) 

 

2.1.2. Synthesis of CdTe core nanoparticles 
 

A modified method from literature was used (Zhong, et al. 2008). CdCl2 (0.2 

mmol) and 3 – Mercaptopropionic acid (3 - MPA) (0. 4 mmol) was dissolved in 

distilled water (40 ml) and pH was adjusted to 12 by adding 1.0 M NaOH solution. 

Then the solution transferred into a two – necked flask and bubbled with N2 to purge 

oxygen in the medium. While bubbling solution, temperature set to 100 0C and kept 
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constant during reaction. Then 1 ml of freshly synthesized NaHTe was added to the 

solution and the reaction started. After 10 minutes, the color of solution was green 

under UV – irradiation and green light was observed. Then the reaction is stopped by 

lowering temperature to room temperature. 

 
Figure 2.1. Schematic Illustration of Synthesis of CdTe 

 

2.1.3. Synthesis of CdTe / CdS core – shell nanoparticles 
 

0.08 mmol of Thiourea (Figure 2.2) solution was added to the CdTe nanoparticle 

solution at 100 0C under N2 atmosphere. After 15 minutes core – shell structure started 

to grow. Aliquots of sample were taken at different time intervals and their optical 

properties were monitored by using UV – Vis and fluorescence spectra. The reaction 

was stopped at desired time by cooling solution. Formed nanoparticles were precipitated 

by adding ethanol on solution. Precipitation procedure was repeated several times to 

remove impurities.(Zhong, et al. 2008) 

 

NH2

S

H2N

 
 

Figure 2.2. Structure of Thiourea 
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Figure 2.3. Schematic illustrasion of Synthesis of CdTe / CdS core – shell quantum dots 

 

2.2. Characterization 
 

2.2.1. Optical Characterization 
 

Optical characterization of quantum dots was done by using UV – Vis and 

fluorescence spectroscopy. Fluorescence and UV – Vis Spectra are very important 

characterization tools for CdTe / CdS quantum dots and used widely in quantum dot 

production to monitor how reaction proceeds 
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Figure 2.4. Normalized fluorescence spectrum of CdTe / CdS nanoparticles synthesized 

at different time intervals. 

 

Figure 2.4 shows time dependent growth of CdTe / CdS nanoparticles. Growth 

of CdTe / CdS nanoparticles started at first 30 minutes and continued for 6 hours. 

However, particles may grow bigger in size if reaction was allowed to continue. In 

Figure 2.4, the growth of CdTe / CdS nanocrystals can be monitored by the red shift of 

spectrum. The spectra were shifted from 540 nm to 630 nm. Within this range, the color 

of quantum dot was varied from green to red. In Figure 2.5, luminescence image of 

CdTe / CdS nanoparticles are shown. At 540 nm, quantum dots emit green light and 

when the size of particles become bigger, the particles emit at higher wavelengths. At 

630 nm, the color of CdTe nanoparticles was close to red. 
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Figure 2.5. Luminescence image of CdTe / CdS nanoparticles under UV lamp 

 

The growth of CdTe / CdS nanoparticles is time dependent. At first, the growth 

rate of the particles is faster but when the particles become larger, the growth rate slows 

down. In Figure 2.6, the growth of CdTe / CdS nanoparticles is shown. 
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Figure 2.6. Temporal evolution of fluorescence peaks of CdTe / CdS nanoparticles 
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The growth of CdTe / CdS nanoparticles can also be observed by using UV – vis 

spectroscopy. ( Figure 2.7 ) A steady shift of spectra to higher wavelength is obvious; 

indicating an increase in the size of CdTe / CdS nanoparticles . 
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Figure 2.7 UV – Vis spectra of green, yellow and red emitting CdTe / CdS nanoparticles 
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Figure 2.8.Fluorescence spectra of green, yellow and red emitting CdTe / CdS 

nanoparticles 
 

 

The bandwidths of CdTe / CdS whose emission peaks are at diferent 

wavelengths can be calculated by measuring full width at half maximum (FWHM). 
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FWHM of CdTe / CdS nanoparticles become broader when particles get bigger. Stokes 

shift can be calculated from difference of maxima of emission and excitation peak 

wavelengths Stokes shifts slightly increases with change in particle size, remains 

constant after a certain size (Table 2.1). The FWHM increased for green CdTe / CdS 

nanoparticles. However at longer wavelengths, the FWHM is substantially larger, that is 

reaching to approximately 100 nm. Energy band gap (Eg) of nanoparticles can be 

determined from UV – Vis spectrum of nanoparticle by cutting wavelength axis by 

extrapolating first excitation peak in spectrum. Eg of nanoparticles varied from 532 nm 

to 650 nm (Table 2.1) 

Quantum yield (QY) of this nanoparticles are calculated by using Rhodamine 

6G in water (QY: %95) as reference. QY of nanoparticles vary between 8% and 35%, 

the highest QY is observed for yellow color emitting CdTe / CdS nanoparticles (at 580 

nm). QY of CdTe / CdS nanoparticles synthesized in this study is exhibiting an increase 

followed by a decrease and at around 700 nm, QY is below 1%. Table 2.1 reviews 

photophysical properties of CdTe / CdS nanoparticles. 

 

Table 2.1. Photophysical Properties of CdTe / CdS nanoparticles 
 

Sample Name λ Absorption 
(nm) 

λ Fluorescence 
(nm) 

Stokes 
Shift 
 (nm) 

FWHM 
(nm) 

QY  
(%) 

Eg  

(nm) (eV) 

CdTe / CdS 1 485  540 55 55 8 534 2.3 

CdTe / CdS 2 500  555 55 56 21 550 2.2 

CdTe / CdS 3 520  580 60 96 32 596 2.1 

CdTe / CdS 4 550  610 60 97 28 623 2 

CdTe / CdS 5 580  630 60 100 6 650 1.9 

CdTe / CdS 6 --- 700 --- 170 1 < --- --- 
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2.2.2. Structural Characterization: 
 

Quantum dot synthesis can be considered as crystal growth in nano scale. TEM 

and AFM are important microscopy techniques for structural analysis of quantum dot. 

In addition to these techniques, XRD is a very useful technique to determine the crystal 

structure of quantum dots. In Figure 2.9, XRD analysis of CdTe / CdS nanoparticles is 

shown. Crystal structure of CdTe / CdS nanoparticles was estimated to be face centered 

cubic by the diffraction angles (2θ) with those of bulk cubic CdTe and CdS from 

literature (Zhong, et al. 2008, Pan, et al. 2007). The narrowing in XRD peaks shows that 

the size of particles increases with time, and this result is in consistent with the UV – 

Vis and fluorescence spectroscopies. From Debye – Scherrer equation (Equation 1.11), 

size of nanoparticles were found to be varied between 5.4 nm and 9.3 nm (Table 2.2) 
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Figure 2.9. XRD spectra of yellow and red emitting CdTe / CdS nanoparticles, the lines 

representing red dots show hkl indices of face centered cubic bulk CdTe ( 

bottom ), the lines with black dots hkl indices exhibits face centered cubic 

bulk CdS ( top )  
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Table 2.2. Size Analysis of CdTe / CdS Nanoparticles with XRD 

 

Reaction Time (hour) Size (nm) 

1 4.7 

3 5.2 

5 5.4 

10 8.7 

20 9.3 

 

However, hydrodynamic size of nanoparticles differs from the crystal size 

calculated by XRD. Hydrodynamic radius of nanoparticles is bigger than the crystal size 

of nanoparticles that are calculated by XRD or observed by TEM.  Figure 2.10 and 

Figure 2.11 show Dynamic Light Scattering studies of yellow and red CdTe / CdS 

nanoparticles. The hydrodynamic radius of nanoparticles is bigger than the crystal size 

of nanoparticles that are calculated by XRD (Table 2.3).This difference is due to 

hydration layer of water molecules. 

 

 
 

Figure 2.10. DLS analysis of yellow CdTe / CdS nanocrystals 

 



37 

 
Figure 2.11. DLS analysis of yellow CdTe / CdS nanocrystals 

 

The size of nanoparticles can also be determined from UV – Vis spectroscopy 

by using equation 1.7. From literature, Egb of CdTe is found to be 1.49 eV, me of CdTe 

is 0.098 m0, mh of CdTe is 0.11 m0 and ϵ is 10.3 ϵ0 (m0 is free electron mass and ϵ 0 is 

vacuum dielectric constant) (Strzalkowski, et al. 1976, Banerjee 2000, El Moussaouy, et 

al. 2006). By inserting these values into the Equation 1.8, the second order equation 

below is determined, 

 

                                         
dd
1806.018339.21878

2 -+=
l

                                           (2.1) 

 

where λ is first exciton peak cutting through wavelength axis in absorption spectrum 

and d is diameter of nanoparticle. By solving this 2nd order equation, the equation below 

is determined, 

 

                                            029.063.220048.01
-+=

ld
                                         (2.2) 

 

However, the results determined from Equation 2.2 is quite different from the 

results determined from XRD.(Table 2.3) 
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Table 2.3.Size determination of CdTe / CdS nanoparticles from XRD, UV – Vis 

spectroscopy and DLS 

 

Sample Name 
Size of CdTe / CdS 

nanoparticle from XRD 
(nm) 

Size of CdTe / CdS  
nanoparticle from UV – 

vis (nm) 

Hydrodynamic size of 
CdTe / CdS nanoparticle 

from DLS  (nm) 

Green CdTe / CdS 
nanoparticles 4.7 8.3 --- 

Yellow CdTe / CdS 
nanoparticles 5.2 10.1 13.1 

Red CdTe / CdS 
nanoparticles 5.4 13.2 15.7 

 

 

Table 2.4 summaries amount of Cd and Te in 1 ppm solution of different sized 

CdTe / CdS nanoparticles from ICP – MS analysis. Amount of Cd increases with larger 

size of nanoparticle, however amount of Te is not correlated with size. 

 

Table 2.4 ICP – MS analysis of CdTe / CdS nanoparticles 

 

Sample Name Cd (ppb) Te (ppb) 

CdTe / CdS 1 112.7 33.9 

CdTe / CdS 2 310.6 121.7 

CdTe / CdS 3 687.1 56.2 

 

2.2.3. Biological Characterization 
 

2.2.3.1. MTT Studies 
 

2.2.3.1.1. Preparation of Cell Culture 
 

Human Prostate Cancer (PC3) and MCF7 were used for biological 

characterization of the nano particles. PC3 cell line was kindly provided by Associate 
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Professor Kemal Sami Korkmaz (Ege University, Engineering Faculty, Department of 

Bioengineering). Cells were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) containing 5% fetal bovine serum (FBS) (BIO-IND), 50µg/ml gentamicin 

sulfate, incubated at 37ºC in the dark with 5% CO2  and 95% humidification and 

passaged when they reached 80-85% confluency. 

 

2.2.3.1.2. Treatment of Cultured Cells with Compounds and Cell 

Viability Assay 
 

 To investigate the cytotoxic activity of the extracts, 95µl of cell suspension was 

inoculated into 96-well microculture plates at 1x104 cells density per well in culture 

media containing FBS, gentamicin sulfate. Compounds were dissolved in DMEM, filter 

sterilized, diluted at the appropriate concentrations with the culture medium. Dilutions 

of compounds were freshly prepared before each experiment. After 24h cultivation for 

cell attachment, the nanoparticles were added at final concentration 0,0001 µg/ml, 

0,001µg/ml, 0,01µg/ml, 0,1 µg/ml 1 µg/ml2,5 µg/ml, 5 µg/ml, 10 µg/ml, 25 µg/ml, 

50µg/ml, 100µg/ml for triplicate assay. Cells were treated with the nanoparticles for 24 

hours and 48 hours, and cytotoxic effects were determined by tetrazolium (3-{4,5-

dimethylthiazol-2-yl}-2,5-diphenyl tetrazolium bromide) (Sigma Chemical Co.) based 

on colorimetric assay. This method depends on the cleavage of tetrazolium salt to 

purple formazan crystals by mitochondrial enzymes of metabolically active cells 

(Ciapetti, et al. 1993). Briefly; 4 hours before the end of each incubation period, 

medium of the cells was removed and wells were washed by pre-warmed phosphate-

buffered saline (PBS) to remove any trace of the nanoparticles and to prevent colour 

interference while optical density determination. MTT stock solution (5mg/ml) was 

diluted at 1:10 ratio into complete culture media, 100µl of MTT dilution was added into 

each well and incubated. After 3,5 hours plates were centrifuged at 1800 rpm for 10 

minute at room temperatures to avoid accidental removal of formazan crystals. Crystals 

were dissolved with 100µl DMSO. The absorbance was determined at 540nm. Results 

were represented as percentage viability and calculated by the following formula: 

 % viability=100-[(ODs-ODb/ODc-ODb)x 100] 

ODb indicated the optical dencity of blank, ODs indicated the optical density of sample 

and ODc indicated the optical density of control. 
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Figure 2.12. MTT results for green CdTe / CdS quantum dots in MCF7 cells for 1 day 

 

 

 

 
 

Figure 2.13. MTT results for green CdTe / CdS quantum dots in MCF7 cells for 2 days 
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Figure 2.14. MTT results for green CdTe / CdS quantum dots in PC3 cells for 1 day 

 

 

 
 

Figure 2.15.MTT results for green CdTe / CdS quantum dots in PC3 cells for 2 days 
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Figure 2.16 MTT results for yellow CdTe / CdS quantum dots in MCF7 cells for 1 day 

 
 

Figure 2.17 MTT results for yellow CdTe / CdS quantum dots in MCF7 cells for 2 days 
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Figure 2.18. MTT results for yellow CdTe / CdS quantum dots in PC3 cells for 1 day 

 

 
 

Figure 2.19.MTT results for yellow CdTe / CdS quantum dots in PC3 cells for 2 days 
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Figure 2.20. MTT results for red CdTe / CdS quantum dots in MCF7 cells for 1 day 
 

 

 

 
Figure 2.21. MTT results for red CdTe / CdS quantum dots in MCF7 cells for 2 days 
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Figure 2.22.MTT results for red CdTe / CdS quantum dots in PC3 cells for 1 day 

 

 

 
 

Figure 2.23. MTT results for red CdTe / CdS quantum dots in PC3 cells for 2 days 
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Figure 2.24. MTT results for CdCl2 in MCF7 cells for 1 day 

 

 
 

Figure 2.25. MTT results for thiourea in MCF7 cells for 1 day 
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Figure 2.26. MTT results for CdCl2 in PC3 cells for 1 day 

 

 
 

Figure 2.27. MTT results for Thiourea in PC3 cells for 1 day 

 



48 

MTT test results in PC3 and MCF7 cells with red, yellow and green CdTe / CdS 

nanoparticles, CdCl2 and thiourea for 1 day and 2 days are represented in this section. 

As free Cd+2 source, CdCl2 is used and lethal concentration is observed around 15 µg/ml 

for MC7 cells and 2.5 µg/ml for PC3 cells (Figure 2.24, Figure 2.26). As S source, 

thiourea is used and it is observed that thiourea is not toxic for MCF7 and PC3 cells 

(Figure 2.25, Figure 2.27). For PC3 cells, CdTe / CdS nanoparticles are more toxic than 

for MCF7 cells (from Figure 2.12 to Figure 2.23) (Table 2.5). Also, green CdTe / CdS 

nanoparticles are seemed to be more toxic than yellow and red CdTe / CdS 

nanoparticles (from Figure 2.12 to Figure 2.23). As usual, nanoparticles are more toxic 

for cells when they are treated with cells for 2 days than when they are treated with cells 

for 1 day (from Figure 2.12 to Figure 2.23). For fluorescence microscope applications, 

maximum 1 µg/ml concentration is seemed to be ideal for PC3 cells and maximum 30 

µg/ml concentration is seemed to be ideal for MCF7 cells (from Figure 2.12 to Figure 

2.23 )(Table 2.5). Lethal concantrations are determined by determining the 

concentration of CdTe / CdS nanoparticle where cell viability is 50 % (from Figure 2.12 

to Figure 2.27). 

 

Table 2.5.MTT Test results for CdTe / CdS nanoparticles, CdCl2 and Thiourea in MCF7 

and PC3 Cells 

 

Sample Name 

Lethal Concentration for 
MCF7 (µg/ml) 

Lethal Concentration for 
PC3 (µg/ml)  

Ideal 
concentration 

range for 
Fluorescence 

studies for 
MCF7 
(µg/ml) 

Ideal 
concentration 

range for 
Fluorescence 

studies for 
PC3 (µg/ml) 1Day 2 Days 1 Day 2 Days 

Thiourea Non Toxic --- Non Toxic --- --- --- 

CdCl2 15 --- 2.5 --- --- --- 

Green CdTe / 
CdS 

nanoparticles 
25 15 1,5 1 0.0001- 30 0,0001-1 

Yellow CdTe / 
CdS 

nanoparticles 
Non Toxic Non Toxic 2.5 2 0.0001- 100 0,0001-3 

Red CdTe / 
CdS 

nanoparticles 
Non Toxic Non Toxic 3 5 0.0001- 100 0,0001-5 
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2.2.3.2. Fluorescence Confocal Microscope images 
 

CdTe / CdS nanoparticles with different sizes were incubated for two hours with 

hepotocytes cells in PBS. Concentration of nanoparticles was 1 µg/ml following MTT 

results. Cells were fixed with paraformaldehyde and observed under fluorescence 

confocal microscope with 488 nm laser light. For Green CdTe / CdS nanoparticles 510 

nm – 530 nm, for yellow CdTe / CdS 580 nm – 610 nm, for red CdTe / CdS 

nanoparticles 640 nm – 680 nm ranged emission filters are used in confocal microscopy 

Figure 2.28., Figure 2.29., Figure 2.30., shows confocal images of liver cancer cells 

labelled with different sized CdTe / CdS nanoparticles under fluorescence confocal 

microscope. CdTe / CdS nanoparticles with various size nearly similar images were 

observed with.For all cases, CdTe / CdS nanoparticles penetrate into cell and disperse in 

cell cytoplasm, however they do not enter the nucleus of liver cells. The brightness of 

these images were changed with the CdTe / CdS nanoparticles having different quantum 

yield. The yellow light emitting CdTe / CdS nanoparticles exhibit the brightest image 

among them. In addition, more punctuates within the cells are observable, indicating 

that a lot of nanoparticles are internilazed. 

 

 
 

Figure 2.28.Colored fluorescence confocal microscope image of green light emitting 

CdTe / CdS in liver cancer cells 
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Figure 2.29.Colored fluorescence confocal microscope image of yellow light emitting 

CdTe / CdS in liver cancer cells 

 

 
 

Figure 2.30.Colored fluorescence confocal microscope image of red light emitting CdTe 

/ CdS in liver cancer cells 
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2.3. Discussion 
 

Color change in CdTe / CdS observed in this work was convenient with 

literature (Wuister, et al. 2003, Zhong, et al. 2008, Gaponik, et al. 2002, Peng, et al. 

2007). Zhong et.al mentioned that color of the CdTe / CdS nanoparticles changes by 

time from green to red to green because the conduction and valance band in quantum 

dots get closer when quantum dots get bigger and emission spectra of quantum dots are 

red shifted (Zhong, et al. 2008). In this study, green, yellow and red colors were clearly 

observed due to change in size of CdTe  / CdS nanoparticles. 

The growth rate of CdTe / CdS nanoparticles was agreed with the literature 

(Qian, et al. 2007). Zhong et.al mentioned that the growth rate of CdTe / CdS 

nanoparticles changes with the ratio of Te:S. However, in this study growth rate of 

CdTe / CdS was much slower than the report of Zhong et al. (Zhong, et al. 2008). The 

reason might be the amount of Te used during the synthesis. Qian et.al synthesized 

CdTe nanoparticles with nearly same method as Zhong et.al.’s study (Qian, et.al 2007). 

However, in this study, the amount of Te used was very small when it is compared to 

Zhong et.al.’s study (0.008 mmol in our study, 0.02 mmol in Zhong et al.’s study). In 

this study, amount of Te used was around same amount with Qian et.al.’s study. The 

growth rates of CdTe / CdS nanoparticles in both studies are parallel to each other, 

which means, they are similar. Also the growth rate of CdTe / CdS nanoparticles in this 

study is slowing down when nanoparticles get bigger. The reason for this behavior 

might be the time which is needed to cover bigger quantum dots is longer than the time 

which is needed to cover smaller quantum dots. 

At shorter wavelengths, FWHM of CdTe / CdS nanoparticles were narrower, 

around 50 nm; however when the emission peaks are red shifted, FWHM of CdTe / CdS 

nanoparticles are broadened, around 100 nm. The reason for this increment may be due 

to polydispersity of CdTe / CdS nanoparticles. In Zhong et.al.’s study, FWHM of CdTe 

/ CdS nanoparticles vary between 35 nm and 55 nm (Zhong, et al. 2008). Gaponik et.al 

indicated that FWHM of CdTe nanoparticles may increase to 60 nm with the increment 

in size (Gaponik, et al. 2002). Qian et.al. mentioned 80 nm of FWHM is considered to 

be normal (Qian, et.al 2007). In this study, FWHM of green CdTe / CdS (50 nm) is 

compareable, however, the red CdTe nanoparticles, FWHM value shows a large 
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deviation from the value of 60 nm to 100 nm. We conclude that in our study, 

monodispersity of CdTe / CdS nanoparticles is reduced within increased reaction time. 

Because of continue of nucleation of nanocrystals during reaction, the monodispersity 

of CdTe / CdS nanoparticles is reduced when particles get bigger. When nanocrystals 

get bigger, also new smaller nanocrystals occur, and this leads to more polydispersity in  

bigger nanocrystals. 

Qian et.al. mentioned that Stokes shift of CdTe nanoparticle decreases as 

nanoparticles get bigger (Qian, et.al 2007). Rogach et.al. did not corrolate Stokes shift 

with size, however, claimed that Stokes shift can correlate with quantum yields 

(Rogach, et al. 2007). In this study, Stokes shifts of CdTe / CdS nanoparticles increase 

as the size of nanoparticles increases. The results show that, surface coating of 

nanoparticles in bigger nanoparticles is not as good as that in smaller nanoparticles. 

This situation can be corrected by adding appropriate amount of surfactant into reaction 

media; however this addition may cause problems in purification step. 

The quantum yields of CdTe / CdS nanoparticles are highly sensitive to change 

in particle’s size. Zhong et.al. indicated that quantum yield of CdTe / CdS nanoparticles 

increases with size of nanoparticles, however, it starts decreasing when the particles 

emitting red light. When the size of nanoparticle become closer to bulk, quantum yield 

decreases (Zhong, et al. 2008). In our study, fluorescence quantum yield arise until 

CdTe / CdS nanoparticles emit yellow color, however, was decreased rapidly with red 

color. Quantum yield of nanoparticles were around 30 % at yellow color. Zhong et.al. 

mentioned that quantum yield of CdTe / CdS nanoparticles may arise to 80 % (Zhong, 

et al. 2008). In comparison, the nanocrystals synthesized in this study are less brighter. 

Quantum yield of nanoparticles is strongly depends on coordination in crystal structure. 

In smaller nanoparticles, the crystal structure is not formed perfectly, so quantum yield 

is not high. Within increased reaction time, quantum dots get bigger and when quantum 

dots get bigger, the crystal structure takes shape better and defects are gone, so quantum 

yield gets higher. However, when quantum dots get much bigger, this time the surface 

of nanoparticles start to deform and structural defects occur, nanoparticles tend to 

agglomerate, and quantum yield of nanoparticles decrease. 

Our XRD studies agree with the literature. Zhong et.al and Gaponik et.al 

mentioned that CdTe nanoparticles have cubic structure (Zhong, et al. 2008, Gaponik, et 

al. 2002).Different from bulk crystals; XRD peaks in nanocrystals are broader. Due to 

Debye – Scherrer rule, broadening in XRD peaks of crystals is caused by decrease in 
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size of crystals. In this study, crystal sructure of CdTe / CdS nanoparticles is determined 

to be face centered cubic. Size of CdTe / CdS nanoparticles is varied between 5 nm – 10 

nm. These values are in the range reported in the literature (Zhong, et al. 2008, Gaponik, 

et al. 2002). Also, size is estimated from the band gap energies of nanoparticles 

determined from UV – Vis spectroscopy. However, these theoretical sizes determined 

from the equation 2.2 are bigger than the sizes that are determined from XRD studies. 

However, UV – Vis spectroscopy is not generally used for size determination for CdTe 

nanoparticles, the sizes determined from XRD are more trustable values when they are 

compared with literature (Zhong, et al. 2008, Gaponik, et al. 2002, Qian, et al. 2007) 

Core – shell structure of CdTe / CdS nanoparticles can be proved by XRD 

studies. In this study, XRD peaks of CdTe / CdS nanoparticles shifted to larger angles 

when the particles get bigger. If it were a core CdTe nanoparticle, the XRD peaks 

should not shift to the longer wavelengths, they should remain constant. The shift of 

nanoparticles to the bigger angles shows that CdS grows epitaxial around CdTe core. 

XRD peaks of nanoparticles located between CdTe and CdS phase, which agrees with 

the smaller lattice constant for CdS compared with CdTe. (Zhong, et al. 2008) 

Hydrodynamic radius of nanocrystals is bigger than the size estimated by UV – 

Vis spectroscopy and XRD. Nanocrystals are surrounded by surfactants, such as 3 – 

MPA or thioglycolic acid, causes increase in size of nanocrystals. In this study, the 

crystal size of nanocrystals were determined from XRD are between 5 nm and 10 nm. 

However, the size of nanocrystals with surfactant, which is 3 – MPA, is around 15 nm. 

ICP – MS analyses showed CdTe / CdS nanoparticle size is independent from 

the amount of Te. Moreover, an increase in Cd concentration due to increase in 

nanoparticle size shows that CdTe core is surrounded by CdS shell. 

Fluorescence confocal microscopy shows that the nanoparticles can interact with 

cancer cells of liver. These results show 3 – MPA capped CdTe / CdS nanoparticles 

enter cell and stays in cytoplasm. These results indicate that 3 –MPA capped CdTe / 

CdS nanoparticles can be used in cell bioimaging applications. 3 – MPA binds 

nanocrystal from S and COOH side of 3 – MPA remains free, so nanoparticles in cell 

cytoplasm can attach any protein or amine group. However, CdTe / CdS nanoparticles 

could not enter nucleus, because the hydrodynamic size of the nanoparticles is bigger 

than size of nucleus hole (Lovric, et al. 2005). 

From MTT test results, it is found that toxicity of nanoparticles differs from in 

different cells and with different sizes. The most toxic type of CdTe / CdS nanoparticles 
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are the smallest CdTe / CdS nanoparticles, the green light emitting CdTe / CdS 

nanoparticles. Yellow and red light emitting CdTe / CdS nanoparticles followed green 

light emitting CdTe / CdS nanoparticles respectively. The reason for high toxicity of 

green light emitting CdTe / CdS nanoparticles might be the amount of free Cd+2 in 

green light emitting CdTe / CdS nanoparticles. From ICP - MS analysis, it is observed 

that green light emitting CdTe / CdS nanoparticles have the least amount of Cd, 

however, probably green light emitting CdTe / CdS nanoparticles are not stable and 

tend to dissociate to free Cd and Te immediately. It is observed that green light emitting 

CdTe / CdS nanoparticles are more toxic than even CdCl2, which is source of free Cd2+. 

In PC3 cells, CdTe / CdS nanoparticles are more toxic than they are in MCF7 cells. Red 

and yellow CdTe / CdS nanoparticles are not toxic for MCF7 cells at all, where CdCl2 is 

toxic around 15 µg / ml for MCF7 cells. S source thiourea is non – toxic when it is 

concentration is lower than 100 µg / ml. Derfus et al. made a study on cytotoxic effects 

of core CdSe quantum dots in rat primary hepatocytes and found out that CdSe core 

quantum dots undergo surface oxidation, resulting in the release of free cadmium ions. 

Cadmium ions causes damage in mitochondira and oxidative stress in cells, for that 

reasons it is considered to be toxic (Derfus, et al. 2004). However, this surface oxidation 

was prevented with coating core surface with different material, by this way cadmium 

was imprisoned in core structure and remained bound to selenium. This was 

demonstrated with the addition of a ZnS shell; the oxidative degradation of the CdSe 

core due to exposure to air was significantly reduced resulting in lower cytotoxicity 

(Derfus, et al. 2004). 

 

2.4. Conclusion 
 

Highly luminescent and water soluble CdTe / CdS nanoparticles are synthesized 

by one pot aqueous synthesize method. Crystal structure of these nanoparticles is 

estimated to be face centered cubic and the size of these nanoparticles varies between 5 

nm and 10 nm where hydrodynamic radius is around 15 nm. 3 – MPA capped CdTe / 

CdS nanoparticles enter and stay in cell cytoplasm without killing cells. These 

nanoparticles were successfully displayed by fluorescence confocal microscope and it is 

shown that 3 – MPA capped CdTe / CdS nanoparticles are suitable for cell imaging 

applications. MTT tests proved that toxicity of CdTe / CdS nanoparticles changes with 
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nanoparticle size and cell type. However, for all cases, below 1µg/ml nanoparticle 

concentration CdTe / CdS nanoparticles are not toxic and 1µg/ml concentration is 

suitable for fluorescence microscopy studies. 
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CHAPTER 3 
 

3. DEVELOPMENT OF CdSexS1-x QUANTUM DOTS 
 

3.1. Experimental 
CdSe nanoparticles are widely synthesized by organometallic synthesize 

method. Recently Pan et.al. described an alternative two – phase method for 

synthesizing CdSe and CdSe / CdS nanoparticles. With a slight modification in CdSe / 

CdS nanoparticle synthesis by two phase method, CdSexS1-x nanoparticles are 

synthesized. In this chapter, synthesis and characterization of CdSexS1-x nanoparticles 

are discussed. 

 

3.1.1. Synthesis of Cadmium Myristate 
 

10 mmoles of Cadmium oxide (CdO) and 20 mmoles myristic acid ( Figure 3.1 ) 

were put into a 50 ml reaction flask and heated at 200 0C for ten minutes. As a result, a 

clear solution was obtained. Cadmium myristate ( Figure 3.2 ) was recrystallized in 

toluene and used for further experiments. 

CdO + Myristic Acid               Cadmium Myristate + O2 + H2  
 

O

HO  
Figure 3.1. Structure of myristic acid 

 
O

O

Cd

O

O

 
Figure 3.2. Structure of Cadmium Myristate 



57 

 

3.1.2. Synthesis of NaHSe as Se precursor 
 

Se powder (0.4 mmol) and NaBH4 (1 mmol) were put into 5 ml reaction flask 

under N2 atmosphere. Then 1 ml of distilled water added to the reaction flask. The 

solution in N2 atmosphere is allowed to react to form a white precipitate, Na2B4O7. 

Then resulting clear solution transferred into another degassed test tube. No other 

purification techniques were performed. In all experiments, freshly synthesized NaHSe 

was used and synthesized NaHSe was not stored for other experiments (Klayman et.al, 

1972). The reaction is considered to be as below;  

 

4NaBH4(aq) + 2Se(s) à 2NaHSe(aq) + Na2B4O7(s) + 14H2(g) 

 

3.1.3. Synthesis of CdSexS1-x nanoparticles 
 

CdSexS1-x nanoparticles were synthesized according to a modified technique 

based on two – phase synthesis method.(Pan, et al. 2005) First, cadmium myristate 

(CdMA) (0.4 g) was dissolved in toluene (80 ml) with oleic acid (OA) (2 g) or TOPO (2 

g) at 80 0C, and stored for next the step. NaHSe (3 mg) and Thiourea (60 mg) were 

dissolved in water (80 ml) and heated to 100 0C under N2 atmosphere for 30 minutes. 

Temperature was kept constant at 100 0C and the solution was stirred vigorously. While 

stirring, the toluene solution was added to the water solution and reaction started. After 

30 minutes, CdSexS1-x quantum dots started to grow ( Figure 3.3 ). Aliquots of sample 

were taken at different time intervals and their optical properties were analyzed by using 

UV – vis and fluorescence spectroscopies. Reaction was stopped at desired time by 

cooling the final solution. Nanoparticles were precipitated by addition of the ethanol in  

to the crude solution of nanoparticles. Precipitation procedure was repeated several 

times to remove impurities and excess capping agent. 
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Figure 3.3. Schematic Illustration of Synthesis of CdSexS1-x 

 

 

3.1.4. Ligand Exchange for CdSexS1-x quantum dots 
 

To exchange a ligand, a method from literature was modified (Zhang, et al. 

2008). Solid CdSexS1-x nanoparticles were dispersed in chloroform and 3 – MPA was 

dissolved in distilled water, and pH of water solution was adjusted to 10 by adding 1 M 

NaOH. Then two solutions were mixed together and shaked for 2 days at room 

temperature. After 2 days, water and chloroform phases were separated. Optical 

characterization for aqueous solution was performed by using fluorescence spectrum. 

 

3.2. Characterization 
 

3.2.1. Optical characterization 
 

Optical characterization of CdSexS1-x nanocrystals were carried out by using UV 

– Vis absorption and fluorescence spectroscopies. In Figure 3.4, the temporal growth of 

CdSexS1-x nanocrystals with a mole ratio of Se : S of 1 : 20. 

Due to extended reaction time, the fluorescence spectra shift to higher 

wavelengths, indicating the growth of nanoparticles.(Figure 3.4) 
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Figure 3.4. Fluorescence spectrum of CdSexS1-x nanoparticles synthesized at different 

time intervals (from 0.5 hour to 13 hours) 

 

In Figure 3.5, the growth of CdSexS1-x nanoparticles are shown. The growth of 

CdSexS1-x depends on time. As seen from the Figure 3.5, the rate is faster upto 300 

minutes (5 hours) and then it slowes down and saturates around 10 hours. 
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Figure 3.5. Temporal evolution of fluorescence peaks of CdSexS1-x nanoparticles 

 

Also it is possible to grow CdSexS1-x nanoparticles with different molar ratios of 

Se:S. Figure 3.6 and Figure 3.7 show the growth of CdSexS1-x nanoparticles with Se:S 

mole ratio of 1:30. The growth behavior for this ratio is totally different than the mole 
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ratio of Se: S of 1:20. It indicates that the mole ratio is an important parameter for the 

growth.  
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Figure 3.6. Fluorescence spectrum of CdSexS1-x nanoparticles synthesized at different 

time intervals (from 0.5 hour to 15 hours) 
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Figure 3.7. Temporal evolution of fluorescence peaks of CdSexS1-x nanoparticles 
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Figure 3.8. UV – vis spectra of CdSexS1-x quantum dots 
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Figure 3.9. Fluorescence spectra of CdSexS1-x quantum dots 
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Figure 3.10.  Luminescence image of CdSexS1-x nanoparticles under UV lamp 

 

Figure 3.8 and Figure 3.9 shows temporal evolution of CdSexS1-x nanocrystal by 

using UV – Vis and fluorescence spectrometers. Figure 3.10 shows luminescence image 

of different CdSexS1-x under UV irradiation. 
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Figure 3.11. Fluorescence and UV – vis spectra of CdSexS1-x nanoparticles (Emission 

525 nm) 

 

Stokes shift and FWHM of CdSexS1-x nanoparticles are calculated and tabulated 

( Table 3.1 ). The FWHM become broeder when particles get bigger also the stokes 

shift increases with increase in particle size. 
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Quantum yield (QY) of this nanoparticles are calculated by using Rhodamine 6G 

in water (QY: %95) as reference at 400 nm excitation wavelength. Table 3.1 shows 

photophysical properties of CdSexS1-x nanocrystals 

 

Table 3.1. Photophysical properties of CdSexS1-x nanocrystals 

 

Sample 
Name 

λabsorption 
(nm) 

λfluorescence 
(nm) 

Stokes Shift 
(nm) 

FWHM 
(nm) 

QY  
(%) 

Eg 

(nm) (eV) 

CdSexS1-x 1 423  445  22  29  45 455 2.7 

CdSexS1-x 2 466  485  19  30  75 496 2.5 

CdSexS1-x 3 476  505  29  36  80 515 2.4 

CdSexS1-x 4 495  525  30  40 80 540 2.3 

 

CdSexS1-x nanocrystals are dispersible in oil (toluene, heptane, etc…). By ligand 

exchange these quantum dots can be dispersible in water, however, optical properties of 

this nanocrystals differ after ligand exchange treatment. Figure 3.12 and Figure 3.13 

shows optical changes in CdSexS1-x nanocrystals after ligand exchange. Optical changes 

are tabulated in Table 3.2. The properties are dramatically changed. The QY of water 

soluble nanoparticles is decreased by 10 – fold; the FWHM is broadened 5 times; these 

results indicate that the ligand exchange yields an important change in structure of the 

nanoparticles. 
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Figure 3.12. Fluorescence wavelength change after ligand exchange 
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Figure 3.13. Fluorescence intensity change after ligand exchange 

 

Table 3.2. Optical Changes after ligand exchange 
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Sample Name λfluorescence FWHM QY 

TOPO capped CdSexS1-x  495 nm 20 nm 75% 

MPA capped CdSexS1-x  545 nm 100 nm 7% 

 

 

3.2.2. Structural Characterization: 
 

TEM and XRD analysis are made for CdSexS1-x nanocrystals.Figure 3.14 and 

Figure 3.15 show TEM images of CdSexS1-x nanoparticles. From TEM analysis, particle 

size is determined to be 4.7 nm. The particles are monodisperse with face centered cubic 

crystal structure. 

 

 
 

Figure 3.14. TEM images of CdSexS1-x nanoparticles (20 nm scale) 
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Figure 3.15. TEM images of CdSexS1-x nanoparticles (5 nm scale) 

 

Figure 3.16 shows XRD analyze of green and purple light emitting CdSexS1-x 

nanoparticles. By comparing bulk CdS and CdSe bulk structures hkl indices, CdSexS1-x 

nanoparticles crystal structure is estimated to be face centered cubic. Particle size of 

CdSexS1-x  nanoparticles are calculated from Debye – Scherrer equation (Equation 

1.11). Size of CdSexS1-x nanoparticles are estimated to be around 3.5 nm.(Table 3.3) 
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Figure 3.16.XRD spectra of purple, blue and green emitting CdSexS1-x nanoparticles, 

red dots hkl indices of cubic bulk CdSe ( bottom ), black dots hkl indices of 

cubic bulk CdS ( top ) 
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Size of nanoparticles can also be determined from UV – Vis spectroscopy by 

using Equation 1.8. From literature, Egb of CdSe is found to be 1.73 eV, me of CdSe is 

0.11 m0, mh of CdSe is 0.45 m0 and ϵ is 9.6 ϵ0 (m0 is free electron mass and ϵ0 is vacuum 

dielectric constant) (Joshi, et al. 2006, Banerjee 2000). By putting these values into 

equation 1.8, the second order equation below is determined, 

 

                                         
dd
1868.017.4879.21878

2 -+=
l

                                       (3.1) 

 

where λ is first exciton peak cutting through wavelength axis in absorption spectrum 

and d is diameter of nanoparticle. By solving this 2nd order equation, the equation below 

is determined, 

 

                                            057.056.380089.01
-+=

ld
                                         (3.2) 

 

The sizes determined from absorbance spectroscopy is different from the ones 

that are determined by using TEM and XRD. From UV – vis spectrum analysis, the size 

of nanoparticles are found to be bigger.(Table 3.3) 

 

Table 3.3.Size determination of CdSexS1-x nanoparticles from TEM, XRD and UV – Vis 

Spectroscopy 

 

Sample Name 
Nanoparticle size 

determined by TEM 
(nm) 

Nanoparticle size 
determined by XRD 

(nm) 

Nanoparticle size 
determined by UV – vis 

spectroscopy (nm) 

CdSexS1-x 1 --- 3.5 5.7 

CdSexS1-x 2 --- 3.6 6.5 

CdSexS1-x 3 --- 3.7 7.0 

CdSexS1-x 4 4.7 --- 7.4 
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Also, ICP – MS analysis of CdSexS1-x nanoparticles in 1 ppm concentration after 

ligand exchange is done. For 1 ppm CdSexS1-x nanoparticles, concentration of Cd and Se 

is found to be 370 ppb and 11 ppb respectively. Amount of Se is very small when it is 

compared to amount of Cd. 

 

3.3. Discussion 
 

CdSexS1-x nanoparticles spectra change with molar ratio of Se to S of 

nanoparticles. Jang et al. claimed that when the molar ratio of Se to S varies, thesize 

does not change but different colored CdSexS1-x nanoparticles can be obtained (Jang, et 

al. 2003). In this study, emission peaks of CdSexS1-x nanoparticles varied with different 

Se:S ratio. This result showed that instead of CdSe / CdS nanoparticles, CdSexS1-x 

nanoparticles are prepared with this synthesizes method. In the study of Pan et.al first 

CdSe core is synthesized than it is surrounded with CdS ( Pan, et al. 2005 ) . In our 

work Se and S precursors were added to reaction media at the same time. 

The growth rate of CdSexS1-x nanoparticles in this study was extremely slow. In 

two phase synthesis method, slow growth rates are observed (Pan, et al. 2003, Pan, et al. 

2006, Pan, et al. 2007). However, in this study the growth rate of CdSexS1-x 

nanoparticles was slower than Pan et.al.’s work. This is probably caused by an excess 

amount of surfactants and smaller amount of NaHSe used in this synthesis. The core of 

CdSexS1-x nanoparticles is considered to be CdSe rich because of high reactivity of the 

NaHSe. Following the formation of core of CdSexS1-x nanoparticles occur, slowly CdS 

rich shell grows on core, because of slow decompisition of thiourea. 

FWHM of CdSexS1-x nanoparticles is varied between 19 nm and 30 nm. Pan 

et.al. mentioned that CdSe / CdS nanoparticles have 30 nm of FWHM (Pan, et al. 2007). 

Bawendi et.al indicated that FWHM of CdSe / ZnS nanoparticles are smaller than 40 

nm ( Dabbousi, et al. 1997 ). These results showed that CdSexS1-x nanoparticles are 

highly mononodisperse in our work. Pan et.al mentioned that Stokes shift of CdSe / CdS 

nanoparticles is 15 nm ( Zhong, et al. 2008 ). In this study, Stokes shift of CdSexS1-x 

nanoparticles is found to be varied between 20 nm and 30 nm, which are convenient 

with the literature (Bawendi, et al. 1993, Pan, et al. 2007). However, small difference in 

Stokes shift indicates that trap states in CdSexS1-x nanoparticles is more than CdSe / 
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CdS nanoparticles, use of excess amount of surfactant may be the reason of these trap 

states. 

Quantum yield of CdSexS1-x nanoparticles is calculated around %80 and agrees 

with the literature. Qian et.al mentioned that quantum yield of CdSexS1-x nanoparticles 

is around 80% ( Qian, et al. 2007 ) and Pan et. al indicated that quantum yield of CdSe / 

CdS is around 80% (Pan, et al. 2007). Slow growth rate of CdSexS1-x nanoparticles leads 

to less flawed crystal structure and less flawed crystal structure results in high quantum 

yield. 

According to TEM and XRD results crystal structure of CdSexS1-x nanoparticles 

is face centered cubic and thesize of nanoparticles varies between 3 nm and 5 nm. TEM 

and XRD results are convenient with the literature. Pan et.al indicated that face centered 

cubic and extremely small CdSe / CdS nanoparticles occur in two phase synthesis 

method (Pan, et al. 2007, Pan et al. 2006, Qian, et al. 2007). 

In XRD spectra of CdSexS1-x nanoparticles, the diffraction angles do not shift 

with change with the size of CdSexS1-x nanoparticles, also FWHM of XRD peaks of 

CdSexS1-x nanoparticles do not change with the size of CdSexS1-x nanoparticles. These 

results indicates that, the size of nanoparticle do not vary with the size, also the structure 

is probably CdSexS1-x instead of CdSe / CdS, if the structure was CdSe / CdS, XRD 

peaks should move to larger angles with adding extra shell layers on core (Pan, et 

al.2007, Pan, et al. 2005, Jang, et al. 2003, Zhong, et al. 2008 ). 

Also, the size can be calculated from band gap energies of CdSexS1-x 

nanoparticles which are determined from UV – Vis spectroscopy. However, the sizes 

obtained from UV – Vis spectroscopy are bigger than the sizes obtained from TEM and 

XRD. By UV – Vis spectroscopy, nanoparticles are assumed to have CdSe cores, which 

may cause errors in size calculations since the nanoparticles that are synthesized in this 

study is CdSexS1-x nanoparticles. 

ICP – MS analysis showed that CdSexS1-x nanoparticles contain trace amount of 

selenium. This is not a surprising result since Se also added to reaction media in very 

small amounts during synthesis.  
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3.4. Conclusion: 
 

Highly luminescent and monodisperse CdSexS1-x nanoparticles with extremely 

slow growth rate have been synthesized in this study. Crystal structure of CdSexS1-x 

nanoparticles estimated to be face centered cubic and the size of CdSexS1-x nanoparticles 

varied between 3 nm and 4.7 nm. Quantum yield of CdSexS1-x nanoparticles are 

calculated around %80. These nanoparticles may findapplications in lasers, LEDs and 

solar cells. 

 



71 

 
 

4. REFERENCES 
 

A.El Moussaouy, D. Bria, A. Nougaoui. 2006. Thermal effect on bound exciton 
inCdTe/Cd1-xZnxTe cylindrical quantum dots. Solar Energy Materials & Solar 
Cells  90 : 1403–1412. 

 
Abhishek Joshi, K. Y. Narsingi, and M. O. Manasreh, E. A. Davis, B. D. Weaver. 2006. 

Temperature dependence of the band gap of colloidal CdSe/ZnS core/shell 
nanocrystals embedded into an ultraviolet curable resin. Applied Physics Letters  89 
: 131907. 

 
Amy Szuchmacher Blum, Martin H. Moore, and Banahalli R. Ratna. 2008. Quantum 

Dot Fluorescence as a Function of Alkyl Chain Length in Aqueous Environments. 
Langmuir  24: 9194-9197. 

 
Andrey L. Rogach, Thomas Franzl, Thomas A. Klar, Jochen Feldmann, Nikolai 

Gaponik, Vladimir Lesnyak, Alexey Shavel, Alexander Eychmu1ller, Yuri P. 
Rakovich, and John F. Donegan. 2007. Aqueous Synthesis of Thiol-Capped CdTe 
Nanocrystals: State-of-the-Art. Journal Physical Chemistry C  111: 14628-14637. 

 
Austin M. Derfus, Warren C. W. Chan, and Sangeeta N. Bhatia. 2004. Probing 

theCytotoxicity of Semiconductor Quantum Dots. Nano Letters 4:11-18.  
 
B. O. Dabbousi, J. Rodriguez-Viejo,  F. V. Mikulec,  J. R. Heine,  H. Mattoussi,  R. 

Ober,  K. F. Jensen, M. G. Bawendi. 1997. (CdSe)ZnS Core-Shell Quantum Dots: 
Synthesis and Characterization of a Size Series of Highly Luminescent 
Nanocrystallites.  Journal Physical Chemistry B 101 : 9463-9475. 

 
Bruchez Jr M, Moronne M, Gin P, Weiss S, Alivisatos AP. 1998. Semiconductor 

Nanocrystals as Fluorescent Biological Labels. Science. 281:2013-2016. 
 
C. B. Murray and C. R. Kagan and M. G. Bawendi. 2000. Synthesis and 

characterization of monodisperse nanocrystals and close packed nanocrystal 
assemblies Annual Review of Materials Science 30:545–610. 

 
C. B. Murray, D. J. Noms, and M. G. Bawendi. 1993,  Synthesis and Characterization of 

Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. Journal 
of American Chemical Society 115: 8706-8715. 

 
Chan WC, Nie S. 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic. 

detection  Science 281:2016-2018. 
 
Ciapetti G, Cenni E, Paratelli L, Pizzoferrato. 1993. Evaluation of cell/ biomaterial 

interaction by MTT assay Advanced Biomaterials   14 : 359 – 364 . 
 



72 

Cunwang Ge, Min Xu, Jing Liu, Jianping Lei and Huangxian Ju. 2008. Facile synthesis 
and application of highly luminescent CdTe quantum dots with an electrogenerated 
precursor. Chemical Communications.4 : 450 – 452 

 
D.V. Talapin, S.K. Poznyak, N.P. Gaponik, A.L. Rogach, A. Eychmueller. 2002. 

Synthesis of surfacemodified colloidal semiconductor nanocrystals and study of 
photoinduced charge separation and transport in nanocrystal-polymer composites. 
Physica E: Low Dimensional Systems and Nano-structures. 14:237-241. 

 
Daniele Gerion, Fabien Pinaud, Shara C. Williams, Wolfgang J. Parak, Daniela 

Zanchet, Shimon Weiss, and A. Paul Alivisatos. 2001. Synthesis and Properties of 
Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum 
Dots, Journal Physical Chemistry B    105 : 8861-8871. 

 
Daocheng Pan, Qiang Wang, Jiebin Pang, Shichun Jiang, Xiangling Ji, and Lijia An. 

2006 . Semiconductor “Nano-Onions” with Multifold Alternating CdS/CdSe or 
CdSe/CdS Structure. Chemical Mateials 18: 4253-4258. 

 
Daocheng Pan, Qiang Wang, Shichun Jiang, Xiangling Ji, and Lijia An. 2007. Low-

Temperature Synthesis of Oil-Soluble CdSe, CdS, and CdSe/CdS Core-Shell 
Nanocrystals by Using Various Water-Soluble Anion Precursors. Journal Physical 
Chemistry C  111:5661-5666. 

 
Daocheng Pan, Shichun Jiang, Lijia An,Bingzheng Jiang. 2004. Controllable Synthesis 

of Highly Luminescent and Monodisperse CdS Nanocrystals by a Two-Phase 
Approach under Mild Conditions.Advanced Materials 16 :982 – 985 

 
Daocheng Pan,Qiang Wang ,Shichun Jiang,Xiangling Ji and Lijia. 2005. An.Synthesis 

of extremely small CdSe and Highly Luminescent CdSe/CdS Core-Shell 
Nanocrystals via a novel Two Phase Thermal Approach.Advanced Materials 
17:176 – 178. 

 
Day R.N., Periasamy A., Schaufele F. 2001. Fluorescence resonance energy transfer 

microscopy of localized protein interactions in the living cell nucleus. Methods 
25:4–18. 

 
Derfus A.M., Chan W.C.W., Bhatia S.N. 2004. Intracellular delivery of quantum dots 

for live cell labeling and organelle tracking. Advanced Materials 16:961 - 966. 
 
Dmitri V. Talapin, Stephan Haubold, Andrey L. Rogach,Andreas Kornowski,Markus 

Haase,and Horst Weller. 2001. A Novel Organometallic Synthesis of Highly 
Luminescent CdTe Nanocrystals Journal Physical Chemistry B  105: 2260-2263. 

 
Dmitri V. Talapin,, Ivo Mekis, Stephan Go1tzinger, Andreas Kornowski,Oliver Benson, 

and Horst Weller. 2004 CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell 
Nanocrystals. Journal Physical Chemistry B 108: 18826-18831. 

 
Dongzhi Yang, Shukun Xu, Qifan Chen, Wenxing Wang. A simple organic synthesis 

for CdS and Se-doped CdS nanocrystals. 2007. Colloids and Surfaces A: 
Physicochemical Engineering Aspects  299:153–159. 



73 

 
Dubertret, B.  Skourides, P.  Norris, D. J.  Noireaux, V.  Brivanlou, A. H.  Libchaber, A. 

2002. In vivo imaging of quantum dots encapsulated in phospholipid micelles. 
Science 298 : 1759 - 1762. 

 
Eunjoo Jang, Shinae Jun, Lyongsun Pu.2003. High quality CdSeS nanocrystals 

synthesized by facile single injection process and their 
electroluminescence.Chemical Communications 10 : 2964-2965. 

 
Fellers T.J.,Davidson M.W. 2007. Introduction to Confocal Microscopy. Olympus 

Fluoview Resource Center, National High Magnetic Field Laboratory. 
 
Frangioni JV. 2003. In vivo near-infrared fluorescence imaging. Current Opinion in 

Chemical Biology 7:626–634. 
 
Gerion D, Parak WJ, Williams SC, Zanchet D, Micheel CM, Alivisatos AP.2002. 

Sorting fluorescent nanocrystals with DNA. Journal of American Chemical Society 
124:7070–7074. 

 
Goldstein, A N. Echer, C M. Alivisatos, A P. 1992 . Melting in semiconductor 

nanocrystals. Science. 256 :1425-1427. 
 
Hanaki K, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y. 2003. 

Semiconductor quantum dot/albumin complex is a long-life and highly photostable 
endosome marker. Biochemical and Biophysical Reearch Communications 
302:496–501. 

 
Hasegawa U, Nomura SIM, Kaul SC, Hirano T, Akiyoshi K. 2005. Nanogel-quantum 

dot hybrid nanoparticles for live cell imaging. Biochemical and Biophysical 
Reearch Communications 331:917–921. 

 
Heyduk T. 2002 Measuring protein conformational changes by FRET/ LRET. Current 

Opinion in Biotechnology  13:292– 296. 
 
Hui Peng, Lijuan Zhang, Christian Soeller, Jadranka Travas-Sejdic. 2007. Preparation 

of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability. 
Journal of Luminescence  127:721–726. 

 
Huifeng Qian, Chaoqing Dong, Jinliang Peng, Xin Qiu, Yuhong Xu, and Jicun Ren. 

2007. High-Quality and Water-Soluble Near-Infrared Photoluminescent 
CdHgTe/CdS Quantum Dots Prepared by Adjusting Size and Composition. Journal 
Physical Chemistry C 111: 16852-16857. 

 
Ireneusz Strzalkowski, Sharad Joshi, C. R. Crowell. 1976. Dielectric constant and its 

temperature dependence for GaAs, CdTe, and ZnSe. Applied Physics Letters 28 : 
350. 

 
Ivo Mekis, Dmitri V. Talapin, Andreas Kornowski, Markus Haase, and Horst Weller. 

2003. One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell 



74 

Nanocrystals via Organometallic and “Greener” Chemical Approaches. Journal 
Physical Chemistry B  107:7454-7462. 

 
Jaiswal J.K., Mattoussi H., Mauro J.M., Simon S.M. 2003. Long-term multiple color 

imaging of live cells using quantum dot bioconjugates. Nature Biotechnology 
21:47–51. 

 
Jasmina Lovrić . Hassan S. Bazzi . Yan Cuie . Genevieve R. A. Fortin . Françoise M. 

Winnik.2005.Dusica Maysinger. Differences in subcellular distribution and toxicity 
of green and red emitting CdTe quantum dots. Journal of Molecular Medicine   83: 
377–385. 

 
Juandria V. Williams. 2008. Hydrothermal Synthesis and Characterization of Cadmium 

Selenide Nanocrystals. University of Michigan. 
 
Kagan CR, Murray CB, Nirmal M, Bawendi MG. 1996. Electronic energy transfer in 

CdSe quantum dot solids. Physics Review Letters  76: 1517–1520. 
 
Lee LY, Ong SL, Hu JY, Ng WJ, Feng YY, Tan XL, 2004. Use of semiconductor 

quantum dots for photostable immunofluorescence labeling of Cryptosporidium 
parvum. Applied Environmental Microbiology 70:5732–5736. 

 
Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV. 2003. Selection 

of quantum dot wavelengths for biomedical assays and imaging. Molecular 
Imaging 2:50–64. 

 
Mani Ethayaraja, Chettiannan Ravikumar, Devarajan Muthukumaran, Kanchan Dutta, 

and Rajdip Bandyopadhyaya. 2007. CdS-ZnS Core-Shell Nanoparticle Formation: 
Experiment, Mechanism, and Simulation. Journal Physical Chemistry C 111: 3246-
3252. 

 
Maoquan Chu, Xiaoyan Shen and Guojie Liu.2006. Microwave irradiation method for 

the synthesis of water-soluble CdSe nanoparticles with narrow photoluminescent 
emission in aqueous solution. Nanotechnology  17:444–449 

 
Mark Green,Hannah Harwood,a Claire Barrowman, Paula Rahman,Alex Eggeman,Fred 

Festry, Peter Dobson and Tony Ng. 2007. A facile route to CdTe nanoparticles and 
their use in bio-labelling. Journal of Materials Chemistry  17: 1989–1994. 

 
Michael J. Bowers II, James R. McBride, and Sandra J. Rosenthal. 2005. White-Light 

Emission from Magic-Sized Cadmium Selenide Nanocrystals. Journal of American 
Chemical Society  127:15378-15379. 

 
Moazzam Ali, Soma Chattopadhyay, Angshuman Nag,Akshay Kumar, Sameer Sapra, S 

Chakraborty, D.D.Sarma. 2007. White-light emission from a blend of CdSeS 
nanocrystals of different Se:S ratio. Nanotechnology  18 : 075401. 

 
Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: 

application to proliferation and cytotoxicity assays. Journal of immunological 
methods 65: 55–63. 

http://linkinghub.elsevier.com/retrieve/pii/0022-1759(83)90303-4�
http://linkinghub.elsevier.com/retrieve/pii/0022-1759(83)90303-4�
http://linkinghub.elsevier.com/retrieve/pii/0022-1759(83)90303-4�


75 

 
Nikolai Gaponik,Dmitri V. Talapin, Andrey L. Rogach, Kathrin Hoppe,Elena V. 

Shevchenko, Andreas Kornowski, Alexander Eychmu1ller, and Horst Weller. 2002.  
Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic 
Routes. Journal Physical Chemistry B 106: 7177-7185. 

 
Parvesh Sharma, Scott Brown, Glenn Walte , Swadeshmukul Santra, Brij Moudgil. 

2006 Nanoparticles for bioimaging. Advances in Colloid and Interface Science 
123:471–485. 

 
Pathak S, Choi SK, Arnheim N, Thompson ME. 2001. Hydroxylated quantum dots as 

luminescent probes for in situ hybridization. Journal of American Chemical Society 
123:4103–4104. 

 
Pawley J.B.2006. Handbook of Biological Confocal Microscopy (3rd ed. ed.). Berlin: 

Springer. 
 
Pinuad, F.  King, D.  Moore, H.-P.  Weiss, S. 2004. Bioactivation and cell Targeting of 

Semiconductor CdSe / ZnS Nanocrystals with Phythochelatin – Related Peptides. 
Journal of American Chemical Society 126 : 6115–6123. 

 
Qiang Wang, Daocheng Pan, Shichun Jiang, Xiangling Ji,Lijia An, and Bingzheng 

Jiang. 2005. A New Two-Phase Route to High-Quality CdS Nanocrystals. 
Chemistry European Journal  11: 3843 – 3848. 

 
Rieger S, Kulkarni RP, Darcy D, Fraser SE, Koster RW. 2005. Quantum dots are 

powerful multipurpose vital labeling agents in zebrafish embryos. Dev Dyn 
234:670–81. 

 
Riegler J, Nann T. 2004.Application of luminescent nanocrystals as labels for biological 

molecules. Analytical and Bioanalytical Chemistry 379:913–919. 
 
S. Shankara Narayanan and Samir Kumar Pal. 2006. Aggregated CdS Quantum Dots: 

Host of Biomolecular Ligands. Journal Physical Chemistry B  110 : 24403-24409. 
 
Sander F. Wuister, Ingmar Swart, Floris van Driel, Stephen G. Hickey, and Celso de 

Mello Donega. 2003. Highly Luminescent Water-Soluble CdTe Quantum Dots. 
Nano Letters  3 : 503 - 507. 

 
Selvin PR. 2000 The renaissance of fluorescence resonance energy transfer. Nature 

Structural Biology  7:730–734. 
 
Streetman, Ben G., Sanjay Banerjee. 2000. Solid State electronic Devices (5th edition 

ed.) Prentice Hall. 
 
Sung Ju Cho, Dusica Maysinger, Manasi Jain,Beate Röder,Steffen Hackbarth,and 

Francüoise M. Winnik. 2007. Long-Term Exposure to CdTe Quantum Dots Causes 
Functional Impairments in Live Cells. Langmuir 23:1974-1980. 

 



76 

Tian-Long Zhang, Yun-Sheng Xia, Xue-Lian Diao and Chang-Qing Zhu. 2008. 
Preparation and formation mechanism of strong violet luminescent CdS quantum 
dots by using a ligand exchange strategy. Journal of Nanoparticle Research 10 : 
59–67. 

 
Timothy Jamieson, Raheleh Bakhshi, Daniela Petrova, Rachael Pocock, Mo Imani, 

Alexander M. Seifalian. 2007 Biological applications of quantum dots. 
Biomateryals 28:4717-4732. 

 
Tully E, Hearty S, Leonard P, O’Kennedy R. 2006. The development of rapid 

fluorescence-based immunoassays, using quantum dot-labelled antibodies for the 
detection of Listeria monocytogenes cell surface proteins. International Journal of 
Biological Macromolecules 39:127–134. 

 
V. L. Colvin, M. C. Schlamp, A. P. Alivisatos. 1994.Light-emitting diodes made from 

cadmium selenide nanocrystals and a semiconducting polymer. Nature 370: 354 –
357. 

 
Wang, X. S.  Dykstra, T. E.  Salvador, M. R.  Manners, I.  Scholes, G. D. Winnik, M. A. 

2004. Surface passivation of luminescent colloidal quantum dots with 
poly(dimethylaminoethyl methacrylate) through a ligand exchange process Journal 
of American Chemical Society 126 : 7784 – 7785. 

 
Wen Jiang, Anupam Singhal, Jianing Zheng, Chen Wang, and Warren C. 2006. W. 

Chan.Optimizing the Synthesis of Red- to Near-IR-Emitting CdS-Capped 
CdTexSe1-x Alloyed Quantum Dots for Biomedical Imaging. Chemical Materials  
18:4845-4854. 

 
William W. Yu , Emmanuel Chang , Rebekah Drezek , Vicki L. Colvin. 2006. Water-

soluble quantum dots for biomedical applications. Biochemical and Biophysical 
Research Communications  348:781–786. 

 
Xianfeng Chen , John L. Hutchison , Peter J. Dobson , Gareth Wakefield . 2008. A one-

step aqueous synthetic route to extremely small CdSe nanoparticles. Journal of 
Colloid and Interface Science  319:140–143. 

 
Xiao Y, Barker PE. 2004. Semiconductor nanocrystal probes for human metaphase 

chromosomes. Nucleic Acids Research 32 : 28 – 33. 
 
Y. Charles Cao. and Jianhui Wang. 2004. One-Pot Synthesis of High-Quality Zinc-

Blende CdS Nanocrystals. Journal of American Chemical Society 126 : 14336-
14337. 

 
Yan Li, Fuzhi Huang, Qingmin Zhang, Zhennan Gu. 2000. Solvothermal synthesis of 

nanocrystalline cadmium sulfide. Journal Of Materials Science  35:5933 – 5937. 
 
Yang, H.  Holloway, P. H.  Santra, S. 2004. Water-soluble silica-overcoated 

CdS : Mn/ZnS semiconductor quantum dots.Journal Chemical Physics 121 : 7421–
7426. 

 



77 

Ying Wang, Zhiyong Tang, and Nicholas A. Kotov. 2005 Bioapplication of 
nanosemiconductors. Nanotoday 8:21-30. 

 
Yun-Sheng Xia, Chang-Qing Zhu. 2007. Aqueous synthesis of luminescent magic sized 

CdSe nanoclusters. Materials Letters 62 : 2103 – 2105. 
 
Z. Adam Peng and Xiaogang Peng. 2001. Formation of High-Quality CdTe, CdSe, and 

CdS Nanocrystals Using CdO as Precursor. Journal of American Chemical Society  
123: 183-184. 

 
Zhenyu Gu, Lei Zou, Zheng Fang,Weihong Zhu and Xinhua Zhong. 2008. One-pot 

synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous 
phase. Nanotechnology  19: 135604 -135612 

 
Zhu L., Ang S., Liu W.T. 2004. Quantum dots as a novel immunofluorescent detection 

system for Cryptosporidium parvum and Giardia lamblia. Applied Environmental 
Microbiology  70:597–598. 

 
Yang L.J., Li Y.B. 2006. Simultaneous detection of Escherichia coli O157: H7 and 

Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst 
131:394–401. 

 
Yang, H. Holloway, P. H.  Santra, S. 2004. Water-soluble silica-overcoated 

CdS : Mn/ZnS semiconductor quantum dots.Journal of Chemical Physics 121 : 
7421–7426. 

 
Ying Wang, Zhiyong Tang, and Nicholas A. Kotov. 2005 Bioapplication of 

nanosemiconductors. Nanotoday 8:21-30. 
 
Z. Adam Peng and Xiaogang Peng. 2001. Formation of High-Quality CdTe, CdSe, and 

CdS Nanocrystals Using CdO as Precursor. Journal of American Chemical Society  
123: 183-184. 

 
 
Zhu L, Ang S, Liu WT. 2004. Quantum dots as a novel immunofluorescent detection 

system for Cryptosporidium parvum and Giardia lamblia. Applied Environmental 
Microbiology  70:597–598. 

 


	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1
	INTRODUCTION
	Quantum Dots and Biotechnology
	The Purpose of the Study
	Types of Quantum Dots
	Core Type Quantum Dots including Cadmium
	Cadmium Sulfide (CdS) Nanocrystals
	Cadmium Selenide (CdSe) Nanocrystals
	Cadmium Telluride (CdTe) Nanocrystals:
	Cadmium Selenide Sulfide (CdSexS1-x) Nanocrystals:

	Core – Shell Type Quantum Dots including Cadmium

	Synthesis of Quantum Dots
	Biofunctionalization of Quantum Dots
	Characterization of Quantum Dots
	Optical Characterization
	Structural characterization
	MTT Test
	Confocal Microscopy

	Biological Applications of Quantum Dots

	CHAPTER 2
	DEVELOPMENT OF CdTe / CdS QUANTUM DOTS
	Experimental
	Synthesis of NaHTe as Te precursor
	Synthesis of CdTe core nanoparticles
	Synthesis of CdTe / CdS core – shell nanoparticles

	Characterization
	Optical Characterization
	Structural Characterization:
	Biological Characterization
	MTT Studies
	Preparation of Cell Culture
	Treatment of Cultured Cells with Compounds and Cell Viability Assay

	Fluorescence Confocal Microscope images


	Discussion
	Conclusion

	CHAPTER 3
	DEVELOPMENT OF CdSexS1-x QUANTUM DOTS
	Experimental
	Synthesis of Cadmium Myristate
	Synthesis of NaHSe as Se precursor
	Synthesis of CdSexS1-x nanoparticles
	Ligand Exchange for CdSexS1-x quantum dots

	Characterization
	Optical characterization
	Structural Characterization:

	Discussion
	Conclusion:

	REFERENCES

