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ABSTRACT

NONLINEAR EULER POISSON DARBOUX EQUATIONS
EXACTLY SOLVABLE IN MULTIDIMENSIONS

The method of spherical means is the well known and elegant method
of solving initial value problems for multidimensional PDE. By this method the
problem reduced to the 1+1 dimensional one, which can be solved easily. But
this method is restricted by only linear PDE and can not be applied to the non-
linear PDE. In the present thesis we study properties of the spherical means and
nonlinear PDE for them. First we briefly review the main definitions and appli-
cations of the spherical means for the linear heat and the wave equations. Then
we study operator representation for the spherical means, especially in two and
three dimensional spaces. We find that the spherical means in complex space
are determined by modified exponential function. We study properties of these
functions and several applications to the heat equation with variable diffusion co-
efficient. Then nonlinear wave equations in the form of the Liouville equation, the
Sine-Gordon equation and the hyperbolic Sinh-Gordon equations in odd space
dimensions are introduced. By some combinations of functions we show that
models are reducible to the 1+1 dimensional one on the half line. The Backlund
transformations and exact particular solutions in the form of progressive waves
are constructed. Then the initial value problem for the nonlinear Burgers equation
and the Liouville equations are solved. Application of our solutions to spherical

symmetric multidimensional problems is discussed.
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OZET

YUKSEK BOYUTLARDA TAM COZUMLENEBILEN DOGRUSAL
OLMAYAN EULER POISSON DARBOUX DENKLEMLERI

Kiiresel ortalama metodu iyi bilinen ve ytiksek boyutlu kismi tiirevli diferansiyel
denklemler icin baslangi¢ deger problemlerini ¢6zmekte oldukca kullanish bir
metottur. Bu metodla yiiksek boyutlu problem kolaylikla ¢oziilebilen bir boyutlu
probleme indirgenir. Fakat bu metot dogrusal kismi tiirevli diferansiyel den-
klemlerle sinirlidir ve dogrusal olmayan kismi tiirevli diferansiyel denklemlere
uygulanamaz. Biz bu tezde kiiresel ortalamanin 6zelliklerini ve kiiresel orta-
lamayla iligkilendirilebilen dogrusal olmayan kismi tiirevli diferansiyel denk-
lemleri galistik. Ilk olarak kiiresel ortalamanin temel tanimlarimi, dogrusal 1st
ve dalga denklemlerine uygulamalarmi yeniden inceledik. Daha sonra kiiresel
ortalamanin operator temsilini iki ve ti¢ boyutlu uzaylarda calistik. Kiiresel or-
talamanin karmasik uzayda modifiye iistel fonksiyon tarafindan belirlendigini
bulduk. Bu fonksiyonlarin 6zelliklerini ve degisken katsayili 1s1 denklemine bir
¢ok uygulamalarini ¢alistik. Daha sonra Lioville, Sintis Gordon ve Hiperbolik
tipte Sintiis hiperbolik Gordon formunda dogrusal olmayan dalga denklemleri
tek boyutlu uzaylarda verildi. Bazi fonksiyonel kombinasyonlarla bu denklem-
lerin 1+1 boyutlu yar1 dogru tizerine indirgenebilecekleri gosterildi. Backlund
transformasyonu ve progresif dalga tarzindaki kesin ¢oziimler olusturuldu. Daha
sonra Liouville ve dogrusal olmayan Burgers denklemi i¢in baslangic deger prob-
lemleri ¢oziildii. Coziimlerimizin yiiksek boyutlu kiiresel simetrik problemlere

uygulamar: tartisilda.
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CHAPTER 1

INTRODUCTION

The method of spherical means is the well known and elegant method of
solving initial value problems for multidimensional PDE (Courant and Hilbert
1962 John 1981). By this method the problem reduced to the 1+1 dimensional
one, which can be solved easily (Courant and Hilbert 1962 John 1981). Then by
taking the limit » — 0 it is shown that the spherical means are reducible to the
original function and this way solution of the wave equation in the D’ Alembert
form was given. But since the spherical means are averages of given function
around arbitrary spheres, the method can’t be applied to the nonlinear PDE. This
is why all studies in this field are restricted by the linear PDE. In the present thesis
we show that idea of spherical means and way how they solve the problem could
be helpful in study of some nonlinear PDE in multi-dimensions. The main idea
is motivated by the Darboux equation reducing the action of multidimensional
Laplacian on the spherical means to the one dimensional linear operator of the
second order. Then a multi-dimensional problem for spherical means is reducible
to the 1+1 dimensional one. The last problem in many cases can be solved exactly.

From the theory of integrable models we know that some class of integrable
models called the C integrable, by some transformation of unknown function can
reduce the nonlinear model to the linear one. If we consider this linear equation
as the equation for the spherical means, then the nonlinear counterpart gives 1+1
dimensional PDE. These equations can be studied in a full capacity of integrable
systems. This allows us to describe some multidimensional nonlinear PDE, with
the set of particular solutions and the initial value problems.

This thesis is arranged as follows;

In Chapter II, we briefly review the method of spherical means and consider
its operator representation in one and two dimensional space. In Section 2.2, we
consider operator representation for spherical means in the complex plane. For
this case in Section 2.3, we give explicit formula for the spherical means operator
in terms of modified exponential functions. We study some properties of this

function and related functions such as the modified sine-cosine and hyperbolic



sine-cosine functions. Then we introduce the differential equations satisfied by
these modified functions. As an application of the modified exponential function,
we relate it with a Heat equation whose diffusion coefficient is linear function of
x. Using the Cole-Hopf transformation we construct the corresponding nonlinear
Burgers equation such that its solution can be expressed in terms of the modified
exponential function. We also describe the Hierarchy of the Burgers equations.

Chapter IIl starts from brief review of solution for the initial value problem
for the wave equation in 1+1 dimensional space. In Section 3.2, we present
solutions of I.V.P for the wave equation by the method of spherical means in 3 + 1
dimensional space. In Section 3.3, by the method of spherical means I.V.P for the
wave equation in 5 + 1 dimensional space is solved. In Section 3.4, we solve L.V.P
7 + 1 dimensional spaces by the same method. In Section 3.5, solution of the I.V.P
for the wave equation in arbitrary odd dimensional space is given by the method
of spherical means. In Section section 3.6, we review the Hadamard Method of
Descent which is useful to study i.v.p in even dimensional spaces.

In Chapter IV, we start with review of the relation between Liouville equa-
tion and surface theory. In Section 4.2, we give the expression of the spherical
Liouville equation which is defined in 3 + 1 dimensional space. We relate it with
the spherically symmetric wave equation by Backlund transformation which al-
lows us to write the general solution of spherical Liouville equation. In Section
4.3, we solve initial value problem in a particular form for the spherical Liouville
equation where initial velocity is zero. The progressing wave solution of Spheri-
cal Liouville equation and expression for the Lax pair is given in Section 4.4. For
arbitrary dimensional space, we give the spherical Liouville equation with some
potential and write its general solution. We solve initial value problem for this
case and give progressing wave solutions in Section 4.5. In Section 4.6, we write
spherical Liouville equation for arbitrary odd dimensional space.

In Chapter V, we introduce the spherical Sine-Gordon and spherical Sinh-
Gordon equations. In Section 5.1, we study Sine-Gordon equation in 1+1 dimen-
sional space. In Section 5.2, we give the expression of the spherical Sine Gordon
equation. Using Backlund transformation we write Bianchi permutability formula

for this equations and find its kink and anti-kink like solutions. After giving its



Lax pair we relate this equation with Riccati equation. In Section 5.3, we write the
expression for spherical Sinh-Gordon equation. Writing Backlund transformation
for this equation allows us to write the soliton like solutions. To construct new
solutions we write the Bianchy Permutability formula for this equation. Then we
consider two soliton like solution of this equation and progressing wave solution.
Finally, we relate this equation with Riccati equation.

In the last Chapter we consider the application of the method of spherical
means to the heat equation. In Section 6.1, we solve initial value problem for the
heat equation in 2 + 1 and 3 + 1 dimensional space by the method of spherical
means. In addition to these we write he solution of the initial value problem
for arbitrary odd dimensional spaces. These applications allows us to write the
solutions of I.V.P for the corresponding nonlinear Burgers equations. In Section
6.2, we introduce Cylindrical Burgers equation and write its general solution. In
Section 6.3, we introduce the spherical Burgers equation in 3+1 dimensional space
and write its general solution. In Section 6.4, we consider the heat and Burgers

hierarchies and write the spherical and cylindrical Burgers Hierarchies.



CHAPTER 2

THE METHOD OF SPHERICAL MEANS

In the present chapter, we briefly review the method of spherical means
(Courant and Hilbert 1962 John 1981), its operator representation in two and
three dimensional spaces and in the complex plane. In the complex plane, we
give explicit representation of the spherical means operator in terms of general-
ized exponential functions. Then we study some properties of the generalized
exponential function and the related functions such as the generalized sine-cosine
and the hyperbolic sine-cosine functions. Some applications of these functions to

partial differential equations are discussed.

2.1. Main Definitions and Properties

The method of spherical means, averaging functions on the sphere, date
back to the studies of Fritz John (John 1955). The method of spherical means
plays very important role in the theory of partial differential equations. It is
very powerful method to study partial differential equations in the higher dimen-
sional spaces. It appears in different areas of mathematics like integral geometry,

inversion of the Fourier transform and in the study of Radon transforms,etc.

Definition 2.1 Spherical mean of a continuous function u(x) = u(xy, xz,...,x,) in R"
is the average of u on (n — 1) sphere with given radius and center. Spherical means is

denoted by M,,(x, r) and given by the following formula (John 1981)

M, (x,r) =

1n_1 f u(y)ds,. (2.1)

wyt
ly—x|=r

In this formula w, is the surface area of the unit sphere, x = (xy,...,x,) is the
center of the sphere with radius r, w,"! is the surface area and dS, is the area

element of this sphere. By setting y = x +r&, with |£] = 1, we can find another



representation for the spherical means;

1
M, (x,r) = - f u(x + ré&)dSe. (2.2)
n|§|=1
In this representation w, and dS; are the surface area and surface element of the

unit sphere respectively. In limiting case when r approaches zero, the spherical

means gives exactly the original function u.

lim M,,(x, r) = u(x). (2.3)
Proposition 2.1 (John 1981) Spherical means of a function satisfies the Darboux equa-
tion.
2
AM7) = (o + DM ). .4
Proof Differentiating both sides of equatlon (2 2) with respect to r gives ;
d
5 —M,(x,7) f Z Uy, (x +1r&)EdSe, (2.5)
i=1
|<‘Z| 1
where 1; = x; + r&;. The Divergence Theorem is read as
kau(x)dx = fu(x)ékdsx (2.6)
Q PTe)

where D, = a%k, & =&y, ..., &) outward unit normal, dx = dx;...dx, and dS,
is the volume and the surface element correspondingly. Applying Divergence

Theorem (2.6) to the equation (2.5) gives,

IMrn = —a f u(y)d 2.7)
ar T W, T ¥y '
ly—x|<r
= fdp f u(y)ds, (2.8)
0 ly=xl=p
= A, f "IM,(x, p)dp. (2.9)
0
Multiplying equation (2.9) by ~! and differentiating with respect to r yields,
a n—1 a _ n—1
P (r ;Mu(x, r)) = A" My (x, 7). (2.10)
Thus the spherical mean M,(x,r) of function u(x) satisfies the partial differential
equation
? n-10
ﬁ + " )M (x 1") AxMu(x, 7’) (211)

which is known as Darboux’s Equatlon. From this equation we can see that

M, (x, —r) is also satisfies the Darboux Equation. O



Proposition 2.2 (John 1981) If a function u(x, t), which depends on n space variables
X1,%a, ..., %, and time t, satisfies the wave equation uy — ¢ A u = 0, then its spherical

means satisfy the Euler-Poisson-Darboux equation.

-1
(M = & (M) + == M) = 0. 212)
Proof If function u(x) is also depends on time ¢, then its spherical means is
found by the following formula

M, (x, t;1) = a)i f u(x + ré, t)dSe. (2.13)

n
1€l=1

If the Laplacian operator acts on the Spherical means we find that

1
AM, = — fou(x + ré, t)dS:. (2.14)
"=
Since u(x, t) satisfies the wave equation we can write
1 1 02
AM, = a)—n f C—zﬁu(x +ré, t)ds§ (215)
1€l=1

Using that t is independent from &, we can interchange differentiation with inte-

gration. After using the definition of spherical means we have

1 0?

AM, = ==
c? ot?

M,. (2.16)

This equation means that the spherical means of any solution of the wave equation
is solution of the same equation. By using Darboux equation (2.4) we find that

spherical means of function u(x, t) satisfies

n—1
. (Mu)r). (2.17)

(Mu)tt =¢? ((Mu)rr +

O

2.1.1. Operator Representation of Spherical Means

Let function u(x) is real analytic function in the disk |£] < 1. Then expanding

it into the Taylor series and using the definition of spherical means we have

M,(x,r) = wi f 4 Veu(x). (2.18)

|&1=1



Since x is independent from &, we can threat the last expression as an operator
acting on function u(x). On the other hand, the spherical means is an even function
of r, M, (x,r) = M,(x, —r). Using this property and representation

e"*Vx = cosh &V, + sinh réV,, we deduce that spherical means operator M has the
form

M = a)i deg cosh (ré.Vy). (2.19)

n

j€l=1
2.1.2. Spherical Means in One Dimensional Space

Spherical means of a function u in one dimensional space is equal to the

standard mean value of the function u;

u(x—r)+u(x+r)

M, (x;r) = > (2.20)
Expanding u into the Taylor series, we find
d
M, (x;r) = cosh (rﬁ)u(x). (2.21)

This representation is even in r and gives the original function when r approaches

to zero.

2.1.3. Spherical Means in Two Dimensional Space

In two dimensional space, expanding function u(x, t) in the Taylor series

allows us to write the spherical means as
1 ([ .
Mu(x, y; 1’) — E f dee(rcos 60, +rsin 98y)u(x’ y) (222)

If we split the integrand in hyperbolic cosine function and hyperbolic sine func-
tion, we find the operator representation of the spherical means in two dimen-
sional space as

271
M, (x,y;1) = % f d0 cosh (r cos 00, + rsin 09, )u(x, y). (2.23)

0



Using equation (2.23), it is instructive to derive the Darboux (2.4) equation by

alternative method. If we differentiate M, (x, r) with respect to r we find

2m
%Mu (x,7) = % f dO sinh (r cos 09y + r sin 69, )(cos Ody + sin 69, )u(x, ),
0
82 21
ﬁMu (x,7) = % f dO cosh (r cos 0dy + rsin 0, )(cos Ody + sin Qﬁy)zu(x, Y).

In order to combine these two equations, let us write the %Mu(x, r) in terms of the

hyperbolic cosine function.
2n

%Mu(x, r) = % f r cosh (r cos 09y + r sin 0d,))(— sin OJ + cos 68y)2u(x, ydo.  (2.24)

0

If we write the obtained results in the Darboux equation (2.4)

? 10
AxMy(x, 1) = (ﬁ + =5 )M, 7) (2.25)
we find,
21
AM,(x,7) = % f cosh (rcos 09y + rsin 09,)(9x* + Iy)u(x, y)do. (2.26)

0

2.2. Spherical Means Operator in Complex Plane

Spherical means operator can be expressed in terms of complex variables which

is useful to study analytic and harmonic functions.
Proposition 2.3 Spherical means operator in complex domain is given by the following formula

1 d .
M¢(z, 1) = i Sﬁ ggcosh (r&d; + 1r&d:) f(2). (2.27)
€1=1
Proof In two dimensional space, operator representation of the spherical means (2.23)
is
2n

My (x,7) = % f dO cosh (r cos Ody + rsin 09, )u(x, y). (2.28)

0

Using the definition of sine and cosine functions we find that;

2n . )
i0 —i0

Mu(x, y,7) = % f d6 cosh [r(%(&x —idy) +

> (0y + iay))]u(x, ). (2.29)

Defining z = x + iy and & = ¢'? we find

My(z,1) = 1 f dg cosh(réd, + ré&ds) f(2). (2.30)

2mi
|&1=1



Theorem 2.1 (Cauchy Integral Formula) Let F be analytic in domain D within simple closed

curve C C D. For a point zg interior to the C, following relation holds:

f(@)

2m z— zo

f(z0) = (2.31)

The meaning of this formula in terms of spherical means is given by the next theorem.

Theorem 2.2 Spherical means of an analytic function f(z) is independent of r and identical to

the function’s itself in the region of analyticity.

Mg (z,1) = f(2). (2.32)
Proof Let us consider spherical means operator (2.27) in complex domain, in the region

of analyticity of function f(z),

My(z,1) = ZLm f dg cosh(réd, + réds) f(2). (2.33)

|&1=1

Then expanding cosine hyperbolic function in the Taylor series we find

o 2n
1 2n 2n—k ¢k
My(z,1) = 9§ ;ZZO‘ (2") (52 )'5 2Rk £(2). (2.34)
|5| 1 =0

Since f(z) is analytic then its derivative with respect to z gives zero. According to this,
only terms with k = 0 will survive
1 d 5 2n 52n 2n
2.
Mien =50 b ¢ Y G 1) 239

2mi
1&1=1 =0

According to the Cauchy integral formula, in this integral only the term with &1 will

survive. Hence n must be zero.

1

Mg(z, 1) = i f( (2.36)
1€l=1
Mg(z, 1) = f(z)zim, 9§ édé (2.37)
1€l=1
Ms(z,r) = f(2). (2.38)

Another way to prove this theorem is based on the Cauchy Integral formula (2.31)

f(@)

2m z— zo

f(z0) = 5=

(2.39)



Let us consider contour C as the circle: |z —zo| = . Then z —zy = r¢’?, 0 < 6 < 2m,
dz = ire'?do, so

f(z0) = % 56 f(zo + re')dO = M(zo). (2.40)

Proposition 2.4 The relation between differential operator and integro-differential operator is

k
AN
(&) = 2m bt 241

Proof Expanding exponential function, we observe that only term of order k gives

given as

nontrivial contribution. O

Theorem 2.3 (generalized Cauchy Formula ) If a function is not analytic but continuous in a

region Q) bounded by a closed curve C, then at any point zq in the w following formula holds;

If/d
f(o)— f(é) ——ff f/é (2.42)

E—Zo

where dA is the surface element.

Theorem 2.4 Spherical means of an arbitrary complex function is given by the following formula

#(z,2,7) [ ) Zan] f(z,2). (2.43)

Proof The proof can be done by two ways.

1) spherical means operator in complex notation is given by

1 dé
M¢(z,2,1) = i Sgl . T cosh(r&d, + r&dz) f(z,2). (2.44)
From the Generalized Cauchy integral formula (2.42), we find

Mj(z,2,7) = cosh(réd + r&02) f(z, 2)lemo + — f f dAg(COSh(“Z +1£02)) f(z,2) (2.45)

where dA is the surface element. Thus spherical means of an arbitrary function is equal

to the
oo 2n
ernan —k— 15k 1 B B
My(z,2,1) = f(z,2) + = ff AZ Z 2” T%“ Kk f(z,2). (2.46)
n=0 k=1 )
Letting & = Re'?, allows us to write
L& & 2 1 211 ernelﬁ(Zn 2k) g21-1
Mf(z,z,1) = §Z f deQ o] 2 kok (2, 2)
n=0 k=199 0 '
S 2n 2n 2n ,i0(2n—-2k)
ooy 1 kr ¢ 2k Ak £ =
Mg(z,z,1) = % ZO f 2n(2n)! -5 f(z, 2). (2.47)
= 6=0

10



If n # k then the integral gives zero. Hence the expression reduces to the

o

2n
My(z,z,1) = f2) + Y| (g ;

n=1

91 £(z, ). (2.48)

Thus spherical means of a function which depend on z and z is given by

#(z,2,7) [ n ')2 y Z]f(z,:Z'). (2.49)
Since A= 4d,0; then spherical means of function f(x, ) satisfies
2 p2n AT
M¢(x,y,7) Z ca | FG ) (2.50)

2) The second way to prove is to calculate the integral directly. Spherical means operator
in complex plane is given by
- 2n y2n 5211 -k Ek

My(z,2,7) = 1 95522 (2) o L= & Pnkgk gz, 7). (2.51)

|£| 1 n=0 k=0

Since |£] = 1 we get, EE=1. Using this relation we can write

o 21 p2n g2n-2k

My(z,2,1) = 211 56 EEZZ 20) B Pk f(z,2). (2.52)

=1 ROk
Now, according to the Cauchy integral formula (2.31) only terms will survive whenn = k,

so we obtain,

had 1,2n
Mf(z,z,1) = Z (27) 3y 09 f(z,2) (2.53)
n=0 ’
ha r2n
Mz = ) (50000 f(.2) (254)
n=0 \ "’
O
Let us define new function -
Zn
e(z;2) = —_—, (2.55)
n=0 (n!)z

by ratio test it can be shown that the series converges for all z in the whole complex
plane, then the function e(z; 2) is an entire function. Using this function, we can write the

spherical mean operator M as

},.2
M= e(Z A; 2). (2.56)

Theorem 2.5 The value of a harmonic function u = u(x, y), at the center of a disk, is equal to

the average value of the function u on the boundary of the disk.
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Proof If function u(x, y) is harmonic then it satisfies Laplace equation
Au(x,y) =0. (2.57)
Hence from the spherical means operator
)
M, (x,y;1) = e(z A; 2) u

and by the definition of e(x;2) (2.55), it is found that spherical means of a harmonic
function is

My(x, y; 1) = u(x, y). (2.58)

This equality tells us also that, average of a harmonic function is independent from the

radius of the circle. O

If function u(x, y) is not harmonic then for the spherical means we have the next
formula
2 A 2n
My(x, y;7) = u(x, y) + YRAAET: APu+...+ Tl AU+, (2.59)
Explicitly dependent of the radius r.
Now, as an application of spherical means operator (2.56), let us evaluate the
spherical means of some special functions which depend only radial part.

1) In two dimensional space let us consider consider function

u(x,y) = 1 (2.60)

u(R) = %, R= Jx2+y2 (2.61)

Since the function depends only on radial part then Laplace operator has the form

or

1
A= (9%{ + E&R

If we evaluate the Laplacian of function % we find

12



A% = % (2.62)

AZ% = 13;—25 (2.63)

A?’% = 3;—572 (2.64)

A4% = 3215{2972 (2.65)

AS% = % (2.66)
2=22 12

A”% = 3571'{'2;1&21” Dy (2.67)

Writing the the operator form of spherical means we find spherical means of function +

as
N
N = 4 L
M (R;7) = Z’a 7 R (2.68)
& (2Y (20— D2
M, (R;7) = Z_;) R (2.69)
Iy (2N en-D,
If R =, then we find
v, 1, en-1,
M,y = Z_O‘(Z) 1 2.71)
Let ¢ = p, then equation (2.70) takes the form
1y P2 @2n—1)!
My = 2 Y oty 7

2) Now let us consider function in two dimensional space as

ulx,y) = (/22 + )N, u(R) =RN. (2.73)

Power of Laplacians are found as

ARN = N2?2RN-2 (2.74)
A?RN = N?(N-2)’RN-* (2.75)
A RN = N?(N—-2)*N —4)*RN-® (2.76)
A"RN = NN =2)%(N —4)2....(N = (2n — 2)))> RN~-2". (2.77)
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Then spherical means of function RY is found as

= (2 ' [N(N=2)(N - 4)...(N - 2n-1)]?
Mgy = RN 2 — : 2.78
R e (4R2) (n!)2 (2.78)
3) Let u(x,y,z) = \/%, this function is harmonic in three dimensional space
X242 +z
so spherical means of u(%) = % is equal to itself
1
M 1= x (2.79)

This also tells us that for the harmonic functions we do not need to take the limitr — 0 to
recover the original function from the spherical means of the function.

4) If we consider the function

u(x, y,z) = RN, R = a2 + y2 + 22. (2.80)

Laplacians of function are found as

N (N+D! g,
ARY = TR (2.81)
2N _ (N+DI Ny
AR = R (2.82)
SR = R (2.83)
n pN _ (N+ 1)' N-2n
AR = iR (2.84)
> (2 ) [IN(N = 2)(N = 4)..(N = (2n - 1))I?
Mgy = RN Z—o(_%z) INN = 2)( (21)2( @n - DIF (2.85)

In three dimensional space spherical means operator is given by the following formula

(Sabelfeld and Shalimova 1997)

inh
Mu(xr Y,z T) = Mu(xl %Z)- (286)
rva
Then using the definition of sine hyperbolic function
> r2n All
Mu(x, Y,z 1’) = ; mu. (287)
Hence
- (N + 1)! Neon
My = Z:;) @i T DN @i (2.88)
© 9
— N 1’_ n (N + 1)'
Mev = R HZO(RZ) Qn+1)!(N-@n-1)! (2.89)

In addition to above examples, spherical means of an arbitrary function is evaluated in

appendix (A).
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2.3. Properties of Modified Exponential Function

In previous section we introduced modified exponential function derived by the

next formula,

e(x;2) = Z (n')2 (2.90)

This section is devoted for the properties of modified exponential function.

Proposition 2.5 Function e(x; 2) satisfies the second order differential equation

jx( y(x)) y@ = 0. 2.91)

Proof Let us take derivative of e(x;2) with respect to x

d - x"

Multiplying equation (2.92) with x gives,

a n+1

x—e(x 2) Z T e (2.93)

Now, in order to eliminate (1 + 1) in denominator, let us take one more derivative

d, d S
—(ee(;2) = Z:(‘) i e(x;2) (2.94)
thus e(x; 2) is a solution of the following differential equation
d
—(x e(x 2)) = e(x; 2). (2.95)

O

Equation (2.95) can be transformed to the Schrédinger equation with exponential poten-

tial. To do this, let us multiply equation (2.95) with x
xgxge(x; 2) = xe(x; 2). (2.96)

We see that this equation is Euler type. So by substitution

d dxd d
=Y = - -
x=¢e’/, y=Inx, dy dy o xdx (2.97)
it becomes
d2
—e(e¥;2) = e¥e(e?;2) (2.98)
dy?
or
dZ
(_d_yz + ey) gD(y) = 0. (299)
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So, solution of this equation is

P(y) = e(e’;2) (2.100)
or
v @)y e
20 = X G = & 2400

Equation (2.99) can be extended to the complex domain. In particular, for pure imaginary
y = i&, we have following equation
3 DV S
(@ +e )(p(zé) = (@ +e )‘I’(é). (2.102)
The meaning of this equation is

—%\y(g) = W (&) = (cos & + sin &)W(&). (2.103)

Solution of equation (2.102) is

© i .
W) = HZ:;J (i!)z = HZ:(:) e né(;lr!)zzsm ne (2.104)
Proposition 2.6 (Abramowich 1983) Function e(x;2) satisfies the differential equation
k ‘ k
@(x WE(X; 2)) = e(x; 2). (2.105)

Proposition 2.7 Function e(Ax;2) where A is a constant, satisfies the differential equation
dk k

Exk%e(}tx; 2) = Ae(Ax;2). (2.106)

Proposition 2.8 Modified exponential function can be expressed in terms of modified Bessel
function

e(x;2) = Ip(2 Vx). (2.107)

In addition to above properties modified exponential function e(x;2) has infinite number of zeros

located on the negative axis x.

e(x;;2) =0, x,<0, n=1,2,...

Proposition 2.9 If Ay (k = 1,2,3,...) are zeros of modified exponential function e(x;2), then
functions e(Ax; 2) satisfies the following relations

; 0, n+m
fe(/\mx; 2)e(Anx;2)dx = { . (2.108)
S -1 (A2)* n=m
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e(x;2)
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Figure 2.1. Zeros of e(x; 2).

Proposition 2.10 (Abramowich 1983) Let e (x;2) = e(x; 2) and

X
k
e®(x;2) = %e(x;Z), e (x,2) = f e (s;2)ds, k> 1 (2.109)
X
0

then functions e®(x; 2) possess the generating function

Xy _ " (k) (5-
exp(t +7) _k_Z te®(x; 2). (2.110)
Proof Expanding left hand side of (2.110) in Taylor series and using the following
identities
o n 0 n
O =V X Ry =V 2.111
e w2) Z nl(n +k)!” e (%2) Z nl(n —k)!’ ( )
n=0 n=k
we find that
Xy _ k (k) (5.
exp(t +7) _k; tke®(x; 2). (2.112)

O

As in the standard case of exponential function we can find related analogs of
trigonometric and hyperbolic functions for the modified exponential function. If we
write e(ix; 2) and use the definition of modified exponential function (2.55), we obtain

analog of Euler formula
e(x;2) = c(x;2) + is(x;2), i*=-1 (2.113)

where c(x; 2) and s(x; 2) modified cosine and sine functions given by

2%k-1
o(x;2) = Z(— (2k')2' s(x; )—Z(— 1% 1((2]’5—1)‘)2 (2.114)
Functions c(x; 2) and s(x; 2) obey the rules
%(x%c(x; 2)) = -s(x;2), (2.115)
d—(x%s(x;Z)) = c(x;2). (2.116)
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Applying the operator £x4 to the equations (2.115) and (2.116) one more time, leads to

the following proposition.

Proposition 2.11 Functions c(x; 2) and s(x; 2) are solutions of the differential equation
2
d d
—X— =0. 2.117
( " dx) u+u=0 ( )

Furthermore, as in the standard case, we can find modified hyperbolic type func-

tions
e(x;2) + e(—x;2)
2

where ch(x; 2) and sh(x;2) are given by the following formulas

e(x;2) —e(—x;2)
2

ch(x;2) = , sh(x;2) =

ka—l

h2) =Y ——, sh(x2)=y — . 2118
ch(x;2) k;(zk!)z sh(x;2) kzz;((zk—m)z (118)

From the definition of the modified hyperbolic functions (2.118) we find that modified

cosine and sine functions satisfy following equations

d, d
T (o=ch(;2)) = sh(x;2), (2.119)

d, d
E(XES}Z(X' 2)) ch(x;2). (2.120)
Hence, following proposition holds.

Proposition 2.12 Functions ch(x;2) and sh(x;2) are the solutions of the following differential

equation
2
d _d
—x— | u—-u=0. 2121
( " dx) u—u=20 ( )
Proposition 2.13 (Abramowich 1983) Addition rule for the e(x;2) is given by the following
formula
.2) = (n) E.z (-n) y.z ) 2122
e(x + y;2) n;we (3:2¢7(532) (2122)
Proof Using the generating function relation, given in proposition (2.10), we can write
et = Z F1e" (x; 2) (2.123)
n=—oo
T = Y e(y;2). (2.124)
m=—oo

Multiplying equations (2.123) and (2.124) then equating the same power of ¢, we find

e +y);2) = Y €2 (y;2) (2.125)
writing x — % and y — §, we find
e(x+y;2)= ) e(”)(;—c;Z)e(‘”’(g;2)- (2.126)

18



Proposition 2.14 (Abramowich 1983) The solution of the integral equation

X1 X
u(xl, xz) =1+ ffu(tlth)dtldtZ (2127)
0 0

with xp = 1, is given by the modified exponential function e(x; 2).
Proof Let us consider the integral equation

X1 X

u(x1, xp) = 1+ffu(t1,t2)dt1dt2. (2.128)
0 0

As an first approximation to the solution, let us take u(x) = 1 and substitute into the

integral equation and then we find after # iterations

ui(x1,x2) = 1+x1x (2.129)
up(x1,x2) = 1+ (x3x2) + (x12x22)2 (2.130)
2 3
uz(xy,x2) = 14 (x1x2) + (x12xzz) + (QE;C)Z; (2.131)
o k
u(er, x2) = kZ_; (’;;j)zz) . (2.132)

Taking x, = 1, gives the desired result

u(xy, 1) = Z @) (2.133)

2.3.1. Application of Modified Exponential Function to the PDEs

Let us consider a heat equation where the diffusion coefficient is linear function

d [ d
U = P (xa)u, u = u(x,t). (2.134)

Separation of variables u(x, t) = X(x)T(t) gives us;

1’ _ (0xxd)X

T e A (2.135)
Thus we find that functions T and X are given by,
T(H) = e, X(x) = e(Ax;2). (2.136)
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Since this heat equation is linear, we can write the general solution in the form,

(o]

u(x, t) = Z a),eMte(Aix; 2). (2.137)
i=0

It is well known that one-dimensional heat equation is related with nonlinear
PDE called Burgers equation (Burgers 1948) by the Cole-Hopf (Cole 1951 Hopf 1950)
transformation. This relation allows not only to find shock soliton solutions of Burgers
equation, but also to solve IVP for the last one. Now for our modified version of the heat
equation (2.134), we can construct corresponding PDEs. To do this let us define ¢ = Inu.

Then from the heat equation (2.134), we get the analog of the potential Burgers equation.

Pt = XDy + Py + X2 (2.138)

Taking derivative with respect to x and defining ¢, = v, we get the analog of the Burgers

equation with space dependent coefficients given by
Ut = XUy + 205 + V> + 2X00y. (2.139)

Then a solution of this Burgers equation is given by the Cole-Hopf transformation

_ ux(x, )
T ou(x, )

o(x, ) (2.140)

By using solution of heat equation (2.137), we find solution of (2.138) and (2.139) depend-
ing on only e(x, 2) and its derivatives. Moreover zeros of function u(x, t) becomes the poles

of equation (2.139).
aAieAit%e(/\ix; 2)

u(x, t) = .
(1) ayetite(Aix; 2)

(2.141)

2.3.2. Burgers Hierarchy

We can generalize previous result to the hierarchy of the heat equations (Pashaev
and Giirkan 2007). Let us consider the hierarchy of heat equations given for the different
times (f1,tp,...) as

I u(x,t) = dex"dyu(x,t), n=1,2,... (2.142)

Then by the Cole-Hopf transformation (2.140), we find the Burgers equations hierarchy

for different times (t1,fy,...) as

91,0 =0y [(0x +0)'x" (D +0)".1], n=1,2,... (2.143)
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2.3.3. Spherical Means in Three Dimensional Space

In three dimensional dimensional space, we can write the expression of spherical

means as

2n ™

My (x,7) = ﬁ f f cosh (rsin 0 cos pdy + rsin O'sin pd, + r cos 0dz)u(x, y) sin OdOd¢.
o 0

(2.144)
Derivative of M,(x, r) is given by

21 T

%Mu(x, r) = ﬁ f f (sinh «) (sin 0 cos ¢dy + sin O sin Gd,, + cos 682) u(x, y) sin 0d0d¢
0

0

(2.145)
where @ = (rsin 0 cos ¢pd; + rsin Osin ¢dy, + r cos 09z). Differentiating this equation for
two times with respect to 0 gives us the relation

2n ™

%Mu (x,7) = ﬁ f f r(cosh ) (cos 0 cos pdy + cos Osin Pd,, — sin Qaz)z u(x, y) sin 0d0dd
o 0

(2.146)

Second derivative of M, (x,r) is

2n T
2

2
%Mu(x, r) = ﬁ f f (cosh ) (sin 0 cos pdy + sin O sin Ppdy, + cos 982) u(x, y) sin 0d0d¢
o 0
(2.147)
writing expressions (2.146) and (2.147), for the first and second derivatives of M, (x, 1),
into the Darboux equation (3.8) in three dimensional space we find

2n T

MMy (x,7) = ﬁ ff(cosh a) (x1(0,0,x,y,2) + x2(0, ¢, x,y, 2))u(x, y, z) sin 0d0d¢p
0

0

(2.148)
where the functions a, x1, X2 are given with
®(0,9,x,y,z) = (rsin0cos@dy +rsinOsinPd, + rcos 00z) (2.149)
2
x10,¢0,x,y,z) = 2 (cos 0 cos pdy + cos O'sin Ppd,, — sin 982) (2.150)
2

x200,¢,x,y,2) = (sin 6 cos pdy + sin O'sin pd, + cos 982) . (2.151)

2.4. Power of Laplacians and Spherical Means

In n dimensional space the Darboux equation reads
? n-10

AxMy(x, 1) = (ﬁ +— ;)Mu(x, r). (2.152)
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The first and the second derivatives of the expression are given by

2 _
A M) = Lzl

or = Z(ﬁ + TE)MU(X/ 1’), (2153)
A 2 * n-10
AxﬁMu(X; r = ﬁ(ﬁ + TE)Mu(x, 7). (2.154)

Multiplying equation (2.153) with =1 and adding with equation (2.154) together we find
that

? n-19_9*> n-19
—_ A2 — _
AcbeMu(x,1,8) = MM, 1,8) = (55 + —— )55 + —— S IMulx, 7). (2.155)

If we do this calculation for arbitrary number k, we find that

»? n-19

k _ (9 Y \k
AM,(x,1,t) = (81’2 + . 81’) M, (x,7). (2.156)

In the special case, for three dimensional space, we have following relations

AM( ) = ~0M)y 2.157)
AX(TML,(X,T,t)) = (rMu)rr (2158)
N(rMy(x,1,1) = (M) (2.159)

aZk
ANrM (2,7, 8) = ﬁ(rMu). (2.160)

Then the differential operator in the form of powers of Laplacian

n

L= Z a ok, (2.161)
k=1
acts on the function u(x) as
n n
1 aZk
_ k _
L(u(x)) = kZ-f ax 8% u(x) = ;akﬁ (rM.,(x, 7). (2.162)

This allows us to reduce the problem of solution for PDE in three dimensional space in
the form du = Lu, 8t2tu = Lu or Lu = 0, to one-dimensional problem for the spherical

means.
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CHAPTER 3

SOLUTION OF IVP FOR THE WAVE EQUATION
BY SPHERICAL MEANS

In the present chapter, we study solution of initial value problem for the wave
equation by the method of spherical means. First we consider solution of .V.P in 3,5 and

7 dimensional spaces and then for arbitrary odd dimensional spaces (Evans 1949).

3.1. IVP For The One-Dimensional Wave Equation

The wave equation is a hyperbolic type partial differential equation which arises in
the study of many important physical problems involving wave propagation phenomena
(Davis 2000 Young 1972), such as the transverse vibrations of an elastic string and the

longitudinal vibrations or the torsional oscillations of a rod. It is given with the operator

* 9?
L= (ﬁ - czﬁ), (3.1)

where uis a function of two independent variables x, t. The function u physically represent

the normal displacement of particles of the vibrating string. Initial value problem is given

by
Uy — Ctyy = 0, (3.2)
u(x,0) = f(), w(x0) = g). (33)
Characteristics are given by,
X + ct = constant. (3.4)

It is natural to take these characteristics as coordinates, say
E=x+ct, n=x-ct 3.5)

Then equation (3.2) takes the form,
ugy = 0. (3.6)

This equation tells us that u must have the form,

u = F(&) + G(1) (3.7)
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where F and G are arbitrary functions of their arguments. In original variables we find

the general solution in the form,
u(x,t) = F(x + ct) + G(x — ct). (3.8)

Graph of u in xt plane consists of two waves propagating without change of shape with
velocity c in opposite directions along the x axis. If we consider wave equation (3.2) with

the initial conditions (3.3), by using the solution (3.8) it is found that,

F/(x) = %:g(x), G'(x) = %{?g(")
or equivalently,
o = J%J“% f 8(e)e (39)
0
o® = @_% f $(e)e. (3.10)

0
So solution of the initial value problem for the wave equation is given by,

x+ct

u(x,t) = f (x”t);f (X_Ct)+% f g(&)de. (3.11)

x—ct

This solution shows that u(x, t) is determined uniquely by values of the initial functions f, g
in the interval [x-ct,x+ct] of the x axis whose end points are cut out by the characteristics
through the point (x,t). This interval represents the domain of dependence for the solution

at the point (xt).

3.2. Solution of IVP for the Wave Equation in Three Dimensional
Space

The initial value problem for the linear wave equation can be solved by the

method of spherical means [(John 1981), (Courant and Hilbert 1962)]. Let us consider

the function u(x,t) = u(x1,x2,x3,t) which depends on three space variables x1, x2, x3 and

time ¢.
Proposition 3.1 (John 1981) Solution of the initial value problem for the wave equation

Uy — AU =0 (3.12)

f(x), u(x,0) = g(x) (3.13)

Ou

u(x,0)
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in 3 + 1 dimensional space is given by

u(x,t) =

1 J 1
Py f 8(Y)d5y+§ oy f f(y)dSy (3.14)

ly—x|=ct ly—x|=ct
where dS is the element of surface area of the sphere with radius ct and centered at
x = (x1,x2,...,xn) and y = (Y1, Y2, ..., Yn) is a point on the sphere.
Proof In the method of spherical means by using the Darboux equation (3.8), the

initial-value problem (3.12),(3.13) can be transformed into the one for M,(x, t;r),

9% , 0 20
ﬁMu =C (ﬁ + ;E’)Mu’ (315)
My(x,0;1) = Mg(x, 1), %Mu(x, 0;7) = Mg(x,7), (3.16)

where My and M are spherical means of initial functions f and g correspondingly. But

equation (3.15) implies;
02
or

thus rM,,(x, t; r) as a function of 7, t, can be threaded as a solution of one dimensional wave

(rMy) = CZ%(rMu), (3.17)

equation with initial values;

rMy(x, t;r) = rMy(x; 1), %(rMu(x, t;r)) = rMg(x;7), t=0. (3.18)

In terms of a new function N(x, t;7) = rM,(x, t; ), equation (3.17) takes the form
Ny — ?N,, =0 (3.19)
which has the general solution,
N(x,t;7) = f(x,7 —ct) + §(x, 7 + ct). (3.20)
From initial value problem (3.17) and (3.18) it can be found that;

My(x, t;r) = %[(ct + 1My (x, ct + 1) = (ct — r)Mp(x, ct —1)]
ct+r
L EMg(x, E)dE. (3.21)

2cr ct—r

Letting r goes to zero, solution of the initial value problem (3.12),(3.13) is found in the

form;
u(x, t) = tMg(x, ct) + %(th(x, ct))
or
u(x, t) = ! f (y)dS +£ 1 f f(y)dS (3.22)
" Anc2t Sy T 53¢ | amc2t Yoy |- '
ly—x|=ct [y—x|=ct
O
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3.3. Solution of IVP for Wave Equation in Five Dimensional Space

Similar to the previous case, the method of spherical means allows us to find the
solution of initial value problem for the wave equation in terms of spherical means of

initial functions in five dimensional space.

Proposition 3.2  Solution of the initial value problem for the wave equation in 5+ 1 dimensional

space
Ou = uy—c*au=0 (3.23)
u(X, 0) = f('x)/ ut(xl 0) = g('x) (324)
is given by
_Lpd 91,
u(x, t) = (3t T + H)Mg(x, ct) + 8t(3t + H)Mp(x, ct). (3.25)

Proof When the space dimension is five the substitution J)(x, t;r) = rM,(x, t;r) does not
reduce the Euler-Poison-Darboux Equation (2.2) into the canonical wave equation (3.2)

anymore. But the function given by,

J
N(x, t;r) = rZZMu(x, t;r) +3rMy(x, t, ;1) (3.26)
reduces equation gTzzMu = cz(g—:2 + %%)MW into the canonical form of wave equation
92 92
Z_N=c2=—
ot? or?

When r approaches the zero, M,(x, t;r) approaches u(x, t). Then by using equation (3.26),
it is found that

u(x, ) = lim 0778

27
r—0 3r (3 )

Finally, solution of the initial value problem (3.23) and (3.24) is given in terms of the

spherical means of the initial functions as;
1,0 a1,
u(x, t) = (gt 3% + HMg(x, ct) + E(gt + )M (x, ct). (3.28)

O

3.4. Solution of IVP for Wave Equation in Seven Dimensional

Space

Solution of initial value problem in seven dimensional space is given by the

following proposition.
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Proposition 3.3 Solution of the initial value problem for the wave equation in 7 + 1 dimensional

space
Ou = uy—c*au=0 (3.29)

f(x), u(x,0) = g(x) (3.30)

u(x, 0)

is given by

B J* 9?9 d t3a2 9%2 9
u(x, t) = Eatz 53 + t) Mq(x,ct) + = ((15 8t2 53 + t) M(x, ct)) (3.31)

Proof Similar to the previous case, we can convert the Euler-Poisson-Darboux equation

Z tz Mu = 2( 2 + 8 phn )Mu, into the canonical wave form by transformation,

92 P
N(x, t;1) = rBﬁMu(x, ) + 9r2£Mu(x, t;7) + 15rM,(x, t; 7).

The function u(x, t) can be recovered from N(x, ¢;7) by the limit,

N, nt)
=1 .
He D = I

Following the same procedure as before, we find solution of initial value problem for the

wave equation in seven dimensional space as,

£ 9 122 92 S a9
£ J? 92 9
+ EEM E atMg + tM,. (3.33)

After some rearrangements it can be written as;

£ J* 9?9 d ([ J 9t2 J
u(x, t) = Eatz 53 + t) Mq(x, ct) + = ((15 3R EE + t)Mf(x, ct)). (3.34)

O

3.5. Solution of IVP for the Wave Equation in Arbitrary Odd Di-

mensional Space

We have solved the initial value problem for the wave equation by using spherical
means in three, five and seven dimensional spaces and found the expressions for the
function u(x, t) in terms of spherical means of initial functions, and their derivatives.

Generalization of this idea immediately tells us that in principle, we can find a
transformation which reduces the Euler-Poisson-Darboux equation (2.2) into the canonical

wave equation (3.2). To do this let us search a function in the form;
n=3

2
N(x, t;7) = Z a MO (x, £ 7) (3.35)

k=0
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where 1 is the number of space variables, Mg{) (x,t;7) denotes %Mu and a; are constants
especiallya 3 = 1. We require that function N(x, t; r) obtained from the linear combination

of the spherical means of u and its derivatives, satisfies the canonical wave equation

Ntt(x/ t/ ; 7’) - CzNVV(xl t; 1") =0. (336)

By using the Euler- Poisson-Darboux equation (2.2), it is found that coefficients 4, must

satisfy the following algebraic relation,
13 13

(k)
ar k“( - 1M(1)) - Zukk(k+ DA tpm® - ZZa k+ MY =0, (337
k=0

=~
I
o

Solving this equation allows us to find N(x, ;7). We give explicit form of functions

N(x, t; r) for some different space variables 7;

forn =3, N(x, t;r) = rM,(x, t;7)

forn =5, N(x, t; 1) = r2(M,)s(x, t; 1) + 3rM,(x, t; )

forn =7, N(x, t; 1) = *(My)n(x, £; 1) + 9r2(M,),(x, £; 7) + 15rM,,(x, t; 1)

forn = 9,N(x, t;7) = r*(M,)mr(x, t; 1) + 1873 (M) (x, t; 7) + 8712 (M,)r(x, t; 7) + 1057M,,(x, t; 7).
Function N(x, t; r) given with equation (3.35), allows us to solve initial value prob-

lem for the wave equation in higher dimensional spaces.
Proposition 3.4 (Evans 1949) Solution of the initial value problem

Ou

Uy — AU =0 (3.38)

u(x,0) f(x), ux,0)=g(x) (3.39)

for the wave equation in n + 1 dimensions, wheren =2k +1, (k =1,2,3,...) is given by

N IEAVEEA SN ¥ I
u(x,f) = ao{(ﬁt)(t&f) (t Mf)+(tat) (#72My) (3.40)

where ag = 1.3.5.7....2k - 1) = 2k — 1)!!.

Proof Spherical means M, of function u satisfies the initial value problem

9? ? n-10
M =G+ =5 Mu (341
d
My(x,0;1) = Mg(x, 1), Mu(x 0;7) = Mg(x, 7). (3.42)

Then for function N(x, t;7) = (% %)k‘l(ﬂk‘lMu(x, t;r)) initial value problem is given by

Ntt - Nrr O/ (343)

N(x,0,r) F(x;7), Ni(x,0;7) = G(x; 7). (3.44)
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Initial value problem (3.43) and (3.44) has solution
t+r
N(x, t;7) = F(x r+t)—Fx,r—t]+ = fG(x, p)dp. (3.45)
t—r

Original function u(x, t) can be recovered by the following limit

11 N('xl 7 r)
r—0 aopr

u(x, t). (3.46)

Then solution of the ivp (3.38) and (3.39) is given by

t+r

u(x f) = = lim F(x'r+t)2_rl:(x't_r)+21—rfG(x,p)dp. (3.47)

ag r—0

t—r

Finally, we find solution of initial value problem u(x, t), in terms of spherical means of

initial functions,

1] 19 0, 19 usf
u(x, t) _(at)?ﬁ * -2 ffds t(53)" * |t ngds

ao
9B(x,t) IB(x,t)
_ 1 3 1 (9 n—. 3 ) n=3 n—2
u@h = (at)(t = = (#2My) + (—— = (¢ Mg)]. (3.48)
Where ag = 1.3.5.7....2k - 1) = 2k — D)!!. O

3.6. Hadamard’s Method of Descent

Above we have solved the initial value problem for wave equation in odd di-
mensional spaces by reducing it to i.v.p for the one-dimensional wave equation for new
function N(x,t;r) (3.35). But situation is different for the even dimensional spaces. In
general one can not find a transformation which reduces Euler-Poisson-Darboux equa-
tion to the canonical wave form. But every function in even (21n) dimensional space can
be considered as (2n + 1) odd dimensional function with one component fixed. For ex-
ample, two dimensional function u = u(x1, x, t) can be considered as a three dimensional
function u = u(x1, x2,x3,t) with x3 = constant. This way, solution for even dimensional
spaces can be found. This method is Hadamard Method of Descent (John 1981). Let us

consider, for the simplicity, n = 2 dimensional space and initial value problem

Ou Uy — AU =0 (3.49)

u(x, 0)

f(x), u(x,0)=g(x), xeR. (3.50)

To solve this problem, we start from n = 3 dimensional solution (3.14) and take limit

x3 = 0. We average function u(x, t) on the sphere with radius ct,

ly - = \/(yl 21)? + (y2 = x2)* + y3 = ct. (3.51)
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The surface element for this sphere is

ct
s, = —d, d,,.
y |y3| y1vy2

By using the solution of initial value problem in three dimensional space

1
M(X/f)zm f g(y)dSy + 071‘ 4 ff}’)ds

ly—x|=ct |y x|=ct

we find the solution in two dimensional space as

(3.52)

(3.53)

g(ylfyz) yl/yZ)
u(x, t) = chff ST 815 [4nc2tff 22 dy, yz] (3.54)

where r = /(y1 — x1)? + (y2 — x2)2.
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CHAPTER 4

LIOUVILLE EQUATION

In the present chapter, we consider nonlinear wave equation with exponential
nonlinearity called Liouville equation. First, we shortly review the relation between 1 +1
dimensional Liouville equation and the surface theory. Then we introduce the spherical
Liouville equation which is defined in 3 + 1 dimensional space and relate it with the
spherically symmetric linear wave equation by the Backlund transformation. It allows us
to write the general solution of spherical Liouville equation. After solving the initial value
problem in a particular form for the spherical Liouville equation, we give the progressing
wave solutions. We also give expression for the Lax pair of spherical Liouville equation.
For arbitrary odd dimensional space, we consider the spherical Liouville equation with
some potential. We find its general solution and solve initial value problem. In addition

to these, progressing wave solution is constructed.

4.1. Liouville Equation and Surface Geometry

When the line element of a surface is given in terms of conformal coordinates, we

have the following theorem.

Theorem 4.1 (Dubrovin, Fomenko and Novikov 1984) If u and v are conformal coordinates on

a surface in Euclidean 3-space, in terms of which the induced metric has the form
di? = g(u,v) (du® + do?), 4.1)

then the Gaussian curvature of the surface is given by

1
K=- 220, v)A In g(u,v) 4.2)

P 92
where A= 5= + 5 is the Laplace operator.

Proof Suppose that in terms of conformal coordinate u, v the surface is given (locally)
by r = r(u,v); r = (x,y,z) (where x, y,z are Euclidean coordinates for the R3). Since the

metric on the surface is given by di?> = ¢(u,v) (duz + de), we have

(Tu, Tu) = 1o, 19) = g(u, v), (ry,ty)=0.
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By differentiating these equations with respect to u, v, we obtain

1 ag(u,v)

> ou = <ruuz ru> = <ruv/ rv>; (43)

10¢(u,v

E g(av ) = (oo, 7o) = (Tuv, Tu), (4.4)
(Puw, 7o) +Fu, tw) = 0, (4.5)
(rup, 1o) + (ru, 1o0) = 0. (4.6)

We define unit vectors as
T T
e1 = e = —— n= [e1, e2].

V8, v) V8&(u,v)

By the form of the metric and properties of the vector product, the frame ey, e, 1
is orthonormal at each point of the surface. In addition, vectors ej, e, are tangent to the
surface and vector 7 is normal to it. Coefficients of the second fundamental form of the

surface are

by = L={ru,n),
blZ = M= <ruU/ 7’l>, (47)
b22 = N= <rvvz n)-

It follows from (4.3),(4.4) and (4.7) that relative to the basis ej, e, n the components of the

vectors ¥y, 'yy, oo are as follows;

B 1 dg 1 dg
Twy = 2 \/§£/ _2 \/g%/ ) (48)
1 dg 1 dg
Tw = %%, ﬁgEIM) (4.9)
B 1 dg 1 dg
Yoo = —%%,%%,N) (410)
Hence following relation holds
_ CIN-MP - L%y %8y
<ruu/ rUU> <ruv/ ruv) - LN M 2g au) + (av) . (411)
From the results given by equations (), (4.3) and equation (4.4), it is found that
10%g
Eﬁ - <ruuv/ rv) + <ruvr ruv) (4-12)
10° J
iﬁ = %(ﬁtuz ro) = Tuus Too) + (Tuv, Tuv) (4.13)
10%¢ 10%¢ o 1[dg, g,
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Then Gaussian curvature of the surface is given by,

_ det(by) LN-M*_ 1
det(gi)  (g(w,0)2  28(u,v)

For a given surface, if the gaussian curvature is non-zero then the metric g(u, v) satisfies

A Ing(u,v). (4.15)

the Liouville equation

Alng=-2Kg. (4.16)

Introducing new field by ¢ = e?, we find the elliptic Liouville equation
A @ = —2Ke?. 4.17)
When the surface is pseudo-Euclidean, the metric in conformal coordinates is given by
d* = g(t, x)(dt* — dx®) (4.18)
then for the constant gaussian curvature, it satisfies the hyperbolic Liouvile equation
(2 — P)p = —2Ke? (4.19)
where g = e?. In characteristic coordinates & = x + t, 1 = x — t the equation has the form
Pey = —2Ke". (4.20)

O

4.1.1. Backlund Transformation for Liouville Equation

The Liouville equation is nonlinear but can be transformed directly to the linear
wave equation, which allows to solve it exactly. This transformation is called the Backlund

transformation (Clairin 1902), (Forsyth 1959).

Theorem 4.2 Bicklund transformation relating the Liouville equation ug, = e" with the wave

equation gy = 0 is given by

fle = ug+ke's (4.21)
2 d—u
iy = —un—Ee'T. (4.22)

Proof Let us consider two functions u and i satisfying

Ugy = e, 17[5,] =0 (4.23)
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Now let us derive Backlund transformation relating these two equations. To do this let

us consider following system

Z ug + f(il, u) (4.24)

=
e
I

=
I

—uy + g(i, u) (4.25)

where functions f, g are arbitrary and have first derivatives according to the arguments.

Compatibility condition of this system by equation (4.23) gives us
Q = fa(~uy + ) + futty — gu(ue + f) — guug +2¢" = 0. (4.26)
Since the Q) is identically zero, its derivatives with respect to u, i are also zero

Quy = —8u—8i=0 (4.27)

Ouw,y = fu—fa=0. (4.28)

These two relation simplify the expression for the Q) as

Q=gfi— fgu+2e". (4.29)

Taking one more derivative with respect to u gives

Sfan — f&an = 0. (4.30)

According to the equation (4.27) and (4.28), we find that functions f, ¢ must have the form

gl u) = gli-u) (4.31)
f@@,u)y = f@@i+u). (4.32)
Let us define two new variables as
E = di—u (4.33)
n = i+u. (4.34)
Then equation (4.30) takes the form
2 d2
§OT5 f ~ gz =0 (4.35)

Separating this equation and equating to the k?, allows us to write

fa) = aém+bek (4.36)

g(&) = ce+de*E (4.37)
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Substituting the values of f and g in the equation (4.24), gives

ug + aek + be™* (4.38)

=
O
|

iy = —u;+ e + de7*¢. (4.39)
Applying the compatibility condition and require that iz, = 0, in the following equation

figy = gy + k(ace™™ + ade™™ — bee2 " — bde™ " (4.40)

Choosing k = %,a =d=0,c= %, gives the Backlund transformation for the Liouville

equation (Lamb 1975)

fie = wug+be (4.41)
2 a—u

i, = —un—ge_T. (4.42)

O

Once the relation between Liouville equation and linear wave equation is established,

then general solution of Liouville equation can be found by using this relation.

Theorem 4.3 General solution of the Liouville equation is given by (Liouville 1853)

A'(x)B'(t)
) =In{——"——-=|
ot = 5
Proof The general solution of the Liouville equation can be found by using the Backlund

(4.43)

transformation which relates the Liouville equation with the linear wave equation. Let

us consider the Backlund transformation

Uy —fiy = —2ke2(+) (4.44)
-1 -
W+ iy = 7e%<“—”> (4.45)

compatibility of equations (4.44) and ( 4.45) gives
Uyt — et = ﬁxt- (446)

Solution of linear wave equation is of the form i = f(x) + g(t). Substituting this solution

into the Backlund transformation (4.44) and ( 4.45), we get

—Dke2(Wtf+9) (4.47)

ux - f’
u+g = %e%(”_f_g). (4.48)
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To handle with the exponential term, let us introduce
o(x,t) = ez,

This new function satisfies the following equation

O — % - _k¢2€%(f+g)
_8y = ZlozAue
oF 2 ¢ Y (p e? :
Multiplying equations (4.50) and (4.51) with ¢7 and ¢} respectively, gives

—k¢2e§

d, -
E(equ)

d, g
E(elqb)

-1 -
ﬁqbze%.

. . . § =f . .
If we multiply first and second equation e? and e 7 respectively we can write

;_x(e%%(p) = k%S
L eFg) = Loz s
dt(e 2 2¢) - Zk(z) e

Introducing function x(x, t) as

we find
dx ’
e
dx e
dX _ -1 2 -g
a - N
Solution of these equations gives us
1

x(x, ) = — ; -
1 _
k [*efhp 4 L [*e=ste)p

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

Returning the original function, we find the general solution the Liouville Equation as

lf _lg
u(x, t) :ZIn[ cre’ J

X 1 t
k f ef0p 4 1 f o—8(p)dp

(4.60)

Introducing two functions A(x) = k f Y ef )M and B(f) = 2lk f ' e8P we can write the

general solution in a compact form as

) A()B'(t)
o =2 )

(4.61)

O
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4.2. Spherical Liouville Equation

Described above the Liouville equation admits the general solution in one space
dimension. In higher dimensions it does not work anymore. If one considers the Liouville
equation in 3 + 1 dimensions,

vy —c*Av=¢ (4.62)

for the spherical symmetric solutions v(x, t;7) = M(r, t); r = /x> + y? + z? it is possible to

reduce the equation to 1 + 1 dimensional model

2 2¢?
My = My = —M, = M. (4.63)

However, this equation does not seems to be solvable in general. In the present section,
we introduce modified form of this equation which could be studied at the same level of

completeness as in one-dimension.

Definition 4.1 The Spherical Liouville equation (SLE) for function My(r,t) is defined by the

equation

2¢? 4 o)

(My)it — CZ(Mv)rr - T(Mv)r = _Te (4.64)

The form of the equation is motivated by the method of spherical means for the

linear wave equation in 3 + 1 dimensions,
vp—cAv=0 (4.65)
which becomes formally in the form of 1 + 1 dimensional case
(rMo)tt = A (rMo)y = 0 (4.66)
where M, is the spherical means for the function v. It has solution
flx,r+ct)+ g(x,r—ct)

My(x, t;1) = p , (4.67)

equation (4.66) can be threaded as an 1 + 1 dimensional wave equation with the general
solution (4.67). But we know that the 1 + 1 dimensional wave equation can be related
with the Liouville equation by the Backlund transformation (4.44),(4.45). In our case the

similar Backlund transformation

(0; + ¢,)(r(My — ML) —4fcezMo+Mu) (4.68)

(9¢ — cd)(r(My + My,))

%e%Wv-Mu) (4.69)
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relates the spherical means M, (x, t; r) with function M,(x, t; 7). From this Backlund Trans-

formation it is found that,
(9% — ?%)(rMy) + 4c*e™> = (92 - 29 (rM,,). (4.70)
Hence if M, (x,t;r) is a spherical mean satisfying the D’ Alambert equation
(9 — c*d)(rM,,) = 0 (4.71)
then M,(x, t; r) is the solution of following equation
(Mol = A (M)yr = 2—:2<Mv>r = -%«Mv» (4.72)

It should be noted here that the function M,(x, t; ¥) can not be considered as the spherical
means of equation (4.62) since equation is nonlinear. If we average the Liouville equation

(4.62), we find

(Mv)tt - CZ AMy = Me (4-73)
2¢?
o)t —C vlrr — T olr = ev. .
(Mo}t = (M) = —(Mo)r = M (4.74)

Spherical Liouville equation (4.64) can be considered as the spherical symmetric
reduction of 3 + 1 dimensional model. Let function u = u(x, y,z) satisfies the nonlinear
equation

4
Pu-c*au= —;e”‘. (4.75)
Then for the spherical symmetric solutions u(x, y,z; t) = R(r; ), r = 4/x* + y? + z2 we have

the spherical Liouville equation (4.64)
2 2
PR - PR - 2R =~ 2R (4.76)
f r r r

This type of equation also occurs when we consider Yang- Mills Equations with external

sources(German G., 1984).

4.2.1. General Solution of Spherical Liouville Equation

Theorem 4.4 General solution of spherical Liouville Equation (4.64) is given by

1 2A'(x, 7 + ct)B'(x,r — ct
My, ) = S 1n (x, 7+ ct)B'(x,r c)2
r (A(x,r +ct) + B(x,r — ct))
where the primes denote derivative according to the second argument.

(4.77)
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Proof  Substituting solution of spherically symmetric wave equation (4.67) into the

Bécklund transformations (4.68),(4.69) and integrating gives,

1 e % f(x,r+ct) e~ %g(x,r—ct)
My(x,t;7) = —In — — . (4.78)
"ok f efPdp + ﬁ e8%P)dp)2
If we introduce two new functions A and B instead of arbitrary functions f and g
T+Ct 1 r—ct
A(x,r+ct) = kf ef™Pdp,  B(x,r—ct) = % f e 8%P)dp,
then we obtain,
1 2A(x,r + ct)B'(x,r — ct
My(x, 1) = +1n 24 G T+ )BT =c )2‘ (4.79)
" (A(x,r +ct) + B(x, r —ct))
O

4.3. Initial Value Problem for Spherical Liouville Equation

The general solution (4.79) can be applied to solve IVP for the SLE (4.64). Similar
to the 1+1 dimensional case (Jorjadze, Pogrebkov and Polivanov 1978), we consider the

following special case of initial value problem for SLE (4.64) for function My(x,t;7),7 > 0 :

Proposition 4.1 The solution of the initial value problem for the spherical Liouville equation

2¢2 4¢?
—My), = —Teer, (4.80)

My(x,0;7) = My(x, 1), (My)i(x,0;7) 0. (4.81)

(Mv)tt - Cz(Mv)rr -

is given by

My(x, t;7) er [(r + ct)My(x, 7+ ct) + (r — ct)M(x, v — ct)]

1 1 T+Ct My (x,0)
- ;lncoshzﬁf e dp (4.82)
r—ct

where M, (x, r) denotes the spherical means of function h(x).

Proof To solve initial value problem, we rewrite the spherical Liouville equation (4.64)
as;

(rMo)s — Cz(er)rr = —4c%e™. (4.83)

If we introduce W(x, t;7) = rMy(x,t;r), then initial value problem (4.80), (4.81) takes the

form of the one for the 1 + 1 dimensional case

v, -2\, —4c%e”, (4.84)

W(x, t;1r) = rMy(x, 1) P(x,r), Wi(x, t;1) =0, for t=0. (4.85)
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Equation (4.84) has the general solution given with equation (4.79).

2A(x,r + ct)B'(x,r — ct)

W(x, t;7) =In 5
(A(x, 7 +ct) + B(x,v — ct))

(4.86)

If we substitute this general solution into the initial conditions (4.85) , we can integrate

the obtained system in terms of

A’(x, 1)
z(x,r) B, 1) (4.87)
as
) z-1
V2 f e dy=In|—!. (4.88)
Defining
" o)
w(x,r) = f e 2 dp (4.89)
we find
nA =2 —omnsinh(<%), B = 2 - 2mncosh(-L) (4.90)
2 V2 2 V2o ’
Integrating once more we get
w w
A=-V2coth(—), B= V2tanh(—). (4.91)
V2 V2

Collecting all these results, we get solution of initial value problem (4.84),(4.85) as,

x,7+ct) + P(x,r — ct rct 0G0
W(x, t;r) = i ) + 9 ) — In cosh? idp. (4.92)
2 r—ct \/E
Finally the solution of initial value problem (4.80) (4.81) for SLE (4.64) is given by
My(x, t;r) = % [(r + ct)My(x, 7 + ct) + (r — ct)Mp(x, v — ct)]
r+ct )
- in cosh? = f ePMthdp. (4.93)
r \/E r—ct
If the initial function Mj,(x, ) is a constant, say My (x, r) = h, then (4.93) gives,
My(x, t;r) =h - %ln cosh? (zh—ﬁer% sinh(gct)). (4.94)
Similarly if & = 0 it can be found that
My(x, t;7) = —% In cosh? (V2ct). (4.95)

Two particular solutions given by (4.94) and (4.95) have singularities at the origin. These

solutions also illustrate that spherical means does not work for SLE (4.64) at the origin. O
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4.4. Progressive Wave Solution for Spherical Liouville Equation

Here we find particular solutions of SLE (4.64). If we write progressive wave form

W(x,t;r) = f(x,r — vt), in arranged form of SLE (4.84) and define & = r — vt, we get
0 fre — P fee +4c%f = 0. (4.96)

Defining x = 4¢?/(v* — ¢?) and multiplying this second order differential equation with f;
we find
(fe)

—+ xef = E(x) (4.97)

where E = E(x) is an arbitrary function of x. We have three possibilities:

1) ¥ >0 and E > 0. We can rewrite differential equation (4.97) as;

N (4.98)

dé

By substitution
gef = sin? [ (4.99)

we can integrate this equation as;

= (4.100)

S =E 1
€ cosh[ /55 - o))

Finally we find

Moy(x, £;7) = %m[E ! 1 (4.101)

K cosh?[ \/g(r — vt —19)]

where rg is a constant. For small 7, it can be found that this solution takes the form;

1. E 2 E
My(x, t;1) = - In Pl In cosh \/;vt. (4.102)

2) k <0and E > 0. Let k be x = —aé (ap is a constant), then equation (4.97) can be

written as
of a;
— = FV2EA|1+ =¢f 4.1
I F + T e (4.103)
By substitution
2
a
Eoef = sinh® Q@ (4.104)

we can integrate the this equation as

of =L ! (4.105)

% sinh?l \JE(& ~ )]
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and

1 E 1
Mv(x/ t/ 7") = ; In [_2 ]/

a sinh2[ \/g(r — ot —r19)]

where 7y is a constant.

3) k<0and E <0 (E = —|E|).

Equation (4.97) can be written as;

2
j_fg:mm % 0r g

|E|
By substitution,
2
T r 2
—¢/ = cosh
E] v
we have
E 1
o = ,
ao 2 El(e _
cos?[ 4/ Bl(¢ - £0)
and
MG, 1) = ~In[ 2] ! I
r a

0 cos?| |E—'(r — ot —19)]

where 7y is a constant.

4.4.1. Lax Pair for Spherical Liouville Equation.

(4.106)

(4.107)

(4.108)

(4.109)

In previous section, we constructed one soliton type solution of SLE (4.64). This

equation admits also multisoliton solutions. They can be obtained by standard technique

from the Lax Pair (Lax 1968).

r(My) 2
m -l
rMy Mv
2 . %8 % ac ) 2
™™y
m %C(MU +1r(My)y) % m
rMy
m2 ; %eT _%C(Mv + r(My),) 2

Compatibility of (4.110) and (4.111) gives us the SLE (4.64).

(4.110)

(4.111)
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4.5. Spherical Liouville Equation in Arbitrary n Dimensional

Space

If spherical means of function u(x, t) satisfies the following equation

n-1 n—-1n-31
M)y — 2 ((Mu)rr + —(My)r + —— _ZM“) =0, (4.112)
r 2 2 r
defining new function
W(x, t;7) = r'T Mu(x, 73 1) (4.113)
allows us to write equation (4.112) as
Y, — 2, = 0. (4.114)
By the Bédcklund Transformation
=1 S5t (Mo +My)
(@ + cdp)(rz My —M,)) = —dkce 2 (4.115)
n— 2 @ vV
O =T Mo+ M) = T T (4.116)
we can relate it with the Liouville Equation
-1 ~1n-31 !
(My)st — ¢ ((Mz,)rr + Iy, + 22 —MU) = 42T T Mo, (4.117)
r 2 2 2
which has general solution
2A (x,r + ct)B'(x,r — ct
My(x, t;7) = — In (o + B (7 = ct) (4.118)

rz  (A(x,r+ct)+B(x,r— ct))z.

4.5.1. Initial Value Problem

Initial value problem for the Liouville equation (4.117) in arbitrary n dimensional

space is given by

sl
= 4T T Mo (4.119)

r (M) + 2 2 7

d
My(x,1,0) = My(x, 1), E(Mv(x, 7, )=0

(Mz,>ﬁ—c2(<My>w+”‘1 n-in-31 )

0. (4.120)

This initial value problem can be written in a more compact form. By defining
W(x,r,t) = r'T M, (4.121)

initial value problem (4.119),(4.120) reduces to the one

Wy, -2V, = —4c%" (4.122)
W(x,r,0) = r'T My(x,r0)=r'Th(x,r) = p(x,7) (4.123)
Wy(x,1,0) = r'7.0=0. (4.124)
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Using the general solution of Liouville Equation (4.118) and initial conditions (4.120), we

find solution of initial value problem (4.119), (4.120) as

(r+ ct)(%)h(x, r+ct) + (r— ct)(%)h(x, r—ct)

My(x,r,t) =

2r'
r+ct
+ L ncosh? = f ep%wdp. (4.125)
r—c

4.5.2. Progressing Wave Solution

For the Liouville Equation (4.117), we can also find progressive wave solutions.
To find this solutions, let us define W(x, f;7) = r”z;lMU(x, t;r) and W(x, t;r) = f(x,r —ot) in

the equation (4.117). Then we get
P fee — P fee + 4%/ =0 (4.126)

where & = r — vt. Defining x = 4¢?/(v? — ¢?) and multiplying this second order differential
equation with f:, we find

2

(f%) +xef = E(x) (4.127)

where E = E(x) is an arbitrary function of x. As before in section 3.4, we have three

possibilities:

1) x>0 and E > 0.

For this case M, is found as

E 1
—In[~ ] (4.128)

My(x, t;7) =
re K cosh?[ \/g(r — ot —19)]

where 7j is a constant.

2) k<0 and E > 0.

Let k be k = —a3 (ag is a constant), then from the equation (4.97) by using the
transformation )

B F_ g2

e = sinh” ¢ (4.129)
we find

E 1
My(x, ;1) = — In[= 1, (4.130)
rz 0 sinh?[ E(r—ot — )]

where 1 is a constant.
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3) x<O0and E <0 (E = —|E|).

Equation (4.97) can be written as;

of a?
= =+ V2|E[7[2ef -1
oe = 7 V2VIEI I
By substitution
2
a
Lof = cosh? [ (4.131)
|E|
we have

1 E
Mv(x, t, T) = =y In [U

1
> I
re o cosz[\llg—'(r—vt—ro)]

(4.132)

where 7y is a constant.

4.6. Spherical Liouville Equation in Odd Dimensional Spaces
When the space dimension is odd, in the wave equation
uy — c2au = 0. (4.133)

After averaging function u, and defining function N(x, ¢;r) given by equation (3.35), we
can write

SaN =N, (4.134)

By Backlund transformation (4.21) and (4.22), we can relate this wave equation with
Liouville equation

Ng, = ¥ (4.135)

where & = r+ ¢, = r — ¢t and N(x,t;7) belongs to the same dimensional space with

N(x, t;7).
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CHAPTER 5

SPHERICAL SINE-GORDON EQUATION

In this chapter, we introduce the spherical Sine-Gordon and spherical Sinh-Gordon
equations. By using Backlund transformation, we write Bianchy permutability formula
for these equations and find their kink and anti-kink like solutions. After giving their Lax

pair, we relate these equations with the Riccati equation.

5.1. Sine-Gordon Equation

In general, the nonlinear wave equation is given by
uy — V2 + F(u) =0 (5.1)

where F(u) is a nonlinear function of u. The form of F(u) determines the character of
the equation (5.1). When F(u) = sinu, equation (5.1) is called the Sine-Gordon equation
(Ablowitz, Kaup, Newell and Segur 1973). The Sine-Gordon equation has a lot of physical
applications. It governs propagation of ultra short plane wave optical pulses in certain
resonant media and it also governs propagation of quantized flux in Josephson junctions

(Lamb 1980). The Sine-Gordon equation written in characteristic coordinates
Uy = SINU (5.2)

admits Auto-Béacklund transformation given by

Uy — 1y = 2Asin u ; " (5.3)
5 o
up+ 1 = n sin 1 > " (5.4)

The Auto-Backlund transformation relates two different solutions of the same equation.
The trivial solution i = 0 is a solution for the Sine-Gordon equation. Hence by using the

Auto-Biacklund transformation (5.3) and (5.4), one can find the kink solution
u(x,t) = 4arctane®, & = k(x + k=2t) + constant, k € R. (5.5)

Furthermore, four solutions uy, 11, u2, 12 of the Sine-Gordon equation satisfies
algebraic relation known as the Bianchi permutability formula or the nonlinear superpo-

sition formula
ulz—uo_/\1+A2 up —up

t =
an 1 R an 1

(5.6)
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Using this formula, one can construct two soliton solution from the vacuum solution

ug = 0 and the kink solitons (5.5) u1 with A and up with Aj.

5.2. Spherical Sine-Gordon Equation and its Backlund Transfor-

mation

As we discuss in chapter III, the spherical Liouville equation has singularities at
the origin. Now let us consider the nonlinear wave equation whose limiting case when r

approaches to zero is nonsingular.

Definition 5.1 Spherical Sine-Gordon equation is defined by the equation

92 20 9% sin (rMy)
ﬁ v — ;EMU - ﬁMU + " =0 (57)

where My(x, t; r) denotes the Spherical means of a function v(x, t) and x = (x1, x2,X3) .

When r approaches to the zero spherical Sine-Gordon equation (5.7) is equivalent to the

linear wave equation. In fact

*M, ? 29 sinrM,
72 ‘(ﬁ ror Mot —— =0 (5:8)
or
oMy pg, 4 SUMe (5.9)
9? r
t
Since lim M, = v,
r—0 5
0°v
ﬁ_ Av+0v=0. (510)

So nonlinear equation (5.7) for the spherical means M, of a function v in the limit »

approaches zero, is equivalent to the linear wave equation for function v.

Proposition 5.1 Spherical Sine-Gordon equation admits Auto-Bicklund transformation.

Proof Spherical Sine-Gordon equation could be arranged as
Wy -V, +sinW =0 (5.11)
where W(x, 7,t) = rMy(x, t; r). After changing coordinates under the rules

ro= =(r-1t), (5.12)

o1
vo= S0+ (5.13)
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and dropping the primes we obtain the equation
W, =sinW¥W (5.14)

for which the Auto-Backlund transformation is given by;

(rMo)r — (rMy), = 2Asin M/ (5.15)
(rMy)i + (rMy); = % sin M (5.16)
where (M) and (M) are solutions of Sine-Gordon equation (5.7). m|

5.2.1. Solitonlike Solution

Since M, = 0 is an evident solution of the spherical Sine-Gordon equation (5.7),

the Backlund transformation (5.15), (5.16) gives

(My), = 2isin Mo (5.17)
2
(M) = %sin ”\24”. (5.18)
From which we find
dr 1

In order to convert the partial differentiation to ordinary differentiation we introduce new
variable
1
E=r—ry— ﬁt' (5.20)
From the first partial differential equation we find,

d(rMy)

= Adé. (5.21)
2 sin rAZ/I J
From this equation, it is found that
4
My(x, t;7) = - arctan (E(x)eA(r_rO)_%t) (5.22)

where E(x) is an arbitrary function of x. From the partial differential equation (5.18) we

obtain the solution of the spherical Sine-Gordon equation as
4
My(x, t;7) = - arctan (E(x)e_A(r_rO)Jr%t) (5.23)

where E(x) is an arbitrary function of x.
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M12 — M21
e

Figure 5.1. Schematic form of transformations occurring in the theorem of per-

X
1

1
2

M
e
MO
*
M

mutability

5.2.2. Bianchi Permutability Theorem

Since we know the Auto-Backlund transformation for the spherical Sine- Gordon
equation, by using it we can find new solution. If we take the first equation of the
Backlund transformation (5.15) and rewrite it for the different solutions corresponding to

the different values of the A, we find

2 (M (M) = Ay sin LRI 6529
2 (M)~ (M) = Agsin LM 6529
2 (M) = (M)) = Aysin L), (5.26)
2 (Y~ (M) = Aysin VD) 527)

Combining the first and the third equation, and the second and the fourth equation we

obtain
d - 0 . (M) + (rMO) . (M) + (rM})
(M) = (MD) = Arsin o 4 psin L (5.28)
o2) + (rM; M3) + (rM})
%((ngl)—(ng)) = Aysin M)+ (M) v);(r D) | )ysin Mo + (M) ”);(r ) (5.29)

According to the Bianchi permutability theorem M1? = M2!. Now if we open trigonomet-

ric expressions and use some trigonometric identities we find that

(rM3?) — (M)
0 -

(/\1 + A
1 =

(rM3) — (rM3)
A=Az '

t
a 4

) tan (5.30)

Finally we find pure algebraic nonlinear superposition relation between four solutions of
spherical Sine-Gordon equation (5.7)

an r(M2 = M)) A+ Ao ; (M — Mz2})'

t =
4 -, Ty

(5.31)
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5.2.3. Two Solitonlike Solution of Spherical Sine-Gordon Equa-
tion

Nonlinear superposition formula (5.31), allows us to construct new solitonlike
solutions from known three solutions of the Spherical Sine-Gordon Equation without
quadratures. Evident solution MY = 0 is one solution for the Spherical Sine-Gordon

equation, so when two solutions are given by

M} 1

tan r4_v =eM,m = AM(r—rp) — A_117' (5.32)
rM? 0 1

tan o - e, m = Aa(r —ro) — A—2n, (5.33)

a new solution is found in the form,

4 A+ Ay el —el
12 _ = 1+ /42
M, = . arctam(/\1 L, 1tentn ) (5.34)
This solution is analogues of two-soliton solution in standard case.
5.2.4. Lax Pair for Spherical Sine-Gordon Equation
Lax pair for spherical sine-Gordon equation is given by,
m —A + 1 cos (rMy) w ++sin(rMo) || m
- ,(5.35)
m ) —_(FM”);“M”)’ - %sin (rMy) A— %cos (rMy) 2
m -A - % cos (rMy) %sin (rMy) + w m
= . (56.36)
m 1 sin (rM,) — —(rM”)’;(TM”)’ A+ 1 cos (rM,) m

t
5.2.5. Progressing Wave Solution of Spherical Sine-Gordon Equa-
tion

After rearranging spherical Sine-Gordon Equation

92 d 92 . B
rﬁMU - 2§MU - rﬁMU + sin (rMy) = 0 (5.37)
as
Yy — W, +sinW =0, (538)

we can introduce a new function

flx,r—vt) =W(x,t;r) (5.39)
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which reduces nonlinear partial differential equation (5.38) to the nonlinear ODE
@ —1)f" +sinf=0 (5.40)

where primes denotes derivative according to the & = r — vt. Multiplying with f’ and

integrating once we get

12
(0? - 1) —cos f =1 (). (5.41)

If we consider the previous equation for [v| < 1, it gives

af 2
= dé. 5.42
1—cosf I ¢ 642

Using some trigonometric identities we can integrate it as

1
In (tan ]—() = &+ Ina(x) (5.43)
4 1 -2
which gives us
r—ot
M, = % arctan (a(x)e \/E) (5.44)

where a(x) is an arbitrary function of x.

5.3. Sine-Gordon Equation and Riccati Equation

The Backlund transformation for the Sine-Gordon equation is given by

- M V/
(rM,), — (ML) = 2Asin “)Zﬂ (5.45)
- 2 My) — (rM
(rMy), + (M) = S sin % (5.46)
Let ¢* = %((rMU) + (rMy)) (Pashaev 1996), then we find
¢; = Asing, (5.47)
o = % sing™. (5.48)
(5.49)
Now let us introduce
"~ +
tan (rM) * (M) = tan (i =y. (5.50)
4 2
By using some trigonometric identities, we obtain
(P+
2tan 5- 2
sin* = 2 14 (5.51)

1+tan2% 1+y%
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Differentiating expression (5.50) we find

yr= %qbf(l +77). (5.52)

Thus we have for the first Backlund transformation

2y,
+ —
- 2 (5.54)
(Pr - 1 + 7/2 . .
Adding these two equation we have
AVt Ay
(rMy), =2 1392 (5.55)
If we arrange this equation we find
1 2
Vr+ Ay — E(rMU),(l +y°)=0. (5.56)

We know that transformation y = z—; linearizes the Riccati differential equation (Ince

1956), so we get the linear form

[vl]_ 1[ - (er»](vl]‘ 55)
o ) 2| M) A v

Following the same strategy we find

¢ u-¢*  o-y

tan7 = tan 2 T ivoy (5.58)
where 6 = tan (MZA—”) Using trigonometric properties we can write
0y +0y)
=2———. 5.59
O = A ) 559
Differentiating y with respect to t gives
1o 10— +0y)
= Ay =g a (5.60)
Finally we find
+2(5 O (M) + (o Sin (M) = 5 sin (1My) = 0 G:61)
Vi o7 €08 (rMo))y + (73 sin (rMo))y” — = sin (rMy) = 0. .

For this Riccati equation the linear problem in the matrix form is
v 1 | —cos(rMy) sin(rM v
oL (Mo) - sin(Mo) | o1 | (5.62)
v ), 241 sin (rMy)  cos (rMy) (%)
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Finally we obtain the matrix first-order linear problem for the Sine-Gordon equation (5.7)

v, =Uv, vy = Vo (5.63)
with linear operators
-A rM
U = (rMo)r (5.64)
_(er)r A

Vo= —cos (rMy) sin(rMy) ] (5.65)

sin (rM,)  cos (rMy)

Then consistency condition for this system
U -v,+uv-vu=0 (5.66)

is equivalent to Spherical Sine-Gordon equation (5.7).

5.4. Spherical Sinh-Gordon Equation

In addition to the spherical Sine-Gordon equation, another nonlinear Klein-
Gordon equation so called spherical Sinh-Gordon equation, whose limit when r ap-
proaches zero does not contains singularity, can be considered as a nonlinear Euler-

Poisson-Darboux Equation.

Definition 5.2 Spherical Sinh-Gordon equation is defined as

2 2
ra_MU - ZiMU - a

3% 5 rﬁMU + sinh (rMy) = 0. (5.67)

Proposition 5.2 Spherical Sinh-Gordon equation admits the Auto-Biicklund transformation

("M,), — (rM,), = 2Asinh M
(M) + (rMy); = %sinhrM”z;rMU.

(5.68)

5.4.1. Solitonlike Solution of Spherical Sinh-Gordon Equation

Since M, = 0 is a solution of spherical Sinh-Gordon equation substituting it into

the Backlund transformation we get

(rMy), = 2Asinh%, (5.69)
(M) = %sinh 71\24”. (5.70)
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From this Biacklund transformation, we find
dr 1

=7 (5.71)

In order to convert the partial differentiation to ordinary differentiation, we introduce

new variable as

1
E=r—rg— ﬁt (5.72)
from the partial differential equation (5.69) we find
d
ULUX/I = Adr. (5.73)
2sinh
Integration of this equation gives us
4 A(r—r ——t
My(x, t;r) = —arctanh( 0) ) (5.74)

From the second partial differential equation (5.70) we obtain
d(rMy)

M) e (5.75)
- M,
2sinh =

Integration of which gives

4
My(x, t;7) = ;arctanh(e_w_’o”%t). (5.76)

5.4.2. Bianchi Permutability Theorem

From the Béacklund transformation we can write the following relations

—((rM )= (rMJ)) = Aysinh W)zﬂ (5.77)
2 (M)~ (MY) = Aysinh PO, 5.78)
%((rM},Z) - (rM)) = Azsinh (erl’z)z—”erl’) (5.79)
%((ngl) —~(rM2)) = Aysinh (erz’l)z—HrM%) (5.80)
Combining LIII and ILIV we get

e 2 (M) = (M) = Ay sinn (MM R (M) | g sink M)+ (M) R (M) (581
ai((rM?) M) = A sinh MO 0M) - (M), g sink M) * (M) - (M) (589
(5.83)

If we open the expression and use some hyperbolic identities we find that
tanh M2~ . (rMy) (21 s ii) tanh W)LL;(?MZ) (5.84)
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5.4.3. Two Solitonlike Solutions of Spherical Sinh-Gordon Equa-
tion

Bianchi permutability allows us two construct new soliton solutions when we
know three solutions of the Spherical Sinh-Gordon Equation. Evidently W = 0 is one

solution of the Spherical Sinh-Gordon equation so when two solution given by

N7 1
tanh Tl = e,y = Ay(r —ro) — ol (5.85)

'Y 1
tanh Tz =eP,m = Aa(r—ro) — A—Zn, (5.86)

a new solution is found in the form,

4 A+ g el — e
(My)12 = ;arc’canh/\1 LT (5.87)
5.4.4. Lax Pair for Spherical Sinh-Gordon Equation
Lax pair for spherical sinh-Gordon equation is given by,
—A + & cosh (M) (M M) 4 £ sinh (rM,)
m m
| MM, inh (M) A — L cosh (rM,)
) 2
m —A — 1 cosh (rMy) 1 sinh (rM,) + MM A ()
- (5.88)
m L sinh (rM,) — w A+ % cosh (rM,) m

5.4.5. Progressing wave solution of Spherical Sinh-Gordon Equa-
tion
Spherical Sinh-Gordon Equation is given by the following formula
7? d J?

Tg—tsz - ZEMU - Tg—rsz + sinh (T’Mv) =0 (589)

This equation could be arranged as
Wy —W, +sinhW¥ =0 (590)

where W(x, t;7) = rMy(x, t; r), if we introduce a new function

flx,r—vt) =W(x,t;r) (5.91)
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Equation (5.90) reduces to the
(@* = 1)f” +sinh f = 0 (5.92)

where primes denotes the derivative according to the & = r — vt. Multiplication equation

(5.92) with f” allows us to integrate as

12
(v* - 1)7 +cosh f = ¢ (5.93)

If we consider the previous equation for c; = 1, |9 < 1, its integration gives

f 1
In(tanh =) = E+Ina(x) (5.94)
4 V1= o2
which finally gives us
1L (e
My(x, t;7) = %arctanh(a(x)e Vi-02 v Z]t)) (5.95)

where a(x) is function of x.

5.4.6. Sinh-Gordon Equation and Riccati Equation

The Béacklund transformation for Spherical Sinh-Gordon equation is given by

. M M
(M), (1), = 22 sink 0D (5.96)
- M,) — (rM
(M), + (L), = = sinh 2 (5.97)
Let
1 -
¢ = 5((rMo) % (M) (5.98)
then
¢; = Asinho® (5.99)
¢f = %sinh ¢ (5.100)
Now let us introduce
Y +
tanh M = tanh (P— =y (5.101)
4 2
By using trigonometric identity
2 tanh & 2
sinh ¢+ = z___ 2 (5.102)
1—tanh2% 1-92
Differentiating the expression (5.101) we find
1
yr= 56,1 =77). (5.103)
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Thus we have for the first Backlund transformation

2y,

oF = -2 (5.104)
_ 2y
o, = =2 (5.105)
Adding these two equation we have
Vet Ay
(rMy)r =2 1372 (5.106)
If we arrange this equation we find
1
v+ Ay — E(er)r(l -9 =0 (5.107)
We know that the transformation
_u
Y= -

linearize the Riccati differential equation and gives the linear form

A 1
(v1)r+§v1 = E(er)rUZ (5.108)

A 1
W2)m,) = 502 = —5(Mo)tr (5.109)

(01 ] :1[ -A (rMo), ][ 01 J (5.110)
v ) 2\ M), A (%)

Following the same strategy

¢

- M,) — o™ o—
tanh—:tanh(r o) Z¢ = y

> > " 15y (5.111)
where 6 = tanh (TLZ”) Using the trigonometric properties we can write
o, 0=y -96y)
h¢ " =2—"—F——- 5.112
S - ) o1
Differentiating y with respect to t gives
1, o 16 =-pA-06y)
ve=50r1-y7) =+ T (5.113)
Finally we find
+2(i h (rMy)) +(i'h(M))2—i'nh(M)—0 (5.114)
Vi 5y Cosh (rMo))y + (73 sinh (rMo))y” — 7 sinh (rMy) = .

For this Riccati equation linear problem is given by
v —cosh (rMy) sinh (rM v
oL (Mo) (Mo) | o1 (5.115)
v ), 2A | —sinh (rMy) cosh (rMy) o
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Finally we obtain the first-order linear problem for Sinh-Gordon equation

v, = Uv, vy =Vo (5.116)
with linear operators
-A rM
U = (M), (5.117)
_(er)r A

Vo= — cosh (rMy) sinh(er)] (5.118)

—sinh (rM,) cosh (rM,)

Then consistency condition

U, -V, +UV-vVU=0 (5.119)

is equivalent to Sinh-Gordon equation.
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CHAPTER 6

HEAT EQUATION AND SPHERICAL MEANS

This chapter is devoted to the application of the method of spherical means to
the linear and related nonlinear heat equations. Solution of initial value problem for the
linear heat equation and related nonlinear heat equation, in higher dimensional spaces
are given. By the method of spherical means, cylindrical and Spherical Burgers equations
are constructed in two and three dimensional spaces respectively. Their general solutions

are given. Hierarchy of Cylindrical and Spherical Burgers equations are given.

6.1. Solution of IVP for the Heat Equation by Spherical Means

Spherical means, similar to the wave equation, can also be applied to the heat
equation to solve the initial value problem. Let us consider n + 1 dimensional function

u =u(xy,xz,...,x,t) satisfying the heat equation,

u—vAu=0. (6.1)

The spherical means M, of function u

1

My(x, t;r) = . f u(x + r&, t)dSe, (6.2)
n|5|:1

satisfies the Darboux Equation;

P n-10

Jr? r or

AxMy(x;1) = ( )Mu(X; r). (6.3)

From another side, by the definition of spherical means following equality holds

AM, = a)i Axu(x +1&€, t)dSge (6.4)
n|€|=1
10 1
AXMM = ;8—t—n u(x +ré, t)dscg (65)
1&l=1
10
AXMu = ;EMM (66)
Hence M, (x, t; r) also satisfies the heat equation
(My): —v Ay M, = 0. (6.7)

59



6.1.1. Initial Value Problem for the Heat Equation
in Two Dimensional Space

The initial value problem for the Heat equation in 2 dimensional space is given

for the function u = u(xy,xp,t) as
ur—vAau=0, u(xy,x,0) = f(x1,x2). (6.8)

Then the corresponding initial value problem for the spherical means of function u is;

d 72 10
EMu = V(ﬁ + ;g)Mu, My (x,0;1) = Mg(x, r). (6.9)

If we use zero order Hankel transformation;

[e¢]

M(x, t;r) = f pE(x,t, p)]o(rp)dp (6.10)

0

and substitute it into the equation (6.9) gives us
Fi(x,t,p) = —p°F(x, 1, p). (6.11)
Hence M(x, t; ) can be written as

M(x,t;r):pr(x,O,p)e_P2t]0(rp)dp. (6.12)

Writing the value of F(x, 0; p) from the inverse Hankel transformation allows us to write

M tin) = [ dppeiorp) [ asmice,0,sfutsp) (613)
0 0
Changing order of integration and using identity
_ 1 _2+2 rs
[ o oo = g (), 6.19
0
we find -
M(x, t;7) = fsM(x 0 s)le'%l (E)ds (6.15)
A4 - 7y 2t 0 2t .

0

where Ij is the modified Bessel function. Letting r go to zero, allows us to write the

solution of initial value problem (6.8) as

(o]

u(x, t) = Zivtfst(x,s) e_%ds. (6.16)

0
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6.1.2. Initial Value Problem for the Heat Equation
in Three Dimensional Space

The initial value problem for the Heat equation in 3 dimensional space is given by
up—vAu=0, u(xy,x,x3,0)= f(x,x2,x3). (6.17)

Spherical means M, (x, t;r) of function u(x, t) satisfies following initial value problem

0 ? 290
ﬁMu = V(ﬁ + ;E)Mu , Mu(x, 0; I') = Mf(x, I'). (618)
Transformation
N(x, t;r) = rMy(x, t;7) (6.19)

allows us to write initial value problem (6.18) in the form
N; =vN,;, N(x,0;r) =rM,(x,0;r). (6.20)

The initial value problem for the heat equation on semi-infinite domain can be solved by

the Fourier-Sine transformation,

[ee]

N(x, t;7r) = fF(x, t;s) sin (sr)ds. (6.21)
0

Substituting this expression into heat equation (6.20) gives
f (F(x, t;5) + vs>F(x, t;5)) sin (sr)ds = 0. (6.22)
0
Thus F must satisfy the following relation
(Fi(x, t;5) + vs*F(x, £;5)) = 0. (6.23)
Solution of equation (6.23) gives
F(x, t;5) = F(x, 0;s)e™"". (6.24)

By inverse Fourier Sine-transformation, F(x, 0; s) is found as

F(x,0;s) = %fN(x,O; p) sin (sp)dp. (6.25)
0
Substituting equations (6.24) and (6.25) into the Fourier transform (6.21) we find
2
N(x, t;r) = - ffN(x, 0; p)e_vszt sin (sp) sin (sr)dpds. (6.26)
0 0
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Changing order of integration, and using some trigonometric identities we find

N(x,t;r) fN(x 0; p)f v f(cos (s(p — 1)) = cos (s(p + 1)))dsdp. (6.27)

After evaluating interior integral, we find

r _(p-1)? (2
N(x, t;7r) = N(x,0;p)(e” = —e & )dp. (6.28)
0

4rvt

Taking the limit for r going to zero gives us the solution of the initial value problem (6.17)

P 2
u(x f) = —2° ; f P> My (x; p)e” T dp. (6.29)
0

(4mvt)2

It is shown in appendix(B) that at ¢ = 0, solution (6.29) satisfies the initial condition (6.17).
As known, nonlinear Burgers equation is related with the linear heat equation. Thus the

initial value problem for the Burger’s equation on half line

Pr(x, 1, t) + PPy = VP (6.30)
¢t(x,1,0) h(x, ) (6.31)

obtained from the heat equation by the transformation

Nr(xr t;r)

Q(x, t;1r) = —2v NG L) (6.32)
has solution given by
¢ . 2(p— r) _pr? 2(p+r) _p?
fN(x’ 0’ p)[ 4vt e+ 4vt ar ]dp
b, t;r) = =202 6.33)
fN(X 0; p)( - 4w —e p;? )d p
where N(x, 0; r) satisfy the relation
. _ Ni’(x/ 0; 7’)
¢(x,0;7) = =2v NGO (6.34)

Substituting the N(x, 0;r) in to the equation (6.33) allows us to write the solution of i.v.p

for the Spherical Burgers equation is found as

=1 (P Jy(ye 2(p—7) _(pn? 2( +1/) _(p+r)
h(x;k)dky =P > Z\p+r)
f e [ &r ¢ + ]dp

T4t
o(x, t;r) = — 22 = - - . (6.35)
f 2_1 " h(x; k)dk _(pzwyt) —e” (p;rvyt) )dp
0
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6.1.3. I.V.P for the Heat Equation in Five Dimensional Spaces
Let us consider initial value problem for the heat equation in 5 dimensional space
u—vau=0, ulx0)=f(x) (6.36)

where x = (x1,x2,...,x5). Then spherical means of u satisfies the initial value problem

d > 40

5 M = V(55 + —5Mu, M, 0;1) = Mi(x, ). (6.37)

Transformation N(x,t;r) = r*(M,), + 3rM,, allows us to write the initial value problem

(6.37) into the canonical form
N; =vN,;, N(x,0;r) = rZ(Mu)r(x, 0;7) + 3rM,(x,0; 7). (6.38)

Fourier transformation gives us

N(x, t;r) =

r _(p-1)? _(p+n)?
N(x,0;p)(e” & —e & )dp. (6.39)
4rvt 0

Writing the value of the N and taking the limit for » approaches to zero gives us

(o]

: f (93(Mf(x: P)p + 3p*My(x; p)) e‘%dp (6.40)

3 (4mvt)3

u(x, t) =

Thus the initial value problem for the spherical Burger’s equation

Oe(x, 1, ) + PPy = vy, (6.41)
Qt(x,1,0) g(x, 1) (6.42)

obtained from the heat equation by the transformation

Pl == v% (6.43)
has solution
fei—l I gLckydk| % e‘% + ftr) 2 p
G, 1) = —2v° . (6.44)

fezvl fpg(Xk)dk(e 4Lf —e pﬁ;/yt) )dp

6.1.4. IVP for the Heat Equation in Odd Dimensional Spaces

Let us consider initial value problem for the heat equationinn = 2k+1 dimensional
space

w—vau=0, ulx0) = f(x). (6.45)
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Then Spherical means of u satisfies the equation

J »? n-19
EMU = V(a? + Ta)Mu, Mu(X, 0; I') = Mf(x, I') (646)
Transformation
NG £7) = (2 1) (6.47)

allows us to write equation (6.46) in to the canonical form
1d g1, 1
Ny =vNp, N(x,0;7) = (227 (7 Mu(x, 0;1)). (6.48)

Then Fourier transformation gives

1 r (p—r)2 (err)2
N(x, t;r) = fN(x,O; )e T —e” Em )dp. (6.49)
Vanvt . P P
Writing the value of the N and taking the limit for  approaches to zero gives us the
equation
41 P2 1d
u(x, t) = — f dp pe™ 5 (= —) 12 IM (x; p) (6.50)
. (4nvt)% J PP pdp P Fp

where a;, = 1.35....(2k — 1).

The initial value problem for the Burger’s equation

(Pt(x/ t, t) + ¢¢r = V(Prr (651)
¢i(x,1,0) = h(x,7) (6.52)
obtained from the heat equation by the transformation
N:(x, 1, 1)
= -2v——"= 6.53
PLunt) = =2vgei=h (6.53)
has solution given by
s e [ sk [—Z(Z;) o z(f;r)e‘%]dp
Q(x, t;r) = =2v — = o . (6.54)
j(; e h(x,O;k)dk(e— Wt — e v )dp
6.2. Cylindrical Burgers Equation
Heat equation given in two dimensional space
Uy = Au (6.55)

can be converted to the following equation which is satisfied by the spherical means of
function u.

(M) = (M) + (M), (6.56)
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Defining a new function ®(x, t; ) as
M, (x, t;7) = 204D (6.57)
gives us
2
O, = ;cpr + @, + D2 (6.58)

If we change the unknown function again according to the following rule
W(x,r,t) = Oux,1,1)

we get the following equation celebrated as Cylindrical Burgers Equation.

1 1
W= =Wt SW 4 22U+ Wy (6.59)
T

if we return back to the equation (6.56) and write
Mu(x, t;1) = X()R(N)T(), (6.60)
then we found
Mu(x, ;1) = a(@)e™ (e Jo(kr) + caNo(kn)) (6.61)

Where the functions | and N are the Bessel Functions of the first and second kind respec-
tively. Since spherical means of a function is even in r then general solution of Cylindrical

Burgers Equation is given by

(e erJolkar) + etesJolkar)).

Wy, t;1) = —5 N :
e ey Jo(kyr) + e 2 s Jo(kar)

6.3. Spherical Burgers Equation

Heat equation given in three dimensional space
U, = AU (6.62)

can be converted to the following equation which is satisfied by the spherical means of
function u

(M) = (M) + 2. (6:63)
Defining a new function ®(x, t; ) as

(M.y)r

D(x, t;r) = , 6.64
(o = 3 (6.64)
gives us so called spherical Burgers Equation
2 2
Dy = Dy + 200, + ;(Dr - r—ZCD. (6.65)
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If we return back to the equation (6.63) and write

My (x,t;7) = X(x)R(r)T(t) (6.66)
we obtain R4 2R
= r (6.67)
If we equate obtained system to the constant k?, then we found
Ma(x, 1) = () (o SED) , geos(kr)) (6.68)

kr kr

Since spherical means of any function must be even in r and must give the original
function when r approaches the zero, we conclude that f must be identically zero. Then

general solution of Spherical Burgers Equation obtained by

(Ml/l)f’
D(x, t;r) = 6.69
(0= (6:69)
is given as
(x)ekztsm(klr) +c (x)ekztsn;{(kzr))
D(x, t;7) = 2 I (6.70)
(C (x)ethsm(kﬂ) te (x)ekztsmil;zr))
6.4. Heat and Burgers Hierarchy
Linear heat equation
W =Wy, (6.71)

can be related with the non-linear Burgers equation by the Cole-Hopf transformation
¢=—=. (6.72)

According to the previous formula solution of the linear heat equation W can be written
in terms of ¢

W(x, 1) = el oWy, (6.73)
satisfying the Burgers equation. Substituting eqn (6.73) into the heat equation we get

(e owhny, — (oI otwddy) (6.74)

‘f¢wﬁ@=%mo+@mﬂ (6.75)

Differentiating with respect to x, gives Burgers equation

Pr(x, 1) = Pax(x, 1) + 2Py (x, 1). (6.76)
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Now if we consider the equation

Wi = Wier (6.77)
Cole-Hopf transformation (6.72) leads to the following equation
PHX, 1) = Praa(X, 1) + BP(x, D Pax(X, 1) + 3T + 3PPy (6.78)
Similar calculations for the equation
Wy = Wiy (6.79)

By the non-linear transformation (6.73) gives

(Pt(x/ t)y = (Pxxxx(xr t) + 10¢x(xr t)(]bxx(x/ t) + 4(]5(35/ t)(]bxxx(x/ t)
+ 12¢(x, HPA(x, ) + 607 (x, ) Prx(x, £) + 43 (x, ) Dr(x, 1). (6.80)

Generalization of these results says that for a equation given with

n

‘ytn (X, t) = o

W(x,t), n=234. (6.81)

the Cole-Hopf transformation gives equations for different values of n obeying the rule

given by (Pashaev and Giirkan 2007)
I, P = 9:((0x + ¢)".1) (6.82)
Writing function ¢(x, t) in the traveling wave form
o(x, t) = f(x—ot), E=x-vt (6.83)
we get the hierarchy of ordinary differentiation as
—v.0sf = dz((d: + f)".1) (6.84)

Some of the members of this hierarchy are given explicitly as

—of = fe+ f%, for n=2 (6.85)
~of = fes +3ffc+ f°, for n=3 (6.86)
—Z)f = fggg + 3f€2 + 4ff,§5 + 6f2f5 + f4, for n=4 (687)

The equation obtained for the n = 2 is the well known Riccati Equation.Writing in the

Riccati equation

Ps

f(&) = &

(6.88)
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we reduce it to the linear second order differential equation as

—U0s = Pee. (6.89)
solution of which enables us to write
B B _UCZe—v(x—vt)
qb(x, t) = f(x - Ut) = m (690)
6.4.1. Heat Equation with Potential
Linear heat equation with potential
W, = Wy, + V(x, HY (6.91)
can be related with the non-linear Heat equation. By Cole-Hopf transformation
¢ = R (6.92)

Solution of the linear heat equation W, can be written in terms of ¢ satisfying the nonlinear

heat equation . Cole-Hopf transformation can be written as
W(x, t) = el D (6.93)
Substituting eqn (6.93) into the heat equation we get
(el Puddyy, — (o oDy 4y (x, pel Sddy (6.94)
After differentiation with respect to x, eqn(6.94) reduces to the
Or(x, 1) = Prx(x, ) + 20Px(x, 1) + Vi(x, 1). (6.95)
Now if we consider the equation
Wi =W + (VW) (6.96)
Cole-Hopf transformation (6.92) leads to the following equation

P, t) = Prax(X, D) + 3P, Hax(x, 1) + 33 + B Dy
+ Vi + Vi + Vo (6.97)

Similar calculations for the equation

Wi =W + (V\y)xx (6-98)
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By non-Linear transformation (6.92), we find

({bxxxx(x/ t) + 10¢x(x/ t)(Pxx(xr t) + 4¢)(x, t)¢xxx(xr t)
12¢(x, HPA(X, 1) + 60> (x, HPax(X, 1) + 403 (x, )Py (x, t)
Viax + 2Vix® + 3Viy + Vo + Vop? + 2V, (6.99)

¢t(x/ t)

+

+

From the above calculations we can formulate the general case. For the linear wave

equation given by
I, W(x, t) = "W (x, t) + I HV(X)W(x, 1), n=23/4. (6.100)

the Cole-Hopf transformation gives the equations for different values of n obeying the

rule given by
1, = 0:((0x + ). 1) + Ix((Ox + P)"2V), n=2,3,4... (6.101)
Writing functions ¢(x, t), V(x, t) in the traveling wave form
o(x, t) = f(x—ot), V(x, t)=g(xt), E=x-uvt (6.102)

we get

~0.0cf = (P + )1 + (I + f)'2.9). (6.103)

Taking one integration with respect to & gives
—0f =@ + f)" 1+ (0 + )" 28 (6.104)

First three member of the hierarchy is given by the

—of = fe+f*+g, for n=2 (6.105)
—of = fee+3ffe+f +ge+gf, for n=3 (6.106)
—0f = feee +3fF +4f fes + 612 f + f

+ Qes +28:f +gfe +8f%, for n=4 (6.107)

The equation obtained for the n = 2 is well known Riccati Equation.

6.4.2. Spherical Burgers Hierarchy

When the Heat equation is given in three dimensional space for the function
u =u(x,t)as

wi(x, £) =4 u(x, t) (6.108)
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then the spherical means M of function u(x, t) satisfies
rM; = (rM)y, = 2M, + rM,, (6.109)

For this heat equation we can write time evolution as

(M), = (M) = 2M; + 1M, (6.110)

(M)t = (rM)pry = 3M; + rMyyr (6.111)

(6.112)

qr-1 ar
(M), = M)y = 1M+ 1M (6.113)
(6.114)
The Cole-Hopf transformation
M,
D = 11
(rnt) =~ (6.115)

allows us to write for t = t; spherical Burgers Equation as

6.4.3. Cylindrical Burgers Hierarchy
When the function u = u(xy, x, t) satisfies two dimensional Heat equation
us(x, t) = Au(x, t) (6.116)
spherical means M(x, t; ) of function u(x, t) satisfies.
1
(My)r = (My)sr + ;(Mu)r (6.117)

Defining a new function ®(x, t; ) as

v My(x, t;7)
O(x, t;r) = —M(x, s (6.118)

gives us following equation celebrated as Cylindrical Burgers Equation.

01 = =50+ 10 + 200, + b (6119)

we can write time evolution for this equation For t = t, we can write the equation (6.117)
as

(VM)tz = (rM)rr - M, (6.120)
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Then for different times we can write equations corresponding to the function x(x,¢;r) =

rM(x, t; 1) as
92 d
(M), = ﬁ(rM)—Z(rM)
P P

(rM)y, = ﬁ(rM)_Q_ﬂ(rM)

o an—l
(M), = So(M) = 2o

(rM)

Applying Cole-Hopf transformation gives us Cylindrical burgers Hierarchy

n-—1
r

8tnq[):8,{ (8,+qb)”_1.1+(8r+¢)”.1}, n=2734...

(6.121)

(6.122)

(6.123)

(6.124)
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CHAPTER 7

CONCLUSION

In the present thesis we studied the method of spherical means, its properties and
its relation between PDEs.

1)We found spherical means operator representation in 2-dimensional space could
be expressible in terms of modified exponential functions. After studying properties of
modified exponential function, we give related linear and nonlinear Heat equations and
their general solutions.

2) By Backlund transformation we relate Euler-Poisson-Darboux Equation in arbi-
trary odd dimensional spaces with spherical Liouville Equation which exact spherically
symmetric solutions. We showed that solutions of this equation are singular at origin and
can not be spherical means of a function.

3)Nonlinear hyperbolic wave equations in the form of Sine-Gordon and Sinh-
Gordon equations have been considered. We found solutions for the spherical Sine-
Gordon and Spherical Sinh-Gordon equations which are not singular at the origin.

4) Nonlinear Heat equations in arbitrary odd dimensional spaces were consid-
ered. By Cole-Hopf transformation we introduced the Spherical and Cylindrical Burgers

equations and their general solutions.
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APPENDIX A

APPLICATION OF SPHERICAL MEANS

In n dimensional space relation between cartesian coordinates (x1,x2,x3,...,X;)

and hyperspherical coordinates (r, ¢1, P2, 3, ..., Pn-1) is given by the following equations

x1 = rcos(¢r) (A1)
xp = rsin(¢q)cos(Pz) (A.2)
x3 = rsin(¢r)sin(¢z)cos(¢ps) (A.3)
Xp—1 = rsin(¢q)sin(¢gps). .. sin(p,—2) cos(Py-1) (A4)
X, = rsin(¢q)sin(Py). .. sin(¢py—2) sin(¢p,-1) (A.5)

and surface element is given by
dgi1V = sin" 2 ¢y sin > ... sin Pr ds, des, - - - do, (A.6)

Surface are of sphere in n dimensions is given by the following formula (John 1955)

_ 2"

T T

Example: As an application of the method of spherical means let us evaluate the

(A7)

spherical means of following function at an arbitrary point P = P(x, y) in two ways
u(x, y) = 2y. (A8)
1) By definition of spherical means:
Spherical means of a function is given by

M,(x,r) = % f u(x +ré)dS;. (A.9)

n
£1=1

Using equation (A.7) we find

My (x, 1) = % f u(x + r&)dSe. (A.10)
1€l=1
Equation (A.6) and (A.8) allows us to write

271

My(x,y,7) = % f (x + rcos 0)*(y + rsin O)dg. (A.11)
0=0
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If we open the parenthesis we get

21
1
My(x,y,1) = o= f(x2y+x2r sin 0+2rxy cos 0+2xr* cos 0 sin O+r*y sin? O+7> cos? O sin O)dg

0=0
(A.12)
From this equation we find the spherical means of function u as
2 1Y
My(x, ;1) =x"y + - (A.13)
2) By using operator representation:
Let us evaluate the Laplacian of function u(x, v) (A.8)
Au=2y, A>u=0, ...A"u=0 (A.14)
If we use the operator representation of spherical means given by
2
M = e(z A; 2) (A.15)

then the spherical means of function (A.8), by using the equation (A.14), is found as

2 S 2n
— - _ n
u(x,y)+4 Au+16A “+“'+4n Atu+... (A.16)

Mll(xr ]/z 1")

2

xzy + - (A.17)

M, (x, y;1)
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APPENDIX B

APPLICATION OF SPHERICAL MEANS TO THE
HEAT EQUATION

Let us show that solution of initial value problem (6.17)

4r r 2 _ﬁ
u(x,t) = 3 My (x; p)p~e#idp (B.1)
(47vt)2 J

satisfies the initial condition, u(x,0) = f(x).

To do this let us define

1
- B.2

. V4vt (B2)
F(p) = My(x, p) (B.3)

In this definition if t approaches zero then n approaches to infinity. Thus by the definition

(B.2)and (B.3), equation (B.1) takes the form

4n3f00 2 (—p?n2
=—— | F(p)p> P dp. (B.4)
Vado P ’

From the property of spherical means F(p) is an even function. If we expand the function

F(p) in Taylor series we obtain following equation

4 ® - P<2>o 22

which can be arranged as follows

_3 a F(Zm)(o) 00 dm+1

s emh) g, d(nZ)m+1(e(_P2n2))dp' (B.6)

Using the error function we find

LB i F(Zm)(o) qm+1
4 (2m!) d(n?)m+t

%). (B.7)

After evaluating the differentiation we find

o F@1(0) 1.3.5...(2m + 1) ~(@m3)

I1=2
4 (2m!) 2m+l

(B.8)

It can be shown by the ratio test that the series is convergent and can be integrated term

by term.
0 1 2

F*(0) N F (0)34_1—" (0)1.35 N
2 2 n2 24 nt

I=2( (B.9)
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When n — oo only the first gives nonzero contribution.
I =F(0) = M¢(x,0)

Since spherical means M approaches the function f when r approaches zero, then we
find
I'=F(0) = M¢(x,0) = f(x). (B.10)
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