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İZMİR



We approve the thesis of Barış ATEŞ
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ABSTRACT

NONLINEAR EULER POISSON DARBOUX EQUATIONS

EXACTLY SOLVABLE IN MULTIDIMENSIONS

The method of spherical means is the well known and elegant method

of solving initial value problems for multidimensional PDE. By this method the

problem reduced to the 1+1 dimensional one, which can be solved easily. But

this method is restricted by only linear PDE and can not be applied to the non-

linear PDE. In the present thesis we study properties of the spherical means and

nonlinear PDE for them. First we briefly review the main definitions and appli-

cations of the spherical means for the linear heat and the wave equations. Then

we study operator representation for the spherical means, especially in two and

three dimensional spaces. We find that the spherical means in complex space

are determined by modified exponential function. We study properties of these

functions and several applications to the heat equation with variable diffusion co-

efficient. Then nonlinear wave equations in the form of the Liouville equation, the

Sine-Gordon equation and the hyperbolic Sinh-Gordon equations in odd space

dimensions are introduced. By some combinations of functions we show that

models are reducible to the 1+1 dimensional one on the half line. The Backlund

transformations and exact particular solutions in the form of progressive waves

are constructed. Then the initial value problem for the nonlinear Burgers equation

and the Liouville equations are solved. Application of our solutions to spherical

symmetric multidimensional problems is discussed.
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ÖZET

YÜKSEK BOYUTLARDA TAM ÇÖZÜMLENEBİLEN DOG̃RUSAL

OLMAYAN EULER POISSON DARBOUX DENKLEMLERİ

Küresel ortalama metodu iyi bilinen ve yüksek boyutlu kısmi türevli diferansiyel

denklemler için başlangıç deǧer problemlerini çözmekte oldukça kullanışlı bir

metottur. Bu metodla yüksek boyutlu problem kolaylıkla çözülebilen bir boyutlu

probleme indirgenir. Fakat bu metot doǧrusal kısmi türevli diferansiyel den-

klemlerle sınırlıdır ve doǧrusal olmayan kısmi türevli diferansiyel denklemlere

uygulanamaz. Biz bu tezde küresel ortalamanın özelliklerini ve küresel orta-

lamayla ilişkilendirilebilen doǧrusal olmayan kısmi türevli diferansiyel denk-

lemleri çalıştık. İlk olarak küresel ortalamanın temel tanımlarını, doǧrusal ısı

ve dalga denklemlerine uygulamalarını yeniden inceledik. Daha sonra küresel

ortalamanın operatör temsilini iki ve üç boyutlu uzaylarda çalıştık. Küresel or-

talamanın karmaşık uzayda modifiye üstel fonksiyon tarafından belirlendiǧini

bulduk. Bu fonksiyonların özelliklerini ve deǧişken katsayılı ısı denklemine bir

çok uygulamalarını çalıştık. Daha sonra Lioville, Sinüs Gordon ve Hiperbolik

tipte Sinüs hiperbolik Gordon formunda doǧrusal olmayan dalga denklemleri

tek boyutlu uzaylarda verildi. Bazı fonksiyonel kombinasyonlarla bu denklem-

lerin 1+1 boyutlu yarı doǧru üzerine indirgenebilecekleri gösterildi. Bäcklund

transformasyonu ve progresif dalga tarzındaki kesin çözümler oluşturuldu. Daha

sonra Liouville ve doǧrusal olmayan Burgers denklemi için başlangıç deǧer prob-

lemleri çözüldü. Çözümlerimizin yüksek boyutlu küresel simetrik problemlere

uygulamarı tartışıldı.
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Transformation . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1. Solitonlike Solution . . . . . . . . . . . . . . . . . . . 48

5.2.2. Bianchi Permutability Theorem . . . . . . . . . . . . 49

5.2.3. Two Solitonlike Solution of Spherical Sine-Gordon

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.4. Lax Pair for Spherical Sine-Gordon Equation . . . . . 50

5.2.5. Progressing Wave Solution of Spherical Sine-Gordon

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3. Sine-Gordon Equation and Riccati Equation . . . . . . . 51

5.4. Spherical Sinh-Gordon Equation . . . . . . . . . . . . . . 53

5.4.1. Solitonlike Solution of Spherical Sinh-Gordon

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.2. Bianchi Permutability Theorem . . . . . . . . . . . . . 54

5.4.3. Two Solitonlike Solutions of Spherical Sinh-Gordon

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.4. Lax Pair for Spherical Sinh-Gordon Equation . . . . . 55

vii



5.4.5. Progressing wave solution of Spherical Sinh-Gordon

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.6. Sinh-Gordon Equation and Riccati Equation . . . . . 56

CHAPTER 6 . HEAT EQUATION AND SPHERICAL MEANS . . . . . . . 59

6.1. Solution of IVP for the Heat Equation by Spherical

Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.1. Initial Value Problem for the Heat Equation

in Two Dimensional Space . . . . . . . . . . . . . . . 60

6.1.2. Initial Value Problem for the Heat Equation

in Three Dimensional Space . . . . . . . . . . . . . . . 61

6.1.3. I.V.P for the Heat Equation in Five Dimensional

Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.4. IVP for the Heat Equation in Odd Dimensional

Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2. Cylindrical Burgers Equation . . . . . . . . . . . . . . . . 64

6.3. Spherical Burgers Equation . . . . . . . . . . . . . . . . . 65

6.4. Heat and Burgers Hierarchy . . . . . . . . . . . . . . . . . 66

6.4.1. Heat Equation with Potential . . . . . . . . . . . . . . 68

6.4.2. Spherical Burgers Hierarchy . . . . . . . . . . . . . . 69

6.4.3. Cylindrical Burgers Hierarchy . . . . . . . . . . . . . 70

CHAPTER 7 . CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . 72

APPENDIX A. APPLICATION OF SPHERICAL MEANS . . . . . . . . . 75

APPENDIX B. APPLICATION OF SPHERICAL MEANS TO THE

HEAT EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



LIST OF FIGURES

Figure Page

Figure 2.1 Zeros of e(x; 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 5.1 Schematic form of transformations occurring in the theorem

of permutability . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



CHAPTER 1

INTRODUCTION

The method of spherical means is the well known and elegant method of

solving initial value problems for multidimensional PDE (Courant and Hilbert

1962 John 1981). By this method the problem reduced to the 1+1 dimensional

one, which can be solved easily (Courant and Hilbert 1962 John 1981). Then by

taking the limit r → 0 it is shown that the spherical means are reducible to the

original function and this way solution of the wave equation in the D’Alembert

form was given. But since the spherical means are averages of given function

around arbitrary spheres, the method can’t be applied to the nonlinear PDE. This

is why all studies in this field are restricted by the linear PDE. In the present thesis

we show that idea of spherical means and way how they solve the problem could

be helpful in study of some nonlinear PDE in multi-dimensions. The main idea

is motivated by the Darboux equation reducing the action of multidimensional

Laplacian on the spherical means to the one dimensional linear operator of the

second order. Then a multi-dimensional problem for spherical means is reducible

to the 1+1 dimensional one. The last problem in many cases can be solved exactly.

From the theory of integrable models we know that some class of integrable

models called the C integrable, by some transformation of unknown function can

reduce the nonlinear model to the linear one. If we consider this linear equation

as the equation for the spherical means, then the nonlinear counterpart gives 1+1

dimensional PDE. These equations can be studied in a full capacity of integrable

systems. This allows us to describe some multidimensional nonlinear PDE, with

the set of particular solutions and the initial value problems.

This thesis is arranged as follows;

In Chapter II, we briefly review the method of spherical means and consider

its operator representation in one and two dimensional space. In Section 2.2, we

consider operator representation for spherical means in the complex plane. For

this case in Section 2.3, we give explicit formula for the spherical means operator

in terms of modified exponential functions. We study some properties of this

function and related functions such as the modified sine-cosine and hyperbolic
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sine-cosine functions. Then we introduce the differential equations satisfied by

these modified functions. As an application of the modified exponential function,

we relate it with a Heat equation whose diffusion coefficient is linear function of

x. Using the Cole-Hopf transformation we construct the corresponding nonlinear

Burgers equation such that its solution can be expressed in terms of the modified

exponential function. We also describe the Hierarchy of the Burgers equations.

Chapter III starts from brief review of solution for the initial value problem

for the wave equation in 1+1 dimensional space. In Section 3.2, we present

solutions of I.V.P for the wave equation by the method of spherical means in 3 + 1

dimensional space. In Section 3.3, by the method of spherical means I.V.P for the

wave equation in 5 + 1 dimensional space is solved. In Section 3.4, we solve I.V.P

7 + 1 dimensional spaces by the same method. In Section 3.5, solution of the I.V.P

for the wave equation in arbitrary odd dimensional space is given by the method

of spherical means. In Section section 3.6, we review the Hadamard Method of

Descent which is useful to study i.v.p in even dimensional spaces.

In Chapter IV, we start with review of the relation between Liouville equa-

tion and surface theory. In Section 4.2, we give the expression of the spherical

Liouville equation which is defined in 3 + 1 dimensional space. We relate it with

the spherically symmetric wave equation by Backlund transformation which al-

lows us to write the general solution of spherical Liouville equation. In Section

4.3, we solve initial value problem in a particular form for the spherical Liouville

equation where initial velocity is zero. The progressing wave solution of Spheri-

cal Liouville equation and expression for the Lax pair is given in Section 4.4. For

arbitrary dimensional space, we give the spherical Liouville equation with some

potential and write its general solution. We solve initial value problem for this

case and give progressing wave solutions in Section 4.5. In Section 4.6, we write

spherical Liouville equation for arbitrary odd dimensional space.

In Chapter V, we introduce the spherical Sine-Gordon and spherical Sinh-

Gordon equations. In Section 5.1, we study Sine-Gordon equation in 1+1 dimen-

sional space. In Section 5.2, we give the expression of the spherical Sine Gordon

equation. Using Backlund transformation we write Bianchi permutability formula

for this equations and find its kink and anti-kink like solutions. After giving its

2



Lax pair we relate this equation with Riccati equation. In Section 5.3, we write the

expression for spherical Sinh-Gordon equation. Writing Backlund transformation

for this equation allows us to write the soliton like solutions. To construct new

solutions we write the Bianchy Permutability formula for this equation. Then we

consider two soliton like solution of this equation and progressing wave solution.

Finally, we relate this equation with Riccati equation.

In the last Chapter we consider the application of the method of spherical

means to the heat equation. In Section 6.1, we solve initial value problem for the

heat equation in 2 + 1 and 3 + 1 dimensional space by the method of spherical

means. In addition to these we write he solution of the initial value problem

for arbitrary odd dimensional spaces. These applications allows us to write the

solutions of I.V.P for the corresponding nonlinear Burgers equations. In Section

6.2, we introduce Cylindrical Burgers equation and write its general solution. In

Section 6.3, we introduce the spherical Burgers equation in 3+1 dimensional space

and write its general solution. In Section 6.4, we consider the heat and Burgers

hierarchies and write the spherical and cylindrical Burgers Hierarchies.

3



CHAPTER 2

THE METHOD OF SPHERICAL MEANS

In the present chapter, we briefly review the method of spherical means

(Courant and Hilbert 1962 John 1981), its operator representation in two and

three dimensional spaces and in the complex plane. In the complex plane, we

give explicit representation of the spherical means operator in terms of general-

ized exponential functions. Then we study some properties of the generalized

exponential function and the related functions such as the generalized sine-cosine

and the hyperbolic sine-cosine functions. Some applications of these functions to

partial differential equations are discussed.

2.1. Main Definitions and Properties

The method of spherical means, averaging functions on the sphere, date

back to the studies of Fritz John (John 1955). The method of spherical means

plays very important role in the theory of partial differential equations. It is

very powerful method to study partial differential equations in the higher dimen-

sional spaces. It appears in different areas of mathematics like integral geometry,

inversion of the Fourier transform and in the study of Radon transforms,etc.

Definition 2.1 Spherical mean of a continuous function u(x) = u(x1, x2, . . . , xn) in Rn

is the average of u on (n − 1) sphere with given radius and center. Spherical means is

denoted by Mu(x, r) and given by the following formula (John 1981)

Mu(x, r) =
1

ωnrn−1

∫

|y−x|=r

u(y)dSy. (2.1)

In this formula ωn is the surface area of the unit sphere, x = (x1, . . . , xn) is the

center of the sphere with radius r, ωnrn−1 is the surface area and dSy is the area

element of this sphere. By setting y = x + rξ, with |ξ| = 1, we can find another
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representation for the spherical means;

Mu(x, r) =
1
ωn

∫

|ξ|=1

u(x + rξ)dSξ. (2.2)

In this representation ωn and dSξ are the surface area and surface element of the

unit sphere respectively. In limiting case when r approaches zero, the spherical

means gives exactly the original function u.

lim
r→o

Mu(x, r) = u(x). (2.3)

Proposition 2.1 (John 1981) Spherical means of a function satisfies the Darboux equa-

tion.

∆xMu(x, r) = (
∂2

∂r2 +
n − 1

r
∂

∂r
)Mu(x, r). (2.4)

Proof Differentiating both sides of equation (2.2) with respect to r gives ;

∂
∂r

Mu(x, r) =
1
ωn

∫

|ξ|=1

n∑

i=1

uηi(x + rξ)ξidSξ, (2.5)

where ηi = xi + rξi. The Divergence Theorem is read as∫

Ω

Dku(x)dx =

∫

∂Ω

u(x)ξkdSx (2.6)

where Dk = ∂
∂xk

, ξ = ξ(ξ1, . . . , ξn) outward unit normal, dx = dx1 . . . dxn and dSx

is the volume and the surface element correspondingly. Applying Divergence

Theorem (2.6) to the equation (2.5) gives,

∂

∂r
Mu(x, r) =

r1−n

ωn
4x

∫

|y−x|<r

u(y)dy (2.7)

=
r1−n

ωn
4x

r∫

0

dρ
∫

|y−x|=ρ

u(y)dSy (2.8)

= r1−n4x

∫ r

0
ρn−1Mu(x, ρ)dρ. (2.9)

Multiplying equation (2.9) by rn−1 and differentiating with respect to r yields,

∂

∂r

(
rn−1 ∂

∂r
Mu(x, r)

)
= ∆xrn−1Mu(x, r). (2.10)

Thus the spherical mean Mu(x, r) of function u(x) satisfies the partial differential

equation

(
∂2

∂r2 +
n − 1

r
∂
∂r

)Mu(x, r) = ∆xMu(x, r) (2.11)

which is known as Darboux’s Equation. From this equation we can see that

Mu(x,−r) is also satisfies the Darboux Equation. �

5



Proposition 2.2 (John 1981) If a function u(x, t), which depends on n space variables

x1, x2, . . . , xn and time t, satisfies the wave equation utt − c2 M u = 0, then its spherical

means satisfy the Euler-Poisson-Darboux equation.

(Mu)tt − c2
(
(Mu)rr +

n − 1
r

(Mu)r

)
= 0. (2.12)

Proof If function u(x) is also depends on time t, then its spherical means is

found by the following formula

Mu(x, t; r) =
1
ωn

∫

|ξ|=1

u(x + rξ, t)dSξ. (2.13)

If the Laplacian operator acts on the Spherical means we find that

∆xMu =
1
ωn

∫

|ξ|=1

∆xu(x + rξ, t)dSξ. (2.14)

Since u(x, t) satisfies the wave equation we can write

∆xMu =
1
ωn

∫

|ξ|=1

1
c2

∂2

∂t2 u(x + rξ, t)dSξ. (2.15)

Using that t is independent from ξ, we can interchange differentiation with inte-

gration. After using the definition of spherical means we have

∆xMu =
1
c2

∂2

∂t2 Mu. (2.16)

This equation means that the spherical means of any solution of the wave equation

is solution of the same equation. By using Darboux equation (2.4) we find that

spherical means of function u(x, t) satisfies

(Mu)tt = c2
(
(Mu)rr +

n − 1
r

(Mu)r

)
. (2.17)

�

2.1.1. Operator Representation of Spherical Means

Let function u(x) is real analytic function in the disk |ξ| ≤ 1. Then expanding

it into the Taylor series and using the definition of spherical means we have

Mu(x, r) =
1
ωn

∫

|ξ|=1

dSξerξ.∇xu(x). (2.18)

6



Since x is independent from ξ, we can threat the last expression as an operator

acting on function u(x). On the other hand, the spherical means is an even function

of r, Mu(x, r) = Mu(x,−r). Using this property and representation

erξ∇x = cosh rξ∇x + sinh rξ∇x, we deduce that spherical means operator M has the

form

M =
1
ωn

∫

|ξ|=1

dSξ cosh (rξ.∇x). (2.19)

2.1.2. Spherical Means in One Dimensional Space

Spherical means of a function u in one dimensional space is equal to the

standard mean value of the function u;

Mu(x; r) =
u(x − r) + u(x + r)

2
. (2.20)

Expanding u into the Taylor series, we find

Mu(x; r) = cosh (r
d

dx
)u(x). (2.21)

This representation is even in r and gives the original function when r approaches

to zero.

2.1.3. Spherical Means in Two Dimensional Space

In two dimensional space, expanding function u(x, t) in the Taylor series

allows us to write the spherical means as

Mu(x, y; r) =
1

2π

∫ 2π

o
dθe(r cosθ∂x+r sinθ∂y)u(x, y). (2.22)

If we split the integrand in hyperbolic cosine function and hyperbolic sine func-

tion, we find the operator representation of the spherical means in two dimen-

sional space as

Mu(x, y; r) =
1

2π

2π∫

o

dθ cosh (r cosθ∂x + r sinθ∂y)u(x, y). (2.23)

7



Using equation (2.23), it is instructive to derive the Darboux (2.4) equation by

alternative method. If we differentiate Mu(x, r) with respect to r we find

∂
∂r

Mu(x, r) =
1

2π

2π∫

o

dθ sinh (r cosθ∂x + r sinθ∂y)(cosθ∂x + sinθ∂y)u(x, y),

∂2

∂r2 Mu(x, r) =
1

2π

2π∫

o

dθ cosh (r cosθ∂x + r sinθ∂y)(cosθ∂x + sinθ∂y)2u(x, y).

In order to combine these two equations, let us write the ∂
∂r Mu(x, r) in terms of the

hyperbolic cosine function.

∂
∂r

Mu(x, r) =
1

2π

2π∫

o

r cosh (r cosθ∂x + r sinθ∂y)(− sinθ∂x + cosθ∂y)2u(x, y)dθ. (2.24)

If we write the obtained results in the Darboux equation (2.4)

∆xMu(x, r) = (
∂2

∂r2 +
1
r
∂
∂r

)Mu(x, r) (2.25)

we find,

∆xMu(x, r) =
1

2π

2π∫

o

cosh (r cosθ∂x + r sinθ∂y)(∂x2 + ∂y2)u(x, y)dθ. (2.26)

2.2. Spherical Means Operator in Complex Plane

Spherical means operator can be expressed in terms of complex variables which

is useful to study analytic and harmonic functions.

Proposition 2.3 Spherical means operator in complex domain is given by the following formula

M f (z, r) =
1

2πi

∮

|ξ|=1

dξ
ξ

cosh (rξ∂z + rξ̄∂z̄) f (z). (2.27)

Proof In two dimensional space, operator representation of the spherical means (2.23)

is

Mu(x, r) =
1

2π

2π∫

o

dθ cosh (r cosθ∂x + r sinθ∂y)u(x, y). (2.28)

Using the definition of sine and cosine functions we find that;

Mu(x, y, r) =
1

2π

2π∫

o

dθ cosh
[
r
(

eiθ

2
(∂x − i∂y) +

e−iθ

2
(∂x + i∂y)

)]
u(x, y). (2.29)

Defining z = x + iy and ξ = eiθ we find

M f (z, r) =
1

2πi

∫

|ξ|=1

dξ
ξ

cosh(rξ∂z + rξ̄∂z̄) f (z). (2.30)

�
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Theorem 2.1 (Cauchy Integral Formula) Let F be analytic in domain D within simple closed

curve C ⊂ D. For a point z0 interior to the C, following relation holds:

f (z0) =
1

2πi

∮
f (z)

z − z0
dz. (2.31)

The meaning of this formula in terms of spherical means is given by the next theorem.

Theorem 2.2 Spherical means of an analytic function f (z) is independent of r and identical to

the function’s itself in the region of analyticity.

M f (z, r) = f (z). (2.32)

Proof Let us consider spherical means operator (2.27) in complex domain, in the region

of analyticity of function f (z),

M f (z, r) =
1

2πi

∫

|ξ|=1

dξ
ξ

cosh(rξ∂z + rξ̄∂z̄) f (z). (2.33)

Then expanding cosine hyperbolic function in the Taylor series we find

M f (z, r) =
1

2πi

∮

|ξ|=1

dξ
ξ

∞∑

n=0

2n∑

k=0

(
2n
k

) r2nξ2n−kξ̄k

(2n)!
∂2n−k

z ∂k
z̄ f (z). (2.34)

Since f (z) is analytic then its derivative with respect to z̄ gives zero. According to this,

only terms with k = 0 will survive

M f (z, r) =
1

2πi

∮

|ξ|=1

dξ
ξ

∞∑

n=0

r2nξ2n

(2n)!
∂2n

z f (z). (2.35)

According to the Cauchy integral formula, in this integral only the term with ξ−1 will

survive. Hence n must be zero.

M f (z, r) =
1

2πi

∮

|ξ|=1

dξ
ξ

f (z) (2.36)

M f (z, r) = f (z)
1

2πi

∮

|ξ|=1

1
ξ

dξ (2.37)

M f (z, r) = f (z). (2.38)

Another way to prove this theorem is based on the Cauchy Integral formula (2.31)

f (z0) =
1

2πi

∮
f (z)

z − z0
dz. (2.39)

�
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Let us consider contour C as the circle: |z − z0| = r. Then z − z0 = reiθ, 0 ≤ θ < 2π,

dz = ireiθdθ, so

f (z0) =
1

2π

∮
f (z0 + reiθ)dθ = M f (z0). (2.40)

Proposition 2.4 The relation between differential operator and integro-differential operator is

given as (
d
dz

)k

=
k!

2πi

∮
dξ
ξk+1

eξ
∂
∂z . (2.41)

Proof Expanding exponential function, we observe that only term of order k gives

nontrivial contribution. �

Theorem 2.3 (generalized Cauchy Formula ) If a function is not analytic but continuous in a

region Ω bounded by a closed curve C, then at any point z0 in the ω following formula holds;

f (z0) =
1

2πi

∮

C

f (ξ)
ξ − z0

dξ − 1
π

∫ ∫

Ω

∂ f/∂ξ̄
ξ − z0

dA (2.42)

where dA is the surface element.

Theorem 2.4 Spherical means of an arbitrary complex function is given by the following formula

M f (z, z̄, r) =


∞∑

n=0

r2n

(n!)2∂
n
z∂

n
z̄

 f (z, z̄). (2.43)

Proof The proof can be done by two ways.

1) spherical means operator in complex notation is given by

M f (z, z̄, r) =
1

2πi

∮

|ξ|=1

dξ
ξ

cosh(rξ∂z + rξ̄∂z̄) f (z, z̄). (2.44)

From the Generalized Cauchy integral formula (2.42), we find

M f (z, z̄, r) = cosh(rξ∂z + rξ̄∂z̄) f (z, z̄)|ξ=0 +
1
π

∫ ∫

Ω

dA
ξ

∂
(
cosh(rξ∂z + rξ̄∂z̄)

)

∂ξ̄
f (z, z̄) (2.45)

where dA is the surface element. Thus spherical means of an arbitrary function is equal

to the

M f (z, z̄, r) = f (z, z̄) +
1
π

∫ ∫

Ω

dA
∞∑

n=0

2n∑

k=1

(
2n
k

) kr2nξ2n−k−1ξ̄k−1

(2n)!
∂2n−k

z ∂k
z̄ f (z, z̄). (2.46)

Letting ξ = Reiθ, allows us to write

M f (z, z̄, r) = f +
1
π

∞∑

n=0

2n∑

k=1

2π∫

θ=0

1∫

0

dRdθ

(
2n
k

)
kr2neiθ(2n−2k)R2n−1

(2n)!
∂2n−k

z ∂k
z̄ f (z, z̄)

M f (z, z̄, r) = f +
1
π

∞∑

n=0

2n∑

k=1

2π∫

θ=0

dθ

(
2n
k

)
kr2neiθ(2n−2k)

2n(2n)!
∂2n−k

z ∂k
z̄ f (z, z̄). (2.47)
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If n , k then the integral gives zero. Hence the expression reduces to the

M f (z, z̄, r) = f (z) +

∞∑

n=1

r2n

(2n)!
∂n

z∂
n
z̄ f (z, z̄). (2.48)

Thus spherical means of a function which depend on z and z̄ is given by

M f (z, z̄, r) =


∞∑

n=0

r2n

(n!)2∂
n
z∂

n
z̄

 f (z, z̄). (2.49)

Since M= 4∂z∂z̄ then spherical means of function f (x, y) satisfies

M f (x, y, r) =


∞∑

n=0

r2n Mn

(n!)222n

 f (x, y). (2.50)

2) The second way to prove is to calculate the integral directly. Spherical means operator

in complex plane is given by

M f (z, z̄, r) =
1

2πi

∮

|ξ|=1

dξ
ξ

∞∑

n=0

2n∑

k=0

(
2n
k

) r2nξ2n−kξ̄k

(2n)!
∂2n−k

z ∂k
z̄ f (z, z̄). (2.51)

Since |ξ| = 1 we get, ξξ̄ = 1. Using this relation we can write

M f (z, z̄, r) =
1

2πi

∮

|ξ|=1

dξ
ξ

∞∑

n=0

2n∑

k=0

(
2n
k

) r2nξ2n−2k

(2n)!
∂2n−k

z ∂k
z̄ f (z, z̄). (2.52)

Now, according to the Cauchy integral formula (2.31) only terms will survive when n = k,

so we obtain,

M f (z, z̄, r) =

∞∑

n=0

(
2n
n

) r2n

(2n)!
(∂z∂z̄)n f (z, z̄) (2.53)

M f (z, z̄, r) =

∞∑

n=0

r2n

(n!)2 (∂z∂z̄)n f (z, z̄). (2.54)

�

Let us define new function

e(z; 2) =

∞∑

n=0

zn

(n!)2 , (2.55)

by ratio test it can be shown that the series converges for all z in the whole complex

plane, then the function e(z; 2) is an entire function. Using this function, we can write the

spherical mean operator M as

M = e
(

r2

4
M; 2

)
. (2.56)

Theorem 2.5 The value of a harmonic function u = u(x, y), at the center of a disk, is equal to

the average value of the function u on the boundary of the disk.

11



Proof If function u(x, y) is harmonic then it satisfies Laplace equation

M u(x, y) = 0. (2.57)

Hence from the spherical means operator

Mu(x, y; r) = e
(

r2

4
M; 2

)
u

and by the definition of e(x; 2) (2.55), it is found that spherical means of a harmonic

function is

Mu(x, y; r) = u(x, y). (2.58)

This equality tells us also that, average of a harmonic function is independent from the

radius of the circle. �

If function u(x, y) is not harmonic then for the spherical means we have the next

formula

Mu(x, y; r) = u(x, y) +
r2

4
M u +

r4

16
M2 u + . . . +

r2n

4n M
n u + . . . (2.59)

Explicitly dependent of the radius r.

Now, as an application of spherical means operator (2.56), let us evaluate the

spherical means of some special functions which depend only radial part.

1) In two dimensional space let us consider consider function

u(x, y) =
1√

x2 + y2
(2.60)

or

u(R) =
1
R
, R =

√
x2 + y2. (2.61)

Since the function depends only on radial part then Laplace operator has the form

M= ∂2
R +

1
R
∂R.

If we evaluate the Laplacian of function 1
R we find

12



M
1
R

=
1

R3 (2.62)

M2 1
R

=
32

R5 (2.63)

M3 1
R

=
3252

R7 (2.64)

M4 1
R

=
325272

R9 (2.65)

M5 1
R

=
32527292

R11
(2.66)

...

Mn 1
R

=
325272 . . . (2n − 1)2

R2n+1
. (2.67)

Writing the the operator form of spherical means we find spherical means of function 1
R

as

M 1
R

(R; r) =

∞∑

n=0

( r2

4 M)n

(n!)2
1
R

(2.68)

M 1
R

(R; r) =

∞∑

n=0

( r2

4 )n

(n!)2

[(2n − 1)!!]2

R2n+1
(2.69)

M 1
R

(R; r) =
1
R

∞∑

n=0

(
r2

4R2

)n

[
(2n − 1)!!

(n!)
]2. (2.70)

If R = r, then we find

M 1
R

=

∞∑

n=0

(
1
4

)n[
(2n − 1)!!

n!
]2 (2.71)

Let r
R = ρ, then equation (2.70) takes the form

M 1
R

=
1
R

∞∑

n=0

(
ρ2

4
)n[

(2n − 1)!!
n!

]2. (2.72)

2) Now let us consider function in two dimensional space as

u(x, y) = (
√

x2 + y2)N, u(R) = RN. (2.73)

Power of Laplacians are found as

M RN = N2RN−2 (2.74)

M2 RN = N2(N − 2)2RN−4 (2.75)

M3 RN = N2(N − 2)2(N − 4)2RN−6 (2.76)
...

Mn RN = N2(N − 2)2(N − 4)2.... ((N − (2n − 2)))2 RN−2n. (2.77)
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Then spherical means of function RN is found as

MRN = RN
∞∑

n=0

(
r2

4R2

)n [N(N − 2)(N − 4)...(N − (2n − 1))]2

(n!)2 . (2.78)

3) Let u(x, y, z) = 1√
x2+y2+z2

, this function is harmonic in three dimensional space

so spherical means of u( 1
R ) = 1

R is equal to itself

M 1
R

=
1
R
. (2.79)

This also tells us that for the harmonic functions we do not need to take the limit r→ 0 to

recover the original function from the spherical means of the function.

4) If we consider the function

u(x, y, z) = RN,R =

√
x2 + y2 + z2. (2.80)

Laplacians of function are found as

M RN =
(N + 1)!
(N − 1)!

RN−2 (2.81)

M2 RN =
(N + 1)!
(N − 3)!

RN−4 (2.82)

M3 RN =
(N + 1)!
(N − 5)!

RN−6 (2.83)

...

Mn RN =
(N + 1)!

(N − (2n − 1))!
RN−2n (2.84)

MRN = RN
∞∑

n=0

(
r2

4R2

)n [N(N − 2)(N − 4)...(N − (2n − 1))]2

(n!)2 . (2.85)

In three dimensional space spherical means operator is given by the following formula

(Sabelfeld and Shalimova 1997)

Mu(x, y, z; r) =
sinh(r

√
M)

r
√
M

u(x, y, z). (2.86)

Then using the definition of sine hyperbolic function

Mu(x, y, z; r) =

∞∑

n=0

r2n Mn

(2n + 1)!
u. (2.87)

Hence

MRN =

∞∑

n=0

r2n(N + 1)!
(2n + 1)! (N − (2n − 1))!

RN−2n (2.88)

MRN = RN
∞∑

n=0

(
r2

R2 )n (N + 1)!
(2n + 1)! (N − (2n − 1))!

. (2.89)

In addition to above examples, spherical means of an arbitrary function is evaluated in

appendix (A).
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2.3. Properties of Modified Exponential Function

In previous section we introduced modified exponential function derived by the

next formula ,

e(x; 2) =

∞∑

n=0

xn

(n!)2 . (2.90)

This section is devoted for the properties of modified exponential function.

Proposition 2.5 Function e(x; 2) satisfies the second order differential equation

d
dx

(
x

d
dx

y(x)
)
− y(x) = 0. (2.91)

Proof Let us take derivative of e(x; 2) with respect to x

d
dx

e(x; 2)(x) =

∞∑

n=0

xn

(n + 1)(n!)2 . (2.92)

Multiplying equation (2.92) with x gives,

x
d

dx
e(x; 2) =

∞∑

n=0

xn+1

(n + 1)(n!)2 . (2.93)

Now, in order to eliminate (n + 1) in denominator, let us take one more derivative

d
dx

(x
d

dx
e(x; 2)) =

∞∑

n=0

xn

(n!)2 = e(x; 2) (2.94)

thus e(x; 2) is a solution of the following differential equation

d
dx

(x
d

dx
e(x; 2)) = e(x; 2). (2.95)

�

Equation (2.95) can be transformed to the Schrödinger equation with exponential poten-

tial. To do this, let us multiply equation (2.95) with x

x
d
x

x
d
x

e(x; 2) = xe(x; 2). (2.96)

We see that this equation is Euler type. So by substitution

x = ey, y = ln x,
d

dy
=

dx
dy

d
dx

= x
d

dx
(2.97)

it becomes
d2

dy2 e(ey; 2) = eye(ey; 2) (2.98)

or (
− d2

dy2 + ey
)
ϕ(y) = 0. (2.99)
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So, solution of this equation is

ϕ(y) = e(ey; 2) (2.100)

or

ϕ(y) =

∞∑

n=0

(ey)n

(n!)2 =

∞∑

n=0

eyn

(n!)2 . (2.101)

Equation (2.99) can be extended to the complex domain. In particular, for pure imaginary

y = iξ, we have following equation
(

d2

dξ2 + eiξ
)
ϕ(iξ) =

(
d2

dξ2 + eiξ
)
Ψ(ξ). (2.102)

The meaning of this equation is

− d2

dξ2 Ψ(ξ) = eiξΨ(ξ) = (cos ξ + sin ξ)Ψ(ξ). (2.103)

Solution of equation (2.102) is

Ψ(ξ) =

∞∑

n=0

eiξn

(n!)2 =

∞∑

n=0

cos nξ + i sin nξ
(n!)2 (2.104)

Proposition 2.6 (Abramowich 1983) Function e(x; 2) satisfies the differential equation

dk

dxk
(xk dk

dxk
e(x; 2)) = e(x; 2). (2.105)

Proposition 2.7 Function e(λx; 2) where λ is a constant, satisfies the differential equation

dk

dxk
xk dk

dxk
e(λx; 2) = λe(λx; 2). (2.106)

Proposition 2.8 Modified exponential function can be expressed in terms of modified Bessel

function

e(x; 2) = I0(2
√

x). (2.107)

In addition to above properties modified exponential function e(x; 2) has infinite number of zeros

located on the negative axis x.

e(xn; 2) = 0, xn < 0, n = 1, 2, . . .

Proposition 2.9 If λk (k = 1, 2, 3, . . .) are zeros of modified exponential function e(x; 2), then

functions e(λkx; 2) satisfies the following relations

1∫

0

e(λmx; 2)e(λnx; 2)dx =
{ 0, n , m

− 1
λ (e′(λ; 2))2 n = m

(2.108)
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Figure 2.1. Zeros of e(x; 2).

Proposition 2.10 (Abramowich 1983) Let e(0)(x; 2) = e(x; 2) and

e(k)(x; 2) =
dk

dxk
e(x; 2), e(−k)(x, 2) =

x∫

0

e(−k+1)(s; 2)ds, k ≥ 1 (2.109)

then functions e(k)(x; 2) possess the generating function

exp(t +
x
t

) =

∞∑

k=−∞
tke(k)(x; 2). (2.110)

Proof Expanding left hand side of (2.110) in Taylor series and using the following

identities

e(k)(x; 2) =

∞∑

n=0

xn

n!(n + k)!
, e(−k)(x; 2) =

∞∑

n=k

xn

n!(n − k)!
, (2.111)

we find that

exp(t +
x
t

) =

∞∑

k=−∞
tke(k)(x; 2). (2.112)

�

As in the standard case of exponential function we can find related analogs of

trigonometric and hyperbolic functions for the modified exponential function. If we

write e(ix; 2) and use the definition of modified exponential function (2.55), we obtain

analog of Euler formula

e(x; 2) = c(x; 2) + is(x; 2), i2 = −1 (2.113)

where c(x; 2) and s(x; 2) modified cosine and sine functions given by

c(x; 2) =

∞∑

k=0

(−1)k x2k

(2k!)2 , s(x; 2) =

∞∑

k=1

(−1)k−1 x2k−1

((2k − 1)!)2 . (2.114)

Functions c(x; 2) and s(x; 2) obey the rules

d
dx

(
x

d
dx

c(x; 2)
)

= −s(x; 2), (2.115)

d
dx

(
x

d
dx

s(x; 2)
)

= c(x; 2). (2.116)
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Applying the operator d
dx x d

dx to the equations (2.115) and (2.116) one more time, leads to

the following proposition.

Proposition 2.11 Functions c(x; 2) and s(x; 2) are solutions of the differential equation
(

d
dx

x
d
dx

)2

u + u = 0. (2.117)

Furthermore, as in the standard case, we can find modified hyperbolic type func-

tions

ch(x; 2) =
e(x; 2) + e(−x; 2)

2
, sh(x; 2) =

e(x; 2) − e(−x; 2)
2

where ch(x; 2) and sh(x; 2) are given by the following formulas

ch(x; 2) =

∞∑

k=0

x2k

(2k!)2 , sh(x; 2) =

∞∑

k=1

x2k−1

((2k − 1)!)2 . (2.118)

From the definition of the modified hyperbolic functions (2.118) we find that modified

cosine and sine functions satisfy following equations

d
dx

(x
d

dx
ch(x; 2)) = sh(x; 2), (2.119)

d
dx

(x
d

dx
sh(x; 2)) = ch(x; 2). (2.120)

Hence, following proposition holds.

Proposition 2.12 Functions ch(x; 2) and sh(x; 2) are the solutions of the following differential

equation (
d
dx

x
d
dx

)2

u − u = 0. (2.121)

Proposition 2.13 (Abramowich 1983) Addition rule for the e(x; 2) is given by the following

formula

e(x + y; 2) =

∞∑

n=−∞
e(n)(

x
2

; 2)e(−n)(
y
2

; 2). (2.122)

Proof Using the generating function relation, given in proposition (2.10), we can write

et+ x
t =

∞∑

n=−∞
tnen(x; 2) (2.123)

et+ y
t =

∞∑

m=−∞
tmem(y; 2). (2.124)

Multiplying equations (2.123) and (2.124) then equating the same power of t, we find

e(2(x + y); 2) =

∞∑

n=−∞
en(x; 2)e−n(y; 2) (2.125)

writing x→ x
2 and y→ y

2 , we find

e(x + y; 2) =

∞∑

n=−∞
e(n)(

x
2

; 2)e(−n)(
y
2

; 2). (2.126)

�
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Proposition 2.14 (Abramowich 1983) The solution of the integral equation

u(x1, x2) = 1 +

x1∫

0

x2∫

0

u(t1, t2)dt1dt2 (2.127)

with x2 = 1, is given by the modified exponential function e(x; 2).

Proof Let us consider the integral equation

u(x1, x2) = 1 +

x1∫

0

x2∫

0

u(t1, t2)dt1dt2. (2.128)

As an first approximation to the solution, let us take u(x) = 1 and substitute into the

integral equation and then we find after n iterations

u1(x1, x2) = 1 + x1x2 (2.129)

u2(x1, x2) = 1 + (x1x2) +
(x1x2)2

22 (2.130)

u3(x1, x2) = 1 + (x1x2) +
(x1x2)2

22 +
(x1x2)3

(3!)2 (2.131)

...

u(x1, x2) =

∞∑

k=0

(x1x2)k

(k!)2 . (2.132)

Taking x2 = 1, gives the desired result

u(x1, 1) =

∞∑

k=0

(x1)k

(k!)2 . (2.133)

�

2.3.1. Application of Modified Exponential Function to the PDEs

Let us consider a heat equation where the diffusion coefficient is linear function

of x

ut =
∂
∂x

(
x
∂
∂x

)
u, u = u(x, t). (2.134)

Separation of variables u(x, t) = X(x)T(t) gives us;

T′

T
=

(∂xx∂x)X
X

= λ. (2.135)

Thus we find that functions T and X are given by,

T(t) = eλt, X(x) = e(λx; 2). (2.136)
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Since this heat equation is linear, we can write the general solution in the form,

u(x, t) =

∞∑

i=0

aλie
λite(λix; 2). (2.137)

It is well known that one-dimensional heat equation is related with nonlinear

PDE called Burgers equation (Burgers 1948) by the Cole-Hopf (Cole 1951 Hopf 1950)

transformation. This relation allows not only to find shock soliton solutions of Burgers

equation, but also to solve IVP for the last one. Now for our modified version of the heat

equation (2.134), we can construct corresponding PDEs. To do this let us define φ = ln u.

Then from the heat equation (2.134), we get the analog of the potential Burgers equation.

φt = xφxx + φx + xφ2
x. (2.138)

Taking derivative with respect to x and defining φx = v, we get the analog of the Burgers

equation with space dependent coefficients given by

vt = xvxx + 2vx + v2 + 2xvvx. (2.139)

Then a solution of this Burgers equation is given by the Cole-Hopf transformation

v(x, t) =
ux(x, t)
u(x, t)

. (2.140)

By using solution of heat equation (2.137), we find solution of (2.138) and (2.139) depend-

ing on only e(x, 2) and its derivatives. Moreover zeros of function u(x, t) becomes the poles

of equation (2.139).

v(x, t) =
aλie

λit d
dx e(λix; 2)

aλieλite(λix; 2)
. (2.141)

2.3.2. Burgers Hierarchy

We can generalize previous result to the hierarchy of the heat equations (Pashaev

and Gürkan 2007). Let us consider the hierarchy of heat equations given for the different

times (t1, t2, . . .) as

∂tnu(x, t) = ∂n
xxn∂n

xu(x, t), n = 1, 2, . . . (2.142)

Then by the Cole-Hopf transformation (2.140), we find the Burgers equations hierarchy

for different times (t1, t2, . . .) as

∂tnv = ∂x [(∂x + v)nxn(∂x + v)n.1] , n = 1, 2, . . . (2.143)
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2.3.3. Spherical Means in Three Dimensional Space

In three dimensional dimensional space, we can write the expression of spherical

means as

Mu(x, r) =
1

4π

2π∫

o

π∫

0

cosh (r sinθ cosφ∂x + r sinθ sinφ∂y + r cosθ∂z)u(x, y) sinθdθdφ.

(2.144)

Derivative of Mu(x, r) is given by

∂
∂r

Mu(x, r) =
1

4π

2π∫

o

π∫

0

(sinhα)
(
sinθ cosφ∂x + sinθ sinφ∂y + cosθ∂z

)
u(x, y) sinθdθdφ

(2.145)

where α = (r sinθ cosφ∂x + r sinθ sinφ∂y + r cosθ∂z). Differentiating this equation for

two times with respect to θ gives us the relation

∂
∂r

Mu(x, r) =
1

4π

2π∫

o

π∫

0

r(coshα)
(
cosθ cosφ∂x + cosθ sinφ∂y − sinθ∂z

)2
u(x, y) sinθdθdφ

(2.146)

Second derivative of Mu(x, r) is

∂2

∂r2 Mu(x, r) =
1

4π

2π∫

o

π∫

0

(coshα)
(
sinθ cosφ∂x + sinθ sinφ∂y + cosθ∂z

)2
u(x, y) sinθdθdφ

(2.147)

writing expressions (2.146) and (2.147), for the first and second derivatives of Mu(x, r),

into the Darboux equation (3.8) in three dimensional space we find

∆xMu(x, r) =
1

4π

2π∫

o

π∫

0

(coshα) (χ1(θ, φ, x, y, z) + χ2(θ, φ, x, y, z))u(x, y, z) sinθdθdφ

(2.148)

where the functions α, χ1, χ2 are given with

α(θ, φ, x, y, z) = (r sinθ cosφ∂x + r sinθ sinφ∂y + r cosθ∂z) (2.149)

χ1(θ, φ, x, y, z) = 2
(
cosθ cosφ∂x + cosθ sinφ∂y − sinθ∂z

)2
(2.150)

χ2(θ, φ, x, y, z) =
(
sinθ cosφ∂x + sinθ sinφ∂y + cosθ∂z

)2
. (2.151)

2.4. Power of Laplacians and Spherical Means

In n dimensional space the Darboux equation reads

∆xMu(x, r) = (
∂2

∂r2 +
n − 1

r
∂
∂r

)Mu(x, r). (2.152)
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The first and the second derivatives of the expression are given by

∆x
∂
∂r

Mu(x, r) =
∂
∂r

(
∂2

∂r2 +
n − 1

r
∂
∂r

)Mu(x, r), (2.153)

∆x
∂2

∂r2 Mu(x, r) =
∂2

∂r2 (
∂2

∂r2 +
n − 1

r
∂
∂r

)Mu(x, r). (2.154)

Multiplying equation (2.153) with n−1
r and adding with equation (2.154) together we find

that

∆x∆xMu(x, r, t) = ∆2
xMu(x, r, t) = (

∂2

∂r2 +
n − 1

r
∂
∂r

)(
∂2

∂r2 +
n − 1

r
∂
∂r

)Mu(x, r). (2.155)

If we do this calculation for arbitrary number k, we find that

∆k
xMu(x, r, t) = (

∂2

∂r2 +
n − 1

r
∂
∂r

)kMu(x, r). (2.156)

In the special case, for three dimensional space, we have following relations

∆xMu(x, r, t) =
1
r

(rMu)rr (2.157)

∆x(rMu(x, r, t)) = (rMu)rr (2.158)

∆2
x(rMu(x, r, t)) = (rMu)rrrr (2.159)

...

∆k
x(rMu(x, r, t)) =

∂2k

∂r2k
(rMu). (2.160)

Then the differential operator in the form of powers of Laplacian

L =

n∑

k=1

ak Mk
x, (2.161)

acts on the function u(x) as

L(u(x)) =

n∑

k=1

ak Mk
x u(x) =

1
r

n∑

k=1

ak
∂2k

∂r2k
(rMu(x, r)) . (2.162)

This allows us to reduce the problem of solution for PDE in three dimensional space in

the form ∂tu = Lu, ∂2
ttu = Lu or Lu = 0, to one-dimensional problem for the spherical

means.
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CHAPTER 3

SOLUTION OF IVP FOR THE WAVE EQUATION

BY SPHERICAL MEANS

In the present chapter, we study solution of initial value problem for the wave

equation by the method of spherical means. First we consider solution of I.V.P in 3, 5 and

7 dimensional spaces and then for arbitrary odd dimensional spaces (Evans 1949).

3.1. IVP For The One-Dimensional Wave Equation

The wave equation is a hyperbolic type partial differential equation which arises in

the study of many important physical problems involving wave propagation phenomena

(Davis 2000 Young 1972), such as the transverse vibrations of an elastic string and the

longitudinal vibrations or the torsional oscillations of a rod. It is given with the operator

L =

(
∂2

∂t2 − c2 ∂
2

∂x2

)
, (3.1)

where u is a function of two independent variables x, t. The function u physically represent

the normal displacement of particles of the vibrating string. Initial value problem is given

by

utt − c2uxx = 0, (3.2)

u(x, 0) = f (x), ut(x, 0) = g(x). (3.3)

Characteristics are given by,

x ± ct = constant. (3.4)

It is natural to take these characteristics as coordinates, say

ξ = x + ct, η = x − ct. (3.5)

Then equation (3.2) takes the form,

uξη = 0. (3.6)

This equation tells us that u must have the form,

u = F(ξ) + G(η) (3.7)
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where F and G are arbitrary functions of their arguments. In original variables we find

the general solution in the form,

u(x, t) = F(x + ct) + G(x − ct). (3.8)

Graph of u in xt plane consists of two waves propagating without change of shape with

velocity c in opposite directions along the x axis. If we consider wave equation (3.2) with

the initial conditions (3.3), by using the solution (3.8) it is found that,

F′(x) =
c f ′(x) + g(x)

2c
, G′(x) =

c f ′(x) − g(x)
2c

or equivalently,

F(x) =
f (x)
2

+
1
2c

x∫

0

g(ξ)dξ (3.9)

G(x) =
f (x)
2
− 1

2c

x∫

0

g(ξ)dξ. (3.10)

So solution of the initial value problem for the wave equation is given by,

u(x, t) =
f (x + ct) + f (x − ct)

2
+

1
2c

x+ct∫

x−ct

g(ξ)dξ. (3.11)

This solution shows that u(x, t) is determined uniquely by values of the initial functions f , g

in the interval [x-ct,x+ct] of the x axis whose end points are cut out by the characteristics

through the point (x,t). This interval represents the domain of dependence for the solution

at the point (x,t).

3.2. Solution of IVP for the Wave Equation in Three Dimensional

Space

The initial value problem for the linear wave equation can be solved by the

method of spherical means [(John 1981), (Courant and Hilbert 1962)]. Let us consider

the function u(x, t) = u(x1, x2, x3, t) which depends on three space variables x1, x2, x3 and

time t.

Proposition 3.1 (John 1981) Solution of the initial value problem for the wave equation

�u = utt − c24u = 0 (3.12)

u(x, 0) = f (x), ut(x, 0) = g(x) (3.13)
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in 3 + 1 dimensional space is given by

u(x, t) =
1

4πc2t

∫

|y−x|=ct

g(y)dSy +
∂
∂t


1

4πc2t

∫

|y−x|=ct

f (y)dSy

 (3.14)

where dSy is the element of surface area of the sphere with radius ct and centered at

x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) is a point on the sphere.

Proof In the method of spherical means by using the Darboux equation (3.8), the

initial-value problem (3.12),(3.13) can be transformed into the one for Mu(x, t; r),

∂2

∂t2 Mu = c2(
∂2

∂r2 +
2
r
∂
∂r

)Mu, (3.15)

Mu(x, 0; r) = M f (x, r),
∂
∂t

Mu(x, 0; r) = Mg(x, r), (3.16)

where M f and Mg are spherical means of initial functions f and g correspondingly. But

equation (3.15) implies;
∂2

∂t2 (rMu) = c2 ∂
2

∂r2 (rMu), (3.17)

thus rMu(x, t; r) as a function of r, t, can be threaded as a solution of one dimensional wave

equation with initial values;

rMu(x, t; r) = rM f (x; r),
∂
∂t

(rMu(x, t; r)) = rMg(x; r), t = 0. (3.18)

In terms of a new function N(x, t; r) = rMu(x, t; r), equation (3.17) takes the form

Ntt − c2Nrr = 0 (3.19)

which has the general solution,

N(x, t; r) = f̃ (x, r − ct) + g̃(x, r + ct). (3.20)

From initial value problem (3.17) and (3.18) it can be found that;

Mu(x, t; r) =
1
2r

[(ct + r)M f (x, ct + r) − (ct − r)M f (x, ct − r)]

+
1

2cr

∫ ct+r

ct−r
ξMg(x, ξ)dξ. (3.21)

Letting r goes to zero, solution of the initial value problem (3.12),(3.13) is found in the

form;

u(x, t) = tMg(x, ct) +
∂
∂t

(
tM f (x, ct)

)

or

u(x, t) =
1

4πc2t

∫

|y−x|=ct

g(y)dSy +
∂
∂t


1

4πc2t

∫

|y−x|=ct

f (y)dSy

 . (3.22)

�
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3.3. Solution of IVP for Wave Equation in Five Dimensional Space

Similar to the previous case, the method of spherical means allows us to find the

solution of initial value problem for the wave equation in terms of spherical means of

initial functions in five dimensional space.

Proposition 3.2 Solution of the initial value problem for the wave equation in 5 + 1 dimensional

space

�u = utt − c24u = 0 (3.23)

u(x, 0) = f (x), ut(x, 0) = g(x) (3.24)

is given by

u(x, t) = (
1
3

t2 ∂
∂t

+ t)Mg(x, ct) +
∂
∂t

(
1
3

t2 + t)M f (x, ct). (3.25)

Proof When the space dimension is five the substitution ψ̃(x, t; r) = rMu(x, t; r) does not

reduce the Euler-Poison-Darboux Equation (2.2) into the canonical wave equation (3.2)

anymore. But the function given by,

N(x, t; r) = r2 ∂
∂r

Mu(x, t; r) + 3rMu(x, t, ; r) (3.26)

reduces equation ∂2

∂t2 Mu = c2( ∂
2

∂r2 + 4
r
∂
∂r )Mu, into the canonical form of wave equation

∂2

∂t2 N = c2 ∂
2

∂r2 N.

When r approaches the zero, Mu(x, t; r) approaches u(x, t). Then by using equation (3.26),

it is found that

u(x, t) = lim
r→0

N(x, r, t)
3r

. (3.27)

Finally, solution of the initial value problem (3.23) and (3.24) is given in terms of the

spherical means of the initial functions as;

u(x, t) = (
1
3

t2 ∂
∂t

+ t)Mg(x, ct) +
∂
∂t

(
1
3

t2 + t)M f (x, ct). (3.28)

�

3.4. Solution of IVP for Wave Equation in Seven Dimensional

Space

Solution of initial value problem in seven dimensional space is given by the

following proposition.
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Proposition 3.3 Solution of the initial value problem for the wave equation in 7 + 1 dimensional

space

�u = utt − c24u = 0 (3.29)

u(x, 0) = f (x), ut(x, 0) = g(x) (3.30)

is given by

u(x, t) =

(
t3

15
∂2

∂t2 +
9t2

15
∂
∂t

+ t
)

Mg(x, ct) +
∂
∂t

((
t3

15
∂2

∂t2 +
9t2

15
∂
∂t

+ t
)

M f (x, ct)
)
. (3.31)

Proof Similar to the previous case, we can convert the Euler-Poisson-Darboux equation
∂2

∂t2 Mu = c2( ∂
2

∂r2 + 6
r
∂
∂r )Mu, into the canonical wave form by transformation,

N(x, t; r) = r3 ∂
2

∂r2 Mu(x, t; r) + 9r2 ∂
∂r

Mu(x, t; r) + 15rMu(x, t; r).

The function u(x, t) can be recovered from N(x, t; r) by the limit,

u(x, t) = lim
r→0

N(x, r, t)
15r

.

Following the same procedure as before, we find solution of initial value problem for the

wave equation in seven dimensional space as,

u(x, t) =
t3

15
∂3

∂t3 M f +
12t2

15
∂2

∂t2 M f +
33t
15

∂
∂t

M f + M f (3.32)

+
t3

15
∂2

∂t2 Mg +
9t2

15
∂
∂t

Mg + tMg. (3.33)

After some rearrangements it can be written as;

u(x, t) =

(
t3

15
∂2

∂t2 +
9t2

15
∂
∂t

+ t
)

Mg(x, ct) +
∂
∂t

((
t3

15
∂2

∂t2 +
9t2

15
∂
∂t

+ t
)

M f (x, ct)
)
. (3.34)

�

3.5. Solution of IVP for the Wave Equation in Arbitrary Odd Di-

mensional Space

We have solved the initial value problem for the wave equation by using spherical

means in three, five and seven dimensional spaces and found the expressions for the

function u(x, t) in terms of spherical means of initial functions, and their derivatives.

Generalization of this idea immediately tells us that in principle, we can find a

transformation which reduces the Euler-Poisson-Darboux equation (2.2) into the canonical

wave equation (3.2). To do this let us search a function in the form;

N(x, t; r) =

n−3
2∑

k=0

akrk+1M(k)
u (x, t; r) (3.35)
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where n is the number of space variables, M(k)
u (x, t; r) denotes ∂k

∂rk Mu and ak are constants

especially a n−3
2

= 1. We require that function N(x, t; r) obtained from the linear combination

of the spherical means of u and its derivatives, satisfies the canonical wave equation

Ntt(x, t, ; r) − c2Nrr(x, t; r) = 0. (3.36)

By using the Euler- Poisson-Darboux equation (2.2), it is found that coefficients ak must

satisfy the following algebraic relation,

n−3
2∑

k=0

akrk+1
(n − 1

r
M(1)

)(k)
−

n−3
2∑

k=0

akk(k + 1)rk−1M(k)
u − 2

n−3
2∑

k=0

ak(k + 1)rkM(k+1)
u = 0. (3.37)

Solving this equation allows us to find N(x, t; r). We give explicit form of functions

N(x, t; r) for some different space variables n;

for n = 3, N(x, t; r) = rMu(x, t; r)

for n = 5, N(x, t; r) = r2(Mu)r(x, t; r) + 3rMu(x, t; r)

for n = 7, N(x, t; r) = r3(Mu)rr(x, t; r) + 9r2(Mu)r(x, t; r) + 15rMu(x, t; r)

for n = 9, N(x, t; r) = r4(Mu)rrr(x, t; r) + 18r3(Mu)rr(x, t; r) + 87r2(Mu)r(x, t; r) + 105rMu(x, t; r).

Function N(x, t; r) given with equation (3.35), allows us to solve initial value prob-

lem for the wave equation in higher dimensional spaces.

Proposition 3.4 (Evans 1949) Solution of the initial value problem

�u = utt − c24u = 0 (3.38)

u(x, 0) = f (x), ut(x, 0) = g(x) (3.39)

for the wave equation in n + 1 dimensions, where n = 2k + 1, (k = 1, 2, 3, ...) is given by

u(x, t) =
1
a0


(
∂
∂t

) (
1
t
∂
∂t

) n−3
2 (

tn−2M f

)
+ (

1
t
∂
∂t

)
n−3

2
(
tn−2Mg

) (3.40)

where a0 = 1.3.5.7....(2k − 1) = (2k − 1)!!.

Proof Spherical means Mu of function u satisfies the initial value problem

∂2

∂t2 Mu = c2(
∂2

∂r2 +
n − 1

r
∂
∂r

)Mu, (3.41)

Mu(x, 0; r) = M f (x, r),
∂
∂t

Mu(x, 0; r) = Mg(x, r). (3.42)

Then for function N(x, t; r) = ( 1
r

d
dr )k−1(r2k−1Mu(x, t; r)) initial value problem is given by

Ntt −Nrr = 0, (3.43)

N(x, 0, r) = F(x; r), Nt(x, 0; r) = G(x; r). (3.44)
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Initial value problem (3.43) and (3.44) has solution

N(x, t; r) =
1
2

[F(x, r + t) − F(x, r − t)] +
1
2

t+r∫

t−r

G(x, ρ)dρ. (3.45)

Original function u(x, t) can be recovered by the following limit

lim
r→0

N(x, t; r)
a0r

= u(x, t). (3.46)

Then solution of the ivp (3.38) and (3.39) is given by

u(x, t) =
1
a0

lim
r→0


F(x, r + t) − F(x, t − r)

2r
+

1
2r

t+r∫

t−r

G(x, ρ)dρ

. (3.47)

Finally, we find solution of initial value problem u(x, t), in terms of spherical means of

initial functions,

u(x, t) =
1
a0

(
∂
∂t

)(
1
t
∂
∂t

)
n−3

2

tn−2
∫

∂B(x,t)

f dS

 + (
1
t
∂
∂t

)
n−3

2

tn−2
∫

∂B(x,t)

gdS





u(x, t) =
1
a0

[
(
∂
∂t

)(
1
t
∂
∂t

)
n−3

2
(
tn−2M f

)
+ (

1
t
∂
∂t

)
n−3

2
(
tn−2Mg

)]
. (3.48)

Where a0 = 1.3.5.7....(2k − 1) = (2k − 1)!!. �

3.6. Hadamard’s Method of Descent

Above we have solved the initial value problem for wave equation in odd di-

mensional spaces by reducing it to i.v.p for the one-dimensional wave equation for new

function N(x, t; r) (3.35). But situation is different for the even dimensional spaces. In

general one can not find a transformation which reduces Euler-Poisson-Darboux equa-

tion to the canonical wave form. But every function in even (2n) dimensional space can

be considered as (2n + 1) odd dimensional function with one component fixed. For ex-

ample, two dimensional function u = u(x1, x2, t) can be considered as a three dimensional

function u = u(x1, x2, x3, t) with x3 = constant. This way, solution for even dimensional

spaces can be found. This method is Hadamard Method of Descent (John 1981). Let us

consider, for the simplicity, n = 2 dimensional space and initial value problem

�u = utt − c24u = 0 (3.49)

u(x, 0) = f (x), ut(x, 0) = g(x), x ∈ R2. (3.50)

To solve this problem, we start from n = 3 dimensional solution (3.14) and take limit

x3 = 0. We average function u(x, t) on the sphere with radius ct,

|y − x| =
√

(y1 − x1)2 + (y2 − x2)2 + y2
3 = ct. (3.51)
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The surface element for this sphere is

dSy =
ct
|y3|dy1dy2 . (3.52)

By using the solution of initial value problem in three dimensional space

u(x, t) =
1

4πc2t

∫

|y−x|=ct

g(y)dSy +
∂
∂t

(
1

4πc2t

∫

|y−x|=ct

f (y)dSy) (3.53)

we find the solution in two dimensional space as

u(x, t) =
1

2πc

∫ ∫

r<ct

g(y1, y2)√
c2t2 − r2

dy1dy2 +
∂
∂t


1

4πc2t

∫ ∫

r<ct

f (y1, y2)√
c2t2 − r2

dy1dy2

 . (3.54)

where r =
√

(y1 − x1)2 + (y2 − x2)2.
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CHAPTER 4

LIOUVILLE EQUATION

In the present chapter, we consider nonlinear wave equation with exponential

nonlinearity called Liouville equation. First, we shortly review the relation between 1 + 1

dimensional Liouville equation and the surface theory. Then we introduce the spherical

Liouville equation which is defined in 3 + 1 dimensional space and relate it with the

spherically symmetric linear wave equation by the Bäcklund transformation. It allows us

to write the general solution of spherical Liouville equation. After solving the initial value

problem in a particular form for the spherical Liouville equation, we give the progressing

wave solutions. We also give expression for the Lax pair of spherical Liouville equation.

For arbitrary odd dimensional space, we consider the spherical Liouville equation with

some potential. We find its general solution and solve initial value problem. In addition

to these, progressing wave solution is constructed.

4.1. Liouville Equation and Surface Geometry

When the line element of a surface is given in terms of conformal coordinates, we

have the following theorem.

Theorem 4.1 (Dubrovin, Fomenko and Novikov 1984) If u and v are conformal coordinates on

a surface in Euclidean 3-space, in terms of which the induced metric has the form

dl2 = g(u, v)
(
du2 + dv2

)
, (4.1)

then the Gaussian curvature of the surface is given by

K = − 1
2g(u, v)

4 ln g(u, v) (4.2)

where M= ∂2

∂u2 + ∂2

∂v2 is the Laplace operator.

Proof Suppose that in terms of conformal coordinate u, v the surface is given (locally)

by r = r(u, v); r = (x, y, z) (where x, y, z are Euclidean coordinates for the R3). Since the

metric on the surface is given by dl2 = g(u, v)
(
du2 + dv2

)
, we have

〈ru, ru〉 = 〈rv, rv〉 = g(u, v), 〈ru, rv〉 = 0.
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By differentiating these equations with respect to u, v, we obtain

1
2
∂g(u, v)
∂u

= 〈ruu, ru〉 = 〈ruv, rv〉, (4.3)

1
2
∂g(u, v)
∂v

= 〈rvv, rv〉 = 〈ruv, ru〉, (4.4)

〈ruu, rv〉 + 〈ru, ruv〉 = 0, (4.5)

〈ruv, rv〉 + 〈ru, rvv〉 = 0. (4.6)

We define unit vectors as

e1 =
ru√

g(u, v)
, e2 =

rv√
g(u, v)

,n = [e1, e2].

By the form of the metric and properties of the vector product, the frame e1, e2,n

is orthonormal at each point of the surface. In addition, vectors e1, e2 are tangent to the

surface and vector n is normal to it. Coefficients of the second fundamental form of the

surface are

b11 = L = 〈ruu, n〉,

b12 = M = 〈ruv,n〉, (4.7)

b22 = N = 〈rvv,n〉.

It follows from (4.3),(4.4) and (4.7) that relative to the basis e1, e2, n the components of the

vectors ruu, ruv, rvv are as follows;

ruu =

(
1

2
√

g
∂g
∂u
,− 1

2
√

g
∂g
∂v
,L

)
(4.8)

ruv =

(
1

2
√

g
∂g
∂v
,

1
2
√

g
∂g
∂u
,M

)
(4.9)

rvv =

(
− 1

2
√

g
∂g
∂u
,

1
2
√

g
∂g
∂v
,N

)
. (4.10)

Hence following relation holds

〈ruu, rvv〉 − 〈ruv, ruv〉 = LN −M2 − 1
2g

[
(
∂g
∂u

)2 + (
∂g
∂v

)2
]
. (4.11)

From the results given by equations (), (4.3) and equation (4.4), it is found that

1
2
∂2g
∂u2 = 〈ruuv, rv〉 + 〈ruv, ruv〉 (4.12)

1
2
∂2g
∂u2 =

∂

∂v
〈ruu, rv〉 − 〈ruu, rvv〉 + 〈ruv, ruv〉 (4.13)

1
2
∂2g
∂u2 = −1

2
∂2g
∂v2 − (LN −M2) +

1
2g

[
(
∂g
∂u

)2 + (
∂g
∂v

)2
]
. (4.14)
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Then Gaussian curvature of the surface is given by,

K =
det(bi j)
det(gi j)

=
LN −M2

(g(u, v))2 = − 1
2g(u, v)

M ln g(u, v). (4.15)

For a given surface, if the gaussian curvature is non-zero then the metric g(u, v) satisfies

the Liouville equation

M ln g = −2Kg. (4.16)

Introducing new field by g = eϕ, we find the elliptic Liouville equation

M ϕ = −2Keϕ. (4.17)

When the surface is pseudo-Euclidean, the metric in conformal coordinates is given by

dl2 = g(t, x)(dt2 − dx2) (4.18)

then for the constant gaussian curvature, it satisfies the hyperbolic Liouvile equation

(∂2
t − ∂2

x)ϕ = −2Keϕ (4.19)

where g = eϕ. In characteristic coordinates ξ = x + t, η = x − t the equation has the form

ϕξη = −2Keϕ. (4.20)

�

4.1.1. Bäcklund Transformation for Liouville Equation

The Liouville equation is nonlinear but can be transformed directly to the linear

wave equation, which allows to solve it exactly. This transformation is called the Bäcklund

transformation (Clairin 1902), (Forsyth 1959).

Theorem 4.2 Bäcklund transformation relating the Liouville equation uξη = eu with the wave

equation ũξη = 0 is given by

ũξ = uξ + ke
ũ+u

2 (4.21)

ũη = −uη − 2
k

e−
ũ−u

2 . (4.22)

Proof Let us consider two functions u and ũ satisfying

uξη = eu, ũξη = 0 (4.23)
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Now let us derive Bäcklund transformation relating these two equations. To do this let

us consider following system

ũξ = uξ + f (ũ,u) (4.24)

ũη = −uη + g(ũ,u) (4.25)

where functions f , g are arbitrary and have first derivatives according to the arguments.

Compatibility condition of this system by equation (4.23) gives us

Ω = fũ(−uη + g) + fuuη − gũ(uξ + f ) − guuξ + 2eu = 0. (4.26)

Since the Ω is identically zero, its derivatives with respect to u, ũ are also zero

Ω(uξ) = −gu − gũ = 0 (4.27)

Ω(uη) = fu − fũ = 0. (4.28)

These two relation simplify the expression for the Ω as

Ω = g fũ − f gũ + 2eu. (4.29)

Taking one more derivative with respect to u gives

g fũũ − f gũũ = 0. (4.30)

According to the equation (4.27) and (4.28), we find that functions f , g must have the form

g(ũ,u) = g(ũ − u) (4.31)

f (ũ,u) = f (ũ + u). (4.32)

Let us define two new variables as

ξ = ũ − u (4.33)

η = ũ + u. (4.34)

Then equation (4.30) takes the form

g(ξ)
d2 f
dη2 − f (η)

d2g
dξ2 = 0. (4.35)

Separating this equation and equating to the k2, allows us to write

f (η) = aekη + be−kη (4.36)

g(ξ) = cekξ + de−kξ. (4.37)
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Substituting the values of f and g in the equation (4.24), gives

ũξ = uξ + aekη + be−kη (4.38)

ũη = −uη + cekξ + de−kξ. (4.39)

Applying the compatibility condition and require that ũξη = 0, in the following equation

ũξη = uξη + k(ace2kũ + ade2ku − bce−2ku − bde−2kũ) (4.40)

Choosing k = 1
2 , a = d = 0, c = 2

b , gives the Bäcklund transformation for the Liouville

equation (Lamb 1975)

ũξ = uξ + be
ũ+u

2 (4.41)

ũη = −uη − 2
b

e−
ũ−u

2 . (4.42)

�

Once the relation between Liouville equation and linear wave equation is established,

then general solution of Liouville equation can be found by using this relation.

Theorem 4.3 General solution of the Liouville equation is given by (Liouville 1853)

u(x, t) = ln
(

A′(x)B′(t)
(A(x) + B(x))2

)
. (4.43)

Proof The general solution of the Liouville equation can be found by using the Bäcklund

transformation which relates the Liouville equation with the linear wave equation. Let

us consider the Bäcklund transformation

ux − ũx = −2ke
1
2 (u+ũ) (4.44)

ut + ũt =
−1
k

e
1
2 (u−ũ) (4.45)

compatibility of equations (4.44) and ( 4.45) gives

uxt − eu = ũxt. (4.46)

Solution of linear wave equation is of the form ũ = f (x) + g(t). Substituting this solution

into the Bäcklund transformation (4.44) and ( 4.45), we get

ux − f ′ = −2ke
1
2 (u+ f+g) (4.47)

ut + g′ =
−1
k

e
1
2 (u− f−g). (4.48)
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To handle with the exponential term, let us introduce

φ(x, t) = e
1
2 u(x,t). (4.49)

This new function satisfies the following equation

φx −
f ′

2
φ = −kφ2e

1
2 ( f+g) (4.50)

φt −
g′

2
φ =

−1
2k
φ2e

−1
2 ( f+g). (4.51)

Multiplying equations (4.50) and (4.51) with e
− f
2 and e

g
2 respectively, gives

d
dx

(e
− f
2 φ) = −kφ2e

g
2 (4.52)

d
dt

(e
g
2φ) =

−1
2k
φ2e

− f
2 . (4.53)

If we multiply first and second equation e
g
2 and e

− f
2 respectively we can write

d
dx

(e
− f
2 +

g
2φ) = −kφ2eg (4.54)

d
dt

(e
− f
2 +

g
2φ) =

−1
2k
φ2e− f . (4.55)

Introducing function χ(x, t) as

χ(x, t) = φ(x, t)e
− f
2 +

g
2 (4.56)

we find

dχ
dx

= −kχ2e f (4.57)

dχ
dt

=
−1
2k
χ2e−g. (4.58)

Solution of these equations gives us

χ(x, t) =
1

k
∫ x

e f (ρ)dρ + 1
2k

∫ t
e−g(ρ)dρ

. (4.59)

Returning the original function, we find the general solution the Liouville Equation as

u(x, t) = 2 ln


e

1
2 f e−

1
2 g

k
∫ x

e f (ρ)dρ + 1
2k

∫ t
e−g(ρ)dρ

. (4.60)

Introducing two functions A(x) = k
∫ x

e f (ρ)dρ and B(t) = 1
2k

∫ t
e−g(ρ)dρ, we can write the

general solution in a compact form as

u(x, t) = ln
(
2

A′(x)B′(t)
(A(x) + B(x))2

)
. (4.61)

�
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4.2. Spherical Liouville Equation

Described above the Liouville equation admits the general solution in one space

dimension. In higher dimensions it does not work anymore. If one considers the Liouville

equation in 3 + 1 dimensions,

vtt − c2 M v = ev (4.62)

for the spherical symmetric solutions v(x, t; r) = M(r, t); r =
√

x2 + y2 + z2 it is possible to

reduce the equation to 1 + 1 dimensional model

Mtt − c2Mrr − 2c2

r
Mr = eM. (4.63)

However, this equation does not seems to be solvable in general. In the present section,

we introduce modified form of this equation which could be studied at the same level of

completeness as in one-dimension.

Definition 4.1 The Spherical Liouville equation (SLE) for function Mv(r, t) is defined by the

equation

(Mv)tt − c2(Mv)rr − 2c2

r
(Mv)r = −4c2

r
er(Mv). (4.64)

The form of the equation is motivated by the method of spherical means for the

linear wave equation in 3 + 1 dimensions,

vtt − c2 M v = 0 (4.65)

which becomes formally in the form of 1 + 1 dimensional case

(rMv)tt − c2(rMv)rr = 0 (4.66)

where Mv is the spherical means for the function v. It has solution

Mv(x, t; r) =
f (x, r + ct) + g(x, r − ct)

r
, (4.67)

equation (4.66) can be threaded as an 1 + 1 dimensional wave equation with the general

solution (4.67). But we know that the 1 + 1 dimensional wave equation can be related

with the Liouville equation by the Bäcklund transformation (4.44),(4.45). In our case the

similar Bäcklund transformation

(∂t + c∂r)(r(Mv −Mu)) = −4kce
r
2 (Mv+Mu) (4.68)

(∂t − c∂r)(r(Mv + Mu)) =
2c
k

e
r
2 (Mv−Mu) (4.69)
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relates the spherical means Mu(x, t; r) with function Mv(x, t; r). From this Bäcklund Trans-

formation it is found that,

(∂2
t − c2∂2

r )(rMv) + 4c2erMv = (∂2
t − c2∂2

r )(rMu). (4.70)

Hence if Mu(x, t; r) is a spherical mean satisfying the D’Alambert equation

(∂2
t − c2∂2

r )(rMu) = 0 (4.71)

then Mv(x, t; r) is the solution of following equation

(Mv)tt − c2(Mv)rr − 2c2

r
(Mv)r = −4c2

r
er(Mv). (4.72)

It should be noted here that the function Mv(x, t; r) can not be considered as the spherical

means of equation (4.62) since equation is nonlinear. If we average the Liouville equation

(4.62), we find

(Mv)tt − c2 MMv = Mev (4.73)

(Mv)tt − c2(Mv)rr − 2c2

r
(Mv)r = Mev . (4.74)

Spherical Liouville equation (4.64) can be considered as the spherical symmetric

reduction of 3 + 1 dimensional model. Let function u = u(x, y, z) satisfies the nonlinear

equation

∂2
t u − c2 M u = −4

r
eru. (4.75)

Then for the spherical symmetric solutions u(x, y, z; t) = R(r; t), r =
√

x2 + y2 + z2 we have

the spherical Liouville equation (4.64)

∂2
t R − c2∂2

r R − 2c2

r
∂rR = −4c2

r
erR. (4.76)

This type of equation also occurs when we consider Yang- Mills Equations with external

sources(German G., 1984).

4.2.1. General Solution of Spherical Liouville Equation

Theorem 4.4 General solution of spherical Liouville Equation (4.64) is given by

Mv(x, t; r) =
1
r

ln
2A′(x, r + ct)B′(x, r − ct)

(A(x, r + ct) + B(x, r − ct))2 (4.77)

where the primes denote derivative according to the second argument.
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Proof Substituting solution of spherically symmetric wave equation (4.67) into the

Bäcklund transformations (4.68),(4.69) and integrating gives,

Mv(x, t; r) =
1
r

ln
e

1
2 f(x,r+ct)e−

1
2 g(x,r−ct)

(k
∫ r+ct

ef(x,ρ)dρ + 1
2k

∫ r−ct
e−g(x,ρ)dρ)2

. (4.78)

If we introduce two new functions A and B instead of arbitrary functions f and g

A(x, r + ct) = k
∫ r+ct

ef(x,ρ)dρ, B(x, r − ct) =
1
2k

∫ r−ct

e−g(x,ρ)dρ,

then we obtain,

Mv(x, t; r) =
1
r

ln
2A′(x, r + ct)B′(x, r − ct)

(A(x, r + ct) + B(x, r − ct))2 . (4.79)

�

4.3. Initial Value Problem for Spherical Liouville Equation

The general solution (4.79) can be applied to solve IVP for the SLE (4.64). Similar

to the 1+1 dimensional case (Jorjadze, Pogrebkov and Polivanov 1978), we consider the

following special case of initial value problem for SLE (4.64) for function Mv(x, t; r) , r > 0 :

Proposition 4.1 The solution of the initial value problem for the spherical Liouville equation

(Mv)tt − c2(Mv)rr − 2c2

r
(Mv)r = −4c2

r
erMv , (4.80)

Mv(x, 0; r) = Mh(x, r), (Mv)t(x, 0; r) = 0. (4.81)

is given by

Mv(x, t; r) =
1
2r

[(r + ct)Mh(x, r + ct) + (r − ct)Mh(x, r − ct)]

− 1
r

ln cosh2 1√
2

∫ r+ct

r−ct
e
ρMh(x,ρ)

2 dρ (4.82)

where Mh(x, r) denotes the spherical means of function h(x).

Proof To solve initial value problem, we rewrite the spherical Liouville equation (4.64)

as;

(rMv)tt − c2(rMv)rr = −4c2erMv . (4.83)

If we introduce Ψ(x, t; r) = rMv(x, t; r), then initial value problem (4.80), (4.81) takes the

form of the one for the 1 + 1 dimensional case

Ψtt − c2Ψrr = −4c2eΨ, (4.84)

Ψ(x, t; r) = rMh(x, r) = φ(x, r), Ψt(x, t; r) = 0, f or t = 0. (4.85)
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Equation (4.84) has the general solution given with equation (4.79).

Ψ(x, t; r) = ln
2A′(x, r + ct)B′(x, r − ct)

(A(x, r + ct) + B(x, r − ct))2 . (4.86)

If we substitute this general solution into the initial conditions (4.85) , we can integrate

the obtained system in terms of

z(x, r) =

√
A′(x, r)
B′(x, r)

(4.87)

as
√

2
∫ r

e
φ(y)

2 dy = ln
∣∣∣∣∣
z − 1
z + 1

∣∣∣∣∣ . (4.88)

Defining

w(x, r) ≡
∫ r

e
φ(x,ρ)

2 dρ (4.89)

we find

ln A′ =
φ

2
− 2 ln sinh(

w√
2

), ln B′ =
φ

2
− 2 ln cosh(

w√
2

). (4.90)

Integrating once more we get

A = −
√

2 coth(
w√

2
), B =

√
2 tanh(

w√
2

). (4.91)

Collecting all these results, we get solution of initial value problem (4.84),(4.85) as,

Ψ(x, t; r) =
φ(x, r + ct) + φ(x, r − ct)

2
− ln cosh2

∫ r+ct

r−ct

e
φ(x,ρ)

2√
2

dρ. (4.92)

Finally the solution of initial value problem (4.80) (4.81) for SLE (4.64) is given by

Mv(x, t; r) =
1
2r

[(r + ct)Mh(x, r + ct) + (r − ct)Mh(x, r − ct)]

− 1
r

ln cosh2 1√
2

∫ r+ct

r−ct
e
ρMh(x,ρ)

2 dρ. (4.93)

If the initial function Mh(x, r) is a constant, say Mh(x, r) = h, then (4.93) gives,

Mv(x, t; r) = h − 1
r

ln cosh2
(

2
√

2
h

er h
2 sinh(

h
2

ct)
)
. (4.94)

Similarly if h = 0 it can be found that

Mv(x, t; r) = −1
r

ln cosh2 (
√

2ct). (4.95)

Two particular solutions given by (4.94) and (4.95) have singularities at the origin. These

solutions also illustrate that spherical means does not work for SLE (4.64) at the origin.�
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4.4. Progressive Wave Solution for Spherical Liouville Equation

Here we find particular solutions of SLE (4.64). If we write progressive wave form

Ψ(x, t; r) = f (x, r − vt), in arranged form of SLE (4.84) and define ξ = r − vt, we get

v2 fξξ − c2 fξξ + 4c2e f = 0. (4.96)

Defining κ = 4c2/(v2 − c2) and multiplying this second order differential equation with fξ

we find
( fξ)2

2
+ κe f = E(x) (4.97)

where E = E(x) is an arbitrary function of x. We have three possibilities:

1) κ > 0 and E > 0. We can rewrite differential equation (4.97) as;

∂ f
∂ξ

= ∓
√

2E − 2κe f . (4.98)

By substitution
κ
E

e f = sin2 ϕ (4.99)

we can integrate this equation as;

e f =
E
κ

1

cosh2[
√

E
2 (ξ − ξ0)]

. (4.100)

Finally we find

Mv(x, t; r) =
1
r

ln [
E
κ

1

cosh2[
√

E
2 (r − vt − r0)]

], (4.101)

where r0 is a constant. For small r, it can be found that this solution takes the form;

Mv(x, t; r) =
1
r

ln
E
κ
− 2

r
ln cosh

√
E
2

vt. (4.102)

2) κ < 0 and E > 0. Let κ be κ = −a2
0 (a0 is a constant), then equation (4.97) can be

written as

∂ f
∂ξ

= ∓
√

2E

√

1 +
a2

0

E
e f (4.103)

By substitution
a2

0

E
e f = sinh2 ϕ (4.104)

we can integrate the this equation as

e f =
E
a2

0

1

sinh2[
√

E
2 (ξ − ξ0)]

(4.105)
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and

Mv(x, t; r) =
1
r

ln [
E
a2

0

1

sinh2[
√

E
2 (r − vt − r0)]

], (4.106)

where r0 is a constant.

3) κ < 0 and E < 0 (E = −|E|).

Equation (4.97) can be written as;

∂ f
∂ξ

= ∓
√

2
√
|E|

√
a2

0

|E|e
f − 1

By substitution,

a2
0

|E|e
f = cosh2 ϕ (4.107)

we have

e f =
|E|
a2

0

1

cos2[
√
|E|
2 (ξ − ξ0)]

, (4.108)

and

Mv(x, t; r) =
1
r

ln [
|E|
a2

0

1

cos2[
√
|E|
2 (r − vt − r0)]

], (4.109)

where r0 is a constant.

4.4.1. Lax Pair for Spherical Liouville Equation.

In previous section, we constructed one soliton type solution of SLE (4.64). This

equation admits also multisoliton solutions. They can be obtained by standard technique

from the Lax Pair (Lax 1968).



η1

η2


r

=



r(Mv)t
4c

e
rMv

2√
2λ

λ√
2
e

rMv
2 − r(Mv)t

4c





η1

η2


(4.110)



η1

η2


t

=



1
4 c(Mv + r(Mv)r) −ce

rMv
2√

2λ

λc√
2
e

rMv
2 −1

4 c(Mv + r(Mv)r)





η1

η2


. (4.111)

Compatibility of (4.110) and (4.111) gives us the SLE (4.64).
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4.5. Spherical Liouville Equation in Arbitrary n Dimensional

Space

If spherical means of function u(x, t) satisfies the following equation

(Mu)tt − c2
(
(Mu)rr +

n − 1
r

(Mu)r +
n − 1

2
n − 3

2
1
r2 Mu

)
= 0, (4.112)

defining new function

Ψ(x, t; r) = r
n−1

2 Mu(x, r; t) (4.113)

allows us to write equation (4.112) as

Ψtt − c2Ψrr = 0. (4.114)

By the Bäcklund Transformation

(∂t + c∂r)(r
n−1

2 (Mv −Mu)) = −4kcer
n−1

2 (Mv+Mu)
2 (4.115)

(∂t − c∂r)(r
n−1

2 (Mv + Mu)) =
2c
k

er
n−1

2 (Mv−Mu)
2 (4.116)

we can relate it with the Liouville Equation

(Mv)tt − c2
(
(Mv)rr +

n − 1
r

(Mv)r +
n − 1

2
n − 3

2
1
r2 Mv

)
= −4c2r

1−n
2 er

n−1
2 Mv , (4.117)

which has general solution

Mv(x, t; r) =
1

r
n−1

2

ln
2A′(x, r + ct)B′(x, r − ct)

(A(x, r + ct) + B(x, r − ct))2 . (4.118)

4.5.1. Initial Value Problem

Initial value problem for the Liouville equation (4.117) in arbitrary n dimensional

space is given by

(Mv)tt − c2
(
(Mv)rr +

n − 1
r

(Mv)r +
n − 1

2
n − 3

2
1
r2 Mv

)
= −4c2r

1−n
2 er

n−1
2 Mv (4.119)

Mv(x, r, 0) = Mh(x, r),
∂
∂t

(Mv(x, r, t))|t=0 = 0. (4.120)

This initial value problem can be written in a more compact form. By defining

Ψ(x, r, t) = r
n−1

2 Mv (4.121)

initial value problem (4.119),(4.120) reduces to the one

Ψtt − c2Ψrr = −4c2eΨ (4.122)

Ψ(x, r, 0) = r
n−1

2 Mu(x, r, 0) = r
n−1

2 h(x, r) = φ(x, r) (4.123)

Ψt(x, r, 0) = r
n−1

2 .0 = 0. (4.124)
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Using the general solution of Liouville Equation (4.118) and initial conditions (4.120), we

find solution of initial value problem (4.119), (4.120) as

Mv(x, r, t) =
(r + ct)( n−1

2 )h(x, r + ct) + (r − ct)( n−1
2 )h(x, r − ct)

2r
n−1

2

+
1

r
n−1

2

ln cosh2 1√
2

r+ct∫

r−ct

eρ
n−1

2 h(x,ρ)dρ. (4.125)

4.5.2. Progressing Wave Solution

For the Liouville Equation (4.117), we can also find progressive wave solutions.

To find this solutions, let us define Ψ(x, t; r) = r
n−1

2 Mv(x, t; r) and Ψ(x, t; r) = f (x, r − vt) in

the equation (4.117). Then we get

v2 fξξ − c2 fξξ + 4c2e f = 0 (4.126)

where ξ = r− vt. Defining κ = 4c2/(v2 − c2) and multiplying this second order differential

equation with fξ, we find
( fξ)2

2
+ κe f = E(x) (4.127)

where E = E(x) is an arbitrary function of x. As before in section 3.4, we have three

possibilities:

1) κ > 0 and E > 0.

For this case Mv is found as

Mv(x, t; r) =
1

r
n−1

2

ln [
E
κ

1

cosh2[
√

E
2 (r − vt − r0)]

], (4.128)

where r0 is a constant.

2) κ < 0 and E > 0.

Let κ be κ = −a2
0 (a0 is a constant), then from the equation (4.97) by using the

transformation
a2

0

E
e f = sinh2 ϕ (4.129)

we find

Mv(x, t; r) =
1

r
n−1

2

ln [
E
a2

0

1

sinh2[
√

E
2 (r − vt − r0)]

], (4.130)

where r0 is a constant.
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3) κ < 0 and E < 0 (E = −|E|).

Equation (4.97) can be written as;

∂ f
∂ξ

= ∓
√

2
√
|E|

√
a2

0

|E|e
f − 1

By substitution
a2

0

|E|e
f = cosh2 ϕ (4.131)

we have

Mv(x, t; r) =
1

r
n−1

2

ln [
|E|
a2

0

1

cos2[
√
|E|
2 (r − vt − r0)]

], (4.132)

where r0 is a constant.

4.6. Spherical Liouville Equation in Odd Dimensional Spaces

When the space dimension is odd, in the wave equation

utt − c24u = 0. (4.133)

After averaging function u, and defining function N(x, t; r) given by equation (3.35), we

can write
∂2

∂t2 N = c2 ∂
2

∂r2 N. (4.134)

By Bäcklund transformation (4.21) and (4.22), we can relate this wave equation with

Liouville equation

Ñξη = eÑ (4.135)

where ξ = r + ct, η = r − ct and Ñ(x, t; r) belongs to the same dimensional space with

N(x, t; r).
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CHAPTER 5

SPHERICAL SINE-GORDON EQUATION

In this chapter, we introduce the spherical Sine-Gordon and spherical Sinh-Gordon

equations. By using Bäcklund transformation, we write Bianchy permutability formula

for these equations and find their kink and anti-kink like solutions. After giving their Lax

pair, we relate these equations with the Riccati equation.

5.1. Sine-Gordon Equation

In general, the nonlinear wave equation is given by

utt − c2∇2u + F(u) = 0 (5.1)

where F(u) is a nonlinear function of u. The form of F(u) determines the character of

the equation (5.1). When F(u) = sin u, equation (5.1) is called the Sine-Gordon equation

(Ablowitz, Kaup, Newell and Segur 1973). The Sine-Gordon equation has a lot of physical

applications. It governs propagation of ultra short plane wave optical pulses in certain

resonant media and it also governs propagation of quantized flux in Josephson junctions

(Lamb 1980). The Sine-Gordon equation written in characteristic coordinates

uxt = sin u (5.2)

admits Auto-Bäcklund transformation given by

ux − ũx = 2λ sin
u + ũ

2
(5.3)

ut + ũt =
2
λ

sin
u − ũ

2
. (5.4)

The Auto-Bäcklund transformation relates two different solutions of the same equation.

The trivial solution ũ = 0 is a solution for the Sine-Gordon equation. Hence by using the

Auto-Bäcklund transformation (5.3) and (5.4), one can find the kink solution

u(x, t) = 4 arctan eξ, ξ = k(x + k−2t) + constant, k ∈ R. (5.5)

Furthermore, four solutions u0, u1, u2, u12 of the Sine-Gordon equation satisfies

algebraic relation known as the Bianchi permutability formula or the nonlinear superpo-

sition formula

tan
u12 − u0

4
=
λ1 + λ2

λ1 − λ2
tan

u1 − u2

4
. (5.6)
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Using this formula, one can construct two soliton solution from the vacuum solution

u0 = 0 and the kink solitons (5.5) u1 with λ1 and u2 with λ2.

5.2. Spherical Sine-Gordon Equation and its Bäcklund Transfor-

mation

As we discuss in chapter III, the spherical Liouville equation has singularities at

the origin. Now let us consider the nonlinear wave equation whose limiting case when r

approaches to zero is nonsingular.

Definition 5.1 Spherical Sine-Gordon equation is defined by the equation

∂2

∂t2 Mv − 2
r
∂
∂r

Mv − ∂2

∂r2 Mv +
sin (rMv)

r
= 0 (5.7)

where Mv(x, t; r) denotes the Spherical means of a function v(x, t) and x = (x1, x2, x3) .

When r approaches to the zero spherical Sine-Gordon equation (5.7) is equivalent to the

linear wave equation. In fact

∂2Mv

∂2
t

−
(
∂2

∂r2 +
2
r
∂

∂r

)
Mv +

sin rMv

r
= 0 (5.8)

or

∂2Mv

∂2
t

− MMv +
sin rMv

r
= 0. (5.9)

Since lim
r→0

Mv = v,

∂2v
∂t2 − M v + v = 0. (5.10)

So nonlinear equation (5.7) for the spherical means Mv of a function v in the limit r

approaches zero, is equivalent to the linear wave equation for function v.

Proposition 5.1 Spherical Sine-Gordon equation admits Auto-Bäcklund transformation.

Proof Spherical Sine-Gordon equation could be arranged as

Ψtt −Ψrr + sin Ψ = 0 (5.11)

where Ψ(x, r, t) = rMv(x, t; r). After changing coordinates under the rules

r′ =
1
2

(r − t), (5.12)

t′ =
1
2

(r + t) (5.13)
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and dropping the primes we obtain the equation

Ψrt = sin Ψ (5.14)

for which the Auto-Bäcklund transformation is given by;

(rMv)r − ˜(rMv)r = 2λ sin
rMv + ˜rMv

2
, (5.15)

(rMv)t + ˜(rMv)t =
2
λ

sin
rMv − ˜rMv

2
(5.16)

where (Mv) and (M̃v) are solutions of Sine-Gordon equation (5.7). �

5.2.1. Solitonlike Solution

Since M̃v = 0 is an evident solution of the spherical Sine-Gordon equation (5.7),

the Bäcklund transformation (5.15), (5.16) gives

(rMv)r = 2λ sin
rMv

2
, (5.17)

(rMv)t =
2
λ

sin
rMv

2
. (5.18)

From which we find
dr
dt

=
1
λ2 . (5.19)

In order to convert the partial differentiation to ordinary differentiation we introduce new

variable

ξ = r − r0 − 1
λ2 t. (5.20)

From the first partial differential equation we find,

d(rMv)

2 sin rMv
2

= λdξ. (5.21)

From this equation, it is found that

Mv(x, t; r) =
4
r

arctan
(
E(x)eλ(r−r0)− 1

λ t
)

(5.22)

where E(x) is an arbitrary function of x. From the partial differential equation (5.18) we

obtain the solution of the spherical Sine-Gordon equation as

Mv(x, t; r) =
4
r

arctan
(
E(x)e−λ(r−r0)+ 1

λ t
)

(5.23)

where E(x) is an arbitrary function of x.
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Figure 5.1. Schematic form of transformations occurring in the theorem of per-

mutability

5.2.2. Bianchi Permutability Theorem

Since we know the Auto-Bäcklund transformation for the spherical Sine- Gordon

equation, by using it we can find new solution. If we take the first equation of the

Bäcklund transformation (5.15) and rewrite it for the different solutions corresponding to

the different values of the λ, we find

∂
∂r

((rM1
v) − (rM0

v)) = λ1 sin
(rM1

v) + (rM0
v)

2
, (5.24)

∂
∂r

((rM2
v) − (rM0

v)) = λ2 sin
(rM2

v) + (rM0
v)

2
, (5.25)

∂
∂r

((rM12
v ) − (rM1

v)) = λ2 sin
(rM12

v ) + (rM1
v)

2
, (5.26)

∂
∂r

((rM21
v ) − (rM2

v)) = λ1 sin
(rM21

v ) + (rM2
v)

2
. (5.27)

Combining the first and the third equation, and the second and the fourth equation we

obtain

∂
∂r

((rM12
v ) − (rM0

v)) = λ1 sin
(rM1

v) + (rM0
v)

2
+ λ2 sin

(rM12
v ) + (rM1

v)
2

, (5.28)

∂
∂r

((rM21
v ) − (rM0

v)) = λ1 sin
(rM12

v ) + (rM2
v)

2
+ λ2 sin

(rM2
v) + (rM0

v)
2

. (5.29)

According to the Bianchi permutability theorem M12
v = M21

v . Now if we open trigonomet-

ric expressions and use some trigonometric identities we find that

tan
(rM12

v ) − (rM0
v)

4
= (
λ1 + λ2

λ1 − λ2
) tan

(rM1
v) − (rM2

v)
4

. (5.30)

Finally we find pure algebraic nonlinear superposition relation between four solutions of

spherical Sine-Gordon equation (5.7)

tan
r(M12

v −M0
v)

4
=
λ1 + λ2

λ1 − λ2
tan

r(M1
v −M2

v)
4

. (5.31)
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5.2.3. Two Solitonlike Solution of Spherical Sine-Gordon Equa-

tion

Nonlinear superposition formula (5.31), allows us to construct new solitonlike

solutions from known three solutions of the Spherical Sine-Gordon Equation without

quadratures. Evident solution M0
v = 0 is one solution for the Spherical Sine-Gordon

equation, so when two solutions are given by

tan
rM1

v

4
= eη1 , η1 = λ1(r − r0) − 1

λ1
η, (5.32)

tan
rM2

v

4
= eη2 , η2 = λ2(r − r0) − 1

λ2
η, (5.33)

a new solution is found in the form,

M12
v =

4
r

arctan
(
λ1 + λ2

λ1 − λ2

eη1 − eη2

1 + eη1+η2

)
. (5.34)

This solution is analogues of two-soliton solution in standard case.

5.2.4. Lax Pair for Spherical Sine-Gordon Equation

Lax pair for spherical sine-Gordon equation is given by,


η1

η2


r

=



−λ + 1
λ cos (rMv) (rMv)t+(rMv)r

2 + 1
λ sin (rMv)

−(rMv)t−(rMv)r
2 − 1

λ sin (rMv) λ − 1
λ cos (rMv)





η1

η2


,(5.35)



η1

η2


t

=



−λ − 1
λ cos (rMv) 1

λ sin (rMv) +
(rMv)r+(rMv)t

2

1
λ sin (rMv) − (rMv)r+(rMv)t

2 λ + 1
λ cos (rMv)





η1

η2


. (5.36)

5.2.5. Progressing Wave Solution of Spherical Sine-Gordon Equa-

tion

After rearranging spherical Sine-Gordon Equation

r
∂2

∂t2 Mv − 2
∂
∂r

Mv − r
∂2

∂r2 Mv + sin (rMv) = 0 (5.37)

as

Ψtt −Ψrr + sin Ψ = 0, (5.38)

we can introduce a new function

f (x, r − vt) = Ψ(x, t; r) (5.39)
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which reduces nonlinear partial differential equation (5.38) to the nonlinear ODE

(v2 − 1) f ′′ + sin f = 0 (5.40)

where primes denotes derivative according to the ξ = r − vt. Multiplying with f ′ and

integrating once we get

(v2 − 1)
f ′2

2
− cos f = c1(x). (5.41)

If we consider the previous equation for |v| < 1, it gives

d f√
1 − cos f

=

√
2

1 − v2 dξ. (5.42)

Using some trigonometric identities we can integrate it as

ln (tan
f
4

) =
1√

1 − v2
ξ + lnα(x) (5.43)

which gives us

Mv =
4
r

arctan
(
α(x)e

r−vt√
1−v2

)
(5.44)

where α(x) is an arbitrary function of x.

5.3. Sine-Gordon Equation and Riccati Equation

The Bäcklund transformation for the Sine-Gordon equation is given by

(rMv)r − (rM̃v)t = 2λ sin
(rMv) + (rM̃v)

2
, (5.45)

(rMv)r + (rM̃v)t =
2
λ

sin
(rMv) − (rM̃v)

2
. (5.46)

Let φ± = 1
2 ((rMv) ± (rM̃v)) (Pashaev 1996), then we find

φ−r = λ sinφ+, (5.47)

φ+
t =

1
λ

sinφ−. (5.48)

(5.49)

Now let us introduce

tan
(rMv) + (rM̃v)

4
= tan

φ+

2
= γ. (5.50)

By using some trigonometric identities, we obtain

sinφ+ =
2 tan φ+

2

1 + tan2 φ+

2

=
2γ

1 + γ2 . (5.51)

51



Differentiating expression (5.50) we find

γr =
1
2
φ2

r (1 + γ2). (5.52)

Thus we have for the first Bäcklund transformation

φ+
r =

2γr

1 + γ2 , (5.53)

φ−r =
2λγ

1 + γ2 . (5.54)

Adding these two equation we have

(rMv)r = 2
γr + λγ

1 + γ2 . (5.55)

If we arrange this equation we find

γr + λγ − 1
2

(rMv)r(1 + γ2) = 0. (5.56)

We know that transformation γ = v1
v2

linearizes the Riccati differential equation (Ince

1956), so we get the linear form


v1

v2


r

=
1
2


−λ (rMv)r

−(rMv)r λ




v1

v2

 . (5.57)

Following the same strategy we find

tan
φ−

2
= tan

u − φ+

2
=
δ − γ

1 + δγ
(5.58)

where δ = tan (rMv)
2 . Using trigonometric properties we can write

sinφ− = 2
(δ − γ)(1 + δγ)
(1 + γ2)(1 + δ2)

. (5.59)

Differentiating γ with respect to t gives

γt =
1
2
φ+

t (1 + γ2) =
1
λ

(δ − γ)(1 + δγ)
1 + δ2 . (5.60)

Finally we find

γt + 2(
1

2λ
cos (rMv))γ + (

1
2λ

sin (rMv))γ2 − 1
2λ

sin (rMv) = 0. (5.61)

For this Riccati equation the linear problem in the matrix form is


v1

v2


t

=
1

2λ


− cos (rMv) sin (rMv)

sin (rMv) cos (rMv)




v1

v2

 . (5.62)
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Finally we obtain the matrix first-order linear problem for the Sine-Gordon equation (5.7)

vr = Uv, vt = Vv (5.63)

with linear operators

U =


−λ (rMv)r

−(rMv)r λ

 (5.64)

V =


− cos (rMv) sin (rM̃v)

sin (rM̃v) cos (rM̃v)

 . (5.65)

Then consistency condition for this system

Ut − Vr + UV − VU = 0 (5.66)

is equivalent to Spherical Sine-Gordon equation (5.7).

5.4. Spherical Sinh-Gordon Equation

In addition to the spherical Sine-Gordon equation, another nonlinear Klein-

Gordon equation so called spherical Sinh-Gordon equation, whose limit when r ap-

proaches zero does not contains singularity, can be considered as a nonlinear Euler-

Poisson-Darboux Equation.

Definition 5.2 Spherical Sinh-Gordon equation is defined as

r
∂2

∂t2 Mv − 2
∂

∂r
Mv − r

∂2

∂r2 Mv + sinh (rMv) = 0. (5.67)

Proposition 5.2 Spherical Sinh-Gordon equation admits the Auto-Bäcklund transformation

(rMv)r − ˜(rMv)r = 2λ sinh
rMv + ˜rMv

2
,

(rMv)t + ˜(rMv)t =
2
λ

sinh
rMv − ˜rMv

2
.

(5.68)

5.4.1. Solitonlike Solution of Spherical Sinh-Gordon Equation

Since Mv = 0 is a solution of spherical Sinh-Gordon equation substituting it into

the Bäcklund transformation we get

(rMv)r = 2λ sinh
rMv

2
, (5.69)

(rMv)t =
2
λ

sinh
rMv

2
. (5.70)
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From this Bäcklund transformation, we find

dr
dt

=
1
λ2 . (5.71)

In order to convert the partial differentiation to ordinary differentiation, we introduce

new variable as

ξ = r − r0 − 1
λ2 t (5.72)

from the partial differential equation (5.69) we find

d(rMv)

2 sinh rMv
2

= λdr. (5.73)

Integration of this equation gives us

Mv(x, t; r) =
4
r

arctanh
(
eλ(r−r0)− 1

λ t
)
. (5.74)

From the second partial differential equation (5.70) we obtain

d(rMv)

2 sinh rMv
2

= −λdξ. (5.75)

Integration of which gives

Mv(x, t; r) =
4
r

arctanh
(
e−λ(r−r0)+ 1

λ t
)
. (5.76)

5.4.2. Bianchi Permutability Theorem

From the Bäcklund transformation we can write the following relations

∂
∂r

((rM1
v) − (rM0

v)) = λ1 sinh
(rM1

v) + (rM0
v)

2
, (5.77)

∂
∂r

((rM2
v) − (rM0

v)) = λ2 sinh
(rM2

v) + (rM0
v)

2
, (5.78)

∂
∂r

((rM12
v ) − (rM1

v)) = λ2 sinh
(rM12

v ) + (rM1
v)

2
, (5.79)

∂
∂r

((rM21
v ) − (rM2

v)) = λ1 sinh
(rM21

v ) + (rM2
v)

2
. (5.80)

Combining I,III and II,IV we get

∂
∂r

((rM12
v ) − (rM0

v)) = λ1 sinh
(rM1

v) + (rM0
v)

2
+ λ2 sinh

(rM12
v ) + (rM1

v)
2

, (5.81)

∂
∂r

((rM21
v ) − (rM0

v)) = λ1 sinh
(rM12

v ) + (rM2
v)

2
+ λ2 sinh

(rM2
v) + (rM0

v)
2

. (5.82)

(5.83)

If we open the expression and use some hyperbolic identities we find that

tanh
(rM12

v ) − (rM0
v)

4
= (
λ1 + λ2

λ1 − λ2
) tanh

(rM1
v) − (rM2

v)
4

. (5.84)
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5.4.3. Two Solitonlike Solutions of Spherical Sinh-Gordon Equa-

tion

Bianchi permutability allows us two construct new soliton solutions when we

know three solutions of the Spherical Sinh-Gordon Equation. Evidently Ψ = 0 is one

solution of the Spherical Sinh-Gordon equation so when two solution given by

tanh
Ψ1

4
= eη1 , η1 = λ1(r − r0) − 1

λ1
η, (5.85)

tanh
Ψ2

4
= eη2 , η2 = λ2(r − r0) − 1

λ2
η, (5.86)

a new solution is found in the form,

(Mv)12 =
4
r

arctanh
λ1 + λ2

λ1 − λ2

eη1 − eη2

1 + eη1+η2
. (5.87)

5.4.4. Lax Pair for Spherical Sinh-Gordon Equation

Lax pair for spherical sinh-Gordon equation is given by,



η1

η2


r

=



−λ + i
λ cosh (rMv) i(rMv)t+i(rMv)r

2 + i
λ sinh (rMv)

−i(rMv)t−i(rMv)r
2 − i

λ sinh (rMv) λ − 1
λ cosh (rMv)





η1

η2





η1

η2


t

=



−λ − 1
λ cosh (rMv) i

λ sinh (rMv) +
i(rMv)r+i(rMv)t

2

i
λ sinh (rMv) − i(rMv)r+i(rMv)t

2 λ + 1
λ cosh (rMv)





η1

η2


.(5.88)

5.4.5. Progressing wave solution of Spherical Sinh-Gordon Equa-

tion

Spherical Sinh-Gordon Equation is given by the following formula

r
∂2

∂t2 Mv − 2
∂
∂r

Mv − r
∂2

∂r2 Mv + sinh (rMv) = 0 (5.89)

This equation could be arranged as

Ψtt −Ψrr + sinh Ψ = 0 (5.90)

where Ψ(x, t; r) = rMv(x, t; r), if we introduce a new function

f (x, r − vt) = Ψ(x, t; r) (5.91)
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Equation (5.90) reduces to the

(v2 − 1) f ′′ + sinh f = 0 (5.92)

where primes denotes the derivative according to the ξ = r − vt. Multiplication equation

(5.92) with f ′ allows us to integrate as

(v2 − 1)
f ′2

2
+ cosh f = c1 (5.93)

If we consider the previous equation for c1 = 1, |v| < 1, its integration gives

ln (tanh
f
4

) =
1√

1 − v2
ξ + lnα(x) (5.94)

which finally gives us

Mv(x, t; r) =
4
r

arctanh
(
α(x)e

1√
1−v2

(r−vt)
)

(5.95)

where α(x) is function of x.

5.4.6. Sinh-Gordon Equation and Riccati Equation

The Bäcklund transformation for Spherical Sinh-Gordon equation is given by

(rMv)r − (rM̃v)t = 2λ sinh
(rMv) + (rM̃v)

2
(5.96)

(rMv)r + (rM̃v)t =
2
λ

sinh
(rMv) − (rM̃v)

2
(5.97)

Let

φ± =
1
2

((rMv) ± (rM̃v)) (5.98)

then

φ−r = λ sinhφ+ (5.99)

φ+
t =

1
λ

sinhφ− (5.100)

Now let us introduce

tanh
(rMv) + (rM̃v)

4
= tanh

φ+

2
= γ (5.101)

By using trigonometric identity

sinhφ+ =
2 tanh φ+

2

1 − tanh2 φ+

2

=
2γ

1 − γ2 (5.102)

Differentiating the expression (5.101) we find

γr =
1
2
φ2

r (1 − γ2). (5.103)
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Thus we have for the first Bäcklund transformation

φ+
r =

2γr

1 − γ2 (5.104)

φ−r =
2λγ

1 − γ2 (5.105)

Adding these two equation we have

(rMv)r = 2
γr + λγ

1 + γ2 (5.106)

If we arrange this equation we find

γr + λγ − 1
2

(rMv)r(1 − γ2) = 0 (5.107)

We know that the transformation

γ =
v1

v2

linearize the Riccati differential equation and gives the linear form

(v1)r +
λ
2

v1 =
1
2

(rMv)rv2 (5.108)

(v2)(rMv) −
λ
2

v2 = −1
2

(rMv)rv1 (5.109)


v1

v2


r

=
1
2


−λ (rMv)r

−(rMv)r λ




v1

v2

 (5.110)

Following the same strategy

tanh
φ−

2
= tanh

(rMv) − φ+

2
=
δ − γ

1 − δγ (5.111)

where δ = tanh (rMv)
2 . Using the trigonometric properties we can write

sinhφ− = 2
(δ − γ)(1 − δγ)
(1 − γ2)(1 − δ2)

(5.112)

Differentiating γ with respect to t gives

γt =
1
2
φ+

t (1 − γ2) =
1
λ

(δ − γ)(1 − δγ)
1 − δ2 (5.113)

Finally we find

γt + 2(
1

2λ
cosh (rMv))γ + (

1
2λ

sinh (rMv))γ2 − 1
2λ

sinh (rMv) = 0 (5.114)

For this Riccati equation linear problem is given by


v1

v2


t

=
1

2λ


− cosh (rMv) sinh (rMv)

− sinh (rMv) cosh (rMv)




v1

v2

 (5.115)
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Finally we obtain the first-order linear problem for Sinh-Gordon equation

vr = Uv, vt = Vv (5.116)

with linear operators

U =


−λ (rMv)r

−(rMv)r λ

 (5.117)

V =


− cosh (rMv) sinh (rMv)

− sinh (rMv) cosh (rMv)

 (5.118)

Then consistency condition

Ut − Vr + UV − VU = 0 (5.119)

is equivalent to Sinh-Gordon equation.
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CHAPTER 6

HEAT EQUATION AND SPHERICAL MEANS

This chapter is devoted to the application of the method of spherical means to

the linear and related nonlinear heat equations. Solution of initial value problem for the

linear heat equation and related nonlinear heat equation, in higher dimensional spaces

are given. By the method of spherical means, cylindrical and Spherical Burgers equations

are constructed in two and three dimensional spaces respectively. Their general solutions

are given. Hierarchy of Cylindrical and Spherical Burgers equations are given.

6.1. Solution of IVP for the Heat Equation by Spherical Means

Spherical means, similar to the wave equation, can also be applied to the heat

equation to solve the initial value problem. Let us consider n + 1 dimensional function

u = u(x1, x2, . . . , xn, t) satisfying the heat equation,

ut − ν M u = 0. (6.1)

The spherical means Mu of function u

Mu(x, t; r) =
1
ωn

∫

|ξ|=1

u(x + rξ, t)dSξ, (6.2)

satisfies the Darboux Equation;

∆xMu(x; r) =

(
∂2

∂r2 +
n − 1

r
∂
∂r

)
Mu(x; r). (6.3)

From another side, by the definition of spherical means following equality holds

∆xMu =
1
ωn

∫

|ξ|=1

∆xu(x + rξ, t)dSξ (6.4)

∆xMu =
1
ν
∂
∂t

1
ωn

∫

|ξ|=1

u(x + rξ, t)dSξ (6.5)

∆xMu =
1
ν
∂
∂t

Mu. (6.6)

Hence Mu(x, t; r) also satisfies the heat equation

(Mu)t − ν Mx Mu = 0. (6.7)
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6.1.1. Initial Value Problem for the Heat Equation

in Two Dimensional Space

The initial value problem for the Heat equation in 2 dimensional space is given

for the function u = u(x1, x2, t) as

ut − ν M u = 0, u(x1, x2, 0) = f (x1, x2). (6.8)

Then the corresponding initial value problem for the spherical means of function u is;

∂
∂t

Mu = ν(
∂2

∂r2 +
1
r
∂
∂r

)Mu, Mu(x, 0; r) = Mf(x, r). (6.9)

If we use zero order Hankel transformation;

M(x, t; r) =

∞∫

o

ρF(x, t, ρ)J0(rρ)dρ (6.10)

and substitute it into the equation (6.9) gives us

Ft(x, t, ρ) = −ρ2F(x, t, ρ). (6.11)

Hence M(x, t; r) can be written as

M(x, t; r) =

∞∫

o

ρF(x, 0, ρ)e−ρ
2tJ0(rρ)dρ. (6.12)

Writing the value of F(x, 0;ρ) from the inverse Hankel transformation allows us to write

M(x, t; r) =

∞∫

0

dρρ e−ρ
2tJ0(rρ)

∞∫

0

dsM(x, 0, s)sJ0(sρ). (6.13)

Changing order of integration and using identity

∞∫

0

ρe−ρ
2tJ0(sρ)J0(rρ)dρ =

1
2t

e−
r2+s2

4t I0(
rs
2t

), (6.14)

we find

M(x, t; r) =

∞∫

o

sM(x, 0, s)
1
2t

e−
r2+s2

4t I0(
rs
2t

)ds (6.15)

where I0 is the modified Bessel function. Letting r go to zero, allows us to write the

solution of initial value problem (6.8) as

u(x, t) =
1

2νt

∞∫

0

s M f (x, s) e−
s2
4t ds. (6.16)
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6.1.2. Initial Value Problem for the Heat Equation

in Three Dimensional Space

The initial value problem for the Heat equation in 3 dimensional space is given by

ut − ν M u = 0, u(x1, x2, x3, 0) = f (x1, x2, x3). (6.17)

Spherical means Mu(x, t; r) of function u(x, t) satisfies following initial value problem

∂
∂t

Mu = ν(
∂2

∂r2 +
2
r
∂
∂r

)Mu , Mu(x, 0; r) = Mf(x, r). (6.18)

Transformation

N(x, t; r) = rMu(x, t; r) (6.19)

allows us to write initial value problem (6.18) in the form

Nt = νNrr, N(x, 0; r) = rMu(x, 0; r). (6.20)

The initial value problem for the heat equation on semi-infinite domain can be solved by

the Fourier-Sine transformation,

N(x, t; r) =

∞∫

0

F(x, t; s) sin (sr)ds. (6.21)

Substituting this expression into heat equation (6.20) gives

∞∫

0

(Ft(x, t; s) + νs2F(x, t; s)) sin (sr)ds = 0. (6.22)

Thus F must satisfy the following relation

(
Ft(x, t; s) + νs2F(x, t; s)

)
= 0. (6.23)

Solution of equation (6.23) gives

F(x, t; s) = F(x, 0; s)e−νs2t. (6.24)

By inverse Fourier Sine-transformation, F(x, 0; s) is found as

F(x, 0; s) =
2
π

∞∫

0

N(x, 0;ρ) sin (sρ)dρ. (6.25)

Substituting equations (6.24) and (6.25) into the Fourier transform (6.21) we find

N(x, t; r) =
2
π

∞∫

0

∞∫

0

N(x, 0;ρ)e−νs2t sin (sρ) sin (sr)dρds. (6.26)
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Changing order of integration, and using some trigonometric identities we find

N(x, t; r) =
1
π

∞∫

0

N(x, 0;ρ)

∞∫

0

e−νs2t(cos (s(ρ − r)) − cos (s(ρ + r)))dsdρ. (6.27)

After evaluating interior integral, we find

N(x, t; r) =
1√

4πνt

∞∫

0

N(x, 0;ρ)(e−
(ρ−r)2

4νt − e−
(ρ+r)2

4νt )dρ. (6.28)

Taking the limit for r going to zero gives us the solution of the initial value problem (6.17)

u(x, t) =
4π

(4πνt)
3
2

∞∫

0

ρ2M f (x;ρ)e−
ρ2

4νt dρ. (6.29)

It is shown in appendix(B) that at t = 0, solution (6.29) satisfies the initial condition (6.17).

As known, nonlinear Burgers equation is related with the linear heat equation. Thus the

initial value problem for the Burger’s equation on half line

φt(x, r, t) + φφr = νφrr (6.30)

φt(x, r, 0) = h(x, r) (6.31)

obtained from the heat equation by the transformation

φ(x, t; r) = −2ν
Nr(x, t; r)
N(x, t; r)

(6.32)

has solution given by

φ(x, t; r) = −2ν

∞∫
0

N(x, 0;ρ)[ 2(ρ−r)
4νt e−

(ρ−r)2

4νt +
2(ρ+r)

4νt e−
(ρ+r)2

4νt ]dρ

∞∫
0

N(x, 0;ρ)(e−
(ρ−r)2

4νt − e−
(ρ+r)2

4νt )dρ
(6.33)

where N(x, 0; r) satisfy the relation

φ(x, 0; r) = −2ν
Nr(x, 0; r)
N(x, 0; r)

. (6.34)

Substituting the N(x, 0; r) in to the equation (6.33) allows us to write the solution of i.v.p

for the Spherical Burgers equation is found as

φ(x, t; r) = −2ν

∞∫
0

e
−1
2ν

∫ ρ
h(x;k)dk[ 2(ρ−r)

4νt e−
(ρ−r)2

4νt +
2(ρ+r)

4νt e−
(ρ+r)2

4νt ]dρ

∞∫
0

e
−1
2ν

∫ ρ
h(x;k)dk(e−

(ρ−r)2
4νt − e−

(ρ+r)2
4νt )dρ

. (6.35)
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6.1.3. I.V.P for the Heat Equation in Five Dimensional Spaces

Let us consider initial value problem for the heat equation in 5 dimensional space

ut − ν M u = 0, u(x, 0) = f (x) (6.36)

where x = (x1, x2, . . . , x5). Then spherical means of u satisfies the initial value problem

∂
∂t

Mu = ν(
∂2

∂r2 +
4
r
∂
∂r

)Mu, Mu(x, 0; r) = Mf(x, r). (6.37)

Transformation N(x, t; r) = r2(Mu)r + 3rMu allows us to write the initial value problem

(6.37) into the canonical form

Nt = νNrr, N(x, 0; r) = r2(Mu)r(x, 0; r) + 3rMu(x, 0; r). (6.38)

Fourier transformation gives us

N(x, t; r) =
1√

4πνt

∞∫

0

N(x, 0;ρ)(e−
(ρ−r)2

4νt − e−
(ρ+r)2

4νt )dρ. (6.39)

Writing the value of the N and taking the limit for r approaches to zero gives us

u(x, t) =
4π
3

1

(4πνt)
3
2

∞∫

0

(
ρ3(M f (x;ρ))ρ + 3ρ2M f (x;ρ)

)
e−

(ρ)2

4νt dρ (6.40)

Thus the initial value problem for the spherical Burger’s equation

φt(x, r, t) + φφr = νφrr (6.41)

φt(x, r, 0) = g(x, r) (6.42)

obtained from the heat equation by the transformation

φ(x, r, t) = −2ν
Nr(x, r, t)
N(x, r, t)

(6.43)

has solution

φ(x, t; r) = −2ν

∞∫
0

e
−1
2ν

∫ ρ
g(x;k)dk[ 2(ρ−r)

4νt e−
(ρ−r)2

4νt +
2(ρ+r)

4νt e−
(ρ+r)2

4νt ]dρ

∞∫
0

e
−1
2ν

∫ ρ
g(x;k)dk(e−

(ρ−r)2
4νt − e−

(ρ+r)2
4νt )dρ

. (6.44)

6.1.4. IVP for the Heat Equation in Odd Dimensional Spaces

Let us consider initial value problem for the heat equation in n = 2k+1 dimensional

space

ut − ν M u = 0, u(x, 0) = f (x). (6.45)
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Then Spherical means of u satisfies the equation

∂
∂t

Mu = ν(
∂2

∂r2 +
n − 1

r
∂
∂r

)Mu, Mu(x, 0; r) = Mf(x, r) (6.46)

Transformation

N(x, t; r) = (
1
r

d
dr

)k−1(r2k−1Mu(x, t; r)) (6.47)

allows us to write equation (6.46) in to the canonical form

Nt = νNrr, N(x, 0; r) = (
1
r

d
dr

)k−1(r2k−1Mu(x, 0; r)). (6.48)

Then Fourier transformation gives

N(x, t; r) =
1√

4πνt

∞∫

0

N(x, 0;ρ)(e−
(ρ−r)2

4νt − e−
(ρ+r)2

4νt )dρ. (6.49)

Writing the value of the N and taking the limit for r approaches to zero gives us the

equation

u(x, t) =
4π
ak

1

(4πνt)
3
2

∞∫

0

dρρ e−
ρ2

4νt (
1
ρ

d
dρ

)k−1ρ2k−1M f (x;ρ) (6.50)

where ak = 1.3.5....(2k − 1).

The initial value problem for the Burger’s equation

φt(x, r, t) + φφr = νφrr (6.51)

φt(x, r, 0) = h(x, r) (6.52)

obtained from the heat equation by the transformation

φ(x, r, t) = −2ν
Nr(x, r, t)
N(x, r, t)

(6.53)

has solution given by

φ(x, t; r) = −2ν

∫ ∞
0 e

−1
2ν

∫ ρ
h(x;k)dk[ 2(ρ−r)

4νt e−
(ρ−r)2

4νt +
2(ρ+r)

4νt e−
(ρ+r)2

4νt ]dρ
∫ ∞

0 e
−1
2ν

∫ ρ
h(x,0;k)dk(e−

(ρ−r)2
4νt − e−

(ρ+r)2
4νt )dρ

. (6.54)

6.2. Cylindrical Burgers Equation

Heat equation given in two dimensional space

ut = ∆u (6.55)

can be converted to the following equation which is satisfied by the spherical means of

function u.

(Mu)t = (Mu)rr +
1
r

(Mu)r (6.56)
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Defining a new function Φ(x, t; r) as

Mu(x, t; r) = eΦ(x,t;r) (6.57)

gives us

Φt =
2
r
Φr + Φrr + Φ2

r (6.58)

If we change the unknown function again according to the following rule

Ψ(x, r, t) = Φr(x, r, t)

we get the following equation celebrated as Cylindrical Burgers Equation.

Ψt = − 1
r2 Ψ +

1
r
Ψr + 2ΨΨr + Ψrr (6.59)

if we return back to the equation (6.56) and write

Mu(x, t; r) = X(x)R(r)T(t), (6.60)

then we found

Mu(x, t; r) = α(x)e−k2t(c1J0(kr) + c2N0(kr)) (6.61)

Where the functions J and N are the Bessel Functions of the first and second kind respec-

tively. Since spherical means of a function is even in r then general solution of Cylindrical

Burgers Equation is given by

Ψ(x, t; r) =

(
e−k2

1tc1J0(k1r) + e−k2
2tc3J0(k2r)

)
r

e−k2
1tc1J0(k1r) + e−k2

2tc3J0(k2r)
.

6.3. Spherical Burgers Equation

Heat equation given in three dimensional space

Ut = ∆U (6.62)

can be converted to the following equation which is satisfied by the spherical means of

function u

(Mu)t = (Mu)rr +
2
r

(Mu)r. (6.63)

Defining a new function Φ(x, t; r) as

Φ(x, t; r) =
(Mu)r

Mu
, (6.64)

gives us so called spherical Burgers Equation

Φt = Φrr + 2ΦΦr +
2
r
Φr − 2

r2 Φ. (6.65)

65



If we return back to the equation (6.63) and write

Mu(x, t; r) = X(x)R(r)T(t) (6.66)

we obtain
T′

T
=

R′′ + 2
r R′

R
(6.67)

If we equate obtained system to the constant k2, then we found

Mu(x, t; r) = c(x)ek2t
(
α

sin (kr)
kr

+ β
cos (kr)

kr

)
. (6.68)

Since spherical means of any function must be even in r and must give the original

function when r approaches the zero, we conclude that β must be identically zero. Then

general solution of Spherical Burgers Equation obtained by

Φ(x, t; r) =
(Mu)r

Mu
(6.69)

is given as

Φ(x, t; r) =

(
c1(x)ek2

1t sin (k1r)
k1r + c2(x)ek2

2t sin (k2r)
k2r

)
r(

c1(x)ek2
1t sin (k1r)

k1r + c2(x)ek2
2t sin (k2r)

k2r

) . (6.70)

6.4. Heat and Burgers Hierarchy

Linear heat equation

Ψt = Ψxx (6.71)

can be related with the non-linear Burgers equation by the Cole-Hopf transformation

φ =
Ψx

Ψ
. (6.72)

According to the previous formula solution of the linear heat equation Ψ can be written

in terms of φ

Ψ(x, t) = e
∫ x
φ(y,t)dy. (6.73)

satisfying the Burgers equation. Substituting eqn (6.73) into the heat equation we get

(e
∫ x
φ(y,t)dy)t = (e

∫ x
φ(y,t)dy)xx (6.74)

∫ x

φt(y, t)dy = φx(x, t) + φ2
x(x, t) (6.75)

Differentiating with respect to x, gives Burgers equation

φt(x, t) = φxx(x, t) + 2φφx(x, t). (6.76)
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Now if we consider the equation

Ψt = Ψxxx (6.77)

Cole-Hopf transformation (6.72) leads to the following equation

φt(x, t) = φxxx(x, t) + 3φ(x, t)φxx(x, t) + 3φ2
x + 3φ2φx (6.78)

Similar calculations for the equation

Ψt = Ψxxxx (6.79)

By the non-linear transformation (6.73) gives

φt(x, t) = φxxxx(x, t) + 10φx(x, t)φxx(x, t) + 4φ(x, t)φxxx(x, t)

+ 12φ(x, t)φ2
x(x, t) + 6φ2(x, t)φxx(x, t) + 4φ3(x, t)φx(x, t). (6.80)

Generalization of these results says that for a equation given with

Ψtn(x, t) =
∂n

∂xn Ψ(x, t), n = 2, 3, 4... (6.81)

the Cole-Hopf transformation gives equations for different values of n obeying the rule

given by (Pashaev and Gürkan 2007)

∂tnφ = ∂x((∂x + φ)n.1) (6.82)

Writing function φ(x, t) in the traveling wave form

φ(x, t) = f (x − vt), ξ = x − vt (6.83)

we get the hierarchy of ordinary differentiation as

−v.∂ξ f = ∂ξ((∂ξ + f )n.1) (6.84)

Some of the members of this hierarchy are given explicitly as

−v f = fξ + f 2, for n = 2 (6.85)

−v f = fξξ + 3 f fξ + f 3, for n = 3 (6.86)

−v f = fξξξ + 3 f 2
ξ + 4 f fξξ + 6 f 2 fξ + f 4, for n = 4 (6.87)

The equation obtained for the n = 2 is the well known Riccati Equation.Writing in the

Riccati equation

f (ξ) =
φξ
φ

(6.88)
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we reduce it to the linear second order differential equation as

−vφξ = φξξ. (6.89)

solution of which enables us to write

φ(x, t) = f (x − vt) =
−vc2e−v(x−vt)

c1 + c2e−v(x−vt)
. (6.90)

6.4.1. Heat Equation with Potential

Linear heat equation with potential

Ψt = Ψxx + V(x, t)Ψ (6.91)

can be related with the non-linear Heat equation. By Cole-Hopf transformation

φ =
Ψx

Ψ
. (6.92)

Solution of the linear heat equation Ψ, can be written in terms ofφ satisfying the nonlinear

heat equation . Cole-Hopf transformation can be written as

Ψ(x, t) = e
∫ x
φ(y,t)dy (6.93)

Substituting eqn (6.93) into the heat equation we get

(e
∫ x
φ(y,t)dy)t = (e

∫ x
φ(y,t)dy)xx + V(x, t)e

∫ x
φ(y,t)dy (6.94)

After differentiation with respect to x, eqn(6.94) reduces to the

φt(x, t) = φxx(x, t) + 2φφx(x, t) + Vx(x, t). (6.95)

Now if we consider the equation

Ψt = Ψxxx + (VΨ)x (6.96)

Cole-Hopf transformation (6.92) leads to the following equation

φt(x, t) = φxxx(x, t) + 3φ(x, t)φxx(x, t) + 3φ2
x + 3φ2φx

+ Vxx + Vxφ + Vφx (6.97)

Similar calculations for the equation

Ψt = Ψxxxx + (VΨ)xx (6.98)
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By non-Linear transformation (6.92), we find

φt(x, t) = φxxxx(x, t) + 10φx(x, t)φxx(x, t) + 4φ(x, t)φxxx(x, t)

+ 12φ(x, t)φ2
x(x, t) + 6φ2(x, t)φxx(x, t) + 4φ3(x, t)φx(x, t)

+ Vxxx + 2Vxxφ + 3Vxφx + Vφxx + Vxφ
2 + 2Vφφx. (6.99)

From the above calculations we can formulate the general case. For the linear wave

equation given by

∂tnΨ(x, t) = ∂n
xΨ(x, t) + ∂n−2

x (V(x)Ψ(x, t)), n = 2, 3, 4... (6.100)

the Cole-Hopf transformation gives the equations for different values of n obeying the

rule given by

∂tnφ = ∂x((∂x + φ)n.1) + ∂x((∂x + φ)n−2.V), n = 2, 3, 4... (6.101)

Writing functions φ(x, t),V(x, t) in the traveling wave form

φ(x, t) = f (x − vt), V(x, t) = g(x, t), ξ = x − vt (6.102)

we get

−v.∂ξ f = ∂ξ((∂ξ + f )n.1 + (∂ξ + f )n−2.g). (6.103)

Taking one integration with respect to ξ gives

−v f = (∂ξ + f )n.1 + (∂ξ + f )n−2.g (6.104)

First three member of the hierarchy is given by the

−v f = fξ + f 2 + g, for n = 2 (6.105)

−v f = fξξ + 3 f fξ + f 3 + gξ + g f , for n = 3 (6.106)

−v f = fξξξ + 3 f 2
ξ + 4 f fξξ + 6 f 2 fξ + f 4

+ gξξ + 2gξ f + g fξ + g f 2, for n = 4 (6.107)

The equation obtained for the n = 2 is well known Riccati Equation.

6.4.2. Spherical Burgers Hierarchy

When the Heat equation is given in three dimensional space for the function

u = u(x, t) as

ut(x, t) =M u(x, t) (6.108)
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then the spherical means M of function u(x, t) satisfies

rMt = (rM)rr = 2Mr + rMrr (6.109)

For this heat equation we can write time evolution as

(rM)t2 = (rM)rr = 2Mr + rMrr (6.110)

(rM)t3 = (rM)rrr = 3Mr + rMrrr (6.111)
... (6.112)

(rM)tn = (rM)rrr...r = n
dn−1

drn−1
M + r

dn

drn M (6.113)

(6.114)

The Cole-Hopf transformation

Φ(r, t) =
Mr

M
(6.115)

allows us to write for t = t2 spherical Burgers Equation as

6.4.3. Cylindrical Burgers Hierarchy

When the function u = u(x1, x2, t) satisfies two dimensional Heat equation

ut(x, t) = ∆u(x, t) (6.116)

spherical means M(x, t; r) of function u(x, t) satisfies.

(Mu)t = (Mu)rr +
1
r

(Mu)r (6.117)

Defining a new function Φ(x, t; r) as

φ(x, t; r) =
Mr(x, t; r)
M(x, t; r)

(6.118)

gives us following equation celebrated as Cylindrical Burgers Equation.

φt = − 1
r2φ +

1
r
φr + 2φφr + φrr (6.119)

we can write time evolution for this equation For t = t2 we can write the equation (6.117)

as

(rM)t2 = (rM)rr −Mr (6.120)
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Then for different times we can write equations corresponding to the function χ(x, t; r) =

rM(x, t; r) as

(rM)t2 =
∂2

∂r2 (rM) − ∂

∂r
(rM) (6.121)

(rM)t3 =
∂3

∂r3 (rM) − ∂3

∂r3 (rM) (6.122)

...

(rM)tn =
∂n

∂rn (rM) − ∂n−1

∂rn−1
(rM) (6.123)

Applying Cole-Hopf transformation gives us Cylindrical burgers Hierarchy

∂tnφ = ∂r

{n − 1
r

(∂r + φ)n−1.1 + (∂r + φ)n.1
}
, n = 2, 3, 4 . . . (6.124)
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CHAPTER 7

CONCLUSION

In the present thesis we studied the method of spherical means, its properties and

its relation between PDEs.

1)We found spherical means operator representation in 2-dimensional space could

be expressible in terms of modified exponential functions. After studying properties of

modified exponential function, we give related linear and nonlinear Heat equations and

their general solutions.

2) By Backlund transformation we relate Euler-Poisson-Darboux Equation in arbi-

trary odd dimensional spaces with spherical Liouville Equation which exact spherically

symmetric solutions. We showed that solutions of this equation are singular at origin and

can not be spherical means of a function.

3)Nonlinear hyperbolic wave equations in the form of Sine-Gordon and Sinh-

Gordon equations have been considered. We found solutions for the spherical Sine-

Gordon and Spherical Sinh-Gordon equations which are not singular at the origin.

4) Nonlinear Heat equations in arbitrary odd dimensional spaces were consid-

ered. By Cole-Hopf transformation we introduced the Spherical and Cylindrical Burgers

equations and their general solutions.

72



REFERENCES

Ablowitz, M.J., D.C Kaup , A.C. Newell and H. Segur. 1973. Method for Solving
Sine-Gordon Equation, Phys. Rew.Lett. 35:1262-1264.

Ablowitz, M.J. and A.S Fokas. 1997. Complex Variables:Introduction and Application.
Cambrige Press.

Abramowich, J. 1983. Some Applications of Generalized Exponentials to Partial
Differential Equations. Proceeding of American Mathematical Society 89(2):239-245.

Burgers, J.M. 1948. A Matmatical Model Illustrating the Theory of Turbulance.
Adv.Appl. Mech. 1:171-199.

Chalykh, O. A., M. V. Feigin and A. P. Veselov. 1999. Multidimensional Baker-
Akhiezer Functions and Huygens Principle. Commun. Math. Phys. 206:533 566.

Clairin, J. 1902. Ann. Sci. Ecole Norm. Sup. 19: 1-63.

Cole, J.D. 1951. On a quasilinear parabolic equation occurring in aerodynamics,
Quart. Appl. Math. 9:225-236.

Courant R., D.Hilbert. 1962. Methods of Mathematical Physics. New York: Cambrige
University Press.

Davis, J.L., 2000. Mathematics of Wave Propagation. New Jersey: Princeton Univer-
sity Press.

Debnath, L., Nonlinear Partial Differential Equations for Scientist and Engineers.
Birkhüuser.
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APPENDIX A

APPLICATION OF SPHERICAL MEANS

In n dimensional space relation between cartesian coordinates (x1, x2, x3, . . . , xn)

and hyperspherical coordinates (r, φ1, φ2, φ3, ..., φn−1) is given by the following equations

x1 = r cos(φ1) (A.1)

x2 = r sin(φ1) cos(φ2) (A.2)

x3 = r sin(φ1) sin(φ2) cos(φ3) (A.3)
...

xn−1 = r sin(φ1) sin(φ2) . . . sin(φn−2) cos(φn−1) (A.4)

xn = r sin(φ1) sin(φ2) . . . sin(φn−2) sin(φn−1) (A.5)

and surface element is given by

dSn−1V = sinn−2 φ1 sinn−3 φ2 . . . sinφn−2 dφ1dφ2 . . . dφn−1 (A.6)

Surface are of sphere in n dimensions is given by the following formula (John 1955)

ωn =
2
√
πn

Γ( n
2 )

(A.7)

. Example: As an application of the method of spherical means let us evaluate the

spherical means of following function at an arbitrary point P = P(x, y) in two ways

u(x, y) = x2y. (A.8)

1) By definition of spherical means:

Spherical means of a function is given by

Mu(x, r) =
1
ωn

∫

|ξ|=1

u(x + rξ)dSξ. (A.9)

Using equation (A.7) we find

Mu(x, r) =
1

2π

∫

|ξ|=1

u(x + rξ)dSξ. (A.10)

Equation (A.6) and (A.8) allows us to write

Mu(x, y, r) =
1

2π

2π∫

θ=0

(x + r cosθ)2(y + r sinθ)dθ. (A.11)
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If we open the parenthesis we get

Mu(x, y, r) =
1

2π

2π∫

θ=0

(x2y+x2r sinθ+2rxy cosθ+2xr2 cosθ sinθ+r2y sin2 θ+r3 cos2 θ sinθ)dθ

(A.12)

From this equation we find the spherical means of function u as

Mu(x, y; r) = x2y +
r2y
2
. (A.13)

2) By using operator representation:

Let us evaluate the Laplacian of function u(x, y) (A.8)

M u = 2y, M2 u = 0, . . . Mn u = 0 (A.14)

If we use the operator representation of spherical means given by

M = e
(

r2

4
M; 2

)
(A.15)

then the spherical means of function (A.8), by using the equation (A.14), is found as

Mu(x, y; r) = u(x, y) +
r2

4
M u +

r4

16
M2 u + . . . +

r2n

4n M
n u + . . . (A.16)

Mu(x, y; r) = x2y +
r2y
2
. (A.17)
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APPENDIX B

APPLICATION OF SPHERICAL MEANS TO THE

HEAT EQUATION

Let us show that solution of initial value problem (6.17)

u(x, t) =
4π

(4πνt)
3
2

∞∫

0

M f (x;ρ)ρ2e−
ρ2

4νt dρ (B.1)

satisfies the initial condition, u(x, o) = f (x).

To do this let us define

n =
1√
4νt

(B.2)

F(ρ) = M f (x, ρ) (B.3)

In this definition if t approaches zero then n approaches to infinity. Thus by the definition

(B.2)and (B.3), equation (B.1) takes the form

I =
4n3
√
π

∫ ∞

0
F(ρ)ρ2e(−ρ2n2)dρ. (B.4)

From the property of spherical means F(ρ) is an even function. If we expand the function

F(ρ) in Taylor series we obtain following equation

I =
4n3
√

Π

∫ ∞

−∞

∞∑

m=0

F(2m)(0)
(2m!)

ρ2e(−ρ2n2)dρ (B.5)

which can be arranged as follows

I =
2n3
√
π

∞∑

m=0

F(2m)(0)
(2m!)

∫ ∞

−∞

dm+1

d(n2)m+1
(e(−ρ2n2))dρ. (B.6)

Using the error function we find

I =
2n3
√
π

∞∑

m=0

F(2m)(0)
(2m!)

dm+1

d(n2)m+1
(

√
π

n2 ). (B.7)

After evaluating the differentiation we find

I = 2
∞∑

m=0

F(2m)(0)
(2m!)

1.3.5...(2m + 1)
2m+1

.n−(2m+3). (B.8)

It can be shown by the ratio test that the series is convergent and can be integrated term

by term.

I = 2(
F0(0)

2
+

F1(0)
2

3
n2 +

F2(0)
2.4

1.3.5
n4

+ . . . . (B.9)
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When n→∞ only the first gives nonzero contribution.

I = F(0) = M f (x, 0)

Since spherical means M f approaches the function f when r approaches zero, then we

find

I = F(0) = M f (x, 0) = f (x). (B.10)
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