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ABSTRACT 

 
ANALYSIS OF THE CRACKED INFINITE HOLLOW CYLINDER 

WITH LOADING ON CRACK SURFACES 

 
In this study, the cracked infinite hollow cylinder with an axisymmetric crack of 

width (b-a) is considered. The ring-shaped crack is located at the symmetry plane. 

Surfaces of the crack are subjected to the distributed compressive loads. The outer 

surface of the cylinder is rigid and the inner one is stress free. The material of the 

cylinder is assumed to be linearly elastic and isotropic. 

Integral transform techniques are used for the solution of the field equations. The 

resultant singular integral equation in terms of crack surface displacement derivative is 

converted to a system of linear algebraic equations by using Gauss-Lobatto, Gauss-

Jacobi and Gauss-Laguerre integration formulas. The stress intensity factors at the tips 

of the crack are numerically calculated for uniform and linear load distributions on 

crack surfaces. Some results are presented in graphical and tabular forms. 
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ÖZET 

 
ÇATLAK YÜZEYLERİNDE YÜKE MARUZ SONSUZ 

UZUNLUKTAKİ TÜPÜN ANALİZİ 

 
Bu çalışmada, eni (b-a) olan eksenel simetrik çatlak içeren sonsuz uzunlukta bir 

tüp problemi ele alınmıştır. Halka biçimindeki çatlak simetri düzleminde yer 

almaktadır. Çatlak yüzeyleri yayılı basınç yüklerine maruzdur. Tüpün dış yüzeyi rijit, iç 

yüzeyi serbesttir. Tüpün malzemesi lineer elastik ve izotrop olduğu varsayılmaktadır. 

Elastisite denklemlerinin çözümü için integral dönüşüm teknikleri kullanıldı. 

Gauss-Lobatto, Gauss-Jacobi ve Gauss Laguerre integrasyon formülleri kullanılarak, 

çatlak yüzü yer değiştirme türevi cinsinden yazılan tekil integral denklemi bir lineer 

cebrik denklem takımına dönüştürülmüştür. Düzgün ve lineer yayılı basınç yükleri için 

çatlak uçlarındaki gerilme şiddeti katsayıları nümerik olarak hesaplandı. Bazı sonuçlar 

grafikler ve tablolar biçiminde verilmektedir. 
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CHAPTER 1 

 

INTRODUCTION 
 

 An important step is the identification of the most likely modes of failure and 

the application of a suitable failure criterion in the design of structural or machine 

components. Fracture characterized as the formation of new surfaces in the material is 

one such mode of mechanical failure. Fracture may be viewed as the rupture separation 

of the structural component into two or more pieces due to the discontinuities. These 

discontinuities can be in the form of cracks, holes, notches or inclusions that are very 

important factors influencing stress distributions in the structural or machine 

components. 

There are two approaches to fracture study. The first is based on the stress 

intensity factor, k and the second is based on the J integral. The J integral approach is 

suitable for ductile fracture with strong deformations. The stress intensity factor 

approach is based on the possibility of representing the stress field around the crack tip 

by a stress intensity factor, k. The stress intensity factor depends on the way the crack is 

invited to propagate, on the mode of application of the load, on the level and variation 

of the stress in the material far from the crack tip and on the type of the crack. These 

modes of application of the load are defined as of three types (Figure 1.1.): 

• Mode I: the principle load is applied normal to the crack plane, tends to 

open crack 

• Mode II: corresponds to in plane shear loading, tends to slide one crack face 

with respect to the other one 

• Mode III: refers to out of plane shear loading. 

 

 
 

Figure 1.1. Three modes of application of the load. 
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 The stress becomes infinite at the tips of the cracks or inclusions. In such cases, 

stress concentration cannot be defined as a strength parameter and it is necessary to 

consider the stress distributions from fracture mechanics point of view. Fracture 

toughness can be easily calculated in terms of the stress intensity factors. The stress 

near the crack tip varies with singularity, regardless of the configuration of the cracked 

body. These types of problems are studied by using numerical and analytical methods 

based on partial differential equations. For linear elastic materials, individual 

components of stress, strain and displacement are additive. In many cases of analytical 

solutions, principle of superposition allows stress intensity for complex configurations 

to be built from simple cases. 

 

1.1. A Brief Introduction and Method of Solution of the Problem 
 

 In this study, an infinite hollow cylinder containing a ring-shaped crack at the 

symmetry plane is considered. Crack surfaces are subjected to distributed load. The 

outer wall of the hollow cylinder is rigid and the inner wall is free of traction. The 

material of the hollow cylinder is assumed to be linearly isotropic and elastic. The 

solution for the problem can be found by superposition of two sub-problems: (1) the 

problem of an infinite elastic medium containing a ring-shaped crack at the symmetry 

plane and (2) the problem of an infinite elastic medium without a crack subjected to 

arbitrary symmetric loads. 

 The general solutions of these sub-problems are obtained by using Hankel and 

Fourier transforms on Navier equations. And a singular integral equation is obtained by 

using the boundary conditions on the crack. By using Gauss-Lobatto and Gauss-Jacobi 

integration formulas, this singular integral equation is reduced to a linear algebraic 

equation. And this linear algebraic equation is solved numerically by using Gauss-

Laguerre integration. 

 

1.2. Literature Overview 

 
 Collins (1962) considered some axially symmetric stress distributions in an 

infinite elastic solid and in a thick plate containing penny-shape cracks. It was shown 

that representations for the displacements in an infinite solid containing two or more 
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cracks and in a thick plate containing a single crack can be constructed and used to 

reduce problems of determining the stresses in these solids to the solutions of Fredholm 

integral equations of the second kind by use of representation for the displacement in an 

infinite elastic solid containing a single crack. 

 Sneddon and Welch (1963) considered a long circular cylinder of elastic 

material and made an analysis of the distribution of stress when it is deformed by the 

application of pressure to the inner surfaces of a penny-shaped crack positioned 

symmetrically at the centre of the cylinder. The cylinder surface was assumed to be free 

from stress. The equations of the classical theory of elasticity were solved in terms of an 

unknown function that was shown to be the solution of an integral solution previously 

derived by Collins (1962). 

 Arın and Erdoğan (1971) considered two axially symmetric mixed boundary 

value problems in elastic dissimilar layered medium. An elastic layer was assumed to be 

bonded to two semi-infinite half spaces along its plane surfaces, and contains a penny-

shape crack parallel to the interfaces. The numerical examples were given for a constant 

pressure on the crack surface. 

 The axisymmetric semi-infinite cylinder with fixed short end is considered by 

Gupta (1974). Normal loads were applied far away from the fixed end. By using an 

integral transform technique, a singular integral equation has been provided. Stress 

along the rigid end and stress intensity factors have been calculated numerically and 

presented graphically. 

 Agarwal (1978) reduced the axisymmetric end-problem for semi-infinite elastic 

circular cylinder to a system of singular integral equations. It is found that the kernels of 

the integral equations contained Cauchy as well as generalized Cauchy-type 

singularities. A system of algebraic equations was obtained from the system of singular 

integral equations by using an approximate method. Axisymmetric solution for joined 

dissimilar elastic semi-infinite cylinders under uniform tension was solved as an 

application. 

 Erdöl and Erdoğan (1978) studied an elastostatic axisymmetric problem for a 

long thick-walled cylinder containing a ring-shaped internal or edge crack. The problem 

had been formulated in terms of an integral equation has a simple Cauchy kernel for the 

internal crack and a generalized Cauchy kernel for edge crack as dominant part by using 

transform technique. 
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 Nied and Erdoğan (1983) considered the elasticity problem for a long hollow 

cylinder containing an axisymmetric circumferential crack subjected to general non-

axisymmetric external loads. The problem had been formulated in terms of a system of 

singular integral equations. Stress intensity factors and the crack opening displacement 

had been calculated for a cylinder under uniform tension. 

 Chen (2000) evaluated the stress intensity factors in a cylinder with a 

circumferential crack. To study the problem, an indirect method has been developed. 

The finite difference method had been used to solve the boundary value problem. 

Numerical examples had been given which demonstrates the effect of cylinder length on 

the stress intensity factor. 

 Artem and Geçit (2002) studied the problem of an elastic hollow cylinder under 

axial tension containing a crack and two rigid inclusions of ring shape. The material of 

the hollow cylinder was assumed to be linearly elastic and isotropic. The cylinder was 

assumed to be under the action of uniform loading. Because of the mixed boundary 

condition of the problem, Hankel and Fourier transform techniques were used and a 

system of three singular integral equations is analyzed and solved numerically. The 

normalized stress intensity factors were calculated for crack and two rigid inclusions. 

 Aydın (2005) made an investigation of stress intensity factors in an elastic 

cylinder under axial tension with a crack of ring-shape. Hankel and Fourier transform 

techniques were used to obtain a singular integral equation. This singular integral 

equation was solved numerically by using Gauss-Lobatto integration formula. The 

normalized stress intensity factors were calculated for crack and presented graphically. 

 Kaman and Geçit (2006) considered the problems of cracked semi-infinite 

cylinder and finite cylinder. General solutions of these problems were obtained by using 

Hankel and Fourier transforms on Navier equations. The singular integral equations 

were converted to a system of linear algebraic equations that were solved numerically 

by using Gauss-Lobatto and Gauss-Jacobi integration formulas. Mode I and Mode II 

stress intensity factors at the edges of cracks and inclusion and normal and shearing 

stresses along the rigid support were calculated. And results were presented graphically. 



CHAPTER 2 

 

PROBLEM DEFINITION AND FORMULATION 
 

2.1. The Infinite Hollow Cylinder Containing a Ring-Shaped Crack 

Problem 
 

 An infinite hollow cylinder of width (B-A) containing a ring-shaped crack of 

width (b-a) at the symmetry plane, z = 0 is considered. Distributed compressive load is 

applied on the crack surface. The outer wall of the cylinder is rigid and the inner wall is 

free of traction. The material of the cylinder is assumed to be linearly elastic and 

isotropic (Figure 2.1). 

 

 
 

Figure 2.1. Geometry of the problem 
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డఙೝ
డ

 The equilibrium equations for linearly elastic, isotropic and axisymmetric 

problems can be written in the form of 

 

 డఛೝ
డ௭

 ఙೝିఙഇ


ൌ 0  (2.1)       

డఛೝ
డ

 డఙ
డ௭

 ఛೝ

ൌ 0       (2.2) 

 

where σ and τ symbolizes the normal and shear stresses, respectively. The relation 

ߪ ൌ ߳ߤ2          (2.3)ߜ߳ߣ

 

here   ߜ ൌ ൜1 ݂ݎ ݅ ൌ ݆
݅ ݎ݂ 0 ് ݆ 

߳ ൌ   ߳  ߳ఏఏ  ߳௭௭ 

ߤ ଶ௩
ଵିଶ௩

between stress and strain in the body in tensor notation is 

 

w

  

ߣ   ൌ  

ar modulus, v is the Poisson’s ratio. 

 The strain-displacement relations for the axisymmetric problem are in the form 

߳ ൌ
డ௨
డ

and µ is the she

of 

 

  

߳ఏఏ ൌ
௨

  

߳௭௭ ൌ
డ௪
డ௭

  

߳௭ ൌ
డ௨
డ௭


డ
డ௪             (2.4a-d) 

 

where u and w are displacements in r and z di ctions in cyl

spectively. 

isplacement relations for the axisymmetric cylindrical problem are found 

 

 

re  indrical coordinates, 

re

 By substituting expressions given in the equation (2.4a-d) into the equation 

(2.3), stress-d

as
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ߪ ൌ
ఓ

ିଵ
ቂሺܭ  1ሻ డ௨

డ
 ሺ3 െ ሻܭ ቀ௨


 డ௪

డ௭
ቁቃ  

ఏߪ ൌ
ఓ

ିଵ
ቂሺܭ  1ሻ ௨


 ሺ3 െ ሻܭ ቀడ௨

డ
 డ௪

డ௭
ቁቃ  

௭ߪ ൌ
ఓ

ିଵ
ቂሺܭ  1ሻ డ௪

డ௭
 ሺ3 െ ሻܭ ቀడ௨

డ
 ௨


ቁቃ

߬௭ ൌ ߤ ቀడ௨
డ௭

  

 డ௪
డ
ቁ            (2.5a-d) 

 

where ܭ ൌ 3 െ  .for plane strain ݒ4

 By substituting equations (2.5a-d) into the uatio  (2.1 and (2.2), a second 

tion system that is called the Navier Equations can be 

 

 

eq ns ) 

order partial differential equa

found as 

ሺܭ  1ሻ ቀడ
మ௨
డమ

 ଵ

డ௨
డ
െ ௨

మ
ቁ  ሺܭ െ 1ሻ డ

మ௨
డ௭మ

 2 డమ௪
డడ௭

ൌ 0  

2 ቀ డ
మ௨

డడ௭
 ଵ


డ௨
డ௭
ቁ  ሺܭ െ 1ሻ ቀడ

మ௪
డమ

 ଵ

డ௪
డ
ቁ  ሺܭ  1ሻ ቀడ

మ௪
డ௭మ

ቁ ൌ 0         (2.6a-b) 

 The Navier equations must be solved using the boundary c itions: 

 

,ݎ௭ሺߪ െ∞ሻ ൌ 0  ሺܣ ൏ ݎ ൏  ሻܤ

,ݎ௭ሺߪ ∞ሻ ൌ 0  ሺܣ ൏ ݎ ൏  ሻܤ

,ݎ௭ሺߪ 0ሻ ൌ െሺݎሻ  ሺܽ ൏ ݎ ൏ ܾሻ 

,ܣሺߪ ሻݖ ൌ 0 ൏ ݖ ൏ ሻ 

߬௭ሺܣ, ሻݖ ൌ 0 ൏ ݖ ൏ ሻ 

,ܤሺݑ ሻݖ ൌ 0 ሺെ∞ ൏ ݖ ൏ ሻ 

,ܤሺݓ ሻݖ ൌ 0  ሺെ∞ ൏ ݖ ൏ ሻ 

߬௭ሺݎ, 0ሻ ൌ 0 ሺܽ ൏ ݎ ൏ ܾሻ            (2.7a-i) 

 

where ሺݎሻ is the intensity dist ted load on the crac  surfaces. 

 

 

 

 

ond

,ݎሺݓ 0ሻ ൌ 0   ሺܣ ൏ ݎ ൏ ܽሻ, ሺܾ ൏ ݎ ൏  ሻܤ

  ሺെ∞ ∞

  ሺെ∞ ∞

   ∞

 ∞

   

 of the ribu k
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.1.1. The Perturbation Problem 

The solution for the infinite hollow cylinder containing a ring-shaped crack may 

e found by the superposition of the solutions for two sub-problems as showed in 

 a ring-shaped 

ne and (2) the problem of an infinite medium 

ithout crack subjected to arbitrary symmetric loads. 

 
Figure 2.2. Perturbation problem 

 

2.1.1.1. An Infinite Elastic Medium having a Crack 
 

 Consider an infinite medium containing a crack at z = 0 plane, z is the axis of the

medium. The crack surf distributed axisymmetric 

compressive loads. 

ne half of the medium 

ݖ  0ሻ instead of considering both parts of the medium. Displacement and stress 

ompon

2
 

 

b

Figure 2.2: (1) The problem of an infinite elastic medium containing

crack of width (b-a) at the symmetry pla

w

 

 

aces are under the action of 

 Because of the symmetry, it is sufficient to consider o

ሺ

c ents will be obtained by using Hankel transformation technique. 

 By using Hankel transform definition 

 

;ሻݔሼ݂ሺܽܪ ߮ሽ ൌ  ݂ሺܽݔሻܬ ݔ
ஶ
 ሺ߮ݔሻ ሺܽ  ݔ݀  0ሻ    (2.8) 
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here tions. ݑሺݎ, ,ݎሺݓ ሻ is an odd andݖ  ሻ is anݖ

ven function in r direction, Hankel transform of the displacement functions can be 

written in the form of 

ஶ

; ሽߙ ൌ  ,ݎሺݓ ሻஶݖ
 ሻߙݎሺܬ ݎ ݎ݀ ൌ ܹሺߙ,  ሻ          (2.9a-b)ݖ

where J0 and J1 are the Bessel functions of the first kind of order zero and one, 

respectively. Applying Hankel transform to equation (2.6) in r

equations can be obtained 

w n = 0 for even and n = 1 for odd func

e

 

,ݎሺݑଵሼܪ ;ሻݖ ሽߙ ൌ  ,ݎሺݑ ሻݖ ሻߙݎଵሺܬ ݎ ݎ݀ ൌ ܷሺߙ,   ሻݖ

,ݎሺݓሼܪ ሻݖ

 

 direction, the following 

 

െሺܭ  1ሻߙଶܷሺߙ, ሻݖ  ሺܭ െ 1ሻ ௗ
మሺఈ,௭ሻ
ௗ௭మ

െ ଶߙ2 ௗௐ
ௗ௭

ൌ 0  

ߙ2 ௗ
ௗ௭
െ ሺܭ െ 1ሻߙଶܹሺߙ, ሻݖ  ሺܭ  1ሻ ௗ

మௐሺఈ,௭ሻ
ௗ௭మ

ൌ 0        (2.10a-b) 

 By doing some manipulations, the equation system (2.10) can be reduced to a 

forth order ordinary differential equation in the form: 

 
ௗరሺఈ,௭ሻ

 

ௗ௭ర
െ ଶߙ2 ௗ

మሺఈ,௭ሻ
ௗ௭మ

 ,ߙସܷሺߙ ሻݖ ൌ 0   (2.11) 

The general solution of the equation (2.11) is found as 

 

ܷሺߙ, ሻݖ ൌ ሺܿଵ  ܿଶݖሻ݁ିఈ௭  ሺܿଷ  ܿସݖሻ

here c  0. 

In order to get finite displacement at infinity, constants c3 and c4 must be equal 

to zero for the upper half of the medium (z > 0) and constants c1

ero for the lower half of the medium (z < 0). Therefore, considering subscripts u and l 

quation (2.12) can be 

 

 

 

݁ఈ௭   (2.12) 

 

w 1, c2, c3 and c4 are arbitrary unknown constants and α >

 

 and c2 must be equal to 

z

indicate the upper and the lower half of the medium respectively, e

expressed in the form of 
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ሺܿଷ  ܿସݖሻ݁ఈ௭   ሺݖ  0ሻ       (2.13a-b) 

e procedure for ܹሺߙ,  ሻ, the solutions can be found asݖ

 

௨ܹሺߙ, ሻݖ ൌ ቂሺܿଵ  ܿଶݖሻ 


ܷ௨ሺߙ, ሻݖ ൌ ሺܿଵ  ܿଶݖሻ݁ିఈ௭   ሺݖ  0ሻ  

ܷሺߙ, ሻݖ ൌ

 

Using the sam

ఈ
ܿଶቃ ݁    ିఈ௭ ሺݖ  0ሻ

ܹሺߙ, ሻݖ ൌ ቂെሺܿଷ  ܿସݖሻ 

ఈ
ܿସቃ ݁ఈ௭  ሺݖ  0ሻ       (2.14a-b) 

 By taking inverse transforms of equations (2.13a-b) and (2.14a-b), displacement 

omponents are found as 

 

,ݎ௨ሺݑ ሻݖ ൌ  ሺܿଵ  ܿଶݖሻ݁ିఈ௭
ஶ
 ሻݎߙଵሺܬߙ ݖሺ   ߙ݀  0ሻ  

,ݎሺݑ ሻݖ ൌ  ሺܿଷ  ܿସݖሻ݁ఈ௭
ஶ
 ሻݎߙଵሺܬߙ ݖሺ   ߙ݀  0ሻ  

ݓ ሺݎ, ሻݖ ൌ  ቂሺܿ  ܿ ሻݖ  

 

c

௨ ଵ ଶ ఈ
ܿ ቃ ݁ିఈ௭ஶ ܬߙ ሺݎߙሻ ݖሺ  ߙ݀  0ሻ 

 ܿସݖሻ  ఈ

ଶ 

,ݎሺݓ ሻݖ ൌ  ቂെሺܿଷ
 ܿସቃ ݁ఈ௭ ሻݎߙሺܬߙ ݖሺ  ߙ݀  0ሻ      (2.15a-d) 

 By substituting the equations (2.15a- the ressions 

equations (2.5a-d), stress components can be found as 

 

,ݎೠሺߪ ሻݖ ൌ නሾ2ሺܿଵߤ  ܿଶݖሻߙ െ ሺ3 െ ሺܬߙሻܿଶሿ݁ିఈ௭ܭ
ஶ



 නߤ െ2ሺܿଵ  ܿଶݖሻ
ஶ



݁ିఈ௭
ߙ
ݎ

ஶ


 

d) into  exp given in the 

ሻݎߙ ߙ݀

ሻݎߙଵሺܬ  ߙ݀

ሺݎߙሻ ߙ݀


 නߤ െ2ሺܿଷ  ܿସݖሻ
ஶ



݁ఈ௭
ߙ
ݎ

(z ≥ 0)

,ݎሺߪ ሻݖ ൌ නሾ2ሺܿଷߤ  ܿସݖሻߙ  ሺ3 െ ܬߙሻܿସሿ݁ఈ௭ܭ

ஶ

ሻݎߙଵሺܬ  ߙ݀

(z ≤ 0)

,ݎ௭ೠሺߪ ሻݖ ൌ ܭනሾെሺߤ  1ሻܿଶ െ 2ሺܿଵ  ܿଶݖሻߙሿ
ஶ



݁ିఈ௭ܬߙሺݎߙሻ (z ≥ 0) ߙ݀



11 
 

,ݎ௭ሺߪ ሻݖ ൌ ܭනሾሺߤ  1ሻܿସ െ 2ሺܿଷ  ܿସݖሻߙሿ
ஶ



݁ఈ௭ܬߙሺݎߙሻ (z ≤ 0) ߙ݀

߬௭ೠሺݎ, ሻݖ ൌ ܭනሾെሺߤ െ 1ሻܿଶ െ 2ሺܿଵ  ܿଶݖሻߙሿ݁ିఈ௭ߙ
ஶ



ሻݎߙଵሺܬ (z ≥ 0) ߙ݀

߬௭ሺݎ, ሻݖ ൌ ܭනሾെሺߤ െ 1ሻܿସ  2ሺܿଷ  ܿସݖሻߙሿ݁ఈ௭ߙ
ஶ



ሻݎߙଵሺܬ (2.16a-f) (z ≤ 0) ߙ݀

 

 These expressions satisfies the following continuity and symmetry conditions on 

z = 0 plane. 

 

,ݎ௭ೠሺߪ 0ሻ ൌ ,ݎ௭ሺߪ 0ሻ    0  ݎ  ∞ 

߬௭ೠሺݎ, 0ሻ ൌ ߬௭ሺݎ, 0ሻ    0  ݎ  ∞ 
డ
డ
ሾݑ௨ሺݎ, 0ሻ െ ,ݎሺݑ 0ሻሿ ൌ 0   0  ݎ  ∞ 

డ
డ
ሾݓ௨ሺݎ, 0ሻ െ ,ݎሺݓ 0ሻሿ ൌ 2݂ሺݎሻ  0  ݎ  ∞       (2.17a-d) 

 

where ݂ሺݎሻ is the unknown crack surface displacement derivative such that ݂ሺݎሻ ൌ 0 

whenሺܣ  ݎ ൏ ܽ, ܾ  ݎ ൏  ሻ. Using the conditions (2.17a-d), the unknown constantsܤ

c1, c2, c3 and c4 can be found as 

 

ܿଵ ൌ ܿଷ ൌ
ிሺఈሻ
ఈ

ሺିଵሻ
ሺାଵሻ

   

ܿଶ ൌ െܿସ ൌ െ
ሺାଵሻ
ଶிሺఈሻ          (2.18a-b) 

 

where ܨሺߙሻ ൌ  ݂ሺݎሻܬݎଵሺݎߙሻ

 ݀

 The hollow cylinder co  is symm t z axis 

and it is sufficient to consider the solution of the axisymmetric problem in the upper or 

lower half of the medium. Therefore, t ions for the splacement and 

the stress components in the upper half of the medium are in the form of 

 

 .ݎ

ntaining a ring-shaped crack etric abou

he general express di
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,ݎሺݑ ሻݖ ൌ
1

ሺܭ  1ሻන
ሾሺܭ െ 1ሻ െ ሻݎߙଵሺܬሻ݁ିఈ௭ߙሺܨሿݖߙ2  ߙ݀

1
ሺܭ  1ሻ

ஶ



,ݎሺݓ ሻݖ ൌ නሾെሺܭ  1ሻ െ ሻݎߙሺܬሻ݁ିఈ௭ߙሺܨሿݖߙ2
ஶ



 ߙ݀

,ݎೌೖሺߪ ሻݖ ൌ
ߤ2

ሺܭ  1ሻන 2ሺ1 െ ݖߙ ܨ ߙ ݁ ఈ ܬߙ ߙሻ݀ݎߙ
ஶ




ߤ2

ሺܭ  1ሻ

ሻ ሺ ሻ ି ௭ ሺ

න ݖߙ2 െ ሺܭ െ 1ሻܨሺߙሻ݁ିఈ௭
1
ݎ ଵܬ

ሺݎߙሻ݀ߙ
ஶ



 

௭ߪ ሺݎ, ሻݖ ൌ
ߤ4

ೌೖ ሺܭ  1ሻන
ሺ1  ሻߙሺܨሻݖߙ

ஶ

݁ିఈ௭ܬߙሺݎߙሻ݀ߙ 


߬௭ೌೖሺݎ, ሻݖ ൌ
ߤ4

ሺܭ  1ሻන ሻߙሺܨݖߙ
ஶ



(2.19a-e) ߙሻ݀ݎߙଵሺܬఈ௭ି݁ߙ

 

2.1.1.2. An Infinite Elastic Medium without a Crack 
 

 An infinite elastic medium without a crack that is loaded symmetrically is 

considered. This infinite elastic medium is symmetric about z-axis and z = 0 plane. The 

Fourier transforms of the displacement components are written below using the Fourier 

sine and cosine transform definitions: 

 

,ݎሺݑሼܨ ;ሻݖ ሽߣ ൌ
ଶ
గ  ,ݎሺݑ ሻݎߣሻcosሺݖ ஶݎ݀

 ൌ ܷሺݎ,   ሻߣ

,ݎሺݓ௦ሼܨ ;ሻݖ ሽߣ ൌ
ଶ
గ  ,ݎሺݓ ሻݎߣሻcosሺݖ ஶݎ݀

 ൌ ܹሺݎ,  ሻ        (2.20a-b)ߣ

 

where ܷሺݎ, ,ݎሻ and ܹሺߣ  ሻ are the Fourier cosine and sine transforms of functionsߣ

,ݎሺݑ ,ݎሺݓ ሻ andݖ ,ݎሺݑ ሻ, respectively, λ is the Fourier transform variable. Noting thatݖ  ሻ isݖ

even and ݓሺݎ,  ሻ is odd functions in z, the Fourier cosine and sine transforms may beݖ

applied to equation (2.6a-b) and the system of second order ordinary differential 

equation is obtained as 
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ሺܭ  1ሻ ቂௗ
మ
ௗమ

 ଵ

ௗ௬
ௗ௫
െ 


ቃ െ ሺܭ െ 1ሻߣଶܷ  ߣ2 ௗௐ

ௗ
ൌ 0  

ௗെ2ߣ
ௗ
െ


ଶ ܷߣ  ሺܭ െ 1ሻ ቂ

ௗమ
ௗమௐ 


ଵ ௗௐ
ௗ
ቃ െ ሺܭ  1ሻߣ ܹ ൌ 0       (2.21a-b) 

 

Equations (2.21a-b) can be reduced to a single equation. 

 

ଶ

ସݎ
݀ସܷ
ସݎ݀  ଷݎ2

݀ଷܷ
ଷݎ݀ െ

ሺ2ߣଶݎସ  ଶሻݎ3
ݕ݀
ݔ݀ െ

ሺ2ߣଶݎଷ െ ሻݎ3
ݕ݀
ݔ݀

 ሺߣସݎସ  ଶݎଶߣ2 െ 3ሻܷ ൌ 0 (2.22)

 

be found in a previous study of (Artem and 

002) as

 

ൌ െ
1
2

The solution of this reduced equation can 

Geçit 2  

ܷሺݎ, ሻߣ ܿହܫଵሺݎߣሻ 
1
2 ܿܭଵ

ሺݎߣሻ  ܿܫݎߣሺݎߣሻ   ሻݎߣሺܭݎߣ଼ܿ

ܹሺݎ, ሻߣ ൌ
1
2 ܿହܫ

ሺݎߣሻ 
1
2 ܿ ܭ

ሺݎߣሻ െ ܿ ሾሺܭ  1ሻܫ ሺݎߣሻ  ܫݎߣ ሺݎߣሻሿ    ଵ

െ ଼ܿሾሺܭ  1ሻܭሺݎߣሻ െ ሻሿ (2.23a-b)ݎߣଵሺܭݎߣ

where ܿହ, ܿ, ܿ and ଼ܿ are arbitrary constants, ܫ and ܫଵ are the modified Bessel 

functions of the first kind of order zero and one, respectively,  and ܭଵ are the 

modified Bessel functions of the second kind of order zero and one, resp c

By taking inverse Fourier cosine and sine transforms of equations (2.23a-b), the 

,ݎሺݑ ሻ௨ݖ ൌ
2
ߨ

 

ܭ

e tively. 

 

displacement components can be expressed as 

 

න െ
1
2 ܿହܫଵ

ሺݎߣሻ 
1
2 ܿܭଵ

ሺݎߣሻ  ܿܫݎߣሺݎߣሻ
ஶ



 ሻ൨ݎߣሺܭݎߣ଼ܿ cos ݖߣ  ߣ݀

2
,ݎሺݓ ሻ௨ݖ ൌ නߨ ൜2

1
ܿହܫሺݎߣሻ  2

1
ܿܭሺݎߣሻ



ஶ

െ ܿሾሺܭ  1ሻܫሺݎߣሻ  ሻሿݎߣଵሺܫݎߣ

െ ଼ܿሾሺܭ  1ሻܭሺݎߣሻ െ ሻሿൠݎߣଵሺܭݎߣ sin ݖߣ (2.24a-b) ߣ݀
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And the stress components can be found by substituting equations (2.24a-b) into stress-

displacement relations equation (2.5a-d). 

ሺݎ, ሻݖ
ଶఓ

 

ߪ ௨ ൌ గ  ቄܿହ ቂെܫߣሺݎߣሻ  
ଵ ሻቃݎߣଵሺܫ  ܿ ቂെܭߣሺݎߣሻ െ

ଵ



ஶ

ሻቃݎߣଵሺܭ  ܿሾሺܭ െ 1ሻܫߣሺݎߣሻ  ሻሿݎߣଵሺܫݎଶߣ2 

଼ܿሾሺܭ െ 1ሻܭߣሺݎߣሻ െ ሻሿቅݎߣଵሺܭݎଶߣ2 cos ݖߣ   ߣ݀

,ݎ௭ሺߪ ሻ௨ݖ ൌ
ଶఓ
గ  ሼܿହܫߣሺݎߣሻ  ܿܭߣ ሺݎߣሻ െ ܿ ሾሺܭ ஶ

  

5ሻܫߣሺݎߣሻ  ሻሿݎߣଵሺܫݎଶߣ2 െ ଼ܿሾሺܭ  5ሻܭߣሺݎߣሻ െ

ሻሿሽݎߣଵሺܭݎଶߣ2 cos ݖߣ   ߣ݀

߬௭ሺݎ, ሻ௨ݖ ൌ
ଶఓ
గ  ሼܿହܫߣଵሺݎߣሻ െ ܿܭߣଵሺݎߣሻ െ ܿሾሺܭ ஶ



1ሻܫߣଵሺݎߣሻ  ሻሿݎߣሺܫݎଶߣ2 െ ଼ܿሾሺܭ  1ሻܭߣଵሺݎߣሻ െ

ሻሿሽݎߣሺܭݎଶߣ2 cos ݖߣ (2.25a-c)  ߣ݀

 

2.1.2. General Solution 

ts found in the problem of an infinite elastic 

edium having a crack (Hankel Transformation) and the problem of an infinite elastic 

medium without a crack (Fourier Transformation). 

 

,ݎሺݑ ሻݖ ൌ ,ݎሺݑ ሻݖ  ,ݎሺݑ     ሻ௨ݖ

,ݎሺݓ ሻݖ ൌ ,ݎሺݓ ሻݖ  ,ݎሺݓ     ሻ௨ݖ

,ݎ௭ሺߪ ሻݖ ൌ ,ݎ௭ሺߪ ሻݖ  ,ݎ௭ሺߪ     ሻ௨ݖ

,ݎሺߪ ሻݖ ൌ ,ݎሺߪ ሻݖ  ,ݎሺߪ     ሻ௨ݖ

߬௭ሺݎ, ሻݖ ൌ ߬௭ሺݎ, ሻݖ  ߬௭ሺݎ,  ሻ௨         (2.26a-e)ݖ

 

 The arbitrary unknown constants ܿହ, ܿ, ܿ and ଼ܿ can be written in the terms of 

unknown function ܨሺߙሻ with the conditions given for inner and outer lateral surfaces of 

the cylinder: 

 

 The general solution of the problem can be found by adding the expressions for 

the displacement and the stress componen

m
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,ܤሺݑ ሻݖ ൌ 0    

herefore, a system of equations can be obtained by applying the boundary conditions 

given for inner and outer surfaces of the cylinder to 4a-b) 

and (2.25a-c): 

 

െ
1
2

,ܤሺݓ ሻݖ ൌ 0    

,ܣሺߪ ሻݖ ൌ 0    

߬௭ሺܣ, ሻݖ ൌ 0          (2.27a-d) 

 

T

the equations (2.19a-e), (2.2

ܿହܫଵሺܤߣሻ 
1
2 ܿܭଵ

ሺܤߣሻ  ܿܫܤߣሺܤߣሻ  ܤߣሺܭܤߣ଼ܿ

ൌ െ
1

ሺܭ  1ሻ

ሻ

න ൝නሾሺܭ െ 1ሻ െ ሻܤߙ1ሺܬݖߙሻ݁െߙሺܨሿݖߙ2
∞

0

ൡߙ݀
∞

0
cos ݖߣ  ݖ݀

1
2 ܿ ܫ

ሺܤߣሻ ହ 
1
2 ܿ ܭ

ሺܤߣሻ െ ܿ ሾሺܭ  1ሻܫ ሺܤߣሻ  ܫܤߣ ሺܤߣሻሿ

െ ଼ܿሾሺܭ  1ሻܭሺܤߣሻ െ ሻሿܤߣଵሺܭݎߣ

ൌ െ
1

ሺܭ  1ሻ

   ଵ

න ൝නሾെሺܭ  1ሻ െ ሻܤߙ0ሺܬݖߙሻ݁െߙሺܨሿݖߙ2
∞

0

ൡߙ݀
∞

0
sin ݖߣ  ݖ݀

ܿହ െܫߣሺܣߣሻ 
1
ܣ ଵܫ

ሺܣߣሻ൨  ܿ െܭߣሺܣߣሻ െ
1
ଵܭܣ

ሺܣߣሻ൨

 ܿሾሺܭ െ 1ሻܫߣሺܣߣሻ  ܣߣଵሺܫܣଶߣ2

 ଼ܿሾሺܭ െ 1ሻܭߣሺܣߣሻ െ ଵܭܣଶߣ2

ൌ െ
2

ሺܭ  1ሻ

ሻሿ

ሺܣߣሻሿ

න ൝න ൜ሾ2ݖߙ െ ሺܭ െ 1ሻሿ
1
ݎ
ሻܣߙ1ሺܬ

∞
∞

0
0

 2ሺ1 െ ሻൠܣߙ0ሺܬߙሻݖߙ ሻ݁ߙሺܨ
െߙ݀ݖߙൡ cos ݖߣ  ݖ݀

ܿହܫߣଵሺܣߣሻ െ ܿܭߣଵሺܣߣሻ െ ܿሾሺܭ  1ሻܫߣଵሺܣߣሻ  ሻሿܣߣሺܫܣଶߣ2

െ ଼ܿሾሺܭ  1ሻܭߣଵሺܣߣሻ െ ሻሿܣߣሺܭܣଶߣ2

ൌ െ
4

ሺܭ  1ሻන ൝න ሻߙሺܨݖߙ
∞

0

ൡߙሻ݀ܣߙ1ሺܬݖߙെ݁ߙ
∞

0
sin ݖߣ  ݖ݀

(2.28a-d)
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This system of equations (2.28a-d) is in double integral form and it can be reduced to a 

single integral form by using the integral formulas given in Appendix A. 

 

െ
1
2 ܿହܫଵ

ሺܤߣሻ 
1
2 ܿܭଵ

ሺܤߣሻ  ܿܫܤߣሺܤߣሻ  ሻܤߣሺܭܤߣ଼ܿ

ൌ െ
1

ሺܭ  1ሻන ݂ሺݐሻݐሾሺܭ  1ሻܫଵሺߣݐሻܭଵሺߣܤሻ  ሻߣܤሺܭሻߣݐଵሺܫܤߣ2




െ ሻሿߣܤଵሺܭሻߣݐሺܫݐߣ2  ݐ݀
1
2 ܿହܫ

ሺܤߣሻ 
1
2 ܿܭ

ሺܤߣሻ െ ܿሾሺܭ  1ሻܫሺܤߣሻ  ሻሿܤߣଵሺܫܤߣ

െ ଼ܿሾሺܭ  1ሻܭሺܤߣሻ െ ሻሿܤߣଵሺܭݎߣ

ൌ െ
1

ሺܭ  1ሻන ݂ሺݐሻݐሾെ2ܫߣݐሺߣݐሻܭሺߣܤሻ െ ሺܭ  1ሻܫଵሺߣݐሻܭሺߣܤሻ




 ሻሿߣܤଵሺܭሻߣݐଵሺܫߣܤ2  ݐ݀

ܿହ െܫߣሺܣߣሻ 
1
ܣ ଵܫ

ሺܣߣሻ൨  ܿ െܭߣሺܣߣሻ െ
1
ଵܭܣ

ሺܣߣሻ൨

 ܿሾሺܭ െ 1ሻܫߣሺܣߣሻ  ሻሿܣߣଵሺܫܣଶߣ2

 ଼ܿሾሺܭ െ 1ሻܭߣሺܣߣሻ െ ሻሿܣߣଵሺܭܣଶߣ2

ൌ െ
1

ሺܭ  1ሻන ݂ሺݐሻݐ ቈെ4൫ܫݐሺߣܣሻܭሺߣݐሻ െ ଶߣሻ൯ߣݐଵሺܭሻߣܣଵሺܫܣ





4൫ܫݐଵሺߣܣሻܭሺߣݐሻ െ ߣሻ൯ߣݐሺܭሻߣܣଵሺܫܣ

ܣ 
2ሺܭ  1ሻܫଵሺߣܣሻܭଵሺߣݐሻ

ܣ
൨  ݐ݀

ܿହܫߣଵሺܣߣሻ െ ܿܭߣଵሺܣߣሻ െ ܿሾሺܭ  1ሻܫߣଵሺܣߣሻ  ሻሿܣߣሺܫܣଶߣ2

െ ଼ܿሾሺܭ  1ሻܭߣଵሺܣߣሻ െ ሻሿܣߣሺܭܣଶߣ2

ൌ െ
1

ሺܭ  1ሻන ݂ሺݐሻݐ 
1
2 ߣ

ଶ൫ܫܣሺߣܣሻܭଵሺߣݐሻ




െ ሻ൯൨ߣݐሺܭሻߣܣଵሺܫݐ (2.29a-d) ݐ݀

 

Equation (2.29a-d) can now be rewritten as 
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െ
1
2 ܿହܫଵ

ሺܤߣሻ 
1
2 ܿܭଵ

ሺܤߣሻ  ܿܫܤߣሺܤߣሻ  ሻܤߣሺܭܤߣ଼ܿ ൌ  ଵܧ

1
2 ܿହܫ

ሺܤߣሻ 
1
2 ܿܭ

ሺܤߣሻ െ ܿሾሺܭ  1ሻܫሺܤߣሻ  ሻሿܤߣଵሺܫܤߣ

െ ଼ܿሾሺܭ  1ሻܭሺܤߣሻ െ ሻሿܤߣଵሺܭݎߣ ൌ  ଶܧ

ܿହ െܫߣሺܣߣሻ 
1
ܣ ଵܫ

ሺܣߣሻ൨  ܿ െܭߣሺܣߣሻ െ
1
ଵܭܣ

ሺܣߣሻ൨

 ܿሾሺܭ െ 1ሻܫߣሺܣߣሻ  ሻሿܣߣଵሺܫܣଶߣ2

 ଼ܿሾሺܭ െ 1ሻܭߣሺܣߣሻ െ ሻሿܣߣଵሺܭܣଶߣ2 ൌ  ଷܧ

ܿହܫߣଵሺܣߣሻ െ ܿܭߣଵሺܣߣሻ െ ܿሾሺܭ  1ሻܫߣଵሺܣߣሻ  ሻሿܣߣሺܫܣଶߣ2

െ ଼ܿሾሺܭ  1ሻܭߣଵሺܣߣሻ െ ሻሿܣߣሺܭܣଶߣ2 ൌ ସ (2.30a-d)ܧ

ndix B and ܿହ, ܿ, ܿ and ଼ܿ are unknown 

onstants. Now ܿହ, ܿ, ܿ and ଼ܿ can be found in terms of ܧଵ, ,ଶܧ  ସ by solvingܧ ଷ andܧ

is system of equations (Equations (2.30)) : 

ܿହ ൌ
ሺ݈ଵଵܧଵ  ݈ଵଶܧଶ  ݈ଵଷܧଷ  ݈ଵସܧସሻ

ܲ

 

where ܧଵ, ,ଶܧ ସ are given in Appeܧ ଷ andܧ

c

th

 

 

ܿ ൌ
ሺ݈ଶଵܧଵ  ݈ଶଶܧଶ  ݈ଶଷܧଷ  ݈ଶସܧସሻ

ܲ  

ܿ ൌ
ሺ݈ଷଵܧଵ  ݈ଷଶܧଶ  ݈ଷଷܧଷ  ݈ଷସܧସሻ

ܲ  

଼ܿ ൌ
ሺ݈ସଵܧଵ  ݈ସଶܧଶ  ݈ସଷܧଷ  ݈ସସܧସሻ

ܲ  (2.31a-d)

 

where ݈ଵଵ െ ݈ସସ and ܲ are given in Appendix B. 

 The expressions for ܿହ, ܿ, ܿ and ଼ܿ are found by using the boundary conditions 

on the lateral surfaces of the cylinder. The unknown function ܨሺߙሻ can be found by 

sing the remaining boundary condition that is ߪ௭ሺݎ, 0ሻ ൌ െሺݎሻ on the crack surfaces. u



CHAPTER 3 

 

INTEGRAL EQUATION 
 

3.1. Derivation of Integral Equation 
 

 The expression for ߪ  can be obtained in terms of the unknown function 

 by substituting equation (2.19d) and equation (2.25b) into the equation (2.26c). 
௭ሺݎ, ሻݖ

ሻߙሺܨ

,ݎ௭ሺߪ ሻݖ ൌ
ߤ4

ሺܭ  1ሻ

 

න ሺݖߙ  1ሻܨሺߙሻ݁ିఈ௭
ஶ


ሻݎߙሺܬߙ ߙ݀


ߤ2
ߨ න ൣܿହܫߣሺݎߣሻ  ܿܭߣሺݎߣሻ

ஶ



െ ܿሾሺܭ  5ሻܫߣሺݎߣሻ  ሻሿݎߣଵሺܫݎଶߣ2

െ ଼ܿሾሺܭ  5ሻܭߣሺݎߣሻ െ ሻሿ൧ݎߣଵሺܭݎଶߣ2 cos ݖߣ (3.1) ߣ݀

he remaining boundary condition ߪ௭ሺݎ, 0ሻ ൌ െሺݎሻ can be applied now 

 

,ݎ௭ሺߪ 0ሻ ൌ
ߤ4

ሺܭ  1ሻ

 

T

න ሻߙሺܨ
ஶ


ሻݎߙሺܬߙ ߙ݀


ߤ2
ߨ න ൣܿହܫߣሺݎߣሻ  ܿܭߣሺݎߣሻ

ஶ



െ ܿ ሾሺܭ  5ሻܫߣ ሺݎߣሻ  ܫݎଶߣ2 ሺݎߣሻሿ

ଵ

to a singular integral equation with kernel having Cauchy 

type singularity (Muskhelishvili 1953): 

 

1ሻ

  ଵ

െ ଼ܿሾሺܭ  5ሻܭߣሺݎߣሻ െ ܭݎଶߣ2 ሺݎߣሻሿ൧ ߣ݀ ൌ െሺݎሻ (3.2)

 

Equation (3.2) can be reduced 

ሺݐሻ 
2

ݐ െ ݎ
ߤ2

ܭሺߨ  න ݂  ,ݎଵሺܯ2 ሻݐ  ݐ ଵܵଵሺݎ, ሻ൨ݐ ݐ݀ ൌ െሺݎሻ



 ሺܽ ൏ ݎ ൏ ܾሻ (3.3)

where 
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,ݎଵሺܯ ሻݐ ൌ
ଵܯ
,ݎሺכ ሻݐ െ 1
ݐ െ ݎ  ሺݎ  ሻ (3.4)ݐ

ଵܯ
,ݎሺכ ሻݐ ൌ ൞

2ሺݐ െ ሻݎ
ݎ ܭ ൬

ݐ
൰ݎ 

ݎ2
ݐ  ݎ ܧ ൬

ݐ
൰ݎ , ݎ  ݐ

ݐ2
ݐ  ݎ ܧ ቀ

ݎ
ቁݐ , ݎ ൏ ݐ

ሺݎ ൏ ሻ (3.5)ݐ

 complete elliptic integrals of the first and the second kinds, respectively. 

n (3.3) must be solved under the condition for the displacement around the 

crack given as 

 

න

 

 

K and E are the

The equatio

݂ሺݐሻ ݐ݀


ൌ 0 (3.6)

t p s of singularities 

ݐ ,ܣ ൌ ݎ and ܤ ൌ േݎ ,ܣ ൌ േܤ 

because of the integrand behaviour as ߣ ՜ ∞. 

he integral ଵܵଵሺݎ,  ሻ can be rewritten asݐ

 

ଵܵଵሺݎ, ሻݐ ൌ ଵܵଵ௦ሺݎ, ሻݐ  ଵܵଵሺݎ, ሻ (3.7)ݐ

d ଵܵଵሺ r and bounded part of the integrand 

 Then ଵܵଵሺݎ,   ሻ can be expressed asݐ

ଵܵଵሺ ሻݐ ൌ න ଵܰଵሺݎ, ,ݐ ሻߣ ߣ݀
ஶ


 

  ଵܵଵሺݎ, ሻݐ

ଵܵଵ௦ሺݎ, ൌ න ଵܰଵ௦ሺݎ, ,ݐ ሻߣ ߣ݀
ஶ


 



 

The integral equation (3.3) has three y e

• Cauchy type singularity at ݐ ൌ  ݎ

• Logarithmic singularity in the kernel ܯଵሺݎ,  ሻݐ

• The integral ଵܵଵሺݎ, ݐ ሻ has singular terms atݐ ൌ

T

 

where ଵܵଵ௦ሺݎ, ሻ anݐ ,ݎ ሻ  denotes singulaݐ

respectively.

 

,ݎ (3.8)

 

The singular part of  can be separated as 

 

ሻݐ (3.9)
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 The integrand of the equation (3.9) has the modified Bessel functions 

. Applying the asymptotic expansions for the modified Bessel functions 

are given in the Appendix C and by doing some manipulations the integrand of the 

singular part of the integral ܵ  can be found as 

,ܫ ,ܭ ଵܭ ଵ andܫ

ଵଵሺݎ, ሻݐ

ଵܰଵ௦ሺݎ, ,ݐ ሻߣ ൌ
1
൜݁ିఒሺଶିି௧ሻ 

1
ܭ

 

ݐݎ√
൫െ4ሺܤ െ ܤሻሺݎ െ ଶߣሻݐ െ 2ሺܤ െ ߣሻݎ

 6ሺܤ െ ߣሻݐ  ሺܭଶ  3ሻ൯൨

 ݁ఒሺଶିି௧ሻሾ4ሺܣ െ ܣሻሺݎ െ ଶߣሻݐ  2ሺܣ െ ߣሻݎ  6ሺܣ െ ߣሻݐ

 4ሿൠ (3.10)

gral  ଵܵଵሺݎ,  ሻ can be obtained byݐ

sing the integration formula given in Appendix D as 

 

ଵܰଵ௦ሺݎ, ,ݐ ሻߣ ൌ
1

 

 The integrand of the singular part of the inte

u

൝
1
ܭ ൭െ4

ሺܤ െ ሻଶݎ
݀ଶ

ଶݎ݀ െ 12ሺܤ െ ሻݎ
݀
ݐݎ√ݎ݀

 ሺെܭଶ  3ሻቇ൩
1

ݐ െ ሺ2ܤ െ ሻݎ

െ ሻଶݎ
݀ଶ

ଶݎ݀ െ ሻݎ
݀
ݎ݀ െ 2

1
ݐ െ ሺ2 ቈെ4ሺ  12ሺܣ ܣ ܣ െ ሻݎ

ൡ 
(3.11)

herefore, the bounded part of the integral   ଵܵଵሺݎ,  ሻ can be found asݐ

 

ଵܵଵሺݎ, ሻݐ ൌ න ሾ ଵܰଵሺݎ, ,ݐ ሻߣ െ ଵܰଵ௦ሺݎ, ,ݐ ሻሿߣ ߣ݀
ஶ


 (3.12)

he equation (3.3) can now be rewritten as 

 

1
ߨ

 

T

 

T

ሺݐሻ 
2

ݐ െ නݎ ݂  ݐ ଵܵଵሺݎ, ሻ൨ݐ ݐ݀ ൌ ሻݎሺܤ



ሺܽ ൏ ݎ ൏ ܾሻ (3.13)

ins all the bounded terms of the equation (3.3). 
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where ܤሺݎሻ is the function that conta



3.2. Characteristic Equation 

itie

fore, the singular behaviour of the unknown function ݂ሺݐሻ can be 

etermined by writing 

 

 

 The unknown function ݂ሺݐሻ is expected to have integrable singular s at the 

tips of the crack. There

d

ሺݐሻ ൌ
ሻݐሺכܨ

ሺݐ െ ܽሻఉሺܾ െ ሻఊݐ
݂  

ሺ0 ൏ ܴ݁ሺߛሻ ൏ 1ሻ

ሺ0 ൏ ܴ݁ሺߚሻ ൏ 1ሻ 
(3.14)

where כܨ

 can be found by ߚ and ߛ are the unknown constants. The unknown constants ߚ and ߛ

ݎ ൌ ܽ ݎ  ൌ ܾ

1
ߨ

 

 

ሺݐሻ is Hölder continuous function (Muskhelishvili 1953) in the interval ሾܽ, ܾሿ, 

examining the integral equation (3.13) near the ends  and . 

 The integral equation (3.13), together with equation (3.14) can be written as 

න
ሻݐሺכܨ

ሺݐ െ ܽሻఉሺܾ െ ሻఊݐ

2

ݐ െ ݎ

 

 ݐ ଵܵଵሺݎ, ሻ൨ݐ ݐ݀ ൌ ሺݎሻ



 ሺܽ ൏ ݎ ൏ ܾሻ

ܽ

ൌ ܾ

1
ߨ

ܤ  (3.15)

 

 The integral on the left-hand side of the equation (3.15) near the ends ݎ ൌ  

and ݎ  can be calculated with the help of the complex function technique described 

in (Muskhelishvili 1953). The required integrals are 

 

න
݂ሺݐሻ
ሺݐ െ ሻݎ ݐ݀




ൌ

ሺܽሻכܨ cot ߛߨ
ሺܾ െ ܽሻఊሺݎ െ ܽሻఉ

െ
ሺܾሻכܨ cot ߛߨ

ሺܾ െ ܽሻఉሺܾ െ ሻఊݎ
  ሻݎሺܮ

1
ߨ

݂ሺݐሻ
൫ݐ െ ሺ2

න
െ ܣሻ൯ݎ

ݐ݀




ൌ
ሻ݁గఉܣሺכܨ

ሺܤ െ ܣሻఊ൫ሺ2ܣ െ ሻݎ െ ൯ఉܣ sin ߚߨ

െ
ሻ݁ିగఊܤሺכܨ

ሺܤ െ ܤሻఉ൫ܣ െ ሺ2ܣ െ ሻ൯ఊݎ sin ߛߨ
  ሻݎଵሺܣ
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݀
ݎ݀

1
ߨ

݂ሺݐሻ
൫ݐ െ ሺ2

න
െ ܣሻ൯ݎ

ݐ݀




ൌ
ߚሻ݁గఉܣሺכܨ

ሺܤ െ ܣሻఊሺܣ െ ሻఉାଵݎ sin ߚߨ
െ

ߛሻ݁ିగఊܤሺכܨ

ሺܤ െ ܤሻఉ൫ܣ െ ሺ2ܣ െ ሻ൯ఊାଵݎ sin ߛߨ

  ሻݎଶሺܣ

݀ଶ

ଶݎ݀
1
ߨ

݂ሺݐሻ
൫ݐ െ ሺ2

න
െ ܣሻ൯ݎ

ݐ݀




ൌ
ߚሺߚሻ݁గఉܣሺכܨ  1ሻ

ሺܤ െ ܣሻఊሺܣ െ ሻఉାଶݎ sin ߚߨ
െ

ߛሺߛሻ݁ିగఊܤሺכܨ  1ሻ

ሺܤ െ ܤሻఉ൫ܣ െ ሺ2ܣ െ ሻ൯ఊାଶݎ sin ߛߨ

  ሻݎଷሺܣ

1
ߨ

݂ሺݐሻ
൫ݐ െ ሺ2ܤ െ ሻ൯ݎ

න ݐ݀




ൌ
ሻ݁గఉܣሺכܨ

ሺܤ െ ܤሻఊ൫ሺ2ܣ െ ሻݎ െ ൯ఉܣ sin ߚߨ

െ
ሻ݁ିగఊܤሺכܨ

ሺܤ െ ሻఉ൫ܤ െ ሺ2ܤ െ ሻ൯ఊݎ sin ܣߛߨ
  ሻݎଵሺܤ

݀
ݎ݀

1
ߨ

݂ሺݐሻ
൫ݐ െ ሺ2ܤ െ ሻ൯ݎ

න ݐ݀




ൌ
ߚሻ݁గఉܣሺכܨ

ሺܤ െ ܤሻఊ൫ሺ2ܣ െ ሻݎ െ ൯ఉାଵܣ sin ߚߨ
െ

ߛሻ݁ିగఊܤሺכܨ
ሺܤ െ ݎሻఉሺܣ െ ሻఊାଵܤ sin ߛߨ

 ܤ ሺݎሻ 

݀
ଶݎ

ଶ

ଶ

݀
1
ߨ

݂ሺݐሻ
൫ݐ െ ሺ2ܤ െ ሻ൯ݎ

න ݐ݀




ൌ
ߚሺߚሻ݁గఉܣሺכܨ  1ሻ

ሺܤ െ ܤሻఊ൫ሺ2ܣ െ ሻݎ െ ൯ఉାଶܣ sin ߚߨ

െ
ܨ ሺܤ

ሺܤ െ

כ ሻ݁ିగఊߛሺߛ  1ሻ
ݎሻఉሺܣ െ ሻఊାଶܤ sin ߛߨ

 ሻ (3.16a-g)ݎଷሺܤ

here ܮ

 

 

w ሺݎሻ,  .ሻ are the bounded partsݎଵିଷሺܤ ሻ andݎଵିଷሺܣ
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3.2.1 Internal Crack 

uation (3.16a) into the equation (3.15) and multiplying the 

resultin

cos ߚߨ ൌ 0 (3.17)

 

ߚ ൌ ଵ
ଶ

 

 By substituting the eq

g equation by ሺݎ െ ܽሻఉ and considering the limiting case ݎ ՜ ܽ for an internal 

crack ሺܣ ൏ ܽሻ, the following characteristic equation for ߚ can be obtained as 

 

Therefore,  that is in perfect agreement with the results for an embedded crack tip 

neou

By substituting the equation (3.16a) into the equation (3.15) and multiplying the 

resultin

cos ߛߨ ൌ 0 (3.18)

herefore, ߛ ൌ ଵ

in a homoge s medium. 

g equation by ሺݎ െ ܾሻఊ and considering the limiting case ݎ ՜ ܾ for an internal 

crack ሺܾ ൏  can be obtained as ߛ ሻ, the following characteristic equation forܤ

 

 

ଶ
T  is obtained for this case. 

These results are in agreement with the previous studies, (Cook ve Erdoğan 

.2.2 Crack Terminating at Rigid Surface 
 

When the crack spreads out at the rigid surface along the crack ሺܾ ൌ  ሻ, inܣ

ted into the 

quation (3.15). Multiplying the resulting equation by  ሺܤ െ  ሻఊ and considering theݎ

 characteristic equation can be obtained as 

 

1972), (Gupta 1974), (Delale ve Erdoğan 1982), (Nied ve F. 1983), (Artem ve Geçit 

2002), (Aydin ve Artem 2007). 

 

3

 

addition to equation (3.16a), equation (3.16e-g) must also be substitu

e

limiting case ݎ ՜ the following ,ܤ

 

ܭ2 cos ߛߨ  ଶߛ4 െ ߛ8  3 െ ଶܭ ൌ 0 (3.20)

 

 The equation (3.20) is in agreement with (Kaman and Gecit 2006). 
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3.2.3 Internal Edge Crac
 

k 

When the crack spreads out and the cylinder is completely broken along the 

crack ሺܽ ൌ  ሻ, in addition to equation (3.16a), equation (3.16b-d) must also beܣ

bstituted into the equation (3.15). Multiplying the resulting equation by  ሺܣ െ  ሻఉ andݎ

՜  can be ߚ the following characteristic equation for , ܣ

btained as 

cos ߚߨ ൌ ߚሺߚ2 െ 2ሻ  1 (3.19)

3.3. Solution of the Integral Equation 

 
 After obtaining the singular behaviour of the unknown function, the integral in 

the equation (3.3) can be rewritten as a non-dimensional equation by using the 

imensionless variables ߬  and ߦ for the cracks: 

ݐ ൌ ି
ଶ

 

su

considering the limiting case ݎ

o

 

 

Therefore, ߚ ൌ 0 is obtained. 

 

d

߬  ା
ଶ

 

  ሺܽ ൏ ݐ ൏ ܾሻ, ሺെ1 ൏ ߬ ൏ 1ሻ 

ݎ ൌ ି
ଶ
ߦ  ା

ଶ
   ሺܽ ൏ ݎ ൏ ܾ ሺെ1 ൏ ߦ ൏ 1ሻ 

llowing form 

ଵ
గ

ሻ,       (3.21a-b) 

 

in the fo

 ݂ҧሺ߬ሻ ቂ ଶ
ఛିక

 

ܯଵሺߦ, ߬ሻ  መܵଵଵሺߦ, ߬ሻቃ ݀߬
ଵ
ିଵ ൌ െҧሺకሻሺାଵሻ

ଶఓ
  ሺെ1 ൏ ߦ ൏ 1ሻ  

 

where  

 

(3.22) 

൬
ܾ െ ܽ
2 ߬ 

ܾ  ܽ
2݂ҧሺ߬ሻ ൌ ݂ ൰ (3.23)

ଵܯ ଵ

ܾ െ ܽ

ሺߦ, ߬ሻ ൌ ሺܾ െ ܽሻܯ ሺߦ, ߬ሻ (3.24)

መܵଵଵሺߦ, ߬ሻ ൌ ൬ 2 ൰ ൬ 2
ܾ െ ܽ

߬  2
ܾ  ܽ

൰ ଵܵଵሺߦ, ߬ሻ (3.25)
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3.3.1 Internal Crack 
 

The singular behaviour of the dimensionless unknown is to be  

 

݂ҧሺ߬ሻ ൌ
തതതሺ߬ሻכܨ

ඥሺ1 െ ߬ଶሻ
 (3.26)

 

here  

כܨ

w

ሺ߬ሻ ൌ ܨ ൬
ܾ െ ܽ
2 ߬ 

ܾ  ܽ
2

 

തതത ൰ ൬
ܾ െ ܽ
2 ൰

ିଵ

 (3.27)

 

 Substituting equation (3.26) into the equation (3.22), the following singular 

tegral equation is obtained: 

ߨ

in

 

1
න

തതതሺ߬ሻכܨ

ඥሺ1 െ ߬ଶሻ

2

߬ െ ߦ ܯଵሺߦ, ߬ሻ  መܵଵଵ
ିଵ

ൌ െ
ܭሻሺߦሺ  1ሻ

ߤ2

ሺߦ, ߬ሻ൨ ݀߬
ଵ

 

ሺെ1 ൏ ߦ ൏ 1ሻ (3.28)

 

The integral equation (3.28) can be reduced to an algebraic system by using the 

obatto integration formula given in Appendix E: 

ܥכܨ

 

Gauss-L

ሺ߬ሻ ቈ
2

߬ െ ߦ

 

തതത  ,ߦଵ൫ܯ ߬൯  መܵଵଵሺߦ, ߬ሻ


ୀଵ

ൌ െ
ܭ൯ሺߦ൫  1ሻ

ߤ2  (3.29)

 

here  

݅
ሺ݊ െ

w

 

߬ ൌ cos ቈ
ሺ െ 1ሻߨ

1ሻ  1,2,3,… , ݊ሻ (3.30 a)

ߦ ൌ cos ቈ
ሺ2݆ െ 1ሻߨ
2ሺ݊ െ 1ሻ

ሺ݅ ൌ

 ሺ݆ ൌ 1,2,3, … , ݊ െ 1ሻ (3.30 b)
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are the roots of the weighting constants of related Lobatto polynomials. The algebraic 

system (3.29) has ݊ unknowns, כܨതതതሺ߬ሻ and ሺ݊ െ 1ሻ equations. The single valued 

ondition (Equation (3.6)) must be used to have ݊ equations because the number of 

 The equation (3.6) becomes 

c

unknowns is larger than the number of the equations.

 

ܥכܨതതതሺ߬ሻ ൌ 0 ሺെ1 ൏ ߬


ୀଵ

൏ 1ሻ (3.31)

 

3.3.2 Crack Terminating at Rigid Surface 

ensionless unknown is to be 

 

 The singular behaviour of the dim

 

݂ҧሺ߬ሻ ൌ
തതതሺ߬ሻכܨ

√1  ߬ሺ1 െ ߬ሻఊ
(3.32) 

here  

כܨ

 

w

 

ሺ߬ሻ ൌ ܨ ൬
ܾ െ ܽ
2 ߬ 

ܾ  ܽ
2

തതത ൰ ൬
ܾ െ ܽ
2 ൰

ିଵଶିఊ

 (3.33)

 

1
ߨ

 Substituting equation (3.32) into the equation (3.22), the following singular 

integral equation is obtained: 

 

න
തതതሺ߬ሻכܨ


2

߬ െ 1√ߦ  ߬ሺ1 െ ߬ሻఊ
 ,ߦଵሺܯ ߬ሻ  መܵଵଵሺߦ, ߬ሻ൨ ݀߬

ଵ

ିଵ

ൌ െ
ܭሻሺߦሺ  1ሻ

ߤ2  

ሺെ1 ൏ ߦ ൏ 1ሻ (3.34)

 The integral equation (3.34) can be reduced to an algebraic system by using the 

auss-Jacobi integration (Erdoğan, et al. 1973): 

 

G
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 ܹכܨതതതሺ߬ሻ ቈ߬ െ ߦ
2

 ,ߦଵ൫ܯ ߬൯  መܵଵଵሺߦ 
ୀଵ

ൌ െ ,ߤ2 ߬ሻ


ܭ൯ሺߦ൫  1ሻ
 (3.35)

 

where  ܹ are the weights, ߬ and ߦ are the roots of Jacobi polynomials: 

ܲ
ሺିఈ,ିఉሻሺ߬ሻ ൌ 0 ሺ݅ ൌ 1,2,3, … , ݊ሻ 

ܲିଵ
ሺଵିఈ,ଵିఉሻ൫ߦ൯ ൌ 0 ሺ݆ ൌ 1,2,3,… , ݊ െ 1ሻ (3.36a-c)

 

 

The algebraic system (3.35) has ݊ unknowns, כܨതതതሺ߬ሻ and ሺ݊ െ tions. The single 

valued condition (Equation (3.6)) must be used to have ݊ equations because the number 

 unknowns is larger than the number of the equations. The equation (3.6) b

 

1ሻ equa

of ecomes 

 ܹכܨതതതሺ߬ሻ ൌ 0 ሺെ1 ൏ ߬ ൏ 1ሻ (3.37)

e stress intensity factor. 

 of the crack will be calculated in the 

llowing section. 

 

3.4.1. Stress Intensity Factors at the Tips of Internal Crack 
 

In this study, only Mode I stress intensity factor calculations and investigation 

will be of the crack has been 

efined in (Erdol ve Erdoğan 1978) as 



ୀଵ

 

 The infinite integral appearing in the bounded part of መܵଵଵሺߦ, ߬ሻ can be obtained 

numerically by using Laguerre integration method, Appendix E, for each ߬ and 

values. The behaviour of the unknown function at the tips of the crack ሺ߬ߦ ൌ േ1ሻ is 

characterized by th

 

3.4. Stress Intensity Factors 
 

 The stresses become infinite at the tips of the crack in crack problems. The stress 

state at close vicinity of the tips of the crack will be presented by the stress intensity 

factor. The stress intensity factors at the tips

fo

 
 considered. Mode I stress intensity factor at the tips 

d
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݇ଵሺܽሻ ൌ lim
՜

ඥ2ሺܽ െ ሻݎ ,ݎ௭ሺߪ 0ሻ,

݇ଵሺܾሻ ൌ lim
՜

ඥ2ሺݎ െ ܾሻ

 

,ݎ௭ሺߪ 0ሻ. (3.38a-b)

,ݎ௭ሺߪ 0ሻ can be expressed in terms of the integral equation(3.3): 

 

,ݎ௭ሺߪ 0ሻ ൌ
ߤ4
 1ሻ

 

݂ሺݐሻ
ሺݐ െ ܭሺߨሻනݎ ݐ݀




 ,ݎ௭௨ௗௗሺߪ 0ሻ (3.39)

where  

 

,ݎ௭௨ௗௗሺߪ 0ሻ ൌ
ߤ2

ܭሺߨ  1ሻ

 

න ݂ሺݐሻሾ2ܯଵሺݎ, ሻݐ  ݐ ଵܵଵሺݎ, ݐሻሿ݀ݐ



. (3.40)

 

ow ݂ሺݐሻ can be written as 

݂ሺݐሻ ൌ
ሻݐሺכܨ

ඥሺݐ െ ܽሻሺݐ െ ܾሻ

N

ሻݐሺכܨ ඥሺܾ െ ሻݐ

 

ൌ

ە
ۖ
۔

ۖ
ۓ ⁄

ඥሺݐ െ ܽሻ
, ݐ ݎܽ݁݊ ൌ ܽ

ሻ݁గݐሺכܨ ଶ⁄ ඥሺݐ െ ܽሻൗ
ඥሺܾ െ ሻݐ

, ݐ ݎܽ݁݊ ൌ ܾ
 

(3.41)

method gi

1
ߨ

 

and the integral equation (3.39) can be evaluated by using the ven in 

(Muskhelishvili 1953) 

 

න
݂ሺݐሻ
ሺݐ െ ሻݎ ݐ݀




ൌ

݁గ ଶ⁄ ሺܽሻכܨ

sin 2ߨ
െ

ሺܾሻכܨ

sin 2ඥሺܾߨ െ ܽሻሺݎ െ ܽሻ ඥሺܾ െ ܽሻሺݎ െ ܾሻ
 ሻ (3.42)ݎሺכܮ

 

here כܮሺݎሻ is the bounded part of the integral equation (3.42) for ሺܽ ൏ ݎ ൏ ܾሻ. As r 

hes a

w

approac , the second part of the integral equation (3.42) will be bounded too. 

Therefore, the integral equation (3.42) becomes 
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1
ߨ

݂ሺݐሻ
ሺݐ െ ሻනݎ ݐ݀




ൌ

ሺܽሻכܨ

ඥሺܾ െ ܽሻሺݎ െ ܽሻ
 ሻ (3.43)ݎሺככܮ

 

where ככܮሺݎሻ contains all the bounded parts of the integral equation. Now the stress 

intensity factors given by the equation (3.38) can be expressed in term of the unknown 

nction כܨሺݐሻ. And by substituting the equation (3.39) and the equation (3.43) into the 

ܨߤ4 ሺܽሻ

ሺܭ  1ሻ

fu

equation (3.38), the stress intensity factors can be found as 

 

݇ଵሺܽሻ ൌ
כ

ටܾ െ ܽ
2

, 

݇ଵሺܾሻ ൌ െ
ሺܾሻכܨߤ4

ሺܭ  1ሻටܾ െ ܽ
2

, .

norm  str ity factors ݇ଵത

(3 44a-b)

തതሺܽሻ and ݇ଵതതത
 

 To find the alized ess intens ሺܾሻ, the 

imensionless form of the  כܨሺݐሻ will be used. Comparing the equation (3.26) and the 

equation (3.41), it can be related כܨሺݐሻ and כܨതതത
d

ሺ߬ሻ by 

 

ሻݐሺכܨ ൌ ൬
ܾ െ ܽ
2 ൰כܨതതതሺ߬ሻ ሺെ1 ൏ ߬ ൏ 1ሻ

stress intens

 (3.45)

 

 By substituting the equation (3.45) into the equation (3.44), the normalized 

ity factors ݇ଵതതതሺܽሻ and  ݇ଵതതതሺܾሻ becomes 

 

݇ଵതതതሺܽሻ ൌ 
ߤ4

ҧሺߦሻሺܭ  1ሻܨ
 ,തതതሺെ1ሻכ

݇ଵതതതሺܾሻ
ߤ4

ൌ െҧሺߦሻሺܭ  1ሻܨ
തതതሺ1ሻ. (3.46a-b)כ

 

3.4.2 Stress Intensity Factors at the Tips of Crack Terminating at 

Rigid Surface 
 

Using a similar procedure used in the previous section the normalized stress 

y factors ݇ଵത
 

intensit

29 
 

തതሺܽሻ and  ݇ଵതതതሺܾሻ can be obtained as (Birinci 2002). 
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݇ଵ

 

തതതሺܽሻ ൌ
ߤ4

ܭሻሺߦҧሺ  1ሻ 2
ଵ
ଶିఊכܨതതതሺെ1ሻ, 

݇ଵതതതሺܾሻ ൌ െ
ߤ4

ܭሻሺߦҧሺ  1ሻ ܨݍ
തതതሺ1ሻ. (3.47a-b)כ

here 

ݍ ൌ
ሺܭ  1ሻ ሺ1 െ ሻߛ2

ܭ

 

w

 

 ߛ2 െ 3൨

2 sin ߛߨ  (3.48)

 

the Tip of Internal Edge Crack 
 

 Following a similar procedure as in Section 3.4.1, it can be obtained that 

 

݇ଵ

3.4.3 Stress Intensity Factor at 

തതതሺܾሻ ൌ െ
ߤ4

ܭሻሺߦҧሺ  1ሻܨ
തതതሺ1ሻ. (3.49)כ

 



CHAPTER 4 

 

NUMERICAL RESULTS AND DISCUSSION 

 
 Normalized stress intensity factors ݇ଵതതതሺܽሻ and ݇ଵതതതሺܾሻ are calculated for various 

geometric configurations. Results are obtained for the following load distributions on 

crack surfaces: 

 ሺݎሻ ൌ

ሻݎଵሺ ൌ
3ሺܾଶ െ ܽଶሻሺݎ െ ሻܤ

2ܾଷ െ ଶܾܤ3 െ 2ܽଷ  ଶܽܤ3

  

 (4.1a-b)

 

 

where  is the mean of compressive distributed load on crack surfaces. The uniform 

pressure on crack surfaces is considered for the purpose of possible comparisons; since 

extensive numbers of examples with uniform load that appear in the literature. The 

outer wall is rigidly fixed while the inner surface is stress free. It is obvious that stress 

distribution at the location of crack for infinite cylinder loaded at infinity will not be 

uniform. It will vary with radial coordinate r. In order to present additional useful 

results one may expect for the perturbation problem in such situations where the infinite 

cylinder is loaded at infinity, here linearly varying load distribution on the crack 

surfaces are also considered. 

 In numerical calculations, one needs to define dimensionless load distributions 

as in the following form: 

ሻߦതതതሺ ൌ  

ሻߦଵതതതሺ ൌ
3ሺݎଷଶ െ ଷݎଶଶሻ൫ሺݎ െ ߦଶሻݎ  ଷݎ  ଶݎ െ 2൯

2ሺ2ݎଷଷ െ ଷଶݎ3 െ ଶଷݎ2  ଶଶሻݎ3
 (4.2a-b)

 

 

where  ݎଶ ൌ ܽ ⁄ܤ , ଷݎ ൌ ܾ ⁄ܤ . 
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 The following case is considered to check the formulation and the numerical 

results of the problem as a starting point: when the crack size becomes very small 

compared to other dimensions of the hollow cylinder (ሺܾ െ ܽሻ ⁄ܣ ൌ 10ିହ), the problem 



turns out to be finite crack in an infinite medium and therefore the normalized stress 

intensity factors ݇ଵതതതሺܽሻ and ݇ଵതതതሺܾሻ approach unity (see Table 4.1). This is a well-known 

result for crack tips surrounded by a homogenous medium. Table 4.1 shows the 

variation of the normalized stress intensity factors ݇ଵതതതሺܽሻ and ݇ଵതതതሺܾሻ for an internal crack 

in thick-walled cylinder. 

 

Table 4.1. Variation of the normalized stress intensity factors for an internal crack in 
the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25, ݒ ൌ 0.3ሻ for load distribution 
of ሺݎሻ ൌ  . 

࢈ െ ࢇ


   ሻࢇതതതሺ  ሻ࢈തതതሺ

10-5 1.000000 1.000000 

0.2 1.009990 0.990367 

0.4 1.020380 0.980565 

0.6 1.031450 0.970255 

0.8 1.043670 0.959180 

1 1.057750 0.947087 

1.2 1.074640 0.933708 

1.4 1.095470 0.918781 

1.6 1.121410 0.902146 

1.8 1.153310 0.883965 
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 Figures 4.1-4.4 show the variation of the normalized stress intensity factors at 

the tips of the central crack (net ligaments, ሺܽ െ ܤሻ and ሺܣ െ ܾሻ, are equal) for load 

distributions of ሺݎሻ ൌ ሻݎଵሺ   and ൌ
ଷ൫మିమ൯ሺିሻ

ଶయିଷమିଶయାଷమ
 , respectively. As the

crack size is increased (the thickness of the net ligaments are decreased), the normalized 

stress intensity factor at the inner tip of the crack (݇ଵതതതሺܽሻ) increases while the 

normalized stress intensity factor at the outer tip of the crack (݇ଵതതതሺܾሻ) decreases. 
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Figure 4.1. Variation of the normalized stress intensity factor ݇ଵതതതሺܽሻ for an internal crack 
in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25ሻ for uniform load distribution 
of ሺݎሻ ൌ  
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Figure 4.2. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for an internal crack 
in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25ሻ for uniform load distribution 
of ሺݎሻ ൌ  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Variation of the normalized stress intensity factor ݇ଵതതതሺܽሻ for an internal crack 
in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25ሻ for linear load distribution 
of ଵሺݎሻ ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ
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Figure 4.4. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for an internal crack 
in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25ሻ for linear load distribution 
of ଵሺݎሻ ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ

 

 

 Figures 4.5-4.6 show the comparison of the stress intensity factors at the tips of 

the central crack (net ligaments, ሺܽ െ ܤሻ and ሺܣ െ ܾሻ, are equal) for load distributions 

of  ሺݎሻ ൌ ሻݎଵሺ   and ൌ
ଷ൫మିమ൯ሺିሻ

ଶయିଷమିଶయାଷమ
 . with v=0.3
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Figure 4.5. Variation of the normalized stress intensity factor ݇ଵതതതሺܽሻ for an internal crack 
in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25, ݒ ൌ 0.3ሻ for load distributions 
of  ሺݎሻ ൌ ሻݎଵሺ and ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ
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Figure 4.6. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for an internal crack 
in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25, ݒ ൌ 0.3ሻ for load distributions 
of  ሺݎሻ ൌ ሻݎଵሺ and ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ
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 Figures 4.7-4.10 show the variation of the normalized stress intensity factors at 

the tips of the internal crack for uniform load distribution of  ሺݎሻ ൌ  and for linear

load distribution of  ଵሺݎሻ ൌ
ଷ൫మିమ൯ሺିሻ

ଶయିଷమିଶయାଷమ
 . As the outer tip of the crack

approaches to the outer wall of the hollow cylinder while the inner tip of the crack is 

being held constant (ܾ ⁄ܣ  increases from 2.5 to 3.4, ܽ ⁄ܣ ൌ 1.6), the normalized stress 

intensity factor at the inner tip of the crack (݇ଵതതതሺܽሻ) increases while the normalized 

stress intensity factor at the outer tip of the crack (݇ଵതതതሺܾሻ) decreases. 

1.05

1.07

1.09

1.11

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4

b/A

1.13

1.15

1.17

v=0.3

v=0.2

v=0.34

 

 

 

 

 

 

 

 

 

Figure 4.7. Variation of the normalized stress intensity factor ݇ଵതതതሺܽሻ for an internal crack 
in the thick-walled cylinder ሺܣ ⁄ܤ ൌ ܣ/ܽ   ,0.25 ൌ 1.6ሻ for uniform load 
distribution of ሺݎሻ ൌ  
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Figure 4.8. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for an internal crack 
in the thick-walled cylinder ሺܣ ⁄ܤ ൌ ܣ/ܽ   ,0.25 ൌ 1.6ሻ for uniform load 
distribution of ሺݎሻ ൌ  
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Figure 4.9. Variation of the normalized stress intensity factor ݇ଵതതതሺܽሻ for an internal crack 
in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25, ܣ/ܽ ൌ 1.6ሻ for load distribution 
of  ଵሺݎሻ ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ
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Figure 4.10. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for an internal 
crack in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25, ܣ/ܽ ൌ 1.6ሻ for load 
distribution of  ଵሺݎሻ ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ

 

 

 Figures 4.11-4.12 show the comparison of the stress intensity factors at the tips 

of the internal crack for uniform load distribution of  ሺݎሻ ൌ   and linear load

distribution of  ଵሺݎሻ ൌ
ଷ൫మିమ൯ሺିሻ

ଶయିଷమିଶయାଷమ
  as the outer tip of the crack approaches to

the outer wall of the hollow cylinder while the inner tip of the crack is being held 

constant. 
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Figure 4.11. Variation of the normalized stress intensity factor ݇ଵതതതሺܽሻ for an internal 
crack in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25, ݒ ൌ 0.3, ܣ/ܽ ൌ 1.6ሻ for 
load distributions of  ሺݎሻ ൌ ሻݎଵሺ and ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ
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Figure 4.12. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for an internal 
crack in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25, ݒ ൌ 0.3, ܣ/ܽ ൌ 1.6ሻ for 
load distributions of  ሺݎሻ ൌ ሻݎଵሺ and ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ
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 Figures 4.13-4.16 show the variation of the normalized stress intensity factors at 

the tips of the internal crack for uniform load distribution of ሺݎሻ ൌ   and linear load

distribution of  ଵሺݎሻ ൌ
ଷ൫మିమ൯ሺିሻ

ଶయିଷమିଶయାଷమ
 . As the inner tip of the crack approaches

to the inner wall of the hollow cylinder while the outer tip of the crack is being held 

constant (ܽ ⁄ܣ  increases from 1.6 to 2.5,ܾ ⁄ܣ ൌ 3.4), the normalized stress intensity 

factor at the inner tip of the crack (݇ଵതതതሺܽሻ) decreases while the normalized stress 

intensity factor at the outer tip of the crack (݇ଵതതതሺܾሻ) increases. 
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Figure 4.13. Variation of the normalized stress intensity factor ݇ଵതതതሺܽሻ for an internal 
crack in the thick-walled cylinder ሺܣ ⁄ܤ ൌ ܣ/ܾ   ,0.25 ൌ 3.4ሻ for uniform 
load distribution of ሺݎሻ ൌ  
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Figure 4.14. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for an internal 
crack in the thick-walled cylinder ሺܣ ⁄ܤ ൌ ܣ/ܾ   ,0.25 ൌ 3.4ሻ for uniform 
load distribution of ሺݎሻ ൌ  

 

 

 

 

 

 

 

 

Figure 4.15. Variation of the normalized stress intensity factor ݇ଵതതതሺܽሻ for an internal 
crack in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25, ܣ/ܾ ൌ 3.4ሻ for load 
distribution of ଵሺݎሻ ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ
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Figure 4.16. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for an internal 
crack in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25, ܣ/ܾ ൌ 3.4ሻ for load 
distribution of ଵሺݎሻ ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ

 

 

 Figures 4.17-4.18 show comparison of stress intensity factors at the tips of the 

internal crack for load distributions of  ሺݎሻ ൌ ሻݎଵሺ   and ൌ
ଷ൫మିమ൯ሺିሻ

ଶయିଷమିଶయାଷమ
 

as the inner tip of the crack approaches to the inner wall of the hollow cylinder while 

the outer tip of the crack is being held constant. 
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Figure 4.17. Variation of the normalized stress intensity factor ݇ଵതതതሺܽሻ for an internal 
crack in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25, ݒ ൌ 0.3, ܣ/ܾ ൌ 3.4ሻ for 
load distributions of  ሺݎሻ ൌ ሻݎଵሺ and ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ

 

 

 

 

 

 

 

 

 

Figure 4.18. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for an internal 
crack in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25, ݒ ൌ 0.3, ܣ/ܾ ൌ 3.4ሻ for 
load distributions of  ሺݎሻ ൌ ሻݎଵሺ and ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ
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 Figures 4.19-4.22 show the variation of normalized stress intensity factors ݇ଵതതതሺܽሻ 

and ݇ଵതതതሺܾሻ at the tips of the crack terminating at the rigid surface. As ܽ/ܣ increases 

(crack gets further from the free inner surface), ݇ଵതതതሺܽሻ decreases considerably more than 

݇ଵതതതሺܾሻ for all values of v=0.2, v=0.3, v=0.34. 
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Figure 4.19. Variation of the normalized stress intensity factor ݇ଵതതതሺܽሻ for a crack 
terminating at rigid surface in the thick-walled cylinder                  
 ሺܣ ⁄ܤ ൌ ܤ/ܾ   ,0.25 ൌ 1ሻ for load distribution of ሺݎሻ ൌ  
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Figure 4.20. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for a crack 
terminating at rigid surface in the thick-walled cylinder                   
ሺܣ ⁄ܤ ൌ ܤ/ܾ   ,0.25 ൌ 1ሻ for load distribution of ሺݎሻ ൌ  

 

 

 

 

 

 

 

 

 

Figure 4.21. Variation of the normalized stress intensity factor ݇ଵതതതሺܽሻ for a crack 
terminating at rigid surface in the thick-walled cylinder                  
 ሺܣ ⁄ܤ ൌ 0.25, ܤ/ܾ ൌ 1ሻ for linear load distribution of                   
ሻݎଵሺ  ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ
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Figure 4.22. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for a crack 
terminating at rigid surface in the thick-walled cylinder                  
 ሺܣ ⁄ܤ ൌ 0.25, ܤ/ܾ ൌ 1ሻ for linear load distribution of                   
ሻݎଵሺ  ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ

 

 

 Figure 4.23 and Figure 4.24 are presented for comparison purposes for v=0.3. 
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Figure 4.23. Variation of the normalized stress intensity factor ݇ଵതതതሺܽሻ for a crack 
terminating at rigid surface ሺܣ ⁄ܤ ൌ 0.25, ݒ ൌ 0.3, ܤ/ܾ ൌ 1ሻ for load 
distributions of  ሺݎሻ ൌ ሻݎଵሺ and ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ

 

 

 

 

 

 

 

 

 

Figure 4.24. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for a crack 
terminating at rigid surface ሺܣ ⁄ܤ ൌ 0.25, ݒ ൌ 0.3, ܤ/ܾ ൌ 1ሻ for load 
distributions of  ሺݎሻ ൌ ሻݎଵሺ and ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ
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 When ܽ/ܣ ൌ 1 and ܾ/ܣ increases (crack tip gets closer to the rigid surface), 
݇ଵതതതሺܾሻ increases initially while the crack length has relatively small values, then 
decreases slightly. This can be seen in Figure 4.25 and Figure 4.26. 
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Figure 4.25. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for an internal 
edge crack in the thick-walled cylinder ሺܣ ⁄ܤ ൌ ܣ/ܽ   ,0.25 ൌ 1ሻ for load 
distribution of ሺݎሻ ൌ  
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Figure 4.26. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for an internal 
edge crack in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25, ܣ/ܽ ൌ 1ሻ for load 
distribution of ଵሺݎሻ ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ
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 Variation of ݇ଵതതതሺܾሻ for uniform and linear loadings with v=0.3 for an internal 
edge crack is shown in Figure 4.27 for comparison purposes. 
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Figure 4.27. Variation of the normalized stress intensity factor ݇ଵതതതሺܾሻ for an internal 
edge crack in the thick-walled cylinder ሺܣ ⁄ܤ ൌ 0.25, ݒ ൌ 0.3, ܣ/ܽ ൌ 1ሻ 
for load distributions of  ሺݎሻ ൌ ሻݎଵሺ and ൌ

ଷ൫మିమ൯ሺିሻ
ଶయିଷమିଶయାଷమ

 

 



CHAPTER 5 

 

CONCLUSION 

 
 In this thesis, the stress intensity factors for an infinite hollow cylinder at the tips 

of the crack is calculated for an internal crack (embedded), a crack terminating at the 

rigid surface and internal edge crack. Problem is defined and modelled in terms of a 

linear second order partial differential equation system with mixed boundary conditions. 

Integral transform techniques are used to solve these governing equations that are 

reduced to a singular integral equation. Solving this singular integral equation 

numerically, normalized stress intensity factors are calculated for various geometric 

conditions and for various Poisson’s ratio. Numerical results are presented in graphical 

forms. 

 The following results are concluded: 

1. It is observed that ݇ଵതതതሺܽሻ is always greater than ݇ଵതതതതሺܾሻ. 

2. As the outer crack tip approaches the rigid wall (b increases), ݇ଵതതതሺܾሻ decreases 

because rigid wall prevents the crack opening. 

3. As the inner crack tip approaches the stress free surface (a increases), ݇ଵതതതሺܽ  

increases since the free lateral surface lets the crack open. 

ሻ

4. The results are also compared for uniform and linear loadings applied on crack 

surfaces. Both showed the similar behaviour for stress intensity factors at the 

crack tips. 

5. It is observed that, stress intensity factors are affected by Poisson’s ratio as a 

material property. 
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APPENDIX B 

 

INTEGRAL FORMS AND COEFFICIENTS 
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ሻߣܤሺܫܤ

ܪߣ ଵܫሺܣ െ ܣ ቇߣଷ െ
ߣሻߣܤଵሺܫ
ܣ2 െ

ܭଵଵሺܪ  1ሻܫଵሺߣܣሻߣ
ܣ2  

݈ସଷ ൌ ൭െ
ሻߣܣሺܫܣ
ߣܤ2 

1
ܫଵܪܤ2

ሺߣܤሻ െ
1
ଵܫଵଵܪܤ2

ሺߣܤሻ൱ ଶߣ


1
4
ሺെܭ െ 1ሻ൫ܪଵଵܫሺߣܤሻ   ߣሻ൯ߣܤଵሺܫଵܪ
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݈ସସ ൌ ൭െ
1
ܫܪܤ2

ሺߣܤሻ െ
ሻߣܣଵሺܫܣ
ߣܤ2 

1
ଵܫଵܪܤ2

ሺߣܤሻ൱ ଶߣ

 ൭
ሻߣܣሺܫ
ߣܤ4 

1
ܫଵܪ2

ሺߣܤሻ െ
ሻߣܤሺܫଵܪܤ

ܣ2 
1
ܫܭଵܪ4

ሺߣܤሻ


ሻߣܤଵሺܫଵଵܪܤ

ܣ2 
1
ଵܫܭܪ4

ሺߣܤሻቇ ߣ 
ܭଵଵሺܪ  1ሻܫሺߣܤሻ

ܣ2  

 

D is given as 

 

ܦ ൌ ସߣሻଶߣܤሺܫሻଶߣܣଵሺܭܤܣ െ ସߣሻଶߣܣሺܭሻଶߣܤଵሺܫܤܣ  ସߣሻଶߣܤሺܭሻଶߣܣሺܫܤܣ

െ ସߣሻଶߣܤሺܭሻଶߣܣଵሺܫܤܣ െ ସߣሻଶߣܣଵሺܭሻଶߣܤሺܫܤܣ

 ସߣሻଶߣܣଵሺܭሻଶߣܤଵሺܫܤܣ െ ସߣሻଶߣܤଵሺܭሻଶߣܣሺܫܤܣ

 ସߣሻଶߣܤଵሺܭሻଶߣܣଵሺܫܤܣ െ ସߣሻߣܤሺܭሻߣܣሺܭሻߣܤሺܫሻߣܣሺܫܤܣ2

െ ସߣሻߣܣଵሺܭሻߣܤሺܭሻߣܣଵሺܫሻߣܤሺܫܤܣ2

െ ସߣሻߣܤଵሺܭሻߣܣሺܭሻߣܤଵሺܫሻߣܣሺܫܤܣ2

െ ସߣሻߣܤଵሺܭሻߣܣଵሺܭሻߣܤଵሺܫሻߣܣଵሺܫܤܣ2 െ ଷߣሻଶߣܣሺܭሻߣܤଵሺܫሻߣܤሺܫܣ

െ ଷߣሻଶߣܣሺܭሻߣܤଵሺܫሻߣܤሺܫܭܣ  ଷߣሻଶߣܣଵሺܭሻߣܤଵሺܫሻߣܤሺܫܭܣ

 ଷߣሻߣܤሺܭሻߣܣሺܭሻߣܤଵሺܫሻߣܣሺܫܣ

 ଷߣሻߣܤሺܭሻߣܣሺܭሻߣܤଵሺܫሻߣܣሺܫܭܣ

െ ଷߣሻߣܤሺܭሻߣܣሺܭሻߣܤଵሺܫሻߣܣଵሺܫܣ  ଷߣሻߣܣଵሺܭሻߣܤሺܭሻߣܤଵሺܫሻߣܣଵሺܫܭܣ

 ଷߣሻߣܤଵሺܭሻߣܣሺܭሻߣܤሺܫሻߣܣሺܫܣ

െ ଷߣሻߣܤଵሺܭሻߣܣሺܭሻߣܤሺܫሻߣܣሺܫܭܣ െ ଷߣሻߣܤଵሺܭሻߣܤሺܭሻଶߣܣሺܫܣ

 ଷߣሻߣܤଵሺܭሻߣܤሺܭሻଶߣܣሺܫܭܣ െ ଷߣሻߣܤଵሺܭሻߣܣሺܭሻߣܤሺܫሻߣܣሺܫܣ

 ଷߣሻߣܤଵሺܭሻߣܤሺܭሻଶߣܣଵሺܫܭܣ  ଷߣሻߣܤଵሺܭሻߣܤሺܭሻߣܣଵሺܫሻߣܣሺܫܣ

 ଷߣሻߣܤଵሺܭሻߣܣଵሺܭሻߣܤሺܫሻߣܣሺܫܣ െ ଷߣሻߣܤଵሺܭሻߣܣଵሺܭሻߣܣଵሺܫሻߣܤሺܫܭܣ

െ
ଶߣሻଶߣܤሺܭሻଶߣܣଵሺܫܤ

ܣ2 െ
ଶߣሻଶߣܤሺܭሻଶߣܣଵሺܫܭܤ

ܣ2 െ
ଶߣሻଶߣܣଵሺܭሻଶߣܤሺܫܤ

ܣ2

െ
ଶߣሻଶߣܣଵሺܭሻଶߣܤሺܫܭܤ

ܣ2 
ଶߣሻଶߣܣଵሺܭሻଶߣܤଵሺܫܤ

ܣ2


ଶߣሻଶߣܣଵሺܭሻଶߣܤଵሺܫܭܤ

ܣ2 
ଶߣሻଶߣܤଵሺܭሻଶߣܣଵሺܫܤ

ܣ2


ଶߣሻଶߣܤଵሺܭሻଶߣܣଵሺܫܭܤ

ܣ2 
ଶߣܤ

ܣ െ
ଶߣሻߣܣଵሺܭሻߣܤሺܭሻߣܣଵሺܫሻߣܤሺܫܤ

ܣ  
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െ
ଶߣሻߣܣଵሺܭሻߣܤሺܭሻߣܣଵሺܫሻߣܤሺܫܤ

ܣ െ
ଶߣሻߣܤଵሺܭሻߣܣଵሺܭሻߣܤଵሺܫሻߣܣଵሺܫܤ

ܣ

െ
ଶߣሻߣܤଵሺܭሻߣܣଵሺܭሻߣܤଵሺܫሻߣܣଵሺܫܭܤ

ܣ 
ଶߣܣ

ܤ


ߣሻଶߣܣଵሺܭሻߣܤଵሺܫሻߣܤሺܫଶܭ

ܣ2 
ߣሻଶߣܣଵሺܭሻߣܤଵሺܫሻߣܤሺܫܭ

ܣ


ߣሻଶߣܣଵሺܭሻߣܤଵሺܫሻߣܤሺܫ

ܣ2 
ߣሻߣܣଵሺܭሻߣܤሺܭሻߣܤଵሺܫሻߣܣଵሺܫଶܭ

ܣ2


ߣሻߣܣଵሺܭሻߣܤሺܭሻߣܤଵሺܫሻߣܣଵሺܫܭ

ܣ 
ߣሻߣܣଵሺܭሻߣܤሺܭሻߣܤଵሺܫሻߣܣଵሺܫ

ܣ2

െ
ߣሻߣܤଵሺܭሻߣܤሺܭሻଶߣܣଵሺܫଶܭ

ܣ2 െ
ߣሻߣܤଵሺܭሻߣܤሺܭሻଶߣܣଵሺܫܭ

ܣ

െ
ߣሻߣܤଵሺܭሻߣܤሺܭሻଶߣܣଵሺܫ

ܣ2 െ
ߣሻߣܤଵሺܭሻߣܣଵሺܭሻߣܣଵሺܫሻߣܤሺܫଶܭ

ܣ2

െ
ߣሻߣܤଵሺܭሻߣܣଵሺܭሻߣܣଵሺܫሻߣܤሺܫܭ

ܣ െ
ߣሻߣܤଵሺܭሻߣܣଵሺܭሻߣܣଵሺܫሻߣܤሺܫ

ܣ2


ଶܭ

ܤܣ4 
ܭ
ܤܣ 

3
 ܤܣ4

 

where  

,ܣߣሺܪ ሻܤߣ ൌ ሻܤߣሺܫሻܣߣሺܭ  ሺെ1ሻାାଵܫሺܣߣሻܭሺܤߣሻ ሺ݅, ݆ ൌ 0,1ሻ 
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APPENDIX C 

 

ASYMPTOTIC EXPANSIONS 
 

Asymptotic expansions for modified Bessel functions for ߣ ՜ ∞ (Abramowitz 

and Stegun 1965) 

~ሻߣܤଵሺܭ
݁ିఒ√ߨ

൬1 
3
ܤߣ8 െ

15
12 ଶܤ

 

ܤߣ2√ ߣ8 ଶ൰ 

൬1 
3
ݐߣ8 െ

15
128 ~ሻߣݐଵሺܭଶݐ

݁ିఒ௧√ߨ
ݐߣ2√ ଶߣ ൰ 

~ሻߣܣଵሺܭ
݁ିఒ√ߨ

൬1 
3
ܣߣ8 െ

15
12 ܣߣଶ√2ܣ ଶߣ8 ൰ 

~ሻߣݎଵሺܭ
݁ିఒ√ߨ

൬1 
3
ݎߣ8 െ

15
ߣ128 ݎߣଶ√2ݎ ଶ ൰ 

~ሻߣܤሺܭ
݁ିఒ√ߨ

൬1 െ
1


9

ܤߣ2√ܤߣଶ൰ 8ܤଶߣ128

~ሻߣݐሺܭ
݁ିఒ௧√ߨ

൬1 െ
1
ݐߣ8 

9
128 ݐߣଶ√2ݐ ଶߣ ൰ 

൬1 െ
1


9

128 ଶܣଶܭሺߣܣሻ~
݁ିఒ√ߨ
ܣߣ2√ ܣߣ8 ߣ ൰ 

~ሻߣݎሺܭ
݁ିఒ√ߨ
√ ݎ

൬1 െ
1
ݎߣ8 

9
12 ߣଶ2ݎ ଶߣ8 ൰ 

~ሻߣܤଵሺܫ
݁ఒ

ܤߣߨ2
൬1 െ

3
ܤߣ8 െ

15
12 ଶܤଶ√ ߣ8 ൰ 

~ሻߣݐଵሺܫ
݁ఒ௧

√ ݐ
൬1 െ

3
െ

15
128 ߣߨଶ2ݐ ݐߣ8 ଶߣ ൰ 

~ሻߣܣଵሺܫ
݁ఒ

√2 ܣ
൬1 െ

3
ܣߣ8 െ

15
12 ଶܣଶߣߨ ߣ8 ൰ 

െ
15

128 ~ሻߣݎଵሺܫଶݎ
݁ఒ

√ ݎ
൬1 െ

3
ߣߨ2 ݎߣ8 ଶߣ ൰ 

~ሻߣܤሺܫ
݁ఒ

ܤߣߨ2√
൬1 

1
ܤߣ8 

9
 ଶ൰ܤଶߣ128
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~ሻߣݐሺܫ
݁ఒ௧

√ ݐ
൬1 

1


9
ߣ128 ߣߨଶ2ݐ ݐߣ8 ଶ ൰ 

~ሻߣܣሺܫ
݁ఒ

√2 ܣ
൬1 

1
ܣߣ8 

9
 ଶ൰ܣଶߣ128

ߣߨ

~ሻߣݎሺܫ
݁ఒ

ݎߣߨ2√
൬1 

1
ݎߣ8 

9
 ଶ൰ݎଶߣ128
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APPENDIX D 

 

ALGEBRAIC EQUALITIES 

ሺܤ െ ܤሻሺݎ െ ሻݐ
ሺ2ܤ ሻଷݐ ൌ

ሺܤ െ ሻݎ
ሺ2ܤ ݎ െ ݐ െ

ሺܤ െ ሻଶݎ

ሺ െ ሻଷݐ

 

െ ሻଶെ ݎ െ ܤ2 െ ݎ  

ሺܤ െ ሻݐ
ሺ2ܤ െ ݎ െ ሻଶݐ ൌ ሺ2ܤ ݎ െ ሻݐ

1
െ െ ܤ െ ሻଶݐ

ሺܤ െ ሻݎ
ሺ2 െ ݎ  

ሺܣ െ ܣሻሺݎ െ ሻݐ
ሺെ2 ሻଷݐ ൌ െ

ሺܣ െ ሻݎ
ሺ2ܣ ݎ െ ଶ 

ሺܣ െ ሻଶݎ

െ ሻଷെݐ ሻݐ ሺ2ܣ െ ܣݎ  ݎ   

ሺܣ െ ሻݐ
ሺെ2ܣ ݎ  ሻݐ ଶ ൌ

1
െ ܣሻሺ2ݐ െ ݎ െ െ

ሺܣ െ ሻݎ
ሺ2ܣ ݎ െ  ሻଶݐ

1
ሺ2ܤ െ ݎ െ ሻଷݐ ൌ െ

1 ݀ଶ

ଶݎ݀ 
1

ሺݐ  ݎ െ ሻ൨ 2ܤ2
1

ሺ2ܤ െ ݎ െ ሻଷݐ ൌ െ
1
2
݀
ݎ݀

1
ሺݐ  ݎ െ  ሻܤ2
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APPENDIX E 

 

GAUSS-LOBATTO AND GAUSS-LAGUERRE 

INTEGRATION 

 
 Gauss-Lobatto integration formula 

 

1
නߨ

݂ሺݐሻ
√1 െ ଶݐ

ሻݐሺݓ ݐ݀
ଵ

ିଵ
ൌܥ݂ሺݐሻݓሺݐሻ



ୀଵ

 

 

where  

 

ݐ ൌ co
ሺ݅ െ 1ሻߨ
ሺ݊ െ 1ሻs ቈ  

ሺ݅ ൌ 1,2,3, … , ݊ሻ 

ܥ ൌ
1

 ݊ െ 1 

ଵܥ ൌ ܥ ൌ
1

2ሺ݊ െ 1ሻ 

ሺ݅ ൌ 2,3,4, … , ݊ െ 1ሻ 

 

 Gauss-Laguerre integration formula 

 

න ݂ሺݐሻ ݐ݀
ஶ


ൌ න ݁ି௧ሾ݁௧݂ሺݐሻሿ ݐ݀

ஶ


ൎݓሺݐሻ݁௧݂ሺݐሻ



ୀଵ

 

 

where ݐ are abscissas and ݓሺݐሻ are weights of the Laguerre integration. 
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