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ABSTRACT

ANALYSIS OF THE CRACKED INFINITE HOLLOW CYLINDER
WITH LOADING ON CRACK SURFACES

In this study, the cracked infinite hollow cylinder with an axisymmetric crack of
width (b-a) is considered. The ring-shaped crack is located at the symmetry plane.
Surfaces of the crack are subjected to the distributed compressive loads. The outer
surface of the cylinder is rigid and the inner one is stress free. The material of the
cylinder is assumed to be linearly elastic and isotropic.

Integral transform techniques are used for the solution of the field equations. The
resultant singular integral equation in terms of crack surface displacement derivative is
converted to a system of linear algebraic equations by using Gauss-Lobatto, Gauss-
Jacobi and Gauss-Laguerre integration formulas. The stress intensity factors at the tips
of the crack are numerically calculated for uniform and linear load distributions on

crack surfaces. Some results are presented in graphical and tabular forms.



OZET

CATLAK YUZEYLERINDE YUKE MARUZ SONSUZ
UZUNLUKTAKI TUPUN ANALIZI

Bu ¢alismada, eni (b-a) olan eksenel simetrik catlak igeren sonsuz uzunlukta bir
tiip problemi ele alinmistir. Halka bi¢imindeki c¢atlak simetri diizleminde yer
almaktadir. Catlak ylizeyleri yayil1 basing yiiklerine maruzdur. Tiipiin dis yiizeyi rijit, i¢
ylizeyi serbesttir. Tiipiin malzemesi lineer elastik ve izotrop oldugu varsayilmaktadir.

Elastisite denklemlerinin ¢6ziimii i¢in integral doniistim teknikleri kullanildi.
Gauss-Lobatto, Gauss-Jacobi ve Gauss Laguerre integrasyon formiilleri kullanilarak,
catlak yiizii yer degistirme tlirevi cinsinden yazilan tekil integral denklemi bir lineer
cebrik denklem takimina donistiiriilmiistiir. Diizglin ve lineer yayili basing yiikleri i¢in
catlak uclarindaki gerilme siddeti katsayilari niimerik olarak hesaplandi. Bazi sonuglar

grafikler ve tablolar bi¢iminde verilmektedir.
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CHAPTER 1

INTRODUCTION

An important step is the identification of the most likely modes of failure and
the application of a suitable failure criterion in the design of structural or machine
components. Fracture characterized as the formation of new surfaces in the material is
one such mode of mechanical failure. Fracture may be viewed as the rupture separation
of the structural component into two or more pieces due to the discontinuities. These
discontinuities can be in the form of cracks, holes, notches or inclusions that are very
important factors influencing stress distributions in the structural or machine
components.

There are two approaches to fracture study. The first is based on the stress
intensity factor, k and the second is based on the J integral. The J integral approach is
suitable for ductile fracture with strong deformations. The stress intensity factor
approach is based on the possibility of representing the stress field around the crack tip
by a stress intensity factor, k. The stress intensity factor depends on the way the crack is
invited to propagate, on the mode of application of the load, on the level and variation
of the stress in the material far from the crack tip and on the type of the crack. These
modes of application of the load are defined as of three types (Figure 1.1.):

e Mode I: the principle load is applied normal to the crack plane, tends to

open crack

e Mode Il: corresponds to in plane shear loading, tends to slide one crack face

with respect to the other one

e Mode Ill: refers to out of plane shear loading.

1 g

%7

mode I mode IT mode IIT

Figure 1.1. Three modes of application of the load.



The stress becomes infinite at the tips of the cracks or inclusions. In such cases,
stress concentration cannot be defined as a strength parameter and it is necessary to
consider the stress distributions from fracture mechanics point of view. Fracture
toughness can be easily calculated in terms of the stress intensity factors. The stress
near the crack tip varies with singularity, regardless of the configuration of the cracked
body. These types of problems are studied by using numerical and analytical methods
based on partial differential equations. For linear elastic materials, individual
components of stress, strain and displacement are additive. In many cases of analytical
solutions, principle of superposition allows stress intensity for complex configurations

to be built from simple cases.

1.1. A Brief Introduction and Method of Solution of the Problem

In this study, an infinite hollow cylinder containing a ring-shaped crack at the
symmetry plane is considered. Crack surfaces are subjected to distributed load. The
outer wall of the hollow cylinder is rigid and the inner wall is free of traction. The
material of the hollow cylinder is assumed to be linearly isotropic and elastic. The
solution for the problem can be found by superposition of two sub-problems: (1) the
problem of an infinite elastic medium containing a ring-shaped crack at the symmetry
plane and (2) the problem of an infinite elastic medium without a crack subjected to
arbitrary symmetric loads.

The general solutions of these sub-problems are obtained by using Hankel and
Fourier transforms on Navier equations. And a singular integral equation is obtained by
using the boundary conditions on the crack. By using Gauss-Lobatto and Gauss-Jacobi
integration formulas, this singular integral equation is reduced to a linear algebraic
equation. And this linear algebraic equation is solved numerically by using Gauss-

Laguerre integration.

1.2. Literature Overview

Collins (1962) considered some axially symmetric stress distributions in an
infinite elastic solid and in a thick plate containing penny-shape cracks. It was shown

that representations for the displacements in an infinite solid containing two or more



cracks and in a thick plate containing a single crack can be constructed and used to
reduce problems of determining the stresses in these solids to the solutions of Fredholm
integral equations of the second kind by use of representation for the displacement in an
infinite elastic solid containing a single crack.

Sneddon and Welch (1963) considered a long circular cylinder of elastic
material and made an analysis of the distribution of stress when it is deformed by the
application of pressure to the inner surfaces of a penny-shaped crack positioned
symmetrically at the centre of the cylinder. The cylinder surface was assumed to be free
from stress. The equations of the classical theory of elasticity were solved in terms of an
unknown function that was shown to be the solution of an integral solution previously
derived by Collins (1962).

Armn and Erdogan (1971) considered two axially symmetric mixed boundary
value problems in elastic dissimilar layered medium. An elastic layer was assumed to be
bonded to two semi-infinite half spaces along its plane surfaces, and contains a penny-
shape crack parallel to the interfaces. The numerical examples were given for a constant
pressure on the crack surface.

The axisymmetric semi-infinite cylinder with fixed short end is considered by
Gupta (1974). Normal loads were applied far away from the fixed end. By using an
integral transform technique, a singular integral equation has been provided. Stress
along the rigid end and stress intensity factors have been calculated numerically and
presented graphically.

Agarwal (1978) reduced the axisymmetric end-problem for semi-infinite elastic
circular cylinder to a system of singular integral equations. It is found that the kernels of
the integral equations contained Cauchy as well as generalized Cauchy-type
singularities. A system of algebraic equations was obtained from the system of singular
integral equations by using an approximate method. Axisymmetric solution for joined
dissimilar elastic semi-infinite cylinders under uniform tension was solved as an
application.

Erd6l and Erdogan (1978) studied an elastostatic axisymmetric problem for a
long thick-walled cylinder containing a ring-shaped internal or edge crack. The problem
had been formulated in terms of an integral equation has a simple Cauchy kernel for the
internal crack and a generalized Cauchy kernel for edge crack as dominant part by using

transform technique.



Nied and Erdogan (1983) considered the elasticity problem for a long hollow
cylinder containing an axisymmetric circumferential crack subjected to general non-
axisymmetric external loads. The problem had been formulated in terms of a system of
singular integral equations. Stress intensity factors and the crack opening displacement
had been calculated for a cylinder under uniform tension.

Chen (2000) evaluated the stress intensity factors in a cylinder with a
circumferential crack. To study the problem, an indirect method has been developed.
The finite difference method had been used to solve the boundary value problem.
Numerical examples had been given which demonstrates the effect of cylinder length on
the stress intensity factor.

Artem and Gegit (2002) studied the problem of an elastic hollow cylinder under
axial tension containing a crack and two rigid inclusions of ring shape. The material of
the hollow cylinder was assumed to be linearly elastic and isotropic. The cylinder was
assumed to be under the action of uniform loading. Because of the mixed boundary
condition of the problem, Hankel and Fourier transform techniques were used and a
system of three singular integral equations is analyzed and solved numerically. The
normalized stress intensity factors were calculated for crack and two rigid inclusions.

Aydin (2005) made an investigation of stress intensity factors in an elastic
cylinder under axial tension with a crack of ring-shape. Hankel and Fourier transform
techniques were used to obtain a singular integral equation. This singular integral
equation was solved numerically by using Gauss-Lobatto integration formula. The
normalized stress intensity factors were calculated for crack and presented graphically.

Kaman and Gegit (2006) considered the problems of cracked semi-infinite
cylinder and finite cylinder. General solutions of these problems were obtained by using
Hankel and Fourier transforms on Navier equations. The singular integral equations
were converted to a system of linear algebraic equations that were solved numerically
by using Gauss-Lobatto and Gauss-Jacobi integration formulas. Mode I and Mode 11
stress intensity factors at the edges of cracks and inclusion and normal and shearing

stresses along the rigid support were calculated. And results were presented graphically.



CHAPTER 2

PROBLEM DEFINITION AND FORMULATION

2.1. The Infinite Hollow Cylinder Containing a Ring-Shaped Crack

Problem

An infinite hollow cylinder of width (B-4) containing a ring-shaped crack of
width (b-a) at the symmetry plane, z = 0 is considered. Distributed compressive load is
applied on the crack surface. The outer wall of the cylinder is rigid and the inner wall is
free of traction. The material of the cylinder is assumed to be linearly elastic and

isotropic (Figure 2.1).

Figure 2.1. Geometry of the problem



The equilibrium equations for linearly elastic, isotropic and axisymmetric

problems can be written in the form of

dor | 0trz | Or=0p _

T+ T2 =0 2.1)
9trz | 007 | Trz _

24+ E=0 (2.2)

where ¢ and 7 symbolizes the normal and shear stresses, respectively. The relation

between stress and strain in the body in tensor notation is

O-ij = 2,Ll€ij + Aekké‘ij (23)

1 L
where bij ={ fori=j

Ofori+j
Exk = €y T €gg T €55
2V
1-2v

A=u
and p is the shear modulus, v is the Poisson’s ratio.

The strain-displacement relations for the axisymmetric problem are in the form

of
ou
Err E
u
€00 =
__ow
€zz = E
u ow
ET'Z = 5 -l— a_.r (2.4a'd)

where u and w are displacements in » and z directions in cylindrical coordinates,
respectively.

By substituting expressions given in the equation (2.4a-d) into the equation
(2.3), stress-displacement relations for the axisymmetric cylindrical problem are found

as



o, =t (K+1)—+(3 K)( a—W)

09=L(K+1) +(3— K)( ";—W)

o, = K+ D2+ G -K) (2 +2)]

1
u ow
Trz = 1 (5 + 5)

(2.5a-d)
where K = 3 — 4v for plane strain.

By substituting equations (2.5a-d) into the equations (2.1) and (2.2), a second
order partial differential equation system that is called the Navier Equations can be

found as

(K+1)(—+la—”—r—)+(1(—1)—+2—=0

Z(araﬁ%%)”’{— 1) (—+16—W)+(1<+ 1) (27“2”) —0  (2.6a-b)

The Navier equations must be solved using the boundary conditions:

0,(r,—0) =0 (A<r<B)

0,(r,+0) =0 (A<r<B)

w(r,0) =0 (A<r<a),(b<r<B)

o,(r,0) = —p(r) (a<r<b)

0,(4,z) =0 (—0 <z < ™)

7,,(A4,2) =0 (—0 <z < ™)

u(B,z) =0 (—0 <z < ™)

w(B,z) =0 (—0 <z < ™)

T,,(r,0) =0 (a<r<b) (2.7a-1)

where p(r) is the intensity of the distributed load on the crack surfaces.



2.1.1. The Perturbation Problem

The solution for the infinite hollow cylinder containing a ring-shaped crack may
be found by the superposition of the solutions for two sub-problems as showed in
Figure 2.2: (1) The problem of an infinite elastic medium containing a ring-shaped
crack of width (b-a) at the symmetry plane and (2) the problem of an infinite medium

without crack subjected to arbitrary symmetric loads.

jl
L
RiEm
IIIIJHJE | L L _ T T
izl [ . ) +
(11 (21

Figure 2.2. Perturbation problem

2.1.1.1. An Infinite Elastic Medium having a Crack

Consider an infinite medium containing a crack at z = 0 plane, z is the axis of the
medium. The crack surfaces are under the action of distributed axisymmetric
compressive loads.

Because of the symmetry, it is sufficient to consider one half of the medium
(z =2 0) instead of considering both parts of the medium. Displacement and stress
components will be obtained by using Hankel transformation technique.

By using Hankel transform definition

Ho{f (ax); @3 = [, f(ax)x ], (x) dx (a > 0) (2.8)



where n = 0 for even and n = 1 for odd functions. u(r, z) is an odd and w(r, z) is an
even function in r direction, Hankel transform of the displacement functions can be

written in the form of

H {u(r,z);a} = fooo u(r,z2)r Jy(ra)dr = U(a, 2)

Holw(r,2);a} = [w(r,2) 7 Jo(ra) dr = W(a, 2) (2.9a-b)

where Jy and J; are the Bessel functions of the first kind of order zero and one,
respectively. Applying Hankel transform to equation (2.6) in » direction, the following
equations can be obtained

d?U(a,z) 2 dW

_ 2 —
(K+1Da“U(a,z) + (K—-1) —3 2a — 0
2
202 — (K - Da?W(a,2) + (K + 1) 2222 = (2.10a-b)

By doing some manipulations, the equation system (2.10) can be reduced to a

forth order ordinary differential equation in the form:

d*U(a,z) _ 20?2 d?U(a,z)
dz* dz?

+ a*U(a,z) =0 (2.11)

The general solution of the equation (2.11) is found as

U(a,z) = (c; + c32)e™ % + (c5 + cuz)e* (2.12)

where ¢, ¢, ¢3 and ¢4 are arbitrary unknown constants and a > 0.

In order to get finite displacement at infinity, constants c; and ¢, must be equal
to zero for the upper half of the medium (z > 0) and constants ¢; and ¢, must be equal to
zero for the lower half of the medium (z < 0). Therefore, considering subscripts u and /
indicate the upper and the lower half of the medium respectively, equation (2.12) can be

expressed in the form of



U,(a,z) = (c; + cyz)e % (z=0)
Ui(a,z) = (c3 + c4z)e* (z<0)

Using the same procedure for W (a, z), the solutions can be found as

W, (a,z) = [(c1 +c,z) + gcz] e %z (z=0)

Wi(a,z) = [—(03 + ¢, 2) + §C4] e%? (z<0)

(2.13a-b)

(2.14a-b)

By taking inverse transforms of equations (2.13a-b) and (2.14a-b), displacement

components are found as

u,(r,z) = fooo(cl + c,z)e"* af,(ar) da
u,(r,z) = fooo(c3 + cyz)e* af,(ar) da
wy(r,z) = fooo [(cl +c,z) + gcz] e~ qj,(ar) da

wy(r,z) = f0°° [—(03 + ¢, 2) + §c4] e aj,(ar) da

(z<0)

(2.15a-d)

By substituting the equations (2.15a-d) into the expressions given in the

equations (2.5a-d), stress components can be found as

o]

o, (r,2) = ,uf [2(c; + c;2)a — (B3 — K)cyle™*ajy(ar) da

(0]

a
+ MJ. —2(c; + cz) ™% ;]1 (ar)da
0

e

oy, (1,2) = f [2(c3 + cuz)a + (B3 — K)c,le®aj,(ar) da

[ee]

a
+ ,uf —2(c3 + c4z) e ?jl(ar) da
0

0,,(r,z) = ,uf [—(K + 1)c, — 2(¢; + c2)a] e “ajy(ar) da

(z=0)
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0,,(1,2) = j [(K+ 1)cy — 2(c3 + cpz)a] e*ajy(ar) da (z<0)
0

ta2) = i [ [=(K = D, = 206 + cprdale™a )y (ar) da (z20)
0

o

Tyy (1, 2) = uf [—(K —1)cy + 2(c3 + cyz)ale“a ], (ar) da (z<0) (2.16a-f)
0

These expressions satisfies the following continuity and symmetry conditions on

z =0 plane.
O_zu(r' 0) = le(r' 0) 0<r<ow
T,, (T, 0) = 7,,(1,0) 0<r<ow
%[uu(r,O)—ul(r,O)] ~0 0<r< oo
2 [wy (r,0) — wy(r, 0)] = 2£ (1) 0<7r< o0 (2.17a-d)

where f(r) is the unknown crack surface displacement derivative such that f(r) = 0
when(4 <r < a,b <r <B). Using the conditions (2.17a-d), the unknown constants

c1, ¢2, ¢z and ¢4 can be found as

_ o = Fl@ (k-1)
G=6=7, (K+1)

_ _ 2F(a) }
Cy) = —C4 = ") (2.18a-b)

where F(a) = ff f@)r](ar)dr.

The hollow cylinder containing a ring-shaped crack is symmetric about z axis
and it is sufficient to consider the solution of the axisymmetric problem in the upper or
lower half of the medium. Therefore, the general expressions for the displacement and

the stress components in the upper half of the medium are in the form of
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Unaneet (1 2) = j [(K — 1) — 2az]F (a)e %], (ar) da

(K+1)

Wiankel (T, 2) = f [—(K + 1) — 2az]F (0)e ]y (ar) da

(K+1)

Orpnanket T1Z) = 2(1 —az)F(a)e ™ *aj,(ar)da

U
(K+1)
0

21 1)f 2az — (K — 1)F(a)e™* %jl(ar)da
0

O spamkel T 2) = f (1+ az)F(a) e *ajy(ar)da

(K+1)

Trznanker (71 2) = azF(a) ae~*J;(ar)da (2.19a-¢)

4p
(K+1)
0

2.1.1.2. An Infinite Elastic Medium without a Crack

An infinite elastic medium without a crack that is loaded symmetrically is
considered. This infinite elastic medium is symmetric about z-axis and z = 0 plane. The
Fourier transforms of the displacement components are written below using the Fourier

sine and cosine transform definitions:

FAu(r,z); A} = %fooou(r, z)cos(Ar) dr = U(r, )

FA{w(r, z); A} = % [ w(r, z)cos(Ar) dr = W (r, ) (2.20a-b)

where U(r,A1) and W(r,A1) are the Fourier cosine and sine transforms of functions
u(r, z) and w(r, z), respectively, 4 is the Fourier transform variable. Noting that u(r, z) is
even and w(r,z) is odd functions in z, the Fourier cosine and sine transforms may be
applied to equation (2.6a-b) and the system of second order ordinary differential

equation is obtained as

12



K+ D[y +12 8- (k- 22U + 2222 = 0

dr? rdx r

d*w  1dw 2 _
— Tt | - K+ DPW =0 (2.21a-b)

dUu 2
—222 20U + (K - 1)[

Equations (2.21a-b) can be reduced to a single equation.

d*U d3u dy dy
4 3 _ 2..4 2 _ 2..3 _
Uy + 2r P (2A%r* + 3r )_dx (2A%r> = 3r) I
+ Mt +222r2 -3)U =0 (2.22)

The solution of this reduced equation can be found in a previous study of (Artem and

Gegit 2002) as

1 1
U(r,A) = —Ecsll(/lr) + 5061{1(/%) + c; Arly(Ar) + cgArK,(Ar)

W(r,A) = %CSIO(Ar) + %CeKo()ﬂ”) —c;[(K + DIy(Ar) + Arl (Ar)]

—cg[(K + 1)Ky (Ar) — ArK, (Ar)] (2.23a-b)

where cs,cq,¢c; and cg are arbitrary constants, [, and I; are the modified Bessel
functions of the first kind of order zero and one, respectively, K, and K; are the
modified Bessel functions of the second kind of order zero and one, respectively.

By taking inverse Fourier cosine and sine transforms of equations (2.23a-b), the

displacement components can be expressed as

2 (1 1 1
u(r, Z)fourier = ;f [_§C511 (Ar) + §C6K1 (Ar) + c;Arly(Ar)
0

+ cgArK, (/17‘)] cosAzdA

2
—c;[(K + DIy(Ar) + Arl (Ar)]

2“1 1
w(r, Z)fourier = ;] {_ cslo(Ar) + §C6K0(/1r)
0

- Cg[(K + 1)K0(AT) - /1TK1 (AT)]} sin Az dA (224a—b)
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And the stress components can be found by substituting equations (2.24a-b) into stress-

displacement relations equation (2.5a-d).

0: (1, 2) pourier = 2 Jy {5 |~ Ao (Ar) + 2 1,(ar)| + c6 |~ 2K, (Ar) =
~K, (/11‘)] + ¢, [(K — DAL, (Ar) + 22271, (Ar)] +
cal (K = 1)AKo(Ar) — 24%rK, (4r)]} cos Az dA

0, (1, 2) pourier = = Jy {csAlo(Ar) + csAKo(Ar) — ¢, [(K +
5)ALy(Ar) + 24271, (Ar)] — cg[(K + 5)AK,(Ar) —
227K, ()]} cos Az dA

T2 (1) 2) pourier = = [ (AL (Ar) — cgAKy (Ar) — ¢, [(K +

DAL (Ar) + 22%71,(Ar)] — cg[(K + 1)AK, (Ar) —
221Ky (Ar)]} cos Az dA (2.25a-c)

2.1.2. General Solution

The general solution of the problem can be found by adding the expressions for
the displacement and the stress components found in the problem of an infinite elastic
medium having a crack (Hankel Transformation) and the problem of an infinite elastic

medium without a crack (Fourier Transformation).

u(r,z) = ul, 2nanker + U 2) fourier
w(r,z) = w(T, 2 panker + W, 2) fourier
0,(1,2) = 0,(", ) nanker + 02(1, 2) pourier
0, (1,2) = 0,(T, D nanket + (T, 2) fourier

Trz (T', Z) =Trz (T‘, Z)hankel + Trz(r: Z)fourier (2-263'6)

The arbitrary unknown constants cs, ¢g, ¢; and cg can be written in the terms of

unknown function F(a) with the conditions given for inner and outer lateral surfaces of

the cylinder:

14



u(B,z) =0

w(B,z) =0
0,(A,z) =0
T,,(4,2) =0 (2.27a-d)

Therefore, a system of equations can be obtained by applying the boundary conditions
given for inner and outer surfaces of the cylinder to the equations (2.19a-¢), (2.24a-b)

and (2.25a-c):

1 1

== (Ki 1)] {j [(K —1) - 2az]F(a)e™*], (aB) da} cos Az dz

0
%C5IO (AB) + %%KO (AB) — ¢,[(K + 1)I,(AB) + ABI,(AB)]

— ¢g[(K + DKy (AB) — ArK,(AB)]

oo

1 [e)e)
= — — —_ 7 —QzZ d . A d
(K + 1)]() {Oj[ (K +1) = 2az]F(a)e "] ,(aB) a}sm zdz

1 1
s [~21004) + 5 1y (AA)] +ce [—AKO(AA) 2Ky (/1,4)]

+ ¢, [(K = DAL (AA) + 22241, (14)]
+ cg[(K — DAK,(A) — 2224K, (14)]

@D, Uo 2z = = 012,60

0

+2(1 - az)aj, (aA)} F(a)e'“zda} cosAzdz

el (AA) — ceAK, (LA) — ¢, [(K + DAL (LA) + 222 Al (AA)]

— cal(K + DAK, (LA) — 224K, (14)]
o (2.28a-d)

= — (Kj- ) f {f azF(a) ae_“zjl(aA)da} sindzdz
0

0

15



This system of equations (2.28a-d) is in double integral form and it can be reduced to a

single integral form by using the integral formulas given in Appendix A.

1 1

= TE®+D f FOLIK + DI (tAD)K, (BA) + 2ABI, (tA) Ky (BA)

— 2Atl,(tA)K (BA)] dt
%CSIO (AB) + %C6Ko (AB) — ¢, [(K + 1)I,(AB) + ABI,(AB)]

— ¢g[(K + 1)Ky (AB) — ArK,(1B)]

1 b
=~®+D f F(OE[~2tAL, (L) Ko (BA) — (K + 1L (6A)Ko(BA)

+ 2BAL (tA)K,(BA)] dt
1 1
s [—,110 )+, (AA)] + e [—AKO ) - 7K, (AA)]

+ ¢, [(K — DAL, (AA) + 2241, (AA)]
+ cg[(K — 1)AK,(A4) — 2224K,(14)]

(K+1) f f (t)t[ 4(tly(ADK, (t2) — Al (ADK, (1)) A2

N 4(tl (AD Ky (tA) ;All (ADKy(tD)A N 2(K + DI, ;AA)Kl(t)L)] it

e AL (AA) — cg MKy (RA) — ¢;[(K + DAL (LA) + 2A2Al,(14)]
— cg[(K + DAK, (LA) — 224K, (14)]

1P 1,
-~ @D, ror [5/1 (Aly(AD K, (£2)

—tl (AA)Ko(t/’D)] dt (2.29a-d)

Equation (2.29a-d) can now be rewritten as
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1 1
_ECSIl(AB) + §C6K1(AB) + C7AB10(AB) + CBABK()(AB) == El

%CSIO(AB) + %CGKO(AB) — ¢;[(K + 1)I4(AB) + ABI,(AB)]

— [ (K + 1)Ky (AB) — ArK,(AB)] = E,
cs |-A1,(14) + %11 (,m)] t e [—/11(0 (A4) — %Kl (AA)]
+ ¢, [(K — DAL, (AA) + 24241, (14)]
+ o[ (K — DAK(AA) — 2224K, (14)] = Es
csAl (AA) — cgAK; (AA) — ¢, [(K + 1)AI,(AA) + 22%2A1,(AA)]
— ¢s[(K + 1)AK, (AA) — 2A24K,(AA)] = E,

(2.30a-d)

where E;, E,, E; and E, are given in Appendix B and cs, ¢4, c; and cg are unknown

constants. Now cs, ¢g, ¢; and cg can be found in terms of E;, E,, E; and E, by solving

this system of equations (Equations (2.30)) :

_ (41Ey + LBy + 3B + 14 Ey)

Cyg p
(I31E1 + 152E; + lp3E3 + 154Ey)
C6 =
P
(I31Ey + I32E; + I33E5 + 134,E,)
C7 =
P
(g1 Ey + LBy + LigEs + 144 Ey)
C8 = P

where l{; — 144 and P are given in Appendix B.

(2.31a-d)

The expressions for cs, ¢, €7 and cg are found by using the boundary conditions

on the lateral surfaces of the cylinder. The unknown function F(a) can be found by

using the remaining boundary condition that is g, (r,0) = —p(r) on the crack surfaces.
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CHAPTER 3

INTEGRAL EQUATION

3.1. Derivation of Integral Equation

The expression for g,(r,z) can be obtained in terms of the unknown function

F (a) by substituting equation (2.19d) and equation (2.25b) into the equation (2.26c).

4 [ee]
o,(r,z) = T -f-ll)f (az + DF(a)e * aj,(ar) da
0
2u
+ - f [csAlo(AT) + coAKy(AT)
0
- C7 [(K + 5)/110(11”) + 2/121‘11(/17”)]
— cg[(K + 5)AK,(Ar) — 2A%1K, (Ar)]] cos Az dA 3.1)
The remaining boundary condition a,(r,0) = —p(r) can be applied now
4u @
0,(r,0) = K+ 1)J- F(a) ajy(ar) da
0

2u
+ - f [05/110 (Ar) + cgAKy (A1)
0

—¢;[(K + 5)Aly(Ar) + 22271, (Ar)]
— cg[(K + 5)AK,(Ar) — 222rK, (Ar)]] dA = —p(r) (3.2)

Equation (3.2) can be reduced to a singular integral equation with kernel having Cauchy

type singularity (Muskhelishvili 1953):

2u

b
(K + 1)fa f© [& + 2M;(r,t) + tSi1(r, O)|dt = —p(r) (a<r<b) (3.3)

where
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Mi(r,t)—1

M (r,t) = — r>t) 34
—z(t_r)K<£>+ ar E<£>, r>t

Mi(r,t) = r r t;tr r (r<t) (3.5
t+rE(?)’ r<t

K and E are the complete elliptic integrals of the first and the second kinds, respectively.
The equation (3.3) must be solved under the condition for the displacement around the

crack given as

b
j f(®)dt=0 (3.6)

The integral equation (3.3) has three types of singularities

e (Cauchy type singularity att = r
e Logarithmic singularity in the kernel M, (r, t)
e The integral S;;(r,t) has singular terms att = A, t = B andr = +A, r = +B

because of the integrand behaviour as 4 — oo.

The integral S, (r, t) can be rewritten as

S11(r,t) = S115(r, ) + 8145 (r, 1) (3.7)

where S;15(r,t) andS;;,(r,t) denotes singular and bounded part of the integrand

respectively. Then Sy, (7, t) can be expressed as

o)

Si1(r,t) =f Ny (r,t,A)dA (3.8)

0

The singular part of S;;(r, t) can be separated as

5115(7‘, t) - f Nlls(r, t, A) dﬂ. (39)
0
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The integrand of the equation (3.9) has the modified Bessel functions
Iy, Ky, I; and K;. Applying the asymptotic expansions for the modified Bessel functions
are given in the Appendix C and by doing some manipulations the integrand of the

singular part of the integral S;4 (7, t) can be found as

Nyyo(r ) = %{e—l<23—r—t> [%(—4(3 (B -1 - 2(B — A

+6(B—t)A+ (K% + 3))]

+ e2CAT-O[4(A = 1)(A — )% + 2(A — 1)1 + 6(A — t)A

+4]} (3.10)

The integrand of the singular part of the integral S;;(r,t) can be obtained by

using the integration formula given in Appendix D as

1 (|1 d? d
Niis(r, 6, 1) = —{ —<—4(B - T)zﬁ —12(B —71)

JvrellK dr
+ (—K* + 3)> !
t—(2B-r)
+ [—4(A —1r)? 4 +12(A—71) d 2 !
r dr? r dr t—(2A-1r) (3.11)
Therefore, the bounded part of the integral S;,(r,t) can be found as
S11p(r,8) = f [N11(r, £, 4) — Nygs(r, 8, )] dA (3.12)
0
The equation (3.3) can now be rewritten as
1P 2
—f f() [—+t511(r,t) dt = B(r) (a<r<hb) (3.13)
), t—r

where B(r) is the function that contains all the bounded terms of the equation (3.3).
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3.2. Characteristic Equation

The unknown function f(t) is expected to have integrable singularities at the
tips of the crack. Therefore, the singular behaviour of the unknown function f(t) can be

determined by writing

F*(t) (0<Re(y)<1) 314
(t—a)f(b -0y (0 < Re(B) < 1) G-14)

f®) =

where F*(t) is Holder continuous function (Muskhelishvili 1953) in the interval [a, b],
y and S are the unknown constants. The unknown constants y and  can be found by
examining the integral equation (3.13) near the ends r = a and r = b.

The integral equation (3.13), together with equation (3.14) can be written as

1 (b F*(t)
), t—a)fb -ty lt

Er+t511(r,t) dt = B(r) (a<r<b) (3.15)

The integral on the left-hand side of the equation (3.15) near the ends r = a
and r = b can be calculated with the help of the complex function technique described

in (Muskhelishvili 1953). The required integrals are

b _ F*(a)cotmy F*(b) cotmy

AT R o A L R TR
j f(®) it
(t—(2A-7))
B F*(A)e™t
B -AY(24-1) - 4) sinnp
F*(B)e ™! LA

- (B—A)F(B-(4A- r))y sinwy
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f f(®
drm (t—(QA- r))
~ F*(A)e™ip ~ F*(B)e ™y
~B-AYA-nFf*isinmf (g g)8(B - (24— 1)) sinny
+ A,(r)
d> 1 (% f®
drim), (t—QA-1))

dt

_ F@e™Pip+1) F*(B)e ™y(y + 1)
(B—AY(A=r)f*2sinmB (g _ 4)8(B - (24—7))" " sinmy
+ A3(r)
1 (B t
), (t- {Z(B)— 1)) a
B F*(A)emBi
B -AY(2B—-7)—A) sinnp
F*(B)e ™!

- (B—A)A(B- (2B - r))y sinmy T B

f f@®)
drm), (t— B - r))

_ F*(A)e™'p ~ F*(B)e ™y
B -AY(2B-1)—A4) " sinngp B —AF@—BY*isinmy
+ B, (1)
a1 f©
drem], (t— (2B -1)
_ F*(A)e™'B(B + 1)
B (B—-AY((2B-1) - A)[HZ sinmf

F*(B)e ™'y(y + 1)
(B—A)A(r — B)Y*2sinmy

+Bs(r) (3.16a-g)

where L(r), A;_3(r) and B;_5(r) are the bounded parts.
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3.2.1 Internal Crack

By substituting the equation (3.16a) into the equation (3.15) and multiplying the
resulting equation by (r — a)# and considering the limiting case  — a for an internal

crack (A < a), the following characteristic equation for 8 can be obtained as
costff =0 (3.17)

Therefore, = % that is in perfect agreement with the results for an embedded crack tip

in a homogeneous medium.
By substituting the equation (3.16a) into the equation (3.15) and multiplying the
resulting equation by (r — b)Y and considering the limiting case r — b for an internal

crack (b < B), the following characteristic equation for y can be obtained as
cosmty =0 (3.18)

Therefore, y = % is obtained for this case.

These results are in agreement with the previous studies, (Cook ve Erdogan
1972), (Gupta 1974), (Delale ve Erdogan 1982), (Nied ve F. 1983), (Artem ve Gegit
2002), (Aydin ve Artem 2007).

3.2.2 Crack Terminating at Rigid Surface
When the crack spreads out at the rigid surface along the crack (b = A4), in
addition to equation (3.16a), equation (3.16e-g) must also be substituted into the

equation (3.15). Multiplying the resulting equation by (B —r)" and considering the

limiting case r = B, the following characteristic equation can be obtained as
2K cosmy +4y?> -8y +3—-K? =0 (3.20)

The equation (3.20) is in agreement with (Kaman and Gecit 2006).
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3.2.3 Internal Edge Crack

When the crack spreads out and the cylinder is completely broken along the
crack (a = A), in addition to equation (3.16a), equation (3.16b-d) must also be
substituted into the equation (3.15). Multiplying the resulting equation by (4 — r)# and
considering the limiting case r — A , the following characteristic equation for § can be

obtained as

cosmtB =2B(B—2)+1 (3.19)

Therefore, § = 0 is obtained.

3.3. Solution of the Integral Equation

After obtaining the singular behaviour of the unknown function, the integral in
the equation (3.3) can be rewritten as a non-dimensional equation by using the

dimensionless variables T and ¢ for the cracks:

t=”_7ar+bzﬂ (a<t<b),(-1<t<1)
r:*%“ubzi (a<r<b),(-1<&<1)  (3.2lab)

in the following form

(K+1)

L@ E A mED +8uE D] dr= -EEER (-1<§ <) (3.22)
where
_ b — b
f(r)=f( Zar+ era) (3.23)
My(¢,70) = (b—a)M, (&, 1) (3.24)
R b—a\ /b— b
S11(6,1) = ( 5 a)( 5 s era) S11(§,7) (3.25)
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3.3.1 Internal Crack

The singular behaviour of the dimensionless unknown is to be

_ . F(»
f(@) = =) (3.26)
where
_ _ -1
ﬁ(r)=F(b2ar+b;a)(b2a) (3.27)

Substituting equation (3.26) into the equation (3.22), the following singular

integral equation is obtained:

F*(1) _ .
+M1(E;T) + 511, 1) dt
f W=7 K41 (—1<&<1) (328)
__pw T
— o

The integral equation (3.28) can be reduced to an algebraic system by using the

Gauss-Lobatto integration formula given in Appendix E:

< V(K +1
DG 1)[ () + S| = -EEEED o)
i=1
where
T; = oS ((ln__liﬂ (i=123,..,n) (3.30 a)
(2j—1) .
£ = cos | o S G=123, ..,n—1) (3.30 b)
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are the roots of the weighting constants of related Lobatto polynomials. The algebraic
system (3.29) has n unknowns, F*(t;) and (n — 1) equations. The single valued
condition (Equation (3.6)) must be used to have n equations because the number of

unknowns is larger than the number of the equations. The equation (3.6) becomes
n
Z CF(r;) = 0 (—1<t<1) (3301
i=1

3.3.2 Crack Terminating at Rigid Surface

The singular behaviour of the dimensionless unknown is to be

) = O (332)
I _\/1+T(1—T)V ‘
where
b b b _%_y
F@=F(5r+50) () 639

Substituting equation (3.32) into the equation (3.22), the following singular

integral equation is obtained:

LD 12 g+ 5u@)|dr

mlaVTre -yl —g 7T T (-1<E<1) (34
_ pPOE+D
- KOFrD

The integral equation (3.34) can be reduced to an algebraic system by using the

Gauss-Jacobi integration (Erdogan, et al. 1973):
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n
_ p(&)(K + 1)
Z F l) l 5 + Ml(gj!‘[l) + 511(51' l) ]T (3-35)
where W; are the weights, 7; and &; are the roots of Jacobi polynomials:
Prf_a’_ﬁ) () =0 (i=123,..,n)
PP (e) =0 G=123,...n—1) (3.36a-c)

The algebraic system (3.35) has n unknowns, F*(t;) and (n — 1) equations. The single
valued condition (Equation (3.6)) must be used to have n equations because the number

of unknowns is larger than the number of the equations. The equation (3.6) becomes

Z (r;) =0 (—1<1<1) (337)

i=1

The infinite integral appearing in the bounded part of S;; (&, T) can be obtained
numerically by using Laguerre integration method, Appendix E, for each t; and
¢;values. The behaviour of the unknown function at the tips of the crack (r; = £1) is

characterized by the stress intensity factor.
3.4. Stress Intensity Factors

The stresses become infinite at the tips of the crack in crack problems. The stress
state at close vicinity of the tips of the crack will be presented by the stress intensity
factor. The stress intensity factors at the tips of the crack will be calculated in the

following section.
3.4.1. Stress Intensity Factors at the Tips of Internal Crack

In this study, only Mode I stress intensity factor calculations and investigation
will be considered. Mode I stress intensity factor at the tips of the crack has been

defined in (Erdol ve Erdogan 1978) as
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ki(a) = lim y/2(a — 1) 0,(r, 0),
k,(b) = ll_r;% V2(r —b)a,(r,0). (3.38a-b)

a,(r,0) can be expressed in terms of the integral equation(3.3):

N 0]
0,(r,0) = T 1)fa ) dt + 05p mgeqd (T 0) (3.39)
where
2u b
UZbounded(r’ O) = mfa f(t) [2M1 (7‘, t) + tSll(r; t)]dt- (3.40)

Now f(t) can be written as

Fr@)/y(b—1t)

foe PO Je-a = e
JE—a)(t—-b) |F(@)em™?/J(t-a) B
L , neart=»,
N (3.41)

and the integral equation (3.39) can be evaluated by using the method given in

(Muskhelishvili 1953)

+L'(r)  (3.42)

1 f”&dt: e"?F () F* (b)
m), (E—7) sin%\/(b—a)(r—a) sin%\/(b—a)(r—b)

where L*(r) is the bounded part of the integral equation (3.42) for (a <r < b). Asr
approaches a, the second part of the integral equation (3.42) will be bounded too.

Therefore, the integral equation (3.42) becomes
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+ L (r) (3.43)

1 f@® F*(a)
- dt =
nfa O o RN Ty repey

where L**(r) contains all the bounded parts of the integral equation. Now the stress
intensity factors given by the equation (3.38) can be expressed in term of the unknown
function F*(t). And by substituting the equation (3.39) and the equation (3.43) into the

equation (3.38), the stress intensity factors can be found as

ky(a) = 4uF*(a)
K +1) 252
4uF*(b)
k1(b) = - ) b
N —a (3.44a-b)

To find the normalized stress intensity factors k;(a) and k,(b), the
dimensionless form of the F*(t) will be used. Comparing the equation (3.26) and the
equation (3.41), it can be related F*(t) and F*(7) by

F*(t) = (b%“) (1) (cl<t<1) (3.45)

By substituting the equation (3.45) into the equation (3.44), the normalized

stress intensity factors k, (a) and k,(b) becomes

_ _ 4u =

L@ =rmacrnt Y

k_(b)——4—“F(1) 3.46a-b
O =—Soxrn’ (3.462-b)

3.4.2 Stress Intensity Factors at the Tips of Crack Terminating at
Rigid Surface

Using a similar procedure used in the previous section the normalized stress

intensity factors k;(a) and k,(b) can be obtained as (Birinci 2002).
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() — du =
L@ SmrEn” Y
) = ——F ) 3.47a-b
) =—smw+n W (3.47a-5)
where
1-2y)

2 sinmy
3.4.3 Stress Intensity Factor at the Tip of Internal Edge Crack
Following a similar procedure as in Section 3.4.1, it can be obtained that

4p

e GICES)

F*(1). (3.49)
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CHAPTER 4

NUMERICAL RESULTS AND DISCUSSION

Normalized stress intensity factors k,(a) and k,(b) are calculated for various
geometric configurations. Results are obtained for the following load distributions on
crack surfaces:

Po(r) =p,
3(b%? — a®)(r — B)
b3 — 3Bb2 — 243 + 3Ba2F°

pi(r) = (412-0)

where p, is the mean of compressive distributed load on crack surfaces. The uniform
pressure on crack surfaces is considered for the purpose of possible comparisons; since
extensive numbers of examples with uniform load that appear in the literature. The
outer wall is rigidly fixed while the inner surface is stress free. It is obvious that stress
distribution at the location of crack for infinite cylinder loaded at infinity will not be
uniform. It will vary with radial coordinate r. In order to present additional useful
results one may expect for the perturbation problem in such situations where the infinite
cylinder is loaded at infinity, here linearly varying load distribution on the crack
surfaces are also considered.

In numerical calculations, one needs to define dimensionless load distributions

as in the following form:

Do(£) = po

3(rs2 =1 2)((rs —1)E + 13+ 1, — 2)
2(2T33 - 37'32 - 27"23 + 37'22)

pi(§) = Do (4.2a-b)

where r, = a/B,r; = b/B.

The following case is considered to check the formulation and the numerical
results of the problem as a starting point: when the crack size becomes very small
compared to other dimensions of the hollow cylinder (b — a)/A = 1075), the problem
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turns out to be finite crack in an infinite medium and therefore the normalized stress
intensity factors k; (a) and k,(b) approach unity (see Table 4.1). This is a well-known
result for crack tips surrounded by a homogenous medium. Table 4.1 shows the
variation of the normalized stress intensity factors k, (a) and k, (b) for an internal crack

in thick-walled cylinder.

Table 4.1. Variation of the normalized stress intensity factors for an internal crack in
the thick-walled cylinder (A/B = 0.25,v = 0.3) for load distribution

of po (1) = po.

e k@ T (b)
10” 1.000000 1.000000
0.2 1.009990 0.990367
0.4 1.020380 0.980565
0.6 1.031450 0.970255
0.8 1.043670 0.959180

1 1.057750 0.947087
1.2 1.074640 0.933708
1.4 1.095470 0.918781
1.6 1.121410 0.902146
1.8 1.153310 0.883965
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Figures 4.1-4.4 show the variation of the normalized stress intensity factors at

the tips of the central crack (net ligaments, (a — A) and (B — b), are equal) for load

3(b%?-a?)(r-B)
2b°—3Bb2-2a%+3Ba2 PO’

distributions of py(r) = p, and p,(r) = respectively. As the
crack size is increased (the thickness of the net ligaments are decreased), the normalized
stress intensity factor at the inner tip of the crack (k,(a)) increases while the

normalized stress intensity factor at the outer tip of the crack (k, (b)) decreases.

1.18 +
1.16 -
1.14 A
1.12 -
1.10 -

yla) o, =03
108 T * g

1064 = e P v=0.2
1.04 - IR - = v=034

1.02 - T

1-00 T T T T T T T T 1

Figure 4.1. Variation of the normalized stress intensity factor k, (a) for an internal crack
in the thick-walled cylinder (A/B = 0.25) for uniform load distribution

of po(1) = p,
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Figure 4.2. Variation of the normalized stress intensity factor k, (b) for an internal crack
in the thick-walled cylinder (A/B = 0.25) for uniform load distribution

of po(r) = py
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Figure 4.3. Variation of the normalized stress intensity factor k, (a) for an internal crack
in the thick-walled cylinder (A/B = 0.25) for linear load distribution

_ 3(b2-a?)(r-B)
of P (1) = S sarrasaz PO
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Figure 4.4. Variation of the normalized stress intensity factor k, (b) for an internal crack
in the thick-walled cylinder (A/B = 0.25) for linear load distribution

_ 3(b2-a?)(r-B)
of p1(1) = S s e rasaz PO

Figures 4.5-4.6 show the comparison of the stress intensity factors at the tips of
the central crack (net ligaments, (a — A) and (B — b), are equal) for load distributions

3(b%?-a?)(r-B)
2b®—3Bb2—2a3+3Baz2 PO

of po(r) =p, and p,(r) = with v=0.3.
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Figure 4.5. Variation of the normalized stress intensity factor k, (a) for an internal crack
in the thick-walled cylinder (A/B = 0.25, v = 0.3) for load distributions

3(b%-a?)(r-B)
of po(r) = poand py (r) = 2Dy,
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Figure 4.6. Variation of the normalized stress intensity factor k, (b) for an internal crack
in the thick-walled cylinder (A/B = 0.25, v = 0.3) for load distributions

of po(r) = pyand py (r) = —L-=a)=H)

2b3-3Bb2-2a3+3Ba2 F'0
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Figures 4.7-4.10 show the variation of the normalized stress intensity factors at

the tips of the internal crack for uniform load distribution of p,(r) = p,and for linear

3(b%-a?)(r-B)
2b3—3Bb2-2a3+3Ba2 PO

load distribution of p,(r) = As the outer tip of the crack

approaches to the outer wall of the hollow cylinder while the inner tip of the crack is
being held constant (b/A increases from 2.5 to 3.4, a/A = 1.6), the normalized stress
intensity factor at the inner tip of the crack (k,(a)) increases while the normalized

stress intensity factor at the outer tip of the crack (k, (b)) decreases.

1.17 -+

1.15 -

1.13 -

ky(a) 1.11 v=0.3

....... v=0.2
1.09 -

- = v=0.34
1.07 -

1-05 T T T T T T T T 1
2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 33 3.4

b/A

Figure 4.7. Variation of the normalized stress intensity factor k, (a) for an internal crack
in the thick-walled cylinder (A/B = 0.25, a/A = 1.6) for uniform load
distribution of p,(r) = p,
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Figure 4.8. Variation of the normalized stress intensity factor k, (b) for an internal crack
in the thick-walled cylinder (A/B = 0.25, a/A = 1.6) for uniform load
distribution of py(r) = p,
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Figure 4.9. Variation of the normalized stress intensity factor k, (a) for an internal crack
in the thick-walled cylinder (A/B = 0.25,a/A = 1.6) for load distribution

_ 3(b%-a?)(r-B)
of p,(r) = 2b3-3Bb%-2a3+3Ba? " ©
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Figure 4.10. Variation of the normalized stress intensity factor k,(b) for an internal
crack in the thick-walled cylinder (A/B = 0.25,a/A = 1.6) for load
3(b%-a?)(r-B)
2b3-3Bb2—2a3+3Ba? " 0

distribution of p,(r) =

Figures 4.11-4.12 show the comparison of the stress intensity factors at the tips

of the internal crack for uniform load distribution of p,(r) =p, and linear load

3(b%-a?)(r-B)
2b3—3Bb2—2a3+3Ba2 PO

distribution of p,(r) = as the outer tip of the crack approaches to

the outer wall of the hollow cylinder while the inner tip of the crack is being held

constant.
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Figure 4.11. Variation of the normalized stress intensity factor k,(a) for an internal
crack in the thick-walled cylinder (A/B = 0.25, v = 0.3,a/A = 1.6) for
3(b%-a?)(r-B)
2b3-3Bb2—2a3+3Ba2 IO

load distributions of py(r) = p,and p,(r) =
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Figure 4.12. Variation of the normalized stress intensity factor k,(b) for an internal
crack in the thick-walled cylinder (A/B = 0.25, v = 0.3,a/A = 1.6) for
3(b2-a?)(r-B)
2b3-3Bb2-2a3+3Ba2 IO

load distributions of p,(r) = poand p;(r) =
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Figures 4.13-4.16 show the variation of the normalized stress intensity factors at

the tips of the internal crack for uniform load distribution of p,(r) = p, and linear load

3(b%-a?)(r-B)
2b3—3Bb2-2a3+3Ba2 PO

distribution of p,(r) = As the inner tip of the crack approaches

to the inner wall of the hollow cylinder while the outer tip of the crack is being held
constant (a/A increases from 1.6 to 2.5,b/A = 3.4), the normalized stress intensity
factor at the inner tip of the crack (k;(a)) decreases while the normalized stress

intensity factor at the outer tip of the crack (k, (b)) increases.
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Figure 4.13. Variation of the normalized stress intensity factor k,(a) for an internal
crack in the thick-walled cylinder (A/B = 0.25, b/A = 3.4) for uniform
load distribution of p,(r) = p,
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Figure 4.14. Variation of the normalized stress intensity factor k,(b) for an internal

crack in the thick-walled cylinder (A/B = 0.25, b/A = 3.4) for uniform
load distribution of p,(r) = p,

oy (@)

1.60 -+
1.55
1.50
1.45
1.40
1.35
1.30
1.25

1.20

a/A

Figure 4.15. Variation of the normalized stress intensity factor k,(a) for an internal

crack in the thick-walled cylinder (A/B = 0.25,b/A = 3.4) for load
3(b%-a?)(r-B)

distribution of p; (r) = ————————— 1o
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Figure 4.16. Variation of the normalized stress intensity factor k,(b) for an internal
crack in the thick-walled cylinder (A/B = 0.25,b/A = 3.4) for load
3(b%-a?)(r-B)
2b3-3Bb2—2a3+3Ba? " 0

distribution of p,(r) =

Figures 4.17-4.18 show comparison of stress intensity factors at the tips of the

3(b%-a?)(r-B)
2b3-3Bb2-2a3+3Ba2 0

as the inner tip of the crack approaches to the inner wall of the hollow cylinder while

internal crack for load distributions of py(r) = p, and p,(r) =

the outer tip of the crack is being held constant.
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Figure 4.17. Variation of the normalized stress intensity factor k,(a) for an internal
crack in the thick-walled cylinder (A/B = 0.25, v =0.3,b/A = 3.4) for
3(b%-a?)(r-B)
2b3-3Bb2—2a3+3Ba2 IO

load distributions of py(r) = p,and p,(r) =
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Figure 4.18. Variation of the normalized stress intensity factor k,(b) for an internal
crack in the thick-walled cylinder (A/B = 0.25, v =0.3,b/A = 3.4) for
3(b2-a?)(r-B)
2b3-3Bb2-2a3+3Ba2 IO

load distributions of p,(r) = p,and p;(r) =
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Figures 4.19-4.22 show the variation of normalized stress intensity factors k, (a)
and k,(b) at the tips of the crack terminating at the rigid surface. As a/A increases
(crack gets further from the free inner surface), k; (a) decreases considerably more than
k4 (b) for all values of v=0.2, v=0.3, v=0.34.
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Figure 4.19. Variation of the normalized stress intensity factor k,(a) for a crack
terminating at rigid surface in the thick-walled cylinder
(A/B = 0.25, b/B = 1) for load distribution of py(r) = p,
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Figure 4.20. Variation of the normalized stress intensity factor k,(b) for a crack
terminating at rigid surface in the thick-walled cylinder
(A/B = 0.25, b/B = 1) for load distribution of p,(r) = p,
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Figure 4.21. Variation of the normalized stress intensity factor k,(a) for a crack
terminating at rigid surface in the thick-walled cylinder
(A/B =0.25,b/B =1) for linear load distribution of

_ 3(b2-a?)(r-B)
pi(r) = 2b3-3Bb2—-2a3+3Ba? 0
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Figure 4.22. Variation of the normalized stress intensity factor k,(b) for a crack
terminating at rigid surface in the thick-walled cylinder
(A/B =0.25,b/B =1) for linear load distribution of

_ 3(b%-a?)(r-B)
pi(r) = 2b3-3Bb2—-2a3+3Ba2 0

Figure 4.23 and Figure 4.24 are presented for comparison purposes for v=0.3.
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Figure 4.23. Variation of the normalized stress intensity factor k,(a) for a crack
terminating at rigid surface (A/B = 0.25, v =0.3,b/B = 1) for load
3(b%-a?)(r-B)

distributions of py(r) = p,and p,(r) = 733507 —aaitapaz PO
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Figure 4.24. Variation of the normalized stress intensity factor k,(b) for a crack
terminating at rigid surface (A/B = 0.25,v =0.3,b/B = 1) for load
3(b%-a?)(r-B)
2b3-3Bb2—2a3+3Ba2 "0

distributions of p,(r) = p,and p,(r) =
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When a/A =1 and b/A increases (crack tip gets closer to the rigid surface),
k,(b) increases initially while the crack length has relatively small values, then
decreases slightly. This can be seen in Figure 4.25 and Figure 4.26.
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Figure 4.25. Variation of the normalized stress intensity factor k,(b) for an internal
edge crack in the thick-walled cylinder (A/B = 0.25, a/A = 1) for load
distribution of py(r) = p,
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Figure 4.26. Variation of the normalized stress intensity factor k,(b) for an internal
edge crack in the thick-walled cylinder (A/B = 0.25,a/A = 1) for load
3(b%-a?)(r-B)
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Variation of k,(b) for uniform and linear loadings with v=0.3 for an internal
edge crack is shown in Figure 4.27 for comparison purposes.
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Figure 4.27. Variation of the normalized stress intensity factor k,(b) for an internal
edge crack in the thick-walled cylinder (A/B = 0.25, v = 0.3,a/A = 1)

for load distributions of py(r) = p,and p,(r) =

3(b%-a?)(r-B)
2b3-3Bb2-2a3+3Ba2 'O
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CHAPTER S

CONCLUSION

In this thesis, the stress intensity factors for an infinite hollow cylinder at the tips
of the crack is calculated for an internal crack (embedded), a crack terminating at the
rigid surface and internal edge crack. Problem is defined and modelled in terms of a
linear second order partial differential equation system with mixed boundary conditions.
Integral transform techniques are used to solve these governing equations that are
reduced to a singular integral equation. Solving this singular integral equation
numerically, normalized stress intensity factors are calculated for various geometric
conditions and for various Poisson’s ratio. Numerical results are presented in graphical
forms.

The following results are concluded:

1. Itis observed that k, (a) is always greater than k (b).

2. As the outer crack tip approaches the rigid wall (b increases), k,(b) decreases
because rigid wall prevents the crack opening.

3. As the inner crack tip approaches the stress free surface (a increases), k,(a)
increases since the free lateral surface lets the crack open.

4. The results are also compared for uniform and linear loadings applied on crack
surfaces. Both showed the similar behaviour for stress intensity factors at the
crack tips.

5. It is observed that, stress intensity factors are affected by Poisson’s ratio as a
material property.
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APPENDIX A

INTEGRATION FORMULAS

fo i @%m]o (Aa) Jo(ta)da = I,(AD)K,y(tA) (A<t)
fo ’ ﬁh(z‘m)]g(w}da = — A, (ADK,(t2) (A<t)
fo i ﬁh (Aa) J1(ta)da = I, (AD)K, (t2) A<b
fo ’ ﬁfo (Aa) Jy(ta)da = Al (AAV)K; (1) (A<t)

* 1
fo mJO(Aa)]O(m)da =57 [—AL (ADK,(tA) + tI,(ADK,(tD] (A <?)

| wrmph@onade
0

(A<t
- % (AL, (AN K, (E1) — AtL, (AA)K, (A)]
[ armeh as Gada
’ A<t)
= % —Al (AVK, (t1) + %11 (AVK,(tA) + tI; (AN K,y (tA)
o0 a?
———Jo(4 d
fo (a? +/'12)2]0( a) J;(ta)da o
= % [—AAL (AV) K, (tA) + Aty (ALK, (tA)]
[ o) n(tarda = KoBAI(e2) B=0
0
o 2
| e h B oeda = 2K, BRI (B> 0
0
[ i B tda = K BOLED 520
0

[ o B (e =~ (BD1 () ® >0
0
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f" (@ 1 /o B fota)da = 52 [BG (B, (¢4) = Ko (B, (t)]

[ee] az
f mh (Ba) Jo(ta)da
0

_ % [BAK, (BA)Iy(tA) — tAK, (BA)L, (t1)]

f (az;;mzfl (Ba) J;(ta)da
1 2
= 72 [BKo(Bﬂ)Il(t/l) + I](1(3/1)11(1%)

1
—o7 (BA)IO(M)]

f (az+—/12)210(3a)11(ta)da

= L [2BAK, (B (1) + 2K, (BA) o ()]

21

(B=1t)

(B=10)

(B=1t)

(B=t)
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APPENDIX B

INTEGRAL FORMS AND COEFFICIENTS

E,, E,, E; and E, integrals are given as

b
E, =— T _1|_ 1)f fOt[(K + 1)I;(tA)K,(BA) + 2ABI, (tA)Ky(BA)
— 2Atl,(tA)K, (BA)] dt
1 b
B =~ TS j FOt[=26A1, (E)Ky(BA) — (K + 1)L (DK, (BA)

+ 2BAIL (tA)K (BA)] dt

1 b
Bo= s fa fo)t l—4(tIO(A/1)KO(tA) — AL (ADK, (t1))22

4(tl (ADK(t) — AL (ANK,(tD)A 2(K + DI (ADK,(tA)
* A * A

|

1

b 1
E,=— KD fa f(o)t [5,12 (AL, (ADK, (t2) — tll(Axl)Ko(tl))] dt

l,1 — 44 coefficients are given as

L= <2AB(H01KO(AA) — Hy1 K, (AD)) — 24K (B’D> A4

A

+ <2A(K + 1) (HooKo(AD) — Hyoly (a1)) + EEF D (B@) e

Al
(K + 1)(K + 3)K,(BA) BHy, (K + 1)K, (A1) 12
T~ 242 B A
_ Hyo(K + 1)K, (ADA
A

24K, (BA
L, = <2AB(HOOKO(AA) — HyoK,(AD)) + ;( )> A%

(1= KDK,(BY)  BHy(K + DK, (4D ,  BEK + DK (B2
( 242 B A > B A
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i3 = (AB(HOOKO (BA) — Hy1K1(BA)) — BKl—(A’D> 3

A

+ (A(K + 1)Hy K, (BA) — %B(K + 1)(Hy Ko (BA) + HllKl(Bxl))) A2

1
— 5 (K + 1)°Hy02K, (BA)

BK,(AA)
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— AB(HyKy(BA) + Hy1 Ky (BA))) A3
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_ Hyo(K + 1)L (A0A
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(K2 + 4K + 3)Io(BA)  BH111,(A2) 12
242 A

241, (BA
l,, = <—2ABH0010 (A1) — 2AH;,1,(AM) + L) A

A

o (_BHwh (D BHKLAD | (- K1, (BA) 12
A A 241
B(K + 1)I,(BA)A?
+ A
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l24 s <_ABH1111(B/1) - + ABHlolo(BA)>/13
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1
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AL 24
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AL 24
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+ _BH0111(BA)

AL(AD) 1 12
2B1 2
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lys = <_§BH0010(BA) -
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D is given as
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A A
BKL (ADL (BIK, (ADKy (BI)X® | AF
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24 A

, JoBOLBK (A4 K1 (ADL (BIK(BAK, (A1)
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o KLADLBOKBOKIADA | LADLBOKy(BAK(ADA

A
_ K2L(AD*Ko(BOK (BA K1 (AX)?Ko(BAK, (BA)A
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APPENDIX C

ASYMPTOTIC EXPANSIONS

Asymptotic expansions for modified Bessel functions for A — co (Abramowitz
and Stegun 1965)

e 1B\1r 3 15
K,(BL)~ Vm 14— —
V2B 8AB 12812B2
e M\ 3 15
K ()~ (1 YT 128/12t2>
e M\ 3 15
K (A~ ——== (1 A 128/12A2>
e M\ 3 15
Ky (rA)~ \/_(1 e =y
\2r 8Ar 128A%r
e B\ 1 9
Ko(Bl)"’ (1 - + 2 2)
V2B 8AB | 12812B
—At\/E 1 9
Ko(tll)"' (1 -4 ﬁ)
NooT: 8At | 12812t
e M\ 1 9
Ko(Ad)~ 214 <1 “ema 128,12A2)
e "\ 1 9
Ko(r2)~ (1- 5+ 35p2)
\2Ar 8Ar  128A%r
I,(BA) e’ (1 3 15 )
! V2B 8AB 12812B2
LD et (1 3 15 )
1 2L 8At 12812t2
LA~ (1 3 15 )
! V2miA 81A 12812A2
L) elr (1 3 15 )
WA o T 1282212
I,(BA) e’ (1+ 1,0 )
0 >TAB 8AB ' 12812B2
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APPENDIX D

ALGEBRAIC EQUALITIES

(B-r(B-t)  (B-71) (B —r)?
2B—r—1t)3  (2B-r—t)2 (2B-—r—t)3
B-t) 1 (B—r1)
2B—r—t)2 (2B—r—t) (2B—r—t)2
A-r@A-1) (A=7) (A —1)?
(—2A+71+1)° QA—r—1t)?2 (A—r1—t)3
Aa-v 1 (A—7)
(—2A+7r+1t)2 A-r-t) QA—-1-1t)?
1 1 d2 1
@2B—r—03%  2dr? [(t+r—2B)]
1 1d 1

(2B—r—1t)3  2dr(t+r—2B)
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APPENDIX E

GAUSS-LOBATTO AND GAUSS-LAGUERRE
INTEGRATION

Gauss-Lobatto integration formula

1 f© AN
o Ol 2. Cf Gowte)

where

- (i—-Dn (i=123..,
; = COoS =1

1 (i =234
C_: Iy Ly weey
L on—1
C, =C, = !
="M 7 2(n-1)

Gauss-Laguerre integration formula

dt = —t[,t dt ~ ; t ;
fo @) dt fo etletf(0)] dt ;w(t)e @)

where t; are abscissas and w(t;) are weights of the Laguerre integration.

n—1)
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