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ABSTRACT

COMPARISON OF GEOMETRIC INTEGRATOR METHODS FOR
HAMILTON SYSTEMS

Geometric numerical integration is relatively new area of numerical analy-

sis. The aim of a series numerical methods is to preserve some geometric prop-

erties of the flow of a differential equation such as symplecticity or reversibility.

In this thesis, we illustrate the effectiveness of geometric integration methods.

For this purpose symplectic Euler method, adjoint of symplectic Euler method,

midpoint rule, Störmer-Verlet method and higher order methods obtained by

composition of midpoint or Störmer-Verlet method are considered as geometric

integration methods. Whereas explicit Euler, implicit Euler, trapezoidal rule, clas-

sic Runge-Kutta methods are chosen as non-geometric integration methods. Both

geometric and non-geometric integration methods are applied to the Kepler prob-

lem which has three conserved quantities: energy, angular momentum and the

Runge-Lenz vector, in order to determine which those quantities are preserved

better by these methods.
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ÖZET

HAMİLTON SİSTEMLER İÇİN GEOMETRİK ENTEGRASYON
YÖNTEMLERİNİN KARŞILAŞTIRILMASI

Geometrik entegrasyon nümerik analizin nispeten yeni alanlarından

biridir. Birçok sayısal metodun amacı diferansiyel denklemlerin çözümünün

simplektiklik ya da tersine çevrilebilirlik gibi bazı geometrik özelliklerini koru-

maktır. Bu tezde geometrik entegrasyon yöntemlerinin etkisini ortaya koyduk.

Bu amaç doğrultusunda geometrik entegrasyon yöntemleri olarak simplektik

Euler metodu, simplektik Euler metodunun adjonti, Störmer-Verlet metod ve

midpoint ya da Störmer-Verlet metodun bileşkesi ile elde edilen yüksek mer-

tebeden metodları kullandık. Aynı zamanda Explicit Euler, Implicit Euler, trape-

zoidal rule ve klasik runge-kutta yöntemleri geometrik olmayan entegrasyon

yöntemleri olarak kullanıldı. Enerji, açısal momentum ve Runge-Lenz vektörü

gibi üç tane korunan, geometrik özelliği olan kepler problemine, bu özelliklerin

hangi yöntemler tarafından daha iyi korunduğunu saptamak için hem geometrik

hem de geometrik olmayan entegrasyon yöntemleri uygulandı.

v



vi 

 

 TABLE OF CONTENS 

 

LIST OF FIGURES ........................................................................................................ ix 

CHAPTER 1. INTRODUCTION ..................................................................................... 1 

CHAPTER 2. PRELIMINARIES..................................................................................... 3 

2.1. Introduction to ODEs............................................................................. 4 

2.2. The Exact Flow of an ODE.................................................................... 5 

2.3. Hamiltonian Systems ............................................................................. 6 

CHAPTER 3. NUMERICAL METHODS ....................................................................... 8 

3.1. One Step Method ................................................................................... 8 

3.2. Derivation  of  One-step Method ........................................................... 9 

3.3. Elementary One Step Method................................................................ 9 

3.4. Runge-Kutta Methods.......................................................................... 10 

3.5. Partitioned Euler Method..................................................................... 11 

3.6. The Störmer-Verlet Scheme ................................................................ 12 

3.7. Partitioned Runge-Kutta Methods ....................................................... 13 

3.8. Splitting and Composition Methods .................................................... 14 

3.9. The Adjoint of a Method...................................................................... 17 

CAHPTER 4. CONSERVED QUANTITIES AND GEOMETRIC  
INTEGRATION...................................................................................... 19 

4.1. Exact Conservation of Invariants......................................................... 19 

4.1.1. Ouadratic Invariants ...................................................................... 21 

4.2.  Symplectic Transformations ............................................................... 23 

4.3. Examples of Symplectic Integrators .................................................... 26 

4.4. Symplectic Runge-Kutta Methods ....................................................... 27 

4.5. Examples of Applications of Symplectic Integrators .......................... 29 

4.6. Symmetric Integration and Reversibility ............................................. 32 



vii 

 

4.6.1. Reversible Differential Equations and Maps ................................ 32 

4.7. Examples of Symmetric Methods........................................................ 36 

4.8. Geometric Structures in Hamiltonian Systems .................................... 36 

4.9. Geometric Integration .......................................................................... 37 

4.9.1. Philosopy of Geometric Integration .............................................. 38 

4.10. The Kepler Problem and Its Conserved Quantities............................ 40 

CHAPTER 5. A COMPARISION OF SYMPLECTIC AND  
NON-SYMPLECTIC METHODS APPLIED TO KEPLER  
PROBLEM.............................................................................................. 43 

5.1. First Order Methods............................................................................. 43 

5.1.1. Phase Spaces ................................................................................. 43 

5.1.2. Conservation of Energy................................................................. 46 

5.1.3. Conservation of Angular Momentum ........................................... 48 

5.1.4. Conservation of Runge-Lenz Vector ............................................ 50 

5.2. Second Order Methods ........................................................................ 52 

5.2.1. Phase Spaces ................................................................................. 52 

5.2.2. Conservation of Energy................................................................. 54 

5.2.3. Conservation of Angular Momentum ........................................... 56 

5.2.4. Conservation of Runge-Lenz Vector ............................................ 58 

5.3. Third Order Methods ........................................................................... 60 

5.3.1. Phase Spaces ................................................................................. 60 

5.3.2. Conservation of Energy................................................................. 62 

5.3.3. Conservation of Angular Momentum ........................................... 64 

5.3.4. Conservation of Runge-Lenz Vector ............................................ 66 

5.4. Fourth and Fifth Order Methods .......................................................... 68 

5.4.1. Phase Spaces ................................................................................. 68 

5.4.2. Conservation of Energy................................................................. 70 



viii 

 

5.4.3. Conservation of Angular Momentum ........................................... 72 

5.4.4. Conservation of Runge-Lenz Vector ............................................ 74 

CHAPTER 6. SUMMARY AND CONCLUSION ........................................................ 76 

REFERENCES ............................................................................................................... 79 

APPENDICES 

APPENDICES A. MATLAB CODES ........................................................................... 80 

A.1. First Order Methods...................................................................... 80 

A.1.1. Explicit Euler ......................................................................... 82 

A.1.2. Implicit Euler ......................................................................... 83 

A.1.3. Adjoint of Symplectic Euler .................................................. 85 

A.2. Second Order Methods ................................................................. 87 

A.2.1. Trapezoidal Rule.................................................................... 87 

A.2.2. Midpoint Rule........................................................................ 89 

A.2.3. Störmer-Verlet Method.......................................................... 91 

A.3. Second Order Methods ................................................................. 93 

A.3.1. Third Order Runge-Kutta Method ......................................... 93 

A.3.2. Composition Method of Order 3  
(Midpoint as base method).................................................... 94 

A.3.3. Composition Method of Order 3 ( Störmer-Verlet as base 
method).................................................................................. 99 

A.4. Fourth and Fifth Order Methods ................................................. 102 

A.4.1. Fourth Order Runge-Kutta Method ..................................... 102 

A.4.2. Composition Method of Order 5 (Midpoint as base method)104 

A.4.3. Composition Method of Order 5 (Störmer-Verlet as base 
method)............................................................................... 110 



LIST OF FIGURES

Figure Page

Figure 3.1 Illustration for the Störmer-Verlet method . . . . . . . . . . . 13

Figure 4.1 Solution of the Euler equations (4.10),(4.11),(4.12) for the rigid

body. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 4.2 Reversible vector field (left picture) and reversible map (right

picture) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 5.1 Trajectory of motion by Explicit Euler. . . . . . . . . . . . . . 44

Figure 5.2 Trajectory of motion by Implicit Euler. . . . . . . . . . . . . . 44

Figure 5.3 Trajectory of motion by Symplectic Euler. . . . . . . . . . . . 45

Figure 5.4 Trajectory of motion by Adjoint of Symplectic Euler. . . . . . 45

Figure 5.5 The errors in Hamiltonian H(q, p) − H(q0, p0) for the Explicit

Euler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 5.6 The errors in Hamiltonian H(q, p) − H(q0, p0) for the Implicit

Euler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 5.7 The errors in Hamiltonian H(q, p)−H(q0, p0) for the Symplectic

Euler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 5.8 The errors in Hamiltonian H(q, p)−H(q0, p0) for the Adjoint of

Symplectic Euler. . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 5.9 The errors in angular momentum L(q, p) − L(q0, p0) for the Ex-

plicit Euler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 5.10 The errors in angular momentum L(q, p)− L(q0, p0) for the Im-

plicit Euler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 5.11 The errors in angular momentum L(q, p)−L(q0, p0) for the Sym-

plectic Euler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 5.12 The errors in angular momentum L(q, p)−L(q0, p0) for the Ad-

joint of Symplectic Euler. . . . . . . . . . . . . . . . . . . . . . 49

Figure 5.13 The errors in Runge-Lenz vector A(q, p) − A(q0, p0) for the Ex-

plicit Euler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ix



Figure 5.14 The errors in Runge-Lenz vector A(q, p) − A(q0, p0) for the Im-

plicit Euler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 5.15 The errors in Runge-Lenz vector A(q, p)−A(q0, p0) for the Sym-

plectic Euler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 5.16 The errors in Runge-Lenz vector A(q, p)−A(q0, p0) for the Ad-

joint of Symplectic Euler. . . . . . . . . . . . . . . . . . . . . . 51

Figure 5.17 Trajectory of motion by Trapezoidal Rule. . . . . . . . . . . . 52

Figure 5.18 Trajectory of motion by Midpoint Rule. . . . . . . . . . . . . . 53

Figure 5.19 Trajectory of motion by Störmer-Verlet scheme. . . . . . . . . 53

Figure 5.20 The errors in Hamiltonian H(q, p)−H(q0, p0) for the Trapezoidal

Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 5.21 The errors in Hamiltonian H(q, p) −H(q0, p0) for Midpoint Rule. 55

Figure 5.22 The errors in Hamiltonian H(q, p)−H(q0, p0) for Störmer-Verlet

scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.23 The errors in angular momentum L(q, p) − L(q0, p0) for Trape-

zoidal rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 5.24 The errors in angular momentum L(q, p) − L(q0, p0) Midpoint

Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 5.25 The errors in angular momentum L(q, p)−L(q0, p0) for Störmer-

Verlet scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 5.26 The errors in Runge-Lenz vector A(q, p) − A(q0, p0) for the

Trapezoidal rule. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 5.27 The errors in Runge-Lenz vector A(q, p)−A(q0, p0) for Midpoint

Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.28 The errors in Runge-Lenz vector A(q, p)−A(q0, p0) for Störmer-

Verlet scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.29 Trajectory of motion by 3rd order Runge-Kutta. . . . . . . . . 60

Figure 5.30 Trajectory of motion by Composition method of order 3 (mid-

point rule as base method) . . . . . . . . . . . . . . . . . . . . 61

Figure 5.31 Trajectory of motion by Composition method of order 3

(Störmer-Verlet as base method) . . . . . . . . . . . . . . . . . 61

x



Figure 5.32 The errors in Hamiltonian H(q, p) − H(q0, p0) for 3rd order

Runge-Kutta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 5.33 The errors in Hamiltonian H(q, p) −H(q0, p0) for Composition

method of order 3 (midpoint rule as base method). . . . . . . 63

Figure 5.34 The errors in Hamiltonian H(q, p) −H(q0, p0) for Composition

method of order 3 (Störmer-Verlet as base method) . . . . . . 63

Figure 5.35 The errors in angular momentum L(q, p)−L(q0, p0) for 3rd order

Runge-Kutta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 5.36 The errors in angular momentum L(q, p) − L(q0, p0) Composi-

tion method of order 3 (midpoint rule as base method) . . . . 65

Figure 5.37 The errors in angular momentum L(q, p) − L(q0, p0) Composi-

tion method of order 3 (Störmer-Verlet as base method) . . . 65

Figure 5.38 The errors in Runge-Lenz vector A(q, p)−A(q0, p0) for 3rd order

Runge-Kutta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.39 The errors in Runge-Lenz vector A(q, p)−A(q0, p0) for Compo-

sition method of order 3 (midpoint rule as base method) . . . 67

Figure 5.40 The errors in Runge-Lenz vector A(q, p)−A(q0, p0) for Compo-

sition method of order 3 (Störmer-Verlet as base method) . . 67

Figure 5.41 Trajectory of motion by 4th order Runge-Kutta. . . . . . . . . 68

Figure 5.42 Trajectory of motion by Composition method of order 5 (mid-

point rule as base method) . . . . . . . . . . . . . . . . . . . . 69

Figure 5.43 Trajectory of motion by Composition method of order 5

(Störmer-Verlet as base method) . . . . . . . . . . . . . . . . . 69

Figure 5.44 The errors in Hamiltonian H(q, p) − H(q0, p0) for 4th order

Runge-Kutta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 5.45 The errors in Hamiltonian H(q, p) −H(q0, p0) for Composition

method of order 5 (midpoint rule as base method) . . . . . . 71

Figure 5.46 The errors in Hamiltonian H(q, p) −H(q0, p0) for Composition

method of order 5 (Störmer-Verlet as base method) . . . . . . 71

Figure 5.47 The errors in angular momentum L(q, p)−L(q0, p0) for 4th order

Runge-Kutta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xi



Figure 5.48 The errors in angular momentum L(q, p) − L(q0, p0) Composi-

tion method of order 5 (midpoint rule as base method) . . . . 73

Figure 5.49 The errors in angular momentum L(q, p) − L(q0, p0) Composi-

tion method of order 5 (Störmer-Verlet as base method) . . . 73

Figure 5.50 The errors in Runge-Lenz vector A(q, p)−A(q0, p0) for 4th order

Runge-Kutta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.51 The errors in Runge-Lenz vector A(q, p)−A(q0, p0) for Compo-

sition method of order 5 (midpoint rule as base method) . . . 75

Figure 5.52 The errors in Runge-Lenz vector A(q, p)−A(q0, p0) for Compo-

sition method of order 5 (Störmer-Verlet as base method) . . 75

Figure 6.1 Errors for energy versus time step h in logarithmic scale for

composition method of order 3 (midpoint rule as the base

method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xii



CHAPTER 1

INTRODUCTION

The topic of this thesis is geometric structure-preserving numerical inte-

gration method for ordinary differential equations. We will concentrate mainly on

Hamiltonian equations and numerical methods that preserve geometric structures

of them.

During the past decade there has been an increasing interest in studying

numerical methods that preserve certain properties of some differential equations

(Budd and Piggott 2000). The reason is that some physical systems possess con-

served quantities, and that the solutions of the systems also should contain these

invariants. Typical examples are the symplectic structure in a Hamiltonian sys-

tem, the energy in a conservative mechanical system and the angular momentum

of a rotating rigid body in space. Classical numerical methods normally fail to

preserve such as the above mentioned quantities (Budd and Piggott 2000).

Frequently we need to integrate numerically a system of ordinary differen-

tial equations (ODEs) having some first integrals or admitting some conservation

laws. In what follows we will consider exclusively the ODE case, but our method

can also be applied to the case of partial differential equations. Many examples of

systems of ODEs having first integrals can be found in classical mechanics, where

Hamiltonian equations are of this type, always having the Hamiltonian as a first

integral.

In this thesis we mainly concern with symplectic geometric integration

methods. We will give the definition of symplectic maps, and call any numerical

scheme which induces a symplectic map as the symplectic numerical method.

For numerical implementation we choose the Kepler problem. Conserved

quantities of the Kepler problem are the energy, the angular momentum and the

Runge-Lenz vector. We applied both geometric and non-geometric integration

methods to the Kepler problem. We observed that symplectic methods were

most successful. We illustrate the effectiveness of geometric integration methods,

namely symplectic Euler, adjoint of symplectic Euler, midpoint rule and Störmer-

1



Verlet method which is composition of symplectic Euler and its adjoint. In this

study third and fifth order methods are constructed by composition techniques

by considering midpoint rule and Störmer-Verlet method as base method. For

comparison reason non-symplectic methods are also chosen.

The outline of this thesis as follows: After giving some preliminaries in

Chapter 2, geometric numerical methods and non-geometric methods that we

use in our computations are introduced in Chapter 3. And we discuss some

geometric properties, first integrals of the differential equations and philosophy

of geometric integration in Chapter 4. Finally; both geometric and non-geometric

methods, that we introduce in Chapter 4, are applied to the Kepler problem in

Chapter 5, in order to see advantages and disadvantages of geometric integration.

2



CHAPTER 2

PRELIMINARIES

This chapter consist of some preliminary information about geometric in-

tegration method. We introduce the exact flow of an ODE and general properties

of exact flows. We also give the definition of an integrator and some properties of

integrators. Also a brief discussion is given on the geometric integration method

idea. Finally we introduce the Hamiltonian systems.

The motion is described by differential equations, which are derived from

the laws of physics. These equations contain within them not just a statement

of the current acceleration experienced by the object(s), but all the physical laws

relevant to the particular situation. Finding these laws and their consequences

for the motion has been a major part of physics since the time of Newton (Stuart

and Humphries 1996). For example, the equations tell us the space in which

the system evolves (its phase space, which may be ordinary Euclidean space or a

curved space such as a sphere); any symmetries of the motion, such as left-right

or forward-backward symmetries of a pendulum; and any special quantities such

as energy, which for a pendulum is either conserved. Most importantly, the laws

describe how all motion starting close to the actual one are constrained in relation

to each other. These laws are known as symplecticity and volume preservation

(Stuart and Humphries 1996).

Standard methods for simulating motion, called numerical integrators,

take an initial condition and move the objects in direction specified by the differ-

ential equations. They completely ignore all of the above hidden physical laws

contained within the equations. Since about 1990, new methods have been devel-

oped, called geometric integrators, which obey these extra laws (Budd and Iserles

1999). Since the methods are physically natural, we can hope that the results will

be extremely reliable, especially for long-time simulations. Before we list you

advantages of the method, we mention three disadvantages:

• The hidden physical law usually has to be known if the integrator is going

to obey it. For example to preserve energy, the energy must be known.

3



• Because we are asking something more in this method, it may turn out to

be computationally more expensive then a standard method. Amazingly

(because the laws are so natural) sometimes it’s actually much cheaper.

• Many systems have several hidden laws, but the methods currently known

preserve one of them but not all simultaneously (Quispel and Dyt 1997).

Now the advantages of the method:

• Simulations can be run for enormously long times, because there are no

spurious non-physical effects, such as dissipation of energy in a conservative

system.

• By studying structure of the equations, very simple, fast, and reliable geo-

metric integrators can often be found;

• In some situations, results can be guaranteed to be qualitatively correct, even

when the motion is chaotic.

• For some systems, for short, medium and long times even the actual quan-

titative errors are much smaller than in standard methods (Quispel and Dyt

1997).

2.1. Introduction to ODEs

Coming from classical mechanics ordinary differential equations (ODEs)

were developed to model mechanical systems. Most dynamical systems -physical,

biological, engineering- are often conveniently expressed in the form of differential

equations.

Let R be the set of all real numbers and I be an open interval on the real

line R, that is, I = {t : t ∈ R, r1 < t < r2}, where r1, r2 are any two fixed points

in R. Also, let Rn denote the real n-dimensional Euclidean space with elements

x = (x1, x2, ..., xn), and letRn+1 be the space of elements of (n+1)-tuple (t, x1, x2, ..., xn)

or (t, x). Let B be a domain, i.e, an open-connected set in Rn+1, and C[B,Rn] be a

class of functions defined and continuous on B.

An ordinary differential equation of the n-th order and of the form

F(t,u,u′,u′′, ..., u(n)) = 0 (2.1)

4



where u(n) is the n-th derivative of the unknown function u with respect to t and F

is defined in some subset of Rn+2, express a relation between the (n+2)-variables

t,u,u′,u′′, ..., u(n) (Rao 1979).

System of Differential Equations

We shall consider a system of differential equations of the form

u′1 = f1(t,u1, ..., un)

u′2 = f2(t,u1, ..., un)

.

.

.

u′n = fn(t,u1, ..., un)

In vector notation, these equations can be written as

u′ = f (t,u) (2.2)

where u = (u1,u2, ..., un), f = ( f1, f2, ..., fn) are vectors in Rn. We shall assume that

f ∈ C[B,Rn]. With an initial condition

u(t0) = u0 (2.3)

where u0 = (u10,u20, ..., un0) is a vector in Rn. Relations (2.2) and (2.3) constitute a

so-called initial value problem (IVP) (Rao 1979). A set of n-functions φ1, φ2, ..., φn

defined on I is said to be solution of IVP if, for t ∈ I,

� φ′1(t), ..., φ′n(t) exist,

� the point (t, φ1(t), ..., φn(t)) remains in B,

� φ′i(t) = fi(t, φ1(t), ..., φn(t)), i = 1, 2, ..., n

� φi(t0) = φi0, i = 1, 2, ..., n

2.2. The Exact Flow of an ODE

We first define the exact flow (or solution) of an ordinary differential equa-

tion and discuss what properties one would like an integrator to have. Let u(t) be

the exact solution of the system of ordinary equations (ODEs)

du
dt

= f (u(t)), u(t0) = u0, u(t) ∈ Rn (2.4)

5



the exact flow ϕh is defined by

u(t + h) = ϕh(u(t)) ∀t, h ∈ R

For each fixed time step h, ϕ is a map from the phase space to itself,i.e, ϕh : Rn →
Rn.

2.3. Hamiltonian Systems

In this section we give the definition of the Hamiltonian system.

Definition 2.1 Suppose that H(q,p) is a smooth function of its arguments for

q and p ∈ Rn. Then the dynamical system:

q̇i =
∂H
∂pi

(2.5)

ṗi = −∂H
∂qi

(2.6)

(i = 1,2,...,n) is called a Hamiltonian system and H is the Hamiltonian function (or just

the Hamiltonian) of the system. Equations (2.5) and (2.6) called Hamiltons equations.

Definition 2.2 The number of degrees of freedom of a Hamiltonian system is the number

of (qi, pi) pairs in Hamilton’s equations, i.e. the value of n.

In mechanics, the vector q represents the generalized coordinates of the

components of the system (positions, angles, etc.), while p is a set of generalized

momenta. Note that the Hamiltonian function is a constant of the motion:

dH
dt

=

n∑

i=1

∂H
∂qi

q̇i +
∂H
∂pi

ṗi

=

n∑

i=1

∂H
∂qi

∂H
∂pi

+
∂H
∂pi

(−∂H
∂qi

) = 0

Example 2.1 A harmonic oscillator is a mass-spring system with potential energy 1
2kq2,

where q is the displacement of the spring from equilibrium. For simple systems like this

one, in which the potential energy simply depends on the position, the Hamiltonian is just

the total energy:

H(q, p) =
1
2

kq2 +
p2

2m
(2.7)
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where k and m are positive constants and p is the momentum. Because H is a constant,

the orbits are just the family of ellipses,

1
2

kq2 +
p2

2m
= E (2.8)

The value of E is fixed by the initial conditions. Different values of E correspond to ellipses

of different size. If we are interested in the equations of motion, we can recover them from

Hamiltons equations:

q̇ =
∂H
∂p

= p/m (2.9)

ṗ = −∂H
∂q

= −kq (2.10)
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CHAPTER 3

NUMERICAL METHODS

In this chapter, we introduce numerical methods approximating the solu-

tion of initial value problem for ordinary differential equation.

d
dt

y = f (y), y(t0) = y0 ∈ Rk. (3.1)

Here y(t) represents the solution at a particular time t; y = y(t) thus defines a

parameterized trajectory in Rk. We assume that trajectories are defined for all

initial values y0 ∈ Rn and for all times t ≥ t0. For simplicity, we typically take

t0 = 0. One also often uses the notation y(t; y0) to distinguish the trajectory for

a given initial value y0. Define a mapping, or rather a one-parametric family of

mappings, {φt}t≥0, which take initial data to later points along trajectories, i.e.

φt(y0) = y(t; y0), y0 ∈ Rk

A numerical method for solving ordinary differential equations is a map-

ping Φh defined on the phase space that approximates the time-h flow ϕh; if

Φh(y) = ϕh(y) + O(hr+1). The numerical approximation at time t = nh is obtained

by yn = Φh(yn−1) (Budd and Iserles 1999).

3.1. One Step Method

We will primarily concerned with the generalized one-step method. By

iterating the flow map, we know that we obtain a series of snapshots of the true

trajectory

y0, φ∆t(y0), φ∆t ◦ φ∆t(y0), ...

or, compactly, {φn
∆t(y0)}∞n=0, where the composition powerφn

∆t is the identity if n = 0

and is otherwise the n-fold composition of φ∆t with itself. For a one-step method,

the approximating trajectory can be viewed as the iteration of another mapping

ψ∆t = Rk → Rk of the underlying space, so that

yn = ψn
∆t(y0). (3.2)
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The mapping ψ∆t is generally nonlinear, will depend on the function f and/or

derivatives, and may be quite complicated, because one-step method generate a

mapping of the phase space (Leimkuhler and Reich 2004).

3.2. Derivation of One-step Method

One step method can be derived in various ways. One way is first to

integrate both sides of d
dt y = f (y) on a small interval [t, t + ∆t], obtaining

y(t + ∆t) − y(t) =

∫ ∆t

0
f (y(t + τ))dτ.

The right-hand side can then be replaced by a suitable quadrature formula result-

ing in an approximation of the form

y(t + ∆t) ≈ y(t) +

s∑

i=1

bi f (y(t + τi))

for an appropriate set of weights {bi} and quadrature points {τi} (Leimkuhler and

Reich 2004).

3.3. Elementary One Step Method

In this section we will introduce elementary one-step methods.

Explicit Euler Method:

yn+1 = yn + ∆t f (yn)

the quadrature rule used is just
∫ ∆t

0
f (y(t + τ))dτ = ∆t f (y(t)) + O(∆t2)

Implicit Euler Method:

yn+1 = yn + ∆t f (yn+1)

Trapezoidal Rule:

yn+1 = yn +
∆t
2

[ f (yn) + f (yn+1)]

the trapezoidal rule is based on
∫ ∆t

0
f (y(t + τ))dτ =

1
2

∆t[ f (y(t)) + f (y(t + ∆t))] + O(∆t3)
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Implicit Midpoint Method:

yn+1 = yn + ∆t f
( yn + yn+1

2

)

the quadrature rule is defined as
∫ ∆t

0
f (y(t + τ))dτ = ∆t f

(y(t) + y(t + ∆t)
2

)
+ O(∆t3)

3.4. Runge-Kutta Methods

All of the methods discussed so far are special cases of Runge-Kutta meth-

ods. We treat non-autonomous systems of first order ordinary differential equa-

tions

ẏ = f (t, y) y(t0) = y0 (3.3)

Let bi, ai j (i, j = 1, ..., s) be real numbers and let ci =
∑s

j=1 ai j. An s − stage Runge −
Kutta method is given by

ki = f (t0 + cih, y0 + h
s∑

j=1

ai jk j), i = 1, ..., s (3.4)

y1 = y0 + h
s∑

i=1

biki (3.5)

Here we allow a full matrix (ai j) of non-zero coefficients. In this case, the slopers

ki can no longer be computed explicitly, and even do not necessarily exist(Hairer,

et al. 2001).

In Butcher tableau the coefficients are usually displayed as follows:

c1 a11 . . . a1s

. . .

. . .

. . .

cs as1 . . . ass

b1 . . . bs

The number of stages s and the constant coefficients {bi},{ai j} completely charac-

terize a Runge-Kutta method. In general, such a method is implicit and leads to a
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nonlinear system in the s internal stage variables yn. An example of a fourth-order

explicit Runge-Kutta method is given (Butcher 1987).

Let an initial value problem be specified as follows:

ẏ = f (t, y) y(t0) = y0 (3.6)

Then, the RK4 method for this problem is given by the following equations:

yn+1 = yn +
1
6

h(k1 + 2k2 + 2k3 + k4) (3.7)

tn+1 = tn + h (3.8)

where yn+1 is the RK4 approximation o f y(tn+1) and

k1 = f (tn, yn)

k2 = f (tn +
1
2

h, yn +
1
2

hk1)

k3 = f (tn +
1
2

h, yn +
1
2

hk2)

k4 = f (tn +
1
2

h, yn +
1
2

hk3)

3.5. Partitioned Euler Method

For partitioned systems

u̇ = a(u, v), (3.9)

v̇ = b(u, v),

such as the Lotka-Volterra problem we consider also partitioned Euler methods

un+1 = un + ha(un, vn+1) (3.10)

vn+1 = vn + hb(un, vn+1) (3.11)

which treat one variable by the implicit and the other variable by the explicit

Euler method. In view of an important property of this method, discovered by de

Vogelaere (1956) and we call them symplectic Euler methods if we apply the method

to Hamiltonian systems (Hairer 2005).
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3.6. The Störmer-Verlet Scheme

The equations for the pendulum are of the form

ṗ = f (q) (3.12)

q̇ = p

or

q̈ = f (q)

which is the important special case of a second order differential equation. The

most natural discretisation of (3.12) is

qn+1 − 2qn + qn−1 = h2 f (qn), (3.13)

which is just obtained by replacing the second derivative in (3.12) by the central

second-order difference quotient. This basic method, or its equivalent formulation

given below, is called the Störmer method in astronomy, the Verlet method in molec-

ular dynamics, the leap-frog method in the context of partial differential equations,

and it has further names in other areas. Störmer(1907) used higher-order variants

for numerical computations in molecular dynamics, where it has become by far

the widely used integration scheme (Hairer 2005).

Geometrically, the Störmer-Verlet method can be seen as produced by

parabolas, which in the points tn possess the right second derivative f (qn). But

we can also think of polygons, which possess the right slope in the midpoints

(Figure(3.1) to the right).

Approximations to the derivative p = q̇ are simply obtained by

pn =
qn+1 − qn−1

2h
and pn+1/2 =

qn+1 − qn

h

One step formulation: The Störmer-Verlet method admits one-step formulation

which is useful for actual computations. The value qn together with the slope pn

and the second derivative f (qn), all at tn, uniquely determine the parabola and

hence also the approximation (pn+1, qn+1) at tn+1. Writing (3.13) as pn+1/2 − pn−1/2 =

h f (qn)) and using pn+1/2 + pn−1/2 = 2pn, we get by elimination of either pn+1/2 or
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Figure 3.1. Illustration for the Störmer-Verlet method

pn−1/2 the formula

pn+1/2 = pn +
h
2

f (qn)

qn+1 = qn + hpn+1/2 (3.14)

pn+1 = pn+1/2 +
h
2

f (qn+1)

which is an explicit one-step method Φh : (qn, pn) 7→ (qn+1, pn+1) for the correspond-

ing first order system of (3.12). If one is not interested in the values pn of the

derivative, the first and third equations in (3.14) can be replaced by

pn+1/2 = pn−1/2 + h f (qn))

3.7. Partitioned Runge-Kutta Methods

Some interesting numerical methods introduced before(symplectic Euler

and the Störmer-Verlet method) do not belong to the class of Runge-Kutta meth-

ods. They are important examples of so-called partitioned Runge-Kutta methods.

Here we consider differential equations in the partitioned form

p′ = f (p, q), q′ = g(p, q). (3.15)

We have chosen the letters p and q for the dependent variables, because Hamil-

tonian systems are of this form. The idea is to take two different Runge-Kutta

methods, and to treat the y − variables with the first method (ai j, b j) and the

z − variables with the second method (âi j, b̂ j) (Hairer, et al. 2001).

13



Definition 3.1 Let bi; ai j and b̂i; âi j be the coefficients of two Runge-Kutta methods. A

partitioned Runge-Kutta method is given by

ki = f (p0 + h
S∑

j=1

ai jk j, q0 + h
S∑

j=1

âi j` j)

`i = g(p0h
S∑

j=1

ai jk j, q0 + h
S∑

j=1

âi j` j) (3.16)

p1 = p0 + h
S∑

i=1

biki, q1 = q0 + h
S∑

i=1

b̂i`i

Methods of this type have originally been proposed by Hofer (1976) and Griepen-

trog (1978). Their importance for Hamiltonian systems has been discovered only

very recently.

An interesting example is the partitioned Euler method (3.9-3.11), where

the implicit Euler method b1 = 1, a11 = 1 is combined with the explicit Euler

method b̂1 = 1, â11 = 0. The Störmer-Verlet method (3.14) is of the form (3.16) with

coefficients given in below table

0 0 0

1 1/2 1/2

1/2 1/2

1/2 1/2 0

1/2 1/2 0

1/2 1/2

The theory of Runge-Kutta methods can be extended in a straight-forward way

to partitioned methods. Since equation (3.16) is a one-step method (p1, q1) =

Φh(p0, q0), the order, the adjoint method and symmetric methods are defined in

the usual way (Hairer, et al. 2001).

3.8. Splitting and Composition Methods

These methods exploit natural decompositions of the problems and partic-

ular of the Hamiltonian and have been used with great success in studies of the

solar system and of molecular dynamics. Much recent work in this field is due to

Yoshida and McLachlan (Budd and Piggott 2000). The main idea behind splitting

methods is to decompose the discrete flow Ψh as a composition of simpler flows

Ψh = Ψ1,h ◦Ψ2,h ◦Ψ3,h...,
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where each of the sub-flows is chosen such that each represent a simpler integra-

tion of the original. A geometrical perspective on this approach is to find useful

geometric properties of each of the individual operations which are preserved

under combination, symplecticity is just such a property, but we often seek to

preserve reversibility and other structures. Suppose that a differential equation

takes the form

du
dt

= f = f1 + f2 (3.17)

Here the functions f1 and f1 may well represent different physical processes in

which case there is a natural decomposition of the problem (say into terms to

kinetic and potential energy).

The most direct form of splitting methods decompose this equation into two

problems

du1

dt
= f1 and

du2

dt
= f2 (3.18)

chosen such that these two problems can be integrated exactly in closed form to

give explicitly computable flows Ψ1(t) and Ψ2(t). We denote by Ψi,h the result of

applying the corresponding continuous flows ψi(t) over a time h. A simple (first

order) splitting is then given by the Lie-Trotterr formula

Ψh = Ψ1,h ◦Ψ2,h

Suppose that the original problem has Hamiltonian H = H1 +H2, then as observed

earlier this is the composition of two problems with respective Hamiltonian H1

and H2. The differential equation corresponding to each Hamiltonian leads to an

evolutionary map ψi(t) of the form described above.

The Lie-Trotter splitting introduces local errors proportional to h2 at each step and

a more accurate decomposition is the Strang splitting given by

Ψh = Ψ1,h/2 ◦Ψ2,h ◦Ψ1,h/2.

This splitting method has a local error proportional to h3 (Budd and Piggott 2000).

Example 3.1 Suppose that a Hamiltonian system has a Hamiltonian which can be ex-

pressed as a combination of a kinetic energy and a potential energy term as follows
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H(u) = H1(u) + H2(u) ≡ T(p) + V(q).

so that

dp
dt

= −H2,q(q),
dq
dt

= H1,p(p) (3.19)

This splitting of H is usually referred to as a separable or P-Q splitting. We

immediately have that

Ψ1,h = I − hH2,q and Ψ2,h = I + hH1,p

where I represents the identity mapping.

Applying the Lie-Trotter formula directly to this splitting gives the symplectic Euler

method (Budd and Piggott 2000)

pn+1 = pn − hH2,q(qn), and qn+1 = qn + hH1,p(pn+1).

A more sophisticated splitting method for this problem based upon the Strang

splitting is

pn+1/2 = pn − h
2

H2,q(qn), qn+1 = qn + hH1, p(pn+1/2), pn+1 = pn+1/2 − h
2

H2,q(qn+1)

For systems with such separable Hamiltonians we may combine subsequent

Strang splitting (as described above) to give (after relabeling) the celebrated

Störmer-Verlet method(Budd and Piggott 2000).

qn+1/2 = qn−1/2 + hTp(pn), (3.20)

pn+1 = pn − hVq(qn+1/2). (3.21)

A form of this method appeared in the molecular dynamics literature many years

before anyone realized that its remarkable success in that field was due to the fact

that it was in fact a very efficient symplectic method.

Example 3.2 Yoshida splitting

The Strang splitting has the desirable property that it is symmetric so that Ψ−1
h =

Ψ−h. By combining symmetric splitting, Yoshida derived a series of remarkable

high order methods. Given a symmetric second order base method Ψ(2)
h for example
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in Yoshida considers the case where the base method is given by the Strang

splitting (Budd and Piggott 2000). Yoshida then constructs the method

Ψ(4)
h = Ψ(2)

x1h ◦Ψ(2)
x0h ◦Ψ(2)

x1h.

He proved that Ψ(4)
h is indeed a fourth-order symmetric method if the weights are

chosen as

x0 = − 21/3

2 − 21/3 , x1 =
1

2 − 21/3 .

If the problem being considered is Hamiltonian and the second-order method is

symplectic then our newly constructed fourth-order method will also be sym-

plectic. This procedure can be extended and generalized as follows. Given a

symmetric integrator Ψ(2n)
h of order 2n, for example when n = 1 we are sim-

ply restating the above construction and when n = 2 we may take the method

constructed above. The method given by the composition

Ψ(2n+2)
h = Ψ(2n+2)

x1h ◦Ψ(2n)
x0h ◦Ψ(2n)

x1h

will be a symmetric method of order 2n + 2 if the weights are chosen as

x0 = − 21/(2n+1)

2 − 21/(2n+1)
, x1 =

1
2 − 21/(2n+1)

.

3.9. The Adjoint of a Method

The flow ϕt of an autonomous differential equation

ẏ = f (y) y(t0) = y0 (3.22)

satisfies ϕ−1
−t = ϕt.

yn+1 = ϕh(yn)⇒

ynϕh−→yn+1

ynϕ−1
h←−−

yn+1

yn+1ϕ−h−−→yn

(3.23)

Definition 3.2 The adjoint method Φ∗h of a method Φh is the inverse map of the original

method with reversed time step -h, i.e.,

Φ∗h := Φ−1
−h (3.24)
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In other words, y1 = Φ∗h(y0) is implicitly defined by Φ−h(y1) = y0. A method for

which Φ∗h := Φh is called symmetric (J.M. Sanz Serna 1994).

Lemma 3.1 Implicit Euler Method is the adjoint of explicit Euler Method.

Proof:

Implicit Euler Method→ yn+1 = yn + h f (yn+1)

Explicit Euler Method→ yn+1 = yn + h f (yn+1)

yn+1 = ϕh(yn)

yn+1 = ϕ−h(yn)

yn = ϕ−1
−h(yn+1) = ϕ∗h

exchanging h by -h and (n+1) by (n)

yn = yn+1 − h f (yn)⇒ yn+1 = yn + h f (yn) (3.25)

then we proved that the adjoint of explicit Euler method is implicit Euler method.
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CHAPTER 4

CONSERVED QUANTITIES AND GEOMETRIC

INTEGRATION

In this chapter we give both geometric structures of differential equations

and numerical methods that we consider in chapter 3. We consider three geometric

structures, first integrals, symplecticity and reversibility and symmetry. We give

examples of differential equations which have these geometric features. Then we

mention which of the methods introduced in Chapter 3 preserve first integrals

and have symplecticity or reversibility properties. Finally we give the philosophy

of geometric integration.

4.1. Exact Conservation of Invariants

This section is devoted to the conservation of invariants (first integrals).

First we give the definition of first integral or invariant of a differential equation.

Definition 4.1 : A non-constant function I(y) is called a first integral of the system

ẏ = f (y) , if

dI
dt

= I′y′ = I′ f = 0 f or all y (4.1)

This implies that every solution y(t) of I′(y) f (y) = 0 satisfies I(y(t)) = I(y0) =

Const.

For example:

u′ = u(v − 2) (4.2)

v′ = v(1 − u) (4.3)

is the Lotka-Volterra system of equations. Equations (4.2) and (4.3) constitute

an autonomous system of differential equations. This system of equations has

I(u; v) = ln u − u + 2 ln v − v as f irst integral. (Hairer, et al. 2001)

Since

dI
dt

=
1
u
.u′ − u′ +

2
v
.v′ − v′
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substituting the (4.2) and (4.3) in above derivation

dI
dt

=
1
u
.u(v − 2) − u(v − 2) +

2
v
.v(1 − u) − v(1 − u)

= v − 2 − uv + 2u + 2 − 2u − v + uv = 0.

Lemma 4.1 :Conservation of the Total Energy

Every Hamiltonian system is of the form

ṗ = −Hq(p, q), q̇ = Hp(p, q) (4.4)

the Hamiltonian function H(p, q) is a first integral for every Hamiltonian system

is of the above form.

Proof : This follows at once from

H′(p, q) = ( ∂H
∂p ,

∂H
∂q ) and

dH
dt

=
∂H
∂p

(−∂H
∂q

) +
∂H
∂q

(
∂H
∂p

) = 0

Example 4.1 : Conservation of the Total and Angular Momentum of N-Body

systems.

We consider a system of N particles interacting pairwise with potential forces

which depend on the distance between the particles. This is formulated as a

Hamiltonian system with total energy

H(p, q) =
1
2

N∑

i=1

1
mi

pT
i pi +

N∑

i=1

N∑

i, j=1

Vi j(‖ qi − q j ‖) (4.5)

Here pi, qi ∈ R3 represent the position and momentum of the ith particle of

mass mi and Vi j (i > j) is the interaction potential between the ith and jth particle.

The equations of motion read

q̇i =
1

mi
pi, ṗi =

N∑

j=1

vi j(qi − q j) (4.6)

where, for i > j we have vi j = v ji = V′i j(ri j)/ri j with ri j =‖ qi−q j ‖, and vii is arbitrary,

say vii = 0. The conservation of the total linear momentum P =
∑N

i=1 pi and the

angular momentum L =
∑N

i=1 qi × pi is the consequences of symmetry relation
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vi j = v ji

d
dt

N∑

i=1

pi =

N∑

i=1

N∑

j=1

vi j(qi − q j) = 0 (4.7)

d
dt

N∑

i=1

qi × pi =

N∑

i=1

1
mi

pi × pi +

N∑

i=1

N∑

j=1

qi × vi j(qi − q j) = 0 (4.8)

Theorem 4.1 (Conservation of Linear First Integrals) : All explicit and implicit

Runge-Kutta methods as well as multi-step methods conserve linear first integrals. Par-

titioned Runge-Kutta methods conserve linear first integrals only if bi = b̂i for all i, or if

the first integral only depends on p alone or only on q alone.

Proof : Let I(y) = bT y with constant vector b, so that bT f (y) = 0 f or all y. In the

case of Runge-Kutta methods we thus have bTki = 0, and consequently bT y1 =

bT y0 + hbT(
∑s

i=1 biki) = bT y0. The statement for partitioned method is proved

similarly.

4.1.1. Quadratic Invariants

Quadratic invariants appear often in applications. Conservation of the an-

gular momentum is an example of quadratic invariants. We consider differential

equation y′ = f (y) and quadratic function

Q(y) = yTCy

where C is a symmetric square matrix. It is an invariant of y′ = f (y) if yTC f (y) =

0 f or all y (Hairer, et al. 2001).

Since yTC f (y) = 0

Q′(y) = (y′)TCy + yTCy′ = ( f (y))TCy + yTC f (y)

= (yTC f (y))T + yTC f (y) = 0

Theorem 4.2 If the coefficients of a Runge-Kutta method satisfy

biai j + b ja ji = bib j (4.9)

then it conserves quadratic invariants.
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Proof: See (Hairer, et al. 2001).

We next consider partitioned Runge-Kutta methods for systems ẏ = f (y, z) ż =

g(y, z). Usually such methods cannot conserve general quadratic invariants. We

therefore concentrate on quadratic invariants of the form

Q(y, z) = yTDz

where D is a matrix of appropriate dimensions. Observe that the angular mo-

mentum is of this form.

Theorem 4.3 Sörmer-Verlet scheme conserves all quadratic invariants of the form

Q(y, z) = yTDz.

Proof: See (Hairer, et al. 2001).

Example 4.2 : Rigid Body

The motion of the free rigid body, whose center of mass is at the origin, is described

by the Euler equations

ẏ1 = a1y2y3, a1 = (I2 − I3)/I2I3 (4.10)

ẏ2 = a2y3y1, a2 = (I3 − I1)/I3I1 (4.11)

ẏ3 = a1y2y2, a3 = (I1 − I2)/I1I2 (4.12)

where the vector y = (y1, y2, y3)T represents the angular momentum in the body

frame,and I1, I2, I3 are the principal moments of inertia This problem can be written

as



ẏ1

ẏ2

ẏ3


=



0 y3/I3 −y2/I2

−y3/I3 0 y1/I1

y2/I2 −y1/I1 0


.



y1

y2

y3



which is of the form with a skew-symmetric matrix A(Y). By the theorem y2
1 +

y2
2 + y2

3 = R2 is first integral. It is interesting to note that the system is actually a

Hamiltonian system with Hamiltonian

H(y1, y2, y3) =
1
2

(
y2

1

I1
+

y2
2

I2
+

y2
3

I3
)

This is a second quadratic invariant of the system.
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We present in Figure(4.1) the sphere with some of the solutions of corre-

sponding to I1 = 2, I2 = 1 and I3 = 2/3. In the left picture we have included the

numerical solution (30 steps) obtained by the implicit midpoint rule with step

size h = 0,3 and initial value y0 = (cos(1.1); 0; sin(1.1))T. It stays exactly on a so-

lution curve. This follows from the fact that the implicit midpoint rule preserves

quadratic invariants exactly. For the explicit Euler method (right picture, 320

steps with h = 0.05 and the same initial value as above) we see that the numerical

solution shows the wrong qualitative behaviour (it should lie on a closed curve).

The numerical solution even drifts away from the manifold (Hairer, et al. 2001)

Figure 4.1. Solution of the Euler equations (4.10),(4.11),(4.12) for the rigid body.

4.2. Symplectic Transformations

In this section we discuss the symplecticity property. The basic objects

to be studied are two-dimensional parallelograms lying in R2d. We suppose the

parallelogram to be spanned by two vectors

ξ =


ξp

ξq

 , η =


ηp

ηq



in the (p, q) space (ξp, ξq, ηp, ηq are in Rd) as

P = {tξ + sη|0 ≤ t ≤ 1, 0 ≤ s ≤ 1}.
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In the case d=1 we consider the oriented area

Area(P) = det


ξp ηp

ξq ηq

 = ξpηq − ξqηp

In higher dimensions, we replace this by the sum of the oriented areas of the

projections of P onto the coordinate planes (pi, qi), i.e., by

ω(ξ, η) :=
d∑

i=1

det


ξp

i ηp
i

ξq
i ηq

i

 =

d∑

i=1

(ξp
i η

q
i − ξ

q
i η

p
i ).

This defines a bilinear map acting on vectors ofR2d, which will play a central role

for Hamiltonian system. In matrix notation, this map has the form

ω(ξ, η) = ξT Jη with J =


0 I

−I 0



where I is the identity matrix of dimension d (Hairer, et al. 2001).

Definition 4.2 A linear mapping A : R2d → R2d is called symplectic if

AT JA = J

or, equivalently, if ω(Aξ,Aη) = ω(ξ, η) for all ξ, η ∈ R2d.

We can find it

ω(Aξ,Aη) = (Aξ)T J(Aη) = ξT AT JA︸︷︷︸ η (since AT JA = J)

= ξT Jη = ω(ξ, η)

Definition 4.3 For nonlinear mapping, the differentiable functions can be locally ap-

proximated by linear functions. A differentiable map g : U→ R2d (where U ⊂ R2d is an

open set) is called symplectic if the Jacobian matrix g′(p, q) is everywhere symplectic, i.e.,

if

g′(p, q)T Jg′(p, q) = J or ω(g′(p, q)ξ, g′(p, q)η) = ω(ξ, η).

Lemma 4.2 If ψ and ϕ are symplectic maps then ψ ◦ ϕ is symplectic.

Proof: Since ψ is symplectic

(ψ′)T Jψ′ = J, similarly (ϕ′)T Jϕ′ = J
[
(ψoϕ)′

]T
J(ψoϕ)′ = (ψ′oϕ′)T J(ψ′oϕ′) = (ϕ′)To(ψ′)T Jψ′oϕ′ = J
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Theorem 4.4 (Poincaré 1899). Let H(p, q) be a twice continuously differentiable function

on U ⊂ R2d. Then, for each fixed t, the flow ϕt is a symplectic transformation wherever

it is defined.

Proof: Let ϕt be flow of the Hamiltonian system. ϕ′t is a Jacobian matrix of the

flow, then ϕ′t satisfies the variational equation i.e.

d
dt
ϕ′t = J−1H′′ϕ′t where H′′ =


Hpp Hpq

Hqp Hqq

 is symmetric.

Hence
d
dt

(ϕ′Tt Jϕ′t) = [J−1H′′ϕ′t]
T Jϕ′t + ϕ′Tt JJ−1

︸︷︷︸ H′′ϕ′t

since JJ−1 = I
d
dt

(ϕ′Tt Jϕ′t) = ϕ′Tt H′′T (J−1)T J︸ ︷︷ ︸ϕ
′
t + ϕ′Tt H′′ϕ′t

now, we will use (H′′)T = H′′ and (J−1)T J = −I, let us prove it;

JT = −J

[(J−1)T J]T = JT · J−1 = −J · J−1 = −I

then we finally find (J−1)T J = −I. We put (J−1)T J = −I in the last equation;

d
dt

(ϕ′Tt Jϕ′t) = −ϕ′Tt H′′ϕ′t + ϕ′Tt H′′ϕ′t = 0

Since d
dt(ϕ

′T
t Jϕ′t) = 0 then ϕ′Tt Jϕ′t = C. When t = 0, we have ϕ′t(t0) = I⇒ C = J

Theorem 4.5 Let f : U → R2d be continuously differentiable. Then, ẏ = f (y) is locally

Hamiltonian if and only if its flow ϕt(y) is symplectic for all y ∈ U and for all sufficiently

small t.

Proof: Assume that the flow ϕt is symplectic, and we have to prove the local

existence of a function H(y) such that f (y) = J−1∇H(y). Using the fact that ∂ϕt

∂y0
is a

solution of the variational equation Ψ̇ = f ′(ϕt(y0))Ψ, we obtain

d
dt

((∂ϕt

∂y0

)T
J
(∂ϕt

∂y0

))
=

(∂ϕt

∂y0

)(
f ′(ϕt(y0))T J + J f ′(ϕt(y0)

)(∂ϕt

∂y0

)
= 0.

Putting t = 0, it follows from J = −JT that J f ′(y0) is a symmetric matrix for all y0.
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Theorem 4.6 Let ψ : U → V be a change of coordinates such that ψ and ψ−1 are

continuously differentiable functions. If ψ is symplectic, the Hamiltonian system ẏ =

J−1∇H(y) becomes in the new variables z = ψ(y)

ż = J−1∇K(z) with K(z) = H(y).

Conversely, if ψ transforms every Hamiltonian system to another Hamiltonian system,

then ψ is symplectic.

Proof: Since ż = ψ′(y)ẏ and ψ′(y)T∇K(z) = ∇H(y), the Hamiltonian system ẏ =

J−1∇H(y) becomes

ż = ψ′(y)J−1ψ′(y)T∇K(z)

in the new variables. It is equivalent to ż = J−1∇K(z) with K(z) = H(y) if

ψ′(y)J−1ψ′(y)T = J−1.

Multiplying this relation from the right byψ′(y)−T and from the left byψ′(y)−1 and

then taking its inverse yields J = ψ′(y)T Jψ′(y), which shows that the last equation

is equivalent to the symplecticity of ψ.

4.3. Examples of Symplectic Integrators

Definition 4.4 A numerical one-step method is called symplectic if the one-step map

y1 = Φh(y0) is symplectic whenever it is applied to a smooth Hamiltonian system.If the

method is symplectic:

Φ′h(y)T J Φ′h(y) = J (4.13)

where J =


0 I

−I 0



Theorem 4.7 The implicit midpoint rule is symplectic.

Proof : The second order implicit midpoint rule is:

Un+1 = Un + h f
(Un + Un+1

2

)
(4.14)

Consider the Hamiltonian problem

ẏ = J−1∇H(y) (4.15)
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Un+1 = Un + hJ−1∇H
(Un + Un+1

2

)
(4.16)

Un+1 = ψn(Un) and need to show ψ′Tn Jψ′n = J

ψ′n =
∂Un+1

∂Un
= I + hJ−1H′′

(Un + Un+1

2

)(1
2

)(∂Un+1

∂Un
+ I

)
(4.17)

ψ′h =
∂Un+1

∂Un
=

(
I − h

2
J−1H′′

)−1(
I +

h
2

J−1H′′
)

(4.18)

ψ′Tn Jψ′n = J means:

(
I +

h
2

J−1H′′
)
J
(
I +

h
2

J−1H′′
)T

=
(
I − h

2
J−1H′′

)
J
(
I − h

2
J−1H′′

)T
(4.19)

By using the equalities

1)(H′′)T = H′′ (since H is symmetric)

2)(J−1)T = −J−1 = J

we get

(
I +

h
2

J−1H′′
)T

= I − h
2

H′′J−1

(
I − h

2
J−1H′′

)T
= I +

h
2

H′′J−1

Then

(
IJ +

h
2

J−1H′′J
)(

I − h
2

H′′J−1
)

=
(
IJ − h

2
J−1H′′J

)(
I +

h
2

H′′J−1
)

(4.20)

J +
h
2

J−1H′′J − h
2

JH′′J−1 − h2

4
J−1H′′JH′′J−1 = J +

h
2

JH′′J−1 − h
2

J−1H′′J − h2

4
J−1H′′JH′′J−1(4.21)

And we find

⇒ hJH′′J−1 = hJ−1H′′J (4.22)

J−1 = −J⇒ −JH′′J = −JH′′J

4.4. Symplectic Runge-Kutta Methods

It is fortunate that an important class of Runge-Kutta methods namely

Gauss-Legendre methods also turn out to be symplectic methods. The implicit
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midpoint rule is considered earlier is a member of this class. This gives a

very useful class of methods applicable to a wide class of general Hamiltonian

problems, the resulting methods are highly implicit and for specific problems

splitting methods, which maybe explicit, maybe preferable (Budd and Piggott

2000). To explain this Runge-Kutta methods, in these section consider a standard

s-stage Runge-Kutta method with Butcher tableau

c A

bT

where c, b ∈ Rs and A = (ai, j) ∈ Rs×s. The following result gives complete

characterization of all symplectic Runge-Kutta methods.

Theorem 4.8 A necessary and sufficient condition for a Runge-Kutta method to be

symplectic is that for all 1 ≤ i, j ≤ s

biai j + b ja j i − bib j = 0 (4.23)

Proof: See (Hairer, et al. 2001).

Note that the necessity of condition (4.23) requires that the method have

no redundant stages i.e the method be reducible. We can immediately see that

if the matrix A was lower triangular then (4.23) would imply that bi = 0, ∀i, and

therefore we can conclude that symplectic Runge-Kutta methods must be implicit.

This not an ideal state of affairs, however we shall see presently that in a number

of very important situation methods which are both symplectic and explicit may

be found (Budd and Piggott 2000).

The proof of this result is a consequence of the fact that any method satis-

fying (4.23) automatically preserve any quadratic invariant. of the solution of the

equation to which is applied.

The natural partitioning present in Hamiltonian problem suggest that we

may think about using different numerical methods for different components of

the problem. We shall now consider partitioned Runge-Kutta methods, where we

integrate p components with the Runge-Kutta method given by the first Butcher

tableau and the q components with the second tableau below.
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c A

bT

ĉ Â

b̂T

As we have done for symplectic Runge-Kutta methods we may now classify

partitioned Runge-Kutta methods with the following result.

For special case of problems where the Hamiltonian take the separable form

H(p, q) = T(p) + V(q) only the second part of (4.23) is required for symplecticity.

An example of such a method by Ruth’s third order method it has been

tableau

7/24 0 0

c 7/24 3/4 0

7/24 3/4 -1/24

7/24 3/24 -1/24

0 0 0

ĉ 2/3 0 0

2/3 -2/3 0

2/3 -2/3 1

Theorem 4.9 If the coefficients of a partitioned Runge-Kutta method satisfy

biâi j + b̂ ja ji = bib̂ j f or i, j = 1, ...., s, (4.24)

bi = b̂i f or i = 1, ...., s, (4.25)

then it is symplectic.

Theorem 4.10 A symplectic Runge-Kutta method leaves all quadratic first integrals

of a hamiltonian system invariant, i.e. if yn = (pn, qn) and G = Gt ∈ M2d(R),then

yt
n+1Gyn+1 = yt

nGyn for all n.

In particular, if a linear autonomous system is integrated with a symplectic

Runge-Kutta method, than the energy will be conserved exactly (up to truncation

errors, of course).

4.5. Examples of Applications of Symplectic Integrators

In these section we look the application of symplectic integrators to the

harmonic oscillator as a Hamiltonian system.

The Harmonic Oscillator

This well studied problem has a separable Hamiltonian of the form

H(p, q) =
p2

2
+

q2

2
, (4.26)
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and has solutions which are circles in the (p,q) phase space. The associated

differential equations are

dq
dt

= p,
dp
dt

= −q. (4.27)

Consider now the closed curve (circle)

Γ ≡ p2 + q2 = C2,

the action of the solution operator of the differential equation is to map this curve

into itself(conserving the area πC2 of the enclosed region). The standard forward

Euler method applied to this system gives the scheme

pn+1 = pn − hqn, qn+1 = qn + hpn, (4.28)

so that Ψh is the operator given by

Ψhv =


1 −h

h 1

 v, with det(Ψh) = 1 + h2.

It is easy to see that in this case,Γ evolves through the action of the discrete map

Ψh to the new circle given by

p2
n+1 + q2

n+1 = C2(1 + h2) (4.29)

and the area enclosed within the discrete evolution of Γ has increased by a factor

of 1 + h2. Periodic orbits are not preserved by the forward Euler method – indeed

all such discrete orbits spiral to infinity. Similarly, a discretisation using the

backward Euler method leads to trajectories that spiral towards the origin (Budd

and Piggott 2000).

Consider now the symplectic Euler method applied to this example. This gives rise

to the discrete map

pn+1 = pn − hqn, qn+1 = qn + h(pn − hqn) = (1 − h2)qn + hpn (4.30)

The discrete evolutionary is then simply matrix

Ψh


p

q

 =


1 −h

h 1 − h2




p

q


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which can easily be checked to be symplectic. For example det(Ψh)=1. The circle

Γ is now mapped to the ellipse

(1 − h2 + h4)p2
n+1 − 2h3pn+1qn+1 + (1 + h2)q2

n+1 = C2 (4.31)

which has the same enclosed area. The symplectic Euler map is not symmetric in

time so that

ψ−1
h , ψ−h.

Observe that the symmetry of the circle has been destroyed through the applica-

tion of this mapping.

It is also easy to see that if

A =


1 −h

2

−h
2 1



then

ΨT
h AΨh = A.

Next consider the Störmer-Verlet method. This gives the discrete map

pn+1/2 = pn − hqn/2, qn+1 = qn + h(pn − hqn/2), (4.32)

pn+1 = pn+1/2 − h
2

(qn + h(pn − h
2

qn)). (4.33)

The discrete evolutionary operator ψh is now the symplectic matrix

Ψhv =


1 − h2/2 −h + h3/4

h 1 − h2/2

 v.

The curve Γ is to order h2 mapped to a circle of the same radius. The Störmer-

Verlet method preserves the symmetry of the circle to this order, and indeed is

also symmetric in time so that ψ−1 = ψ−h.

Finally we consider the implicit midpoint rule. For this we have

C


pn+1

qn+1

 = CT


pn

qn

 ,

where

C =


1 h

2

−h
2 1

 .

31



Observe that CCT = (1 + h2/4)I. The evolution operator is then simply

Ψh = C−1CT.

Observe further that if Un = (pn, qn)T then

(1 + h2/4)UT
n+1Un+1 = UT

n+1CTCUn+1 = UT
nCCTUn = (1 + h2/4)UT

nUn.

Hence the quadratic invariant UT
nUn is exactly preserved by this method. This

feature is shared by all symplectic Runge-Kutta methods.

4.6. Symmetric Integration and Reversibility

Symmetric methods of this chapter and symplectic methods of preceding

chapter play a center role in the geometric integration of differential equations.

We discuss reversible differential equations and reversible maps, and we explain

how symmetric integrators are related to them. We study symmetric Runge-Kutta

and composition methods.

4.6.1. Reversible Differential Equations and Maps

Conservative mechanical systems have the property that inverting the

initial direction of the velocity vector and keeping the initial position does not

change the solution trajectory, it only inverts the direction of motion (Hairer, et

al. 2001). Such systems are ’reversible’. We extend this notion to more general

situations.

Figure 4.2. Reversible vector field (left picture) and reversible map (right picture)
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Definition 4.5 Letρ be an invertible linear transformation in the phase space of ẏ = f (y).

This differential and vector field f (y) called ρ − reversible if

ρ f (y) = − f (ρy) for all y. (4.34)

This property is illustrated in the left picture of Figure(4.3). For ρ − reversible

differential equations the exact flow ϕt(y) satisfies

ρ ◦ ϕt = ϕ−t ◦ ρ = ϕ−1
t ◦ ρ (4.35)

Lemma 4.3 Show the equality is true.

ρ ◦ ϕt = ϕ−t ◦ ρ = ϕ−1
t ◦ ρ (4.36)

Proof: The right identity is a consequence of the group property

ϕt ◦ ϕs = ϕt+s, ϕt ◦ ϕ−t = I, ϕ−t = ϕ−1
t ,

and the left identity follows from ẏ = f (y), ϕt is exact flow then d
dt (ϕt) = f (ϕt) and

ρ(ϕt) is also solution of equation

d
dt

(ρ ◦ ϕt)(y) = ρ f (ϕt(y)) = − f ((ρ ◦ ϕt)(y))

d
dt

(ϕ−t ◦ ρ)(y) = − f ((ϕ−t ◦ ρ)(y))

Definition 4.6 A map Φ(y) is called ρ − reversible if

ρ ◦Φ = Φ−1 ◦ ρ (4.37)

Example 4.3 : An important example is the partitioned system

u̇ = f (u, v), v̇ = g(u, v) (4.38)

where f (u,−v) = − f (u, v) and g(u,−v) = g(u, v). Here, the transformation ρ is

given by ρ(u, v) = (u,−v). If we call a vector field or a map reversible (without

specifying the transformationρ), we mean that it isρ−reversible with this particular

ρ.

−ρ f (y) = f (ρ(y))
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f (u,−v) = − f (u, v)

g(u,−v) = g(u, v)

ρ(u, v) = (u,−v) where (u, v) = Y

f (ρ(Y)) = f (u,−v) = − f (u, v) (∗)

f (Y) = f (u, v) = − f (u,−v)

ρ( f (Y)) = f (u, v) (∗∗)

from (∗) and (∗∗)
f (ρ(Y)) = −ρ( f (Y))

u̇ = g(u) is always reversible system. u̇ = v = f (u, v), v̇ = g(u)

f (u,−v) = −v = − f (u, v)

Definition 4.7 A numerical one-step method Φh is called symmetric or time-reversible,

if it satisfies

Φh ◦Φ−h = id or equaivalently Φh = Φ−1
−h

With the definition of adjoint method (Φ∗h = Φ−1
−h), the condition for symmetry reads

Φh = Φ∗h. A method y1 = Φh(y0) is symmetric if exchanging y0 ↔ y1 and h ↔ −h

leaves the method unaltered. Implicit midpoint rule and the Störmer-Verlet scheme both

of which are symmetric.

Theorem 4.11 If a numerical method, applied to a ρ − reversible differential equation

satisfies

ρ ◦Φh = Φ−h ◦ ρ, (4.39)

then the numerical flow Φh is a ρ− reversible map if and only if Φh is a symmetric method.

Proof: As a consequence of (4.30) the numerical flow Φh is ρ − reversible if and

only if Φ−h ◦ ρ = Φ−1
h ◦ ρ. Since ρ is an invertible transformation, this is equivalent

to the symmetry of the method Φh.
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Example 4.4 : Explicit method Φh(y0) = y0 + h f (y0)

ρ ◦Φh(y0) = ρ(y0 + h f (y0)) = ρy0 + hρ f (y0) = ρy0 − h f (ρ(y0)) = Φ−h(ρ(y0))

Hence

ρ ◦Φh = Φ−h ◦ ρ.

Similarly, it is also true that a symmetric method is ρ − reversible if and only

if the ρ-compatibility condition (4.37) holds. Compared to the system of the

method, condition (4.37) is much less restrictive. It is automatically satisfied by

most numerical methods. Let us briefly discuss the validity of (4.37) for different

classes of methods.

• Runge-Kutta Methods(explicit or implicit) satisfy (4.37) without any restric-

tion other than (4.36) on the vector field. Let us illustrate the proof with the

explicit Euler method Φh(y0) = y0 + h f (y0):

(ρ ◦Φh)(y0) = ρy0 + hρ f (y0) = ρy0 − h f (ρy0) = Φ−h(ρy0)

(Hairer, et al. 2001)

• Partitioned Runge-Kutta Methods applied to a partitioned system satisfy the

condition (4.37) if ρ(u, v) = (ρ1(u), ρ2(v)) with invertible ρ1 and ρ2. The

proof is the same as for Runge-Kutta methods. Notice that the mapping

ρ(u, v) = (u,−v) of example (4.3) is of this special form (Hairer, et al. 2001).

• Composition methods. If two methods Φh and Ψh satisfy (4.37), then so does

the adjoint Φ∗h and the composition Φh ◦Ψh. Consequently, the composition

methods, which compose a basic method Φh and its adjoint with different

step sizes, have the property (4.37) provided the basic method Φh has it

(Hairer, et al. 2001).

• Splitting methods are based on a splitting ẏ = f [1](y)+ f [2](y) of the differential

equation. If both vector fields, f [1](y) and f [2](y), satisfy (1), then their exact

flows ϕ[1]
h and ϕ[2]

h satisfy (4.36). In this situation, the splitting method has

the property (4.37) (Hairer, et al. 2001).
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4.7. Examples of Symmetric Methods

Now we introduce some symmetric methods in this section.

Lemma 4.4 Midpoint rule is a symmetric method.

Proof: The midpoint rule is

yn+1 = yn + h f
( yn+1 + yn

2

)

exchanging h by -h and (n+1) by (n)

yn = yn+1 − h f
( yn+1 + yn

2

)

yn+1 = yn + h f
( yn+1 + yn

2

)

then we proved that midpoint rule is symmetric.

Lemma 4.5 Trapezoidal rule is symmetric.

Proof: Trapezoidal rule is

yn+1 = yn +
h
2

[
f (yn) + f (yn+1)

]

exchanging h by -h and (n+1) by (n)

yn = yn+1 − h
2

[
f (yn+1) + f (yn)

]

yn+1 = yn +
h
2

[
f (yn) + f (yn+1)

]

then we proved that trapezoidal rule is symmetric.

4.8. Geometric Structures in Hamiltonian Systems

We can write the Hamiltonian systems of the form:

ṗ = − 5q H(p, q), q̇ = 5pH(p, q) (4.40)

where H : Rd×Rd → R, and the dimension d is the number of degrees of freedom.

In applications the Hamiltonian is often given in the form:

H(p, q) =
1
2

pTM(q)−1p + U(q) (4.41)
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with a positive definite symmetric mass matrix M(q) and a potential U(q).In this

situation, the function H(p, q) represents the total energy of the system. Such

problems arise in mechanics, astrophysics,molecular dynamics, and many other

sciences (Hairer 2005).

Due to their special structure, Hamiltonian systems have several interesting

properties (in the following we denote the flow of the system, mapping an initial

value y = (p, q) onto the solution at time t, by ϕt(y)):

(P1) the group property ϕt oϕs = ϕt+s is satisfied by every differential

equation; in particular, one has

ϕt oϕ−t = ϕ0 = identity (4.42)

(P2) the Hamiltonian H(p, q) is constant along solutions of (5.32) which

means that the total energy is conserved quantity,

(P3) the flow ϕt of (4.40) is a symplectic transformation, i.e.

ϕ
′
t(y)T Jϕ

′
t(y) = J f or t ≥ 0, J =


0 I

−I o

 (4.43)

Due to det ϕ′t(y) = 1, this implies the flow is volume preserving,

µ(ϕt(A)) = µ(A) t ≥ 0

and for the system with one degree of freedom symplecticity turns out to be

equivalent with area-preservation of the flow ϕt,

(P4) if H(−p, q) = H(p, q), the flow ϕt is ρ-reversible with respect to the

reflection ρ(p, q) = (−p, q), i.e. it satisfies

(ρ o ϕt)(y) = (ϕ−1
t o ρ)(y) f or all t and all y.

It is natural to look for numerical methods that satisfy one or several of

these properties.

4.9. Geometric Integration

As we mentioned in chapter 3 that a numerical method for solving ordinary

differential equations is a mapping Φh defined on the phase space that approxi-

mates the time-h flow ϕh; if Φh(y) = ϕh(y)+O(hr+1). The numerical approximation
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at time t = nh is obtained by yn = Φh(yn−1) and the following are of interest:

(S1) the method is symmetric if it satisfies

Φh ◦Φ−h = identity (4.44)

(S2) it is energy-preserving if along numerical solutions of differential equation

H(pn, qn) = Constant (4.45)

(S3) it is called symplectic if Φh satisfies

Φ′h(y)T JΦ′h(y) = J (4.46)

where J =


0 I

−I 0



(S4) it is ρ − reversible if, for H(−p, q) = H(p, q),

(ρ ◦Φh)(y) = (Φ−1
h ◦ ρ)(y) (4.47)

for all h and for all y(Hairer 2005).

After these properties, we can briefly say that a numerical method that

satisfies one or several of these properties is called a geometric integrator.

4.9.1. Philosophy of Geometric Integration

In any numerical study, one should

• examine any geometric or structural properties of ODE or its flow

•design numerical methods which also have these structural geometric properties

• examine the consequences, hopefully over and above the immediate ones

This encourages us to

• confront questions of phase space and degrees of freedom

• think about the significance of local, global and qualitative errors

• think about the kinds tools and functions allowed in numerical analysis.
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For example, multi-step methods do not define a map on phase space,

because more than one initial condition required. They can have geometric prop-

erties, but in a different phase space, which can alter the effects of the properties.

This puts geometric integration firmly into the single step. If a system is defined

on a sphere, one should stay on that sphere.

The direct consequences of geometric integration are that we are

• studying a dynamical system which is close to the true one, and the right class

• this class may have restricted orbit types, stability, and long-time behavior

In addition, because the structural properties are so natural, some indirect

consequences have been observed. For example,

• symplectic integrators have good energy behaviors

• symplectic integrators can conserve angular momentum and other conserved

quantities

• geometric integrators can have smaller local truncation errors for special prob-

lems and smaller global truncation errors for special problems/initial conditions

• some problems can have errors tending to zero at long times.

In designing our numerical method to preserve some structure we hope to

see improvements in our computations. Geometric structures often make it easier

to estimate errors, and in fact local and global errors may will be smaller for no

extra computational expense. Geometric integration methods designed to capture

specific qualitative properties may also preserve additional properties of the so-

lution for free. For example symplectic methods for Hamiltonian problems have

excellent energy conservation properties and can conserve angular momentum

or other invariants.

In conclusion, geometric integration methods can often ’go where other

methods cannot’ and the motivation for preserving structure include

(i) it may yield methods that are faster, simpler, more stable, and more accurate,

as in methods for structured eigenvalue problems for some types of ODEs;

(ii) it may yield methods that are more robust and yield qualitatively better re-

sults than standard methods, even if the standard numerical errors are no smaller;

(iii) it may suggest new types of calculations previously thought to be impossi-

ble, as in the long-time integration of Hamiltonian systems;
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(iv) it may be essential to obtain a useful (e.g convergent) method, as in the

discrete differential complexes used in electromagnetism;

(v) the development of general-purpose methods may be nearing completion,

as in Runge-Kutta methods for ODEs (Hairer 2005).

4.10. The Kepler Problem and Its Conserved Quantities

In classical mechanics, Keplers problem is a special case of the two-body

problem, in which the two bodies interact by a central force F that varies in

strength as the inverse square of the distance r between them. The force may be

either attractive or repulsive. The ”problem” to be solved is to find the position

or speed of the two bodies over time given their masses and initial positions and

velocities. Using classical mechanics, the solution can be expressed as a Kepler

orbit.

Consider two particles in R3. One is fixed at the origin, and the other

one moves under the influence of gravitational field of the fixed particle. The

problem, named after Kepler, is to describe the motion of the second particle.

The following non-dimensional Kepler Problem is considered as a test problem

to perform the geometric and non-geometric integration methods. We define the

Kepler Hamiltonian system:

q̇ = p (4.48)

ṗ = −G
q
|q|3 (4.49)

where q is position vector, p is momenta and G is the gravitational constant. In

this section we consider the conserved quantities of the Kepler Problem such that

the energy function, angular momentum and Runge-Lenz vector. The equations

of three dimensional Kepler problem have the following first integrals:

1) Hamiltonian Function:

Total energy of the system is the Hamiltonian function

H(q1, q2, q3, p1, p2, p3) =
1
2

(p2
1 + p2

2 + p2
3) − G√

q2
1 + q2

2 + q2
3

(4.50)

We showed before that the energy is conserved.

2) Angular Momentum:
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The system has not only the total energy H(p, q) as a first integral, but also the

angular momentum of a point particle with position−→q and momentum−→p is equal

to the vector cross product of the position and momentum vectors

L = −→q × −→p (4.51)

Angular momentum is another conserved quantity for the Kepler problem. The

time derivative of angular momentum is:

dL
dt

=
dq
dt
× p + q × dp

dt

= p × p − K
|q|3 q × q = 0

3) Runge-Lenz Vector:

Another conserved quantity of the Kepler Problem is Runge-Lenz vector. For

a single particle acted on by an inverse-square central force described by the

equation F(|q|) = −k
|q|2 q̂, the Runge-Lenz vector A is defined mathematically by the

formula:

A = p × L −mkq̂

where

•m is the mass of the point particle moving under the central force,

• p is its momentum vector,

• L = q × p is its angular momentum vector,

• k is a parameter that describes strength of the central force,

• q is the position vector of the particle,

• q̂ is the corresponding unit vector, i.e, q̂ =
q
|q| .

The Runge-lenz vector is conserved quantity of the Kepler problem since:

A central force F acting on the particle is F = f (|q|). q
|q| = f (|q|).q̂. For some function

f (|q|) of the radius q. Since dL
dt = 0

d
dt

(p × L) =
dp
dt
× L = f (|q|).q̂ × (q × p)

where the momentum p = mdq
dt .

d
dt

(p × L) = f (|q|). q
|q| × (q ×m

dq
dt

)
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Using Lagrange’s formula

q × (q × dq
dt

) = q(q.
dq
dt

) − |q|2 dq
dt

then
d
dt

(p × L) = f (|q|).m|q|[q(q.
dq
dt

) − |q|2 dq
dt

]

the identity
d
dt

(q.q) = 2q.
dq
dt

=
d
dt

(|q|2) = 2|q|.d|q|
dt

yields the equation

d
dt

(p × L) = −m f (|q|).|q|2[
1
|q| .

dq
dt
− q
|q|2 .

d|q|
dt

]

= −m f (|q|).|q|2. d
dt

(
q
|q| )

for the special case of an inverse square central force f (|q|) = − k
|q|2 ,

d
dt

(p × L) = mk
d
dt

(
q
|q|) =

d
dt

(mkq̂)

then the time derivative of the Runge-Lenz vector becomes

dA
dt

=
d
dt

(p × L −mkq̂) =
d
dt

(p × L) − d
dt

(mkq̂) =
d
dt

(mkq̂) − d
dt

(mkq̂) = 0

In next chapter we will apply both geometric and non-geometric integra-

tion methods to the Kepler problem and we will compare the results that which

of these methods conserve better above conserved quantities.
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CHAPTER 5

A COMPARISON OF SYMPLECTIC AND

NON-SYMPLECTIC METHODS APPLIED TO

KEPLER PROBLEM

In this chapter both geometric and non-geometric integrator methods are

applied to the Kepler problem. For these numerical experiments we use the

initial conditions q0 = (0.8, 0.6, 0)T and p0 = (0, 1, 0.5)T. All computations are

performed on the time interval [0,1000] with time step 4t = h = 0.01. All these

initial conditions and fictitious time are taken from Kozlov’s paper (Kozlov 2007).

Algorithms are written in MATLAB. Conservation of the trajectory of motion and

conserved quantities of the Kepler Problem such that energy, angular momentum

and Runge-Lenz vector are compared by using geometric and non-geometric

integrator methods.

5.1. First Order Methods

First we consider first order methods, namely, explicit Euler, implicit Euler,

symplectic Euler and its adjoint.

5.1.1. Phase Spaces

In this subsection trajectory of motion obtained by using explicit Euler,

implicit Euler is shown in Figure(5.1) and Fig (5.2), respectively. Since they are not

geometric integration methods, they do not preserve the shape of the trajectory of

the motion. Figure(5.3) and Figure(5.4) present the trajectory of motion obtained

by symplectic Euler and adjoint of symplectic Euler, respectively. Since both of

these methods are symplectic geometric integrators the shape of the trajectory

preserved by both these methods.
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Figure 5.1. Trajectory of motion by Explicit Euler.
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Figure 5.2. Trajectory of motion by Implicit Euler.
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Figure 5.3. Trajectory of motion by Symplectic Euler.
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Figure 5.4. Trajectory of motion by Adjoint of Symplectic Euler.
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5.1.2. Conservation of Energy

Conservation of the energy is presented in Figure(5.5, 5.6, 5.7, 5.8) by

explicit Euler, implicit Euler, symplectic Euler and adjoint of the symplectic Euler

method, respectively. Since symplectic Euler and adjoint of symplectic Euler

methods are symplectic methods we observed that they conserved the energy

better than explicit and implicit Euler methods.
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Figure 5.5. The errors in Hamiltonian H(q, p) −H(q0, p0) for the Explicit Euler.
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Figure 5.6. The errors in Hamiltonian H(q, p) −H(q0, p0) for the Implicit Euler.
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Figure 5.7. The errors in Hamiltonian H(q, p) −H(q0, p0) for the Symplectic Euler.
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Figure 5.8. The errors in Hamiltonian H(q, p) − H(q0, p0) for the Adjoint of

Symplectic Euler.
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5.1.3. Conservation of Angular Momentum

Conservation of angular momentum is shown in Figure(5.9, 5.10, 5.11, 5.12)

by explicit Euler, implicit Euler, symplectic Euler and adjoint of symplectic Euler,

respectively. We observed the following: angular momentum is preserved by the

symplectic methods but not by any of the explicit and implicit Euler methods.
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Figure 5.9. The errors in angular momentum L(q, p) − L(q0, p0) for the Explicit

Euler.
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Figure 5.10. The errors in angular momentum L(q, p) − L(q0, p0) for the Implicit

Euler.
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Figure 5.11. The errors in angular momentum L(q, p)− L(q0, p0) for the Symplectic

Euler.
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Figure 5.12. The errors in angular momentum L(q, p) − L(q0, p0) for the Adjoint of

Symplectic Euler.

49



5.1.4. Conservation of Runge-Lenz Vector

Conservation of Runge-Lenz vector is presented in Figure(5.13, 5.14, 5.15,

5.16) by explicit Euler, implicit Euler, symplectic Euler and adjoint of symplectic

Euler, respectively. It can be seen in these figures that symplectic methods preserve

this quantity better than explicit and implicit Euler method.
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Figure 5.13. The errors in Runge-Lenz vector A(q, p) − A(q0, p0) for the Explicit

Euler.
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Figure 5.14. The errors in Runge-Lenz vector A(q, p) − A(q0, p0) for the Implicit

Euler .
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Figure 5.15. The errors in Runge-Lenz vector A(q, p) −A(q0, p0) for the Symplectic

Euler.
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Figure 5.16. The errors in Runge-Lenz vector A(q, p) − A(q0, p0) for the Adjoint of

Symplectic Euler.
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5.2. Second Order Methods

In this section we consider second order methods, namely, trapezoidal rule,

implicit midpoint rule and Störmer-Verlet method.

5.2.1. Phase Spaces

In this subsection we obtain trajectory of motion by using trapezoidal

rule, implicit midpoint rule and Störmer-Verlet method. Figure(5.17) presents the

trajectory of motion obtained by trapezoidal rule. It can be easily seen that the

trajectory of motion gets deformed. Since trapezoidal rule is a non-geometric

integrator we could not obtain closed curves. Figure(5.18) and Figure(5.19) show

the phase space of the Kepler problem obtained by implicit midpoint and Störmer-

Verlet method, respectively. Since both of these methods are symplectic geometric

integrators the shape of the trajectory preserved by both these methods.
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Figure 5.17. Trajectory of motion by Trapezoidal Rule.
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Figure 5.18. Trajectory of motion by Midpoint Rule.
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Figure 5.19. Trajectory of motion by Störmer-Verlet scheme.
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5.2.2. Conservation of Energy

Figure(5.20, 5.21, 5.22) present conservation of the energy by trapezoidal

rule, implicit midpoint rule and Störmer-Verlet method, respectively. We

observed the following: implicit midpoint rule and Störmer-Verlet method

conserved the energy since they are symplectic geometric integration methods.

Conservation of the energy by these methods is better than trapezoidal rule.
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Figure 5.20. The errors in Hamiltonian H(q, p)−H(q0, p0) for the Trapezoidal Rule.
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Figure 5.21. The errors in Hamiltonian H(q, p) −H(q0, p0) for Midpoint Rule.
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Figure 5.22. The errors in Hamiltonian H(q, p)−H(q0, p0) for Störmer-Verlet scheme.
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5.2.3. Conservation of Angular Momentum

Error in angular momentum is shown in Figure(5.23, 5.24, 5.25) by

trapezoidal rule, implicit midpoint rule and Störmer-Verlet method, respectively.

Angular momentum is conserved by midpoint rule and Störmer-Verlet method

up to the computer accuracy. Implicit midpoint rule and Störmer-Verlet method

conserve this quantity better than trapezoidal rule.
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Figure 5.23. The errors in angular momentum L(q, p) − L(q0, p0) for Trapezoidal

rule.
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Figure 5.24. The errors in angular momentum L(q, p) − L(q0, p0) Midpoint Rule.
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Figure 5.25. The errors in angular momentum L(q, p)− L(q0, p0) for Störmer-Verlet

scheme.
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5.2.4. Conservation of Runge-Lenz Vector

Conservation of Runge-Lenz vector is shown in Figure(5.26, 5.27, 5.28) by

trapezoidal rule, implicit midpoint rule and Störmer-Verlet method, respectively.

As can be seen in these figures that implicit midpoint rule and Störmer-Verlet

method preserve the Runge-Lenz vector better than trapezoidal rule.
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Figure 5.26. The errors in Runge-Lenz vector A(q, p)−A(q0, p0) for the Trapezoidal

rule.
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Figure 5.27. The errors in Runge-Lenz vector A(q, p)−A(q0, p0) for Midpoint Rule.
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Figure 5.28. The errors in Runge-Lenz vector A(q, p) −A(q0, p0) for Störmer-Verlet

scheme.
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5.3. Third Order Methods

In this section classic 3rd order Runge-Kutta method as we mention in

section 3.4 and composition methods of order 3 are considered as third order

methods. In composition methods we use midpoint rule and Störmer-Verlet

method as the base methods such that let Φh be our base method and γ1 = γ3 =

1
2−2(1/3) , γ2 = − 2(1/3)

2−2(1/3) real numbers. Its composition with step sizes γ1h, γ2h, γ3h

i.e.,

Ψh = Φγ3h o Φγ2h o Φγ1h

is the corresponding composition method (Hairer, et al. 2001).

5.3.1. Phase Spaces

In this subsection trajectory of motion obtained by classic 3rd order Runge-

Kutta method can be seen in Figure(5.29). Since 3rd order Runge-Kutta method

is a non-geometric integrator we could not obtain closed curves. Figure(5.30) and

Figure(5.31) present the trajectory of motion obtained by composition method

of order 3 (midpoint rule as base method) and composition method of order 3

(Störmer-Verlet as base method), respectively. Since composition of symplectic

method is symplectic method the shape of the trajectory preserved by this method.
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Figure 5.29. Trajectory of motion by 3rd order Runge-Kutta.
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Figure 5.30. Trajectory of motion by Composition method of order 3 (midpoint

rule as base method).
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Figure 5.31. Trajectory of motion by Composition method of order 3 (Störmer-

Verlet as base method).

61



5.3.2. Conservation of Energy

Conservation of the energy is presented in Figure(5.32, 5.33, 5.34) by

3rd order Runge-Kutta, composition method of order 3 (midpoint rule as base

method) and composition method of order 3 (Störmer-Verlet as base method),

respectively. We observed following: composition method of order 3 preserve

the energy better than 3rd order Runge-Kutta method.
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Figure 5.32. The errors in Hamiltonian H(q, p) − H(q0, p0) for 3rd order Runge-

Kutta.
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Figure 5.33. The errors in Hamiltonian H(q, p)−H(q0, p0) for Composition method

of order 3 (midpoint rule as base method).
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Figure 5.34. The errors in Hamiltonian H(q, p)−H(q0, p0) for Composition method

of order 3 (Störmer-Verlet as base method).
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5.3.3. Conservation of Angular Momentum

In this subsection Figure(5.35, 5.36, 5.37) show conservation of angular

momentum by 3rd order Runge-Kutta, composition method of order 3 (midpoint

rule as base method) and composition method of order 3 (Störmer-Verlet as base

method), respectively. Composition method of order 3 (midpoint rule as base

method) and composition method of order 3 (Störmer-Verlet as base method)

conserved this quantity up to the computer accuracy.
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Figure 5.35. The errors in angular momentum L(q, p) − L(q0, p0) for 3rd order

Runge-Kutta.
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Figure 5.36. The errors in angular momentum L(q, p) − L(q0, p0) Composition

method of order 3 (midpoint rule as base method).
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Figure 5.37. The errors in angular momentum L(q, p) − L(q0, p0) Composition

method of order 3 (Störmer-Verlet as base method).

65



5.3.4. Conservation of Runge-Lenz Vector

Conservation of Runge-Lenz vector is shown in Figure(5.38, 5.39, 5.40) by

3rd order Runge-Kutta, composition method of order 3 (midpoint rule as base

method) and composition method of order 3 (Störmer-Verlet as base method)

respectively. It can be seen in below figures that composition method of order 3

preserve the Runge-Lenz vector better than 3rd order Runge-Kutta method.
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Figure 5.38. The errors in Runge-Lenz vector A(q, p) − A(q0, p0) for 3rd order

Runge-Kutta.
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Figure 5.39. The errors in Runge-Lenz vector A(q, p) − A(q0, p0) for Composition

method of order 3 (midpoint rule as base method).
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Figure 5.40. The errors in Runge-Lenz vector A(q, p) − A(q0, p0) for Composition

method of order 3 (Störmer-Verlet as base method).
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5.4. Fourth and Fifth Order Methods

In this section we consider fourth and fifth order methods, namely, classic

4th order Runge-Kutta method that we mentioned in chapter 3.4 and composition

methods of order 5. In composition methods we use midpoint rule and Störmer-

Verlet method as base methods. In composition methods we use step sizes γ1 =

γ2 = γ4 = γ5 = γ1 = 1
4−4(1/5) and γ3 = − 4(1/5)

4−4(1/5) .

5.4.1. Phase Spaces

In this subsection trajectory of motion obtained by classic 4th order Runge-

Kutta method is shown in Figure(5.41). Since 4th order Runge-Kutta is a non-

geometric integrator we could not obtain closed curves. Figure(5.42) and Fig-

ure(5.43) present trajectory of motion obtained by composition method of order

5 (midpoint rule as base method) and composition method of order 5 (Störmer-

Verlet as base method), respectively. Since composition method of order 5 are

symplectic geometric integrator the shape of the trajectory preserved by this

method.
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Figure 5.41. Trajectory of motion by 4th order Runge-Kutta.
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Figure 5.42. Trajectory of motion by Composition method of order 5 (midpoint

rule as base method).
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Figure 5.43. Trajectory of motion by Composition method of order 5 (Störmer-

Verlet as base method).
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5.4.2. Conservation of Energy

Conservation of the energy is presented in Figure(5.44, 5.45, 5.46) by

classic 4th order Runge-Kutta method, composition method of order 5 (midpoint

rule as base method) and composition method of order 5 (Störmer-Verlet as base

method), respectively. We observed following: composition method of order 5

preserve the energy better than 4th order Runge-Kutta.
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Figure 5.44. The errors in Hamiltonian H(q, p) − H(q0, p0) for 4th order Runge-

Kutta.
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Figure 5.45. The errors in Hamiltonian H(q, p)−H(q0, p0) for Composition method

of order 5 (midpoint rule as base method).
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Figure 5.46. The errors in Hamiltonian H(q, p)−H(q0, p0) for Composition method

of order 5 (Störmer-Verlet as base method).
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5.4.3. Conservation of Angular Momentum

In this subsection conservation of angular momentum is shown in

Figure(5.47, 5.48, 5.49) by 4th order Runge-Kutta, composition method of

order 5 (midpoint rule as base method) and composition method of order 5

(Störmer-Verlet as base method), respectively. Composition method of order 5

conserved the angular momentum up to the computer accuracy. Conservation of

angular momentum by composition method of order 5 is better than 4th order

Runge-Kutta method.
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Figure 5.47. The errors in angular momentum L(q, p) − L(q0, p0) for 4th order

Runge-Kutta.
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Figure 5.48. The errors in angular momentum L(q, p) − L(q0, p0) Composition

method of order 5 (midpoint rule as base method).
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Figure 5.49. The errors in angular momentum L(q, p) − L(q0, p0) Composition

method of order 5 (Störmer-Verlet as base method).
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5.4.4. Conservation of Runge-Lenz Vector

Conservation of Runge-Lenz vector is shown in Figure(5.50, 5.51, 5.52) by

4th order Runge-Kutta, composition method of order 5 (midpoint rule as base

method) and composition method of order 5 (Störmer-Verlet as base method),

respectively. We observe the following: composition method of order 5 preserve

the Runge-Lenz vector better than 4th order Runge-Kutta method.
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Figure 5.50. The errors in Runge-Lenz vector A(q, p) − A(q0, p0) for 4th order

Runge-Kutta.
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Figure 5.51. The errors in Runge-Lenz vector A(q, p) − A(q0, p0) for Composition

method of order 5 (midpoint rule as base method).
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Figure 5.52. The errors in Runge-Lenz vector A(q, p) − A(q0, p0) for Composition

method of order 5 (Störmer-Verlet as base method).
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CHAPTER 6

SUMMARY AND CONCLUSION

In this thesis both geometric and non-geometric integration methods were

applied to the Kepler problem in order to determine which of its conserved

quantities were preserved better. For this purpose explicit Euler, implicit Euler,

symplectic Euler, adjoint of symplectic Euler, trapezoidal rule, midpoint rule,

Störmer-Verlet method, 3rd and 4th order Runge-Kutta methods were chosen. In

addition we constructed higher order symplectic method by composition tech-

niques considering midpoint rule and Störmer-Verlet method as base methods.

All algorithms of the methods were written in MATLAB.

The results obtained from computations are summarized in Table (1). In

this table norm of errors in energy, angular momentum, Runge-Lenz vector and

CPU times of the methods that we mentioned above are presented. From the table

the following results are relived:

• Implicit methods are more expensive than explicit methods.

• Symplectic methods conserved three quantities of the Kepler problem better.

• When the order of the methods increase we get better conservation of the

quantities.

• The best conservation of the quantities is obtained by composition method of

order 5 (midpoint as the base method) however it’s the most expensive method.

• In general the Runge-Lenz vector is not conserved by any method in a higher

accuracy.
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Table 1: Comparison of both Geometric and Non-Geometric

Integration Methods with respect to norm of errors in en-

ergy, angular momentum, Runge-Lenz vector and CPU time.

Norm of H Norm of L Norm of A CPU time

First EE 8.08 5.41 11.43 1.09

Order IE 10.17 11.24 10.56 4.76

Methods SE 1.19 4.05e-014 2.797 0.31

ASE 1.07 3.35e-014 3.525 0.23

Second TR 0.33 0.22 17.05 6.06

Order IMR 0.07 2.76e-014 5.17 0.26

Methods SV Method 0.05 3.16e-014 2.41 0.25

Third RK 0.44 0.26 11.05 0.32

Order CM (MR) 0.04 2.66e-014 2.58 17.48

Methods CM (SV) 0.002 2.52e-014 7.33 12.80

Fourth and Fifth RK 0.64 0.15 11.45 0.31

Order CCM (MR) 0.008 2.57e-014 0.22 28.93

Methods CMM (SV) 0.0008 2.45e-014 3.43 14.60
Abbreviations in the table:

EE Explicit Euler Method

IE Implicit Euler Method

SE Symplectic Euler Method

ASE Adjoint of Symplectic Euler Method

TR Trapezoidal Rule

IMR Implicit Midpoint Rule

SV Störmer-Verlet Method

RK Runge-Kutta Method

CM Composition Method of Order 3

CCM Composition Method of Order 5
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Figure 6.1. Errors for energy versus time step h in logarithmic scale for composi-

tion method of order 3 (midpoint rule as the base method).

Finally, errors for energy versus time step h in logarithmic scale for com-

position method of order 3 (midpoint rule as the base method) is presented in

Figure (6.1).

As can be seen in this figure, when the step-size diminish the error in

energy is also decreases linearly. This confirms the stability and consistency of

this method.
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APPENDIX A

MATLAB CODES

A.1. First Order Methods

A.1.1. Explicit Euler

N = 1000;

h = 100/N ;

K = 1;

%initial conditions

q0 = [ 0.8 , 0.6 , 0 ]’ ;

p0 = [ 0 , 1 , 0.5 ]’ ;

r0 = sqrt( q0’*q0) ;

q1 = q0 ;

p1 = p0 ;

r1 = sqrt( q1’*q1) ;

%first energy

H0 = ( ( p1’*p1/2 ) - ( K /r1 ) );

%for angular momentum

m1 = q1(2)*p1(3) - q1(3)*p1(2);

m2 = q1(3)*p1(1) - q1(1)*p1(3);

m3 = q1(1)*p1(2) - q1(2)*p1(1);

%first angular momentum

L0 = [ m1 , m2 , m3 ]’ ;

%first Runge-Lenz vector

RL0 = q1 *(H0 + p1’*p1/2 ) - p1 *(q1’*p1) ;

% computational unit
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for i = 1:N

q2 = q1+ h * p1 ;

r = sqrt(q1’*q1) ;

p2 = p1 - (h/2)*q1/(rˆ3) ;

q1=q2;

p1=p2;

Q(:,i) = q1 ;

P(:,i) = p1;

T(i) = i*h ;

H(i) = ( ( p1’*p1/2 ) - ( K / sqrt(q1’*q1) ) ) ;

error_H(i) = H(i) - H0 ;

%for angular momentum

mm1 = q1(2)*p1(3) - q1(3)*p1(2);

mm2 = q1(3)*p1(1) - q1(1)*p1(3);

mm3 = q1(1)*p1(2) - q1(2)*p1(1);

L(:,i) = [mm1 , mm2 , mm3 ]’ ;

error_L(:,i) = sqrt( (L(:,i) - L0)’*(L(:,i)-L0)) ;

RL(:, i) = q1 *(H(i) + p1’*p1/2 ) - p1 *(q1’*p1) ;

error_RL(:,i) = sqrt( (RL(:,i)- RL0)’*(RL(:,i)- RL0)) ;

end;

plot3 (Q(1,:),Q(2,:),Q(3,:) ) ; grid on;

xlabel(’q_1’);

ylabel(’q_2’);

zlabel(’q_3’);
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plot (T,error_H) ; grid on;

xlabel(’Time t’); ylabel(’H(q,p) - H(q_0,p_0)’);

plot (T,error_L) ; grid on;

xlabel(’Time t’); ylabel(’|| L(q,p) - L(q_0,p_0)||’);

plot (T,error_RL) ;grid on;

xlabel(’Time t’); ylabel(’|| A(q,p) - A(q_0,p_0)||’);

A.1.2. Implicit Euler

N = 1000;

h = 100/N ;

K = 1;

%initial conditions

q0 = [ 0.8 , 0.6 , 0 ]’ ;

p0 = [ 0 , 1 , 0.5 ]’ ;

r0 = sqrt( q0’*q0) ;

q = q0 ;

p = p0 ;

r = sqrt( q’*q) ;

%first energy

H0 = ( ( p’*p/2 ) - ( K /r ) );

%for angular momentum

m1 = q(2)*p(3) - q(3)*p(2);

m2 = q(3)*p(1) - q(1)*p(3);

m3 = q(1)*p(2) - q(2)*p(1);

%first angular momentum

L0 = [ m1 , m2 , m3 ]’ ;

%first Runge-Lenz vector

RL0 = q *(H0 + p’*p/2 ) - p *(q’*p) ;
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% computational unit

for i = 1:N

r = sqrt(q’*q) ;

p = p - h * q/(rˆ3) ;

q = q + h * p;

Q(:,i) = q ;

P(:,i) = p;

T(i) = i*h ;

H(i) = ( ( p’*p/2 ) - ( K / sqrt(q’*q) ) ) ;

error_H(i) = H(i) - H0 ;

%for angular momentum

m1 = q(2)*p(3) - q(3)*p(2);

m2 = q(3)*p(1) - q(1)*p(3);

m3 = q(1)*p(2) - q(2)*p(1);

L(:,i) = [m1 , m2 , m3 ]’ ;

error_L(:,i) = sqrt( (L(:,i) - L0)’*(L(:,i)-L0)) ;

RL(:, i) = q *(H(i) + p’*p/2 ) - p *(q’*p) ;

error_RL(:,i) = sqrt( (RL(:,i)- RL0)’*(RL(:,i)- RL0)) ;

end;

A.1.3. Symplectic Euler

N = 1000;

h = 100/N ;

K = 1;
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%initial conditions

q0 = [ 0.8 , 0.6 , 0 ]’ ;

p0 = [ 0 , 1 , 0.5 ]’ ;

r0 = sqrt( q0’*q0) ;

q = q0 ;

p = p0 ;

r = sqrt( q’*q) ;

%first energy

H0 = ( ( p’*p/2 ) - ( K /r ) );

%for angular momentum

m1 = q(2)*p(3) - q(3)*p(2);

m2 = q(3)*p(1) - q(1)*p(3);

m3 = q(1)*p(2) - q(2)*p(1);

%first angular momentum

L0 = [ m1 , m2 , m3 ]’ ;

%first Runge-Lenz vector

RL0 = q *(H0 + p’*p/2 ) - p *(q’*p) ;

% computational unit

for i = 1:N

q = q + h * p;

r = sqrt(q’*q) ;

p = p - h * q/(rˆ3) ;

Q(:,i) = q ;

P(:,i) = p;

T(i) = i*h ;

H(i) = ( ( p’*p/2 ) - ( K / sqrt(q’*q) ) ) ;
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error_H(i) = H(i) - H0 ;

%for angular momentum

m1 = q(2)*p(3) - q(3)*p(2);

m2 = q(3)*p(1) - q(1)*p(3);

m3 = q(1)*p(2) - q(2)*p(1);

L(:,i) = [m1 , m2 , m3 ]’ ;

error_L(:,i) = sqrt( (L(:,i) - L0)’*(L(:,i)-L0)) ;

RL(:, i) = q *(H(i) + p’*p/2 ) - p *(q’*p) ;

error_RL(:,i) = sqrt( (RL(:,i)- RL0)’*(RL(:,i)- RL0)) ;

end;

A.1.4. Adjoint of Symplectic Euler

N = 1000;

h = 100/N ;

K = 1;

%initial conditions

q0 = [ 0.8 , 0.6 , 0 ]’ ;

p0 = [ 0 , 1 , 0.5 ]’ ;

r0 = sqrt( q0’*q0) ;

q = q0 ;

p = p0 ;

r = sqrt( q’*q) ;

%first energy

H0 = ( ( p’*p/2 ) - ( K /r ) );

%for angular momentum
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m1 = q(2)*p(3) - q(3)*p(2);

m2 = q(3)*p(1) - q(1)*p(3);

m3 = q(1)*p(2) - q(2)*p(1);

%first angular momentum

L0 = [ m1 , m2 , m3 ]’ ;

%first Runge-Lenz vector

RL0 = q *(H0 + p’*p/2 ) - p *(q’*p) ;

% computational unit

for i = 1:N

r = sqrt(q’*q) ;

p = p - h * q/(rˆ3) ;

q = q + h * p;

Q(:,i) = q ;

P(:,i) = p;

T(i) = i*h ;

H(i) = ( ( p’*p/2 ) - ( K / sqrt(q’*q) ) ) ;

error_H(i) = H(i) - H0 ;

%for angular momentum

m1 = q(2)*p(3) - q(3)*p(2);

m2 = q(3)*p(1) - q(1)*p(3);

m3 = q(1)*p(2) - q(2)*p(1);

L(:,i) = [m1 , m2 , m3 ]’ ;

error_L(:,i) = sqrt( (L(:,i) - L0)’*(L(:,i)-L0)) ;
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RL(:, i) = q *(H(i) + p’*p/2 ) - p *(q’*p) ;

error_RL(:,i) = sqrt( (RL(:,i)- RL0)’*(RL(:,i)- RL0)) ;

end;

A.2. Second Order Methods

A.2.1. Trapezoidal Rule

N = 1000 % 752;

h = 0.15 ;

K = 1;

x0 = [ 0.8 , 0.6 , 0 ]’ ;

p0 = [ 0 , 1 , 0.5 ]’ ;

t0 = 0 ;

r0 = sqrt( x0’*x0) ;

x = x0 ;

p = p0 ;

r = sqrt( x’*x) ;

H0 = ( ( p’*p/2 ) - ( K /r ) )

m12 = x(1)*p(2) - x(2)*p(1);

m13 = x(1)*p(3) - x(3)*p(1);

m23 = x(2)*p(3) - x(3)*p(2);

M0 = [ m12 , m13 , m23 ]’ ;

RL0 = x *(H0 + p’*p/2 ) - p *(x’*p) ;

% computational unit
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for i = 1:N

x1 = x ;

p1 = p;

x2 = x1 ;

p2 = p1;

for k = 1:100

p_mid = (p+p1)/2;

x2 = x + h * p_mid ;

r1 = sqrt( x1’*x1) ;

r2= sqrt( x’*x) ;

p2 = p - h/2*K*(x1/(r1ˆ3) + x/(r2ˆ3) ) ;

x1= x2;

p1 = p2;

end;

X(:,i) = x1 ;

P(:,i) = p1;

T(i) = i*h ;

x = x1;

p = p1;

H(i) = ( ( p’*p/2 ) - ( K / sqrt(x’*x) ) ) ;

error_H(i) = H(i) - H0 ;

m12 = x(1)*p(2) - x(2)*p(1);
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m13 = x(1)*p(3) - x(3)*p(1);

m23 = x(2)*p(3) - x(3)*p(2);

M(:,i) = [m12 , m13 , m23 ]’ ;

error_M(:,i) = sqrt( (M(:,i) - M0)’*(M(:,i)-M0)) ;

RL(:, i) = x *(H(i) + p’*p/2 ) - p *(x’*p) ;

error_RL(:,i) = sqrt( (RL(:,i)- RL0)’*(RL(:,i)- RL0)) ;

end;

A.2.2. Midpoint Rule

N = 1000;

h = 100/N ;

K = 1;

%initial conditions

q0 = [ 0.8 , 0.6 , 0 ]’ ;

p0 = [ 0 , 1 , 0.5 ]’ ;

r0 = sqrt( q0’*q0) ;

q = q0 ;

p = p0 ;

r = sqrt( q’*q) ;

%first energy

H0 = ( ( p’*p/2 ) - ( K /r ) );

%for angular momentum

m1 = q(2)*p(3) - q(3)*p(2);

m2 = q(3)*p(1) - q(1)*p(3);

m3 = q(1)*p(2) - q(2)*p(1);

%first angular momentum

L0 = [ m1 , m2 , m3 ]’ ;

%first Runge-Lenz vector

RL0 = q *(H0 + p’*p/2 ) - p *(q’*p) ;

% computational unit
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for i = 1:N

q1 = q ;

p1 = p;

q2 = q1 ;

p2 = p1;

for k = 1:100

p_mid = (p+p1)/2;

q2 = q + h * p_mid ;

q_mid = (q+q1)/2;

r = sqrt( q_mid’*q_mid) ;

p2 = p - h*K*q_mid/(rˆ3) ;

q1= q2;

p1 = p2;

end;

Q(:,i) = q1 ;

P(:,i) = p1;

T(i) = i*h ;

q = q1;

p = p1;

H(i) = ( ( p’*p/2 ) - ( K / sqrt(q’*q) ) ) ;

error_H(i) = H(i) - H0 ;

%for angular momentum
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m1 = q(2)*p(3) - q(3)*p(2);

m2 = q(3)*p(1) - q(1)*p(3);

m3 = q(1)*p(2) - q(2)*p(1);

L(:,i) = [m1 , m2 , m3 ]’ ;

error_L(:,i) = sqrt( (L(:,i) - L0)’*(L(:,i)-L0)) ;

RL(:, i) = q *(H(i) + p’*p/2 ) - p *(q’*p) ;

error_RL(:,i) = sqrt( (RL(:,i)- RL0)’*(RL(:,i)- RL0)) ;

end;

A.2.3. Störmer-Verlet Method

N = 1000;

h = 100/N ;

K = 1;

%initial conditions

q0 = [ 0.8 , 0.6 , 0 ]’ ;

p0 = [ 0 , 1 , 0.5 ]’ ;

r0 = sqrt( q0’*q0) ;

q = q0 ;

p = p0 ;

r = sqrt( q’*q) ;

%first energy

H0 = ( ( p’*p/2 ) - ( K /r ) );

%for angular momentum

m1 = q(2)*p(3) - q(3)*p(2);

m2 = q(3)*p(1) - q(1)*p(3);

m3 = q(1)*p(2) - q(2)*p(1);

91



%first angular momentum

L0 = [ m1 , m2 , m3 ]’ ;

%first Runge-Lenz vector

RL0 = q *(H0 + p’*p/2 ) - p *(q’*p) ;

% computational unit

for i = 1:N

r = sqrt(q’*q) ;

x = p - (h/2)*q/(rˆ3) ;

q = q + h * x ;

r = sqrt(q’*q) ;

p = x - (h/2)*q/(rˆ3) ;

Q(:,i) = q ;

P(:,i) = p;

T(i) = i*h ;

H(i) = ( ( p’*p/2 ) - ( K / sqrt(q’*q) ) ) ;

error_H(i) = H(i) - H0 ;

%for angular momentum

m1 = q(2)*p(3) - q(3)*p(2);

m2 = q(3)*p(1) - q(1)*p(3);

m3 = q(1)*p(2) - q(2)*p(1);

L(:,i) = [m1 , m2 , m3 ]’ ;

error_L(:,i) = sqrt( (L(:,i) - L0)’*(L(:,i)-L0)) ;

RL(:, i) = q *(H(i) + p’*p/2 ) - p *(q’*p) ;
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error_RL(:,i) = sqrt( (RL(:,i)- RL0)’*(RL(:,i)- RL0)) ;

end;

A.3. Third Order Methods

A.3.1. Third Order Runge-Kutta Method

Y=[0;1;0.5;0.8;0.6;0];

h=0.01;

n=1000;

for i=1:n

p1(i)=Y(1,1);

p2(i)=Y(2,1);

p3(i)=Y(3,1);

q1(i)=Y(4,1);

q2(i)=Y(5,1);

q3(i)=Y(6,1);

w=(sqrt(q1(i)ˆ2+q2(i)ˆ2+q3(i)ˆ2))ˆ3;

A=[0 0 0 -1/w 0 0;0 0 0 0 -1/w 0;0 0 0 0 0 -1/w;

1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];

k1=A*Y;

Y1=Y+(h/2)*k1;

w1=(sqrt(Y1(4,1)ˆ2+Y1(5,1)ˆ2+Y1(6,1)ˆ2))ˆ3;

A1=[0 0 0 -1/w1 0 0;0 0 0 0 -1/w1 0;0 0 0 0 0 -1/w1;

1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];

k2=A1*Y1;

Y2=Y+(h/2)*k2;

w2=(sqrt(Y2(4,1)ˆ2+Y2(5,1)ˆ2+Y2(6,1)ˆ2))ˆ3;

A2=[0 0 0 -1/w2 0 0;0 0 0 0 -1/w2 0;0 0 0 0 0 -1/w2;

1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];

k3=A2*Y2;
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Y=Y+(1/6)*h*(k1+4*k2+2*k3);

L(i)=((q1(i)*p2(i)+q2(i)*p3(i)+q3(i)*p1(i))-

(q2(i)*p1(i)+q3(i)*p2(i)+q1(i)*p3(i)));

r(i)=abs(L(i)-L(1));

H(i)=0.5*((p1(i)).ˆ2+(p2(i)).ˆ2+(p3(i)).ˆ2)-1/

(sqrt((q1(i)).ˆ2+(q2(i)).ˆ2+(q3(i)).ˆ2));

e(i)=abs(H(i)-H(1));

H(1)=0.5*((p1(1)).ˆ2+(p2(1)).ˆ2+(p3(1)).ˆ2)-1/

(sqrt((q1(1)).ˆ2+(q2(1)).ˆ2+(q3(1)).ˆ2));

a=p1(1)*q1(1)+p2(1)*q2(1)+p3(1)*q3(1);

b=H(1)+(1/2)*sqrt((p1(1).ˆ2)+(p2(1).ˆ2)+(p3(1).ˆ2));

a1=(b*q1(1)-a*p1(1));

a2=(b*q2(1)-a*p2(1));

a3=(b*q3(1)-a*p3(1));

%Runge-Lenz vector

c=p1(i)*q1(i)+p2(i)*q2(i)+p3(i)*q3(i);

d=H(i)+(1/2)*sqrt((p1(i).ˆ2)+(p1(i).ˆ2)+(p1(i).ˆ2));

b1(i)=(d*q1(i)-c*p1(i));

b2(i)=(d*q2(i)-c*p2(i));

b3(i)=(d*q3(i)-c*p3(i));

R(i)=sqrt(((b1(i)-a1).ˆ2)+((b2(i)-a2).ˆ2)+((b3(i)-a3).ˆ2));

end

A.3.2. Composition Method of Order 3 (Midpoint as base method)

N = 1000;

h = 100/N ;

K = 1;

gama1=1/2-(2ˆ(1/3));

gama2=-((2ˆ(1/3))/2-(2ˆ(1/3)));

gama3=1/2-(2ˆ(1/3));
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%initial conditions

q0 = [ 0.8 , 0.6 , 0 ]’ ;

p0 = [ 0 , 1 , 0.5 ]’ ;

r0 = sqrt( q0’*q0) ;

q1 = q0 ;

p1 = p0 ;

r1 = sqrt( q1’*q1) ;

%first energy

H0 = ( ( p1’*p1/2 ) - ( K /r1 ) );

%for angular momentum

m1 = q1(2)*p1(3) - q1(3)*p1(2);

m2 = q1(3)*p1(1) - q1(1)*p1(3);

m3 = q1(1)*p1(2) - q1(2)*p1(1);

%first angular momentum

L0 = [ m1 , m2 , m3 ]’ ;

%first Runge-Lenz vector

RL0 = q1 *(H0 + p1’*p1/2 ) - p1 *(q1’*p1) ;

% ----------------computational unit 1---------------

for i = 1:N

q11 = q1 ;

p11 = p1;

q21 = q11 ;

p21 = p11;

for k = 1:100

p_mid1 = (p1+p11)/2;
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q21 = q1 + h *gama1* p_mid1 ;

q_mid1 = (q1+q11)/2;

r1 = sqrt( q_mid1’*q_mid1) ;

p21 = p1 - h*K*gama1*q_mid1/(r1ˆ3) ;

q11= q21;

p11 = p21;

end;

x1 = q11;

y1 = p11;

end;

%----------------computational unit 2------------------

q2 = x1 ;

p2 = y1 ;

r2 = sqrt( q2’*q2) ;

for i = 1:N

q12 = q2 ;

p12 = p2;

q22 = q12 ;

p22 = p12;

for k = 1:100
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p_mid2 = (p2+p12)/2;

q22 = q2 + h *gama2* p_mid2 ;

q_mid2 = (q2+q12)/2;

r2 = sqrt( q_mid2’*q_mid2) ;

p22 = p2 - h*K*gama2*q_mid2/(r2ˆ3) ;

q12= q22;

p12 = p22;

end;

x2 = q12;

y2 = p12;

end;

%----------------computational unit 3------------------

q3 = x2 ;

p3 = y2 ;

r3 = sqrt( q3’*q3) ;

for i = 1:N

q13 = q3 ;

p13 = p3;

q23 = q13 ;

p23 = p13;

for k = 1:100
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p_mid3 = (p3+p13)/2;

q23 = q3 + h *gama3* p_mid3 ;

q_mid3 = (q3+q13)/2;

r3 = sqrt( q_mid3’*q_mid3) ;

p23 = p3 - h*K*gama3*q_mid3/(r3ˆ3) ;

q13= q23;

p13 = p23;

end;

Q(:,i) = q13 ;

P(:,i) = p13;

T(i) = i*h ;

q3 = q13;

p3 = p13;

% energy

H(i) = ( ( p3’*p3/2 ) - ( K / sqrt(q3’*q3) ) ) ;

error_H(i) = H(i) - H0 ;

%angular momentum

mm1 = q3(2)*p3(3) - q3(3)*p3(2);

mm2 = q3(3)*p3(1) - q3(1)*p3(3);

mm3 = q3(1)*p3(2) - q3(2)*p3(1);

L(:,i) = [mm1 , mm2 , mm3 ]’ ;

error_L(:,i) = sqrt( (L(:,i) - L0)’*(L(:,i)-L0)) ;

%runge-lenz vector
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RL(:, i) = q3 *(H(i) + p3’*p3/2 ) - p3 *(q3’*p3) ;

error_RL(:,i) = sqrt( (RL(:,i)- RL0)’*(RL(:,i)- RL0)) ;

end;

A.3.3. Composition Method of Order 3 (Störmer-Verlet as base

method)

q11(1)=0.8;

q21(1)=0.6;

p11(1)=0;

p21(1)=1;

q31(1)=0;

p31(1)=0.5;

h=0.01;

gama1=1/2-(2ˆ(1/3));

gama2=-((2ˆ(1/3))/2-(2ˆ(1/3)));

gama3=1/2-(2ˆ(1/3));h=0.007;

for i=1:1000;

k=p11(i)-(h/2)*gama1*(q11(i)/(q11(i).ˆ2+

q21(i).ˆ2+q31(i).ˆ2).ˆ(1.5));

m=p21(i)-(h/2)*gama1*(q21(i)/(q11(i).ˆ2+

q21(i).ˆ2+q31(i).ˆ2).ˆ(1.5));

t=p31(i)-(h/2)*gama1*(q31(i)/(q11(i).ˆ2+

q21(i).ˆ2+q31(i).ˆ2).ˆ(1.5));

q11(i+1)=q11(i)+h*gama1*k;

q21(i+1)=q21(i)+h*gama1*m;

q31(i+1)=q31(i)+h*gama1*t;
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p11(i+1)=k-(h/2)*gama1*(q11(i+1)/(q11(i+1).ˆ2+

q21(i+1).ˆ2+q31(i+1).ˆ2).ˆ(1.5));

p21(i+1)=m-(h/2)*gama1*(q21(i+1)/(q11(i+1).ˆ2+

q21(i+1).ˆ2+q31(i+1).ˆ2).ˆ(1.5));

p31(i+1)=t-(h/2)*gama1*(q31(i+1)/(q11(i+1).ˆ2+

q21(i+1).ˆ2+q31(i+1).ˆ2).ˆ(1.5));

end

p12(1)=p11(1001);

p22(1)=p21(1001);

q12(1)=q11(1001);

q22(1)=q21(1001);

p32(1)=p31(1001);

q32(1)=q31(1001);

for i=1:1000;

k=p12(i)-(h/2)*gama2*(q12(i)/(q11(i).ˆ2+

q22(i).ˆ2+q32(i).ˆ2).ˆ(1.5));

m=p22(i)-(h/2)*gama2*(q22(i)/(q12(i).ˆ2+

q22(i).ˆ2+q32(i).ˆ2).ˆ(1.5));

t=p32(i)-(h/2)*gama2*(q32(i)/(q12(i).ˆ2+

q22(i).ˆ2+q32(i).ˆ2).ˆ(1.5));

q12(i+1)=q12(i)+h*gama2*k;

q22(i+1)=q22(i)+h*gama2*m;

q32(i+1)=q32(i)+h*gama2*t;

p12(i+1)=k-(h/2)*gama2*(q12(i+1)/(q12(i+1).ˆ2+q22(i+1).ˆ2+

q32(i+1).ˆ2).ˆ(1.5));

p22(i+1)=m-(h/2)*gama2*(q12(i+1)/(q12(i+1).ˆ2+

q22(i+1).ˆ2+q32(i+1).ˆ2).ˆ(1.5));

p32(i+1)=t-(h/2)*gama2*(q32(i+1)/(q12(i+1).ˆ2+

q22(i+1).ˆ2+q32(i+1).ˆ2).ˆ(1.5));

end
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p1(1)=p12(1001);

p2(1)=p22(1001);

q1(1)=q12(1001);

q2(1)=q22(1001);

p3(1)=p32(1001);

q3(1)=q32(1001);

H(1)=0.5*((p1(1)).ˆ2+(p2(1)).ˆ2+(p3(1)).ˆ2)-1/

(sqrt((q1(1)).ˆ2+(q2(1)).ˆ2+(q3(1)).ˆ2));

a=p1(1)*q1(1)+p2(1)*q2(1)+p3(1)*q3(1);

b=H(1)+(1/2)*sqrt((p1(1).ˆ2)+(p2(1).ˆ2)+(p3(1).ˆ2));

a1=(b*q1(1)-a*p1(1));

a2=(b*q2(1)-a*p2(1));

a3=(b*q3(1)-a*p3(1));

for i=1:1000;

% Energy

H(i)=0.5*((p1(i)).ˆ2+(p2(i)).ˆ2+(p3(i)).ˆ2)-1/

(sqrt((q1(i)).ˆ2+(q2(i)).ˆ2+(q3(i)).ˆ2));

e(i)=abs(H(i)-H(1));

%angular momentum

L(i)=((q1(i)*p2(i)+q2(i)*p3(i)+q3(i)*p1(i))-

(q2(i)*p1(i)+q3(i)*p2(i)+q1(i)*p3(i)));

r(i)=abs(L(i)-L(1));

%Runge-Lenz vector

c=p1(i)*q1(i)+p2(i)*q2(i)+p3(i)*q3(i);

d=H(i)+(1/2)*sqrt((p1(i).ˆ2)+(p1(i).ˆ2)+(p1(i).ˆ2));

b1(i)=(d*q1(i)-c*p1(i));

b2(i)=(d*q2(i)-c*p2(i));

b3(i)=(d*q3(i)-c*p3(i));

R(i)=sqrt(((b1(i)-a1).ˆ2)+((b2(i)-a2).ˆ2)+((b3(i)-a3).ˆ2));

k=p1(i)-(h/2)*gama3*(q1(i)/(q1(i).ˆ2+q2(i).ˆ2+q3(i).ˆ2).ˆ(1.5));
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m=p2(i)-(h/2)*gama3*(q2(i)/(q1(i).ˆ2+q2(i).ˆ2+q3(i).ˆ2).ˆ(1.5));

t=p3(i)-(h/2)*gama3*(q3(i)/(q1(i).ˆ2+q2(i).ˆ2+q3(i).ˆ2).ˆ(1.5));

q1(i+1)=q1(i)+h*gama3*k;

q2(i+1)=q2(i)+h*gama3*m;

q3(i+1)=q3(i)+h*gama3*t;

p1(i+1)=k-(h/2)*gama3*(q1(i+1)/(q1(i+1).ˆ2+

q2(i+1).ˆ2+q3(i+1).ˆ2).ˆ(1.5));

p2(i+1)=m-(h/2)*gama3*(q2(i+1)/(q1(i+1).ˆ2+

q2(i+1).ˆ2+q3(i+1).ˆ2).ˆ(1.5));

p3(i+1)=t-(h/2)*gama3*(q3(i+1)/(q1(i+1).ˆ2+

q2(i+1).ˆ2+q3(i+1).ˆ2).ˆ(1.5));

end

A.4. Fourth and Fifth Order Methods

A.4.1. Fourth Order Runge-Kutta Method

Y=[0;1;0.5;0.8;0.6;0];

h=0.2;

n=1000;

for i=1:n

p1(i)=Y(1,1);

p2(i)=Y(2,1);

p3(i)=Y(3,1);

q1(i)=Y(4,1);

q2(i)=Y(5,1);

q3(i)=Y(6,1);

w=(sqrt(q1(i)ˆ2+q2(i)ˆ2+q3(i)ˆ2))ˆ3;

A=[0 0 0 -1/w 0 0;0 0 0 0 -1/w 0;0 0 0 0 0 -1/w;

1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];

k1=A*Y;

Y1=Y+(h/2)*k1;

w1=(sqrt(Y1(4,1)ˆ2+Y1(5,1)ˆ2+Y1(6,1)ˆ2))ˆ3;
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A1=[0 0 0 -1/w1 0 0;0 0 0 0 -1/w1 0;0 0 0 0 0 -1/w1;

1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];

k2=A1*Y1;

Y2=Y+(h/2)*k2;

w2=(sqrt(Y2(4,1)ˆ2+Y2(5,1)ˆ2+Y2(6,1)ˆ2))ˆ3;

A2=[0 0 0 -1/w2 0 0;0 0 0 0 -1/w2 0;0 0 0 0 0 -1/w2;

1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];

k3=A2*Y2;

Y3=Y+h*k3;

w3=(sqrt(Y3(4,1)ˆ2+Y3(5,1)ˆ2+Y3(6,1)ˆ2))ˆ3;

A3=[0 0 0 -1/w3 0 0;0 0 0 0 -1/w3 0;0 0 0 0 0 -1/w3;

1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];

k4=A3*Y3;

Y=Y+(1/6)*h*(k1+2*k2+2*k3+k4);

L(i)=((q1(i)*p2(i)+q2(i)*p3(i)+q3(i)*p1(i))-

(q2(i)*p1(i)+q3(i)*p2(i)+q1(i)*p3(i)));

r(i)=abs(L(i)-L(1));

H(i)=0.5*((p1(i)).ˆ2+(p2(i)).ˆ2+(p3(i)).ˆ2)-1/

(sqrt((q1(i)).ˆ2+(q2(i)).ˆ2+(q3(i)).ˆ2));

e(i)=abs(H(i)-H(1));

H(1)=0.5*((p1(1)).ˆ2+(p2(1)).ˆ2+(p3(1)).ˆ2)-1/

(sqrt((q1(1)).ˆ2+(q2(1)).ˆ2+(q3(1)).ˆ2));

a=p1(1)*q1(1)+p2(1)*q2(1)+p3(1)*q3(1);

b=H(1)+(1/2)*sqrt((p1(1).ˆ2)+(p2(1).ˆ2)+(p3(1).ˆ2));

a1=(b*q1(1)-a*p1(1));

a2=(b*q2(1)-a*p2(1));

a3=(b*q3(1)-a*p3(1));

%Runge-Lenz vector

c=p1(i)*q1(i)+p2(i)*q2(i)+p3(i)*q3(i);

d=H(i)+(1/2)*sqrt((p1(i).ˆ2)+(p1(i).ˆ2)+(p1(i).ˆ2));

b1(i)=(d*q1(i)-c*p1(i));

b2(i)=(d*q2(i)-c*p2(i));
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b3(i)=(d*q3(i)-c*p3(i));

R(i)=sqrt(((b1(i)-a1).ˆ2)+((b2(i)-a2).ˆ2)+((b3(i)-a3).ˆ2));

end

A.4.2. Composition Method of Order 5 (Midpoint as base method)

N = 1000;

h = 100/N ;

K = 1;

gama1=1/(4-(4ˆ(1/5)));

gama2=1/(4-(4ˆ(1/5)));

gama3=-((4ˆ(1/5))/(4-(4ˆ(1/5))));

gama4=1/(4-(4ˆ(1/5)));

gama5=1/(4-(4ˆ(1/5)));

%ilk deerler

q0 = [ 0.8 , 0.6 , 0 ]’ ;

p0 = [ 0 , 1 , 0.5 ]’ ;

r0 = sqrt( q0’*q0) ;

q1 = q0 ;

p1 = p0 ;

r1 = sqrt( q1’*q1) ;

%energy nin ilk deeri

H0 = ( ( p1’*p1/2 ) - ( K /r1 ) );

%angular momentum iin

m1 = q1(2)*p1(3) - q1(3)*p1(2);

m2 = q1(3)*p1(1) - q1(1)*p1(3);

m3 = q1(1)*p1(2) - q1(2)*p1(1);

%angular momentum un ilk deeri
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L0 = [ m1 , m2 , m3 ]’ ;

%Runge-Lenz vector un ilk deeri

RL0 = q1 *(H0 + p1’*p1/2 ) - p1 *(q1’*p1) ;

% ----------------computational unit 1---------------

for i = 1:N

q11 = q1 ;

p11 = p1;

q21 = q11 ;

p21 = p11;

for k = 1:100

p_mid1 = (p1+p11)/2;

q21 = q1 + h *gama1* p_mid1 ;

q_mid1 = (q1+q11)/2;

r1 = sqrt( q_mid1’*q_mid1) ;

p21 = p1 - h*K*gama1*q_mid1/(r1ˆ3) ;

q11= q21;

p11 = p21;

end;

x1 = q11;

y1 = p11;

end;
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%----------------computational unit 2------------------

q2 = x1 ;

p2 = y1 ;

r2 = sqrt( q2’*q2) ;

for i = 1:N

q12 = q2 ;

p12 = p2;

q22 = q12 ;

p22 = p12;

for k = 1:100

p_mid2 = (p2+p12)/2;

q22 = q2 + h *gama2* p_mid2 ;

q_mid2 = (q2+q12)/2;

r2 = sqrt( q_mid2’*q_mid2) ;

p22 = p2 - h*K*gama2*q_mid2/(r2ˆ3) ;

q12= q22;

p12 = p22;

end;

x2 = q12;

y2 = p12;

end;
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%----------------computational unit 3------------------

q3 = x2 ;

p3 = y2 ;

r3 = sqrt( q3’*q3) ;

for i = 1:N

q13 = q3 ;

p13 = p3;

q23 = q13 ;

p23 = p13;

for k = 1:100

p_mid3 = (p3+p13)/2;

q23 = q3 + h *gama3* p_mid3 ;

q_mid3 = (q3+q13)/2;

r3 = sqrt( q_mid3’*q_mid3) ;

p23 = p3 - h*K*gama3*q_mid3/(r3ˆ3) ;

q13= q23;

p13 = p23;

end;

x3 = q13 ;

y3 = p13;

end;
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%----------------computational unit 4------------------

q4 = x3 ;

p4 = y3 ;

r4 = sqrt( q4’*q4) ;

for i = 1:N

q14 = q4 ;

p14 = p4;

q24 = q14 ;

p24 = p14;

for k = 1:100

p_mid4 = (p4+p14)/2;

q24 = q4 + h *gama4* p_mid4 ;

q_mid4 = (q4+q14)/2;

r4 = sqrt( q_mid4’*q_mid4) ;

p24 = p4 - h*K*gama4*q_mid4/(r4ˆ3) ;

q14= q24;

p14 = p24;

end;

x4 = q14 ;

y4 = p14;
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end;

%----------------computational unit 5------------------

q5 = x4 ;

p5 = y4 ;

r5 = sqrt( q5’*q5) ;

for i = 1:N

q15 = q5 ;

p15 = p5;

q25 = q15 ;

p25 = p15;

for k = 1:100

p_mid5 = (p5+p15)/2;

q25 = q5 + h *gama5* p_mid5 ;

q_mid5 = (q5+q15)/2;

r5 = sqrt( q_mid5’*q_mid5) ;

p25 = p5 - h*K*gama5*q_mid5/(r5ˆ3) ;

q15= q25;

p15 = p25;

end;

Q(:,i) = q15 ;

P(:,i) = p15;

T(i) = i*h ;
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q5 = q15;

p5 = p15;

% energy

H(i) = ( ( p5’*p5/2 ) - ( K / sqrt(q5’*q5) ) ) ;

error_H(i) = H(i) - H0 ;

%angular momentum

mm1 = q5(2)*p5(3) - q5(3)*p5(2);

mm2 = q5(3)*p5(1) - q5(1)*p5(3);

mm3 = q5(1)*p5(2) - q5(2)*p5(1);

L(:,i) = [mm1 , mm2 , mm3 ]’ ;

error_L(:,i) = sqrt( (L(:,i) - L0)’*(L(:,i)-L0)) ;

%runge-lenz vector

RL(:, i) = q5 *(H(i) + p5’*p5/2 ) - p5 *(q5’*p5) ;

error_RL(:,i) = sqrt( (RL(:,i)- RL0)’*(RL(:,i)- RL0)) ;

end;

A.4.3. Composition Method of Order 5 (Störmer-Verlet as base

method)

q11(1)=0.8;

q21(1)=0.6;

p11(1)=0;

p21(1)=1;

q31(1)=0;

p31(1)=0.5;
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%h=0.01;

gama1=1/(4-(4ˆ(1/5)));

gama2=1/(4-(4ˆ(1/5)));

gama4=1/(4-(4ˆ(1/5)));

gama5=1/(4-(4ˆ(1/5)));h=0.08;

gama3=-((4ˆ(1/5))/(4-(4ˆ(1/5))));

% for s=1:8;

% h=(1/5)ˆs;

% x(s)=h;

for i=1:1000;

k=p11(i)-(h/2)*gama1*(q11(i)/(q11(i).ˆ2+q21(i).ˆ2+

q31(i).ˆ2).ˆ(1.5));

m=p21(i)-(h/2)*gama1*(q21(i)/(q11(i).ˆ2+

q21(i).ˆ2+q31(i).ˆ2).ˆ(1.5));

t=p31(i)-(h/2)*gama1*(q31(i)/(q11(i).ˆ2+

q21(i).ˆ2+q31(i).ˆ2).ˆ(1.5));

q11(i+1)=q11(i)+h*gama1*k;

q21(i+1)=q21(i)+h*gama1*m;

q31(i+1)=q31(i)+h*gama1*t;

p11(i+1)=k-(h/2)*gama1*(q11(i+1)/(q11(i+1).ˆ2+

q21(i+1).ˆ2+q31(i+1).ˆ2).ˆ(1.5));

p21(i+1)=m-(h/2)*gama1*(q21(i+1)/(q11(i+1).ˆ2+

q21(i+1).ˆ2+q31(i+1).ˆ2).ˆ(1.5));

p31(i+1)=t-(h/2)*gama1*(q31(i+1)/(q11(i+1).ˆ2+

q21(i+1).ˆ2+q31(i+1).ˆ2).ˆ(1.5));

end

p12(1)=p11(1001);

p22(1)=p21(1001);

q12(1)=q11(1001);
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q22(1)=q21(1001);

p32(1)=p31(1001);

q32(1)=q31(1001);

for i=1:1000;

k=p12(i)-(h/2)*gama2*(q12(i)/(q11(i).ˆ2+q22(i).ˆ2+

q32(i).ˆ2).ˆ(1.5));

m=p22(i)-(h/2)*gama2*(q22(i)/(q12(i).ˆ2+q22(i).ˆ2+

q32(i).ˆ2).ˆ(1.5));

t=p32(i)-(h/2)*gama2*(q32(i)/(q12(i).ˆ2+q22(i).ˆ2+

q32(i).ˆ2).ˆ(1.5));

q12(i+1)=q12(i)+h*gama2*k;

q22(i+1)=q22(i)+h*gama2*m;

q32(i+1)=q32(i)+h*gama2*t;

p12(i+1)=k-(h/2)*gama2*(q12(i+1)/(q12(i+1).ˆ2+

q22(i+1).ˆ2+q32(i+1).ˆ2).ˆ(1.5));

p22(i+1)=m-(h/2)*gama2*(q12(i+1)/(q12(i+1).ˆ2+

q22(i+1).ˆ2+q32(i+1).ˆ2).ˆ(1.5));

p32(i+1)=t-(h/2)*gama2*(q32(i+1)/(q12(i+1).ˆ2+

q22(i+1).ˆ2+q32(i+1).ˆ2).ˆ(1.5));

end

p13(1)=p12(1001);

p23(1)=p22(1001);

q13(1)=q12(1001);

q23(1)=q22(1001);

p33(1)=p32(1001);

q33(1)=q32(1001);

for i=1:1000;

k=p13(i)-(h/2)*gama3*(q13(i)/(q13(i).ˆ2+q23(i).ˆ2+

q33(i).ˆ2).ˆ(1.5));

m=p23(i)-(h/2)*gama3*(q23(i)/(q13(i).ˆ2+q23(i).ˆ2+
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q33(i).ˆ2).ˆ(1.5));

t=p33(i)-(h/2)*gama3*(q33(i)/(q13(i).ˆ2+q23(i).ˆ2+

q33(i).ˆ2).ˆ(1.5));

q13(i+1)=q13(i)+h*gama3*k;

q23(i+1)=q23(i)+h*gama3*m;

q33(i+1)=q33(i)+h*gama3*t;

p13(i+1)=k-(h/2)*gama3*(q13(i+1)/(q13(i+1).ˆ2+

q23(i+1).ˆ2+q33(i+1).ˆ2).ˆ(1.5));

p23(i+1)=m-(h/2)*gama3*(q13(i+1)/(q13(i+1).ˆ2+

q23(i+1).ˆ2+q33(i+1).ˆ2).ˆ(1.5));

p33(i+1)=t-(h/2)*gama3*(q33(i+1)/(q13(i+1).ˆ2+

q23(i+1).ˆ2+q33(i+1).ˆ2).ˆ(1.5));

end

p14(1)=p13(1001);

p24(1)=p23(1001);

q14(1)=q13(1001);

q24(1)=q23(1001);

p34(1)=p33(1001);

q34(1)=q33(1001);

for i=1:1000;

k=p14(i)-(h/2)*gama4*(q14(i)/(q14(i).ˆ2+q24(i).ˆ2+

q34(i).ˆ2).ˆ(1.5));

m=p24(i)-(h/2)*gama4*(q24(i)/(q14(i).ˆ2+q24(i).ˆ2+

q34(i).ˆ2).ˆ(1.5));

t=p34(i)-(h/2)*gama4*(q34(i)/(q14(i).ˆ2+q24(i).ˆ2+

q34(i).ˆ2).ˆ(1.5));

q14(i+1)=q14(i)+h*gama4*k;

q24(i+1)=q24(i)+h*gama4*m;

q34(i+1)=q34(i)+h*gama4*t;

p14(i+1)=k-(h/2)*gama4*(q14(i+1)/(q14(i+1).ˆ2+

q24(i+1).ˆ2+q34(i+1).ˆ2).ˆ(1.5));
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p24(i+1)=m-(h/2)*gama4*(q14(i+1)/(q14(i+1).ˆ2+

q24(i+1).ˆ2+q34(i+1).ˆ2).ˆ(1.5));

p34(i+1)=t-(h/2)*gama4*(q34(i+1)/(q14(i+1).ˆ2+

q24(i+1).ˆ2+q34(i+1).ˆ2).ˆ(1.5));

end

p1(1)=p14(1001);

p2(1)=p24(1001);

q1(1)=q14(1001);

q2(1)=q24(1001);

p3(1)=p34(1001);

q3(1)=q34(1001);

H(1)=0.5*((p1(1)).ˆ2+(p2(1)).ˆ2+(p3(1)).ˆ2)-1/

(sqrt((q1(1)).ˆ2+(q2(1)).ˆ2+(q3(1)).ˆ2));

a=p1(1)*q1(1)+p2(1)*q2(1)+p3(1)*q3(1);

b=H(1)+(1/2)*sqrt((p1(1).ˆ2)+(p2(1).ˆ2)+(p3(1).ˆ2));

a1=(b*q1(1)-a*p1(1));

a2=(b*q2(1)-a*p2(1));

a3=(b*q3(1)-a*p3(1));

for i=1:1000;

% Energy

H(i)=0.5*((p1(i)).ˆ2+(p2(i)).ˆ2+(p3(i)).ˆ2)-1/

(sqrt((q1(i)).ˆ2+(q2(i)).ˆ2+(q3(i)).ˆ2));

e(i)=abs(H(i)-H(1));

%angular momentum

L(i)=((q1(i)*p2(i)+q2(i)*p3(i)+q3(i)*p1(i))-

(q2(i)*p1(i)+q3(i)*p2(i)+q1(i)*p3(i)));

r(i)=abs(L(i)-L(1));

%Runge-Lenz vector

c=p1(i)*q1(i)+p2(i)*q2(i)+p3(i)*q3(i);
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d=H(i)+(1/2)*sqrt((p1(i).ˆ2)+(p1(i).ˆ2)+(p1(i).ˆ2));

b1(i)=(d*q1(i)-c*p1(i));

b2(i)=(d*q2(i)-c*p2(i));

b3(i)=(d*q3(i)-c*p3(i));

R(i)=sqrt(((b1(i)-a1).ˆ2)+((b2(i)-a2).ˆ2)+((b3(i)-a3).ˆ2));

k=p1(i)-(h/2)*gama5*(q1(i)/(q1(i).ˆ2+q2(i).ˆ2+q3(i).ˆ2).ˆ(1.5));

m=p2(i)-(h/2)*gama5*(q2(i)/(q1(i).ˆ2+q2(i).ˆ2+q3(i).ˆ2).ˆ(1.5));

t=p3(i)-(h/2)*gama5*(q3(i)/(q1(i).ˆ2+q2(i).ˆ2+q3(i).ˆ2).ˆ(1.5));

q1(i+1)=q1(i)+h*gama5*k;

q2(i+1)=q2(i)+h*gama5*m;

q3(i+1)=q3(i)+h*gama5*t;

p1(i+1)=k-(h/2)*gama5*(q1(i+1)/(q1(i+1).ˆ2+q2(i+1).ˆ2+

q3(i+1).ˆ2).ˆ(1.5));

p2(i+1)=m-(h/2)*gama5*(q2(i+1)/(q1(i+1).ˆ2+q2(i+1).ˆ2+

q3(i+1).ˆ2).ˆ(1.5));

p3(i+1)=t-(h/2)*gama5*(q3(i+1)/(q1(i+1).ˆ2+q2(i+1).ˆ2+

q3(i+1).ˆ2).ˆ(1.5));

end
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